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ABSTRACT 

This research project presents the calibration of resistance factors for the Load and 

Resistance Factor Design (LRFD) method of driven piles driven into Louisiana soils based 

on reliability theory. Fifty-three square Precast-Prestressed-Concrete (PPC) piles that were 

tested to failure were included in this investigation. The predictions of pile resistances were 

based on static analysis (-method for clay and Nordlund method for sand), three direct CPT 

methods [Schmertmann method, De Ruiter and Beringen method, and Bustamante and 

Gianeselli (LCPC) method], and the average of the three CPT methods. Also, dynamic 

measurements with signal matching analysis of pile resistances using the Case Pile Wave 

Analysis Program (CAPWAP), which is based on the measured force and velocity signals 

obtained near the pile top during driving, were calibrated. The Davisson and modified 

Davisson interpretation methods were used to determine measured ultimate load carrying 

resistances from pile load tests. The predicted ultimate pile resistances obtained using the 

different prediction methods were compared with measured resistances determined from pile 

load tests. Statistical analyses were carried out to evaluate the capability of the prediction 

design methods to estimate measured ultimate pile resistance of driven piles. The results 

showed that the static method over-predicts pile resistance, while the dynamic measurement 

with signal matching analysis [CAPWAP-EOD (end of drive) and 14 days BOR (beginning 

of restrike)] under-predicts pile resistance. Among the three direct CPT methods, the De 

Ruiter and Beringen method was the most consistent prediction method with the lowest 

COV. Reliability based analyses using the First Order Second Moment (FOSM) method, the 

First Order Reliability Method (FORM), and the Monte Carlo (MC) simulation method were 

also conducted to calibrate the resistance factors () for the investigated pile design methods. 

The resistance factors with the target reliability (Ｔ）of 2.33 for the different design 

methods were determined and compared with American Association of State Highway and 

Transportation Officials (AASHTO) recommendation values. In addition, the evaluation of 

different design methods was performed. 

 

 

 

 



 



                                                                                                                                    v                      
  

 

ACKNOWLEDGMENTS 

This research project was funded by the Louisiana Department of Transportation and 

Development (LADOTD) and the Louisiana Transportation Research Center (LTRC). The 

comments and suggestions of Mark Morvant, P.E. and Zhongjie Zhang, P.E., Ph.D. of LTRC 

are gratefully acknowledged.  

 

 



 



vii 

IMPLEMENTATION STATEMENT 

The Federal Highway Administration and AASHTO set a transition date of October 1, 2007 

after which all new federal-funded bridges shall be designed using the LRFD design method. 

The LRFD Code is the first attempt by AASHTO to establish a National Bridge Code 

addressing geotechnical design for bridges. This fact calls for the establishment of a local 

calibration that takes into account the geology of Louisiana. This research project aims at 

calibrating resistance factors associated with different pile design methods used by engineers 

designing bridges for LADOTD. Reliability indexes and corresponding resistance factors for 

different pile design methods are recommended and ready for immediate implementation. 

Engineers designing bridges for Louisiana should use the recommended resistance factors in 

lieu of factors shown in Section 10 of the LRFD Code. As experience is gained in the 

application of LRFD to design, the role of past successful allowable stress design (ASD) 

practices will become less important, and the advantage of the LRFD design can be fully 

addressed by achieving consistent levels of reliability in the design of both superstructures 

and foundations. In addition, calibration efforts in this research are documented so that the 

calibration results become a heritage for future users of LADOTD and thereby enhance 

future LRFD research and development. One project will be selected to perform a 

cost/benefit analysis by comparing the design results obtained by using the related indexes 

and resistance factors obtained in this research and those recommended by the AASHTO 

LRFD Bridge Design Specifications (2007) and ASD Design.  
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INTRODUCTION 

The allowable stress design (ASD) method had been used in the design of bridges, which 

involves applying a factor of safety (FS). FS, defined as the fraction of the ultimate 

geotechnical pile resistance, that is traditionally known as pile capacity, over the allowable 

design load, accounts for uncertainties in the applied loads and soil resistance. The 

magnitude of FS has been empirically developed over time depending on the importance of 

the structure, the confidence levels of material properties, and the design methodology. 

However this approach suffers from the disadvantage that the uncertainties of the different 

sources of load and resistance are combined together in a single factor. Consequently, ASD 

may lead to a design with a different level of safety for similar structures. The LRFD method 

aims at separating uncertainties of load effect from uncertainties of resistance and then 

applying statistical theory to ensure the same level of structure safety.  

The Bridge Design Specifications published by the American Association of Highway and 

Transportation Officials (AASHTO) has introduced the LRFD method to account for 

uncertainties associated with estimated loads and resistances [1], [2]. Since then, bridge 

superstructures have been designed using the LRFD method in most U.S. states. However, 

the LRFD method for design of bridge foundation is progressively gaining its prevalence; 

while the ASD method is still used for the bridge foundation design in practice. This can lead 

to inconsistent levels of reliability between superstructures and substructures. In an effort to 

maintain a consistent level of reliability, the Federal Highway Administration (FHWA) and 

AASHTO a mandated a date of October 1, 2007 after which all federal-funded new bridges 

including substructures shall be designed using the LRFD method. Accordingly, significant 

research efforts have been directed to implement the LRFD design methodology in bridge 

substructure and establish and to calibrate the proper resistance factors, which will be 

explained in greater detail in a later section, for local soil conditions in compliance with this 

mandate [3], [4], [5], [6], [7], [8], [9], [10]. 

The current AASHTO design specification recommends resistance factors,, for single 

driven piles in axial compression ranging from 0.10 to 0.65, depending on the design method 

[11]. However, the existing resistance factors are recommended based on a pile load test—a 

soil database that was collected from sites that do not necessary reflect Louisiana soils or 

design practice. For example, the driven pile database used in the existing AASHTO design 

specification is based on the data gathered by Florida DOT and FHWA [12], [13]. Therefore, 

the resistance factors recommended by the existing AASHTO Code need to be verified 

before being applied to local soil condition and design practice. Direct application of the 
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AASHTO resistance factors without calibration may result in over-conservative or unsafe 

design. When local experience and databases are available, the AASHTO recommends 

calibrating the resistance factor, , using reliability analyses to produce an overall reliability 

level that is consistent with local practice. 

Several methods have been developed and used in geotechnical engineering practice to 

estimate ultimate axial bearing resistance of driven piles. This includes static pile load tests, 

statnamic pile load tests, traditional static analysis, dynamic analysis, and static analysis 

using the results of in-situ testing such as the Cone Penetration Test (CPT). Static analyses 

based on soil properties obtained from borings and laboratory tests have been the main 

method used in practice by LADOTD engineers. However, the application of CPT in 

predicting ultimate bearing resistance of piles has increased over the last two decades due to 

the similarity between the cone penetrometer and the pile in which the cone can be 

considered as a model pile (e.g., [14], [15], [16], and [17]). The CPT is a simple, fast, 

repeatable, and cost effective in-situ test that can provide continuous subsurface soundings 

with depth. The measured CPT data (tip resistance, qc; sleeve friction, fs; and porewater 

pressure, u) can be effectively utilized for many geotechnical engineering applications 

including the prediction of ultimate pile resistance. Compared with traditional static design, 

CPT design methods can provide more economical estimations of the ultimate pile 

resistance. In addition, the dynamic measurement with signal matching analysis using 

CAPWAP is also gaining popularity due to its simplicity and economical advantage. 

Although the dynamic measurement with signal matching analysis cannot be a substitute of 

pile design analysis, it is mainly used for pile drivability and usually helps in verifying the 

pile design resistance. 

