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ABSTRACT 
 

More jurisdictions including states and metropolitan areas are establishing traffic management 
centers to assist in reducing congestion.  To a lesser extent, these centers are helpful in providing 
information that assists engineers in making such adjustments as signal synchronization or road 
improvements.  However, the main traffic management center function is real-time decision 
making for freeways and surface streets. 

 
Planning and modification of a traffic network is best pursued in a context that includes large 
historical data.  Understanding traffic “behavioral” properties is the domain of numerous 
technologies such as data mining which depends on the presence of large amounts of historical 
data.  To these ends, the Louisiana Transportation Research Center (LTRC) commissioned this 
study for the design of a data warehousing/data mining system that, while limited to Baton 
Rouge, will serve as a statewide model. 

 
Few traffic-oriented data warehouses exist in the U.S.  The methodology employed in designing 
the Baton Rouge, Louisiana warehouse included visiting many of them and collecting sample 
data from Baton Rouge sensors.  Advisory and stakeholder committees were formed to give 
advice on the base applications. Base applications are the ones recommended for the initial 
inclusion in the warehouse.  The applications were traced back to the data, resulting in some of 
them being dropped or modified to suit the data and its quality that was available.  From that 
juncture, the data was tracked forward again to the applications, modeling the transformations 
necessary.  This transformation set constituted the design.  Chosen applications, in addition to 
data mining, included several variations of performance measuring and hydrowatch.  The latter is 
unique among traffic warehouses and is particularly appropriate for the region and State. 

 
The data warehouse design consists of a system with three stages – 
extraction/transformation/loading (ETL) of source data, main storage of the warehouse, and 
client workstation software.  ETL consists of acquiring, cleansing, formatting, merging, and 
purging of the source data.  Much of this stage entails data quality checking and the report 
addresses this aspect.  Main storage is organized around a star schema also called a 
multidimensional data cube.  This separates the static data such as sensor location from dynamic 
data such as lane occupancy.  This design assumes a one-way data flow, input from the sensors 
and output to client workstations or other media.  This approach is codified commercially as 
online analytical processing (OLAP).  Many warehouses stop at the main storage phase (the 
“dump and run” model).  Here, the solution to key client phase issues, interfaces to GIS and 
linear referencing are given. 

 
Infrastructure and a marketing plan are given.  The key infrastructure decision is determining the 
warehouse’s physical location – at LTRC, at a university, or at a private/public concern.  All 
three variations were discovered in site surveys.  Marketing consists of addressing various 
segments beginning with those who are inclined to add value to the system.  These are the 
engineers and planners but at some stage university researchers and the general public must be 
given access and be convinced of the value that can be obtained. 
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IMPLEMENTATION STATEMENT 
 

The first step in implementing the recommendations of this report is to determine the owner and 
location of the Baton Rouge traffic data warehouse.  Options include a university such as LSU, 
directly within the Louisiana Transportation Research Center, another entity of LADOT, the 
Baton Rouge Traffic Management Center, or another entity of the State or metropolitan 
government.  The next step should be the appointment of an internal committee empowered to 
make financial decisions but augmented with representatives from various traffic planning and 
management constituencies. 
 
From this point, there are two possible directions.  One is the preparation of a bid document 
based on this report.  Following the bidding process, or perhaps concurrent with it, this document 
should be provided.  The second approach is to procure the main storage component from an 
existing traffic management center.  The principal candidate would be California’s Performance 
Measurement Systems (PeMS).  In this latter case, the main storage structures must be modified 
to reflect the applications envisioned in this document.  Following such procurement, the 
acquisition stage and client station applications could be developed separately.  In either case, the 
performance measures should be given the highest implementation priority. 
 
The staffing of the warehouse should be carefully considered.  It is estimated that only four or 
fewer persons are needed on a permanent basis.  These should include database analyst and two 
computer programmers together with a technician.  While traffic engineers have a significant 
presence, they are infrequently directly employed by the unit that administers the warehouse.  
Additional applications should be managed one at a time by external contracts. 
 

Some final caveats are: 
 

• Start with the simplest applications with visible, short-term payoffs; these are the 
performance measures 

• Keep in mind that the warehouse is not a static system but grows application by 
application; avoid trying to be all things to all users at the outset 

• Maintain the archival, read-only nature of the data; this means resist the temptation to 
make it an operational database with disparate users supplying updates spontaneously 

 
A discussion of origins of three key ITS/data warehouse systems is in the section entitled 
“Current Practice.” 
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INTRODUCTION 
 
Real time traffic management has been underway in Baton Rouge, Louisiana for many years.  
What is now missing is a central resource for tracking trends and responding quantitatively to 
planned changes and the effects of incidents.  Looking to the future, the Louisiana Transportation 
Research Center (LTRC) requested a study leading to the design of a data warehousing/data 
mining component to its Intelligent Transportation System (ITS).  While limited in geographic 
scope to the freeways in Baton Rouge, the study is intended as a statewide model.  The key 
results are a detailed design of the three stages of a data warehouse 
 

• Extraction, transformation and loading of source data, 
• Main database based on star schema principles, and 
• Client-end processing 

 
Plus research reports on data mining applications based on the recommended design. 
 
This report is based in part on an extensive examination of several prominent Travel Labs, how 
they function and the benefits they gain from using an Archived Data Management System 
(ADMS) for ITS data.  The ADMS complements a data warehouse system.  As noted in several 
documents transportation professionals are becoming increasingly aware of the benefits of real-
time and archive data generated by ITS systems.  Particular to Louisiana, the use of ITS data by 
personnel with the Regional Planning Commission proved that the evacuation counter-flow was 
implemented later than the most effective time for efficient evacuation of New Orleans during 
Hurricane Ivan.  Some of the benefits noted in this report are freeway performance measures, 
analysis, and new custom applications for end users.  In addition, this report documents the 
results of lengthy interviews and surveys with key ITS data users and managers to provide our 
customers with implementation challenges and lessons learned from practitioners experienced in 
Archive Data Management Systems (ADMS)/ITS data warehouse deployment or uses.  For the 
purpose of this report we will substitute data warehouse with ADMS. ADMS provides the 
crucial link between the sources of real-time ITS data and archived data users.  This has become 
the accepted term by the transportation industry.  The FHWA study “Cross-Cutting Studies and 
State-of-the-Practice Reviews: Archive and Use of ITS Generated Data” notes that the benefits 
of using ITS-generated data vary from one application to the next and are driven by end-user 
requirements and input. 

Report Outline 

Aspects of both a design document and research report are incorporated within this report.  Two 
sections, one on requirements and one on database design directly follow and constitute the 
majority of the design information.  Those are followed by a section of research reports, each 
based on original experiments performed using either data collected on Baton Rouge freeways or 
those collected in Minneapolis, Minnesota1.  The first of these reports concerns advanced 
methods for quality assurance during source data extraction.  The latter two describe potential 
data mining applications – incident prediction using traffic conditions and “not now” travel time 
prediction.   

                                                 
1 In some cases, the Baton Rouge data obtained was either incomplete or various components not concurrent in time.  
In these cases, the Minnesota data was used. 
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The final section is a survey of existing ITS/WAREHOUSE systems such as California’s PeMS 
Arizona’s Macapia County RADS, and Washington state’s TRAC.  It is noteworthy that the 
majority of applications observed were performance measurement and, apart from visualization, 
little in the direction of data mining was encountered. 
 

Methodology   

The tasks leading to this report are shown in Figure 1. There are four fundamental objectives 
(O1, O2, O3, and O4) illustrated in the diagram that are the focus of this study.  These 
encompass nine of the eleven tasks (labeled T1, T2, …, T9) in the figure. Arrows between tasks 
represent information flow. The objectives and tasks are: 
 

O1.  Determine Client Needs 
T1/T3. Current Practice Study and Site Survey 
T2.    Users & Uses 
T4.    Requirements 

O2.  Determine Data Sources 
T5.    Data Source Compilation 
T6.    Sample Data Evaluation 
T7.    Quality Metrics 

O3.  Specify Functional Design 
T8.    Functional Specifications 

O4.  Specify Physical Design 
T9.    System Design 
 

Two additional tasks are not specific to one objective: 
 

T10.  Marketing 
T11.  Reporting Activities 

 
Examining the tasks above from a different perspective, 
 

• We first examined the application side by visiting operational WAREHOUSE sites with 
frequent conferences in Baton Rouge with stakeholders; 

• We next examined the source data by collecting a month of data (July 2004) from 
potential sources in order to determine its format, completeness, and consistency; 

• We then constructed data models leading from the source to the application; 
• Finally, we used the data models to construct a design of the warehouse. 

 
Overlaying this activity, we developed prototype software to experiment with the feasibility of 
specific visualizations and specific data mining applications. 
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Figure 1.  Task sequence for project 
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DATA WAREHOUSE REQUIREMENTS 
 
The requirements can be summarized as 
 

1) determine what data must be available in the data warehouse based on users and uses,  
2) how it is organized, and  
3) how often it is updated. 

 
The background includes the geographic coverage, the initial clients, and applicable standards. 
 

Coverage Area 

The actual coverage of the current sensor set is shown in the upper left corner of Figure 2.  
Future geographic coverage includes only freeway segments in East Baton Rouge, West Baton 
Rouge, and Livingston parishes illustrated in the main part of Figure 2.  The warehouse design is 
intended to be a statewide model.  As will be explained in a later portion of this report, it is 
recommended that future extensions be in the form of distributing the data warehouse, i.e., 
replicating the design in other jurisdictions. 
 

 
 

Figure 2. Warehouse geographic coverage 
 

Users 

Through several meetings with the DOTD ITS staff, the MPO and EBR TMC a core group of 
clients were identified.  The following table contains the primary users for the case study 
operation test WAREHOUSE for the Baton Rouge capital region.   
 

Once operational but limited to the capital region, the core group should expand to 
include: 
 

• Police and fire departments 
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• Other emergency service providers 
• Transit Agencies 
• The media 
• Event venues 
• The general traveling public 

 
Once expanded across the State or significant portions of it, the user group will expand to 
include the Louisiana Highway Patrol, military bases, and undoubtedly others. 
 

Table 1. Contributing committees 

 
 
In Table 1 there is an expansion of the core group.  These are the stakeholders in the 
WAREHOUSE for the Baton Rouge region.  It represents a two level stakeholder effort for the 
development and implementation of the regions ITS WAREHOUSE.   Group 1 represents the 
local East Baton Rouge region and is the potential data owners/warehouse contributors.  Group 2 
represents a statewide advisory committee with expanded interests and uses. 
 

This report recommends meeting among the members to determine their participation in 
the project, prior to any operational implementation.   It has been noted in other warehouse 
development projects that stakeholders’ involvement is critical to the success.  Meeting 
schedules range from one to four meetings annually. 
 

6 
 



Uses 
 
A traffic data warehouse is a component of an ITS.  An ITS consists of roadside infrastructure, 
communications, traffic centers, and software systems.  The four function as an integrated 
system with the high level goals of making transportation systems run more smoothly and more 
safely.  The warehouse is one software component and has the special requirement of serving as 
a platform for information relevant to planning. 
 
The other major software components are the real-time traffic management system and task-
specific operational database.2  Before examining uses, it is beneficial to examine how we 
believe the warehouse should be embedded within the larger software framework.  This is shown 
in Figure 3. 
 

 
Figure 3.  The warehouse embedded within the ITS software components 

 
Noteworthy in our vision of the warehouse is that the input can be largely automated with the 
exception of the crash incidents.  The clients are consumers, not producers.  This is consistent 
with state-of-the-art approaches. 
 
It is best to contrast the uses of the warehouse with that of a Real-time Traffic Management 
System (RTMS) since the two are so closely linked within an ITS.  A scan of Table 2 shows that 

                                                 
2 An operational database is one designed with the goal of allowing clients to both retrieve and update.  A data 
warehouse is a database for which the clients are restricted to retrieval and the update functions are tightly restricted 
to a second, generally, automated, group. 
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an RTMS is focused on the future while a data warehouse is focused on the past.  Nevertheless, 
while the warehouse does not make decisions affecting the future, it is designed to provide 
information that assists in making choices. 
   

Table 2.  RTMS and data warehouse applications 
RTMS Data Warehouse/Clients 

Manage traffic flow to ensure the highest 
utilization of the transportation 
infrastructure 

Track changes in infrastructure utilization 
at different levels of aggregation in both 
time and geography 

Reduce response time for incidents, keep 
roads clear of obstructions, minimize 
secondary incidents 

Assist in identifying recurring problems 
such as excessive congestion or unusually 
high incident counts 

Dispense traffic information with respect to 
congestion, incidents, road conditions, and 
maintenance activities – this includes travel 
times, dynamic message signs, and the 511 
systems 

Provide information to managers and 
planners relevant to making decisions that 
effect utilization – this includes planning 
for events, planning for infrastructure 
maintenance, and planning for 
infrastructure additions 

Adjust dynamic traffic control devices such 
as signal timing, camera directions, and 
ramp meters 

Track the performance of infrastructure 
components such as sensors and report 
anomalies that occur consistently 

 
 
The design we produce here includes applications that support the first three items in Table 3.  
Sensor health is not directly included but we do include a research report that is relevant to 
adding it in the future.   
 

Table 3.  Capital Area Traffic Data Warehouse Applications 
Application Description 

Mobility and performance 
measures 

Straightforward measures include averaging speed, 
occupancy, and volume; they also include vehicle miles 
traveled, volume-to-capacity ratios, and others. 

Reliability measures Chief among the reliability measures is the buffer index, a 
measure of congestion recognized by the FHWA but there 
are others; the buffer index expresses the “extra buffer” 
needed to be on time for 95% of the trips between points A 
and B. 

Hydrowatch Correlation of road conditions, particularly open vs. closed, 
with conditions of local hydrological features – particularly 
streams at bridges. 

Visualization The above information can be viewed as a two- or three-
dimensional graph; many of the more informative 
visualizations are in conjunction with the surface network 
which is obtained by combining the warehouse data with the 
surface log and a Geographic Information System (GIS). 

 
The mobility and reliability measures are common to each of the operational warehouses that we 
examined including PeMS (California) and Smart Travel Lab (Virginia).  The visualization 
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application is also present in most warehouses.  It is not, however, directly a function of the 
warehouse but of the client stations that the warehouse supports.  The hydrowatch application is 
unique to the Capital Area/Statewide design.  Its inclusion recognizes the unique effect climate 
has on traffic in our State. 

Applicable Standards 

The warehouse should be based upon industry and ITS standards to insure national integration 
and statewide implementation. While no standard currently exists explicitly for a transportation 
archival database, there does exist ITS standards which can be reviewed prior and during 
deployment to ensure that all appropriate data points defined by those standards are accounted 
for in the archival database and that the data is stored in a manner that is consistent with the 
metadata defined in the standards.  Companies such as Open Roads Consulting, Berkeley 
Transportation Systems, TTI, etc. have extensive experience in complying with industry and 
national ITS standards. 
 
VDOT has assembled a comprehensive (but not complete) list of standards for their “TMC 
Applications of Archived Data Operational Test” document.  This study is by the Virginia 
Department of Transportation Prime, GMU Subcontractor, and its purpose is to document how 
transportation management center (TMC) operational practices and procedures can benefit 
through the applied use of archived data from highway-based and/or transit-based ITS sources. 
This effort will consider how specific TMC functions can be enhanced through performance 
measures and analytical techniques enabled through archived data. GMU’s role will be to assist 
the local planning organization in the development of models that will feed from ITS archived 
data and at the same time, support their needs as a planning organization.   

 
The standards examined for this study include those in Table 4. 
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Table 4. Standards applicable to ITS data warehousing 
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THE DATA WAREHOUSE DESIGN 
 
In this section, following the design overview, the three warehouse stages are described in 
successive subsections.  Sample source data was requested for July 2004 and a mixture from the 
two months of July and August was obtained.  This data was examined and its form together 
with an evaluation of the quality is in the penultimate subsection.  The last subsection is reserved 
for further discussion of difficult design issues. 

Design Overview 

An overview of the design is shown in Figure 4.  The two principal points to be noted from the 
figure are: 
 

• There are three stages or layers consisting of the ETL, the main storage, and clients; 
• Within the stages, the information flow is strictly left to right, that is, direct updating of 

the archived data is not allowed. 
 
The left-to-right flow distinguishes a data warehouse from an operational database.  In an 
operational database, the clients are permitted to update data directly.  The restriction is 
circumvented by the feedback loop which allows client-generated information to be inserted 
from a source file on the next update cycle. 

 

Source Media 

 
Figure 4.  Overview of DW design 

 
In the figure, OLTP stands for online transaction processing and is the set of procedures for 
ordinary operational databases.  That is to say, the source media inputs are staged in an ordinary 

Extraction, 
Transformation,

and  
Loading 
(ETL) 

Main 
Storage 

OLAP OLTP 

Clients

Feedback
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relational database prior to loading into the main storage tables.  OLAP stands for online 
analytical processing and is a set of procedures, including an SQL-like query language, for 
accessing data in the specialized schema of data warehouses. 

The Extraction, Transformation, and Loading Stage 

One research paper [63] presents a review of data failure screening methods and proposes its 
own methodology for detecting potentially erroneous observations. According to the paper, tests 
for screening traffic data can be divided into two categories: 
 

• Threshold value tests 
• Traffic flow theory principles tests 
 

The paper makes an argument for using traffic flow theory tests, and claims that they can detect a 
wide range of failure modes. 
 
Archived data management systems (ADMSs) are data warehouses created to support analyses 
based on data collected by transportation operations systems. While many believe that an ADMS 
can be created by simply exporting data from an operations system, experience in developing the 
Virginia ADMS illustrates that the creation of an effective ADMS requires careful attention to 
the extraction, transformation, and loading (ETL) process. This process refers to the activities 
conducted when creating a data warehouse from an operational data store. 
 
This paper addresses four critical elements of an ADMS ETL process: data aggregation, data 
quality assessment, data imputation, and data characterization. For each element, the purpose and 
need are documented, a review of available alternative implementation methods is presented, 
and, finally, a description of the approach used in the Virginia ADMS is detailed.  Transportation 
professionals are becoming increasingly aware that traffic data collected to support operations, 
such as those collected by signal control systems and freeway management systems, hold 
considerable value for use in a variety of planning and analysis applications . This awareness has 
led to the development of the archived data user service (ADUS) element of the National 
Intelligent Transportation Systems (ITS) architecture. Specific implementations of ADUS, 
referred to as archived data management systems (ADMS) can best be classified as data 
warehouses, an emerging area in the broader arena of information technology. A formal 
definition of a data warehouse is a subject-oriented, point-in-time, inquiry-only collection of 
operational data. Thus, one can see that the development of an ADMS involves creating a system 
that supports analysis based on operational data. 
 
A common misperception concerning ADUS is that implementation involves simply providing 
query access to the operational database used in a traffic operations center. This approach does 
not meet the requirements of the service for two primary reasons: (1) it increases risk of system 
failure by allowing additional access to the information technology subsystem of a traffic 
operations center, and (2) the operational database is not designed to support query and analysis. 
Thus, effective warehouse systems involve creating data warehouses that are separate from the 
operations center’s database. The process of populating this data warehouse, or preparing and 
moving data from an operational database to the warehouse, is known as Extraction, 
Transformation, and Loading (ETL). The quality of the ETL process dictates the effectiveness of 
a data warehouse in meeting user needs. 
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The purpose of this research was to investigate the ETL process in the context of ADUS 
applications. The results of the research indicate that effective warehouse ETL is a complex 
process that requires careful investigation of statistical, traffic flow theory, and information 
technology concepts. This paper presents the research team’s findings using the ETL architecture 
developed for the Virginia warehouse, a data warehouse intended to support the use of traffic 
operations data collected by the Virginia Department of Transportation (VDOT).  
 

 
Figure 5.  Warehouse backend – extraction, transformation, and loading 

 
The data warehousing literature refers to databases created to support operations as operational 
data stores (ODSs) (1). Examples of ODSs in transportation operations consist of databases 
incorporated in the management and control software of operations centers, such as 
transportation management systems. ODSs are intended to support real-time insertion of data in a 
reliable, available manner. They are not intended to support query and analysis – this is the role 
of a data warehouse. The process of “moving” data from an ODS to a data warehouse is known 
commonly as Extraction, Transformation, and Loading (ETL) and is depicted in Figure 5, with 
ADUS terminology included in the appropriate locations. The following sections provide detail 
on each element of the ETL process [64]. 
 
Extraction 
Extraction is simply the process of selecting and obtaining data from the ODS server to use 
within the data warehouse. This activity must be designed in such a way to minimize risk to the 
ODS. Extraction can occur on varying time scales. In “real-time” extraction, data is pulled from 
the ODS to populate the warehouse on a nearly continual basis. On the other hand, extraction can 
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be designed to occur infrequently, such as once a day, in which all of the data accumulated over 
the day at the ODS is pushed to the warehouse. 
 
Transformation 
This critical aspect of the ETL process is frequently overlooked in transportation data 
warehousing applications. The purpose of transformation is to prepare data from them ODS to 
best support analysis. Transformation includes such activities as data screening (or validation of 
values), combining data from multiple ODS sources, and building aggregates to improve query 
performance (1). It is generally accepted that the transformation step must be tailored to the 
specific industry/application in order to create an effective data warehouse. For this reason, this 
paper focuses on transformation activities in the ETL process of the Virginia warehouse. 
 
Loading 
The key aspect of loading is quality control.  The main issues in quality control are data 
screening, data imputation, and abnormality testing.  These are described below. 
 

Data Screening – Certainly, an important prerequisite of any effective warehouse is high 
quality data. A number of detector screening algorithms should be developed. Industry 
standards such as those published by the Virginia Smart Travel Lab or Texas 
Transportation Institute can be used as a guide. These standards have been published in 
the Transportation Research Record and are currently in use in TMC’s throughout the 
country.  The first research report in Appendix B describes our contribution to this topic. 
 
Data Imputation – Missing data is a fact of life in all ITS deployments. The harsh field 
conditions, communications frailties, and software bugs result in a missing data rate that 
often averages 30 percent of all detectors at any given time. In the past, systems usually 
“gave-up” on missing data, and did not try to estimate conditions based on adjacent 
detectors and/or archived data. However, as illustrated by some of the work that Oak 
Ridge National Laboratories conducted on ADUS, the spatial and temporal patterns of 
traffic data allow for effective data imputation. Through interviews with local officials it 
was determine that no data imputation should be used in the Louisiana warehouse. 
 
“Abnormality” Testing – Arguably the most important traffic information is a report of 
traffic conditions that can be classified as out of the “norm.” This can explain the 
widespread popularity of CCTV cameras. Operators can quickly glance at a camera and 
visually ascertain the normality of the situation. To support a myriad of real-time and 
archived data, it is necessary to classify conditions as normal or abnormal (and measure 
the degree of abnormality).  

 
The Texas Transportation Institute publishes a comprehensive list of data validity checks that 
should be utilized by the proposed warehouse.  Below is an example of critical tests.  Please refer 
to publication TTI Report 1752-5 [65] for more detailed information on these types of data 
checks. 
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Table 5.  Extraction validity checks from Texas Transportation Institute 

 
 
 
More sophisticated quality control procedures include: 
 

• Sequential Data Checks – will compare values in consecutive time periods for 
consistency (e.g., speeds cannot go from 60 mph to 20 mph and back to 60 mph in 
consecutive 5-minute time periods.  

• Corridor Data Checks – will examine the relationship between data along a corridor 
(e.g., volume into an area should approximately equal volume out).  

• Historical Data Checks – will examine the changes from one year to the next for 
reasonableness (e.g., high increases in volume or drastic changes in speed).  

 
To instantiate these with specific tests used by the Texas Transportation Institute, we have 
compiled the following list: 
 

• Maximum Volume Threshold – e.g., greater than 250 vehicles per lane for five minutes 
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• Maximum Occupancy Threshold – e.g., greater than 90 percent for five minutes 
• Maximum Speed Threshold – e.g., greater than 80 mph for five minutes 
• Minimum Speed Threshold – e.g., less than 3 mph.   
• Inconsistency of traffic data values (volume, occupancy, and speed) within the same data 

record or with traffic flow theory (e.g., occupancy is less than 3 percent but speed is less 
than 45 mph; speed equals zero but volume is nonzero;  occupancy is greater than zero 
but volume and speed are zero) 

• Sequential Volume Test – e.g., if the same volume is reported four or more consecutive 
time periods, assume that the detector is malfunctioning 

 
 
A research report on data quality checking is included.  The simulations utilized data from 
outside the Baton Rouge coverage area.  Traffic surveillance systems are a key component for 
providing information on traffic conditions and supporting traffic management functions.  A 
large amount of data is currently collected from inductive loop detector systems in the form of 
three macroscopic traffic parameters (speed, volume and occupancy).  Such information is vital 
to the successful implementation of transportation data warehouses and decision support 
systems.  The quality of data is, however, affected by erroneous observations that result from 
malfunctioning or inaccurate calibration of detectors.  The open literature shows that little effort 
has been made to establish procedures for screening traffic observations in real-time.  This study 
presents a realistic approach for modeling and real-time screening of freeway traffic data.  The 
study proposes a simple methodology to capture the probabilistic and dynamic relationships 
between the three traffic parameters using historical data collected from the I-4 corridor in 
Orlando, Florida.  The developed models are then used to identify the probability that each 
traffic observation is partially or fully invalid. 
 

The Main Storage Stage 

As stated above, the design of the warehouse should take the dimensional approach. It is 
proposed that this design be further developed in an operational test with stakeholder input. The 
purpose of this effort would be to test and learn about data management techniques needed to 
support the warehouse.   This new structure could first be developed for East Baton Rouge as a 
case study, but will be expanded to deal with the TMC and RPC’s statewide ITS archive. It is 
fully understood that the design must contend with multiple locations and allow for the smooth 
addition of new areas. It is recommended that a separate database segment will be created for 
each geographic area and all the segments will be tied together in a bus-like manner allowing a 
warehouse to draw from all of them at once. We refer to these segments as data marts, a 
common term in the data warehousing field. While each data mart is unique, in that it has a 
distinct fact table, it shares dimensions with other data marts. The bus architecture and the use of 
common dimensions allow each data mart to have its own characteristics while keeping a 
consistent format to the entire database.  This then would emulate other prominent system 
designs being developed throughout the nation, such as Virginia’s Smart Travel Lab.   
 
Figure 6 illustrates the dimensional approach. The database schema for warehouses follows a 
pattern quite different from the normalized tables of relational databases.  The schema form is 
sometimes referred to as a “star schema.”  Examining Figure 6, the center of the “star” is a so-
called “fact table” in which is captured the dynamic real time data.  Within the fact table are 
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references to the “dimension tables.”  The dimension tables contain data that is relatively static 
over time such as location and calendar data. 
 

 
Figure 6. Star Schema Example 

 
Queries use the dimensional information to isolate one or more facts to be extracted from the 
warehouse.  A typical query often has the form: 
 

Select average(traffic_volume) 
From Traffic_fact_table 
Where 

<Date_dimension constraint> and 
<Time_dimension constraint> and 
<Location_dimension constraint> 

 
The design enables rapid access and transfer of the dynamic, real time data using query selection 
information (e.g., dates, times, locations) available to all users.  Updating the fact table is also 
straightforward.  New sensor data is formed into records and appended to the fact table.   
 
