PRECAST CONCRETE PAVEMENTS (PCP): US STATE OF PRACTICE

FHWA Precast Concrete Pavement Implementation Team
Shiraz Tayabji, stayabji@gmail.com
Elkridge, MD
The Need – Pavement Rehab Under Heavy Urban Traffic

A very serious issue throughout urban US

- Shorter delays, but shorter service life (rapid setting concrete)
- Longer delays & longer service life (conventional concrete paving)
- Shorter delays & longer service life (PRECAST CONCRETE PAVEMENT)
Preamble

- PCP technology is not a passing fad. It is here to stay
- PCP technology is used routinely by several agencies for rapid repair and rehabilitation of concrete as well as asphalt pavements
- PCP projects have been successfully constructed in numerous States by contractors with no prior experience with PCP & precast panels can be fabricated by most precaster
- Good availability of precast plants throughout the US
PCP Initiatives in the US
(Actively undertaken since mid-1990’s)

- FHWA (since mid-1990’s)
- Highway and airport agencies (since 2001)
- Industry (since 2001)
- AASHTO TIG (mid-2000’s)
- SHRP2 Project R05 (2008 – 2012)
- FHWA/AASHTO - SHRP2 Project R05 products implementation program (2013 - current)
 - Tech Support
 - Financial support
PCP Background

• PCP is a recent technology – in use since 2001
• Used primarily for **RAPID** repair & rehabilitation & longer-lasting treatments
 – Panels fabricated off-site, transported to project site & installed on a prepared foundation
 – Only minimal field curing time required
• Typically, night-time work & short work windows
• Typically, repair/rehab along a single lane
 – Multiple-lane repair/rehab possible based on site constraints
Traffic Considerations

- Traffic volume – is it heavy enough to preclude other pavement alternatives?
 - If fast-track fixed-form or slipform paving techniques are possible, use of precast pavement may not be the best option!

- Alternate routes
 - If traffic can be staged or detoured, use of precast pavement may not be the best option!

But, if there is only 8 hours or less of lane closures to perform the repair/rehab work, precast pavement should be strongly considered
PCP Systems

➢ For intermittent repairs
 • Nominally reinforced panels
 • Prestressed panels

➢ For continuous applications
 • Jointed PCP systems (JPrCP)
 o Nominally reinforced panels
 o Prestressed panels
 • Post-tensioned systems (PPCP) - fewer active joints; longer sections

Generic & Proprietary Systems (Components) Available
PCP Systems

Repair Panels

Conventional Jointed PCP System
State of Practice (Jointed Systems)

Approaches

Support Condition
1. Panels placed on grade
2. Panels set above grade using leveling bolts and high strength bedding grout used

Load transfer using slots
1. Slots at the surface
2. Slots at the bottom

California Systems

![California Systems Image]

- Load transfer using slots
 1. Slots at the surface
 2. Slots at the bottom

Fort Miller System

![Fort Miller System Image]

- Load transfer using slots
 1. Slots at the surface
 2. Slots at the bottom
PPCP Systems
(Concept Developed at University of Texas – 2001)

• A number of panels are posttensioned together to result in a posttensioned section length of 200 to 250 ft & induced prestress of 150 to 200 psi
• Tendons are bonded to the concrete thru grouted tendon ducts
Panel Production vs. Installation Rates

• Panel fabrication rate
 – 8 to 10 panels per day (inside plant – jointed)
 – Similar rate for PPCP panels – inside plant or outdoor beds

• Panel installation rate
 – Repair – 15 to 20 repairs/night
 – Jointed continuous – 30 to 40 panels/night (500 to 600 ft)
 – PPCP – two posttensioned sections or up to about 500 ft

• So, several weeks (months) of back-log of panels is necessary before installation can begin

NEAR FUTURE EXPECTATIONS

REPAIR APPLICATION – 30 TO 40 REPAIRS PER NIGHT
CONTINUOUS (JOINTED OR PPCP) – 1,000 + FT/NIGHT
Overseas
Russia, Japan, France, the Netherlands, Indonesia
Japan

Joint Load Transfer Devices
Japan - Urban streets
Japan - Airfield pavements
Japan - Tunnel & shipping terminals

Reuse of tunnel panels when surface is worn out, by turning panels upside down
Russia

- Oldest production user of PCP technology – during the Soviet era (at least since 1960’s)
 - Several thousands of miles of PCP in Western Siberia
- Past use on roadways and military airfields; current use for airfields primarily
- Design and fabrication practices standardized – current standards established during the 1990’s.
- Panels are about 7 to 10 ft wide, about 20 ft long, and thin
 - The panels are prestressed using the electro-thermic process
- The panel lifting loops are welded together at the site to provide panel continuity
Russia
Intersections
(Rehab of distressed AC Intersections)

• A very effective option to rehab distressed/rutted AC intersections that carry high volume of traffic, including heavy truck traffic
Bridge Approach Slabs (BAS)

- Thousands of distressed approach slabs exist

 - Exhibited by classic “bump” at bridge end/approach

- Causes of failure

 - Settlement of underlying soils

 - Erosion of embankment materials

- Difficult to rehab/replace

 - Often repaired with “band-aid” materials

- Precast panels - a good fast and permanent repair

 - Full-depth replacement allows opportunity to repair underlying embankment

 - Can be installed in over night or over-the-weekend work windows

Active program underway at the Illinois Tollway to study implementation of precast panels to rehab existing BAS & for new BAS at new integral abutment bridges
Example: Approach Slab on Existing Bridge Abutments