In this research project, design methods used by LADOTD were calibrated based on data 

collected in Louisiana. For each design method, target reliability values and corresponding 

resistance factors were developed depending on availability of test data.  
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OBJECTIVE 

The objective of this research project is to calibrate resistance factors for different pile design 

methods needed in LRFD design of driven piles based on the Louisiana pile load test soil 

database, and LADOTD experience. The findings of this research effort will help Louisiana 

geotechnical engineers begin implementing the LRFD design methodology for the design of 

all driven piles in future Louisiana projects as mandated by AASHTO.  
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SCOPE 

To achieve the objective of this study, reliability based analyses were performed on different 

design methods used by LADOTD for the estimation of axial load resistance of driven piles 

in soft Louisiana soils. A database of 53 precast-prestressed-concrete (PPC) piles of different 

lengths and sizes that were loaded to failure were investigated in this study. Statistical 

analyses were conducted to evaluate different pile design methods, including the static design 

method (-method and Nordlund method), three different direct CPT design methods: 

[Schmertmann method, De Ruiter and Beringen method, and Bustamante and Gianeselli 

(LCPC) method], CAPWAP method. The target reliability (T) of 2.33 was selected. In 

addition, reliability analyses based on the FOSM, FORM, and MC simulation method were 

conducted to calibrate resistance factors () for different design methods needed in the LRFD 

design of single piles. 
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BACKGROUND 

Predication of Ultimate Pile Resistance 

The ultimate axial resistance (Qu) of a driven pile consists of the end bearing resistance (Qb) 

and the skin frictional resistance (Qs). The ultimate pile resistance can be calculated using the 

following equation:  

    



n

1i
siibbsbu Af.AqQQQ                (1) 

where, qb is the unit tip bearing resistance, Ab is the cross section area of the pile tip, fi is the 

average unit skin friction of the soil layer i, Asi is the area of the pile shaft area interfacing 

with layer i, and n is the number of soil layers along the pile shaft. In clayey stratigraphies, 

the shaft frictional resistance dominates in many cases, while in sandy stratigraphies, the end 

bearing resistance can contribute to more than 50 percent of the ultimate pile resistance. 

Since Louisiana soils are mainly clay and silty clay deposits, the side friction (Qs) is 

dominant in the total ultimate bearing resistance (Qu) compared to the end bearing resistance 

(Qb). 

Static Methods 

 Tomlinson Method. The� method  is based on total stress analysis. For a soil 

with an angle of internal friction,  = 0, or in total stress analysis, the ultimate skin resistance 

per unit area of the pile can be calculated as follows [18]: 

 

f =  Su        (2) 

 

where,  is an empirical adhesion coefficient, and Su is the undrained shear strength. In this 

research study,  values suggested by Tomlinson are used [18]. Figure 1 shows the  values 

versus the undrained shear strength (Su).  

The skin friction resistance (Qs) is as follows: 


L

0

ds dzC fQ       (3) 

where, L is length of the pile in contact with soil, and Cd is the effective perimeter of the pile.  
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The pile tip resistance (Qb) is calculated as follows: 

Qb= Ab Su Nc      (4) 

where, Ab is the cross sectional area of the pile, and Nc of 9 is used in this study as 

recommended by FHWA [19].  

 

Nordlund Method. In sand, the pile tip resistance (Qb) can be calculated as: 

 
'
qbb .N.q.AQ       (5) 

where, q  is the effective vertical stress at tip level,  is a dimensionless correction factor, 

and qN is a bearing resistance factor varying with . In this research, the values proposed by 

Thurman are used for calculation [20]. Figure 2 presents the bearing resistance factor ( qN ) 

versus the friction angle (). 

The skin friction resistance (Qs) was evaluated using the equation proposed by Nordlund in 

this research as follows [21], [22]: 


L

dDf dzCPCK
0

s ).sin( Q      (6) 

where, K is a coefficient of lateral stress, Cf is a correction factor, DP  is the effective 

overburden pressure, is the pile-soil friction angle, and Cd is the effective pile perimeter. 

Table 1 and Figure 3 present the coefficient of lateral stress (K) and the correction factor 

(Cf), respectively.  
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(a) Sand layer over stiff clay layer 

 

 
 

(b) Soft clay layer over stiff clay layer 

 

 
 

(c)  Clay layer only 

 

Figure 1   
 factors for driven piles in clay [19] 
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Figure 2  
Chart for bearing capacity factor N’q [19] 
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Table 1 

K for non-tapered piles [19] 
 


Volume of soil displaced per unit length (ft3/ft) 

0.1 0.3 0.5 0.7 1.0 3.0 5.0 7.0 10.0 

25 0.70 0.77 0.80 0.83 0.85 0.92 0.95 0.98 1.00 

26 0.73 0.82 0.86 0.88 0.91 1.00 1.04 1.06 1.09 

27 0.76 0.86 0.91 0.94 0.97 1.07 1.12 1.15 1.18 

28 0.79 0.90 0.96 0.99 1.03 1.14 1.2 1.23 1.27 

29 0.82 0.95 1.01 1.05 1.09 1.22 1.28 1.32 1.36 

30 0.85 0.99 1.06 1.10 1.15 1.29 1.36 1.40 1.45 

31 0.91 1.08 1.16 1.21 1.27 1.44 1.52 1.57 1.63 

32 0.97 1.17 1.26 1.32 1.39 1.59 1.68 1.74 1.81 

33 1.03 1.26 1.37 1.44 1.51 1.74 1.85 1.92 1.99 

34 1.09 1.35 1.47 1.55 1.63 1.89 2.01 2.09 2.17 

35 1.15 1.44 1.57 1.66 1.75 2.04 2.17 2.26 2.35 

36 1.26 1.61 1.78 1.89 2.00 2.35 2.52 2.63 2.74 

37 1.37 1.79 1.99 2.11 2.25 2.67 2.87 2.99 3.13 

38 1.48 1.97 2.19 2.34 2.50 2.99 3.21 3.36 3.52 

39 1.59 2.14 2.40 2.57 2.75 3.30 3.56 3.73 3.91 

40 1.70 2.32 2.61 2.80 3.00 3.62 3.91 4.10 4.30 
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Figure 3 
Correction factors (Cf) for coefficient of lateral stress (K) [19]  
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Direct CPT Methods 

There are two main approaches in the estimation of pile resistance using CPT data, the 

indirect method and the direct method. In the indirect method, CPT data (qc and fs) is used to 

estimate the soil strength parameters, such as the undrained shear strength (Su) and the angle 

of internal friction (), to predict pile resistance. While in the direct method, the unit end 

bearing resistance (qb) of the pile is evaluated from the qc, and the unit skin friction (f) of the 

pile is evaluated from either fs or qc profiles. It is believed that the direct method is more 

suitable in engineering practices [17].  

In the direct CPT methods, the pile resistance is predicted using a pile tip resistance (Qb) and 

the skin friction resistance (Qs), which can be expressed as the following equations: 

 

bavg,cbbbb A).q.c(AqQ      (7) 

  sisicsiis Afα.AfQ     (8) 

  or 

  sicissiis ).A.q(c.AfQ      (9)

  

where qb is the unit end bearing resistance, qc is the cone tip resistance, qc,avg is the average 

cone tip resistance in the zone above and below the pile tip, fi is the unit skin friction, fsi is 

the sleeve friction, cb is the correlation coefficient of tip resistance, c is the reduction factor, 

cs is the correlation coefficient of friction resistance, Ab is the pile tip area, and Asi is the pile 

surface area of each layer. 