The star schemas for mobility and reliability measures for the Capital Region but extendable 
Statewide are shown in Figure 7.  The fact tables are aligned down the center of the figure while 
the dimensions are shown to the left and right.  The dynamic, real-time data is shaded.  The 
remaining fields in the fact tables are to provide control information and to link the facts with 
dimensions, e.g., time and place. 
 
Note that there are three fact tables – DETECTOR_DATA, STATION_DAILY, and 
CRASH_DATA.  Of these, the STATION_DAILY is redundant but recommended.  Our study has 
determined that many clients use daily information regularly.  Storing precomputed daily 
volumes takes little space and conserves large amounts of retrieval time (both for the machine 
and for the client).  Construction of a record for the STATION_DAILY fact table takes the form of 
a “roll-up query,” which are useful in many other contexts.  A roll-up query is one that partitions 
the original fact table into blocks, then constructs one record per block, that record being the 
aggregate of the records in the block it represents.  For STATION_DAILY, the partitioning 
criterion is “day” and the aggregation operators are sums and averages.  Omitting the control 
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fields, the SQL3 roll-up query that constructs all the records in STATION_DAILY at once has the 
form: 
 

Select sum(Total_Volume), average(Total_Occupancy), 
average(Total_Speed), sum(TypeA_Volume), 
sum(TypeB_Volume,sum(TypeC_Volume) 

From Detector_Data DD, Calendar C 
Where DD.Calendar_Key = C.Calendar_Key 
Group By C.Day_Month_Year 
 

A “drill-down query” replaces one or more roll-up records with those from the block from which 
the aggregate was constructed.  Roll-back queries have special syntactical forms in OLAP 
systems and cannot be illustrated here in SQL. 
 

                                                 
3 SQL is the most common database query language in use today.  Initially, the letters stood for Sequential Query 
Language but in recent years it has been treated as a stand-alone technical word. 
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Figure 7.  Star Schemas for Mobility and Reliability Measures 

 
The descriptions of the attributes for the fact tables are given in Table 6 and descriptions for the 
dimensions are given in Table 7. While the descriptions are self-explanatory, this is an 
appropriate point to indicate that the record keys are internally generated by the warehouse 
system.  It is not good policy to incorporate keys that are in the legacy data directly as keys in the 
database.  Organizations tend to change systems over time and thus change the key designation 
procedures in the legacy data.  Where such keys exist (e.g., Crash_Num in CRASH_DATA) they 
are incorporated (but not as database keys) in order to permit records to be correlated with offline 
files having complementary data. 
 

Table 6.  Performance Measure Fact Table Attribute Descriptions 
ATTRIBUTE DESCRIPTION 

DETECTOR_DATA 
DD_Key A unique record key assigned and maintained by the traffic 

data warehouse system 
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Calendar_Key A pointer to a record in the calendar (date) dimension 
indicating the date on which the data was collected 

DD_Flags A sequence of binary signals (a bit vector) corresponding to a 
sequence of yes/no variables; here, the field is used to indicate 
which data verification tests were conducted and to indicate 
the type of sensor 

Time_Key A pointer to a record in the time dimension indicating the time 
at which the data was collected 

Location_Key A pointer to a record in the location dimension indicating the 
position of sensor from whence the data originated 

Lane_Key A pointer to a record in the traffic lane dimension indicating 
which lane the data describes 

Aggregation_Granule Sensors can aggregate values across a pre-programmed time 
interval (typically 30 sec. to 15 min.); here the aggregation 
interval, in seconds, is given 

Total_Volume Total count of vehicular traffic in the lane over the past 
number of seconds given in Aggregation_Granule 

Total_Occupancy Total occupancy in the lane over the past number of seconds 
given in Aggregation_Granule and expressed as a per cent 

Total_Speed Average traffic speed in the lane over the past number of 
seconds given in Aggregation_Granule and expressed in 
miles/hour 

TypeA_Volume Count of automobiles in the lane over the past number of 
seconds given in Aggregation_Granule 

TypeB_Volume Count of small trucks and vans in the lane over the past 
number of seconds given in Aggregation_Granule 

TypeC_Volume Count of large trucks and buses in the lane over the past 
number of seconds given in Aggregation_Granule 

STATION_DAILY 
Daily_Key A unique record key assigned and maintained by the traffic 

data warehouse system 
Calendar_Key A pointer to a record in the calendar (date) dimension 

indicating the date the data in the record was collected 
Daily_Flags A sequence of binary signals (a bit vector) corresponding to a 

sequence of yes/no variables; here, the field is used to indicate 
which data verification tests were conducted and to indicate 
the type of sensor 

Location_Key A pointer to a record in the location dimension indicating the 
position from which the data was collected 

Lane_Key A pointer to a record in the traffic lane dimension indicating 
which lane the data describes 

Volume Total of all volume data in DETECTOR_DATA records 
having the same date and location 

Occupancy Average of all Occupancy data in DETECTOR_DATA records 
having the same date and location 

Speed Average of all speed data in DETECTOR_DATA records 
having the same date and location 

TypeA_Volume Total of all volume data for small vehicles in 
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DETECTOR_DATA records having the same date and 
location 

TypeB_Volume Total of all volume data for intermediate size vehicles in 
DETECTOR_DATA records having the same date and 
location 

TypeC_Volume Total of all volume data for large vehicles in 
DETECTOR_DATA records having the same date and 
location 

CRASH_DATA 
Crash_Key A unique record key assigned and maintained by the traffic 

data warehouse system 
Crash_Num Key of external record from which the data in the record was 

taken; external record keys are assigned by the jurisdiction 
investigating the accident 

Crash_Flags A sequence of binary signals (a bit vector) corresponding to a 
sequence of yes/no variables; here it is used to indicate the 
crash type and the weather which are available from the crash 
reports 

Calendar_Key A pointer to a record in the calendar (date) dimension 
indicating the date the crash occurred 

Time_Key A pointer to a record in the time dimension indicating the time 
the crash occurred; it is also assumed that this is the time that 
the lane closures occurred 

Location_Key A pointer to a record in the location dimension which 
indicates where the crash occurred 

Lane_Key A pointer to a record in the traffic lane dimension indicating 
the primary lane of the crash 

Latitude, Longitude Redundant with the Location_Key field but useful for queries 
for which the purpose is to find accident clusters 

Jurisdiction_Key A pointer to a record in the jurisdiction dimension indicating 
the originating agency of the source report 

Num_Vehicles Number of vehicles involved in crash 
Highway_Type There are five types: “city street,”  “parish road,” “State 

highway,”  “US highway,” and “interstate.” 
Highway_Type_Code A code letter: A, B, C, D, E; redundant with Highway_Type 

but useful for querying 
Time_Lanes_Opened A pointer to a record in the time dimension indicating when 

the lanes reopened to normal traffic 
Number_Of_Lanes The number of lanes closed due to the crash 
Pavement_Condition Values include choices from “no effects” through 

“construction” 
 

 
Table 7 includes two features that are designed to facilitate GIS interfaces within client 
applications.  First the latitude and longitude coordinates are given in the LOCATION dimension 
and (redundantly) in the LANE_DATA dimension.  Commercial GIS products work directly with 
lat/long coordinates.  The second feature is the linking together of LOCATION dimension 
records representing consecutive sensor locations on the same traffic corridor (see the attributes 
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Up_Location and Down_Location in the table).  This enables client applications that have 
selected a central focus to establish the boundaries of the GIS view. 
 

Table 7. Performance Measure Dimension Table Attribute Descriptions 
ATTRIBUTE DESCRIPTION 

CALENDAR 
Calendar_Key A unique record key assigned and maintained by the traffic 

data warehouse system 
Day_Of_Week,  
Day_Of Month,  
Month 

The meaning of these three fields is evident from the field 
names 

Day_Month_Year For some queries, it is convenient to have the previous three 
fields combined into a single field 

Quarter, 
Week_Of_Year, 
Week_Of_Month 

The meaning of these three fields is evident from the field 
names 

Holiday Holiday name 
TIME 

Time_Key A unique record key assigned and maintained by the traffic 
data warehouse system 

Hour, Minute The hour and minute since midnight, local time 
Hour_Minute For some queries, it is convenient to have the time combined 

into a single field 
Five_Interval An integer denoting in which of the 288 five-minute intervals 

from midnight to midnight the current time occurs 
Ten_Interval An integer denoting in which of the 144 ten-minute intervals 

from midnight to midnight the current time occurs 
Fifteen_Interval An integer denoting in which of the 96 fifteen-minute 

intervals from midnight to midnight the current time occurs 
Thirty_Interval An integer denoting in which of the  48 thirty-minute intervals 

from midnight to midnight the current time occurs 
LOCATION 

Location_Key A unique record key assigned and maintained by the traffic 
data warehouse system 

Loc_Flags A sequence of binary signals (a bit vector) corresponding to a 
sequence of yes/no variables 

Sensor_ID Sensors have an identity such as “RVD 41” assigned by the 
Traffic Management Center when they are installed and put 
online 

Interstate_Number If applicable, the integer designation 
Route_Prefix Such as “I,” “US,” “LA,” etc. 
Route_Number The integer designation 
Route_Suffix If applicable, “S,” “N,” …, “ALT,” etc. 
Loc_Description Many sensors are located at major crosspoints such as 

“Government St.” which provides a useful alternative query 
option 

Up_Location, 
Down_Location 

For convenient GIS processing, the location records for each 
route are in the form of a doubly-linked list; “up” and “down” 
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are in terms of ascending/descending mile markers 
Up_VMT_Length The length of the section in miles between the “up location” 

and this location 
Down_VMT_Length The length of the section in miles between the “down 

location” and this location 
Mile_Marker The mile post value 
Latitude, Longitude The Lat/Long values are for interfacing with GIS systems 
Total_Lanes The total number of lanes at this location including both 

directions and any turn lanes or ramps 
JURISDICTION 

Jurisdiction_Key A unique record key assigned and maintained by the traffic 
data warehouse system 

Reporting_Agency Law enforcement unit  
Parish Parish name or code 
Municipality Incorporated area name or code 
Traffic_Cont_Center Presently, only the Capital Region Traffic Management 

Center is involved 
LANE_DATA 

Lane_Key A unique record key assigned and maintained by the traffic 
data warehouse system 

Lane_Type On-ramp, off-ramp, left-turn lane, through lane, etc. 
Direction North, South, East, or West 
Lane_Type_Left The type of the lane on the left – left determined by the 

direction of traffic flow 
Lane_Type_Right The type of the lane on the right – right determined by the 

direction of traffic flow 
Latitude, Longitude Lat/Long here is redundant with the companion LOCATION 

record, but useful for GIS interface 
 
 
Available data sources for the mobility/performance tables are as follows: 

• CALENDER and TIME – These tables are common to data warehouses of all types and 
can be purchased as “plug-ins” or computer programs can be written to generate them; 
the CALENDER dimension should span more than a decade 

• LOCATION and LANE_DATA – These must be compiled from the surface log and 
records added each time there is a new RTMS sensor installed 

• DETECTOR_DATA and STATION_DAILY – The data source for the Capital Region is 
the Traffic Management Center in Baton Rouge 

• CRASH_DATA – While one can expect a delay in availability of the electronic records, 
the legacy data for both the city and parish is collated by the LADOTD IT division; both 
the city and state police were reluctant to remit data for us to inspect 

 
The hydrowatch application is unique and is intended, over the long term, to assist in predicting 
flooding events that affect traffic flow.  Given the climate and unique weather features of 
Louisiana, this application has special relevance. 

 
The star schema for the hydrowatch application is shown in Figure 8.  The fact table 
(HYDRO_DATA)  is in the center and the dimensions are on the left and right.  Two dimensions, 
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CALENDAR and TIME, are shared between the hydrowatch application and the performance 
measure application.  Such dimensions are referred to as conformed dimensions.  Special care 
must be exercised in designing conformed dimensions because they play an important role in a 
special type of OLAP query known as the “drill through query.”  

 
The drill through query links one application with another.  In this case, one would want to link 
stream conditions with traffic mobility.  Unfortunately, the CALENDAR and TIME conformed 
dimensions are not adequate vehicles for doing this.  Ideally, the LOCATION dimension and the 
HYDRO_SITE dimension should form a single, conformed dimension.  There is not sufficient 
commonality in the two to warrant combining them.  (However, it should be noted that the two 
conformed dimensions assure that roll-ups across the two applications will be consistent.) 

 
As an alternative, the lat/long attributes in the two dimensions much be matched to collate a 
hydro sensor site with a traffic sensor site.  That is, a simple drill through query will resemble 

 
Select Location_Key, HS_Key 

From LOCATION L, HS_SITE H 
Where (H.Latitude between <L.Latitude condition>  

and <L.Latitude condition>) 
and 
(H.Longitude between <L.Longitude condition>  

and <L.Longitude condition>) 
 

This is not an ideal solution and we do suggest that additional thought is given to this problem 
before implementation occurs. 
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Figure 8.  Star Schema for Hydrowatch Application 

 
The attributes for hydrowatch are summarized in Table 8 and Table 9.  The dynamic, real time 
data is shown in the shaded area. 
 

Table 8.  Hydrowatch Fact Table Attribute Descriptions 
ATTRIBUTE DESCRIPTION 

HYDRO_DATA 
HD_Key A unique record key assigned and maintained by the traffic 

data warehouse system 
HS_Key A pointer to the site dimension giving the location of the 

sensor 
HD_Flags A sequence of binary signals (a bit vector) corresponding to a 

sequence of yes/no variables; here, the field is used to indicate 
which screening tests have been applied to the data 

Calendar_Key A pointer to a record in the calendar (date) dimension 
indicating the day on which the data was collected 

Time_Key A pointer to a record in the time dimension indicating the time 
at which the data was collected 

Gage_Height Stream height (in feet) where the base height is either NGVD 
29 or NGVD 88 survey elevations 

Discharge Discharge volume in cubic feet per second; note that 
discharge may also be called “stream flow rate” for some 
sensors 

Precipitation Precipitation in inches since midnight 
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The solution to the problem of interfacing with GIS products is similar to that employed in the 
mobility/reliability applications.  Table 9 includes two features that are designed to facilitate GIS 
interfaces within client applications.  First the latitude and longitude coordinates are given in the 
HYDRO_SITE dimension. As noted, commercial GIS products work directly with lat/long 
coordinates.  The second feature is the linking together of HYDRO_SITE dimension records 
representing consecutive sensor locations on the same stream flow (see the attributes 
Up_HS_Key and Down_HS_Key in the table).  This enables client applications that have selected 
a central focus to establish the boundaries of the GIS view. 
 

Table 9.  Hydrowatch Dimension Table Attribute Descriptions 
ATTRIBUTE DESCRIPTION 

HYDRO_SITE 
HS_Key A unique record key assigned and maintained by the traffic 

data warehouse system 
USGS_Key An eight-digit USGS code for the site 
Site_Name A text string with the USGS name of the site 
Site_Flags A sequence of binary signals (a bit vector) corresponding to a 

sequence of yes/no variables; here, the field is used to indicate 
whether elevations are NGVD_29 or NGVD_88 and the type 
of sensor installed 

NGVD_29 The elevation of the site (in feet) using 1929 USGS data; only 
one of the NGVD fields will be used – some sites use 1929 
elevations and others use 1988 values 

NGVD_88 The elevation of the site (in feet) using 1988 USGS data; only 
one of the NGVD fields will be used – some sites use 1929 
elevations and others use 1988 values; NGVD 88 values are 
sometimes called NAVD 88 values 

Up_HS_Key A pointer to the site dimension giving the location of the 
nearest upstream sensor, if any 

Down_HS_Key A pointer to the site dimension giving the location of the 
nearest downstream sensor if any 

Latitude, Longitude Lat/Long values are for interfacing with GIS  
Flood_Level The gage level at which flooding occurs 
  
There are 222 hydrowatch stations that produce real-time data in Louisiana which are maintained 
by the USGS.  About a dozen of these are in the Capital Region.  They are located mainly at 
points where bridges cross streams or canals.  The data is available at a USGS web site and is 
maintained there for 30 days following collection.  A warehouse front-end “page scrubber” can 
be written which will automatically collect the data at the any point during the day. 

 
This application has long term payoffs and is unique among the traffic archival systems we 
studied.  Further, the USGS system extends nationwide and the application will serve as a model 
for similar implementations elsewhere.  The notion here is to use historical data to predict 
imminent road closures based on current gage height and precipitation conditions.  This is in 
contrast to hydrological models which are expensive to develop and applicable to one site. The 
Flood_Level attribute in the HYDRO_SITE dimension is the threshold between “safe” and 
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“unsafe.” The application would be more effective still if there were information on road 
closures due to flooding.  We were not able to find centralized, accessible data on this 
phenomenon. 
 
Much data will need to be collected before the application will be of benefit.  We recommend 
that the previous application (mobility/reliability measures) be given priority. 
 
 

The Client Stage 

Warehouse clients run execute on machines apart from the main data warehouse with appropriate 
telecommunications connections.  Client machines are configured differently for the applications 
relevant to each group or individual.  For example, some individuals will need the surface log 
and a GIS system to visualize the data on a map.  Others might need statistical packages for data 
mining while others traffic microsimulators which are initialized with data from the warehouse.  
A client which performs a similar task each day might have the data accessed automatically 
before he/she arrives so that it is available on the client’s computer. 
 
Figure 9 depicts the environment of a client’s workstation.  All clients will need OLAP tools and 
a list of leading vendors is given in Table 10. In addition to the OLAP tools, most clients will 
need little more than commercial off the shelf software including 

• Spreadsheet products such as EXCEL 
• GIS products such as MAPINFO, ESRI, or InterGraph 
• A graphics package capable of producing plots and professional grade illustrations for 

reports and presentations 
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Figure 9. Client Workstation Configuration 

 
Many if not most will need specialized data from other DOTD sources such as the surface log 
and the complete crash data files.  The latter contains information on injuries, vehicle damage, 
and pedestrians as well as the pre-crash condition of the drivers. 
 

Table 10. OLAP Vendors 

Vendor Market 
position

Share 
(%)

Microsoft ecosystem 1 28.0%
Hyperion Solutions 2 19.3%
Cognos 3 14.0%
Business Objects 4 7.4%
MicroStrategy 5 7.3%
SAP 6 5.9%
Cartesis 7 3.8%
Systems Union 8 3.4%
Oracle 9 3.4%
Applix 10 3.2%

 
A few clients will need extensive commercial and customized systems such as statistical 
packages and data mining tools as well as very specialized, customized software systems.  These 
clients, typically less than 10 percent of the total, not only acquire value from the warehouse 
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system but are the most likely to add value to it over the long run.  It is worth the effort to invest 
in them. 
 
We have tested these ideas in a student-based setting by implementing several rudimentary 
applications.  The applications are performed on the client machine just as future applications on 
the operational warehouse will be.  To recapitulate, the four applications and their source 
datasets are depicted in Figure 10.  Three applications are described here.  (No sample 
application relevant to hydrowatch was performed.)  These applications were performed using 
one month’s data sample from the summer of 2004 from Baton Rouge agencies (mainly the 
Traffic Management Center).  The applications were performed, in some cases, on earlier 
versions of the main storage design.  In fact, the original purpose was to test concepts of the 
design.  Nevertheless, the results are relevant to the final design – that is to say, the final design 
is largely a superset of the design used in these applications. 
 
 

 
 

Figure 10.  Correlation of Data Sets to Applications 
 
 
Description of Architecture used for Conceptual Client Design 
Precisely, the design used to test concepts for the client interfaces is illustrated in Figure 11.  The 
mapping of table/attribute names to those in Figure 7 is straightforward.  The final design is 
shown in Figure 7 and is a superset of the one shown in Figure 11. 
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Figure 11. Star Schema Used for Client Experiments 

 
A query over the warehouse of Figure 11 is shown in Figure 12.  In fact, the results of this query 
are used to illustrate an application later in this section. 

 
 Select SensorID, 

           Volume, 
 Speed 
From Sensor_Dimension S, 
 Traffic_Fact_Table F, 
 Time_Dimension T 
Where S.SinsorKeys=F.SensorKey 
 AND SensorLocation = ‘Government St.’ 
 AND T.TimeKey=F.TimeKey 
 AND T.Month=’May’ 
 AND T.Year=2004 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 12. Illustrative Slice and Dice Query 
 

Finally a version of the surface log describing road sections was assumed present on the client 
computer.  The version used (and populated from the actual surface log) is shown in Figure 13. 
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Figure 13. Surface Log Tables 

 
 
 
Simple Performance Measures 
The first set of applications can simply be performed by a client having nothing more than a 
spreadsheet product on his/her computer and the skills to construct formulas and graphs using the 
product.  Modify the query in Figure 12 to retrieve only a single day of volume data at each 
sensor together with the mileage between sensors (see the LOCATION table in Figure 7 not 
SENSOR_DIMENSION in Figure 11 for this) and one can easily produce graphics such as that in 
Figure 14. 
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Figure 14.  Simple Performance Measures (Virginia's Smart Travel Lab) 

 
As noted, the figure is from Smart Travel Lab documents [60,72], not from the Baton Rouge 
data. 
 
While the graphic is not ours, we performed this exercise over our design.  An intermediate step 
is determining the volume both entering and leaving a segment (i.e., the number of vehicles 
completing a segment).  Even on closed segments, we found the number entering and exiting 
seldom to be equal.  From consultation with experts at the Minnesota data archival site, we 
learned that such errors have several causes but that the main one is vehicles being counted twice 
because the sensor caught them during a lane change. 
 
Reliability Measures 
Reliability measures generally require greater calculation ability than spreadsheet products 
provide.  In addition, they sometimes require data (such as vehicle occupancy) that is not 
represented in the warehouse because sensors do not capture such data. 
 
Using queries similar to that in Figure 12, then applying a measure of congestion,4 the 10 most 
congested sites were selected.  See Table 11.  Based on these results, I-10 at Washington Street 
and I-10 EB at Perkins Road were identified as the most congested.  These locations are 
approximately two miles apart. 
 
 

Table 11. Top 10 Congestion Sites from Baton Rouge Sample Data 
 

Rank Location Time RVD 

Number 

Percent 

Congested 

Travel 

Average 

Volume 

1 I-10 WB AT WASHINGTON  ST.  17:15 41 82.5 1077 

2 I-10 WB AT WASHINGTON ST. 16:45 41 81.9 1067 

3 I-10 EB AT PERKINS ROAD 16:30 46 86.3 1011 

                                                 
4 The measure of congestion is simply the lane occupancy.  More sophisticated measures are discussed shortly.  
Recall that the objective is to test the warehouse design and not to fully implement one. 
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4 I-10 WB AT WASHINGTON  ST.  17:00 41 82.4 1042 

5 I-10 EB AT PERKINS ROAD 16:45 46 81.7 1011 

6 I-10 WB WEST OF THE SPLIT 06:45 13 75.7 1087 

7 I-10 EB AT PERKINS ROAD 15:30 46 79.5 1018 

8 I-10 WB AT WASHINGTON ST. 16:30 41 78.0 1030 

9 I-10 EB AT PERKINS ROAD 16:00 46 79.7 1007 

10 I-10 WB AT WASHINGTON ST. 16:15 41 79.4 1008 

 
Given these two sites, solely for the purpose of testing the design, we followed up by finding the 
time frames for which the combined congestion of the two sites is highest.  This led to the 
discovery that 4:30pm and 4:45pm are the worst congestion times for the two sites combined.  
The results are shown in Table 12. While this is just a test of capabilities, this form of analysis is 
useful in determining where to pre-position resources such as police and tow trucks. 
 

Table 12. Time Frame Analysis of Two Consecutive Congestion Points 
 

Rank Time Mean Percent 
Congested Travel 

Total 
Volume 

1 16:45 81.8 2078 

2 16:30 82.1 2041 

3 17:15 79.8 2094 

4 17:00 80.1 2043 

5 16:15 79.3 2014 

 
 
  
Moving from the specific tests we performed to more comprehensive measures, Table 13 
contains a list of useful measures gleaned from a nationwide study by the Texas Transportation 
Institute [73].  The top three are reliability/mobility measures applicable to a segment of a traffic 
artery.  The remaining six pertain to an entire system or significant portion thereof.  While the 
formulas themselves are spreadsheet compatible, the basic measures may not be.  For example, 
travel time is used in several measures but there is no data set being collected in Baton Rouge 
corresponding to travel times.  There is a discussion of travel time estimates based on the data 
collected in the Capital Region in this report.  For the moment, let us say that travel time 
estimation is possibly the most significant application for intelligent transportation systems but 
all successful attempts have included the ability to identify the same vehicle at different times 
within the traffic system. 
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Table 13. Reliability/Mobility Measures Recommended by Texas Travel Institute 
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Characteristics worth noting about individual measures in Table 13 include: 
 

• Total Delay – can be computed either in vehicle miles or person-miles and is the sum of 
time lost on a specific segment due to congestion 

• Travel Time Index – is dimensionless compares peak flow to free-flow 
• Buffer Index – is a measure of trip reliability that expresses the amount of extra “buffer” 

time needed to be on time for 95 percent of all trips 
• Congested Travel – estimates the extent of the traffic network that is affected by 

congestion 
• Percent of Congested Travel – extends “congested travel” when additional information is 

available 
• Travel Rate – is the rate at which a segment is traversed  
• Person Miles – is the magnitude of travel on a section or several sections of a system 
• Congested Roadway – is also a measure of the extent of congestion but is limited to one 

artery 
• Accessibility – is a measure of the ability of the roadway system to fulfill a stated 

common good such as deliver people to jobs within a target travel time 
 
Visualization and GIS Interface 
Starting with queries very similar to that of Figure 12 and rolling up by hour (remember, the 
station dailies roll up by day), one can plot the graph for five sensors shown in the lower part of 
Figure 15.  The vertical axis is in units known as the “travel time index” and is computed as a 
ratio of free-flow traffic to actual traffic speeds: 
 
 Travel Time Index = (60 mph)/(detected average speed) 
 
(More sophisticated versions of the travel time index can be found in the literature [57, 58, 73].  
Another version is given in Table 13.) A GIS map can now be attached showing the area of 
interest.  It is possible to integrate the two by allowing a click on the sensor to display the diurnal 
graph associated with it.  However, because this is simply to test the concept, the example was 
not elaborated further. 
 
This example led to an important insight that affected the final design.  The center of the area of 
interest was determined by the lat/long coordinates for the site.  However, determining the limits 
of the map was done by trial and error.  This led to linking the LOCATION records together so 
that the map limits could be automatically extracted. 
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Figure 15. I-10 Congestion Points on a GIS Overlay 

Sample Data Evaluation 

The data source compilation focused on ITS freeway sensors and complement data from the 
below area.  The following agencies were contacted within this area to inquire about data sources 
and warehouse inclusion. 
 

1. DOTD Intelligent Transportation System Group at the TMC 
2. Baton Rouge MPO  
3. PB Farradyne    
4. Econolite  
5. Lucy Kimberly, Traffic Engineer DOTD 
6. Peter Allain, Traffic Engineer DOTD 
7. Information Technology, LADOTD, Baton Rouge 
8. ITS and MIST, LADOTD, Baton Rouge 
9. Baton Rouge 911  
10. IBM- Managing Consultant Business Intelligence, CRM for DOTD 
11. State Police-  
12. USGS- Louisiana District, USGS, WRD 
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13. DOTD/Hydrowatch 
14. City Police 

 
The data acquired for testing and the sources are shown in Table 14. 
 

