Caminada Bridge (LA): Coastal Engineering Analysis & Numerical Modeling in Support for Design (Hurricane Wind and Wave Action)

Hossein Ghara, P.E., M.B.A., State of Louisiana DOT&D Artur Wagner, P.E., State of Louisiana DOT&D Jenny Fu, P.E., State of Louisiana DOT&D Vladimir Shepsis, P.E., PhD Coast & Harbor Engineering, Inc. Matteo Tirindelli, PhD Coast and Harbor Engineering, Inc.

2008 LTRC Bridge Structures Conference

New Orleans February 21, 2008

Objective

Provide reliable vertical and horizontal forces on bridge elements during design hurricane storm event. Bridge elements to compute forces include deck slabs, girders, piles, pile caps, columns, and footings

Scope

- Developing the design hurricane event parameters (water surface elevation and waves);
- Computing vertical and horizontal forces using different methodologies, including 90% AASHTO Guide; and
- Comparing the results of computations and selecting the recommended design forces.

Hurricane Event Return Periods

Major Factors

- Wind Speed
- Surge Elevation
- Minimum Pressure
- Size of Hurricane
- Storm Track
- Storm Speed

Winds Return Periods (Recommended) Caminada Pass (based on Jagger and Elsner, 2006)

CHE Approach Hurricane Event Return Periods

Major Factors

- Wind Speed
- Surge Elevation

Surge Modeling

Surge Modeling (Modeling Grid)

Surge Modeling

Surge Modeling

Modeling Real Katrina

Katrina Surge Model Validation

ENGINEERING

100 Years Wind Event Modeling

100 Year Wind Surge Modeling

100-year Storm Surge Elevations Caminada Pass Landfall

100-year Storm Surge Elevations Caminada Pass Landfall

Storm Surge Elevations Return Periods Caminada Pass (based on US Army COE)

Return Period [yr]	Storm Surge [ft NAVD88]
50	8.8
75	9.8
100	10.7
150	11.6
200	12.2
250	12.6
300	12.9
350	13.2
400	13.4
450	13.5
500	13.7

Storm Scenarios

Scenario	Wind Return Period (years)	Wind Speed (mph)	Surge Return Period (years)	Surge (ft NAVD88)
1	100	182	100	10.7
2	100	182	50	8.8
3	50	173	50	8.8

Scenario 1 – Significant Wave Height

Sconario 2 - Significant Wave Height

- 2n_																							
60				ΙΙ				Ι				•		I	I		I						-
50				ΙΙ				Ι						T		al	-	1	-		e con		0.3
40				ΙΙ	- I	10		2		-		ā	ō,	5			-	10	@ *		(5)	(6)	
30	È	8	2	IO I	2	(3)3	(4)	(5) ⊴	(e) H	(7)₹	(8)	≝(9)	- 0	-	10	(2)		(3)		e. 0	S = 30 S		Б
30-	1			[4	ų.		"	ų		[1	1	3			6			020			E
20-	1	2		l	3	<u> </u>	ᇳ	8			-					ф	F	E	E.	il I		1	11
0	SLOPE =	0.Tex	FILL	R. I	¥ 7	FI FI		Ч Р	[1 1	T	'	-ПГ		T	1					1 1	<u> </u>	1
					2								- <u>1</u>										
20	Ì				1		[[[[1	1	8	Ι		i.	1	-][11	6 () 1 ()	1
30	1								1		[19	- <u>1</u>		Ι	19	i.			1	11	194 194	1

New Bridge Layout

New Bridge

Abandoned Bridge

Existing Bridge

Cuomo & Tirindelli

Vertical Wave Loading

COAST & HARBOR ENGINEERING

3 Hypes of loading must be considered

Evaluations of Uplift Loading

Hs = 3.4m; Tp = 7.4s; Depth = 15.3m; Clearance = 1.4m; Deck length = 7.4m; Deck Width = 11.6m

Influence of Down-standing Beams

Wave Loading Design Criteria Influence of Down-standing Beams

R

Scenario 1 – Max Crest Elevations

Scenario 1 – Max Crest Elevations

Methods Used for Wave Force Evaluation

Method	Year	Typology	Direct. of Force	Type of Force	Use
Cuomo et al.	2007a	Experimental	Horizontal / Vertical	QS ^[1] / Impact	Quantitative
Cuomo et al.	2007b	Experimental	Vertical	QS / Impact	Quantitative
AASHTO	2007	Experimental	Horizontal / Vertical	QS / Impact	Quantitative
Wallingford	2004	Experimental	Horizontal / Vertical	QS	Quantitative
VOF	2004	Numerical	Horizontal / Vertical	QS / Impact	Qualitative
Kaplan et al.	1995	Semi-analytical	Horizontal / Vertical	QS / Impact	Qualitative
Morison et al.	1950	Semi-analytical	Horizontal	QS / Impact	Quantitative

Vertical Quasi-Static Positive Forces on Deck Slabs for Scenario 1

Vertical Impact Forces on Deck Slabs for Scenario 1

Vertical Quasi-Static Negative Forces on Deck Slabs for Scenario 1

Horizontal Quasi-Static Forces on Girders for Scenario 1

Horizontal Wave Forces on Piles for Scenario 1

Vertical Wave Forces on Deck Slabs at Caminada Bridge for Scenario 1

Bridge Span	Impact (Ibs/ft ²)	QS+ (lbs/ft²)	QS- (lbs/ft²)	
7	1180	470	250	-
8	1110	450	230	
9	990	400	200	
10	930	370	180	
11-44	0	0	0	
45	570	230	120	
46	600	240	120	
47	640	260	130	
48	700	280	150	OR
WAT I				

	Computed Wave Loads					
Bridge Elements	Vertical	Horizontal				
Deck slabs	20	n/a				
Girders	3	3				
Railings	n/a	20				
Pile Caps	33	33				
Piles	n/a	52				
Columns	n/a	13				
Footings	13	13				

European Research Foundation Grant 2008-2009

Vertical Wave Loads on Piers, Decks, and Bridges during Extreme Events

International Team of Scientists and Engineers

University of Bologna, Italy
University of Rome, Italy
University of Edinburgh, UK
Coast & Harbor Engineering, USA

Influence of Down-standing Beams

ForschungsZentrum Küste

Gemeinsame Zentrale Einrichtung der Universität Hannover und der Technischen Universität Braunschweig

Merkurstrasse 11, 30419 Hannover, Germany

Example Projects at Large Wave Channel

Low Crested and Submerged Breakwaters in Presence of Broken Waves, EU, 2002

Example Projects at Large Wave Channel

Breaking Wave Impacts on Steep Fronted Coastal Structures (BWIMCOST, 2003)

Caminada Bridge (LA): Coastal Engineering Analysis & Numerical Modeling in Support for Design (Hurricane Wind and Wave Action)

Hossein Ghara, P.E., M.B.A., State of Louisiana DOT&D Artur Wagner, P.E., State of Louisiana DOT&D Jenny Fu, P.E., State of Louisiana DOT&D Vladimir Shepsis, P.E., PhD Coast & Harbor Engineering, Inc. Matteo Tirindelli, PhD Coast & Harbor Engineering, Inc.

Thank You

New Orleans February 21, 2008

