Louisiana’s Longest Steel Girder Double Leaf Bascule Bridge

Presentation by
Rudy McLellan, PE HNTB, Baton Rouge, LA
2008 Louisiana Structures Conference Louisa Bridge
Project Location

Route LA 319

St. Mary Parish, LA

Near Future I-49 Corridor

Louisiana Structures Conference Louisa Bridge

Existing Bridge

Gulf Intracoastal Waterway
GIWW (Mile 134) at Louisa
East to West Navigable Corridor
Existing Bridge

Average Daily Traffic ➔ 1,200 Vehicles
Unequal Arm (Bobtail) Swing Span
Long Arm at 160 Ft and Short Arm at 80 Ft
125 Ft Horizontal Clearance When Opened
6 Ft of Vertical Clearance When Closed
Number of Openings ➔ 1,050 / Month (35 / Day)
Structurally Deficient 20 Ton Limit
Existing Bridge

Closed

Opening

Opened

2008 Louisiana Structures Conference Louisa Bridge
Existing Bridge

Vertical: 22.2 m (73 Ft) Clear
Horizontal: 61 m (200 Ft) Clear
Project Corridors
Alignment Study

Alternate 1
250 m (800 Ft) East of Existing Bridge
Additional 24 Acres of ROW

Alternate 2
198 m (600 Ft) West of Existing Bridge
Additional 28 Acres of ROW

Alternate 1A
30 m (100 Ft) East and Adjacent To Existing Bridge
Additional 24 Acres of ROW

Port Bypass
Ships Enter Port Without Passing Bridge
Discounted Because of Environmental Impact & Roadway Cost
Additional 70 Acres of ROW
Alignment Study

Alternate 1, 2, 1A
Navigation Study

Intracoastal Waterway - Sabine River To Houma
5 Major Bridges (3 High Level Fixed, 2 Movable)
High Levels Have 22 m (73 Ft) of Vertical Clearance
Existing Swing Span Averages 1,050 Openings/Month

Close Proximity To Port of West St. Mary
1500 Acre Complex With Total Intermodal Operations
Import/Export Business for International Trade
Constructed and Shipped the Largest Offshore Drilling Deck
Navigation Study

Majority Barge/Tug Vessels
Some Shallow Draft Ships

Drilling Platforms
Navigation Study

Existing Swing Span Average Number of Openings Per Month (1993 – 1994)

<table>
<thead>
<tr>
<th>No. of Vessels</th>
<th>No. of Openings</th>
<th>0' – 40'</th>
<th>41' – 50'</th>
<th>51' – 60'</th>
<th>61' – 73'</th>
<th>Over 73'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,714</td>
<td>1,050</td>
<td>872</td>
<td>132</td>
<td>33</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>
Navigation Study

Horizontal 61 m (200 Ft) Clear

Vertical 22.2 m (73 Ft) Clear
Geotechnical

Borings To 39.6 m (130 Ft)
 9.1 m (30 Ft) Soft Clay Over Stiff Clay

Bascule Pier Foundations
 50 Steel Pipe Piles
 762 mm (30 inch) Diameter x 42.7 m (140 Ft) Long
 50 Ton Design Capacity
 Reinforced Concrete Footing / Seal

Adjacent Approach Pier Foundations
 33 PPC Piles
 450 mm (18 inch) Square x 25 m (82 Ft) Long
 50 Ton Design Capacity
 Reinforced Concrete Footing
Pier Protection System

AASHTO Vessel Collision Design
Design 4 Barges with 1 Towboat (LOA = 1200 Ft)
Flow Is Tidal with Water EL 0.0 To 3.0 Ft
1967-1995 Vessel Collisions to Existing Bridge (26 Barge Tows) 3 Barge Collisions In 2001
Classification - Critical
Vessel Impact Speed = 6 MPH (4 to 6 MPH recorded)
Method II (Method I) Force = 3,800 (4,100) Kips

Two Bascule Piers In Navigable Waterway

Pier Protection Alternates
Drilled Shaft ➔ Elastic/Not Destroyed
Guide Wall ➔ Plastic/Partial Breakup
Dolphin System ➔ Plastic/Partial or Complete Breakup
Pier Protection System

Source: Vicksburg COE
Pier Protection System

32-1370 mm (54") Diameter Drilled Shaft within a Concrete Cap System
Bascule Pier Alternates

Open Pier
- Counterweight Under Approach Span
- Counterweight Will Not Dip Into Water
- Approach Spans Need To Be Two Girder Systems
- Bascule Span Live Load Anchors Mounted On Approach Span
- Approach Spans Mimic Bascule Haunch To Hide Counterweight

Enclosed Pier
- Counterweight Enclosed
- Simplified Approach Spans
- Higher Pier Cost
Bascule Superstructure Alternates

Alternate A

Double Leaf Trunnion Bascule

Two Steel Girder

Open Bascule Pier
Bascule Superstructure Alternates

Alternate B

Double Leaf Trunnion Bascule

Three Steel Girder

Enclosed Bascule Pier
Bascule Superstructure Alternates
Alternate C
Double Leaf Trunnion Bascule
Two Steel Deck Truss
Enclosed Bascule Pier
Bascule Superstructure Alternates

Alternate D

Single Leaf Trunnion Bascule
Two Steel Through Truss
Enclosed Bascule Pier
Bascule Superstructure Alternates