Table 14.  Sources for Baton Rouge Data 
 

Data   Source   Region/Qty 
Surface_log  DOTD IT  EBR/month 

         MPO Infras.                MPO                 MPO/area 
Crash Data   DOTD IT  EBR/month 
ARAN (pave)  DOTD IT  EBR/month 
RTMS   PBF/DOTD ITS EBR/month 
USGS Hydro-watch  USGS   EBR/month 
MIST Sensor  PBF/DOTD ITS  EBR/month 

 
 

 Data requested but not obtained includes: 
 
• State Police Incident and event data 
• Information on 511 
• City Police Incident Data 
• 911  

 
In addition we requested sample data sets for Average Daily Traffic (ADT) and Congestion 
Monitoring System (CMS) for the local New Orleans Regional Planning Commission for 
consideration into the warehouse design. 
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MARKETING PLAN 
 
Recognize that the client community is divided into segments and that some segments are more 
likely than others to add value to the warehouse.  Recognize also that the initial users must also 
be the most sophisticated.  The segments and an assessment of their roles in the continuing 
development of the warehouse are listed below. 
 

• Planners and traffic engineers 
• University researchers 
• General public further divided into 

o Media outlets 
o Motorists/travelers 

 
By media, we include more than traditional broadcasters and news print distributors.  In other 
jurisdictions, we have observed the rise of independent added-value contributors.  These 
entrepreneurs develop web sites, in exchange for advertising, that provide travel information in 
alternate form. 
 

Table 15.  Market Segments and Their Roles 
 
Market Segment Role 
Planners and traffic engineers Examining trends in specific corridors; tracking 

performance measures in general but specifically 
looking at before, during, and after conditions of 
an event such as adding a lane or relocating 
emergency services. 

Researchers Extracting data for independent studies such as 
answering “what if” questions; adding new 
applications, particularly data mining applications. 

Media outlets Providing web sites to customers that respond to 
needs such as the historical travel times for highly 
congested corridors; adding value to the collected 
data by making it available in formats and 
structures different from that in the “raw” 
database. 

Motorists and travelers Consume information including travel times and 
trends from secondary sources, primarily media 
including print, broadcast, and internet. 

 
Addressing the needs of each segment is not the approach to marketing the warehouse.  The 
suggested approach is to encourage each segment to find the means to address its own needs 
given the core warehouse capabilities.  Planners and traffic engineers are the most likely to add 
value to the warehouse as well as provide resources to both staff the warehouse and support 
university researchers.  At the other end of the spectrum are the motorists and travelers.  While 
important from the perspective of forming an important political constituency, reaching them 
should be objective of the media who gain direct benefit in the form of attracting advertising. 
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The approach to each market segment is described in Table 16. 
 

Table 16.  Market Segment Analysis 
 
Market Segment Analysis 
Planners and Traffic Engineers Support from this segment must be addressed 

before the implementation begins, continue during 
the implementation, and be followed up after the 
implementation.  The research team believes that, 
to some extent it has already acknowledged this 
issue via the formation of advisory and stakeholder 
committees.  This structure should be maintained 
although the personnel involved may change over 
time.  Including the design of the client phase is in 
part marketing and its implementation should be 
part of the next development phase.  Following 
implementation, there should be intensive seminars 
to acquaint traffic engineers with using the 
warehouse.  Always keep in mind that this group 
will essentially be responsible for the long-term 
growth of the warehouse. 

Researchers LTRC and LADOTD should encourage submission 
of problem areas that need study using the 
currently in-place forms and procedures.  The 
agency should then follow up by soliciting 
proposals for worthy ideas then funding those 
proposals that meet the evaluation criteria.  

Media outlets This is the hardest group to address.  One way is to 
start with the traffic consultants that share the 
Transportation Management Center.  Kickstart the 
enterprise by using State funds to build an 
application that will assist them – perhaps a 
congestion map relating the current day/time to 
one day and one week earlier.  Follow up by 
sending periodic (daily?) flyers to TV and print 
media that contains essentially the same 
information.  The research team has no ideas at 
present concerning motivating entrepreneurs to 
construct secondary web sites. 

Motorists and travelers Reaching this segment is not particularly essential 
(or even desirable) at the outset.  When the 
warehouse is stable and contains a sufficient 
history of traffic conditions the warehouse owner 
should make available a web site that conveys the 
contents.  If there is an active 511 service at that 
time, it should be considered to integrate useful 
information from the warehouse. 
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CONCLUSIONS AND RECOMMENDATIONS 
 
The DW/DM research team reached the following conclusions and recommendations. 
 

• A data warehouse should be implemented along the lines shown in this report.  This 
includes adherence to the strict one-way data flow implied by the star schema and OLAP 
processing. 

• The warehouse should be located in a central location and have uncontested ownership of 
the data it collects. 

• The initial implementation should extend past the main storage phase and include the 
configuration of necessary tools, such as GIS, on client workstations. 

• The initial implementation should consist of the minimal useful set of applications.  
These are primarily performance measures and their visualization.  The warehouse should 
be considered a continuing, incremental project in which new applications are added 
singly.  Data mining should be considered an application to be added after the base 
applications are operational. 

• The warehouse should have a permanent staff consisting of at least a technician, a 
database analyst, and a computer programmer.  The database analyst should double as the 
manager.  A transportation engineer needs to be either a full-time or part-time staff 
member. 

• The client community consists of planners/engineers, university researchers, and the 
general public.  The general public is further segmented into media and individuals.  
There should be different marketing approaches addressed to each segment and 
subsegment.  
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APPENDIX A. CURRENT PRACTICE 
 
Prominent ITS sites, TMCs, and travel labs surveyed include: Washington State 
Transportation Center (TRAC), Virginia Smart Travel Lab (STL), Houston TranStar, 
Georgia Department of Transportation, Maricopa County Arizona and California 
CalTrans.   The latter maintains the Performance Measures System (PEMS).  Actual site 
visits occurred to each of the sites with the exception of TRAC. Meetings with TRAC 
representatives were held at the Transportation Research Board meeting in Washington, 
D.C.  and the NAMTEC conference in San Diego, CA. In addition to visiting the sites, 
several peripheral meetings, conference calls, and professional society symposia were 
arranged or attended. These include: 
 

1. LADOTD Intelligent Transportation System Group at the TMC 
2. The Transportation Research Board (TRB) meeting Jan 11-15, 2004 
3. Chief of Planning Capital Region Planning Commission - Huey Dugas 
4. PB consultant - Elizabeth Delaney 
5. Econolite - Paul Misticawi  
6. The North American Travel Monitoring Exposition and Conference 

(NAMTEC) 
7. Information Technology, LADOTD, Baton Rouge 
8. ITS and MIST, LADOTD, Baton Rouge 
9. Baton Rouge 911- Ralph Ladnier 
10. IBM - Casey Adams, Managing Consultant Business Intelligence, CRM 
11. State Police- Captain Jim Mitchell & Colonel Henry L. Whitehorn 
12. USGS - David Walters, Data Management Supervisor 

Louisiana District, USGS, WRD 
13. DOTD/Hydrowatch - George Gele 
14. Regional Planning Commission- Walter Brooks, Lynn Dupont and Johnny 

Bordelon  
 

Additionally, a Stakeholders group was founded that included: 
i. Lucy Kimberly, Traffic Engineer DOTD 

ii. Peter Allain, Traffic Engineer DOTD 
iii. Stephen Glascock, ITS DOTD 
iv. Carryn Zeagler, ITS DOTD 
v. George Gele, Hydrowatch DOTD 

vi. Huey Dugas, Chief of Planning Capital Region Planning 
Commission 

vii. Ingolf Partenheimer, ATM EBR (Rep. Jason Taylor) 
 
Minutes from these meetings can be viewed on the web site 
http://129.81.132.174/ITSDW/.   
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The remainder of this section focuses on the prominent site surveys. The section 
concludes with a comparative analysis of all labs examined.  Each review is structured 
around the following elements: 
 

• System overview/design 
• Warehouse applications/performance measures 
• Data collected, stored and formats  
• Data metrics 
• System operation, management and costs 

 
Essential information is then combined to present the data model and design issues 
suggested by these sites in the comparative summary.  In some cases, a true data 
warehouse does not exist and the site simply archives data into a traffic management 
center.  The data is used specifically for compiling static traffic reports.  When a 
warehouse is employed, the description provides what it contains, how the data are 
cleansed for quality control, and which applications and performance measures are 
derived. 

Site Survey Summary and Comparison 

Storing and analyzing the data are not free.  However, a large number of potential users 
exist for the information that the surveillance system generates.  The key is to work with 
potential users to fund the modest costs of storing, analyzing, and reporting the data 
already collected. The agency must also determine who will operate the database. As this 
work gets under way, it is important to recognize that not all surveillance data are 
reliable.  Therefore, analytical procedures must be prescribed that identify and handle 
“unreliable” data. Mechanisms should also be in place to repair and calibrate unreliable 
sensors.  (After all, unreliable data also hinder the operational control decisions that are 
based on those data.)  Because most traffic management systems have limited equipment 
maintenance budgets, repair activities have to be prioritized.  A key to consider when 
balancing cost versus data availability is that obtaining useful performance information 
does not require all detectors to be operating.  (Does an agency really need to report 
volumes based on continuous data collection at 300 locations in the urban area, or will 12 
to 20 sites spread strategically around the region reveal the important facts?)  The reality 
is that necessary data can be obtained with a moderate amount of planning and 
cooperation.   
 

Origins of TRAC, PeMS, and STL 

TRAC (Seattle, Washington), PeMS (California), and STL (Virginia) are three successful 
traffic data warehouse/data mining systems.  Each started with limited resources, each 
currently serves as a basis for both traffic operations, and each today is supported by 
competitive funding.  Most funding is from the respective state DOTs but presence of the 
centers enable them to attract some federal funding from the Federal Highway 
Administration (FHWA) and (in the case of STL) the National Science Foundation. 
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TRAC began the earliest (1983) and its vision evolved over time. Its form is not that of a 
traditional data warehouse but it functions as such.  It began as a project, guided by a 
Civil Engineering professor, to rejuvenate traffic research at the University of 
Washington.  Adding one additional professor the next year, the activity began attracting 
state support, project by project.  Both PeMS and STL (Smart Travel Lab) began in the 
late 1990s with visions that largely reflect what they have become today.  PeMS began as 
a partnership between one post-doctoral researcher in Civil Engineering at the University 
of California and a private start-up (Berkeley Transportation Systems, Inc.).  There was a 
significant infusion of cash for both theoretical study and implementation, split between 
the university and the company, at the beginning.  Particularly relevant is a large 
investment in infrastructure such as computers and storage.  The first version was 
operational in 1999.  STL began at about the same time with one Civil Engineering 
professor at the University of Virginia with the part-time participation of a Systems 
Engineering professor.  The state’s investment was $55,000 and the university 
contributed space.  Also, several students participated who were supported by various 
grants in the area of traffic engineering.                                                  .   
 
Today, PeMS is operated largely independent of the University of California at Berkeley 
where it began.  In the TRAC center, state and university employees work side-by-side.  
STL is largely a university-based enterprise but one of the two directors is a state 
employee. Table 17 compares the present staffing of the centers.  PeMS is a bit 
ambiguous because it is a commercial operation that manages traffic warehousing in 
several states as well as nine California districts. 

 
Table 17.  Staffing of TRAC, STL, and PeMS 

 
TRAC STL PeMS 

Four engineers 
“several” staff members 
Receptionist (part-time) 
Accountant 
Database administrator 
Editor (part-time) 
Graphics artist (part-time) 

Four faculty members 
Two post-docs 
Five Ph.D. students 
Network administrator 
Database administrator 
Programmer 
Traffic engineer 

Traffic engineer 
Network administrator 
Database administrator 
“several” staff members, 
  including programmers 

 
There are two common threads in the origins and present operations of these three 
centers.  First, each began with one highly dedicated, full-time professional, although 
each center director said two would have been better.  The second common thread is that 
there is both a “push” and a “pull” to the technology they are developing.  On one hand, 
the state approaches them with problems and they attempt to respond with an application 
that, if not a solution, provides information to guide decision-makers.  On the other hand, 
each looks for opportunities and unmet needs, prepares a proposal, and then presents the 
proposal to the state or other agency. 
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Washington State Transportation Center (TRAC) 

System Overview/ Design 
The primary purpose of TRAC at Washington State is to encourage research in all aspects 
of transportation. TRAC is able to marshal the resources of the University of Washington 
(UW), Washington State University (WSU), and the Washington State Department of 
Transportation (WSDOT) to tackle the transportation problems of the region and the 
nation. TRAC maintains an archive of data from the Puget Sound freeway and ramp-
metering program and uses the data for a variety of analytical purposes.  TRAC monitors 
regional freeways primarily in the Seattle metropolitan area and extending into the Puget 
Sound region 
 
The U.S. Department of Transportation, WSDOT, and other Washington State partners 
have invested in the development of an architecture and infrastructure for a Puget Sound 
intelligent transportation systems (ITS) backbone. This backbone has been used to obtain 
traffic data and traveler information from disparate sources, combine those data, and 
make them available over a standard interface to transportation-related organizations and 
the public. In this way it supports existing traveler information applications for both 
traffic and transit information, real-time access to WSDOT data by a variety of public 
and private groups, research activities within WSDOT and at universities and agencies 
nationwide, and provides a standard way to include new data sources into the existing 
traffic management system. The TRAC center supports continuing personnel, equipment, 
maintenance, software, and communications links for the ITS backbone, as well as 
associated applications. 
 
One present project, TDAD (Traffic Data Acquisition and Distribution) has the potential 
to impact future ITS backbone installations in Louisiana.  TDAD is funded by the 
FHWA. Paraphrasing the published project description, the TDAD project has the goal of 
integrating in a general fashion the wide variety of remote sensors used in Intelligent 
Transportation Systems (ITS) applications (loops, probe vehicles, radar, cameras, and so 
on). The variety of sensors has created a need for general methods by which data can be 
shared among agencies and users who own disparate computer systems. TRAC, via this 
project, will present a methodology that demonstrates that it is possible to create, encode, 
and decode a self-describing data stream using: 
 

1. Existing data description language standards  
2. Parsers to enforce language compliance 
3. A simple content language that flows out of the data description language 
4. Architecture neutral encoders and decoders based on ASN.1. 

 
Several organizations in the Seattle, WA area use the traffic data in any of five ways: (1) 
reporting, (2) long-term planning, (3) project planning, (4) performance monitoring, or 
(5) research.  Specific applications are identified in the paragraphs that follow. 
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Warehouse Applications/Performance Measures 
The ITS Backbone performs several important tasks for the ongoing efforts at WSDOT 
and UW. For example, the Backbone (1) supports existing traveler information 
applications for both traffic and transit information, (2) supports real time access to 
WSDOT data for a variety of public and private groups, (3) off-loads the interaction and 
support of data users external to WSDOT, (4) provides a standard interface so that all 
roadway data are available equally to outside agencies/groups, (5) supports research 
activities within WSDOT - research that is funded by WSDOT at the UW as well as 
research at universities and agencies nationwide, and (6) provides a standard interface to 
include new data sources into the existing TMS System. The latter is the Traffic Data 
Acquisition and Distribution (TDAD) project described above.  
 

Collected data are used to answer questions and address issues such as: 

1. Are HOV lanes being used? Do travel time incentives increase HOV use? Should 
the operational rules for HOV be changed (e.g., should 24/7/365 rules be changed 
to an appropriate part-time operation)? 

2. Use of CVISN tags to compute inter-city travel times. 

3. Develop/adjust the ramp metering algorithm. The ramp metering algorithm now 
used for all of the Puget Sound region’s freeway ramp meters is touted as the 
most advanced in the country. Developed by TRAC researchers, it helps smooth 
traffic flow and reduce freeway congestion daily. 

WSDOT collects vehicle volumes (per lane) by time of day in both the HOV and general 
purpose lanes.  They present this information in a graph of Vehicle volumes (per lane) by 
time of day described below.  Center personnel perform this analysis weekly. On the basis 
of these graphics, WSDOT can determine whether capacity exists in the general purpose 
lanes, whether sufficient demand exists for HOV lanes, and whether growth in HOV lane 
use is meeting public policy goals. 

The basic volume-by-time-of-day graphic can be extended to illustrate when congestion 
occurs and its effect on vehicle speed and throughput.  First, average speed is color coded 
to indicate the manner in which conditions routinely change by time of day.  Then, 
because conditions vary considerably from day to day, reliability at selected points in the 
roadway can be examined by defining “congestion” {in this case, the occurrence of Level 
of Service “F” Segments (LOS F conditions)} and reporting on the frequency with which 
that congestion occurs.  Graphically, it is possible to lay the “frequency of congestion” 
over the same graphic that illustrates vehicle volumes and average speeds. 

  To summarize the visualizations used by TRAC: 

1. Vehicle volumes (per lane) (y-axis) by time of day in hours (x-axis). This is a two- 
line graph. One line is the average across the general purpose lanes and the other 
depicts HOV activity.  This graph shows volume variability over time.  The 
coverage is typically one twenty-four hour period. 
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2. Trends in vehicle volumes (per lane) (y-axis) by time of day in hours (x-axis). The 
four lines in this graph depict two separate years of data for the general purpose 
lanes and two separate years of data for the HOV lane.  The coverage is typically 
one twenty-four hour period for each year. 

3. Estimated frequency of congestion, volumes and speeds. The left side y-axis is 
vehicles per lane per hour (VPLPH), the x-axis is hours of the day and the right 
side y-axis is congestion frequency. This graph demonstrates peak hours of 
congestion.  

4. Estimated frequency of congestion for GP lanes, with volumes for both general 
purpose and HOV lanes.  This graph is similar to number 3 above but overlays the 
HOV volume to demonstrate that during the peak period, HOV lane vehicle 
volumes exceed general purpose vehicle volumes (per lane). 

5. Estimated frequency of congestion, volumes and speeds for general purpose and 
HOV lane.  This graph is similar to number 3 above but overlays the HOV 
volume to demonstrate that by adding in car occupancy and transit ridership data, 
it is possible to show relative person throughput which is a key statistic for 
responding to the public policy debate about the use of HOV lanes. 

6. Person and vehicle throughput per lane, general purpose and HOV lanes. A bar 
graph used to compare HOV and general purpose lanes. Statistics are reported for 
each 3-hour morning peak period. 

7. Total person and vehicle throughput, four general purposes and one HOV lane. A 
bar graph similar to number 6 above except each general purpose lane is shown 
separately. It is used to compare HOV and general purpose lanes. Statistics are 
reported for each 3-hour morning peak period. 

8. Travel times (by time of day) for a specific route. The left side y-axis is the 
estimated average travel time (hour:min) given a trip start time (x-axis).  The right 
side y-axis is congestion frequency (speed < 35 mph). Using vehicle speed data 
that can be obtained from the freeway surveillance system, it is possible to 
estimate vehicle travel times throughout the day.  These statistics also lead to 
more informed discussion of the travel conditions that exist (e.g., how bad is off-
peak congestion?  Is off-peak operation of the service patrol program necessary?) 

 
The various performance measures plotted in the graph are those promulgated by the 
Texas Transportation Institute (TTI) or are measures directly based upon them. 

 
Data Collected, Data Stored and Data Formats  
The Self-Describing Data (SDD) format developed via the TDAD project is TRAC’s 
approach to transmitting and delivering data. Thus incoming data at the ETL (extraction, 
transformation, and loading) phase is a stream prefixed with metadata that “describes” it. 
The descriptive data assists users in understanding the incoming data or assists 
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application code writers in generalizing software. An example data stream is the traffic 
loop sensor data for which over 2,000 sensors generate new data every 20 seconds. The 
descriptive data for this stream consists of descriptions of the sensors, their cabinets, their 
locations, and so on. This preface plus the continuous actual data stream create an SDD 
stream. SDD is a new approach to data packaging and transmission that requires training 
on the part of practitioners, and is an approach that is still evolving.   SDD, in essence, is 
the data transmission protocol for the ITS backbone infrastructure. 

 
The surveillance system collects data on vehicle volumes and estimates of lane 
occupancy by location.  These data are then converted into estimates of vehicle speed and 
travel time.  An analysis process developed by TRAC produces facility performance 
information based on these data.  This process also fuses the basic freeway surveillance 
data with separately collected transit ridership and car occupancy data to estimate person 
throughput. The Traffic System Management Center (TSMC) collects data from the 
sensor loops in the freeway every 20 seconds.  The output of WSDOT’s Traffic 
Management System (TMS) is prodigious. It contains a dictionary component, which 
describes the name, position, and type of each of the approximately 5,000 sensors. This 
dictionary is key to understanding and applying the sensor block component, which 
contains current measurements taken from each of the 5,000 sensors and is newly 
generated every 20 seconds. The dictionary is modified as necessary to reflect the effects 
of road construction or installation of new sensors. 

 
 The constituent tables of the database are as follows: 
 

1. COORDINATES - Describes coordinate data types, such as “geodetic”; 
their measurements, such as “longitude” and “latitude”; and their units of 
measure, such as “degrees,” 

2. MEASURES - This provides additional data on coordinate data types, 
such as the fact that WSDOT uses NAD23 coordinate referencing, while 
UW uses NAD89. 

3. STATION_FLAGS - Provides flag values as to whether or not data is 
usable. 

4. INCIDENT_DETECT - Provides flag values as to whether an incident has 
occurred or not. 

5. CABINETS - Provides cabinet IDs, freeway names, text descriptions, and 
whether there is a ramp or not. 

6. CABINET_LOCATION - Provides the location of cabinets. It includes the 
cabinet ID, the coordinate method used (see above), and whether the 
measure is defined using the WSDOT or the UW methods, and the 
location. 

7. LOOPS - Describes the loop sensors. It contains the loop ID, the cabinet 
ID, whether or not the loop is metered, the road type, the direction of the 
traffic, the lane type, the lane number, and the sensor type code (an 
integer). 

8. ALG_DESCRIPT - Provides a complete source listing of Java code that 
extracts the loop sensor data 
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Data Metrics 
The TRAC warehouse does not impute data.  The data metrics include quality assurance 
(QA) flags for each traffic detector.   These flags are stored within the 20-second archive 
and a composite QA flag is set based on the 20-second data sets aggregated to produce a 
five-minute data set for each detector.  The 20-second error flags refer to specific types of 
errors (e.g., “the detector is defaulting”).  The flags generally indicate whether the 
detector is good, bad, questionable, or not working. 
 
System Operation, Management and Costs 
Twenty-second resolution data is available from the internet via the internet.  Five minute 
data is available on CD-ROM per calendar quarter upon request. TRAC has never had a 
formal budget to design and build an archive.  Therefore, the system has been developed 
informally in stages.  Each phase of the archive development process has been in 
response to the need to perform some new, desired analytical task.  The initial research 
budget that supported development of the warehouse was $70,000.  The CD-ROM 
approach for the initial archive cost approximately $15,000.  Biennium budgets have 
ranged from $250,000 to $350,000.   There is not a cost sharing arrangement with the 
University of Washington for the development of the warehouse.  These costs are borne 
entirely by WSDOT.  TRAC performs analysis and software improvements on a contract 
basis over and above the biennium budget.  These costs include development, 
maintenance, and support for the ITS backbone and analytical work. 
 

Virginia Smart Travel Lab (STL) 

System Overview/ Design 
The Virginia Smart Travel Lab (STL) started in 1998. VDOT was one of the first 
transportation agencies to establish a formal policy on sharing ITS data and video.  They 
anticipated the value of ITS data to a myriad of users, both internal and external.  They 
realized a critical component to a successful warehouse was establishing an ITS data 
archiving policy and infrastructure. VDOT formally established STL as the facility 
responsible for archiving ITS data.  The University of Virginia (UVA), VDOT’s partner 
in the STL development, along with Open Roads Consulting and George Mason 
University, collectively support the development of a functional ITS warehouse and the 
underlying infrastructure. Initially, the only data in the archive was the Hampton Road 
freeway data (HRSTC).   The Hampton Road region was used as the case study for initial 
testing prior to the implementation of the statewide system.  It is presently in operational 
testing.   
 
The warehouse is now being redesigned and will operate at STL. Access will be provided 
via an internet browser.  The system uses the latest technologies, including XML and 
SOAP, and allows users to easily construct queries and to access predefined performance 
measure reports.   Furthermore, the open technical design allows for direct integration 
into the operational software of TMC’s. 
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Currently, the system supports the data from a variety of sources listed below.  Detailed 
information about the data for each of these sources is provided in the following section 
on data collected. 
 

• Hampton Roads (HRSTC) – freeway data, three video feeds 
• Transcription of Hampton Road incident database covering the past five and one-

half years 
• Richmond – several video channel feeds 
• Norfolk Virginia (NOVA) – freeway data including volume and occupancy 
• NVSTSS – arterial data 

 
The coverage area is Hampton Roads and Norfolk Virginia.  STL uses emerging data 
warehouse approaches for the operational test of the warehouse as opposed to traditional 
transactional database design. This best supports targeted extraction of real-time ITS 
archived data. 

 
Warehouse Applications/Performance Measures 
STL’s main functions are: 
 

1. Volume aggregation (with minimal or no imputation of aggregated values) 
2. Assure data quality 
3. Determine normality conditions based upon past data 
4. Bench marking – comparing data streams up and down stream of more than 

one source of data. 
 
Methods for assuring data quality are based upon a paper by Brian Smith [72].  STL uses 
six rules, compared to 22 used by TTI (Texas Transportation Institute).  The granularity 
of data aggregation is one minute intervals.  This is the rate at which it is collected. 
 
During a series of STL stakeholder meetings, a preliminary list of high priority tools was 
identified for development.  Most are not yet functional. 
 

• Quantitative system measures of effectiveness 
• ITS data quality monitoring 
• Planning and impact studies for detours, evacuations, construction, and transit 

routes 
• Real-time incident management support 
• Historical data average reports 
• Access to classification data 
• Quantitative impact of weather 
• Detector system efficiencies 
• Regional planning support 
• Support to 511/ATIS efforts 
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The system currently supports only performance measures.  These measures are 
discussed in the subsequent section. 
 
Performance Measures 
Many of the performance measures presently implemented are common to most ITS 
systems and were created by the Texas Transportation Institute. STL researchers have 
developed a new measure of travel time reliability, named the variability index, using a 
technique based on quality control.  This measure reports the variability for a trip based 
on the time of day for a specific location.  The mobility measures of effectiveness are: 

 
• Throughput 

o Volume 
o Vehicle Miles of Travel (VMT) 

• Congestion/Delay 
o Buffer Index  
o Travel Time  
o Travel Rate 

 
Among the various graphical profiles for traffic operation assessment provided by STL 
include: 

 
• Speed and flow plots for each station 
• Loss of capacity – quantification of loss for general classes of freeway incidents 
• Transit support - assists in route scheduling to support Flexroute services 
• Planning support- developing percentile measures of capacity utilization for 

planning models 
 
Such data visualization assists in answering the following questions: 
 

1. How do incidents impact traffic? 
2. How may incidents occur per area each time period? 
3. What are the durations of incidents? 

 
Stakeholder meetings were critical during deployment of the STL applications.  They 
would perform a mock up and then demonstrate it to stakeholders who would then make 
recommendations.  These meetings occurred four times a year during the deployment 
process. 

 
Data Collected, Data Stored, and Data Formats  
Two-minute real time station data (volumes, speeds, occupancies) are archived beginning 
from July 1998. There are 203 stations and 19 miles of freeway. 
 

