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ABSTRACT

A disaggregate destination choice model for hurricane evacuation was develdped wit
post hurricane Floyd survey data collected in South Carolina in 1999. Becausdidasthwice
is a choice between discrete, independent alternatives, the multinomial logitwasdeelected
as a convenient model form. It was used to investigate the effect of riskrateagpath, or
projected path, of a hurricane, and destination socioeconomic and demographic cstaoacter
destination choice behavior. Models were developed for persons evacuating to friends or
relatives, or hotels or motels separately. The models were tested byricontipa observed
destination choices with predicted values. No significant differenceouasl f

Keywords. Destination models, multinomial discrete choice model, trip distribution, gravit
model, travel demand, hurricane, evacuation, trip length distribution
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1INTRODUCTION

In keeping with the four-step modeling paradigm used in urban transportation planning,
the hurricane evacuation planning process can be considered as involving enddpatio
generation, destination choice (trip distribution) and evacuation route trafigmasent. The
research described in this paper is aimed at testing whether a multitogiimodel can
successfully be used to model hurricane evacuation destination choice.

Destination choice is a critical step in evacuation planning and emergenagenaent
since output from this process is input to traffic assignment and is necksshiy accurate
assessment of network congestion and delay. However, despite its imparthnogcane
evacuation modeling, it has received relatively little attention in the pradiably because
hurricane evacuation is a fairly rare phenomenon. Current practice isprpneddy, to assign
evacuees to destinations, or evacuation routes, subjectively (NCDOT, 2000allhac®4;
Radwan et al., 2005). Wilmot, Modali, and Chen (2006) investigated the use of the gravity
model, intervening opportunity model and extended intervening opportunity model on hurricane
evacuation destination choice. Through a series of tests between the preigstegthe
models and observed trips, the study suggested that the conventional urban transportation
planning trip distribution models are able to model hurricane evacuation trip distnilatitihe
aggregate level. Cheng (2006) estimated alternative impedance functionvityrrgcalels
used in hurricane evacuation trip distribution. The impedance function found to mest clos
reproduce observed destination patterns was a combination of a negative expamneetial ¢
which accommodates the travel distance impedance, and a left skewed Rayteggivtach
accommodates the impact of hurricane threat on destination zones. The model produced
satisfactory trip distribution results.

Although the aggregate models mentioned above can provide satisfactory results, the
lack the ability to capture behavioral influences at the disaggregate levaficiig,
evacuation destination choice is, intuitively, likely to be significantlygriiced by conditions
facing individual households and, therefore, is more likely to be successfullyathadang
disaggregate discrete choice models.

Urban transportation planning models typically require detailed and numerous Traffi
Analysis Zones (TAZs). This prohibits the application of destination choice mgax!
disaggregate level in urban transportation planning. However, the travel pattemnicdne
evacuation is different from urban transportation in that evacuation trips alg loogtdistance
intercity journeys. In evacuation modeling, TAZs can be large areas)yHangting the number
of TAZs and making destination choice by disaggregate modeling feasible again.

The objective of the study is to test whether discrete choice models carsfulbyces
reproduce evacuation destination choice observed in evacuation behavior fromnidufiamal.
Beside the disaggregate variables that will be included in the model spemifi¢caé influence
of aggregate destination socioeconomic, demographic, and hurricane threaedstcaowill
also be investigated. An attempt will be made to make the mode sensitive to@tdrtions
and alternative emergency management actions.

2DATA DESCRIPTION AND TAZ SPECIFICATION
2.1 Data Description

Intuitively, hurricane evacuation destination choice is dependent on the chatiastefi
the alternative destinations and the properties of the hurricane. Therefomodfel is to be
estimated on existing evacuation data, it is necessary that it containatitorron the
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characteristics of alternative destinations and the characteristlos lofirricane which prompted

the evacuation. The data used in this study is from a telephone survey of huftigahe

evacuation conducted on behalf of the U.S. Army Corps of Engineers shortly atarthen

1999. The data contains socio-economic information of the households responding to the survey,
as well as details regarding their evacuation behavior during the hurrgapreximately 1,800
households were surveyed in the metropolitan and surrounding areas, of Charlesien, Myr

Beach, and Beaufort in South Carolina. Those areas are the only three originnadéheSince
destination types generate different trip length frequency diagranm@¥VModali and Chen,