Preliminary Cost Estimate 1996 ($ millions)

<table>
<thead>
<tr>
<th>Alternate</th>
<th>Bascule Span</th>
<th>Pier Protection</th>
<th>Mechanical / Electrical</th>
<th>Approach Structure & Roadway</th>
<th>Mobilization / Contingencies</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Super</td>
<td>Sub</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>2.7</td>
<td>2.7</td>
<td>1.5</td>
<td>6.4</td>
<td>8.5</td>
<td>3.9</td>
</tr>
<tr>
<td>B</td>
<td>2.1</td>
<td>4.1</td>
<td>1.5</td>
<td>6.4</td>
<td>8.5</td>
<td>4.1</td>
</tr>
<tr>
<td>C</td>
<td>2.4</td>
<td>4.4</td>
<td>1.5</td>
<td>6.4</td>
<td>9.8</td>
<td>4.4</td>
</tr>
<tr>
<td>D</td>
<td>4.8</td>
<td>3.7</td>
<td>1.5</td>
<td>5.7</td>
<td>7.5</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Alternate A Chosen
Environmental Assessment

Land Use - **Alignment 1A Smallest Impact**

Farmland Protection Policy Act (FPPA)
USDA Ranked **Alternate 1A As The Lowest Impact**

Air Quality – No Impact Noise – No Impact

Water Quality – Little Impact Chicot Aquifer (300 Foot Wells)

NEPA Permits - Wetlands
Much of It Prior Converted To Agriculture
Bypass Has The Highest Impact
Alignment 1A Is Second Highest
LADOTD Responsible For Mitigation

Floodplains – Project Lies In A 100 Year Floodplain

Endangered And Threatened Species - USFWS **No Effect**

Archeological/Historical

Visual Impact - Public Hearing - **Alignment 1A Preferred**
Environmental Assessment

Impacts To Wetland Habit

<table>
<thead>
<tr>
<th>Impact Categories</th>
<th>Alternate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Area (ac)</td>
<td>2.17</td>
</tr>
<tr>
<td>BHW</td>
<td>2.17</td>
</tr>
<tr>
<td>FSWP</td>
<td>2.17</td>
</tr>
<tr>
<td>AAHU’s</td>
<td>.5</td>
</tr>
</tbody>
</table>

1 Bottomland Hardwood; 2 Fresh Swamp; 3 Average Annual Habitat Units

FONSI Determined
Proposed Bridge Rendering
New Louisa Bridge
Construction Team

Louisiana DOTD / HNTB

Coastal Bridge Company – General Contractor

CEC/Huvall Associates – Bascule Span Erection

Steward Machine – Bascule Span Steel and Machinery

IKG Industries – Bascule Span Steel Grating

Carolina Steel – Approach Span Steel

Orleans Material – Bascule Pier Trunnion Support Steel

J.H Menge & Co. – Pier Protection Fendering

E. P. Breaux – Electrical
New Movable Span Bridge

2-Lanes 11.4 m (37 Ft) Wide Roadway/No Sidewalks

84 m (276 Ft) 2 Steel Girder Double Leaf Fixed **Trunnion Bascule Span**

Bascule is French for “Seesaw”
Trunnion is French for “Trunk” or “Stump”
Bascule Span Girders vary in depth 2.3 m to 5.3 m (7.5 to 17.3 Ft)

64 m (210 Ft) 2 Steel Girder Adjacent Span

Adjacent Span Girders vary in depth 2.5 m to 5.0 m (8.3 to 16.4 Ft)
Approach Spans

38 – 37 m (121 Ft) Spans (Typical Units are Two Span Continuous)

5 Girder BT Sections 1830 mm (72″)

2 Column Reinforced Concrete Bents
Bascule Girders

Trunnion Inserted After LN2 Bath
Class 7 Fit with Trunnion Medium Drive Fit

Photos courtesy of Steward Machine Company

2008 Louisiana Structures Conference Louisa Bridge
Bascule Piers
Bascule Piers

Steel Pipe Pile Foundation
Reinforced Cast In Place Concrete
Bascule Span Steel Support Structure
Pier Protection

Concrete Filled Steel Pile

Reinforced concrete cap

UHMW-PE

Ultra High Molecular Weight Polyethylene
Bascule Span Erection

Tail Erected
Toe Added
Deck Placed
Steel and Concrete Filled Steel
Box Counterweight

3. 28. 2003

2008 Louisiana Structures Conference Louisa Bridge
Machinery Erection

Trunnion Bearing
600 mm (24″) To 760 mm (30″)
Bronze Bushing

Rack Bolts To Bascule Girder
Flange Plates
Drive Machinery

Simple Arrangement
2 - 25 HP Two Speed AC Motors
Single Central Reducer
Rack Alignment Analysis

Tooth Finite Element Analysis

<table>
<thead>
<tr>
<th>Condition</th>
<th>Root Stress (ksi)</th>
<th>Loading Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – Load Applied Full Width</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>2 – Load Applied 20% Width</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>3 – Load Applied 20% Width at end of tooth</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>
Finished Span 2005
Finished Span 2005

$12.7 M Approach
$22.2 M Bascule
$34.9 M Total
Intracoastal Waterway Bridge at Louisa

2007 Prize Bridge Award - Movable Span Category
Presented at the 2007 World Steel Bridge Symposium

2008 Louisiana Structures Conference Louisa Bridge