Maturity Meters for Any-Time Strength Measurements

Presented by

Mark A. Cheek, P.E., FACI Vice-President Beta Testing & Inspection, LLC

Brief History of the Maturity Method

The "maturity concept" was proposed in the late 1940s and early 1950s as a technique to account for the combined effects of time and temperature on the strength development of a concrete mixture (Nurse 1949; McIntosh 1949; Saul 1951).

Carino and Tank

Specifications

 ✓ 301 Standard Specifications for Structural Concrete (paragraph 2.3.4)

✓ 318 Building Code Requirements for Structural Concrete (paragraph 6.2)

Specifications

 ✓ 228.1R In-place Methods of Estimating Concrete Strength (paragraph 2.7)

306 Cold Weather Concreting (paragraph 6.4)

Specifications

FHWA

 SA-97-105 Guide to Non-destructive Testing of Concrete

✓ ASTM

 C 1074 Practice for Estimating Concrete Strength by the Maturity Method

Used by DOT's

- > Texas DOT
- Iowa DOT
- Kentucky DOT
- Florida DOT
- Georgia DOT
- > Ohio DOT
- > Mississippi DOT

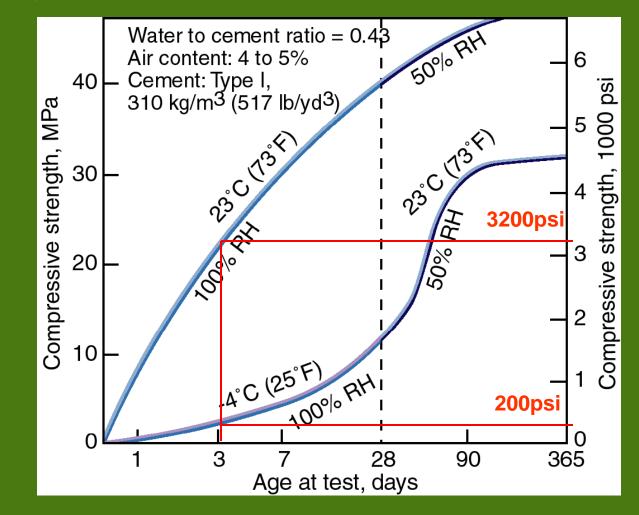
- Nebraska DOT
- > Rhode Island DOT
- > Tennessee DOT
- > Oklahoma DOT
- Minnesota DOT
- Louisiana DOT Approved

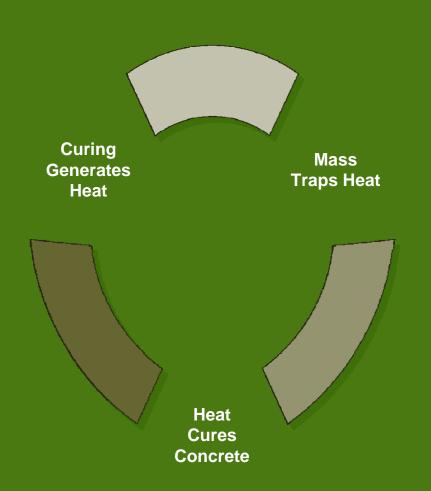
Benefits of Using the Maturity Method (to the project)

Accelerate construction schedules
Reduce man-hours
Reduce test specimen cost

Remove shoring and re-shoring sooner

- Allows earlier form removal and with confidence that the operation is safe; rented forms can be returned sooner
- Post-tensioning tendons can be stressed earlier
- Open roadways to traffic in less time


Engineering Benefits of Using the Maturity Method


- Provides a better representation of in-place concrete strength gain (compressive or flexural) than laboratory or field cured specimens
- Enables any-time in-place strength measurements
- Enables in-place strength measurements at "lowest strength (youngest concrete)" locations
- Enables in-place strength measurements at "critical stress" locations

Hydration is the chemical reaction between the cement and water in which new compounds with strength producing properties are formed. Heat of Hydration is the heat given off during the chemical reaction as the cement hydrates.