• Detector data (including ramps) 
• Origin-destination pair estimations  
• Classification data (vehicle types) 
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• Incident data updates that augment transcriptions from the past inclusive from 
1997 to July 2002 

 
NOVA (Norfolk) delivers detector data as a flat text file to the lab via ftp every 10 
seconds.  As part of the extraction, transformation, and loading process, STL parses the 
10-second files and aggregates them to one-minute records that are inserted into a staging 
database.  There are approximately 1,000 detectors from which approximately 1.5 million 
records per day are created. 
 
HRSTC (Hampton Roads freeway data) polls detectors every 20 seconds and aggregates 
the data to two minutes granularity.   STL fetches the HRSTC station data (speed, 
volume, occupancy, each by lane) as a flat text file via ftp every two minutes. The file is 
parsed and the records inserted into a staging database. Currently from 114 freeway 
stations, approximately 82,000 records per day are created. 
 
 The NVSTSS arterial data (signal sensors) include one flat file every 15 minutes for 
1000+ traffic signals.  From these files, approximately 144,000 records are archived each 
day. Traffic volume, speed, and occupancy are collected using loop detectors.  This data 
is collected by NVSTSS at one minute resolution. There are 440 locations in the region.  
They also get signal system green light times which are needed for volume and capacity 
calculation.  STL does not believe they will be able to obtain speeds from signal data. 
 
From various sources, traffic incident data are collected. The information archived 
includes start time, end time, location, incident description, number of vehicles involved, 
and assisting agency. Also collected is classification data from sensors in selected region 
which is currently used to assess traffic composition. 
 
 To summarize, the types of data and types of sensors include: 
 

1. Weather 
2. Incident 
3. Loop detectors - The data is collected at one minute resolution for 440 

locations in the Norfolk region   
4. Classification detectors (PZO detectors  giving 13 types of classification) 
5. Signal sensors 

 
Data Metrics 
STL puts considerable emphasis on ITS data quality evaluation.  The quality of the data 
collected, in many cases, is not measured by the providers.  Software has been 
implemented that continuously monitors the data as it is downloaded, tests it against 
logical rules and traffic flow theory, compares the data to historical data, and report 
variations to a system manager.  The data quality assessments performed on the real-time 
data incl. 
ude: 
 

• Abnormality checks 
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• Comparisons against imputed data 
• Comparisons against historical data queried at selected levels of aggregation 
• Current conditions versus the recent past 
 

The percentage of bad data is sometimes quite high.  In total, six screening tests are used.  
The abnormality checks against “normal” for day of week, time of day, and station versus 
past averages.  On occasion (and it is the only occasion imputed data is used by the STL 
system) an imputed value is used in place of an actual (“bad”) value.  Otherwise, a bad 
value is inserted into the archive but flagged as “unusable.” 
 
A data quality report is produced that summarizes the input ingestion results. The report, 
segmented by station, gives: 

 
• Usable data points - The number of good data points plus the number of imputed 

data points 
• Percentage of usable data - The number of records usable and divided by the 

number of  records available 
• Percentage of imputed data - The number of usable records that have been 

imputed divided by the number of available records that are usable  
 
System Operation, Management, and Costs 
The initial ITS data archive was converted from a traditional transactional database to a 
multidimensional (star schema) database design.  Multidimensional data models are 
designed specifically to support the use and analysis of large archives of data.  The 
operational system is deployed based upon the web service model.  Assume that a user 
sends a request to the warehouse that requires accessing the currently measured traffic 
conditions.  This request is communicated via the internet to the warehouse web services 
computer. Requests for local web pages or java applets are processed immediately by the 
web server. Requests for SOAP services (Simple Object Access Protocol)5, such as 
forecasting services, incident management services, transit support services, etc. are 
forwarded to a Java servlet container for dispatch to the appropriate service.  The Java 
servlets and SOAP services access the warehouse database which resides on a separate 
machine.     
 
The integration of HTML, HTTP, XML and SOAP into an operational system provides a 
number of benefits.  For example, the use of standard protocols ensures that the system 
may be used by a wide variety of users operating on various hardware, software, and 
network platforms.   The use of HTTP as the core transport protocol eases the 
communication between client and server when firewalls are in use.  HTTP uses the 
                                                 

5 SOAP is a simple XML based protocol that allows applications to exchange information over HTTP. It 
builds upon these standards. It provides a simple and lightweight mechanism for exchanging structured and 
typed information between peers in a decentralized, distributed environment using XML.  More simply, 
SOAP is a protocol for accessing a web service.   
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TCP/IP port 80 which is normally configured as open by most firewalls.  The use of 
SOAP remote procedure calls allows other applications to easily integrate the services 
available from the warehouse system. The use of AML as the core data exchange 
language allows client-side applications (or applets) to easily parse the data for further 
analysis, filtering, and/or sorting.  It also makes it possible for applications to save the 
results locally for future processing. 
 
VDOT views this system as the foundation of a warehouse that will grow statewide in 
scope and importance.    The project team that has been assembled provides expertise in 
both institutional and technical aspects of the effort. The project management and staffing 
for the lab comprises eight faculty, three researchers, three staff, 40+ students and a 
Smart Travel Van used for research.  The disciplines, organizational entities, and head 
counts are given in Table 18. 
 

Table 18. Staffing Categories for Virginia's Smart Travel Lab 
 

Discipline   Entity   Head-count 
Program Managers              VDOT, UVA   2 
Team Manager   ORC, GMU   3 
Transportation Engineer  VDOT, UVA   4 
System Engineer  UVA, ORC   3 
Database Engineer  UVA, ORC   2 
Software Engineer  UVA, ORC   4 

  Research Assistance    UVA, GMU   lots 
______________________________________________________________________________ 

 
The organizational abbreviations used in Table 18 are: 
 

UVA - University of Virginia 
ORC - Open Roads Consulting 
GMU - George Mason University 
VDOT - Virginia Department of Transportation 
 

Physically, STL resides at UVA. When fully functional, the operation will move to the 
permanent production site within the VDOT MIS group for continued support.  STL will 
continue to exist at UVA and serve as the development entity. VDOT will be the 
production entity. The plan is to migrate the system over the 2006-2007 timeframe.  
Afterwards, the staffing requirements that STL will continue to support at the university 
through contract funds from VDOT are: 
 

1. Full Time System Analyst 
2. ¾ DBA 
3. Full time application developer 
4. Documentation Guru 
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5. Project manager 
6. Several Graduate students 

 
Direct funding is necessary to support the above personnel and to insure continuity.  
Approximately, $300,000 each year is allocated by VDOT to STL for development work 
and to support the production system when necessary. 
 
Naturally, the decision to move the production aspects to VDOT has provoked much 
discussion within STL.  Some of the reasons given for the move include: 

 
1. Residing at university poses a huge security issue, 
2. Greater physical access is generally desired by VDOT, 
3. Responsiveness may improve if the system is in-house, 
4. Perceived sense of loss control by VDOT if production remains at UVA, 
5. VDOT has a better communication infrastructure, and 
6. At some point, the University will need to think of itself as a production shop 

rather than fulfilling a mission of teaching and research. 
 

Houston Transtar 

System Overview/Design  
Officially opened in April 1996, Houston TranStar is a partnership comprised of four 
government agencies that are responsible for coordinating the planning, design and 
operations of transportation and emergency management in the greater Houston region. 
The partners include: The Texas Department of Transportation, Harris County, The 
Metropolitan Transit Authority of Harris County, and The City of Houston.  Additionally, 
there is an informal relationship with the TTI of Texas A & M. TTI, which is the 
transportation research arm of Texas A&M University, serves in a variety of capacities 
for the partnership.   
 
Transtar is engaged in the development and promulgation of performance measures.  
Additionally, it provides services and applications to assist a number of emergency 
services and transit system functions.  A summary of the areas in which Transtar is active 
is given in Table 19. 

 
Table 19. Applications Developed Within Houston's TranStar 

Traffic Conditions  Emergency Information Transit Information  
   
· Real-Time Traffic 
Map  

· County Emergency 
Management  · HOV Lanes  

· Traffic Camera Map  · Amber Plan  · Commuter and Bus 
Services  

· Freeway Signs  · School Closings  · Bus Itinerary Request  
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http://www.dot.state.tx.us/
http://www.co.harris.tx.us/
http://www.ridemetro.org/
http://www.ridemetro.org/
http://www.cityofhouston.gov/
http://traffic.houstontranstar.org/incmap/
http://traffic.houstontranstar.org/incmap/
http://www.hcoem.org/
http://www.hcoem.org/
http://www.ridemetro.org/services/hovsystem.asp
http://traffic.houstontranstar.org/devmap/
http://www.amber-plan.net/
http://www.ridemetro.org/services/commuter.asp
http://www.ridemetro.org/services/commuter.asp
http://traffic.houstontranstar.org/dms/
http://www.school-closings.net/
http://www.ridemetro.org/latest/tripplan.asp


· Personalized Alerts  · Weather  · QuickRide   
· Wireless Web  · Current Ozone Levels  · METRORail 

· Incidents/Road 
Closures  · Homeland Security  

· Roadway Weather 
Sensors  
· Regional Construction  
· TxDOT Lane 
Closures 

 
 
Data Collected, Data Stored and Data Formats  
The Transtar database contains volume, occupancy, and speed by lane for the Houston 
freeway system.  The database also contains rainfall data – unique among the data 
warehouses we investigated.  A significant application is the use of toll tags to identify 
vehicles and track them at different points within the network.  Thus, a time-to-
destination prediction is derived.  Travel times (but not the identity of the probe vehicles) 
are maintained in the warehouse. 
 
The data is downloaded, cleansed, and inserted by custom-built software written by 
Southwest Research.   

 
Data Metrics 
No information was collected on data metrics. 

 
System Operation, Management and Costs 
No information was collected on system operation, management, and costs. 

 
 

Georgia Department of Transportation 
 

System Overview/Design 
Since the Georgia Department of Transportation (Georgia DOT) Traffic Management 
Center (TMC) became operational in 1996, data has been archived into 15 minute 
aggregates per detector. The real-time system has had tremendous impact in the areas of 
incident management and traveler information, but has not realized its potential as a 
valuable source of traffic and transportation data for other transportation applications 
such as the computation of performance measures, benefit analysis, and transportation 
planning and modeling. Recently, GDOT recognized that archival databases have gained 
a high level of interest in the transportation community because valuable information can 
be extracted from commonly collected operations data. Individuals and agencies that 
reviewed the raw archived TMC data discovered data quality issues that are significant 
and warrant caution. Data deficiencies (hardware failures, detector malfunctions, server 
failures and communications problems) are a constant source of concern for those 
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http://traffic.houstontranstar.org/trafficalert/
http://www.houstontranstar.org/weather/
http://www.quickride.org/
http://traffic.houstontranstar.org/mobileinfo/
http://www.hcoem.org/Ozone/todays_alerts.asp
http://www.ridemetro.org/motion/lrt/railintro2.asp
http://traffic.houstontranstar.org/roadclosures/
http://traffic.houstontranstar.org/roadclosures/
http://www.whitehouse.gov/homeland/index.html
http://www.hcoem.org/txdot/
http://www.hcoem.org/txdot/
http://roadworks.houstontranstar.org/
http://traffic.houstontranstar.org/construction/
http://traffic.houstontranstar.org/construction/


responsible for maintaining the real-time information system (known as NaviGAtor), as 
well as for those who wish to find new uses for the archived data.  
 
GDOT personnel are currently defining a methodology for preparing the existing GDOT 
archived traffic data to support the needs of transportation planning and performance 
evaluation. The initial phases included interviews with ARC (Atlanta Regional 
Commission) and GRTA (the transit authority), and GDOT planners to identify potential 
uses of the archived data for existing and projected responsibilities. One sub-task was 
analyzing existing data to identify the causes of quality deficiencies. The major data 
deficiencies come from missing data (gaps in the archive), poor metadata, and poorly 
maintained/calibrated hardware. Yet another sub-task of GDOT is to identify data 
aggregation and cleansing methods that lessen the impact of the known errors and 
prepare the data for use. In summary, GDOT has determined that the existing archived 
data does have the ability to generate useful information for transportation planners if 
certain aggregation and analytical techniques continue to be employed. The existing data 
supports the generation of segment-level, hourly speed, and occupancy data as well as the 
identification of a variety of temporal factors. Volume, however, cannot be adequately 
estimated at an acceptable level of accuracy. 
 
Several recommendations have emerged that, once addressed by GDOT, could 
significantly improve the quality and usefulness of the data (including volume data). 
These recommendations include the prevention of data loss during the archiving process, 
the archiving of raw 20-second data instead of 15-minute aggregations, the establishment 
of a set of validated control stations, and the generation of metadata (including incident 
and weather log connectivity). Considering the scope and size of the existing 
infrastructure, and considering the potential value of the data for transportation planning 
and performance evaluation, the recommendations are minor “tweaks” with large 
impacts. These recommendations are incorporated into the “NaviGAtor Data Quality 
Assessment and Mitigation Strategies Final Report” prepared by GeoStats, LP URS 
Corporation in 2004. 
 
GDOT has a head start in many areas because of the NaviGator system which integrates 
all of Georgia’s TMC ITS data. All centers use the same system.  However, the challenge 
has been to integrate this information in a manner compatible with national standards to 
ensure compatibility with data from other states.  At present, GDOT has developed very 
high level descriptions of the warehouse.  

 
Operationally, there are only GDOT TMC employees in the control room. They 
coordinate with the police and fire departments throughout Atlanta.  Weather channels 
and news stations are often displayed simultaneously with the video monitor system.   
The data is used in real time but, as discussed, GDOT has initiated an effort to develop an 
ITS warehouse (archive) for the data.   
 
Archived Data Applications/Performance Measures 
The Georgia DOT planning group builds travel demand forecasting models for urban 
areas outside of the Atlanta metropolitan area. These include cities such as Macon, 
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Augusta, Savannah, and others. The Macon area is not yet operational but cameras are 
installed along I-475 and are operational. No data from them is currently being archived.  
 
Archiving is possible for Macon and can be started at any time. Because this is a new 
start-up activity, it is useful to focus on it as being relevant to the Louisiana’s current 
efforts. The Georgia DOT planning group listed the following uses for the archived TMC 
data relevant to Macon: 
 

• HOV Counts and speeds 
• Construction work zone planning 
• Identifying peak hour speeds 
• I-475 volumes and speeds 
• Improving traffic count accuracy 
• Incident recovery statistics 
 

The Georgia DOT planning group has expressed interest in additional data regarding: 
 

• Vehicle classification 
• HOV vehicle occupancy (in addition to lane occupancy) 
 

Looking beyond Macon, the Association of Metropolitan Planning Organizations 
conducted a survey of 60 metropolitan areas regarding their current use (or non-use) of 
archived transportation data. The majority of the MPOs that responded to this survey 
were using ITS data for model enhancements to their congestion management systems 
and their travel demand forecasting models. The chart in Figure 16 shows the top 
responses: 
 

 
Figure 16.  Top Purposes of Archived Traffic Data (Georgia) 

 
A GDOT consultant outlined desired performance measures by citing the Portland 
Oregon system [90]. This research paper discusses the potential uses of archived data in 
the development of performance measures. Measures of mobility were calculated using: 
 

• Average Daily Traffic (ADT) 
• Average Daily Traffic Per Freeway Lane 
• Average Speed 
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• Travel Time 
• Vehicle Miles Traveled (VMT) 
• Person Miles Traveled 
• Vehicle Hours Traveled 
• Person Hours Traveled 
• Vehicle Miles Traveled by Congestion Level 
• Person Miles Traveled by Congestion Level 
• Percent of the freeway not congested during peak hours 
• Number and percent of lane-miles congested 
• Lost time due to congestion 
• Demand vs. capacity 
• Delay per VMT 
• Reserve capacity 
 

In addition, the data is also used to generate the following measures of economic impact, 
quality of life, and resource conservation: 
 

• Cost of Delay 
• Fuel Cost 

 
Data Collected, Data Stored, and Data Formats  
We change the focus again back to Atlanta for which 11 years of archived data exists, 
presently in the form of compressed XML files.  Keep in mind that 15 minute aggregates 
are being archived although the sensors report five-minute aggregates.  Daily reports are 
generated for each detector.  These reports contain a snapshot of the detector's 
configuration, the raw five-minute aggregates, and pre-calculated higher-order aggregates 
(15-minute, one-hour, and one-day). Daily reports are also generated for each station 
from the component detector reports.  Like the detector reports, these contain a 
configuration snapshot and pre-calculated five-min, 15-min, one-hour, and one-day 
aggregates. 
 
A summary description of both the sensors and data that is archived follows: 
 

• Archived granularity is 15 minutes for each detector, that is, sensor data is 
averaged over quarter-hour intervals. 

• The fields captured are speed, occupancy, volume and in some cases classification 
(RTMS sensors only). 

• Real-time data are used for travel time estimates.  However, this is not effective 
on the major freeways because the detectors are located every third of a mile per 
road segment. 

• Econolite, RTMS, and ATR loop detectors are used. These sensors are capable of 
collecting data every 20 seconds.   

• Currently, three months of data are stored on-line and then burned onto a CD for 
distribution and storage. 
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• There are 500 ATR loop detectors throughout the state. In some instances these 
detectors coincide with other ITS sensors so data comparison is possible. 

 
 
Data Metrics 
As mentioned above, GDOT has serious data validity problems that have not been 
addressed.  A GDOT consultant outlined the current data quality hurdles. A report noted 
that volumes of observational data are being under-utilized. The consultant enumerated 
the following immediate needs: 
 

• Accurate volume data for a variety of uses 
• Data for improving regional/statewide VMT estimates 
• Data for computing level-of-service (LOS) 
• Vehicle classification (in conjunction with loop detector data) 
• Data for mobility, accessibility, and safety measures 
• Free-flow vs. congested volume data 
• Event planning 
• Express bus performance monitoring 
• HOV performance monitoring 
• Blue Flyer express bus performance monitoring 
• Better incident data to compute traffic impact, time of clearance, etc. 
• Better speed data 
 

System Operation, Management, and Costs 
No information available. 

California Performance Measures System (PeMS) 

System Overview/Design 
The freeway Performance Measurement System (PeMS) is a joint effort of the California 
Department of Transportation (CalTrans) and the University of California at Berkeley’s 
(UC Berkeley) Institute for Transportation Studies. Its origins trace to a UC Berkeley 
white paper in 1997 and a desire by CalTrans to tap into the vast amount of data being 
generated by the thousands of loop detectors deployed throughout the state. The system 
was delivered to CalTrans in 2002. PeMS provides CalTrans with a powerful tool for 
system performance monitoring and congestion management. CalTrans uses the system 
for performance analysis [48], including congestion monitoring and estimating travel 
time reliability. CalTrans PeMS travel time estimates are used as the basis for travel time 
predictions on 20 to 30 routes in the Bay Area. Travel time predictions are posted on 
dynamic message signs (DMS) in the San Francisco metropolitan area. This information 
is also provided to value-added resellers (VARs) such as broadcast media and web sites. 
The system uses volume and lane occupancy data to determine the proportion of travel 
delay that is based on recurring or non-recurring congestion. The data collected is 
available to the public. Figure 17 shows the PeMS login page.  
 

 67



 
Figure 17. PeMS Login Page 

 
 
 
The PeMS system is a data collection, archiving, analysis and display system.  It 
performs detector diagnostics, data filtering, imputation, aggregation, and performance 
measurement computation.  It presents over 140 standard plots, tables and charts.  The 
PeMS system is currently collecting data from nine CalTrans districts.  It collects and 
processes data in real-time and is accessed via a standard internet browser.  For 
employees, i.e., not the public, it supports sensor configuration and management as well 
as safety statistics and mortality rates. Much analysis is by inter-relating incidents and 
transportation measures to review the interplay in attempts to relate causes and effects.  
Real-time applications include estimates of truck volumes, identifying bottlenecks, and 
tracking shifting peak flows.  System users include CalTrans management and operations 
staff, university researchers, planners from the San Diego Association of Governments, 
consultants, VARs, the public, and the media. 
 
The data processing involves building pyramids of data over long spatial and temporal 
scales. “Pyramids” is a term indicating differing degrees of aggregation, where the 
aggregation is over time intervals or over spatial areas. In the database this is represented 
by different table objects which contain data rolled up over different spatial and temporal 
scales.  This rollup is done in real-time.   
 

The major components of the system include: 
 

 Backend - Oracle; 
 Servers- Linux and Sun; 
 Frontend - PeMS (custom built PHP application); 
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 Data processing core- data filtering and roll-up6; 
 Diagnostic core- validity checks using filters and thresholds (validity checking is 

 performed daily over the data of the past 24 hours) 
 ETL (extraction, transformation, and loading) – performed in real time 
 
Much of the programming is custom and is in Perl and PHP.  The OLAP is custom 
programmed. No off-the-shelf products are used.  The image/graphics/maps are generated 
in PNG format. 
 
System design was originally driven by the CalTrans operations community, which 
realized that improvements in system performance could no longer rely on increased 
capacity. The operations community wanted to use data collected by ITS to support 
development of highway congestion reports and to otherwise support the state’s 
Transportation Management System – an integrated system that includes the TMCs, the 
computer and other automated components, field devices and peripherals, and the 
communications infrastructure for the transportation network. The research community is 
also a driving force behind some aspects of application development. 
 
Design and development of  PeMS was based on three basic principles: 

 
• Start with simplest measures (e.g., calculate travel time for single highway 

 segment) 
• Build more comprehensive measures from the smaller ones 
• Use the Internet for data distribution. 

Figure 18. PeMS System design 
 

                                                 
6 “Roll-up” is a technical database term referring to aggregation of records.  For example, each set of three 
20-second sensory data records may be rolled-up into one minute aggregates.  Similarly, several segments 
of a freeway may be rolled-up into a spatial aggregate. 
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Figure 18. PeMS System design depicts an overview of the PeMS system. The design 
reflects the fact that CalTrans used professional vendors/software developers (as opposed 
to graduate students), in order to enhance reliability and responsiveness.  Note that the 
three databases – incident, weather, and traffic – are largely independent. 
 
Warehouse Applications/Performance Measures 
As noted above, PeMS is able to produce about 140 standard graphs and tables. These 
run the gamut of: 
 

• Throughput 
o Volume per segment 
o Vehicle Miles of Travel (VMT) 
o Level of Service (LOS) measures 

• Congestion/Delay 
o Buffer index per segment 
o Travel time by route by time of day 
o Velocity averages 
o Effects of ramp metering 
o Bottleneck identification 

 
The developers have noted that users desire more than one view of the data and that 
managers desire a higher level perspective than the general public.  User feedback has 
been crucial to successful dissemination.  The more tailored a data representation is to a 
specific goal, the more the representation is used.  This, of course, has led to the 
proliferation of standardized graphs and tables. 
 
Developers have noticed that the freeway operations staff often takes advantage of 
courses in fundamental traffic engineering (such as delay, reliability, and signal timing).  
These are tools that they can utilize for specific tasks associated with job responsibilities.  
Training is provided, for example, to CalTrans staff by the San Diego  Association of 
Governments (SANDAG). Tracking these courses and the attendees often presents new 
opportunities for acquiring ideas on tailoring data views for operations staff members.   

 
Applications that are to be implemented in the near future are: 

 
• Determining optimum time for lane closures and other roadway maintenance, 
• Providing information such as alternative route suggestions on selected DMSs in 

Los Angeles,  
• Inclusion of arterial data in Los Angeles, and  
• Using electronic toll collection tag data for analyzing origin/destination trip times 

and the demand generated by special events. 
 
Data Collected, Data Stored, and Data Formats  
PeMS collects and stores data in a central database located at UC Berkeley. The 
sensors/detectors are stable - it is very rare that a detector goes directly from good to bad.  
When one does, the reason is normally a power outage, water leaks, or due to 
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communication.  Volume and occupancy is captured and stored at a granularity of 30 
seconds.  Presently, 4.1 terabytes are stored online and two gigabytes are added each day. 
The primary sensor set is the approximately 23,000 loop detectors that are distributed 
throughout the state. 
 
PeMS collects traffic data from nine CalTrans districts but the coverage is ever 
increasing. The data are sent to the system’s central database from transportation 
management centers (TMCs) around the state via the CalTrans wide area network 
(WAN).  PeMS is responsible for cleansing and formatting the data.  No district assumes 
the responsibility of formatting or cleansing the data prior to transmission. Figure 19 
shows an overview of the data collection infrastructure. 
 

 
Figure 19.  Overview of PeMS Data Collection Infrastructure 

 
Data Metrics 
CalTrans PeMS produces a daily diagnostic report that lists loops with problems as well 
as the likely cause of the problem (e.g., loop malfunction, communications failure, etc.). 
The system assesses data as they are received and determines if any data are suspect or 
missing. Missing or suspect data are automatically replaced with a value imputed from 
adjacent values. 
 
System Operation, Management and Costs 
The initial cost to establish PeMS was approximately $8 million and funded entirely by 
CalTrans. UC Berkeley does host the system at its main campus but the operational 
aspects are managed by Berkeley Transportation Systems, Inc. Annual maintenance, that 
is, over and above operational staff and new application development, requires 
approximately 1.5 full time equivalent (FTE) positions and software upgrades that cost 
$150,000-$200,000 annually. 
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Maricopa County Arizona RADS 

System Overview/Design 
The Maricopa County Regional Archival Data Server (RADS) is the third of the six 
warehouses profiled in this report that are not yet operational. (The others are 
VDOT/UVA Smart Travel Lab and the GDOT system in Georgia.) Nevertheless, much 
can be learned from the ambitious plans. Maricopa County RADS will collect and store 
data from the various systems in Maricopa County, Arizona, including the Arizona 
Department of Transportation (ADOT) Freeway Management System (FMS), Highway 
Closure and Restriction System (HCRS), the AZTech7 SMART Corridors, Road 
Condition Reporting System (RCRS), and transit operations. The City of Chandler is the 
first jurisdiction to provide data to the system, starting in April 2005. Potential data 
sources include commercial vehicle data, expanded multimodal data, parking and event 
information, and weather information. Although the system has passed several proof-of-
concept milestones such as effective use of HCRS, it is not ready for use as a decision 
support tool. A prototype is currently in use by ADOT. Full implementation will begin 
following procurement of a heavy-duty server for the data warehousing function. 
Approximately, 300 Gb of data from loop detectors (aggregated in 5-minute increments) 
will be loaded into an online archive. The system will then add about 3.5 Gb each month. 
Shifting funding priorities have slowed the implementation of the system. 
 
The main system design goal is to take ITS data from systems throughout the Phoenix 
metropolitan area, store the data in a centralized archive, and then make the data available 
for a variety of users via a common Web interface. Data to be stored include traffic 
volumes, speeds, closures, incidents, public transit operations, and data collected by 
AZTech partner agencies. A key facet of the design approach is the use of Common 
Object Request Broker Architecture (CORBA) interfaces. Each government agency 
archives data for its own purposes; data are then “warehoused” via the Maricopa County 
RADS so that any agency can access it. The source agency can filter data so that only the 
data they wish to share are accessible. Eventually, all archived data will be available over 
a public (non-secure) interface. 
 
