Calibration of the Louisiana Highway Safety Manual

Bridget Robicheaux
Doctoral Candidate, Dept. of Civil and Env. Engineering

Brian Wolshon
Professor, Dept. of Civil and Env. Engineering

LSU
LOUISIANA STATE UNIVERSITY
Outline of Presentation

• Highway Safety Manual
• Part C Predictive Method
• Calibration Methods
• Objective of Calibration Effort
• Methodology
• Work completed to date
• Next steps
Highway Safety Manual

- Published by AASHTO in 2010
- Provides a quantitative method of predicting highway safety
- Can be used to forecast crash frequency based on various traffic and roadway characteristics
- Also useful for identifying “hot spots” - the locations that are most in need of safety improvements
Highway Safety Manual

• Part A: Introduction, Human Factors, and Fundamentals
• Part B: Roadway Safety Management Process
• Part C: Predictive Method
 – Rural Two-Lane Roads
 – Rural Multilane Highways
 – Urban and Suburban Arterials
• Part D: Crash Modification Factors
Part C Predictive Method

• Safety Performance Functions (SPFs) are used to predict average crash frequency under base conditions
• Crash Modification Factors (CMFs) are selected and multiplied by the SPFs to account for local variations from base conditions
• Because SPFs and CMFs were developed using national data, they must be calibrated to better reflect local conditions.
Calibration Methods

• A calibration factor can be calculated by dividing observed crashes by predicted crashes
• This calibration factor is then multiplied by the Part C SPFs and CMFs to predict average crash frequency
• Another method involves developing jurisdiction-specific SPFs instead of using the HSM Part C SPFs
Objective

- Calibrate the Part C predictive model for roadway segments in Louisiana for the following facility types:
 - Rural two-lane two-way roads
 - Rural multilane highways
 - Urban and suburban arterials

- Compare calibrated HSM SPFs with Louisiana-specific SPFs developed by others

- Recommend which calibration method should be implemented by LA DOTD
Methodology

• Identify facility types to be calibrated
• Select sites for calibration for each facility type (30-50 sites with 100 annual crashes minimum)
• Obtain data for each facility type for specific calibration period (2009-2011)
• Apply Part C model to predict total crash frequency for each site during calibration period
• Compute calibration factors for each facility type
Segment Types to Calibrate

- Rural two-lane undivided
- Rural multilane undivided
- Rural multilane divided
- Urban/Suburban two-lane undivided
- Urban/Suburban three-lane with TWLTL
- Urban/Suburban four-lane undivided
- Urban/Suburban four-lane divided
- Urban/Suburban five-lane with TWLTL
Required Data Elements

- Segment length
- AADT
- Horizontal curve data (rural two-lane)
- Lane width
- Shoulder type & width (rural)
- Presence of lighting (rural multilane)
- Number of driveways by land-use type (urban/suburban only)
- Among many more....
Work Completed

- Selected facility types for calibration
- Collected and collated roadway data and crash data from DOTD (may change)
- Selected segment types within ArcGIS by facility type
- Removed segments with coding errors
- Calculated base SPFs for each segment (rural four-lane)
- Initiated CMF calculations (based on lane width and shoulder width for rural segments)
ArcGIS Roadway Segments
Next Steps

• Site Selection (random 30 to 50 sites)
• Linking crash data with roadway data
• Calculating Calibration Factors (dividing observed by predicted)
• Comparing our results with results of state-specific SPFs (calculated by others using statistical methods)
• Recommending a calibration method to DOTD
Questions?