Effect of Curing Temperature on Strength Development

Cylinder vs. Placement

Cylinder

- Less Mass
- Less Heat Retention
- Lower Curing Temperature
- Lower Early Strength

Placement

- Greater Mass
- More Heat Retention
- Higher Curing Temperature
- Higher Early Strength

Maturity Rule

"Concrete of the same mix at the same maturity (reckoned in temperature-time) has approximately the same strength whatever combination of temperature and time go to make up that maturity."

A.G.A. Saul, 1951

Maturity Functions

> Temperature-time Factor (Nurse-Saul) M = $\Sigma (T_a - T_o) \Delta t$

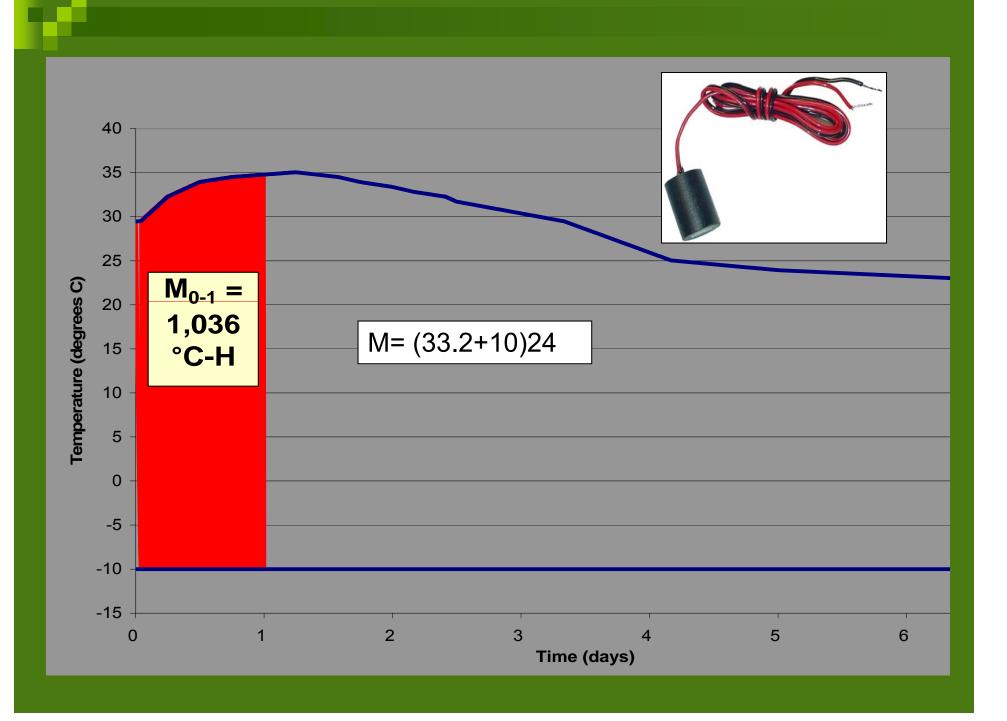
> Equivalent age (Arrhenius) $t_e = \Sigma e^{-Q} [1/T_a - 1/T_s] \Delta t$ Nurse – Saul Function (Temperature – time factor)