Schmertmann Method. Schmertmann proposed a direct CPT method based on 

model and full scale pile tests [14]. To estimate the pile tip resistance (Qb), the average cone 

tip resistance (qc,avg) is obtained in the zone ranging from 8D above to 0.7D-4D below the 

pile tip (see Figure 4). Schmertmann suggested a cb of 1.0 for sand and 0.6 for clay. The unit 

skin friction is calculated from the sleeve friction (fs) using an c value of 0.2 to 1.25 for 

clayey soil. A maximum fs of 1.25 tsf is proposed. 
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De Ruiter and Beringen Method. The De Ruiter and Beringen method is known as 

the European method [15]. It is based on experience from offshore piles tested in the North 

Sea. In sand, unit tip resistance (qb) is obtained similarly to the Schmertmann method [14]. 

The unit skin friction (f) for the compression piles is the minimum among fs, qc(side)/300, and 

0.2 tsf. In clay, the unit tip resistance (qb) is determined from the conventional bearing 

resistance theory as follows: 

 

)tip(SNq ucb                 (10) 

 

k

c
u N

(tip)q
(tip)S                            (11) 

 

where, Nc is the bearing resistance factor, and Nk is the cone factor ranging from 15 to 20 

depending on soil type and pile type. The unit skin friction (f) can be obtained from: 

 

   f =  Su(side)               (12)                               

 

where  is the adhesion factor and =1 for normally consolidated (NC) clay and 0.5 for 

overconsolidated (OC) clay. 

 

Bustamante and Gianeselli Method (LCPC Method). Bustamante and Gianeselli 

method is known as the French method or the LCPC (Laboratoire Central des Ponts et 

Chaussees) method [16]. In this method, both unit tip resistance (qb) and unit skin friction (f) 

are calculated from cone tip resistance (qc). Average cone tip resistance (qc,avg) is obtained in 

the zone ranging 1.5 D above and below the pile tip.  A correlation coefficient of the tip 

resistance (cb) from 0.15 to 0.6 was proposed for different soil types and installation 

procedures based on the empirical correlation (cb = 0.6 for piles driven into clay and silt and 

cb = 0.375 for piles driven into sand and gravel).  

 
The unit skin friction (f) is obtained from cone tip resistance (qc) and the correlation 

coefficient of friction resistance (ks) as follows: 

 

s

eq

k

)side(q
f                  (13) 
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where, qeq(side) is the equivalent cone tip resistance of the soil layer, and ks is an empirical 

friction coefficient that varies from 30 to 150 depending on soil type, pile type, and 

installation procedure given in Table 2.  

In this study, ultimate pile resistance was calculated using the Louisiana Pile Design by Cone 

Penetration Test (LPD-CPT) program developed by Louisiana Transportation Research 

Center. The program is capable of soil classification based on the probabilistic region 

estimation method proposed by Zhang and Tumay and provides the profile of the ultimate 

pile resistances with soil depth [24]. The ultimate pile resistances are predicted using the 

Schmertmann Method, De Ruiter and Beringen Method, LCPC Method, and the average of 

three CPT methods [14], [15], [16]. Figure 5 presents the general features of the LPD-CPT 

program. The program is available for free downloading at the LTRC Web site 

(www.ltrc.lsu.edu/downloads.html).     
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Figure 4   
Average cone tip resistance (qc,avg) in Schmertmann [14] method  

(from Abu-Farsakh and Titi [23]) 
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Table 2   
Friction coefficient, ks (from Bustamante and Gianeselli, [16]) 

 

Nature of Soil qc (MPa) ks 

Soft clay and mud < 1 30 

Soft chalk  5 100 

Silt and loose sand  5 60 

Moderately compact clay 1 to 5 40 

Moderately compact sand and gravel 5 to 12 100 

Compact to stiff clay and compact silt > 5 60 

Weathered to fragment chalk > 5 60 

Compact to very compact sand and gravel > 12 150 

 

 

 
 

(a) Data input screen 
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(b) CPT profiles and soil classification 

 

 

 
 

(c) Soil classification and predicted pile resistance 

 

Figure 5   
General features of Louisiana Pile Design by Cone Penetration Test (LPD-CPT) 

program (www.ltrc.lsu.edu/downloads.html) 
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Dynamic Measurement with Signal Matching Analysis (CAPWAP) 

The evaluation of static capacity from pile driving is based on the concept that the driving 

operation includes failure in the pile-soil system in which a very fast load test is carried out 

under each blow. There are two main methods to estimate the ultimate capacity of driven 

piles on the basis of dynamic driving resistance. One method is using pile driving formulas 

(i.e., dynamic equations) and the second is wave-equation analysis. Dynamic equations 

predict total resistance based on work done by the pile during penetration. Wave equation 

methods are based on a numerical solution of the one-dimensional wave equation. Stress-

wave propagation in a pile during driving can be described by the following one-dimensional 

wave equation modified by Paikowsky and Whitman to include frictional resistance along the 

pile [25]: 
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where, EP is the modulus of elasticity, ρp is the unit density of the pile material, u(x,t) = 

longitudinal displacement of infinitesimal segment,  fs = frictional stress along the pile, Ap is 

the pile area, and Sp  is the pile circumference.  

The numerical solution uses mathematical models for the pile and the pile-soil system. The 

wave equation formulation is used in two general ways: pre-driving analysis and post-driving 

analysis. When the one-dimensional wave equation solution is used for pre-driving analysis, 

the driving system is also modeled. Post-driving analyses use the measured force signal 

(calculated from strain readings) and the measured velocity signal (integrated from 

acceleration readings) obtained near the pile top during driving. At that point the velocity 

signal is used as a boundary condition while varying the parameters describing soil resistance 

in order to match calculated and measured force signals. These parameters include the side 

and tip quake, side and tip damping, pile shaft resistance, and pile tip resistance. Additional 

parameters may be used to describe soil resistance and rebound ratio for unloading different 

from that of loading. Iterations are performed by changing soil-model variables for each pile 

in contact with soil until the best match between force signals is obtained. The results of 

these analyses are assumed to represent the actual distribution of the ultimate static resistance 

of the pile. The procedure was first suggested by Goble et al., using the computer program 

CAPWAP [26]. 
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LRFD Calibration Using Reliability Theory 

The uncertainties of load effect and resistance are attributed to various sources and their 

levels of uncertainties are wide in range. Generally, resistance has higher uncertainty 

compared to the load effect [3]. Figure 6 shows the probability density functions for the load 

effect and resistance. Failure can be defined as load exceeding resistance, and probability of 

failure is related to the shaded area where two probability density functions overlap. In 

traditional allowable stress design (ASD), the mean factor of safety is the fraction of the 

mean resistance over the mean load effect. The mean safety factor for the resistance with 

lower uncertainty (solid curve) and resistance with higher uncertainty (dotted curve) is 

unchanged. Whereas in LRFD, the larger variability in resistance effect (dotted curve) will 

lead to a larger probability of failure, which is represented as a larger overlapped area. 

Accordingly, it is very important to incorporate with the uncertainties in the foundation 

design by using reliability based theory.  

The LRFD method intends to separate uncertainties of load effect from uncertainties of 

resistance and then apply the statistical theory to ensure the same level of structure safety. To 

achieve this level of safety, load and resistance factors should be calibrated. This process is 

performed using measured data to derive statistical parameters characteristic of design 

methods and determine the magnitude of load and resistance factors needed to obtain 

acceptable margins of safety. There are mainly two procedures for LRFD calibration: (1) 

LRFD calibration to achieve consistency with traditional safety factors in ASD but not with 

target reliability when data is not available and (2) LRFD calibration using reliability theory 

[27]. When the LRFD design code is calibrated, local experience should be included for 

several reasons. First, different states have different soil deposition and foundation designers 

have developed well-established design methods which implicitly incorporate past 

experience. Such experience can result in cost saving designs but is not included in the 

existing AASHTO LRFD code, which was developed based on limited databases from other 

geological origins or stress histories [11]. Under this situation, if the design is performed by 

the existing code, such experience will be lost, which will cause either over conservative or 

unsafe design. Instead, if the calibration is performed by including local experience, cost 

saving designs can be obtained. This calibration can be performed by simply fitting the ASD 

to LRFD to achieve at least the same cost efficiency. Second, load tests are usually 

conducted to verify the design loads to evaluate the actual response of the pile under loading 

and to establish local load test databases. If these local databases are included, the 

uncertainties are reduced and design is expected to be improved.  
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Figure 6   

Probability density functions for load effect and resistance 
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LRFD Calibration via WSD  

When there is not sufficient statistical data available for a statistical theory based calibration, 

calibration through fitting to the ASD method can be used [28]:  

)1( 
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
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

                 (15) 

where,  is the resistance factor; QD and QL are the dead load and live load, respectively; D 

and L are the load factors for dead load and live load, respectively; and FS is the factor of 

safety. 