Warehouse Applications/Performance Measures 
Users will access data from the Maricopa County RADS via the Internet. The system will 
be used to support a variety of analyses. One of the opportunities presented by the system 
is its capability to blend data from various agencies or sources. The City of Phoenix is 
expected to develop evacuation planning methods. The Maricopa County RADS will be a 
reliable source of historical data and near real-time information. 
 
Planned system updates include development of a Web interface to allow the public to 
access and use the system. 
 
                                                 
7 AZTech is a partnership of public and private transportation agencies led by Maricopa County DOT and 
the Arizona DOT. 
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Data Collected, Stored and Formats  
The Maricopa County RADS will host a variety of database formats to accommodate the 
range of agencies that will provide data to the system. As part of the requirements 
development process, the Maricopa County Department of Transportation (MCDOT) 
conducted extensive user surveys. Based on this work, the main users of the system will 
be Maricopa Association of Governments (MAG) planners, ADOT staff involved in ITS, 
local traffic engineers, transit agency staff, commercial vehicle operators, and private 
sector information providers. 
 
The Maricopa County RADS will depend in large part on open source software to 
address data collection, given the variety of data types that it will store and process.  The 
system will collect data via the Internet, CD-ROMs, or dedicated landlines, depending 
upon the agency providing the data. Decisions on which data to archive will be as 
decentralized as possible, leaving it up to the agencies themselves to determine which 
data they wish to provide to the system. At a minimum, the system will accommodate 
freeway data from ADOT and arterial data from the City of Tempe. Phoenix Transit has 
expressed interest, but has yet to provide data. 
 
Data Metrics 
Responsibility for data quality will rest with the agencies providing the data to the 
Maricopa County RADS. 
 
 
System Operation, Management, and Costs 
The Maricopa County RADS is being funded primarily through Federal Congestion 
Management and Air Quality (CMAQ) funding with local match and cooperation of 
Maricopa County, Arizona DOT, and Maricopa Association of Governments. Annual 
estimated maintenance costs for the system are anticipated to be $150,000, not including 
hardware and software upgrades. 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 74



APPENDIX B. RESEARCH REPORTS 
 

Input Validation: A Probabilistic Approach for Modeling and Real-Time Data 
Filtering of Freeway Detector Data 

Real time traffic information is vital to a variety of advanced operation and management 
functions undertaken by traffic management centers.  The advent of new monitoring 
technologies has led to nationwide implementation of traffic surveillance systems on 
major urban freeway segments.  Currently, several hundreds of freeway miles are 
instrumented with traffic surveillance devices such as electro-magnetic detectors, video 
detectors, radar detectors, and many others, all of which are primarily installed to 
improve the operation, safety, and productivity of our surface transportation network.  
These surveillance systems collect large amounts of real-time traffic data, sometimes on 
the order of a few gigabytes per day, and communicate them to traffic management 
centers (TMCs) to support critical functions such as incident detection, travel time and 
delay predictions, congestion management and other emergency services. 
 
Advanced Traffic Information Systems (ATIS) need real time traffic data to disseminate 
real time traffic information to transportation system users via internet, in-vehicle 
navigation systems, variable message signs, etc.  Such information assists travelers in 
better pre-trip planning and en-route decisions that affect their departure time, choice of 
destination, mode, and route.  Such decisions can effectively reduce travel costs in terms 
of travel time and delays.  For transportation system providers, traffic information is 
essential for performance monitoring and decision support systems, which can be greatly 
influenced by the quality of traffic data.  To date, robust data screening methods have not 
been fully developed to control the quality of data before its archiving, dissemination to 
the public, or use in relevant applications.   
 
The main goal of this research was to develop a real-time data screening algorithm by 
considering the stochastic variations in traffic conditions.  This can be achieved by 
accomplishing the following objectives: 

• Develop a methodology to examine the probabilistic nature of the three 
macroscopic traffic parameters (speed, volume, and occupancy), considering the 
stochastic as well as dynamic changes in the traffic conditions. 

• Model the probabilistic nature of the three traffic parameters and evaluate the 
calibrated model by performance measures. 

• Derive a data screening algorithm based upon the consistency of the probabilistic 
relationships as reflected by the model, and devise a strategy to further identify 
the partially valid observations (i.e., observations that have one or more invalid 
parameters).   

• Demonstrate, using a sample data set, how the newly developed data screening 
methodology can be applied to freeway traffic data in real time. 
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Literature Review 
Traffic surveillance systems are primarily used to monitor and collect traffic information 
from urban freeways.  Traffic monitoring equipment can be classified as road-based and 
vehicle-based.  Loop detectors, Closed Circuit Television (CCTV), sensors etc, are 
examples of road-based detection systems.  Vehicle-based traffic surveillance systems 
include probe vehicles that are equipped with tracking devices, such as transponders, to 
track the location of vehicles over time.  Figure 20 depicts how traffic information is 
relayed to TMCs from different monitoring equipment. 

 
Figure 20. Traffic Surveillance System 

 
The following section presents information about loop detectors, which constitute the 
majority of real-time traffic monitoring devices. 
 
Loop Detectors.  Inductive loop detectors remain the most commonly used device for 
freeway surveillance and incident detection systems.  Inductive loop detectors are 
constructed by cutting a slot in pavement and placing one or more turns of wire in the slot 
[87]. The wire is then covered by a sealant.  The size of the loop detector ranges from 6-ft 
x 6-ft (for normal loops) to 6- x 40- to 70-ft (for long rectangular loops).  Loop detectors 
collect vehicle count, lane occupancy and vehicle speed at intervals of 20 to 30 seconds 
and relay such information to traffic management centers.   

 
Loop detectors operate on the “principle of inductance.”  Inductance is generated in a 
loop circuit due to current passing through a loop detector coil buried in the pavement.  
Loop detectors consist of four parts: a wire loop of one or more turns of wire embedded 
in the roadway pavement, a lead-in wire running from the wire loop to a pull box, a lead-

 76



in cable connecting the lead-in wire at the pull box to the controller, and an electronics 
unit housed in the controller cabinet [87].  When a vehicle passes over a loop detector it 
causes change in the initial inductance and the pulse is transmitted to the controller 
placed at the side of the pavement indicating the presence of the vehicle.  Figure 21 
shows the main components of inductive loop detectors. 
 
Single loop detectors are capable of measuring flow and lane occupancy directly, while 
measurement of vehicle speed requires using dual loops or estimation using traffic flow 
models.  Estimation of speed using traffic flow models is explained below.   

Flow = speed times density…….……………………………………………..  (1)   
                          where density can be approximated from lane occupancy using: 

Density = occupancy times g……….…………………………...…………….  (2)   
             and   

g = k/(vehicle length + detector length)…….…………….…………………….(3) 
                          where k is a conversion factor.   
Hall and Persaud [88] came up with different values of g for different traffic conditions. 
 

 
Figure 21: Inductive Loop Detectors 

 
Speed is also estimated using dual loops and can be calculated from the formula given 
below.  Figure 22 represents time-space diagram of the vehicle passing over two closely 
spaced detectors. 
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where,  
            S is the speed of the vehicle, 

D is the distance from upstream edge of detection zone A to the upstream edge of 
  detection zone B (feet), 

             [(ton)n]B is the instant that vehicle is detected on detector B, 
            [(ton)n]B is the instant that vehicle is detected on detector A. 
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Figure 22 : Vehicle Passing over Two Closely Spaced Detectors 
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Other Traffic Monitoring Devices.  Road-based traffic surveillance systems may also 
include other types of monitoring devices such as Closed Circuit Television (CCTV), 
Video Image Detection Systems (VIDS), and sensors such as Remote Traffic Microwave 
Sensors (RTMS).  CCTV’s and VIDS systems are more efficient and cost effective traffic 
monitoring systems that provide real-time traffic information, but are sensitive to all 
weather conditions.  RTMS devices are cost effective and weather resistant.  They detect 
traffic parameters on multiple lanes and have become increasingly popular in the last few 
years. 
 
Inductive loop detectors form most commonly used traffic surveillance equipment.  
However, the data collected from these detectors is prone to errors due to loop 
malfunctions such as cross-talk (interaction of magnetic fields of the closely placed loop 
detectors), pulse break-up (where a single vehicle registers multiple actuations as the 
sensor output flickers off and back on) , stuck sensors, etc.  With the wide spread of such 
detectors there appears to be a pressing need to monitor the data quality to ensure better 
reliability of subsequent applications that rely on loop detector data.   

 
Data Screening Methods.  Several research efforts that focused on providing algorithms 
to screen erroneous data were reviewed and are briefly presented in this section.  In 
general, two basic approaches have been pursued.  The first approach involves processing 
raw signals from the loop detectors, where the sensor on-times are used to compute the 
volume and occupancy, which are further checked for credibility.  The second approach 
applies reliability checks either directly on the macroscopic parameters (volume 
occupancy and speed) or on the traffic relationships between these parameters, usually by 
establishing thresholds beyond which the data represents unrealistic traffic conditions.  
Examples of each approach are presented next. 

 
Chen and May [74] suggested a methodology for data screening in which the on-time of a 
detector is compared with the station average to determine the inconsistency in the data.  
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This approach was criticized as being sensitive to errors such as “pulse breakups” where 
multiple detections of a single vehicle were registered as sensor output flickers off and 
back on. 
 
Another study based on the on-time of the detector was conducted by Coifman [75].  This 
research study emphasized the use of speed traps to identify detector errors and assessed 
the performance of the speed trap based on the assumption that the on-times should be 
same for the vehicles at free flow conditions, allowing for hard decelerations, regardless 
of vehicle length.  The proposed study was sensitive to congested conditions as vehicle 
acceleration from low speeds will cause two on-times to differ and was not applicable for 
congested traffic conditions. 
 
 A later study using on-times was conducted by Coifman and Dhoorjaty [76].  This study 
presented several detector validation tests that use event data (individual vehicle data) to 
identify detector errors both at single and dual loop detectors.  Detector  errors were 
identified by a series of eight detector validation tests which used event data like head 
way, vehicle length, number of congested samples, etc. in combination to the on-time, 
thus making the approach applicable to all traffic flow conditions. 
 
Examples of the studies that used the second approach include a study by Jacobson, et al.  
[77] to develop a screening algorithm based upon threshold values of occupancy, and 
occupancy to volume (O/V) ratios.  The observations were screened with the thresholds 
designed to represent different malfunctioning states of the detectors and thus the 
observations were identified as erroneous. 
 
Another study by Cleghorn, et al [78] suggested a data screening algorithm based upon 
two strategies: (i) upper bound developed for flow-occupancy data for single loop 
detector systems and (ii) boundaries for feasible combinations of speed, flow and 
occupancy data.  This study indicated that erroneous observations of the traffic data could 
lead to deterioration of performance of incident detection algorithm.   
 
A later study by Payne and Thompson [79] presented various types of malfunction 
identification tests by imposing thresholds on occupancy, speed and volume parameters.  
The malfunctions were then diagnosed by inspection of aggregate sensor measurements.  
Data repair of faulty observations were then done by estimating actual traffic conditions 
and utilizing measurements from adjacent lanes. 
   
Turochy and Smith [80] presented a study emphasizing the development of data 
screening algorithm based on the combination of threshold value tests and traffic flow 
theory.  The screening procedure devised in this research study was based on four tests.  
The first two tests were based on maximum volume and occupancy thresholds, while the 
third test was based on the maximum value of volume that could be observed for zero 
value of occupancy and the fourth test was based on feasibility of average vehicle length 
calculated as a function of speed, volume and occupancy.   
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Peeta and Anastassopoulos [81] conducted a study to detect the errors due to 
malfunctioning detectors and predict actual data using Fourier transformation based 
correction heuristic.  This approach was capable of detecting abnormalities and 
distinguishes data faults from incidents and aids the operation of online architectures of 
real-time route guidance and incident detection. 
 
Ishak [82] presented the concept of fuzzy clustering to measure the level of uncertainties 
associated with the three traffic parameters: speed, occupancy, and volume.  This 
research study criticized the use of average effective vehicle lengths for identifying 
detector data errors and devised a data screening algorithm based upon the uncertainty 
measure derived from membership grade and a decaying function.  The uncertainty 
measure was then compared to a certain threshold limit to screen the observations and 
identify the erroneous nature of single parameter. 
 
Chen, et al. [83] developed a diagnostic algorithm to identify bad loop detectors from 
their speed, occupancy and volume measurements using the time series of many samples.  
About four statistics which represent the summaries of time-series were derived and were 
used to decide whether the loop is bad or good.  Imputation of the missing values was 
done based upon the linear relationship between neighboring loops. 
 
A study by Wall and Dailey [84] indicated the use of consistency of vehicle counts to 
judge the validity of the data for an off-line analysis.  The study also suggested a 
methodology to correct the erroneous data by identifying properly calibrated detectors 
which are used as reference stations to correct the data from poorly calibrated stations. 
 
Chilkamarri and Al-Deek [85] presented a screening algorithm to flag out bad samples 
using the mathematical relationship between the flow, occupancy, speed and average 
vehicle length and suggested a pair-wise quadratic regression model to impute the 
missing data in real time.  The study also proposed entropy statistic to identify the 
detectors which are stuck.  Several other studies that used the second approach for data 
filtering were published.  See for instance, Nihan [86].   
 
Summary of Literature Review.  Most of the research conducted in this area used the 
traffic flow relationships or imposed thresholds on the observations to devise data 
screening strategies.  However, no effort was made to model the stochastic relationships 
between the traffic parameters and develop a real-time data screening algorithm.  This 
study aims to develop a real-time data screening algorithm by considering the 
probabilistic relationships between the parameters which triggers the online maintenance 
of the detectors as well. 

 
Data Collection 
This section describes the procedure used to collect the data for conducting the research 
study.  In addition, this section includes information about the preliminary screening 
techniques that were used to remove erroneous observations that result from improper 
recording of the data.   
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 The data used in this study was collected from a 38-mile freeway segment of the 
I-4 corridor in Orlando, Florida.  Figure 23 shows the map of the study section 
considered that extends from west of US-192 to east of Lake Mary Blvd.  Data was 
collected using 70 inductive dual loop detector stations that are spaced at nearly .5 miles 
apart in both directions (east bound and west bound) on the study section considered.  
Each lane has two 6’ x 6’ loops embedded in the pavement that are connected to a 170 
type controller located in a cabinet adjacent to the road side.  Table 20 shows the location 
and description of each detector station. 
 
 Each detector station collects 30 second observations of three traffic parameters 
(speed, lane occupancy, and volume counts) from all six lanes.  Speed and lane 
occupancies are expressed as average for all vehicles with in each 30 second period, 
while volume represents the cumulative vehicle counts within each time period (30 
seconds).  The information collected from each detector station is then transmitted to the 
Orlando Regional Traffic management center (RTMC).  Figure 24 displays the 
configuration of a typical loop detector station in one direction of travel.  The loop 
detector data is collected in real time via a T1 link between the Orlando RTMC and the 
ITS lab at the University of Central Florida.  Speed, volume counts, and lane occupancies 
are downloaded and compiled into an  Structured Query Language (SQL) server that 
supports multiple publicly accessible web applications such as real-time and short-term 
travel time predictions between user-selected on- and off- ramps.  Information about the 
three traffic parameters was extracted from 130 million observations that were compiled 
in the years 2000 and 2002.   
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Figure 23.  Map of I-4 Study Corridor in Orlando, Florida 
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Table 20. Location of Loop Detector Stations on I-4 in Orlando, Florida 
From Station To Station Location Spacing  (feet) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

West of 192 
West of 192 

US 192 
West of Osceola 
East of Osceola 

SR 536 
East of SR 536 
West of SR 535 
West of SR 535 

SR 535 
West of Rest Area 

Rest Area 
West of Central Florida Pkwy 

Central Florida Pkwy 
528 EB Ramp 
528 WB Ramp 

West of 482 
West of 482 

SR 482 
West of 435 
West of 435 

SR 435 
435 WB Ramp 

Turnpike 
Turnpike WB Ramp 

Camera 21 
West of John Young Pkwy 
West of John Young Pkwy 

John Young Pkwy 
East of John Young Pkwy 

Rio Grande 
Orange Blossom Trail 

Michigan 
Kaley 

- 
2600 
2470 
3300 
3530 
3330 
3370 
3360 
3400 
3000 
3200 
4090 
3020 
2980 
2910 
3250 
3100 
3450 
2000 
3100 
2600 
3000 
2900 
2200 
2900 
2610 
2890 
2900 
4100 
2400 
2600 
2400 
2500 
2400 
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Table 20. (Continued) 
From Station To Station Location Spacing  (feet) 

35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 

36 
37 
38 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

Camera 28 
Camera29 
Church St 
Robinson 

SR 50 
Ivanhoe 

Princeton 
Winter Pk 
Par Ave 

Minnesota 
SR 426 

Site 1393 
Lee Rd 

East of Lee Rd 
Kennedy 

414 EB Ramp 
East of SR 414 

Wymore 
East of Wymore 
West of SR 436 

SR 436 
West of SR 434 
West of SR 434 

SR 434 
434 Ent Ramp 
434 Ext Ramp 

West of EEWill 
East of EEWill 

Rest Area 
East of Rest Area 

West of Lake Mary Blvd 
West of Lake Mary Blvd 

Lake Mary 
Lake Mary 

East of Lake Mary Blvd 

2700 
2700 
1800 
3000 
2500 
2600 
2700 
2600 
2600 
3000 
2200 
2300 
2600 
1700 
2800 
3000 
1800 
3300 
2700 
2900 
2400 
3800 
2900 
3500 
3400 
1900 
2800 
2600 
3000 
2700 
2100 
2500 
2800 
2300 
3500 
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Figure 24:  Typical Loop Detector Station 

 
A sample of the data collected from the database is in the form as shown in Table 21.  
The data contains the following information: station, time, and the three traffic 
parameters on all the six lanes. 
 
Initial Data Screening. The data obtained from the loop detector could not be directly 
used for capturing the probabilistic relationships between the parameters.  This was due 
to discrepancies observed in the data such as negative values or errors that resulted from 
the break down of the detector station or failure of communication infrastructure between 
detector station and TMC.  Hence the data had to be filtered to remove these erroneous 
observations.  Each dual loop detector records two values of occupancy, and volume 
count that were averaged, while speed is directly calculated using the dual loops.  
Preliminary filtering techniques that were used to remove invalid observations of the 
three traffic parameters are listed as follows: 

 
1. Observations with zero or negative values of the parameters were discarded. 
2. The errors in the data resulting from the failure of the loop detectors or mis-

functioning of the communication between detector and TMC are represented by 
a –9XX value,-XX value or zero and are filtered out. 

 
Summary of Data Collection. Information in terms of three macroscopic traffic 
parameters (occupancy, speed and volume was collected from dual loop detection system 
on the study section.  The data was then processed to filter out the preliminary errors 
(such as negative errors or mis- communication errors) associated with the data.  The data 
can now be used to examine the probabilistic relationships between the parameters 
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Table 21 Sample of SQL Compiled Data for January 20008 
station time els ecs ers wls wcs wrs elv ecv erv wlv wcv wrv elo eco ero wlo wco wro

2 6:30 0 51 56 0 63 0 0 6 10 0 2 0 0 4 7 0 1 0
2 7:00 57 57 66 66 54 48 4 4 4 1 4 2 4 2 2 0 3 1
2 7:30 9 56 0 60 70 71 2 7 0 4 2 1 0 2 0 1 1 0
2 8:00 59 51 59 57 61 61 1 2 1 2 4 2 0 0 0 0 1 0
2 8:30 58 60 82 77 100 100 5 8 3 2 5 4 3 5 2 1 4 2
2 9:00 57 59 61 61 63 63 3 4 4 1 2 1 2 2 2 0 1 0
2 9:30 56 59 63 0 59 59 8 5 1 0 3 3 3 2 0 0 2 1

 
Methodology 
This research study proposed probabilistic approaches for real-time freeway traffic data 
screening.  The proposed approaches differ from the deterministic approach in that they 
do not explicitly confirm the validity of an observation but attempt to quantify the 
likelihood that such observation is valid.  Probabilistic relationships between the three 
traffic parameters (volume, speed, and lane occupancy) were developed to capture the 
least likely temporal changes in traffic states as well as inconsistencies in traffic 
conditions expressed by each traffic parameter.  The proposed methodology thus 
primarily investigates the stochastic variation in traffic conditions over time and the 
probabilistic relationships between the three traffic parameters in order to capture certain 
characteristics that can be used for data screening purposes.   
 
The methodology is derived from two complementary approaches.  The first approach 
considers the stochastic evolution of traffic conditions over time measured by each of the 
three parameters independently.  The second approach attempts to capture the inherent 
stochastic variation of traffic conditions measured by each combination of the three 
traffic parameters.  In both approaches models for the conditional probabilities are 
developed from a vast amount of detector data describing all possible variations of traffic 
conditions on the study segment considered.  Both approaches form the basis for the data 
screening algorithm and are explained in detail next. 
 
Approach One: Examining Temporal Variations of Traffic Parameters.  This approach 
focuses on capturing possible abrupt changes in traffic conditions that may occur between 
two successive observations taken over a time span of 30 seconds.  These temporal 
variations, though abrupt, are unlikely to be extreme within the time span considered.  
For instance, the variation in the value of speed from 90 mph to 0 mph over a time span 
of 30 seconds is likely to be unrealistic.  Thus this approach checks for unrealistic 
temporal variations that could be used to judge the validity of an observation.  In simple 
terms, an observation is considered valid if the temporal variation from its preceding 
observation is not unrealistic.  The feasible range of temporal variations could be derived 
by comparing the probabilities of the temporal variations with user-specified thresholds. 
 

                                                 
8 els, ecs, ers - speed in the east bound direction on left, center and right lanes. wls, wcs and wrs-speed in 
west bound direction on left, center and right lanes. elo, eco, ero- occupancy in east bound direction on left, 
center and right lanes. wlo, wco, wro- occupancy in west bound direction on left, center and right lanes. 
elv, ecv, erv- volume in east bound on left, center and right lanes. wlv, wcv, wrv- volume in west bound on 
left, center and right lanes. 
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The temporal changes observed between the parameters over time are stochastic due to 
random variations in the traffic conditions.  The stochastic variation of the parameters is 
captured using the conditional probability concept as mentioned earlier.  Conditional 
probability is defined as the probability of an event occurring given that some event has 
occurred [89]. 
   
The methodology used to examine stochastic variations of each traffic parameter over 
time requires estimation of family of cumulative PDFs.  Let tX  and 1tX + , represent any of 
the three parameters (speed, occupancy and volume) observed at time t and t+1.  The 
difference ( 1t tX X +− ), refers to the drop or increase in X  over a duration of 30 seconds.  
Several possible combinations of two successive observations were used to model all 
possible temporal variations for each variable.  The probability of observing the 
difference ( 1t tX X +− ), given ( tX x= ) is estimated using the following discrete 
conditional probability density function: 
 

}{ }{
{ }
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1

t t
t t

N X X x
P X X x

N x
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+

− = δ |
− = δ | =                                  (4) 

where, 
δ  is the realization of the random variable 1t tX X +− , 

}{ 1t tP X X x+− = δ |  = the probability of observing a difference of δ  given tX x= , 

}{ 1t tN X X x+− = δ |  = the number of observations with the difference of  
 given,δ tX x= , 

{ }N x = total number of observations with tX x= . 

 
The difference between the variables ( 1t tX X +− ) of two successive observations may be 
positive or negative, indicating either a drop or an increase in the value of X  over a time 
interval of 30 seconds.  The probability distribution functions for drops or increases in X 
exhibit different characteristics.  Hence, they are studied separately.  The probability 
distribution function for a drop in ( ) can be found from the cumulative sum of discrete 
probability mass function as follows: 

X

 
 { } { } { }max

1 1
[ ]0,

0, , 0t t t t
j

P X X x P X X j x x X
δ
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∀ ∈
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where, 
{ }1t tP X X x+− ≤ δ |  = the cumulative probability of observing a drop in X , 

 given tX x= , 
maxX is the maximum feasible value for variable X . 

 
The probability distribution function for increase in  ( X ) can be similarly found from the 
cumulative sum of discrete probability mass function as follows: 
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{ } { } { }max
1 1

[ ]0,
0, , 0t t t t

j
P X X x P X X j x x X

δ
δ+ +

∀ ∈
− ≤ δ | = − = | ∀ ∈ ≥∑         (6)  

 
where, 

{ }1t tP X X x+ − ≤ δ |  = the cumulative probability of observing an increase in X ,  
  given tX x=  and 0δ ≥ . 
 
Approach Two:  Examining Probabilistic Traffic Flow Relationships.  This approach 
aims at checking for inconsistencies in the traffic conditions measured by each of the 
traffic parameters.  Volume count, lane occupancy and speed in any observation are inter-
related and should reflect similar traffic conditions.  The relationship between the three 
traffic parameters can be used as a measure to validate an observation.  For example, an 
observation representing a combination of high speed and high occupancy is unlikely 
under stable flow conditions.  Such combinations are inconsistent, and possess less 
probability.  Thus examining the probabilistic relationship between the parameters serves 
as a source for detecting the inconsistencies in the traffic conditions. 

The relationship between the parameters is, however, probabilistic due to the random 
changes in the traffic conditions.  These relationships are examined using a conditional 
probability concept as mentioned earlier.  Estimation of PDFs that represent the 
probabilistic relationship between the three traffic parameters is described next.  Let 
variables X and Y represent two of the three traffic parameters (speed, occupancy and 
volume).  The probabilistic relationship between X and Y may be approximated by a 
probability mass function of the form:   

         { } { }
{ } [ ] [0, , 0,i j

i j
j

N X x Y y
P X x Y y i N j M

N Y y

= | =
= | = = ∀ ∈ ∈

=
]      (6) 

where,  
N  is the number of realizations of X . 
M is the number of realizations of Y . 
{ }iP X x Y y= | = j  = the conditional probability of observing iX x=   

 given . jY y=

{ }iN X x Y y= | = j  = the number of observations of iX x=  given . jY y=

{ }jN Y y= = total number of observations with jY y= . 
 
The discrete probability function is used to calculate the cumulative distribution function 
as follows: 

[ ]
[ ] [ ]

0,
( ) ( ) 0, ,k j i j

ki
P X x Y y P X x Y y j M K N

∀ ∈
≤ | = = = | = ∀ ∈ ∈∑ 0, .

)j

  (7) 

where  is the probability of observing  ( kP X x Y y≤ | = kX x≤  given . jY y=
 
Summary of Methodology. Probability distribution functions that represent the temporal 
variations of each parameter, and the probabilistic traffic flow relationships were 
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estimated.  These PDFs functions are to be modeled to capture the nature of these 
relationships.  This raises the issue of choosing appropriate modeling tools, which is 
addressed in the next section. 

 
Probability Distribution Functions 
The probability distribution functions derived from the two approaches reflect the 
random behavior of the traffic conditions, and are non-linear in nature.  Hence a non-
linear function approximation seems quite appropriate to model the data.  This can be 
best accomplished using Artificial Neural Networks (ANN).This section presents an 
introduction to Multi-Layer Perceptron (MLP), an Artificial Neural Network (ANN) tool 
used for function approximation.  This section also explains the procedure to train NN 
models for approximating the probability distribution functions.  Finally the performance 
evaluation of network models built is presented. 
 
