Acknowledgments

• **Key Stakeholders**
 – Federal Motor Carrier Safety Administration
 – Tennessee Department of Transportation
Project Background

- **FMCSA Charge** – Ensure Safe CVO Operations
- **Truck Driver Fatigue** – Ongoing Problem
 - 800 deaths/year
 - 30%-40% of all truck crashes
- **Regulations in Place to Limit Hours**
- **Truck Parking Areas Plentiful (pub + priv)**
- **Existing Parking Inefficiently Utilized**
- **2002 NTSB: Use ITS to Improve Awareness and Utilization of Truck Parking**
Project Background

- **FMCSA & FHWA – Smart Parking Initiatives**
 - FHWA: 2006 Grant Program
 - FMCSA: 2005 SmartPark Technology Demonstration

- **FMCSA Program**
 - Two Prior Unsuccessful SmartPark Systems: Video detection and Magnetometers
 - Current SmartPark – Overhead & Side Laser Scanners, and Light Curtain Technologies
SmartPark Overview

- Detector Components for Demonstration
 - Overhead Scanner
 - Side Scanner
 - Laser Curtain
SmartPark Overview

• **Location of Test**
 – I-75 MM 45 in Athens, TN
System Overview

• **Components:**
 – Gantry Structures
 – Detectors
 – On-site Processor
 – Off-Site Server
 – 7 CCTV Cameras
 – Website and Data Archive
System Overview

- CCTV Camera Placement and Cones of Vision
System Overview

- Data Flow
System Overview

• Website for Real-Time Monitoring
 – www.fmcsasmarpark.com

• Site Features:
 – Live CCTV Camera Views
 – Data Retrieval
 – Reports
 – Corrections
System Overview

- **Website Interface**

 ![Diagram of SmartPark Management System]

 - Parking Lot
 - Data Retrieval
 - Reports
 - Lot Occupancy
 - Data Archive and Display
 - CCTV Cameras
 - Corrections

Excellence Delivered As Promised
System Overview

- **System Outputs:**
 - Timestamp
 - Ingress vs. Egress
 - Unique Vehicle ID
 - Detector Type
 - Detector Mounting Location
 - Class
 - Lot Occupancy

- JPEG Images from the 7 CCTV cameras displaying:
 - All spaces within the lot
 - Ingress detection area
 - Egress detection area

- JPEG profile image of the vehicle generated by the detector
System Overview

SmartPark Management System

Parking Lot Data Retrieval Reports

<table>
<thead>
<tr>
<th>Timestamp</th>
<th>Event Type</th>
<th>Vehicle ID</th>
<th>Sensor Type</th>
<th>Sensor Mount</th>
<th>Class</th>
<th>In Use</th>
<th>Images</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov 14 2012 12:01AM</td>
<td>Ingress</td>
<td>021516</td>
<td>SCANNER</td>
<td>CENTER</td>
<td>6</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Nov 14 2012 12:01AM</td>
<td>Egress</td>
<td>021394</td>
<td>SCANNER</td>
<td>CENTER</td>
<td>6</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Nov 14 2012 12:02AM</td>
<td>Egress</td>
<td>021395</td>
<td>SCANNER</td>
<td>CENTER</td>
<td>6</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Nov 14 2012 12:02AM</td>
<td>Egress</td>
<td>021396</td>
<td>SCANNER</td>
<td>CENTER</td>
<td>6</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Nov 14 2012 12:02AM</td>
<td>Egress</td>
<td>021397</td>
<td>SCANNER</td>
<td>CENTER</td>
<td>6</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>
System Overview
Testing Period

• Goals
 – Identify and highlight the system’s strengths
 – Identify and attempt to mitigate the system’s weaknesses
 – Identify prominent anomalies at the site (trailer drops, abnormal vehicle behavior etc.)
 – RFP: *Evaluate and validate the detector technologies as accurate, economically feasible systems to provide a truck parking information system that is autonomous as possible.*
Testing Period

- **Performance Requirements**

<table>
<thead>
<tr>
<th>Requirement Identification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR1</td>
<td>The system shall maintain the parking area occupancy count to better than 95% accuracy.</td>
</tr>
<tr>
<td>PR2</td>
<td>Classification consistency; the ingress and egress detectors must be consistent in classification with each other to a level of 95 percent.</td>
</tr>
<tr>
<td>PR3</td>
<td>The system shall provide parking availability information at a minimum of 99.5 percent of the time.</td>
</tr>
</tbody>
</table>
Preliminary Results

• Evaluation of PR1 – Vehicle Detection (in and outs):

<table>
<thead>
<tr>
<th></th>
<th>Ingress</th>
<th>Egress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Detection:</td>
<td>99%+</td>
<td>99%+</td>
</tr>
<tr>
<td>Total:</td>
<td>99.5%+</td>
<td></td>
</tr>
</tbody>
</table>

• Evaluation of PR 2 – Classification Consistency

Overall Classification Consistency: 97%+
Looking Ahead: Phase 2 & Beyond

• “Smart Parking Corridor” Concept
 – I-75 MM 23
 – New Detector System
 – Integrated Parking Info
 – Advanced DMS
Looking Ahead: Phase 2

- **Traveler Information Tools**
 - Parking Reservation System
 - Historical Usage Tools and Analytics
 - Apps
- **Business Plan and Market Viability Study**
- **Potential Use in FHWA Grants**
Questions

• Thanks!

• Questions?

• Contact Info
 – Project Manager: Jason Ellerbee, jellerbee@gfnet.com, 813.363.8431
 – Task Lead: Von López-Jacobs, vlopezjacobs@gfnet.com, 215.287.2415