Using equation (15), the resistance factors that need to be used in the LRFD method can be 

calculated to obtain a level of safety equal to that of the ASD method. This process provides 

the engineer with a visualization of uncertainty rather than the lumped single factor of safety 

in ASD. However, using the resistance factor obtained by fitting to the ASD method is not 

likely to improve the reliability of the design. Improved design can only be achieved when 

resistance factors are evaluated directly through statistical data based on reliability theory, 

rather than through calibration with existing factors of safety in ASD [29]. Thus, there is no 

difference in the design between the LRFD and ASD methods if the resistance factor is 

calibrated via ASD.  

Ultimate pile resistances for the same site obtained by using different design methods show 

some variation depending on its reliability. Therefore, resistance factors () associated with 

different design methods should reflect its accuracy in predicting the ultimate bearing 

resistance of piles. In this research, resistance factors () were determined for the static 

design methods (Tomlinson method for clay and Nordlund method for sand), three direct 

CPT methods (Schmertmann method, De Ruiter and Beringen method, and LCPC method), 

the average of three CPT methods, and the dynamic measurement with signal matching 

analysis method (CAPWAP).    
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Statistical Characterization of the Data Collected  

To perform an LRFD calibration, the performance limit state equations must first be 

determined. Two limit states that are usually checked in the design of piles are the ultimate 

limit state (ULS) or the strength limit state and the serviceability limit state (SLS). Both limit 

states designs are carried out to satisfy the following criteria [30]: 

Ultimate limit state (ULS): Factored resistance ≥ Factored load effects 

Serviceability limit state (SLS): Deformation ≤ Tolerable deformation to remain serviceable 

It is usually considered that the design of deep foundations is controlled by the ultimate limit 

state. Therefore, in the following discussion, only the ultimate limit state is considered. The 

following basic equation is recommended to represent limit states design by AASHTO [11]: 

 

 iin Q..R                 (16) 

 

where,  is the Resistance factor, Rn is the Nominal resistance, and  is the Load modifier to 

account for effects of ductility, redundancy, and operational importance. The value of η 

usually is 1.00. Qi  is the Load effect, and γi is the Load factor. 

Most driven piles develop both skin and toe resistances, but the percentage of skin or toe 

resistance to total resistance is not constant. Therefore, it is not possible to provide a fixed 

correlation between the three resistance factors (skin, toe, and total resistances). In this 

research, only the resistance for total resistance was calibrated. Thus, it should be noted that 

the same resistance factors for skin and end bearing are assumed, and the calibrated 

resistance factors are valid only for the ranges of pile dimensions (length and diameter) that 

employed in this study.  

Considering the load combination of dead load and live load for AASHTO Strength I case, 

the performance limit equation is as follows [31]: 

 

  LDn QQR     LD                             (17) 

 

The loads applied to piles are traditionally based on superstructure analysis, whereas actual 

load transfer to substructure, which is actually a pile-superstructure interaction problem, is 

poorly researched. Most researchers employ the load statistics and the load factors from 
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AASHTO LRFD specifications, which were originally recommended by Nowak, to make 

pile foundation design consistent with the bridge superstructure design [9]. For example, 

Zhang et al., Kim et al., and McVay et al., selected the statistical parameters of dead and live 

loads, which were used in the AASHTO LRFD specifications as follows [31], [32], [33]: 

 

1.75   L     1.15   L   0.18  COV L   

1.25   D    1.08   D   0.13  COV D   

 

where, λD and λL are the load bias factors (mean ratio of measured over predicted value) for 

the dead load and live load, respectively. COVD and COVL are the coefficient of variation 

values for the dead load and live load, respectively. 

The QD/QL is the dead load to live load ratio which varies depending on the span length [34]. 

In this research, a QD/QL of 3 is used for calibration.  

The resistance statistics were calculated in terms of the bias factors. The bias factor is defined 

as the ratio of the measured pile resistance over the predicted pile resistance, i.e.: 

 

p

m
R R

R
                                (18) 

 

where, Rm is the measured resistance and Rp is the predicted (nominal resistance = Rn). 

 

First Order Second Moment (FOSM) Method  

Since FOSM is easy to use and valid for preliminary analyses, it was initially used in this 

study for calibration of resistance factors of driven piles. In the FOSM method, limit state 

function is linearized by expanding the Taylor series expansion about the mean value of the 

variable. Since only the mean and the variance are used in the expansion, it is called First 

(Mean) Order Second (variance) Moment. For the lognormal distribution of resistance and 

load statistics, Barker et al. derived the following relation for calculating the reliability index, 

 [35]: 
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For LRFD, this equation is modified by replacing overall factor of safety (FS) by partial 

factor of safety and then rearranging to express relation to resistance factor () as follows: 
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When statistical data is available, the calibration can be performed based on reliability theory. 

The design based on the resistance factors obtained from this process is expected to be better 

than ASD and fully achieved the advantages of the LRFD method. If both the resistances and 

the load are log-normally distributed and the performance limit state design equation is linear, 

the First Order Second Moment method can be used to obtain the reliability index. 

Unfortunately, for deep foundations, under some conditions, neither the loads nor the 

resistance are normally or log-normally distributed, and sometimes the design equation may 

be nonlinear. Therefore, advance reliability theory based methods are needed. In this study, 

FORM and the Monte Carlo simulation were also used with FOSM for the LRFD calibration 

of pile design methods [36], [37]. 

 

First Order Reliability Method (FORM)  

Hasofer and Lind proposed a modified reliability index that did not exhibit the invariance 

problem [36]. The “correction” is to evaluate the limit state function at a point known as the 

“design point” instead of the mean values. The design point is a point on the failure surface g 

= 0. Since the design point is generally not known in advance, an iteration technique must be 

used to solve the reliability index. Detailed procedure regarding FORM can be found in 

Nowak and Collins [37]. Only information on the means and the standard deviations of the  
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resistances and the loads are needed while detailed information on the type of distribution for 

each random variable are not needed.  

FORM is an analytical scheme that is used to approximate probability integral when basic 

variables have strictly increasing continuous joint cumulative distribution function (CDF). 

Steps for FORM using the Rackwitz-Fiessler method [38]:  

 

1. Define limit state function, g(x1, x2, x3....). 

The limit state function for LRFD is developed as follows: 

 

LLDDLD QλQλQQQ                           (21) 

       LLDD QγQγR                 (22) 

from (21) and (22) 
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Now the specified live load to dead load ratio,(QL/QD) equation (23) can be 

rearranged as:  
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where, 
D

L

Q

Q
κ   

2. Assuming initial design point (xi*), mean values are a reasonable choice for most cases. 

In this case, initial design values for dead load and live load (x2 and x3) assumed and that 

for resistance (x1) is determined by equating the limit state function equal to zero. Also 

for lognormal variables equivalent normal parameters are then determined as: 
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where,  and  denotes the mass probability density function (PDF) and the 

cumulative distribution function (CDF) for normal distribution, respectively. 