Multi-Layer Perceptron (MLP).  The MLP is a general static ANN that has been used 
extensively for nonlinear function approximation.  It consists of four layers - an input 
layer, two hidden layers and an output layer. Figure 25 shows an example of network 
topology used for the study.  The number of neurons in the first hidden layer is double the 
number of neurons in the second one, as is the general practice in NN topology.  The 
input layer is where the data is fed; the hidden layers extract the features from the input 
patterns; the output layer which gives the responses to the input. An MLP is trained using 
the back propagation algorithm, which minimizes the sum of squared errors between the 
desired and actual output. 

 
Modeling PDFs for Approach One. The process of approximating the discrete probability 
distribution functions developed from the two approaches is done by training MLP 
networks with the data.   

                                                                                                                  9 

 
Input 
Layer 

 
Hidden 
Layer1 

 
Hidden 
Layer2 

 
Output 
Layer 

x 

δ P (X

Figure 25. An Example of MLP Network Topology 
 
The probability distribution functions estimated for each traffic parameter (for both drop 
and increase conditions) were approximated separately using different MLP networks as 
they possessed different characteristics and probability distributions.  The probability 
distribution function for drop in X was expressed as follows: 

{ } { } { }max
1 1

[ ]0,
0, , 0t t t t

j
P X X x P X X j x x X

δ
δ+ +

∀ ∈
− ≤ δ | = − = | ∀ ∈ ≥∑  

The input data for modeling the PDF representing a drop in X was in the following form: 

                                                 
9 Pdes- probability desired       Ppre- probability predicted 

Pdes(Xt-Xt+1≤δ/x) 

pre t-Xt+1≤δ/x)
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Type 1 Input: { x, , δ { }1t tP X X x+− ≤ δ | }  
where, 

tX  and 1tX + , represent any of the three parameters (speed, occupancy and  
  volume) observed at time t and t+1, 

δ  is the realization of the random variable 1t tX X +− , 

{ }1t tP X X x+− ≤ δ |  = the cumulative probability of observing a drop in X ,  
            given tX x= . 

The probability distribution function for increase in X was expressed as follows: 
{ } { } { }max

1 1
[ ]0,

0, , 0t t t t
j

P X X x P X X j x x X
δ

δ+ +
∀ ∈

− ≤ δ | = − = | ∀ ∈ ≥∑  

The input data for modeling the PDF representing an increase in X was in the following 
form: 
Type 2 Input: { x, , δ { }1t tP X X x+ − ≤ δ | }   
where, 

δ  is the realization of the random variable 1t tX X+ − , 

{ }1t tP X X x+ − ≤ δ |  = the cumulative probability of observing an increase in X , 
           given tX x=  and 0δ ≥ . 
 

Separate data sets for modeling the stochastic variations of each traffic parameter were 
extracted from a large data set complied in the year 2000.  These data sets were used to 
train the MLP networks.  Speed and occupancy parameters varying from a range of 0-100 
mph and 0-100% were considered to account for the most likely traffic conditions.  The 
maximum value for the volume count was taken to be 20 in compliance with the 
maximum capacity of 2400 vphpl.  Cumulative probabilities representing the stochastic 
variations for each traffic parameter were calculated using the PDFs.  Figure 26 shows a 
sample of the probability distributions for the stochastic temporal variation of three traffic 
parameters.  These PDFs were now approximated using ANN by inputting the data in the 
format mentioned earlier as explained next. 
 
Multi Layer Feed-forward networks were trained with the input data using a back 
propagation algorithm to capture the stochastic variation of the parameters over time.  
The input data set consists of two independent variables and a dependent variable.  The 
number of neurons in the input layer depends on the number of independent variables 
considered.  Hence the number of neurons in the input layer was fixed to two.  The output 
layer contains a single neuron that represents the dependant variable.  The number of 
neurons in the hidden layers were arbitrarily chosen depending upon the size of the 
training data.  Training process progresses with the aim of reducing the mean square error 
on the training data and was terminated on the basis of any of the two criteria (i) training 
error reaching minimum (i.e., MSE is equal to .01) or (ii) training epochs reaching a 
maximum of 1000. 
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Figure 26. Probability Distribution Functions for Occupancy Parameter 

 
Occupancy and speed parameters ranging from zero to one hundred were split into four 
uniform intervals of twenty five each, and their corresponding stochastic variations were 
approximated using separate networks to improve approximation efficiency.   

 
Stochastic variations of volume parameter were modeled directly as the approximation 
performance achieved was observed to be high.  Eight networks (four networks for 
stochastic variations representing drop and four networks for stochastic variations 
representing increase) were built to model stochastic variations of either occupancy or 
speed parameter.  Two MLP networks were built to model the stochastic variation of 
volume parameter. 
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Figure 27. Probability Distribution Functions for Speed Parameter 
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Figure 28. Probability Distribution Functions for Volume Parameter 

 
A total of eighteen MLP networks [(2 x 8) for occupancy and speed parameters plus 2 for 
volume parameter] were built to approximate the stochastic variation of the three traffic 
parameters.   
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Modeling PDFs for Approach Two. Probability distribution functions representing 
relationship between the parameters were approximated separately using MLP networks.  
The probability distribution function for a relationship between any two parameters was 
expressed as follows: 

[ ]
[ ] [ ]

0,
( ) ( ) 0, ,k j i j

ki
P X x Y y P X x Y y j M K N

∀ ∈
≤ | = = = | = ∀ ∈ ∈∑ 0, .

j

 

The input data for modeling the PDF above was in the following form: 
Type 1 input: {X, Y, } ( )k jP X x Y y≤ | =
where, 
               X and Y represent two of the three traffic parameters, 
               is the probability of observing  ( )kP X x Y y≤ | = kX x≤  given , jY y=
               is the number of realizations of N X , 
              M is the number of realizations of Y . 
 
Speed and occupancy parameters were divided into bins of five interval size.  Separate 
data sets were extracted for speed conditioned on occupancy, occupancy conditioned on 
speed, volume conditioned on speed, volume conditioned on occupancy, and the 
corresponding probabilities were calculated from the probability distribution functions.  
For the cases of speed conditioned on volume and occupancy conditioned on volume, the 
data was divided into stable and unstable flows.  This was due to the fact that each value 
of volume corresponded to two values of speed or occupancy, one in the stable flow and 
other in unstable flow conditions.  These observations possessed different probability 
distributions and thus they were to be modeled separately.  Critical speed which separates 
stable flow and unstable flow conditions was calculated from weighted average method 
and was found to be varying between 35-40 mph.  The data set for speed conditioned on 
volume was divided using this critical speed and the cumulative probabilities were 
calculated separately.  Similarly critical occupancy (15-20%) which demarcates the stable 
flow from the unstable flow was calculated using the weighted average method and their 
cumulative probabilities were calculated separately.  Figure 29 through 36 show the 
probability distributions of several combinations of the parameters. 
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Figure 29. Probability Distribution Functions for Occupancy Conditioned on Speed 
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Figure 30. Probability Distribution Functions for Speed Conditioned on Occupancy 

 

 94



0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

volume

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n

occupancy bin=1
occupancy bin=4
occupancy bin=8
occupancy bin =12
occupancy bin=16

 
Figure 31. Probability Distribution Functions for Volume Conditioned on 
Occupancy 
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Figure 32. Probability Distribution Functions for Volume Conditioned on Speed 
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Figure 33. Probability Distribution Functions for Occupancy Conditioned on 

Volume  (Stable flow) 
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Figure 34. Probability Distribution Functions for Occupancy Conditioned on 

Volume  (Unstable flow) 
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Figure 35. Probability Distribution Functions for Speed Conditioned on Volume 

(Stable flow) 
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Figure 36. Probability Distribution Functions for Speed Conditioned on Volume 

(Unstable flow) 
 
Multi-layer feed forward networks were trained with the input data in order to 
approximate the probabilistic traffic flow relationships.  The data sets representing 
combinations of speed conditioned on occupancy, volume condition on occupancy, 
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occupancy conditioned on speed and volume conditioned on speed were divided into four 
uniform intervals and were approximated using different networks.  A total of 16 MLP 
networks (4 for each condition, therefore 16 for all the four combinations) were built to 
model the probabilistic relationships between the above combinations of parameters.  The 
data sets representing the combinations of speed conditioned on volume and occupancy 
conditioned on volume was divided into stable flow and unstable flow conditions and 
were approximated using 4 MLP networks (2 for each combination, therefore 4 for two 
combinations.) A total of 20 networks were built to approximate the PDFs representing 
probabilistic traffic flow relationships. 

 
Performance Measures. Trained networks are evaluated using a set of performance 
measures.  Desired probabilities are compared with the predicted probability values 
generated from the network to calculate three measures of performance: R-square, and 
Root Mean Square Error (RMSE) and Average Absolute Relative Error (AARE).  Each 
measure of performance is defined as below: 

  RMSE = 

2

1

( ( ) ( ))
n

i

p i O i

N
=

−∑
 

and 

   AARE = 1

( ) ( )
( )

n

i

P i O i
O i
N

=

−∑
 

where 
             = predicted value of the parameter for observation i. ( )P i
             = actual observed value of the parameter for observation i. ( )O i
              N = number of observations. 
 
Performance Evaluation of the ANN Models Developed for Approach One.  
The performance measures suggested above were used to evaluate the training efficiency 
of 18 ANN models built for approach one.  Table 22 shows the performance measures for 
all the networks.  From the Table 22 it was observed that RMSE ranges from .072 to 
.252, AARE varies from .0258 to .477, and R-square varies from .651 to .962.  A possible 
explanation to the variation observed in the performance measures would be variation in 
the frequencies of observations leading to wide differences in the probability distributions 
within the interval considered.  Failure to approximate such cases accurately also leads to 
high approximation errors.  For instance, an occupancy range of 75-100 implies extreme 
congested conditions.  A wide variation in the probability distributions of different 
observations could be seen due to unstable flow conditions, thus affecting the 
approximation efficiency.  The variation in the performance measures for the occupancy 
increase case can be attributed to differences in the probability distributions among the 
observations and approximation errors. 

 
Performance Evaluation of the ANN Models Developed for Approach Two. 
Performance of the 20 networks built to model the probabilistic traffic flow relationships 
was evaluated and tabulated in Table 23.  A difference in the performance measures 
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could be observed from Table 23 (i.e., RMSE varies from .005-.092, AARE varies from 
.021-.581 and R-square varies from .835-.992).  This variation in the performance 
measures could be attributed to variation in the probability distributions due to 
insufficient data and approximation errors.  The performance measures calculated for 
evaluating the network models indicated reasonable approximation of the PDFs 
developed for both the approaches. 

 
Summary of PDFs.  
Probability distribution functions for the first and second approach were approximated 
using 38 Multi-layer Feed-Forward networks.  Performance evaluation of the network 
models conducted showed reasonable approximation of the PDFs.  The network models 
built have the capability to predict the probabilities of real-time data which form the basis 
for devising a data screening algorithm as explained next.   



Table 22. Performance Measures of the ANN Models for Approach One 
Network No No.  of observations Parameter Type Interval RMSE AARE R-square Observations within ± 

1 299 Occupancy Drop 0-25 0.076 0.215 0.946 90.2
2 800 Occupancy Drop 25-50 0.129 0.393 0.856 75.8
3 481 Occupancy Drop 50-75 0.078 0.477 0.945 89.6
4 966 Occupancy Drop 75-100 0.252 0.373 0.651 61.2
5 2162 Occupancy Increase 0-25 0.102 0.114 0.736 87.6
6 1321 Occupancy Increase 25-50 0.123 0.18 0.765 83.6
7 286 Occupancy Increase 50-75 0.131 0.21 0.812 80.9
8 165 Occupancy Increase 75-100 0.078 0.25 0.962 91.8
9 312 Speed Drop 0-25 0.092 0.361 0.921 81.2
10 934 Speed Drop 25-50 0.088 0.331 0.917 86.5
11 1570 Speed Drop 50-75 0.077 0.124 0.88 92.2
12 1177 Speed Drop 75-100 0.078 0.23 0.938 84.9
13 2039 Speed Increase 0-25 0.092 0.416 0.946 83.5
14 1600 Speed Increase 25-50 0.083 0.279 0.948 88.8
15 1003 Speed Increase 50-75 0.072 0.113 0.879 91.1
16 252 Speed Increase 75-100 0.075 0.252 0.921 88.4
17 420 Volume Drop 0-20 0.076 0.0258 0.94 88.59
18 231 Volume Increase 0-20 0.091 0.104 0.935 88.59
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Table 23. Performance Measures of the ANN Models for Approach Two 
Network no. No. of observations Type Interval RMSE AARE R-square Observations within ± .01

1 100 O/S 0-5 0.092 0.361 0.921 90.1
2 100 O/S 5-10 0.088 0.331 0.917 95.2
3 100 O/S 10-15 0.077 0.124 0.88 95.2
4 100 O/S 15-20 0.078 0.23 0.938 96.5
5 81 O/V (stable flow) 1-3 0.065 0.193 0.976 90.1
6 339 O/V (unstable flow) 4-20 0.005 0.147 0.935 91.4
7 100 S/O 0-5 0.076 0.285 0.964 89.1
8 100 S/O 5-10 0.07 0.259 0.967 91.2
9 100 S/O 10-15 0.065 0.0907 0.907 91.2
10 100 S/O 15-20 0.064 0.021 0.835 99.1
11 160 S/V (unstable flow) 1-7 0.071 0.071 0.939 95.1
12 240 S/V ( stable flow) 8-20 0.066 0.285 0.992 94.5
13 100 V/O 0-5 0.079 0.461 0.969 88.3
14 100 V/O 5-10 0.074 0.581 0.982 85.1
15 100 V/O 10-15 0.075 0.345 0.967 86.8
16 100 V/O 15-20 0.077 0.147 0.919 88.8
17 100 V/S 0-5 0.072 0.513 0.973 92.8
18 100 V/S 5-10 0.078 0.502 0.952 90.1
19 100 V/S 10-15 0.061 0.208 0.977 90.9
20 100 V/S 15-20 0.066 0.091 0.954 94
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Data Screening Algorithm 
This section deals with application of the neural network models for screening of a real-
time data set.  The process of devising a real-time screening algorithm is carried out in 
three stages.  In the first stage, ANN models developed are used to predict the 
probabilities for real-time data.  In the second stage, the probabilities predicted from the 
network models are compared with user specific threshold to identify erroneous 
observations.  The third stage deals with further analysis conducted to identify the 
erroneous parameters in an observation. 
 
Stage One: Prediction of Probabilities for Real-time Data.  
The neural network models built were used to predict the probabilities associated with the 
data presented in real-time format.  A 24 hour detector data compiled from 70 detector 
stations in the year 2002 was considered.  A continuous stream of observations was 
extracted and was inputted into the network models.  The probabilities associated with 
52,000 continuous observations were predicted from the network models and were 
further used for screening analysis.  Figure 37 shows a snapshot of nine probabilities 
derived to screen each observation.   

 
Stage Two: Data Screening Algorithm.  
The probabilities obtained from the MLP networks were used for deriving data screening 
strategy to filter the observations.  A threshold of 95 percent was considered to 
demonstrate the implementation of data screening algorithm.  The threshold specified is 
the probability with which the observations could be judged as valid. 
 

    Probabilistic Traffic Flow Relationships Temporal Variation of Parameters 

Obs O S V ( )|
jk S so =≤ P OP O ( )|

jk V vo = ( )|
jk O oP S s =≤ ( )|

 
≤

  
( )|

jk O oP V v =≤

 
( )|

jk S sP V v =≤

 

{ }
jk V vP S s =≤

 { }
1

1

|
|

t t o

t t o

P O O
P O O

δ
δ

+

+

− ≤
− ≤

{ } 
{ }

{ }1

1

|
|

t t s

t t s

P S S
P S S

δ
δ

+

+

− ≤
− ≤

 
{ }

1

1

|
|

t t v

t t v

P V V
P V V

 δ
δ

+

+

− ≤
− ≤

1 1 65 3 0. 86 0. 6427 0. 3872 0. 7924 0. 7071 0. 4452 - - 
800832 507005 26 

0

0
0

7713 89 83 84 26 33 - 
2 2 63 3 0.730375 0.896427 0.699981 0.682413 0.267071 0.305153 0. 0. 0.1928
3 3 63 3 0.730375 0.896427 0.699981 0.682413 0.267071 0.305153 0.748359 0.391523 0.192826 
4 1 72 2 0.811578 0.912994 0.905528 0.909637 0.184081 0.34027 0.499277 0.680551 0.250393 
5 1 63 2 0.730375 0.912994 0.699981 0.669189 0.184081 .288159 0.426713 0.905027 0.22607 
6 2 67 4 0.771386 0.870713 0.833872 0.853674 0.379324 0.372728 0.800832 0.467358 0.81271 
7 0 64 1 0.730375 0.923927 0.699981 0.655703 0.129841 0.276449 0.510283 0.58029 .362439 
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Figure 37. Snapshot of the Nine Probabilities Developed to Test the Validity of an Observation 

 
The observations which had all the nine probabilities less than the threshold specified 
were identified as valid observations.  The observations which had any of the nine 
probabilities not lying between the thresholds specified were considered invalid.  These 
observations were identified as either partially or totally erroneous, and were further 
screened to identify the probable erroneous parameters.  An observation which had all the 
three parameters likely to be erroneous was filtered out as totally erroneous observation.   
 
Stage Three: Identification of Erroneous Parameters.  
A valid observation was used to derive a strategy for identifying the erroneous 
parameters.  Intentional errors were introduced into the valid observations and the 
patterns among the set of nine probabilities observed by these changes were used to 
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identify the erroneous parameters in general.  The screening strategy was devised by 
fixing one parameter of a valid observation and changing the other parameters to 
erroneous values.  This was based on the assumption that for an observation to be 
partially valid, at least one of the parameters in the observation should be valid.   

 
Separate analysis was conducted for stable and unstable flow observations as they 
possessed different probability distributions and would likely possess different patterns 
when the intentional errors were introduced into the observation.  Figure 38 and Figure 
39 show snapshots of valid observations (representing stable and unstable flows) that 
were considered to conduct experiment for identifying the erroneous parameters.  An 
experimental analysis was conducted on each of the above observations to derive the 
patterns for identifying the erroneous parameters.   
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Figure 38. Snapshot of a Valid Observation Representing Stable Flow Condition 
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28 11 11 0.203 0.533 0.264 0.68 0.207 0.656 0.0802 0.132 0.203 
 

Figure 39. Snapshot of a Valid Observation Representing Unstable Flow Condition 
 
The process was sequentially carried out in eighteen steps to deduce all the patterns 
which would capture the nature of the most of the erroneous observations with respect to 
stochastic and conditional variation of the parameters.  A valid observation representing 
stable flow condition was considered first and errors were introduced into the 
observation.  In first six steps, patterns corresponding to single parameter being erroneous 
were identified while the next twelve steps dealt with identifying the patterns that reflect 
the invalidity of two parameters.  The experimental design to deduce the patterns 
corresponding to the erroneous parameters is presented in Table 24.   
 
The probabilistic patterns corresponding to extremely low and high values of parameters 
were examined separately.  This was based upon the reason that the probabilistic nature 
of the observations differs for the extreme values of the parameters.  Intentional errors 
were first introduced into the valid observation and the temporal variation of the 
parameters was examined to deduce patterns for identifying the erroneous parameters.  
Validity of an observation was based on how likely the difference is with its preceding 
observation as mentioned earlier in methodology. Hence, preceding observational values 
(Ot-1, St-1, and Vt-1) were taken as a reference and the absolute difference of occupancy, 
speed, and volume parameters were varied in the experimental sequence designed to 
correspond to the invalid transitions in a time gap of 30 seconds, implying the erroneous 
nature of the transition.  The probabilistic relationship between the parameters was then 
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examined in response to the intentional errors introduced.  The derivation of the patterns 
to identify erroneous parameters (with reference to both temporal variation and 
probabilistic traffic flow relationship) for stable flow conditions is presented in Table 25.



Table 24. Patterns Representing Various Erroneous Observations 
 
Pattern Erroneous parameter

1 Volume-
2 Volume+
3 Speed-
4 Speed+
5 Occupancy-
6 Occupancy+
7 Speed+, Volume+
8 Speed+, Volume-
9 Speed-, Volume+

10 Speed-, Volume-
11 Occupancy+, Volume+
12 Occupancy+, Volume-
13 Occupancy-, Volume+
14 Occupancy-, Volume-
15 Occupancy+, Speed+
16 Occupancy+,Speed-
17 Occupancy-, Speed+
18 Occupancy-, Speed-

Description
Only volume parameter is invalid and the value is lower than expected
Only volume parameter is invalid and the value is higher than expected
Only speed parameter is invalid and the value is lower than expected
Only speed parameter is invalid and the value is higher than expected
Only occupancy parameter is invalid and the value is lower than expected 
Only occupancy parameter is invalid and the value is higher than expected 
Speed and volume parameters are invalid for a combination of high speed and volume values
Speed and volume parameters are invalid for a combination of high speed and low volume values
Speed and volume parameters are invalid for a combination of low speed and high volume values
Speed and volume parameters are invalid for a combination of low speed and volume values
Occupancy and volume parameters are invalid for a combination of high occupancy and high volume values

Occupancy and speed parameters are invalid for a combination of high occupancy and low speed values
Occupancy and speed parameters are invalid for a combination of low occupancy and high speed values
Occupancy and speed parameters are invalid for a combination of low occupancy and  lowspeed values

Occupancy and volume parameters are invalid for a combination of high occupancy and low volume values
Occupancy and volume parameters are invalid for a combination of low occupancy and high volume values
Occupancy and volume parameters are invalid for a combination of low occupancy and  low volume values
Occupancy and speed parameters are invalid for a combination of high occupancy and speed values
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Table 25. Capturing Probabilistic Patterns of the Erroneous Observations in Stable Flow Conditions (Approach One) 
 

 
Pattern 

No Erroneous parameter O δ { }
{ }
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1

|
|

t t o
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P O O
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δ
δ

+

+

− ≤
− ≤

{ } { }S δ { }
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1

|
|

t t s
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P S S
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+

+

− ≤
− ≤ V δ { }

1

1

|
|

t t v

t t v

P V V
P V V

δ
δ

+

+

− ≤
− ≤

  Default 10 1 0.480 54 6 0.623 14 1 0.460 
1 Volume- 10 1 0.480 54 6 0.623 14 13 0.923 
2 Volume+ 10 1 0.480 54 6 0.623 14 6 0.960 
3 Speed- 10 1 0.480 54 54 0.992 14 1 0.460 
4 Speed+ 10 1 0.480 54 46 1.000 14 1 0.460 
5 Occupancy- 10 10 0.910 54 6 0.623 14 1 0.460 
6 Occupancy+ 10 90 0.972 54 6 0.623 14 1 0.460 
7 Speed+, Volume+ 10 1 0.480 54 46 1.000 14 6 0.960 
8 Speed+, Volume- 10 1 0.480 54 46 1.000 14 13 0.923 
9 Speed-, Volume+ 10 1 0.480 54 54 0.992 14 6 0.960 
10 Speed-, Volume- 10 1 0.480 54 54 0.992 14 13 0.923 
11 Occupancy+, volume+ 10 90 0.972 54 6 0.623 14 6 0.960 
12 Occupancy+, volume- 10 90 0.972 54 6 0.623 14 13 0.923 
13 Occupancy-, volume+ 10 10 0.910 54 6 0.623 14 6 0.960 
14 Occupancy-, volume- 10 10 0.910 54 6 0.623 14 13 0.923 
15  Occupancy+, speed+ 10 90 0.972 54 46 1.000 14 1 0.460 
16  Occupancy+,speed- 10 90 0.972 54 54 0.992 14 1 0.460 
17  Occupancy-, speed+ 10 10 0.910 54 46 1.000 14 1 0.460 
18  Occupancy-, speed- 10 10 0.910 54 54 1.000 14 1 0.460 
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Table 26. Capturing Probabilistic Patterns of the Erroneous Observations in Stable Flow Conditions (Approach Two) 
 

Pattern 
No Erroneous parameter O δ { }
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 Default 2 12 15 0.732 0.916 0.860 0.809 0.759 0.899 
1 Volume- 2 12 1 0.732 0.951 0.86 0.657 0.03 0.248 
2 Volume+ 2 12 20 0.732 0.644 0.86 0.841 0.92 0.923 
3 Speed- 2 0 15 0.748 0.916 0.077 0.36387 0.759 0.988 
4 Speed+ 2 20 15 0.766 0.916 0.97 0.969 0.759 0.942 
5 Occupancy- 0 12 15 0.733 0.173 0.694 0.809 0.903 0.809 
6 Occupancy+ 20 12 15 1 1 0.992 0.809 0.905 0.809 
7 Speed+, Volume+ 2 20 20 0.766 0.664 0.97 0.969 0.923 0.961 
8 Speed+, Volume- 2 20 0 0.791 0.951 0.97 0.966 0.03 0.433 
9 Speed-, Volume+ 2 0 20 0.791 0.664 0.077 0.342 0.914 1 
10 Speed-, Volume- 2 0 0 1 0.951 0.077 0.947 0.33 0.132 
11 Occupancy+, volume+ 20 12 20 1 1 0.992 0.969 0.914 0.928 
12 Occupancy+, volume- 20 12 0 0.733 0.78 0.992 0.36 0.33 0.248 
13 Occupancy-, volume+ 0 12 20 0.733 0.128 0.694 0.969 0.914 0.928 
14 Occupancy-, volume- 0 12 0 1 0.901 0.694 0.36387 0.198 0.248 
15 Occupancy+, speed+ 20 20 15 0.99 1 0.97 0.635 0.905 0.942 
16 Occupancy+,speed- 20 20 15 0.631 1 0.947 0.819 0.905 0.942 
17 Occupancy-, speed+ 0 20 15 0.67 0.714 0.951 0.809 0.903 0.942 
18 Occupancy-, speed- 0 0 15 0.698 0.714 0.08 0.809 0.903 0.998 

 
 



Similar experimental analysis was conducted on the unstable flow observation and the 
patterns corresponding to the changes made with respect to stochastic and conditional 
variation of the parameters were identified.  The changes made in accordance with the 
experimental design and the corresponding probabilistic patterns observed due to these 
changes are presented in Table 27 and Table 28. 
 
Results and Interpretation of Stage Three. This section presents the results obtained from 
the six case studies conducted on the stable and unstable flow observations and the 
process of screening the observation with reference to the patterns derived.  Table 27 
represents the 18 patterns that were derived form the experimental analysis conducted on 
a valid stable flow observation considered.  From Table 29 it can be seen that pattern five 
doesn’t indicate the erroneous nature of the observation for low values of occupancy.  A 
possible explanation to this would be that the occupancy values for the stable flow 
conditions are quiet low (0-20%) and a drop from these values is feasible for all the 
combinations of valid speed and volume parameters.   

 
Similarity among the patterns 2 and 13, 3 and 18, 4 and 17 as shown in the Table 29 
could be attributed to the fact that maximum occupancy drop for stable flow (i.e.,  for low 
occupancy range conditions is feasible as explained earlier and doesn’t have any effect  
by itself when combined with other erroneous parameters.  The patterns developed could 
be used to identify the erroneous parameters.  For instance, if an observation has 
probabilities matching with the pattern 1 (volume-), a conclusion that the volume 
parameter is erroneous and the value is less than expected to be valid is reached. 
 

