Luling Bridge Stay Cable Replacement

Armin Mehrabi Bridge Engineering Solutions

LTRC Seminar Series, Bridge Structures February 20-21, 2008, New Orleans, LA

Stay Cables

Lower Anchorage

Upper Anchorage

Statement of Problem

- Rusting and water leakage in anchorage zones
- Cracking/splitting of cable cover pipes
 Signs of compromise in cables safety
 In 2002, LADOTD initiated a project for Structural Evaluation of the Stay Cables

Three Phases of Investigation

- Phase I: Assessing extent of problems and the overall integrity
- Phase II: Hands-on inspection of the suspect locations and critical elements
 Phase III: Detailed design of repairs, and monitoring

Phase I Cable Force and Damping Measurement

Phase II- Inspection

Inspection of Deck Anchorage Boxes

Source of Problem

NDE Method for Free Length Inspection

Impulse Radar

Thermal Imaging

Sample Radar Scan

Cable Inspection Vehicle

Cable Free Length Inspection

Cable Free Length Inspection

Hands-on inspection and Tap Testing

INCIDAL TAP III

WICHITELI

Cable Free Length Inspection

65

°F

Thermography

\$FLIR

Inspection findings Damage Severity Levels

Severity Level	Status	Description
1	Satisfactory	Minor deterioration and anomalies noted
2	Poor	Deterioration of the protective elements and potential for degradation. Cables with this level of damages need to be routinely monitored and corrective action needs to be planned.
3	Critical	Deterioration or potential for deterioration of the main tension elements (steel wires) exists. Action (repair) is necessary. Cables with this level of damages shall be closely monitored until repairs are applied.

Severity Level 1, Epoxy and Weld Repair

Severity Level 2, Tape Damages, Wrinkle, Void, Moderate Rust

Severity Level 3, Exposed Grout and Steel Wires, Heavy Rust

Summary

All cables have at least damage Level 2 39 out of 72 cables are rated critical Damage causes still present Increasing rate of deterioration is evident Damages need to be monitored closely Timely corrective action is needed Alarming similarity with Zarate-Brazo Largo

Decision Making Life Cycle Cost Analysis Define planning horizon Define repair/replacement strategies Estimate costs Calculate present values for strategies Select preferred strategy

Repair/Replacement Strategies

Base Case
Repair all
Repair-Replace 1
Repair-Replace 2
Replace all

Cost Structure

Initial Costs - Initial repair and replacement Monitoring system Distributed Annual Costs Inspection and force measurement - Maintenance of monitoring system Periodic Repair Costs - Re-repair old repairs and new repairs Vulnerability Costs (also distributed annually) Replacement of fatigued cables - Storm related repairs

Cost Structure

Agency Costs

- External costs-contracts, estimated based on past experience and industry input
- Internal costs ignored
- Users' Costs
 - Delays due to lane closures
 - 3 minutes per vehicle per lane
 - 2/3 of vehicles affected
 - \$7/hr for cars and 18/hr for trucks
 - Detours due to load limits and bridge closure
 - One hour detour time

Present Value Estimation Agency and Users' Costs Comparison

Phase III

Additional Inspection

 Critical cables
 Superstructure

 Monitoring System for potential wire breaks
 Cable Replacement Design

Cable Replacement Design

Cable Replacement Design

Objectives:

- Develop a cost effective cable replacement design that requires minimal engineering by contractors.
- Minimize impact to traffic and Maintenance of Traffic (MOT).
- Analyze for live load, wind force, and construction load effects.

Scope

Assess current conditions Replacement cable design Temporary cable design Construction sequence & Structural analysis Design for peripherals Maintenance of traffic design Cost Estimate and Plan Preparation

Assess current conditions

Existing Cable ForcesGeometry Survey

Replacement Cable Design
 Available cable systems
 Parallel strand system

Parallel wire system

Replacement cable design
Parallel strand, preferred system
Availability, 3 US manufacturers
Used in most new bridge constructions
Ease of inspection and replacement
Corrosion protection system

No failures documented in bridges using this system

Replacement cable design

Parallel strand, preferred system

- Larger anchorages may require modifications to structure
- Larger cables increase wind load
- Effects vary with available systems
- Installation method
- Qualification testing
- Equivalent stiffness (27,55,61,75 strand)

Temporary cable design

Need for Temporary cables
Uncertainty in cable condition
Large cable group spacing
Need to maintain traffic w/o load limits

Temporary cable design

Highlights:

Use of "Highline" or "Cableway" as a means of supporting and lifting cables

- Limiting operation to one side of bridge
- Need for minimal space on deck for construction
- Most of operation at deck level – Use of saddle as top support
 - Lower ends as live ends

Modeling & Structural Analysis

CAD model to determine geometry conflicts
 Finite Element Model for structural analysis

CAD Model

Finite Element Model

Finite Element Analysis

Analyze each stage of construction
 Generate member action envelopes for all load combinations
 Analyze Live load and wind load effects
 Finalize design of permanent elements
 Finalize design of temporary elements

Design for Peripherals

Cable damper design
 Anti-vandalism and security
 Anchorage drainage design

Maintenance of Traffic

Questions?