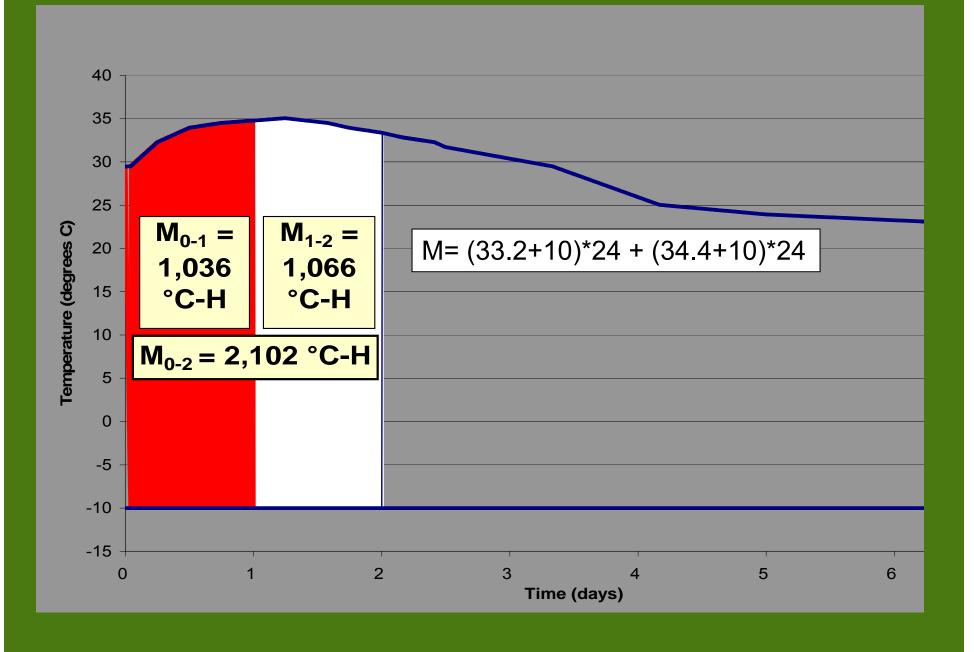
$$M = \Sigma (T_a - T_o) \Delta t$$

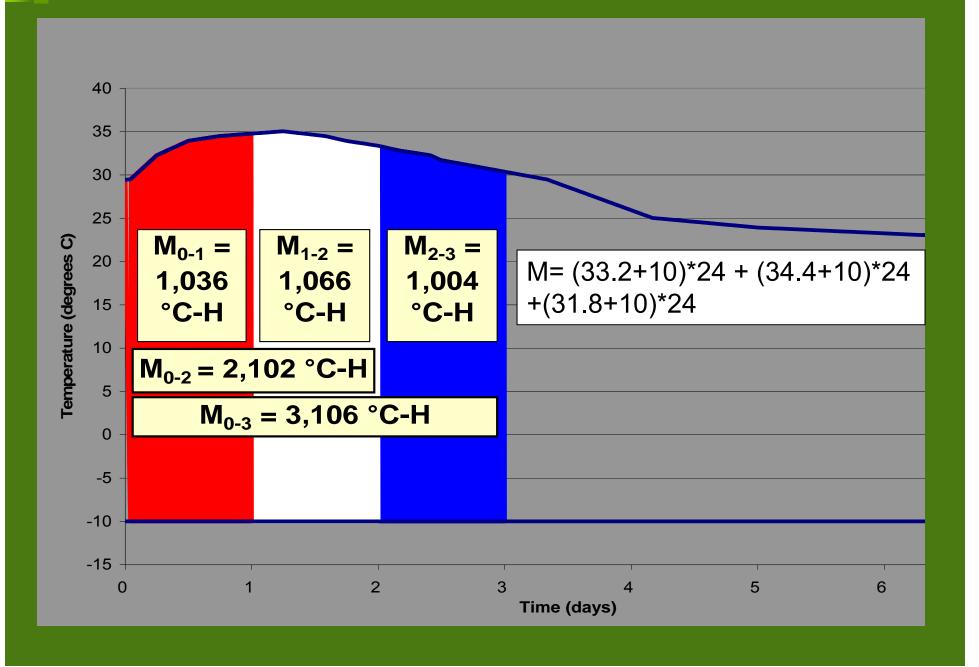
- M = the temperature time factor at age t, degree – hours
- T_a = average concrete temperature during time interval, Δt
- $\Delta t = a$ time interval, hours T_o = 0° C