2006), the data was divided into four major destination types: 1) home of friends anésejti
hotels/motels; 3) public shelters and churches; 4) and others. Each of theseasulzgatsould

be used to build a different model, but there are only 40 households in the data that chose
shelters or churches as their destination type, and 56 households that chosel&stiation

types such as a second home, a hospital, state park, office, truck stop, etc . Thigsfamodel

public shelters or churches, and “other” destination types were not consideredriiudficient

data for modeling. On the other hand, 680 households chose the home of friends and relatives as
their destination, and 360 households chose hotels or motels as their destinationyashi

sufficient for modeling purposes. Other studies found similar percentagésstaration types in

other hurricane evacuation cases (Irwin et al. 1995, RDS 1999). The data set wasdama

two data sets for these two types of destination — one for the friend/relativeanddbe other

for the hotel/motel model.

2.2 TAZ Specification

The majority of the evacuation destinations from South Carolina weredaoatee
states of South Carolina, North Carolina, Georgia and Tennessee. Tripsdaslyeo other
states were dropped from the data sets due to limited observations. All d@estoedtions in
the survey data were categorized by county.

In conventional urban transportation planning models, TAZs are units of geography that
can range from large areas in the suburbs to city blocks in central businésts distdefining
TAZs in urban transportation planning, several criteria are typically ad{iptexts, 1981,
Ortuzar and Willumsen, 1994). Generally, these criteria can be stated amébeshkould be as
homogeneous with respect to the socioeconomic characteristics as possazenaittrips
should be minimized; the border of the zones should give considerations to adminisiréisve li
such as census tracts, county boundary and physical geographic separatorsasiuciydmes
and rivers; one zone should not encircle another, and each zone should contain a similar number
of households, population, area, or trips generated and attracted.

In the case of hurricane evacuation, origin zones are concentrated in threatetad coas
areas, and destination zones are spread inland to neighboring counties an8states
guidelines have been suggested on the creation of origin evacuation zones (USACE 1986, 1994,
1995, PBS&J 1992, Wilmot and Meduri, 2005), but little has been suggested on establishing
destination evacuation zones. Since evacuation travel patterns are less comptles thalti-
purpose, multi-directional travel encountered in everyday urban travel, thes T8&d in
evacuation planning can generally be less comprehensive. In addition, theyarae bec
progressively less comprehensive as distance increases from the origiewecarfd fewer
evacuees are left to reach a destination, and the need to accuratelyeestimatk conditions
in terms of congestion and delay is reduced due to the lower traffic volumes. Thugss phat
aggregated counties into progressively larger evacuation TAZs as the dfstamtiee coast
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increased, was instituted. The aggregation process also created a inlenctyseae set for
disaggregate modeling and allowed a reasonable number of observations ingiach ori
destination pair. The TAZ aggregation process we employed used the followaniz enit
establishing evacuation TAZs for this application:

1. Location risk due to hurricane. Figure 1 shows a Hurricane Floyd wind speed map. As
can be seen, the hurricane ran roughly parallel to the coastline of GeorglaCarolina and
North Carolina, creating a band of counties along the coastline which wesetdolgale force
winds and which represented at-risk areas that all evacuees would want to avdestsation.
Figure 2 is the trip length distribution, which shows the trip frequency veested tistance at
every 50 miles for the total trips and the two major types of destinations. f thengih
distribution (Figure 2) shows that there were few trips within 50 miles fraginoii herefore,
the at-risk coastal counties could be aggregated into a single origin evacuation zone

2. Distance from origin to destination. It was assumed that travelers would try to
evacuate to close safe places as much as possible once beyond the at-{&budin@srth
1991). Figure 2 shows that most evacuees traveled distances longer than 50 mikestaad le
300 miles. The size of destination TAZs were set proportionally to the distancefigin to
destination. The closer the destination was to the origin, the smaller thea$ Mzere were more
observations in closer counties than counties farther away. As a result, storatoe zones
were established in South Carolina and fewer destination zones in other states.

3. Natural geographic feature. Significant geographic features can be a factor in
aggregating the zones. In this case, the Appalachian range goes thronges€enNorth
Carolina, western South Carolina and northern Georgia. It can be seenwasldbaatier and,
therefore, a feature that defines a TAZ.

4. Metropolitan area. Metropolitan areas can be major destination choices due to their
ability to accommodate many evacuees. Counties surrounding mega-medrogd can be
aggregated into one TAZ representing the metropolitan area because mostl toipgwing to
locations in the metropolitan area.