3. Corresponding to the design point x*, the reduced variable is found as: 
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4. Partial derivatives of the limit state function is found at the design point and vector G is 

defined as: 
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5. The new design point is determined in the reduced variable as: 

  βα*z ii                     (31) 
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Also at this step, the new design point for resistance (x1) is determined by inserting new 

design values for loads (x2 and x3) into the g function. With new design points, steps from 1 

to 5 are followed. The process is repeated until  and the design point converges. In this 

study, the excel sheet was used to get the FOSM solution with  the “Goal seek” function for 

given load and resistance statistics. Iterations for FORM is done using the “SOLVER” tool.  
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Monte Carlo Simulation Method 
For more complicated limit state functions, the application of the general statistical method 

for the calculation of the reliability index is either extremely difficult or impossible. Under 

this circumstance, the Monte Carlo simulation provides the only feasible way to determine 

the reliability index or the probability of failure. The procedures of the Monte Carlo 

simulation are described in the following paragraphs.  

First, simulated values of the random variables in the limit state equation are generated. 

These values are then used to simulate values of the limit state function itself. Finally, the 

simulated values of the limit state function are plotted on normal probability paper. The 

probability of failure can be found by reading the probability value at the location where the 

plotted data curve intersects a vertical line passing through the origin. If there are too few 

data points and the plotted curve does not intersect the vertical axis, the plotted curve can be 

extrapolated.  

The Monte Carlo method is a technique by which a random number generator is used to 

extrapolate CDF values for each random variable. Extrapolation of CDF makes estimating  

possible; otherwise, a limited quantity of data would restrict the reliable estimate of . Once 

the reliability index, , is estimated, the probability of failure can be estimated by assuming 

the distribution of g(x). The steps of the Monte Carlo simulation method are as follows; 

1. Generate random numbers for each set of variables. Here there are three variables 

(resistance, dead load and live load bias factor), so three sets of random variable have 

to be generated independently for each one. The number of simulations required is 

found using the following equation: 

    
)(P*V
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                 (33) 

 

where, Ptrue is the lowest magnitude of probability that is to be determined using 

Monte Carlo, and Vp is the desired coefficient of variation of the simulation result. To 

estimate a probability as low as 10-2 and keep variance under 10 percent, the number 

of points to be generated in the Monte-Carlo simulation is 9900. 
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For each lognormal variable, the sample value xi is estimated as: 

       lnxilnxi σzexp(μ*x  )                 (34) 

where, )(Vσ xx 1ln 2
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In the previous expressions, μx, and Vx are the arithmetic mean and variance of x, 

respectively, and μlnx and σlnx are the equivalent lognormal mean and standard 

deviation [mean and standard deviation of ln(x)] and AND())NORMSINV(Rzi   is 

the random standard normal variable generated using the EXCEL function. 

2. Define the limit state function. This is done in step 1 for FORM. 

3. Find the number of cases where g(xi)  0. The probability of failure is then defined 

as: 
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and reliability index β is estimated as: 

        (Pf)Φβ 1                 (36) 
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METHODOLOGY 

As discussed earlier, the objective of this research study is to calibrate resistance factors for 

different pile design methods needed in the LRFD design of driven piles based on the 

Louisiana database and experience. A total of 53 pile load tests, their corresponding borings 

and CPT tests were identified and collected from LADOTD files. The collected pile load test 

data, soil properties, and CPT profiles were compiled and analyzed. This section describes 

the methodology of collecting, compiling, and analyzing the pile load test reports. 

 

Collecting of Pile Load Test Database 

The LADOTD practice for pile load tests is mainly to validate and verify the pile capacity 

estimates based on a selected design method/procedure. If the tested pile fails to provide the 

required support for design loads, more piles will be added to increase the load carrying 

capacity and/or increase the lengths of the driven piles. The reports of all pile load tests 

conducted in Louisiana projects are available in the general files section at LADOTD 

headquarters in Baton Rouge. In this study, pile load test reports were obtained from the 

pavement and geotechnical design section at LADOTD. 

 

The research team carefully reviewed and evaluated the collected pile load test reports from  

LADOTD for potential inclusion in the current research. The criterion for including a pile 

load test case in the analysis was based on the availability of proper documentation on pile 

data (installation and testing), pile failed during loading, adequate subsurface exploration and 

soil testing from borings, CPT soundings, and site location. If a pile load test report was 

found to be satisfactory, the report was then considered for inclusion in this study.  

The pile load test database used for calibration was established by conducting an extensive 

search in LADOTD’s project files. Only PPC piles that have been tested to failure and 

include adequate soil information were included in this study. The use of PPC piles is more 

economical in Louisiana where the driving of piles is not a problem. A total of 53 pile load 

tests met this criterion. Figure 7 presents a map of Louisiana with locations of the test piles 

that were investigated in this research. A summary of the characteristics of the investigated 

piles is presented in Table 3.  
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Figure 7 
Approximate locations of the investigated piles 

 

 

Compilation of Pile Load Test Reports 

The data on the selected pile load test reports were compiled. The information and data 

regarding the project, soil stratification and properties, pile characteristics, load test data, 

CPT profiles, dynamic test data, etc. were processed and transferred from each load test 

report to tables, forms, and graphs. Some of the CPT soundings were obtained in digital 

format. The remainder of the CPT profiles were scanned using a high resolution scanner and 

then were converted to a digital format using the automated digitizing software UN-SCAN-

IT. The following data and information were collected and compiled for each pile load test 

report. 

 

The site data provide the necessary information to identify the location of the project. The 

site identification used herein is the Louisiana state project number. For example, the site ID 

005-05-0065 is the state project number for St. Louis Canal Bridge. 
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Table 3 
Summary of the characteristics of the investigated piles 

 

Square PPC 

Pile Size 

Pile Type Predominant Soil Type 

Friction End-Bearing Cohesive Cohesionless 
Limit of 

Information 

14" 22 0 19 3 0 

16" 5 0 3 0 2 

18" 2 0 1 1 0 

24" 9 1 7 3 0 

30" 13 1 9 5 0 

Total 51 2 39 12 2 

 

 

The soil data consist of information on the soil boring location (station number), soil 

stratigraphy, unit weight, Atterberg limits, laboratory testing (shear strength, physical 

properties, etc.), and in-situ test results (e.g., SPT for cohesionless soil). 

 

The foundation data consist of pile characteristics (pile ID, material type, cross-section, total 

length, and embedded length), installation data (location of the pile, date of driving, driving 

record, hammer type, etc.), and pile load test (date of loading, applied load with time, pile 

head movement, pile failure under testing, etc.). 

 

The cone penetration soundings include test location (station number), date, cone tip 

resistance, and sleeve friction profiles with depth.  