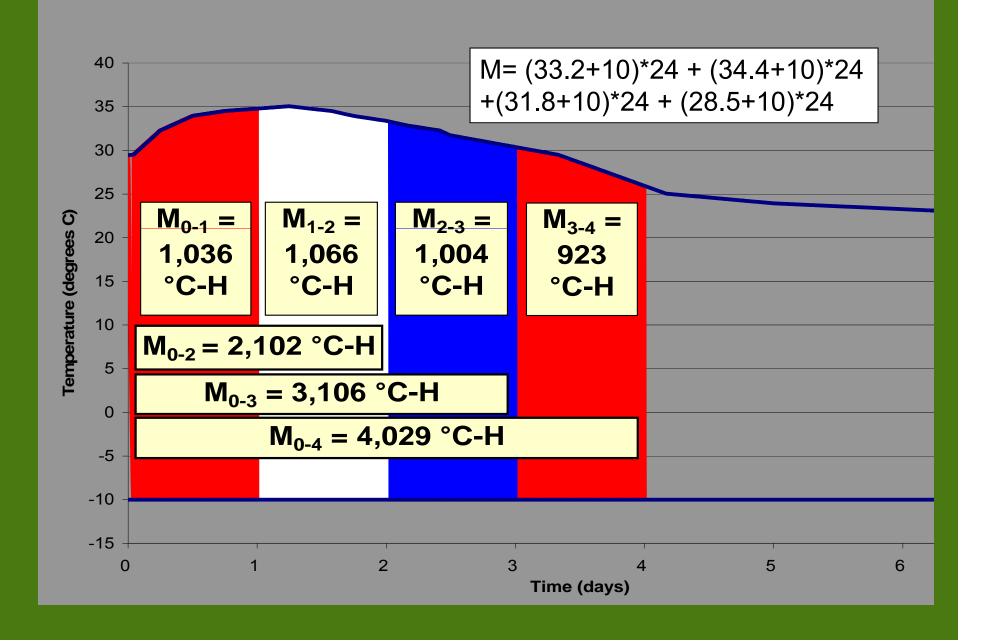
Datum Temperature

$T_o = 0^\circ C$


Traditionally, the datum temperature has been the temperature below which strength gain ceases, which has been assumed to be about 0°C (32°F)

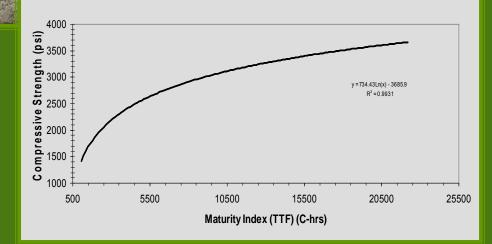

In-Place Concrete Temperature (T_a)