 108



Table 27. Capturing Probabilistic Patterns of the Erroneous Observations in Unstable Flow Conditions (Approach One) 
 

Pattern 
No Erroneous parameter O δ { }
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 Default 26 2 0.080 10 1 0.133 11 0 0.204 
19 Volume- 26 2 0.080 10 1 0.133 11 10 0.904 
20 Volume+ 26 2 0.080 10 1 0.133 11 9 0.988 
21 Speed- 26 2 0.080 10 10 1.000 11 0 0.204 
22 Speed+ 26 2 0.080 10 90 1.000 11 0 0.204 
23 Occupancy- 26 2 0.080 10 90 1.000 11 9 0.988 
24 Occupancy+ 26 2 0.080 10 90 1.000 11 10 0.904 
25 Speed+, Volume+ 26 2 0.080 10 10 1.000 11 9 0.988 
26 Speed+, Volume- 26 2 0.080 10 10 1.000 11 10 0.904 
27 Speed-, Volume+ 26 26 0.984 10 1 0.132 11 0 0.203 
28 Speed-, Volume- 26 74 0.991 10 1 0.132 11 0 0.203 
29 Occupancy+, volume+ 26 74 0.991 10 1 0.132 11 9 0.988 
30 Occupancy+, volume- 26 74 0.991 10 1 0.132 11 10 0.905 
31 Occupancy-, volume+ 26 26 0.984 10 1 0.132 11 9 0.988 
32 Occupancy-, volume- 26 26 0.984 10 1 0.132 11 10 0.905 
33 Occupancy+, speed+ 26 74 0.991 10 90 1.000 14 1 0.189 
34 Occupancy+,speed- 26 74 0.991 10 10 1.000 14 1 0.189 
35 Occupancy-, speed+ 26 26 0.984 10 90 1.000 14 1 0.189 
36 Occupancy-, speed- 26 26 0.984 10 10 1.000 14 1 0.189 
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Table 28. Capturing Probabilistic Patterns of the Erroneous Observations in Unstable Flow Conditions (Approach Two) 
 

Pattern 
No Erroneous parameter O δ { }
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 Default 5 2 1 0.2030384 0.085322 0.263805 0.97011 0.104881 0.0986 
19 Volume- 5 2 20 0.2030384 0.8738 0.263805 0.3617 0.846 1 
20 Volume+ 5 0 11 0.872814 0.533433 0.198 0.4351 0.2069 0.91605 
21 Speed- 5 20 11 0.957803 0.533433 0.978 0.972 0.2069 0.878 
22 Speed+ 0 2 11 0.203 0.3146 0.099 0.679 0.8104 0.6561 
23 Occupancy- 20 2 11 0.994 1 0.9626 0.679 0.8727 0.6561 
24 Occupancy+ 5 20 20 0.957803 0.8738 0.978 0.969 0.846 0.96013 
25 Speed+, Volume+ 5 20 1 0.957803 0.085322 0.978 0.968 0.104881 0.433 
26 Speed+, Volume- 5 0 20 0.872814 0.8738 0.198 0.3424 0.846 1 
27 Speed-, Volume+ 5 0 1 0.872814 0.085322 0.198 0.9471 0.104881 0.1328 
28 Speed-, Volume- 20 2 20 0.994 1 0.9626 0.3617 0.9141 1 
29 Occupancy+, volume+ 20 2 1 0.994 0.784 0.9626 0.97011 0.333 0.098 
30 Occupancy+, volume- 0 2 20 0.203 0.128 0.099 0.3617 0.941 1 
31 Occupancy-, volume+ 0 2 1 0.203 0.901 0.099 0.97011 0.198 0.098 
32 Occupancy-, volume- 20 20 11 1 1 0.998 0.97 0.872 0.878 
33 Occupancy+, speed+ 20 0 11 0.998 1 0.9466 0.453 0.872 0.916 
34 Occupancy+,speed- 0 20 11 0.67 0.314 0.96 0.97 0.8104 0.878 
35 Occupancy-, speed+ 0 0 11 0.698 0.314 0.087 0.453 0.8104 0.916 
36 Occupancy-, speed- 5 2 1 0.2030384 0.085322 0.263805 0.97011 0.104881 0.0986 
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Table 29. Patterns for Screening the Stable Flow Observations10 
 
Pattern 
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1 Volume- 0 1 0 0 0 0 0 0 0 
2 Volume+ 0 0 0 0 0 0 0 0 1 
3 Speed- 0 0 0 0 0 1 0 1 0 
4 Speed+ 0 0 1 1 0 0 0 1 0 
5 Occupancy- 0 0 0 0 0 0 0 0 0 
6 Occupancy+ 1 1 1 0 0 0 1 0 0 
7 Speed+, Volume+ 0 0 1 1 0 1 0 1 1 
8 Speed+, Volume- 0 1 1 1 0 0 0 1 0 
9 Speed-, Volume+ 0 0 0 0 0 1 0 1 1 

10 Speed-, Volume- 0 1 0 0 0 0 0 1 0 

11 
Occupancy+, 

Volume+ 1 1 1 0 0 0 1 0 1 

12 
Occupancy+, 

Volume- 1 0 1 0 0 0 1 0 0 

13 
Occupancy-, 

Volume+ 0 0 0 0 0 0 0 0 1 

14 
Occupancy-, 

Volume- 0 0 0 0 0 0 0 0 0 

15 
Occupancy+, 

Speed+ 1 1 1 1 0 0 1 1 0 
16 Occupancy+,Speed- 1 1 0 0 0 0 1 1 0 

17 
Occupancy-, 

Speed+ 0 0 1 1 0 0 0 1 0 

18 
Occupancy-, 

Speed- 0 0 0 0 0 1 0 1 0 

                                                 
10 1- Cumulative probability >.95, 0-cumulative probability <.95. 

 111



In case an observation matches with overlapping patterns (e.g., 2 and 13), it could be 
concluded that either occupancy or volume parameter is erroneous but a definitive 
conclusion that both of the parameters are erroneous could not be reached. 

   
The patterns derived from the experimental analysis conducted on the unstable flow 
observation considered are presented in the Table 30.  Similarity between patterns (i.e., 
28 and 21) representing speed, and volume, and speed conditions was observed.  This 
could be attributed to the fact that the low value of the volume parameter considered 
doesn’t have an effect on the erroneous nature of the observation when combined with 
low values of speed.  Patterns 22 and 26 overlap, suggesting that either speed or volume 
parameter is erroneous.   

 
The real-time data set was first screened with a threshold value of .95 as mentioned 
earlier.  The erroneous observations (with probabilities greater than .95) were further 
matched with the patterns developed to identify erroneous parameters.  The 
implementation of data screening algorithm for the real-time data is presented in Figure 
40.  Table 31 shows the results of screening process conducted.  The results from the 
table showed that 75 percent of the observations were likely to be valid, while the 
remaining 20 percent of observations were identified as partially valid observations.  The 
remaining five percent of the observations could be either totally erroneous observations 
or observations representing conflicting conclusion.  These conflicting conclusions could 
be reached when an observation matches with two or more patterns which indicate 
contradictory results.   
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Table 30. Patterns for Screening the Unstable Flow Observations 
 
Pattern 

No 
Erroneous 
parameter 
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19 Volume- 0 0 0 1 0 0 0 0 0 
20 Volume+ 0 0 0 0 0 1 0 0 1 
21 Speed- 0 0 0 0 0 0 0 1 0 
22 Speed+ 1 0 1 1 0 0 0 1 0 
23 Occupancy- 0 0 0 0 0 0 1 0 0 
24 Occupancy+ 1 1 1 0 0 0 1 0 0 
25 Speed+, Volume+ 1 0 1 1 0 1 0 1 1 
26 Speed+, Volume- 1 0 1 1 0 0 0 1 0 
27 Speed-, Volume+ 0 0 0 0 0 1 0 1 1 
28 Speed-, Volume- 0 0 0 0 0 0 0 1 0 

29 
Occupancy+, 

Volume+ 1 1 1 0 0 1 1 0 1 

30 
Occupancy+, 

Volume- 1 0 1 1 0 0 1 0 0 

31 
Occupancy-, 

Volume+ 0 0 0 0 0 1 1 0 1 

32 
Occupancy-, 

Volume- 0 0 0 1 0 0 1 0 0 

33 
Occupancy+, 

Speed+ 1 1 1 1 0 0 1 1 0 
34 Occupancy+,Speed- 1 1 0 0 0 0 1 1 0 

35 
Occupancy-, 

Speed+ 0 0 1 1 0 0 1 1 0 

36 
Occupancy-, 

Speed- 0 0 0 0 0 0 1 1 0 
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Figure 40. Implementation of Data Screening Algorithm for Real-time Traffic Data 
 

 
Table 31.  Results of Implementation of Data screening Algorithm on Real-time 

Data 
 

Pattern 
No Erroneous parameters Total number of observations 

51,837
Percentage of 
observations

  Valid 
observations 

Invalid 
observations  

  38657 - 74.57 

Real-time Data
ANN Models 

Nine probabilities for each 

observation 

Probabilities 

≤ Pthreshold

Pattern Matching 

O, S, V are erroneous 

NO 

YES
Decision: 
Erroneous 
parameters 

Observations are erroneous 

NO 

YES 
Decision: O, S 
and V are valid 
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1 Volume- - 3997 7.71 

2 Volume + - 417 0.804 

3 Speed - - 23 0.044 

4 Speed + - 76 0.146 

7 Speed +, Volume + - 7 0.013 

8 Speed +, Volume - - 19 0.036 

9 Speed- Volume + - 40 0.077 

15 Occupancy +, speed+ - 3745 7.22 

16 Occupancy +, speed - - 2043 3.94 

18 Occupancy -, speed - - 56 0.108 

21 Speed - 
 (unstable flow) - 19 0.036 

22 Speed + 
( unstable flow) - 9 0.017 

23 Occupancy- 
(unstable flow) - 114 0.219 

24 Occupancy + 
(unstable flow) - 9 0.017 

25 Speed +, volume+ 
(unstable flow) - 113 0.217 

27 Speed -, volume+  
(unstable flow) - 7 0.013 

 
Conclusions 
The non-linear nature of the stochastic and conditional relationships between the 
parameters was reasonably captured using 38 Multi-layer Feed-forward Networks, except 
for the stochastic variations representing high occupancy conditions.  The screening 
algorithm devised was efficient in judging the validity of the real-time data format with 
95% probability.  Most of the patterns deduced were capable of identifying the erroneous 
parameters in the observation thus classifying them into partially valid observations.  The 
following were contributions of this research study. 
 
This approach can be implemented online or offline to screen the observations before or 
after they are streamed into data warehouses and is user adaptable as it does not impose 
any restrictions on the thresholds.  This approach could be used for imputing the 
erroneous parameters in the sense that the patterns deduced were capable of identifying 
the erroneous parameter, and also communicated information about the dimension of the 
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erroneous parameter (e.g., volume- suggests that volume parameter is erroneous and the 
value is less than expected).  Thus, this study provides preliminary information required 
for imputation of erroneous parameters.  The general approach formulated in this study 
can be applied to different locations while the transferability of the model needs to be 
authenticated with more tests using the data from other locations and are not dealt with in 
this study.  The algorithm can also be used to identify the operational status of detectors 
and detect calibration problems that may call for immediate maintenance due to its real-
time screening ability. 

 
 

Data Mining: Causal Factors of Vehicle Accidents 

Background and Analysis  
In the context of the problem, the traffic data available in data warehouses (DW) 
includes:  

a) Historical time-series data from sensors (i.e., average speed, volume 
and occupancy11),  

b) Incidents, usually provided by police/patrol repots or other types of 
specialized sensors such as video cameras. Incident reports contain 
information about the type of the incident, (crash, stall, etc.), 
location, time, severity, and duration12.  

In general, sensor data is provided in real-time, while incident reports are manually 
entered into the system immediately after the fact, or in batch mode. Incidents and sensor 
information can be mapped together by location and time (the time of the incident and the 
sensor record timestamps). The combined set of historic sensor data and incidents will be  
referred to as “traffic data.”  Figure 41 summarizes the main concepts associated with the 
nature of the data available in traffic data warehouses.  

                                                 
11  The most common type of sensor in transportation systems is the inductive loop detector.  
12 Of particular interest for this question, are the types of incidents that can be classified as vehicle 
accidents. 
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Figure 41.  Traffic Data Available in Data Warehouses (DW) for Detecting and 
Predicting Traffic Accidents 

 
The traffic data, as previously defined, can be used to build inference models to: a) 
identify changes in traffic that might occur as result of an accident (accident detection), 
b) to detect changes in traffic behaviors that are likely to lead to accidents (accident 
prediction), and c) to provide the necessary information to proactively interfere with 
traffic conditions (for instance, through dynamic speed control signals, and traffic 
redirection) in order to avoid the occurrence of traffic accidents (accident prevention).  

Our goal is to identify causal factors for traffic accidents using only traffic data. In the 
next subsection, we provide a brief literature review on traffic accident prediction from 
sensor data; the goal of the literature review is to identify variables that are good 
predictors for traffic accidents. Good predictors are not necessarily causal factors, but we 
use these metrics as a starting point for causal discovery algorithms. In the subsection 
entitled “A Model for Causal Discovery in Traffic Data,” we introduce and discuss a 
model for causal discovery in traffic data. In the subsection, “Expected Results and 
Limitations,” we conclude with a few comments about expected results, restrictions and 
limitations of the proposed approach. Further background information is available in 
papers by Glymour, Pearl, Heckerman, and others [64] [65] [66] [67] [68] [69] [70]. This 
review essentially describes the relationships between associational (purely probabilistic 
Bayesian networks) and causal networks.   
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Literature Review: Finding the Best Predictors  
There’s very little literature available on real-time causal analysis for traffic accidents 
from traffic data. The majority of the literature referring to causality in traffic accidents  
[4] [8] [10] [13] [16] targets accident forensics and reconstruction (usually for accident 
prevention and to identify guilty parties) and relies on much more information than just 
traffic data – usually vehicle size, dynamics, driver profile, etc. Even under these 
circumstances, some authors have clearly reported the difficulties associated with causal 
analysis for traffic accidents [11] [12].  

There are, however, a relatively larger number of publications associating only traffic 
data with accidents, both from a perspective of online detection and for prediction of 
accidents13 (not causal factors). Some research efforts in that area are primarily focused 
on capacity-driven measures of traffic flow in freeway segments. Such measures would 
include, for instance, the Average Annual Daily Traffic (AADT) [17]14. Other efforts 
have focused on a more temporal approach to the problem.   

In 1964, Solomon [21] published what is usually referenced today as the first work 
associating vehicle speed (traffic data) and frequency of accidents. Citing their work, 
Lave [24] in 1985 used aggregate speeds to show that accident rates (more precisely, fatal 
accident rates) were more dependent on speed variance across vehicles than on average 
speed. In 2000, Oh [3] proposed a different approach to identify which traffic metrics 
were better real-time predictors for traffic accidents. Avoiding temporal models, Oh used 
an accident database to take five-minute traffic samples (averages) much before each 
accident (30 minutes before) and right before each accident (five minutes before). Each 
sample set included the average sensor value (occupancy, flow and speed) as well as their 
standard deviation. Oh’s assumption was that traffic right before an accident could be 
labeled as “disruptive,” while the other samples were considered “normal” – a strong 
assumption. Nevertheless, the author built a Bayesian classifier to identify which of the 
variables considered were more predictive of the type of traffic (which was directly 
associated with a traffic accident). Once again, there were significant indications that 
standard deviation of speed (this time, temporal variation) was the better predictor of 
“disruptive” traffic.  

Most of these results were based on aggregated traffic values (for speed, variations and 
crashes) and sometimes (as in [24]) were indirect approximations of variations, like 
differences in percentile values on speed estimation of up to 30 minutes-long intervals. In 
2002, Davis [23] criticized the inferences based on data aggregations, noting that 
aggregate relationships between speed, speed variance, and crash frequency are not 
necessarily supported by the original data.   

More recently, other approaches such as the one proposed by Lee [1] [27], and 
Kockelman [22] utilized 30-second sensor aggregation data as predictors, with significant 
improvements. Kockelman augmented the loop-detector based data (volume and 

                                                 
13 Even though, in some of these works, we sometimes find implicit statements about causal dependencies, 
it is important to highlight that the fact that predictive models for traffic accidents perform well or not don’t 
necessarily imply causality. 
14 Variations of this approach focused on augmenting aggregated volume metrics (such as AADT) with 
information about geometric structure variables of the roadway [15] [16], usually not included in the DW. 
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occupancy) with estimative of average vehicle length to calculate “instantaneous” speed 
variations. Lee [27] proposed a more detailed model, isolating not one, but a number of 
what he called “accident precursors” for real-time crash prediction. He identified three 
main indicators: a) the average variation of speed on each lane, b) the average variation 
of speed difference across adjacent lanes, and c) traffic density. One year later, in [1] Lee 
revises his work and concludes that the average variation of speed difference across 
adjacent lanes (precursor “b”) was not a strong indicator of traffic accidents, as initially 
expected. He proposes instead a new precursor that is essentially based on the differences 
in speed between upstream and downstream traffic, which was a direct indication of 
queue formation.  

In summary, most of the research in predictive models for traffic accidents from sensor 
data seem to rely on direct measures of density and average speed, with variations in the 
way that averages and variations are calculated across lanes and between upstream and 
downstream traffic.   

For our analysis, the volume, occupancy, and speed available in the DW are local to each 
sensor. We build different levels of data aggregation (as explained in the subsequent 
item) that will include averages and variances of each metric per lane, as well as averages 
and variations between lanes and about traffic density.  

Causal Discovery from Observational Data  

Causal discovery from observational (or non-experimental) data is a topic that has 
created, for the last two decades, as much of a revolution as it has created polemic. There 
are a number of philosophical and mathematical arguments used to defend, as well as to 
criticize the possibility of discovering causal dependencies from observational data. 
References [20] [21] [65] [66] [67] [68] [69] [70] provide some additional information 
both in favor and against the concept. Stepping aside from the debate, the goal here is to 
briefly describe, abdicating from proofs and advanced mathematical arguments, how 
causal dependencies can be obtained from non-experimental data. In particular, we refer 
to methods for causal discovery that are based on the notion of Bayesian Networks.   

Simply stated, a Bayesian Network (BN) is essentially composed by a Directed Acyclic 
Graph (DAG) and a joint probability distribution (JPD). Under certain conditions, the 
structure of the DAG represents the same conditional independence relationships found 
in the JPD, with nodes in the graph representing random variables and directed arcs (or 
the lack of them) representing direct probabilistic dependence (or independence) between 
variables. For a given JPD, there are many DAGs (a class of graphs) that can be 
constructed to satisfy the probabilistic association between variables. These graphs are 
known as the “Markov Equivalent” graphs of the distribution.   

A causal graph is one instance of the sub-class of Markov Equivalent graphs, that further 
constrain the DAG by requiring that the direction of the arcs will not only indicate 
probabilistic dependence but also a causal relation between variables. These instances are 
sometimes referred to as causal Bayesian Networks. A simple illustration of this 
difference is shown in Figure 42.   
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Consider, for example, a dataset containing three variables (S: smoking, Y: yellow 
fingers and C: lung cancer) with corresponding conditional independence relations shown 
in Figure 42a. In this example, let’s assume that having yellow fingers (Y) is a feature 
that is independent of having lung cancer (C), given the fact that the individual is a 
smoker. That is, amongst smokers, the two features are not associated with each other, 
but they are certainly both associated with the smoking behavior (S).  

Under the Markov Condition
15

, there are three Bayesian networks, in Figure 42b, that 
correctly represent the joint probability distribution. That is, in all graphs shown in Figure 
42b, given the Markov Condition, (S) is associated to (C) and (Y), and (Y) is independent 
of (C), given (S). That last conditional independence relation is represented in graphs by 
the notion of d-separation, which states that a set of edges (A) in a DAG is d-separated by 
a set of edges (B), given another set (C), if there all paths from (A) to (B) are blocked by 
the set (C). In this example, there’s no directed path from (Y) to (C) unless going trough 
(S), so (Y) is d-separated from (C), given (S).   

However, in order to assume a causal interpretation for the graph (in additional to the 
probabilistic dependence associations) the edges must be further constrained. Let’s 
consider that smoking causes yellow finger and also causes lung cancer, but having 
yellow fingers or lung cancer do not lead one to start smoking. Furthermore, let’s assume 
that having a yellow finger (or tar-stained finger), does not lead one to start smoking or to 
have lung cancer, in the same way that having long cancer does not lead one to start 
smoking or to develop a yellow finger.  

Under these assumptions, the corresponding causal graph for that same distribution is the 
one shown in Figure 42c. It is important to note that all the graphs shown here are 
Markov Equivalent graphs for the same joint distribution, that is, they all comply with the 
independence relations between variables by ensuring the appropriate d-separation 
between the corresponding nodes.  

 
Figure 42.  An Example of Causal Interpretation of Bayesian Networks 

 

                                                 
15 The Markov Condition in DAGs is equivalent to the concept of d-separation between sets. It states that 
given a joint probability distribution (JPD), if a set of nodes X is independent for a set of nodes Y given a 
third set Z, then in a DAG that represents the JDP, all directed paths from X to Y are blocked by Z. 
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It is also important to note that the constraints between a causal graph and the probability 
distribution are more restrictive. As described in detail by Scheines [20] [21] these three 
conditions must hold in order to satisfy the causal interpretation of the graph:  

a)  The Causal Markov Condition: The directed connections of the DAG that  
 satisfy the Markov Condition for a given joint probability distribution represent  
 the causal relations between variables in the correct direction. This essentially  
 means, that out of the graphs that satisfy the Markov Condition, the subset of  
 graphs whose directed arcs indicate causal relations also satisfy the Causal  
 Markov Condition. This is a stronger assumption than the Markov Condition.  

b)  Faithfulness: It essentially states that the graph is complete in the sense that all  
 probability distributions in the data are present in the graph.Considering only the 

Causal Markov Assumption, a causal graph can generate data that will necessarily 
contain all the independence relations defined in the graph, but there are no 
assumptions that (by chance) the data could also contain additional independence 
relations not initially in the graph. The Faithfulness condition requires that this 
will not happen, that is, that every independence relation existing in the data is 
represented in the graph and cannot occur by chance, or by perfect cancellation 
between competing causal relations over the same target variable.  

c) Causal Sufficiency: The set of measured variables “M” includes all of the 
common causes of pairs in M. That is, the causal inference requires conditional 
independence checks that involve the causal variables. Unobserved variables can 
not affect pairs of variables in the set in such a way that will make them “look” 
correlated when they are, in fact, independent conditional to the “unobserved” 
variable.  

Figure 43 shows some of the concepts involved in the process of causal discovery. At 
some level, all algorithms for Bayesian network induction (causal or not) rely on 
independence tests between variables. Not discussed in this paper are all the underlying 
assumptions associated with the independence tests themselves (e.g. partial correlation, 
chi-square, t-test, etc.). In this section, we consider that conditional independence tests 
between variables and sets of variables in the dataset can be performed “reliably” by 
some oracle.  
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Figure 43.  Concept Graph for Causal Discovery 

 
The search for causal graphs from observational data starts with a search for probability 
independence relations between variables in a set. This is, in fact, very similar to 
traditional methods to induce Bayesian networks or Markov Random Fields from a given 
dataset (or a given joint probability distribution).   

In general, methods are classified as global and local, based on the sequence variable 
selection for test. In the worst case, all possible independence tests between all possible 
sets of variables should be verified. For instance, a global algorithm search for 
conditional independence in a set containing three variables (A, B and C), would have to 
perform the tests for independence {A╨ B, A╨ C, B╨ C}, and for conditional  

independence {A╨ B|C, A╨ C|B, B╨ A|C, B╨ C|A, C╨ B|A, C╨ B|C}
16

. This exponential 
approach is not practical for larger datasets. There are, however, global algorithms like 
the graph pattern search available in the PC algorithm [21] that scales better

17
 for larger 

(and sparse) graphs. The graph search in algorithm in PC essentially eliminates edges for 
positive independence tests at each step. By eliminating lower order edges at the 
beginning, the algorithm can reduce the complexity of the search.   

Local approaches on the other hand, start from a single variable and progressively build 
the dependence edges through independence tests with the variable neighbors. Most local 
                                                 
16 The notation X

╨
 Y|Z represents “X is independent of Y, given Z” 

17 In [28], Dai shows (empirically) that for larger non-sparse graphs, the order of the of the partial  
independence tests increases and the quality of results tend to drop, for a fixed number of samples. 
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Markov Blanket (MB) discovery algorithms (like PCX [29], HITON [30] and the Grow-
Shrink (GS) algorithm [31]) follow this strategy.   

On a Directed Acyclic Graph that satisfies the Markov Condition, a Markov Blanket of a 
variable X, is composed by all its direct parents, plus its direct children and the parents of 
its children. If the graph satisfies only the Markov Condition, the Markov Blanket for a 
target variable T, or MB(T), essentially establishes that T is independent of all variables 
in the graph, given the set of variables contained in its Markov Blanket.   

A complete Bayesian network can be constructed by a successive MB search over all the 
variables which is often more efficient than global searchers. However, for causal 
analysis global approaches are recommended, as the orientation of edges around the 
boundary is further constrained (they must imply causality) and requires d-separation 
checks with other variables, outside the MB. 
 
A Model for Causal Discovery in Traffic Data  
The traffic data is essentially a discrete time-series where some variables (sensor data) 
are usually sampled (or aggregated) at fixed intervals, while other variables (traffic 
incidents) might have completely stochastic behavior. The causal (or associational) 
information that can be extracted from the data will vary greatly, both in terms of content 
and interpretation, depending on the aggregation strategy used for the data.  

For instance, if traffic data is aggregated on a monthly basis, and associated with a 
corresponding aggregation (frequency) of accidents, the probabilistic association between 
the variables is likely to present yearly seasonality (maybe due to influences of rains, or 
freezes, or maybe due to changes in traffic patterns between summer – school vacation – 
and winter). Such aggregation is unlikely to indicate, for instance, any correspondence 
between rush hour traffic versus frequency of accidents. Conversely, a five-minute 
aggregation of variables is likely to provide temporal information between cause and 
effect, maybe indicating the immediate conditions of traffic that might have lead to an 
accident, as well as the immediate effects of the accident on traffic, as time progresses.   

The choice of aggregation depends on the objective of the search. For this purpose, we 
have chosen a short-term temporal analysis of causes of traffic accidents (assuming they 
exist). That is, instead of trying to infer causes of traffic accidents from, let’s say, daily 
average traffic density, and daily average speed, we make the assumption that there are 
local traffic conditions that lead to the occurrence of the accident. For instance, a sudden 
variation in traffic density or a progressive increase on speed variation between lanes can 
be causes that, within reasonable time bounds, will lead to an accident. The object is to 
analyze the problem from a time-series perspective.  

Building the Dataset.  In order to illustrate the type of data that would be used for this 
analysis, consider the example in Figure 44. This example is based on actual sensor data 
collected and made available by the Minnesota Department of Transportation (MnDOT) 
for the Twin Cities metropolitan area [35]. Historic records of this data are stored and 
maintained by the Traffic Data Research Laboratory [36]. This specific example shows a 
segment of the Interstate 35W. In the police report, the accident was estimated to have 
occurred at 14:35 hour. (The sensor data includes basically occupancy and volume 
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information from inductive loop detectors, ILD, embedded in the freeway.) The raw 
values for volume and occupancy are reported on 30-second intervals as aggregates  

 
Traffic accidents are not integrated with the database but we’ve contacted the MnDOT 
and asked for the list of accidents on specific locations. Identifying each of the sensors 
with a map of the freeway sections, we estimated average vehicle speed (from volume 
and occupancy) and plotted, in Figure 44, the 15-minute average speed of all lanes before 
and after the accident. The location of the accident is shown by the solid arrow in the map 
at the bottom of the image.  