Cross Section at End of Existing Bridge

Placing panel Over Anchor Rods

Placing panels In One Lane

Source: The Fort Miller Co., Inc.
Bus Pad Rehabilitation

Hollywood & Santa Monica Blvd.
North Hollywood, CA, 2012

Grading Bedding Material

Placing Last panel

Placing

Opened Next Morning

Source: The Fort Miller Co., Inc.
Long-Life Expectations for PCP

• Repair applications – 15 to 20 years or to reconstruction of existing pavement

• Continuous applications
 – Original PCC surface service life – 40+ years
 – Pavement will not exhibit premature failures and materials related distress
 – **Pavement failure** => Result of traffic loading
 – Pavement will have reduced potential for cracking, faulting & spalling, and
 – Pavement will maintain desirable ride and surface texture characteristics with minimal intervention activities to correct for ride & texture, for joint resealing, and minor repairs
PCP Technical Considerations

a. General Details
b. Concrete Requirements
c. Jointing and Load Transfer
d. Support Conditions
e. Surface Characteristics (smoothness & texture)

ONCE INSTALLED, PCPs BEHAVE SIMILAR TO CONVENTIONAL CONCRETE PAVEMENTS.

- Only the method of construction is different
- THE CONCRETE & THE PANELS CAN BE VERY DURABLE

However, uniform support condition & good load transfer at joints are critical
Panel Weight

<table>
<thead>
<tr>
<th>Panel Size (ft)</th>
<th>Panel Thickness (in.)</th>
<th>Panel Weight (lb)</th>
<th>Four-Point Lift Anchor Load (Static) (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 x 6</td>
<td>8</td>
<td>7,000</td>
<td>1,750</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>8,700</td>
<td>2,175</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>10,400</td>
<td>2,600</td>
</tr>
<tr>
<td>12 x 12</td>
<td>8</td>
<td>13,900</td>
<td>3,500</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>17,300</td>
<td>4,325</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>20,800</td>
<td>5,200</td>
</tr>
<tr>
<td>12 x 15</td>
<td>8</td>
<td>17,300</td>
<td>4,325</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>21,600</td>
<td>5,400</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>26,000</td>
<td>6,500</td>
</tr>
<tr>
<td>12 x 20</td>
<td>8</td>
<td>23,100</td>
<td>5,775</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>28,800</td>
<td>7,200</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>34,600</td>
<td>8,650</td>
</tr>
<tr>
<td>12 x 36</td>
<td>8</td>
<td>41,500</td>
<td>10,375</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>51,900</td>
<td>12,975</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>62,200</td>
<td>15,550</td>
</tr>
</tbody>
</table>
Panel Static Lifting Flexural Stresses

<table>
<thead>
<tr>
<th>Panel Length (ft.)</th>
<th>Panel Width (ft.)</th>
<th>Panel Thickness (in.)</th>
<th>Maximum Concrete Lifting Stress (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>12</td>
<td>9</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>9</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>9</td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>11</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>12</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>9</td>
<td>39</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>9</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>9</td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>11</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>12</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>9</td>
<td>60</td>
</tr>
<tr>
<td>15</td>
<td>24</td>
<td>9</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>9</td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>10</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>11</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>12</td>
<td>45</td>
</tr>
</tbody>
</table>

PCI guidelines (PCI 2004)

As a panel dimension gets longer, pretensioning becomes necessary.
Panel Handling

- Four point lifting method
 - Lifting anchors are embedded in each panel at four symmetrically offset locations
 - Ensure the least tensile stresses in the panel
- Lifting hardware left in place must have 2.75 in. (70 mm) top cover and 2 in. (50 mm) bottom cover after installation
- PCI provides guidance on lift anchor locations
Panel Fabrication (Current Jointed) – Reasonably Standard & Routine
The Panel Fabrication Process (Current) - Prestressed Panels for Jointed PCP
Panel Support Condition Considerations

• Use of existing base
 – Granular
 • Reworked, compacted & regraded
 • Reworked, compacted, regraded, bedding material applied
 – Stabilized
 • Used as is or trimmed; bedding material applied
 – Bedding material
 • < ¼ in. fine-grained granular material
 • Thicker layer of rapid-setting flowable fill (RSFF) or grout using elevated panel placement techniques
 • High density polyurethane grout

• New base – granular or rapid-setting LCB, with or without bedding material
Virginia I-66 (Sept. 2009)
Continuous Placement – Fort Miller System (Ramp Lane)

Note: If an extra 6 in. width had been trimmed off, most of the longitudinal spalling would have been taken care of.
New York City - Continuous Jointed PCP
Fort Miller System – Rehab of AC Intersections, 2010
Rockaway Boulevard near JFK Airport
Although experience with PCP systems is limited, less than 15 years, performance to-date indicate that well-designed and well-constructed PCP systems can be installed rapidly and can be expected to provide long-term service.

Precast concrete pavement technology is an implementable technology and continues to evolve.

The need for the technology is obvious – rapid construction and longer-lasting solutions.

A viable PAVEMENT PRESERVATION & REHABILITATION TOOL for extending the service life of existing pavements.
Thank You!