Impact of Asphalt Mixture Design and Construction on Density and Durability of Asphalt Pavements

Louay N. Mohammad, Ph.D., P.E.
Irma Louise Rush Stewart Distinguished Professor
Department of Civil and Environmental Engineering
Louisiana Transportation Research Center
Louisiana State University

Louisiana Transportation Conference
February 25-28, 2018
Baton Rouge, Louisiana
Acknowledgement

- Asphalt Lab Staff
- EMCRF Staff
 - Minkyum Kim
 - Yucheng Shi
- Coastal Bridge
Durable Pavement

- Title 23 Code of Federal Regulations
 - Part 626.3 Policy.
- “Pavement shall be designed to accommodate current and predicted traffic needs in a safe, **durable**, and cost effective manner.”
Durable

... able to exist for a long time without significant deterioration in quality or value.”
Approaches to Achieve Durable Pavement

Mixture Design
- BMD concept
- Additives
- Engineered Materials
- ...

Construction
- Increased Density
- WMA
- I.C.
- Tack Coat
- Long. Joints
- Thermal Segregation
- ...

Asphalt Mixture Design

• Volumetrics
 – Voids in the Total Mix, V_{TM}
 – Voids in the Mineral Aggregate, V_{MA}
 – Voids Filled with Asphalt, V_{FA}

• Densification
 – Stages during lab compaction process
Asphalt Mixture Design: Concern

- Optimum asphalt binder content
 - Quantity
 - NOT QUALITY
 - Aged Binders
 - Replace virgin binder
 - RAP and/or RAS

Reduce Durability

VOLUME

Total Volume

asphalt

aggregate

Mass

Total Mass

air
Durable Pavement -- Louisiana BMD

- **Volumetric and Performance Mixture Testing**
 - Rutting (**AASHTO T 324**): LWT test (50°C, Wet)
 - Cracking (**ASTM 8044**): SCB test (25°C)
Durable Pavement -- Construction

- **Tack Coat Best Practices**
 - Select and apply *proper tack coat material type, rate, full coverage and performance testing*
Durable Pavement -- Construction

- Tack Coat Best Practices
 - Select and apply proper tack coat material type, rate, full coverage and performance testing

sections with ISS > 40 psi were associated with sections that have lower number of cracks
Durable Pavement -- Construction

- Longitudinal Joint Best Practices
 - Specification and construction
Durable Pavement -- Construction

- Thermal Segregation
 - Specification and construction
Durable Pavement – Construction
Semi-Circular Bend Test Results, 25°C

- Reduced thermal segregation increases density
- Improve SCB Jc

[Bar chart showing average Jc values for different temperatures and VTM values: VTM=6% and VTM=9%]
Durable Pavement -- Construction

- **In-place density**
 - Influence pavement performance

- **Pavement are constructed to a specified In-place density**
 - achieved by means of roller compaction
 - % of mixture maximum specific gravity (%Gmm)
 - Typical target
 - 92% - 93% of Gmm, 8% - 7% VTM

- **Significant advancement**
 - Improve pavement density

https://www.forconstructionpros.com
Durable Pavement -- Construction

- 1% increase in field density (1% less air voids) is reported to increase asphalt pavement service-life 10+%
- Improve pavement performance by 5 to 25%
 - annual savings of $1.75 to $8.75 billion
- Cost
 - Increase in-places density vs. operation, maintenance, and road user cost
- Increase in-place density targets
 - enhanced mixture durability
 - Increase pavement service life

Aschenbrener, T., ETG Presentation, April 27, 2016
Durable Pavement – Construction
Density vs. fatigue life

Average Reduction in Fatigue Life for 1% increase in Air Voids

Aschenbrener, T., ETG Presentation, April 27, 2016
Durable Pavement – Construction

Density vs. Rutting

Average Increase in Rut Depth for 1% increase in Air Voids

- AL 2010: 22.7%
- WT rc: 10.9%
- WT f/f+c: 7.3%
- WT rc: 66.3%
- WT oc: 9.6%
- WT f/f+: 11.5%

Aschenbrener, T., ETG Presentation, April 27, 2016
Durable Pavement -- Construction

Enhanced Durability of Asphalt Pavements through Increased In-Place Pavement Density

Aschenbrener, T., ETG Presentation, September 13, 2017
Effect of Increased Asphalt Pavement Density on Its Durability

