

Non-Destructive Testing Devices

Patrick Icenogle

What is a NDT Device

- Device capable of measuring in-place pavement properties without damaging the pavement
- Some of the measured properties include:
 - Smoothness
 - Thickness
 - Modulus/Stiffness

- Surface Data Collection Systems
- Ground Penetrating Radars
- Falling Weight Deflectometers
- Seismic Technologies

Advantages

- No damage to pavements
- Move toward performance based specs
- Increased sampling frequency
 - Some are continuous
- Reduced coring
- Less lab work
- Many tests are computer aided

Uses

- Quality Tools (QC/QA)
 - Actual roadway properties in actual roadway conditions
 - Increased sampling frequency with no damage to pavements
- Pavement Performance
 - Same points can be tested multiple times during a pavement's lifetime

- International Roughness Index (IRI)
 - Smoothness/Roughness measure
 - Longitudinal surface profile
 - Continuous measurement collection at roadway speeds
 - Ratio of accumulated suspension motion to distance traveled
 - Smoother roads have lower IRI values
- Louisiana working towards IRI specification for concrete pavements

- Ground Penetrating Radar (GPR)
 - Thickness measurement
 - Depth of reinforcement

- Ground Penetrating Radar (GPR)
 - Transmits high frequency electromagnetic or radio waves into the pavement
 - Waves moving from one material to another causes variations in the signal
 - Receives reflected signal and determines depth of variations in the signal
 - Continuous measurement collection at roadway speeds

Ground Penetrating Radar (GPR)

- Falling Weight Deflectometer (FWD)
 - Deflection measurement
 - Modulus/Stiffness backcalculation of multiple layers of the pavement structure

- Falling Weight Deflectometer (FWD)
 - Impact load applied to loading plate
 - Surface deflections are measured by geophones at various distances from the center of impact
 - Using reverse of the design process, a modulus value can be back calculated from the deflections
 - Stop and go testing, but test intervals are short

- Light Weight Deflectometer (LWD)
 - Deflection measurement
 - Modulus/Stiffness backcalculation of multiple layers of the pavement structure

- Light Weight Deflectometer (LWD)
 - Portable version of the FWD, based on same principles
 - Designed for unbound and base materials, however, current research is looking at uses for flexible pavements

- Portable Seismic Pavement Analyzer (PSPA)
 - Modulus/Stiffness measurement of surface layer

- Portable Seismic Pavement Analyzer (PSPA)
 - Source generates stress waves at regular intervals
 - Receivers records wavelengths and arrival times
 - Phase velocity is computed and related to modulus

LTRC PROJECT NO. 09-5C

Evaluation of Non-Destructive Technologies for Construction Quality Control of HMA and PCC Pavements in Louisiana

PI:

Patrick Icenogle and Md Sharear Kabir

PSPA
Portable Seismic Pavement Analyzer

LWD
Light Weight Deflectometer

LTRC 09-5C Objectives

- Develop procedures for operating the LWD and PSPA devices as QC/QA tools
- Perform a ruggedness test on the devices
- Compare lab properties obtained from cores and cylinders to field properties obtained from the LWD and PSPA devices

- LWD and PSPA measure the modulus of the surface layer of a pavement
- Modulus values can be used as a standalone measure or correlated to other properties
- LWD center deflections can be used as a standalone measure representative of the pavement structure

- Ruggedness Testing
 - Presence of water
 - Presence of nearby vehicles/construction
 - Presence of small cracks
 - Orientation of receivers
 - Distance from joint

Research by Others

AZDOT

- "Use of NDT Equipment for Construction Quality Control of Hot Mix Asphalt Pavements"
- PSPA values correlated well with modulus values from cores
- Concluded that contractors should be able to get within 85% of target design modulus from the lab

Research by Others

- LTRC Project 02-3B
 - Compares Physical and Mechanical Properties of HMA Mixture and Field vs. Laboratory
 - PSPA had lower variability than FWD and LWD
 - PSPA correlated well with ITMr

Research by Others

- Univ. of Texas, El Paso and TxDOT
 - Good relationship between compressive strength and lab seismic modulus

Asphalt Deflections Contour

PSPA Temp Corrected Modulus Contour

Ambassador Caffery PSPA

ALF Concrete Section PSPA

References

- 1. Celaya, Manuel; Nazarian, Soheil; Zea Manuel; and Tandon, Vivek. "Use of NDT Equipment for Construction Quality Control of Hot Mix Asphalt Pavements". Arizona Department of Transportation, 2006.
- 2. Mohammad, Louay; Saadeh, Shadi; Zhang, Chenggang; and Rhagavendra, Amar. "Comparison of the In-situ Strength and Laboratory Mechanical Properties of Asphalt Concrete Mixtures". Louisiana Department of Transportation, 2006.
- 3. Yuan, D. and Nazarian, S. "A Nondestructive Methodology for Optimizing Opening of PCC Pavements to Traffic". Project Summary Report 0-4188-S1. Center for Transportation Infrastructure System, University of Texas at El Paso. 2003.
- 4. Nazarian, Soheil; Yuan, Deren; Weissinger, Eric; and McDaniel, Mark. "Comprehensive Quality Control of Portland Cement Concrete with Seismic Methods". Texas Department of Transportation, 1997.
- 5. Von Quintus, Harold; Minchin, Jr., Robert; Nazarian, Soheil; Maser, Kenneth; Prowel, Brian. "NDT Technology for Quality Assurance of HMA Pavement Construction". NCHRP Report 626. Transportation Research Board, Washington D.C. 2009.