5. Existing regions. Some states, such as Georgia, have been divided into several regions.
Each region has its own distinct geographic feature and economic chatiastéftseese regions
can be further aggregated into larger TAZs.

Based on the above factors, 28 destination TAZs were created and arerskogume 3.
The three origin zones, and the at-risk area, consisting of the area expengateifggce winds
(i.e. winds in excess of 38 miles per hour), are also shown in Figure 3.

Destination socioeconomic and demographic information for the study area wiasabta
from the standard GIS data files provided with TransCAD software. Hurridayé'$-track and
speed data was obtained from National Hurricane Center website. The totermirhotels of a
destination was found in 1997 Economic Census Reports for Accommodation from U.S. Census
Bureau website.
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FIGURE 2 Trip length distribution of evacuation trips.
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FIGURE 3 Aggregated traffic analysis zones.

3METHODOLOGY
3.1 Discrete Choice Models

Evacuees choose one destination out of a set of mutually exclusive aleernati
destinations. Qualitative choice from a set of distinct alternatives candaed using discrete
choice models. Discrete choice models are based on the assumption that peatltyar
maximizers. To apply this theory here, we suggest evacuees will tryximina the utility of
their evacuation experience by choosing the most attractive destinatamt@tit of all
possible destinations. Although it is obvious that this assumption is a simgifichithuman
behavior since people generally operate under more constraints and infliramceart be
included in a utility function, models based on this assumption obtain results thgpectedxo
be better than those obtained with aggregate models that do not attempt to capture individual
behavior.

There are different types of discrete choice models. The most commonyltimmial
logit (MNL) model takes the following form:

where:
P, = probability of choosing alternative i;
X; = vector of attributes of alternative i;
B = parameters;
J = number of alternatives
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Destination choice models are relatively rare in urban transportation planningngode
because of the large number of destination choices typically encountered in urbaortatios.
However, as discussed above, the number of TAZs has been aggregated to a limited number (28)
in this application. Therefore the MNL model seems to be an appropriate method here.

3.2 Modéel Preparation

The model used in this application is based on the idea that evacuation consists of only
one activity; namely, the activity of evacuating from a hurricaneatho a safe destination. The
alternatives inherent in the choice are the aggregated TAZs as desthibedl sections. The
variables in the utility function of the discrete choice model have beaichmsed on former
studies which have analyzed factors influencing travel behavior in intercttgates) choice
(Sharma, 1995). The variables which will be used in the proposed trip distribution model will
explain the cause of attraction to the destinations. The variables will include:

1. Travel costs (distance) to the destination (DIST in the model). This desitrébes
impedance to go from one place to another. The shortest path distance betweendarigin a
destination was used in this case since link flows, and subsequently link travebtienes
not known at this stage.

Destination population (POP in the model) was used for the friend/relative model.
Number of hotels/motels at destination (HOTEL in the model) was used for the
hotel/motel model.

4. Risk indicator was used to indicate a destination’s vulnerability to a hurriP&¢GER

in the model). This variable was entered in the format of a dummy variable. It

distinguished destination zones that were in the area experiencing galeviiods from

those areas that did not. In Figure 3, the red shaded and red striped TAZs are given a

dummy variable value of 1 and all other TAZs (i.e. the destination zones) werelgven t

value of 0.

5. Destination ethnic percentage (ETHPCT in the model). This variable destwbéthite
population percentage in each zone.

6. Metropolitan area indicator (MSA in the model). MSA is ascribed the valtefat TAZ
contains a major metropolitan area, and 0 otherwise.

7. Interstate highway proximity indicator (INTERSTA in the model). INTHRShas the
value 1 if a TAZ contains an interstate highway and 0 otherwise.

wn

The variables above include both disaggregate and aggregate variables. Specificall
travel distance (DIST) is a disaggregate variable relating the ttestahce each household
traveled to get to their destination, while the remainder are aggregateleaiescribing the
characteristics of destination zones. However, the aggregate chatiastefithe destination
zones are used to characterize the destination alternatives for each respont@refore, are
used as disaggregate variables.

4RESULTS

Based on the variables suggested above, models were estimated for households
evacuating to friends/relatives, or to a hotel/motel separately. Thélearia each model were
selected if they were found to be significant using a t-test, and were dsddalend to be
insignificant. The results are shown in Tables 1 and 2.
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Table 1. Friend/Relative M odel Results.