 

Ultimate Capacity of Piles from Load Test 

The measured ultimate pile resistance (Qu) was interpreted from the load-deformation curve 

using the Davisson method for piles with a size less than 24 inches and the modified 

Davisson method proposed by Kyfor et al. for piles exceeding a size of 24 inches [39], [40]. 
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In the Davisson method, the ultimate bearing resistance is determined from the intersection 

between a load-settlement curve and a straight line with a slope of L/AE and an initial 

settlement intercept of 0.15 + D/120 (in.) [(L: pile length, A: cross-sectional area of the pile, 

E: Young’s modulus of the pile, and D: pile diameter (in.)]. Figure 8 illustrates a sample 

load-deformation test analysis using the Davisson method. In addition to load test results, all 

other relevant information such as soil borings, pile driving logs, and CPT data were also 

collected. Figure 9 shows a typical summary of geotechnical data for a tested pile. The 

summary of geotechnical data for all projects investigated in this research is presented in the 

Appendix. 
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Figure 8 
Estimation of ultimate bearing resistance using Davisson [39] method after Salgado [41] 
 

 

Soil Identification and Classification 

In addition to the soil classification determined based on soil borings and results of 

laboratory testing, the probabilistic region estimation CPT method was also used for soil 

classification and identification of site stratigraphy [24]. This method is similar to the classic 

soil classification methods since it is based on soil composition. It identifies three soil types: 

       0.15+D/120 
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clayey, silty, and sandy soils. The probabilistic region classification method provides a 

profile of the probability or the chance of having each soil type (clay, silt, and sand) with 

depth. In this study, the probability of soil types for each soil layer was used in connection 

with CPT pile prediction methods to calculate the appropriate correlation factors needed to 

estimate qb and f from CPT data. A typical soil profile obtained by the probabilistic region 

estimation is shown in Figure 9.  
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Figure 9   
Typical summary of geotechnical data for a tested pile 
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DISCUSSION OF RESULTS 

Predicted versus Measured Ultimate Pile Resistances 

Based on the analysis of 53 driven piles, a statistical analysis was performed on the collected 

database to evaluate the accuracy and performance of the different pile capacity estimation 

methods. Table 4 presents the summary of the analysis performed on the investigated piles. 

The table shows the pile size, type, length, location of the pile, measured ultimate load 

resistance, and predicted load capacities of different methods. The mean and standard 

deviation of the predicted to measured pile capacity ratios (Rp/Rm), which are the inverses of 

the bias factor (), were calculated for the previously mentioned methods and are 

summarized in Table 5. Figures 10 through 16 present the comparison between the estimated 

pile capacities and the measured pile capacity using the Davisson method and modified 

Davisson method for the different pile design methods. Linear regression analysis was 

conducted on all methods to obtain the best fit line of the predicted/measured pile capacities 

(Rp/Rm) assuming zero intercept. The relationship Rp/Rm and the corresponding coefficient of 

determination (R2) determined for all estimation methods are presented in Figures 10 through 

16 and also summarized in Table 5.  

The comparison of static calculated pile capacities versus the measured load tests compiled 

from all soil types are presented in Figure 10. The results indicated the ratio Rfit/Rm for the 

static calculation method is 1.0 with an R2 of 0.84.  The coefficient (slope) of 1.0 from the 

regression analysis implies that the relative bias of the pile capacity prediction based on the 

static calculation method does not vary with the measured capacities because the adhesion 

factor  already included the adjustment of biases inherent in the soil strengths.  The mean 

and standard deviation of the Rp/Rm ratio for static method are 1.12 and 0.32, respectively, 

indicating an average of 12 percent overestimation using the static calculation method which 

includes Tomlinson’s method in clay and Nordlund’s method in sand.  

Figures 11 through 14 depict the comparison between the CPT estimation methods and 

measured pile capacities using the Davisson interpretation method. It should be noted that the 

correlations resulted in Rfit/Rm ratios ranging from 0.94 to 1.20.  The De Ruiter Beringen 

method had the lowest ratio of 0.94.  All other methods had Rfit/Rm ratios higher than 1 

indicating an increasing bias in pile capacity estimation with the increase in actual capacity.  

In other work, the CPT methods tend to overestimate the capacity for high capacity piles. 

The average ratios of Rp/Rm of the CPT methods range from 0.90 to 1.20. The De Ruiter-

Beringen method has the smallest ratio implying an average of 10 percent underestimation of 
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pile capacity while the other CPT methods overestimate the capacity by 5 to 20 percent.  On 

average, the LCPC method overestimates the ultimate pile capacity by 5 percent and the 

Schmertmann method overestimates the pile capacity by 20 percent. The comparison 

between the average of CPT methods (CPT-average method) and measured pile capacities 

are presented in Figure 14. The Rfit/Rm for the average of CPT methods is 1.08 with R2 = 

0.82.  This is not surprising due to the fact that the CPT methods generally overestimate pile 

capacities for high capacity piles as discussed earlier. The mean and standard deviation of the 

ratio Rp/Rm for CPT-average method are 1.05 and 0.33, respectively. The use of the average 

CPT methods overestimates the pile capacity by 5 percent in average.   

Figures 15 and 16 present the results of signal matching using CAPWAP, which show the 

average end of driving (EOD) resistance is about 35 percent of the average load test value 

indicating a setup factor of about 2.9. The 14-day beginning of restrike (BOR) data show the 

CAPWAP estimation of pile resistance still underestimated the measured value by 17 

percent.   
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Table 4 
Results of the analysis conducted on square precast prestressed concrete piles driven into Louisiana soils 

  
State Project 

Identification 

003-07-0019 005-01-0056 005-01-0056 005-01-0056 

BNSS Overpass - 

Jennings 

Southern pacfic 

railroad overpass 

Southern pacfic 

railroad overpass 

Southern pacfic 

railroad overpass 

Pile and Soil 

Identification 

Pile ID 
TP1, 24" Square 

PPC 

TP1, 24" Square 

PPC 
TP2, 14" Square PPC

TP3, 24" Square 

PPC 

Pile Length (ft.) 60 90 74 92 

Embedded Length (ft.) 54.2 85 63.7 87 

Pile Classification Friction Skin Skin Skin 

Predominant Soil* Cohesive Cohesive Cohesive Cohesive 

Methods of 

Predicting 

Pile Capacity 

by Cone 

Penetration 

Test 

Predicted Ultimate Load 

(ton) 
Qu Qu Qu Qu 

Schmertmann — 246.0 94.6 324.5 

de Ruiter & Beringen — 174.9 75.4 293.8 

LCPC — 196.5 92.7 340.7 

Average — 205.8 87.6 319.6 

Static 

Analysis 

α-method and Nordlund 

method 
217.3 271 — 363.7 

Dynamic 

measurement 

CAPWAP (EOD) 75.0 — — — 

CAPWAP (14 days-BOR) 238.8 — — — 

Load Test 

Interpretation 

Method 

Davisson method 272 225 132  320 

* Cohesive (mainly clayey and silty clay soils) and Cohesionless (mainly sandy soils); Qu: Total ultimate capacity 
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Table 4  
 Results of the analysis conducted on square precast prestressed concrete piles driven into Louisiana soils (continued) 

  State Project Identification 

005-05-0065 008-01-0042 065-90-0024 065-90-0024 

St. Louis Canal 

Bridge 
La 415 - La 983 

Houma I.C.W.W. 

Bridges 

Houma I.C.W.W. 

Bridges 

Pile and Soil 

Identification 

Pile ID 
TP1, 16" Square 

PPC 

TP1, 16" Square 

PPC 

TP1, 14" Square 

PPC 
TP2, 14" Square PPC

Pile Length (ft.) 92 81.3 85 73.5 

Embedded Length (ft.) 79.2 50.7 80 70 

Pile Classification Skin Skin Skin Skin 

Predominant Soil* — —  Cohesive Cohesive 

Methods of 

Predicting 

Pile Capacity 

by Cone 

Penetration 

Test 

Predicted Ultimate Load 

(ton) 
Qu Qu Qu Qu 

Schmertmann —  — 174.4 90.0 

de Ruiter & Beringen — —  110.6 82.1 

LCPC — —  152.6 79.7 

Average — —  145.9 83.9 

Static 

Analysis 

α-method and Nordlund 

method 
— —  162.4 115.5 

Dynamic 

measurement 

CAPWAP (EOD) 20 10.6  —  —  

CAPWAP (14 days-BOR) 70 —  — — 

Load Test 

Interpretation 

Method 

Davisson method  109 86 115 55 

* Cohesive (mainly clayey and silty clay soils) and Cohesionless (mainly sandy soils); Qu: Total ultimate capacity 
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Table 4   
Results of the analysis conducted on square precast prestressed concrete piles driven into Louisiana soils (continued) 

  State Project Identification 

065-90-0024 260-05-0020 260-05-0020 260-05-0020 

Houma I.C.W.W. 