The example basically shows the effects of the accident on the average speed. Our goal is 
to identify the opposite, that is, changes in traffic conditions that could lead to traffic 
accidents.   

This is an investigative procedure so we start with a set of variables per location, with 
different aggregations and at different time intervals. After the first inference (discussed 
in the subsection below entitled “The Search Procedure”) we might choose to eliminate 
some of the weekly associated variables and reduce the set for a new search. Consider, 
for instance, the sample dataset constructed for the segment illustrated in Figure 44. In 
that figure, the freeway segment has five stations18, namely S657, S658, S659, S664, and 
S665 (from left to right).   
 

                                                 
18 Each station is a collection of detectors. In the case of IDL sensors, a station over a three-lane freeway 
might include three detectors, one for each lane.  
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Figure 44.  An example of the changes in average speed due to an all-lanes traffic 
accident.  Interstate 35W, North Bound. July 27, 2004.  Traffic accident occurred 
approximately at 14:35h and caused a 3-mile long congestion over all lanes in the 

freeway.  All clear reported at 15:38h. 
 
As a first approach, for instance, we can define the following variables for each station:  
 

• Average speed across all lanes (P)  
• Average temporal variation of speed, for all lanes (Q)  
• Average variation of speed between lanes (R)  
• Occupancy/Volume ratio  - or O/C ratio for short (indicative of density) (S)  
• Average temporal variation of O/C ratio, for all lanes (T)  
• Average variation of O/C ratio between lanes (U)  

 
These metrics can be calculated for different time intervals (five-minute averages, for 
instance) and for different lags from a current time stamp. An arbitrary letter was 
assigned to each variable just to simplify notation – note that we assume no background 
knowledge between variables so their label is unimportant during the discovery process. 
The traffic accident variable (A) can be binary, as we are not concerned with causal 
effects for different classes of accidents.   

Consider a dataset including the set of variable {P,Q,R,S,T,U} for a different number of 
time lags (let’s say 2) separated by a 10 minute interval, and a pre-defined uniform 
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(amongst all variables) time aggregation (let’s say five-minute averages). As described, a 
snapshot of one sensor in the freeway would provide the following set:  
{P2,P1,P0,Q2,Q1,Q0,R2,R1,R0,S2,S1,S0,T2,T1,T0,U2,U1,U0}, at station D (a set of detectors) 
and instance T. In this sample, looking at variable P, for instance, we have:  

P0: 5-minute average of P(t) at time t-20 minutes.  
P1: 5-minute average of P(t) at time t-10 minutes.  
P2: 5-minute average of P(t) at t.  

 
Define as S the set of variables defined for a specific detector D, at time t, as 
follows:  S(D,t ) ={P2,P1,P0,Q2,Q1,Q0,R2,R1,R0,S2,S1,S0,T2,T1,T0,U2,U1,U0} 
 

In order to construct our dataset we will follow the procedure:  

a) Identify all reported accidents in the database that qualify as the types of accidents 
we’re interested in the analysis. We might want to eliminate from this set 
accidents that seem to be outliers in their characteristics (e.g., involving too many 
cars, with very severe impact or accidents involving special types of vehicles such 
as heavy trucks or motorcycles).  The more homogeneous the characteristics of 
the accidents included the higher will be our chances of mitigating the effects of 
confounded, unmeasured variables.  

b) As we’re primarily concerned with predictors for accidents, we will collect 
samples S(D,t)  for a time instant immediately before the accident (from the set 
we’ve chosen, that will give us two time lags before that). This will create a set of 
samples that we will identify as precursors, that is, they will be tagged as events 
that occurred before (given a time window) a known accident. If we choose a 
single sensor, the set will be <Time, S(D,t), Accident = 1>  

c) Based on the time-stamps selected for all samples in S(D,t), we will 
build our set of negative cases by choosing similar sets from the same 
location/sensor.  

The selection of the data is critical for the approach. There are many external variables 
that are not being measured, so special care should be taken to try comparing data where 
these effects are minimized. For instance, by building positive and negative cases from 
the location we remove the geometric parameters (cross-section, visibility, etc.) from the 
equation, facilitating the process of finding true associations.   

If a single sensor is chosen for each accident the dataset, visualized graphically, will be as 
illustrated in Figure 45. Where each node represents a random variable measured over 
many accidents (accident=true) and other “similar” traffic conditions where accidents 
didn’t occur. 
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Figure 45.   A Sample Data Set Used as Input for the PCX Algorithm 

 
Temporal causal effects will show as causal edges from variables of the type Xi-n →Xi. 

For instance, depending on the time interval chosen between lags (Δt), we should expect 
temporal causal relations between variables of the same time, as illustrated in Figure 46.   
 

 
Figure 46.  Expected Causal Temporal Relations Between the Same Types of 

Variables.  (Note that this is only a partial view of the graph.) 
 
The same is true for temporal dependencies between variables. For instance, if the 
algorithm identifies a causal relation between P2 and Q1, let’s say P2 → Q1 (P2 causes 
Q1), then it would be represented as an edge between P2 and Q1. The interpretation is that 
variable P has a causal effect on variable Q with a Δt lag. If the graph is consistent, the 
same relations (edges) would be present between P1→Q0, as illustrated in Figure 47.  

 
Figure 47.   A Temporal Causal Relation Between Variables P and Q 
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This technique allows time-series data to be analyzed as static datasets. As we have a 
priori information about the variables, we can augment the approach by adding 
background knowledge that will help the search procedure. For instance, we can add a set 
of “forbidden” edges to the graph. That is, for instance, illustrated as a set of red arrows 
in Figure 48.  The red arrows are causal edges that should not be explored by the search 
procedure, as they imply causal factors going backward in time (which is impossible).  

 
 

Figure 48.  The Sample Dataset with Background Knowledge, a Set of Forbidden 
Causal Edges.  (Note that, for simplicity, not all edges are shown in the picture.) 

 
The final dataset then would include a table of data attributes where each example 
contains the set of variables{P2,P1,P0,Q2,Q1,Q0,R2,R1,R0,S2,S1,S0,T2,T1,T0,U2,U1,U0} 
shown in Figure 45, and background knowledge about forbidden edges (back in time) and 
other additional background causal information we might have about the data, in the form 
of forbidden causal edges, or forced causal edges.  

One last point to be made about the data preparation is about nonlinear relationships 
between variables. Chu [64], showed that, in causal discovery from time-series data, non-
linear relations between variables can compromise the validity of the independence tests. 
In his paper, he proposes to address this issue by building a generalized additive 
regression model (GAM) between the nonlinear variables and using the residuals for the 
independence tests. He compares his results with traditional Granger causal analysis for 
time series (which expects linear relations between variables and between variable-lags) 
and shows significant improvements. This illustrates that the process of building the 
dataset is iterative and might require several searches over different lags, aggregation, 
and variable association strategies, etc. 

The Search Procedure.  The search procedure for the causal graph can be done in 
multiple ways. As described in in the background section, the search for a causal graph 
essentially involves a sequence of conditional independence tests to identify the structure 
of the DAG that represents the data.  

 
In this report, we will focus our attention on two algorithms that have been widely 
applied to this type of search, i.e., the SGS and the PC algorithms. Both algorithms are 
described in [21] and pseudo-code is provided in Figure 49.  
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Figure 49.  The SGS and PC Algorithms 

 
In both algorithms, the search procedure starts by building a fully connected undirected 
graph including all variables. As independence relations are found between variables, 
edges are progressively removed. In both cases, the search involves two steps: a) reduce 
the fully connected undirected graph to a sparser undirected graph that contains only the 
probabilistic dependence relations between variables, and b) based on the d-separation 
tests, orient the edges to indicate causal relations between variables. At the end of the 
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search, the algorithms will yield a Markov Equivalent graph that represents the causal 
structure in the data19.  

The SGS algorithm is a naïve approach to the problem. It essentially performs an 
exhaustive search of conditional independence checks between all variable pairs, 
conditional to every possible subset of variables in the graph. Under ideal data conditions 
the algorithm is very reliable. Its main deficiencies are in the complexity (SGS grows 
exponentially with the number of variables) and the fact that, for noisy data, the higher 
order independence tests are likely to produce poor results, compromising the overall 
reliability of the algorithm. SGS work well, however, for datasets with only a few 
variables and a large number of samples. In addition to that it provides a very intuitive 
interpretation of the procedure.  

The PC algorithm relies on an optimized search for the causal graph. It essentially 
removes edges from the graph at each step, which reduces the search space for higher 
order independence tests. The algorithm is shown to be theoretically unstable (as it 
depends on the order of the search) but in practice is reliable for causal discovery. It is 
proven [21] to yield a causal Markov Equivalent graph asymptotically20. The complexity 
of the algorithm is based on the number of vertices (n) and the maximal degree of any 
vertex (k). The complexity of the algorithm is shown [21] to be:  
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There are, however, several heuristic optimizations that further reduce the complexity of 
the algorithm. The IG algorithm (also [21]) is one example. Other algorithms, proposed 
by different authors could also be applied, for comparison, over the same set. Dash, for 
instance, in 1999 [71] proposed a hybrid approach to the problem, using a variation of the 
PC algorithm and a Bayesian search, that could also be tested here for comparison.  

In order to illustrate how a final causal graph would look like, we have created a simple 
example using actual traffic data from the MNDOT [35]. The example includes only a 
few metrics that were easy to extract from the raw dataset – not exactly the metrics we 
suggested for our causal analysis in this item. In this particular example, we have 
compiled only one metric per sensor (average occupancy/volume – which is a factor that 
indicates local congestion). For each sensor in a freeway segment (as illustrated in Figure 
50), we have calculated the five-minute average of occupancy/volume (o/c) for the 
current instant and for a 15 minute lag. Note that we have two variables (clear and 
shaded) for each station. The clear measurement occurred at time t, and the shaded 
measurement at time t-15. For the model, we have also included background knowledge 
that prevented causal links back in time (from shaded to clear variables).  

                                                 
19 Recall that a causal structure can be represented by a number of Markov Equivalent graphs. Under a 
number of assumptions, these algorithms will generate one of the Markov equivalent graphs.   
20 That is, considering an infinite sample size, even over noisy data. 
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Figure 50.  An Example of an Approximate Causal Network, Relating Metrics of 
Local Congestion in Different Points of a Freeway Segment.  (The edges (if correct) 
should indicate that “congestion in point X causes congestion in point Y,” for edges 

oriented from X to Y.) 
 
For this very simple example, the dataset has less than 1000 data points, which is 
certainly a small dataset for the number of variables. This is evident in the resulting graph 
where two loops were found (marked in red) and three edges failed to be oriented (in 
green). Note, however, that even for this small toy example, we can identify a number of 
“causal” interactions close to the busy intersection at the left of the freeway, and a lot less 
interaction in other areas.   

In this example, the probabilistic independence tests for the PC algorithm used a 97.5 
percent confidence level (alfa=0.025). As shown in the graph, the algorithm failed to 
orient a few edges (for instance between S37-clear, S38-clear, and S39-clear). That was 
probably due to insufficient data or the violation of some of the underlying assumptions 
required by the PC algorithm.  However, just by inspection, if we compare the same three 
variables in the subsequent time (shaded variables), the edges are oriented from S39-
shaded to S38-shaded, to S37-shaded. This is (just by inspection) probably the same 
orientation of the corresponding clear variables, although there was not sufficient data 
available to verify this claim.  

The same inference can be made between the pairs (S42-clear, S41-clear) and (S42--
shaded, S41-shaded). The direction of the causal relations should be the same between 
the lags, so it is likely that the first orientation (the one causing the cycle) could be the 
orientation in error. Of course, these are just hypotheses that would require further 
investigation and a better prepared dataset for validation.  
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This example shows only causal interaction between one metric (o/c) at different location 
and times. It is just a toy scenario (even though using real data) that was not meant for 
analysis; it was included here just to show what the output of the algorithm will look like. 
The cycles at the left and right sides are errors that would require further verification of 
the source dataset.  

To apply the same approach to our dataset, we would probably focus on a single station 
(where we have sufficient accident data available). Note that, for this example, each 
station has only two variables (O/C-current, ad O/C-deltaT). Based on our first proposal 
for the dataset, each station would have the 18 variables shown in Figure 48. A lot more 
data would be required, with a lot more care on data preparation and validation.  

Expected Results and Limitations  
Regardless of the specific algorithm used for the search, the resulting product will be a 
causal graph over all variables involved. From the graph, just by inspection, one should 
be able to infer the possible causes for the specific variable of interest, “traffic accidents.”   

It is very important to highlight though, that a number of assumptions about the data can’t 
really hold in practice, so the search procedure is likely to produce something close to a 
causal graph but with a reasonable number of unexplained edges. These issues are much 
more related to the characteristics of the data than the algorithms themselves.   

The causal interpretation of the graph must be carefully based on the underlying 
assumption and the imperfections of the data. It is likely that several searches, over 
different data arrangements will be necessary for better results.  

Data Mining: “Not Now” Travel Time Prediction 

Real-time travel time prediction is sometimes a function monitored by traffic control 
centers.  It is best performed in an environment in which individual cars can be identified 
at different points along a route.  Houston’s traffic monitoring systems allow them to use 
toll tags to identify vehicles.  Once a vehicle completes a route, dynamic message signs 
are used to display the travel time.  Other means of identifying individuals include cell 
phones, GPS systems, and even imaging of license plates. 
 
That technique concerns “now” travel time prediction.  This segment of the report deals 
with predicting the travel time for next Wednesday or some other date in the future.  A 
solution used, for example, in the CALTRANS systems, consists of collecting historic 
travel times, averaging them, then using displacements based on standard deviation, 
providing the client the maximum travel time with 80 percent confidence.  But that is not 
the approach described here. 
 
We propose a data mining solution under much more stringent conditions:  There is no 
record of individual travel times.  Instead, there is only the information contained in the 
star schema described in the design sections. 
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Background and Analysis  
Differing from general purpose and persistent databases, data warehouses are usually 
designed with a well defined purpose (or purposes) in mind and they are generally 
optimized to better support these goals [32] [33] [34] [49].  

The problem clearly entails the “purpose” for the warehouse, that is, the prediction of 
travel time. The assumption is that local information from traffic sensors (such as vehicle 
counts, occupancy, and speed - either measured, or estimated from the previous readings 
during data acquisition) is available, and the question is how this information can be 
organized and augmented, if necessary, to better estimate travel times.   

We first present (item 2) a brief literature review on travel time estimation from sensor 
data. The goal of the review is to identify different approaches proposed for travel time 
prediction and isolate the variables of interest that should be in the DW. We then show a 
simplified example of sensor data (primarily ILD) in a star-schema and propose 
extensions to the model that would help improve travel time estimations.  
  
Predicting travel time, a brief literature review  
In this context, travel time is the time required to transverse a route between two points of 
interest. Travel time prediction is of grate importance in transportation systems. It 
provides drivers an intuitive measure about current (and estimated) traffic conditions for 
specific routes. Furthermore, it provides the basis for traffic control, infrastructure 
planning and dynamic route guidance, that is, the a-priori selection, or dynamic change of 
routes, based on variation of travel time estimates.   

As classified by Turner in 1998 [37], there are essentially two broad classes of 
approaches for travel time prediction: a) link measurements and b) point measurements. 
Link measurement techniques are direct measurements that are, in general, more accurate 
but more complex and usually require specialized sensing capabilities. Point 
Measurement techniques, on the other hand, are indirect measurements that usually rely 
on local aggregate traffic estimates (such as average speed) for travel time prediction.   
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Figure 51.  A Brief Overview on Common Travel Time Prediction Techniques. 
 
Link measurements, in general, require the tracking of a specific vehicle or a platoon of 
vehicles (Figure 51). Such methods directly depend on vehicle re-identification and 
include, for instance, test vehicles, License Plate matching, vehicle (or platoon) signature 
matching, and Probe Vehicles.   

Point measurements are based on local aggregate traffic metrics for the projection of the 
overall travel time. Such metrics include, for instance, occupancy, volume and local 
average speed.  A number of approaches in the literature are based on the notion of 
vehicle tracking. In [7], the use of localization techniques in mobile cellular telephony is 
proposed for travel time estimation through vehicle tracking. In [38] the author presents 
experimental data obtained from approximately 1500 instrumented taxi vehicles21 acting 
as probes for travel time prediction. In [39], the same data is used in conjunction with 
local sensor data to build an auto regression model for travel time prediction, which was 
essentially adjusted with the car-probe experimental results. Other tacking-based method 
techniques were also presented by [40] [41], who suggested different techniques for 
travel time estimation based on license plate matching techniques. Sun [50], in 1999 
showed that it was possible to re-identify vehicles from their electro-magnetic signature 
on loop detectors, allowing (to some extent) the use of standard monitoring infrastructure 
for vehicle tracking.  

An interesting variation on tracking-based methods was proposed by Coifman [42] [51], 
in 2002 and 2003. In his papers, Coifman proposes vehicle re-identification in multiple 
points in the freeway by augmenting inductive-loop detector (ILD) vehicle signatures 
with the relative position of the vehicle in its “platoon.” Coifman’s assumption was that 
driver’s have a tendency to maintain their position within their driving platoon, and that 

                                                 
21 Tests conducted in the Nagoya (Japan) metropolitan area. 
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information could be used in addition to the effective length signature estimated from 
loop-detectors for more accurate re-identification.  

These were all link-measurement based approaches. In parallel to these efforts there were 
also a number of point-measurement techniques such as the ones proposed by [5, 6]. In 
[5], the author proposes the use of support vector regression to build a predictive model 
based on local sensor data. In [6], the authors build a linear regression model to estimate 
future travel time based on current “average-speed” estimation. Although these 
publications are relatively recent, point-measurement techniques are not a novel concept. 
In 1997, Petty [44] published travel time estimation results from single loop sensor (loop 
detector) data. In the same year, the Transportation Research Board published a literature 
review on the topic [43].   

More recently, in 2003, Oh [45] compared conventional ILD methods based on estimated 
average speed for travel time prediction, with simulations and empirical data. Oh’s work 
is of remarkable importance as he identifies an important limitation on point-based 
estimates for travel time prediction. In his paper, he shows that point-measurements are 
good estimators for travel time under free-flow but fail to accurately estimate travel time 
under congested conditions. He shows that the source of the problem is in the fact that 
point-based measurements make the assumption that traffic is homogeneous in the 
segment of the sensor. The assumption is close to true for free-flow traffic but it doesn’t 
hold for congested traffic conditions, where an overall increase of the segment density 
and traffic “shock waves” are present.  

Oh proposes the use of a density-based measured from occupancy and volume that, based 
on hydrodynamic kinematics traffic model (particularly the mass conservation principle) 
would improve the time estimation based on local average estimates. The technique 
yielded results with only five percent from simulated and empirical data, including 
congested traffic conditions. In [45], the author shows the details of the approach and the 
principles adopted for his technique.  

Leveraging from Oh’s approach, we describe, in item 3, a proposal for an augmented DW 
schema that pre-estimates density for sensor data, improving the efficient of queries that 
depend on traffic density estimation, such as Oh’s approach22.  

An Augmented star-schema for Improved Travel Time Prediction  
The start schema is possibly one of the most common schemas used for data 
warehouses23. The schema is based on a large central facts table containing the majority 
of the data and additional dimension tables related to the facts table though foreign keys. 
For traffic data, the facts table will include the sensor data (volume and occupancy, for 
instance, in the case of ILD sensors). The dimensions for this data are essentially time 
and space. That is, the location of the sensor and the time when the measurement was 
taken.  

                                                 
22 Oh’s approach was largely demonstrated on simulations, where traffic density information is readily 
available. The augmented schema proposed here will improve the efficiency of the density estimation 
directly from the database, using only sensor data.   
23 Other common schemas include, for instance the snow-flake schema and the fact constellation schema. 
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The dimensions can be hierarchically organized. For instance, the time dimension in this 
example can be grouped into “hour,” “day,” “week,” etc. The space dimension can be 
grouped into “Station” (recalling that a station can contain multiple ILD sensors), 
“Road,” “County,” etc. The point in organizing the data this way is to optimize queries 
and data aggregations. The idea is to quickly and efficiently respond to queries such as, 
“show the hourly traffic of station 32.” 

Although, conceptually, we have only two dimensions (time and location), given the 
types of queries expected for time aggregation, it makes sense to sub-divide the time 
dimension into multiple tables. Technically, in the star-schema, these are separate 
dimensions, but in this case, the approach is appropriate as it reduces the size of the time 
dimension table and it facilitates comparative aggregation queries over different time 
abstractions. This has been suggested, for instance by Bhoite [46], to better handle 
queries such as: “compare the traffic of station 32 between rush-hour in weekdays and 
weekends.” One simple version for the schema is illustrated in Figure 52.  

In this example, the data granularity in the warehouse is assumed to be “hourly 
averages.” Ideally, the DW would maintain a much finer granularity (in the order of 
minutes, or seconds) which would require additional dimension tables to be added to 
Figure 52.  In practice, however, most Data Warehouses use a variable granularity level 
for historic data. That is, they maintain, for instance, 30-second aggregation for the most 
recent month, five-minutes aggregation up to one year and, after that maybe one-hour 
aggregation. This is a common practice to ensure a reasonable size for the stored data.   

 
 

Figure 52.  Simple Star Schema for ILD Sensor Data.  (Note that only some of the 
time dimensions are shown.  Other time dimensions are omitted for simplicity.  

Time dimensions are subdivided here for efficiency.  Technically, aggregations in 
the “hour” dimension will be equivalent to a singe value in the “day-month” 

dimension table.) 
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Also in this example, because of the choice of a star-schema, there will be some data-
redundancy in some of the tables. For instance, in the Location table, there will be 
multiple entries for a single station, given that a station has multiple detectors. This 
duplication, however, is usually negligible given the relative size of the facts table in 
comparison with the dimensions table.  

Adding a New Dimension.  The star-schema is designed to improve queries24 to the 
database. From that perspective, and leveraging from Oh’s research, a new dimension can 
be added to include information about average segment density as part of the sensor data 
entry.  The justification for this is the following: The estimation of traffic density from 
local sensor data is a direct function of volume and occupancy. As a deterministic 
function, this new “attribute” provides no additional information that can be used to 
augment local estimates based in the same sensor data. Oh’s approach relied on average 
density information around the sensor (obtained from sources other than the sensor) to 
improve local estimates. In Oh’s case, the sources for this additional piece of information 
(average density) could be trivially identified because the validation experiments relied 
on simulated data (where this information is readily available), or sensor data where 
freeway segments were defined and validated a priori.  

 
In practice, however, in order to infer the average time density in a freeway segment from 
information other than the sensor itself and traffic simulation, one must rely on 
neighboring sensor data. Under certain constraints, a number of surrounding 
measurement points can be used to identify a “closed” section of the freeway where, 
based on the principle of mass conservation, variations in density can be estimated with 
reasonable accuracy. Consider, for instance, the illustration shown in Figure 53.  

                                                 
24 In practice, Data Warehouses have additional mechanisms (besides the storage schema) to improve 
queries. Data-cubes, for instance, provide pre-aggregation of the data simultaneously in several 
dimensions to improve query efficiency. Details on data-cube models for traffic data are provided by 
Shekhar [43] in CubeView  
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Figure 53.  A Closed Freeway Segment as Defined in the Proposed Approach 
 
In this example, the average density variation estimates in the marked area can be 
calculated based on the flow (vehicles/sec) entering the segment and the flow leaving the 
second (mass conservation). Assuming no sensor errors, the differences in flow can be 
directly attributed to changes in density. In this example, the marked area constitutes 
what we call a “closed segment” of the freeway. That is, a segment that has all its entry 
and exit points monitored by sensors.   

Consider now that we’re estimating travel time in a point within the segment above; let’s 
say in point “A” (assuming we had sensors there). The density information obtained by 
the boundary sensors, as illustrated above, could be very useful to Oh’s. In fact, granted 
the appropriate difference in estimation error, the densities calculated this way would 
provide the same type of information that Oh obtained via simulations in his paper.  

From that perspective, if such density for the closed segment can be calculated, every 
point-measurement based on “A,” in this example, can be augmented with density 
information. The problem, however, is that the determination of the boundaries of the 
freeway segment is not as trivial as it seems.  

The issue is that, due to variations in traffic conditions, the volume count in some of the 
boundary sensors can vary greatly. It is possible, through a relatively simple search 
procedure, to identify a “close segment” around a point “A” that is consistent. That is, a 
segment that, for a larger time interval (more than a day) will average zero accumulation 
in traffic count. For instance, if a closed segment is chosen around node “A,” we should 
verify that for a period of one day (or more) the number of vehicle that enter the segment 
should be close to the number of vehicles leaving the segment, resulting in a net-
accumulation approximately equal to zero. This is because, through the course of a day 
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we expect the density of in the segment to change, but assuming a cyclical behavior, the 
net-flow should asymptotically approach zero25.  

Now, in practice, if a segment is chosen for monitoring and it accumulates a positive (or 
negative) number of vehicles through the period of a day or more, then it is reasonable to 
assume that some sensors, either the ones measuring incoming flow, or the ones 
measuring outgoing flow (or some of both), are faulty. In fact, there are traffic conditions 
that might occur during rush-hour that can lead to these types of volume count errors, 
even if the sensors are not faulty.  

The argument is that, through a relatively simple search procedure, multiple closed 
segments around point “A” can be validated using historical data to identify times of the 
day when their readings were trusted (net-flow close to zero) or not. There are many 
reasons whey some segments can be found un-trusted and that might vary arbitrarily 
through the day based on traffic conditions or sensor faults.  

Our proposal is to extend the DW schema to include pre-calculated estimates of segment 
traffic density for each measurement point. The search for closed segments can occur 
offline, as opposed to occurring during query time, so density estimates are available a-
priori, from the best possible set of neighbor sensors.   

The process then, would work as follows: A new dimension called segment density will 
be added to the database. This dimension will specify bins that constitute different levels 
of traffic density. As new data is added to the facts table, it is directly mapped to the 
appropriate segment density bin, based on current density estimates of for that specific 
segment. Recall that, in order to make such estimates, a search over the best possible 
boundaries for the segment must be conducted. That search will be done a-priori for each 
sensor and will be verified periodically as traffic conditions change.   

The segment density information now attached to each sensor entry maintains a readily 
available reasonable estimate of the average segment-density for that sensor at the time of 
the data. The information can be directly used by algorithms that rely on density 
correction to improve accuracy.   

Figure 54 shows a simple illustration of an augmented star-schema containing the 
segment density dimension.   

                                                 
25 Note that it might never be exactly zero, as this would imply knowledge about the initial conditions 
when density measurements (out – in) started. The initial condition, although unknown, should be 
irrelevant for if traffic is observed for longer periods of time.  
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Figure 54.  Augmented Star Schema Including Three Segment Dimensions 
 
It is important to note that a segment in this context is not necessarily composed by the 
minimum “closed volume” (i.e., fully monitored section) of the freeway, around the 
sensor. Due to the reasons previously stated, the boundaries of a closed segment might 
change in time, but the density estimates are parameterized and always based on the best 
set of measurements available at that time.  
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