Standard Approx
Parameter Description Estimate Error t Value Pr>|t|
DIST O-D Distance -0.004655 0.000752 -6.19 <.0001
POP Destination Population 1.66E-07 3.21E-08 5.16 .00&1
DANGER Risk Indicator -0.5171 0.1626 -3.18 0.0015
MSA Metropolitan Area 1.5562 0.1353 115 <.0001
ETHPCT White Percentage 0.6711 0.2193 3.06 0.0022
Estrella 0.6903
McFadden's LRI 0.1613

In the friend/relative model, the parameter values shown in Table 1 agné#icant and
have the correct signs. DIST has a negative sign, which indicates that eveansder
increased evacuation distance a negative utility. The parameter for thetioopdaiable (POP)
has a positive sign indicating that the size of population is proportional to destinaticticatt
(or utility). The parameter for the DANGER variable has a negative sigrhvirdicates that
hurricane threatened areas are clearly less attractive as dessitban those outside the at-risk
areas. MSA has a strongly positive effect, over and beyond that provided by ipop{R&P),
suggesting that evacuees have a clear preference for a metropeltaver other areas.
ETHPCT has a positive sign which indicates that the higher the percentageeogpegulation
at the destination, the more likely people will evacuate to that destination. 3ilissteould be
seen in the context that most residents, and therefore evacuees, of coast@latalirta are
white, and therefore are more likely to have family and friends who d@he same ethnic
background. Because POP and HOTEL are correlated, HOTEL was not present in the
friend/relative model. INTERSTA was deleted from the model because tiableavas found
to be insignificant. Estrella’s index and McFadden’s LRI are measugsoadhess of fit of the
model to the disaggregate data. They show a reasonably good fit.

To test the performance of the model, we compared the model predictions with those in
the data. Ideally, one would want to test model performance on other data than thosdénon whic
the model was estimated, but our data was insufficient to divide into a calibraticesting t
subsets. We also chose to compare the results at the aggregate levéiaataethe
disaggregate level. There were several reasons for this. First, in tripufish (or destination
choice) modeling, it is only the aggregate number of trips from origin to destinasiois used
in trip assignment. Second, trip distribution models in urban transportation planning are
calibrated on trip length frequency diagrams, demonstrating the significarttipdlength
frequencies are assumed to play in describing trip patterns. Third, the percectiyx predicted
statistic is notoriously dependent on the number of alternatives and the distributhaicesc
among them, and therefore is not a reliable measure of performance. Rpteexaith only two
alternatives and 99 percent of the choices favoring one alternative, a modeb#yat@ooses
the more popular alternative (thereby displaying no predictive power at aillld ywroduce a
“percent correctly predicted” (PCP) of 99 percent. The same poor model would produee a PC
of 50% if each alternative occurred equally in the data set, and 25% if therurere
alternatives that were equally likely.

The comparison of the observed trip length distribution for evacuation to friends or
relatives with that predicted by the model is shown in Figure 4. The trip ldisgtibutions of
the observed OD matrix and estimated OD matrix were first compared usikglthegorov-
Smirnov (KS) two sample test. Trip frequency was determined for every 8@istiance from
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the origin centroids as measured on the shortest path between the origin antatesiiha
evacuation travel range was 0 to 550 miles. Therefore, the sample size wastest $tadistic
D obtained was 0.09 with a p-value 0.985 and the critical value of D at the 5% level of
significance was 0.522 with a sample size of 11. Thus, the null hypothesis could notted,rejec
suggesting no statistical difference between the two trip length fregulstributions.

The model was further tested with a paired samples t-test. The tistdiisined was
1.81 with a p-value 1.00. The two-tailed critical value was 2.23 with 10 degreesdbin.
Thus, the null hypothesis again could not be rejected and there was no significaenckffe
between the two trip length frequency distributions.

140 -
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Trip Frequency
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Distance to Origin (Mi)

FIGURE 4 Trip length distributionsfor friend/relative model.

Table 2. Hotel/Motel M odd Results.