> Ambient conditions


- > Types & amounts of cementitious materials
- > Admixtures

Size and shape of the structureFormwork & Insulation

Maturity Equipment

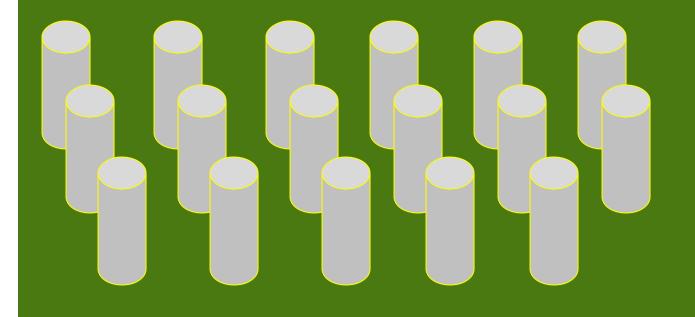


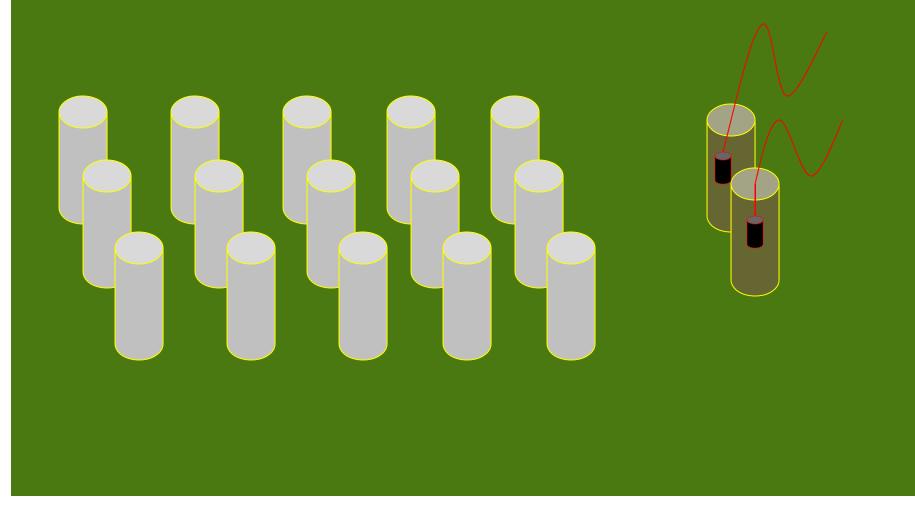
Implementing the Concrete Maturity Method

Strength-Maturity Relationship

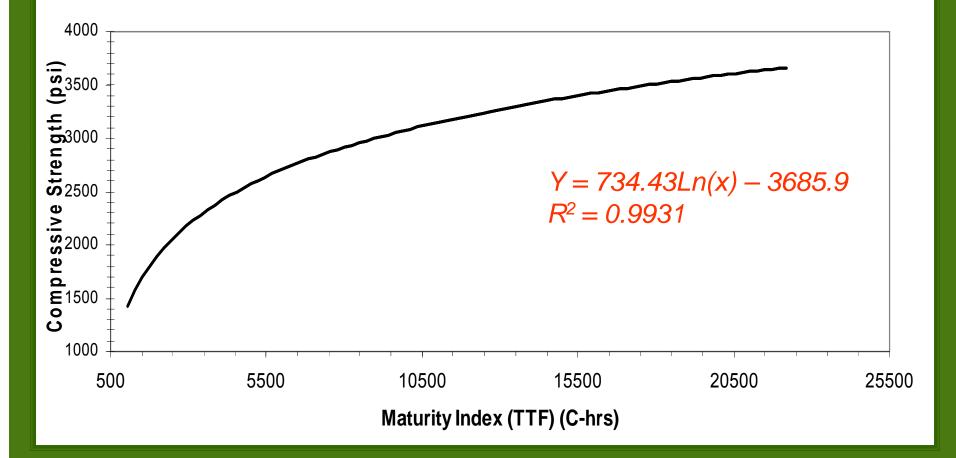
- 1. Develop a mixture specific calibration curve
- 2. Embed maturity loggers into plastic concrete
- 3. Take maturity (TTF) measurements
- 4. Use the calibration curve to estimate strength from maturity (TTF) measurements

Laboratory Test Data





Developing a mixture specific curve


Developing a mixture specific curve

Strength - Maturity Relationship

Strength-Maturity Relationship

Maturity equation – defines the strength-maturity relationship (logarithmic best fit curve)
 Y = 734.43Ln(x) – 3685.9

The R² value indicates the reliability of the strength-maturity relationship R² = 0.9931