Bridges 

Tichfaw River 

Bridge and 

Approaches 

Tichfaw River 

Bridge and 

Approaches 

Tichfaw River 

Bridge and 

Approaches 

Pile and Soil 

Identification 

Pile ID 
TP3, 14" Square 

PPC 

TP1, 30" Square 

PPC 

TP2, 30" Square 

PPC 

TP3, 30" Square 

PPC 

Pile Length (ft.) 94.5 73 118 81 

Embedded Length (ft.) 80 59.3 61.2 73.9 

Pile Classification Skin Skin Skin Skin 

Predominant Soil* Cohesive Cohesive Cohesionless Cohesive 

Methods of 

Predicting 

Pile Capacity 

by Cone 

Penetration 

Test 

Predicted Ultimate Load 

(ton) 
Qu Qu Qu Qu 

Schmertmann 184.3 361.5 — 344.5 

de Ruiter & Beringen 72.2 325.6 — 288.7 

LCPC 94.7 301.9 — 325.5 

Average 117.1 329.7 — 319.6 

Static 

Analysis 

α-method and Nordlund 

method 
139.9 441.9 578.9 396.9 

Dynamic 

measurement 

CAPWAP (EOD) — 136.3 — 182.3 

CAPWAP (14 days-BOR) — 517.1 — 379.6 

Load Test 

Interpretation 

Method 

Davisson method 120 478 542.5 464 

* Cohesive (mainly clayey and silty clay soils) and Cohesionless (mainly sandy soils); Qu: Total ultimate capacity 
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Table 4   
Results of the analysis conducted on square precast prestressed concrete piles driven into Louisiana soils (continued) 

 State Project Identification 

262-06-0009        

& 262-07-0012 
424-05-0078 424-05-0078 424-04-0027 

Bridge #1 Tickfaw 

River 

Bayou Boeuf Bridge 

Main Span 

Bayou Boeuf Bridge 

Main Span 

US 90 Interchange 

at John Darnell  Rd.

Pile and Soil 

Identification 

Pile ID 
TP1, 24" Square 

PPC 

TP1, 14" Square 

PPC 

TP2, 14" Square 

PPC 

TP2, 14" Square 

PPC 

Pile Length (ft.) 85 80 80 60 

Embedded Length (ft.) 84.9 77 75 38 

Pile Classification Skin Skin Skin Skin 

Predominant Soil* Cohesionless Cohesionless Cohesionless Cohesive 

Methods of 

Predicting 

Pile Capacity 

by Cone 

Penetration 

Test 

Predicted Ultimate Load 

(ton) 
Qu Qu Qu Qu 

Schmertmann 443.3 — 123.9 — 

de Ruiter & Beringen 371.8 — 118.8 — 

LCPC 536.0 — 149.1 — 

Average 450.3 — 130.6 — 

Static 

Analysis 

α-method and Nordlund 

method 
— 185.6 147.3 104.1 

Dynamic 

measurement 

CAPWAP (EOD) — — — 39 

CAPWAP (14 days-BOR) — — — — 

Load Test 

Interpretation 

Method 

Davisson method 240 165 112.5 135 

* Cohesive (mainly clayey and silty clay soils) and Cohesionless (mainly sandy soils); Qu: Total ultimate capacity 
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Table 4   
Results of the analysis conducted on square precast prestressed concrete piles driven into Louisiana soils (continued) 

  State Project Identification 

424-05-0078 424-05-0081 424-05-0081 424-06-0005 

Bayou Boeuf 

Bridge Main Span 

Bayou Boeuf Bridge  

(West Approach) 

Bayou Boeuf Bridge 

(West Approach) 

Bayou Boeuf 

Bridge 

Pile and Soil 

Identification 

Pile ID 
TP5, 14" Square 

PPC 

TP1, 14" Square 

PPC 

TP4, 16" Square 

PPC 

TP1, 14" Square 

PPC 

Pile Length (ft.) 85 96 80 75 

Embedded Length (ft.) 80.5 89.5 69.9 67 

Pile Classification Skin Skin Skin Skin 

Predominant Soil* Cohesive Cohesive Cohesive Cohesive 

Methods of 

Predicting 

Pile Capacity 

by Cone 

Penetration 

Test 

Predicted Ultimate Load 

(ton) 
Qu Qu Qu Qu 

Schmertmann 71 134.9 130.4 85.9 

de Ruiter & Beringen 88.2 86.9 84.8 66.7 

LCPC 75.4 110.1 96.4 66.4 

Average 78.2 110.6 103.8 73.0 

Static 

Analysis 

α-method and Nordlund 

method 
118.0 124.9 100.7 122.9 

Dynamic 

measurement 

CAPWAP (EOD) — — — —  

CAPWAP (14 days-BOR) — 113.4 96 — 

Load Test 

Interpretation 

Method 

Davisson method 124  115 100 98 

* Cohesive (mainly clayey and silty clay soils) and Cohesionless (mainly sandy soils); Qu: Total ultimate capacity 
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Table 4 
Results of the analysis conducted on square precast prestressed concrete piles driven into Louisiana soils (continued) 

  State Project Identification 

424-06-0005 424-07-0021 450-15-0085 424-05-0087 

Bayou Boeuf 

Bridge 
Bayou L’ourse 

I-10 Williams 

Boulevard 

Interchange 

Morgan City - 

Gibson Highway 

Pile and Soil 

Identification 

Pile ID 
TP2, 14" Square 

PPC 

TP1, 30" Square 

PPC 

TP3A, 14" Square 

PPC 

TP1, 16" Square 

PPC 

Pile Length (ft.) 85 124 87 85 

Embedded Length (ft.) 71  117  75.5 69.5 

Pile Classification Skin Skin Skin Skin 

Predominant Soil* Cohesive Cohesive Cohesive Cohesive 

Methods of 

Predicting 

Pile Capacity 

by Cone 

Penetration 

Test 

Predicted Ultimate Load 

(ton) 
Qu Qu Qu Qu 

Schmertmann 94.9 369.9 — 115.9 

de Ruiter & Beringen 75.7 296.7 — 81.9 

LCPC 75.1 294.3 — 97.9 

Average 81.9 320.3 — 98.6 

Static 

Analysis 

α-method and Nordlund 

method 
111.5 411.9 140.2 —  

Dynamic 

measurement 

CAPWAP (EOD) — 123.3 — —  

CAPWAP (14 days-BOR) — 374.6 150.1 — 

Load Test 

Interpretation 

Method 

Davisson method 98 380 172 105 

* Cohesive (mainly clayey and silty clay soils) and Cohesionless (mainly sandy soils); Qu: Total ultimate capacity 
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Table 4   
Results of the analysis conducted on square precast prestressed concrete piles driven into Louisiana soils (continued) 

  State Project Identification 

424-05-0087 424-05-0087 424-05-0087 424-05-0081 

Morgan City - 

Gibson Highway 

Morgan City - 

Gibson Highway 

Morgan City - 

Gibson Highway 

Bayou Boeuf Bridge 

(West Approach) 