Standard Approx
Parameter Description Estimate Error t Value Pr>|t|
DIST O-D Distance -0.005882  0.000981 -6 <.0001
HOTEL Destination # of Hotels 0.002279  0.000387 85.8 <.0001
DANGER Risk Indicator -1.57 0.2331 -6.74 <.0001
INTERSTA Interstate Proximity 0.1324 0.0497 2.66 .00¥8
ETHPCT White percentage 0.8705 0.3178 2.74 0.0062
Estrella 0.6881
McFadden's LRI 0.1613

The signs of the variables in the hotel/motel model are similar to the sidgres of t
variables in the friend/relative model for those variables that are common dameomglihe
parameter for the HOTEL variable has a positive sign which indicates tHgenoirhotels
positively contributes toward the attraction of the destination. INTERSTA ppasitive effect to
attract evacuees if a destination contains interstate highway. MSA lgéexddeom the model
because this variable was not significant in the model. The Estrella index aaddéoFs LRI
produce similar values of goodness-of-fit to that achieved with the friend/estatidel.
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The estimated and observed trip length distributions for the hotel/motel modebene s
in Figure 5. The statistic D of KS test obtained was 0.28 with a p-value 0.*86aniiple size
11, and the critical value of D at the 5% level of significance was 0.522. Thegnefostatistical
difference was observed between the two trip length frequency distributionissttistic of the
paired samples t-test was 1.81 with a p-value 0.81. Thus, no significant differeneerbttes
two distributions was detected using the paired sample t-test..
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FIGURE 5 Trip length distributionsfor hotel/motel mode!.

5 CONCLUSIONS

Modeling hurricane evacuation destination choice is a relatively undevelopeit are
transportation modeling at the moment. However, it is important to make progtessarea
since the entire ability to model hurricane evacuation depends on being able toaxhdel e
aspect of evacuation behavior adequately.

Destination choice using discrete choice models has not, to the author’'s knowledge, bee
used in hurricane evacuation destination choice modeling before. Aggregating bestittah
manageable number (in this application 28), makes it a feasible proposition to modetidesti
choice using discrete choice theory. Other research has shown that the thnifresngencies of
evacuation trips vary depending on whether evacuees are heading to stayendth dri family,
or whether they are heading to shelter in a hotel or motel in a safe area. Thage sepdels
have been established for those evacuating to friends and relatives, and thosegwacuat
hotels or motels. This means that the trip generation model that precedes thesenifidtele
to estimate evacuation generation by destination type.

The MNL models estimated on evacuation data from South Carolina in response to
hurricane Floyd both show likelihood ratio statistics of 0.16 or Estrella &tstigt0.69,
suggesting a reasonably good fit to the data. Comparing the model’s predictiop$enigth
frequency distribution to that observed in the data, shows that they are not siggifidéerent
from each other. At the same time, by observing the distributions for the two destigpes, it
is obvious that they are different from each other.

The hurricane risk indicator shows that the path of the hurricane has a signifipant i
on the distribution of trips from their origins. Having the variable within the modeifispéion
allows estimation of the impact of alternative storm trajectories. Wheaja hurricane
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approaches, the risk indicator can be assigned to destinations depending on tim differe
hurricane path projections, and thus provide different scenarios for emergency meamtage
agencies.

The variable POP (population) appears to function as a reasonable surrogate for the
likelihood of a friend or relative being at a destination, just as the number of lepedsants the
opportunity to find hotel or motel accommodation in a location. The trip length distributions
show peaks at the around 200 miles and 300 miles. The first peak is due to people evacuating t
get beyond the at-risk area but not wanting to go further than necessary. The sek@aah jpea
explained by the large population or number of hotels in the Atlanta area, whichesllocat
approximately 300 miles from evacuation zones, which attracts a large nunelvacoées. The
population variable does seem to be modified by the matching of ethnic sinslbgtigeen the
origin and destination.

The models do indicate that, all else being equal, evacuees do choose closer safe
destinations to more distant ones. As expected, this is more pronounced among thosegvacuat
to hotels and motels than those going to friends or relatives where the choicénatidess
more restricted. Clearly, distance may not be a good representation of imggmaticularly if
congestion is experienced on some links and not on others, and at some times and not at others
so that different trips in the data base experience different travel timethesame routes.
However, to remedy this would require trip assignment in an iterative digtnfagsignment
process that was beyond the scope of this study. Alternatively, a dynamicstiiatien choice
model could be developed to capture the time-dependent destination availabititiynectahvel
time and real-time hurricane threat to the destinations. These are consideigtitigssor
future research.

Destination choice models of the type estimated in this study can be usedikeliest
evacuation patterns resulting from different storm trajectories, elifféevels of evacuation, and
the spatial location and size of metropolitan areas in safe locations retatieegdath of the
storm. However, further testing of the model with other data, reflectingethtfestorm and local
conditions, is needed before the results of this study can be considered typicasenigpive
of evacuation behavior in general.
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