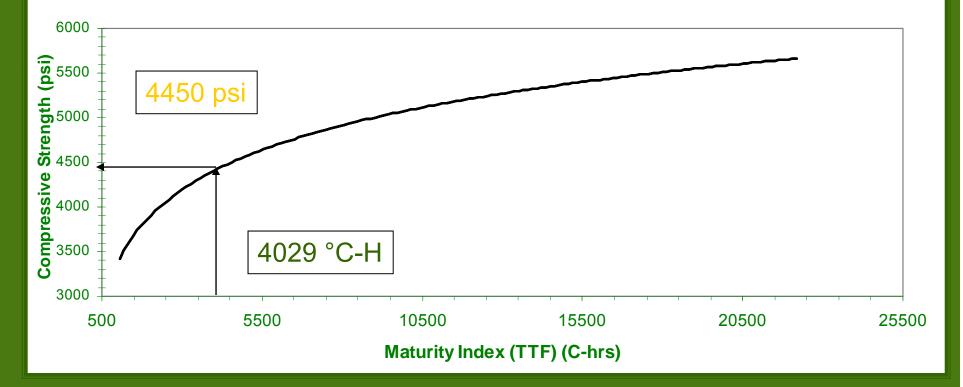
Logger Placement Frequency

Pavement 1 / 2500 sqft.

Structures
 1 / 100 cubic yards

Field Activities

> Embed loggers


- Minimum 10" from pavement edges
- Minimum 4" cover in structures (mid-depth ideal)
- Activate loggers
 Take maturity (TTF) measurements

Using the Strength-Maturity Relationship Curve

Strength-Maturity Relationship

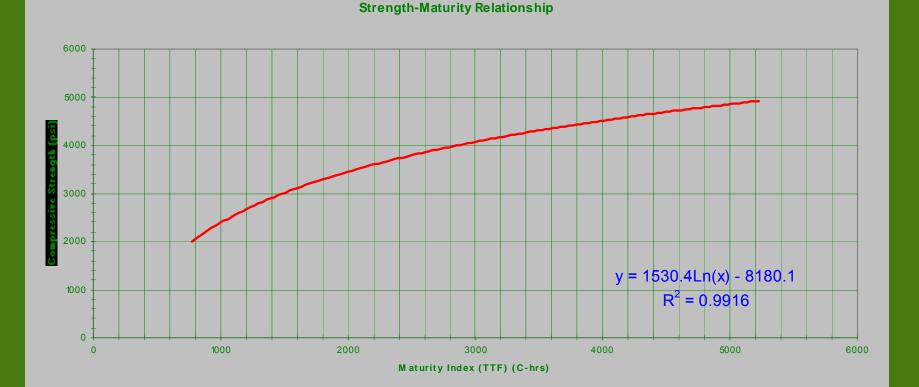
Case Study

> Project:

Contractor: Owner: Concrete Supplier: Transcontinental Street Panel Replacement Fleming Construction Jefferson Parish