Objective

- Evaluate effects of increasing initial in-place density of asphalt pavements on their potential field performance
 - Identify methodology for achieving increased in-place density of asphalt pavements with minimal additional costs and without damaging the aggregate structure,
 - Construct a demonstration pavement section that includes a control section (meeting the current minimum density requirement) and a test section (having an average of 1.5% increased in-place density),
 - Evaluate volumetric properties of laboratory and field asphalt samples, and
 - Evaluate laboratory performance characteristics of laboratory and field asphalt samples
Effect of Increased Asphalt Pavement Density on Its Durability

Scope

- Overlay rehabilitation project
- US Route 190 in Livingston Parish, Louisiana

- State Project No. H.009549
 - Route: US 190, Walker, LA
 - Total Project Length: 5.69 miles

- Design Life: 3.9 million ESALs for 20 years
- Overlays placed: 2” Level-2 BC and 2” Level-2 WC
Effect of Increased Asphalt Pavement Density on Its Durability

Scope

- Three test sections
 - Each is ~ 4000 ft
- Control section
- Two sections with increased in-place density
 - WMA chemical additive (Evotherm) on binder and wearing course layers
 - Increase asphalt binder content
 » 0.2%
- Each test section
 - Wearing and Binder course layers
Effect of Increased Asphalt Pavement Density on Its Durability

Scope

• Density
• High temperature Performance
 • Loaded Wheel Tracking Test
 • AASHTO T-324
 • Rutting
• Intermediate temperature Performance
 • Semi Circular Bend Test
 • Cracking
 • ASTM D8044
• Dynamic Modulus Test
 • IDT mode
Effect of Increased Asphalt Pavement Density on Its Durability

Scope

- Three test sections
 - Each is ~ 4000 ft
- Control section
- Two sections with increased in-place density
 - WMA chemical additive (Evotherm)
 - Increase asphalt binder content
 » 0.2%
- Each test section
 - Wearing and Binder course layers
Effect of Increased Asphalt Pavement Density on Its Durability

Test Sections

- Evotherm WMA: Evotherm WMA additive BC and WC
- Plus-AC HMA: 0.2% Increased asphalt content BC and WC
- Control HMA: Conventional Superpave asphalt BC and WC
Effect of Increased Asphalt Pavement Density on Its Durability

Construction Timeline

- Evotherm WMA BC
- Evotherm WMA WC
- Plus-AC HMA BC
- Plus-AC HMA WC
- Control HMA BC
- Control HMA WC
Effect of Increased Asphalt Pavement Density on Its Durability

Asphalt Mixture Design

<table>
<thead>
<tr>
<th>Mixtures</th>
<th>Control HMA</th>
<th>Evotherm WMA</th>
<th>Plus AC HMA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BC</td>
<td>WC</td>
<td>BC</td>
</tr>
<tr>
<td>Design Volumetrics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%Design AC</td>
<td>4.8</td>
<td>5.0</td>
<td>4.9</td>
</tr>
<tr>
<td>VMA</td>
<td>14.3</td>
<td>14.6</td>
<td>14.5</td>
</tr>
<tr>
<td>VFA</td>
<td>76</td>
<td>76</td>
<td>76</td>
</tr>
<tr>
<td>VTM</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>%RAP</td>
<td>23.8</td>
<td>19.1</td>
<td>23.8</td>
</tr>
<tr>
<td>%WMA Add.</td>
<td>0.0</td>
<td>0.0</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Effect of Increased Asphalt Pavement Density on Its Durability
Night Paving
Field Density – QA Cores

<table>
<thead>
<tr>
<th>Mixture Type</th>
<th>Control</th>
<th>Evotherm</th>
<th>Plus AC</th>
<th>Control</th>
<th>Evotherm</th>
<th>Plus AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>%Gmm Binder Course</td>
<td>96.1</td>
<td>96</td>
<td>95.1</td>
<td>94.7</td>
<td>95.5</td>
<td></td>
</tr>
<tr>
<td>%Gmm Wearing Course</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95.5</td>
</tr>
</tbody>
</table>
Semi-Circular Bend Test Results, 25°C

ASTM D8044

BC: 23.8% RAP
WC: 19.1% RAP

STA: Plant produced mixture
LTA: 5 days, 85°C
Semi-Circular Bend Test Results, 25°C

ASTM D8044

Mixture Type
- **Binder Course**
- **Wearing Course**

Mixtures
- **STA:** Plant produced mixture
- **LTA:** 5 days, 85°C

BC: 23.8% RAP **WC:** 19.1% RAP
Summary

- Test sections were successfully constructed
 - Ascertain effect of increased density on pavement performance

- Preliminary results
 - ~ 1% decrease in VTM
 - Achieved 95.5 %Gmm
 » WMA Evotherm Additive in WC

- Mixture with increased %AC showed higher laboratory cracking resistance as compared to control mixture
 - SCB Jc