Lafarge Corporation

STRENGTH-MATURITY RELATIONSHIP LOG ASTM C 1074

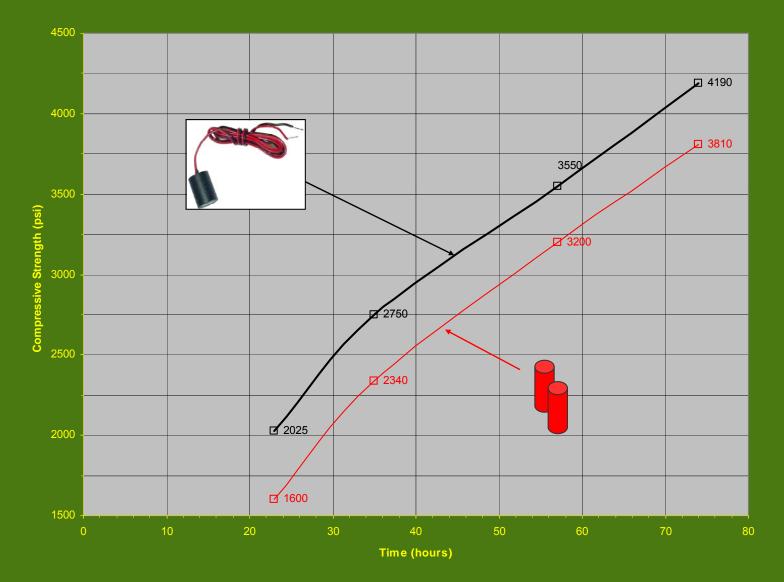

Ready Mir	x Supplie	er: Lafarge	~										
BTI No.: N/A						Date: 3/3/04							
Technicia	n(s): C. P	Perkins & N	1. Cheek										
MIX I	DATA												
Mix I.D.: 161						HRWR: ()Yes (X)No							
Design slump (in.): N/A						Design air content (%):							
Design str	rength @	3	days: 4	000									
TEST I	DATA												
TEST						RESULTS							
Slump (in.) (ASTM C 143)						8							
Air Content (%) (ASTM C 231 or C 173)						2.6							
Concrete 7	Temperat	ture (°C)	((ASTM C 1	064)	23.9							
Ambient 7		ure (°C)				21.6							
	Unit Weight (pcf) (ASTM C 138)						N/A						
	A	ens this set		Spec	imen des	scription: 6 x 12 Time Made: 9:30							
LABOR	ATORY	Y TEST D	ATA										
Sample ID	Area (sq in)	Date Tested	Age at test (days)	Total load (lbs.)	Comp. strength (psi)	Average Comp. strength	Fracture type	Temp. (°C)	Elapsed Time (hr:min) Age	TTF (°C-hr)	Averag TTF		
1A	-	3/4/04	1	55000	1950	-	А	21	23:23	778	-		
1B	-	دد	1	57500	2030	1990	А	21	23:27	778	778		
1C	-	3/4/04	1	65000	2300	-	В	21	31:32	1044	-		
1D	-	66	1	70000	2480	2390	В	21	31:31	1034	1039		
1E	-	3/5/04	2	89000	3150	-	А	22	48:15	1551	-		
1F	-	66	2	84500	2990	3070	А	22	48:18	1578	1565		
1G	-	3/6/04	3	108000	3820	-	В	22	73:50	2394	-		
1H	-	66	3	112500	3980	3900	В	22	73:49	2375	238		
1 I	-	3/10/04	7	136000	4810	-	A	19	166:00	5246	-		
1J	-	٠٠	7	137000	4850	4832	A	19	165:59	5208	522		

Remarks: Break schedule - 24hrs, 36 hrs, 48hrs, 72hrs, and 7 days

 $^{\circ}F$ to $^{\circ}C = 0.555(^{\circ}F - 32)$

Maturity Index (TTF) = Σ (T_a - T_o) Δ (t)

Calibration Curve for Lafarge Mix No. 161


FIELD MATURITY DATA LOG ASTM C 1074

Project: Transcontinental Street panel replacement (Fleming construction)
BTI No.: N/A	
Ready Mix Supplier: Lafarge	Mix ID: 161
Technician(s): D. Christophe	Inspection Date: 3/11/04

FIELD DATA

Structure	Structure Street panel 7" thick					Street panel 7" thick					
Member	Panel on east side of Transcontinental lake bound lane adjacent to 4973 Avron					Panel on east side of Transcontinental lake bound adjacent to 4973 Avron					
Sensor Serial No.	2000678					2000058					
Sensor Location	@ centerline 15' North of expansion joint,60' North of Avron					@ centerline 18' south of end of placement					
Required Strength (psi)	4000					4000					
Required TTF	2850					2850					
Curing Method	Curing compound				Curing compound						
Reading No.	Elapsed Time (hr:min) Age	Air Temp. (°C)	Con. Temp. (°C)	TTF (°C-hr)	Est. Strength (psi)	Elapsed Time (hr:min) Age	Air Temp. (°C)	Con. Temp. (°C)	TTF (°C-hr)	Est. Strength (psi)	
1	22:51	24	29	796	2000	22:12	24	25	844	2050	

Maturity Readings vs. Cylinder Breaks

Thank You

Any Questions