Pile and Soil 

Identification 

Pile ID 
TP3, 30" Square 

PPC 

TP5, 30" Square 

PPC 
TP7, 16" Square PPC

TP3, 14" Square 

PPC 

Pile Length (ft.) 115 115 85 74 

Embedded Length (ft.) 104.1 113 77 64.5 

Pile Classification Skin Skin Skin Skin 

Predominant Soil* Cohesionless Cohesive Cohesive Cohesive 

Methods of 

Predicting 

Pile Capacity 

by Cone 

Penetration 

Test 

Predicted Ultimate Load 

(ton) 
Qu Qu Qu Qu 

Schmertmann 603.1 794.5 131.5 135.0 

de Ruiter & Beringen 532.2 603.8 95.6 108.1 

LCPC 612.1 776.2 111.5 131.6 

Average 582.5 724.8 112.9 124.9 

Static 

Analysis 

α-method and Nordlund 

method 
526.6 454.7 133.1 119.7 

Dynamic 

measurement 

CAPWAP (EOD) — —  —  —  

CAPWAP (14 days - BOR) — — — 66.5 

Load Test 

Interpretation 

Method 

Davisson method 482 565 111 165 

* Cohesive (mainly clayey and silty clay soils) and Cohesionless (mainly sandy soils); Qu: Total ultimate capacity 
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Table 4   
Results of the analysis conducted on square precast prestressed concrete piles driven into Louisiana soils (continued) 

  State Project Identification 

424-06-0005 424-06-0005 014-02-0018 047-02-0022 

Bayou Boeuf 

Bridge 
Bayou Boeuf Bridge 

Union Pacific 

Railroad Overpass 

Bogue Chitto 

Bridge 

Pile and Soil 

Identification 

Pile ID 
TP3, 14" Square 

PPC 

TP5, 14" Square 

PPC 

TP1, 30" Square 

PPC 

TP2, 30" Square 

PPC 

Pile Length (ft.) 78 85 107 92 

Embedded Length (ft.) 77.5 79 45.5 58  

Pile Classification Skin Skin Skin Skin 

Predominant Soil* Cohesive Cohesive Cohesive Cohesionless 

Methods of 

Predicting 

Pile Capacity 

by Cone 

Penetration 

Test 

Predicted Ultimate Load 

(ton) 
Qu Qu Qu Qu 

Schmertmann 99.8 94.4 — 468.5 

de Ruiter & Beringen 71.5 57.4 — 418.4 

LCPC 82.8 67.6 — 503.3 

Average 84.7 73.1 — 463.4 

Static 

Analysis 

α-method and Nordlund 

method 
98.8 100.6 289.1 475.8 

Dynamic 

measurement 

CAPWAP (EOD) — — 162.5 120 

CAPWAP (14 days-BOR) — — —  —  

Load Test 

Interpretation 

Method 

Davisson method 100 90 455 390 

* Cohesive (mainly clayey and silty clay soils) and Cohesionless (mainly sandy soils); Qu: Total ultimate capacity  
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Table 4  
 Results of the analysis conducted on square precast prestressed concrete piles driven into Louisiana soils (continued) 

  State Project Identification 

424-05-0087 064-06-0036 090-01-0015 090-01-0015 

Morgan City - 

Gibson Highway 

Bayou Lafourche 

Bridge and 

Approaches 

Lake Bistineau 

Spillway Bridge 

Lake Bistineau 

Spillway Bridge 

Pile and Soil 

Identification 

Pile ID 
TP4, 30" Square 

PPC 

TP1, 24" Square 

PPC 

TP1, 24" Square 

PPC 

TP2, 24" Square 

PPC 

Pile Length (ft.) 115 59.1 56.5 65 

Embedded Length (ft.) 99.3 39 39.5 47 

Pile Classification Skin Skin Skin Skin 

Predominant Soil* Cohesionless Cohesionless Cohesive Cohesionless 

Methods of 

Predicting 

Pile Capacity 

by Cone 

Penetration 

Test 

Predicted Ultimate Load 

(ton) 
Qu Qu Qu Qu 

Schmertmann 664.6 74.4 263.4 686.9 

de Ruiter & Beringen 534.4 39.3 222.8 609.0 

LCPC 619.8 52.5 272.4 529.8 

Average 606.3 55.4 252.9 608.6 

Static 

Analysis 

α-method and Nordlund 

method 
590.9 72.8 172.5 262.6 

Dynamic 

measurement 

CAPWAP (EOD) — 17.5 149.9 60 

CAPWAP (14 days-BOR) — —  —  —  

Load Test 

Interpretation 

Method 

Davisson method 570 77 149 120 

* Cohesive (mainly clayey and silty clay soils) and Cohesionless (mainly sandy soils); Qu: Total ultimate capacity 
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Table 4  
 Results of the analysis conducted on square precast prestressed concrete piles driven into Louisiana soils (continued) 

  State Project Identification 

424-05-0087 713-48-0083 713-48-0083 455-05-0036 

Morgan City - 

Gibson Highway 

Bayou Milhomme 

Bridge & 

Approaches 

Bayou Milhomme 

Bridge & 

Approaches 

Sugarhouse Road 

Pile and Soil 

Identification 

Pile ID 
TP2, 30" Square 

PPC 

TP1, 24" Square 

PPC 

TP2, 24" Square 

PPC 

TP1, 14" Square 

PPC 

Pile Length (ft.) 115 72 96 75 

Embedded Length (ft.) 89.2 55 85 70 

Pile Classification Skin Skin Skin Skin 

Predominant Soil* Cohesionless Cohesive Cohesive Cohesive 

Methods of 

Predicting 

Pile Capacity 

by Cone 

Penetration 

Test 

Predicted Ultimate Load 

(ton) 
Qu Qu Qu Qu 

Schmertmann 546.3 — —  130.9 

de Ruiter & Beringen 433.7 — — 90.3 

LCPC 574.8 — — 98.9 

Average 518.3 — — 106.7 

Static 

Analysis 

α-method and Nordlund 

method 
415.1 78.4 201.5 —  

Dynamic 

measurement 

CAPWAP (EOD) — — — —  

CAPWAP (14 days-BOR) — — — — 

Load Test 

Interpretation 

Method 

Davisson method 518 83.2 153 96 

* Cohesive (mainly clayey and silty clay soils) and Cohesionless (mainly sandy soils); Qu: Total ultimate capacity 
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Table 4   
Results of the analysis conducted on square precast prestressed concrete piles driven into Louisiana soils (continued) 

  State Project Identification 

455-05-0036 455-05-0036 434-01-0002 239-01-0080 

Sugarhouse Road Sugarhouse Road 

Mississippi River 

Bridge at Gramercy 

(West Approaches) 

ICWW Bridge 

Approaches 

(Louisa) 

Pile and Soil 

Identification 

Pile ID 
TP2, 14" Square 

PPC 

TP3, 14" Square 

PPC 

TP3, 14" Square 

PPC 

TP3, 14" Square 

PPC 

Pile Length (ft.) 75 65 105 60 

Embedded Length (ft.) 70 59 64  55 

Pile Classification Skin Skin Skin Skin 

Predominant Soil* Cohesive Cohesive Cohesionless Cohesive 

Methods of 

Predicting 

Pile Capacity 

by Cone 

Penetration 

Test 

Predicted Ultimate Load 

(ton) 
Qu Qu Qu Qu 

Schmertmann 111.6 121 201.8 130.5 

de Ruiter & Beringen 95.4 69 175.8 107.6 

LCPC 105 80.5 182.8 108.1 

Average 104 90.2 186.8 115.4 

Static 

Analysis 

α-method and Nordlund 

method 
— —  —  —  

Dynamic 

measurement 

CAPWAP (EOD) — —  — — 

CAPWAP (14 days-BOR) — — — — 

Load Test 

Interpretation 

Method 

Davisson method 96.5 69  230 115.5 

* Cohesive (mainly clayey and silty clay soils) and Cohesionless (mainly sandy soils); Qu: Total ultimate capacity 
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Table 4  
 Results of the analysis conducted on square precast prestressed concrete piles driven into Louisiana soils (continued) 

  State Project Identification 

239-01-0080 855-14-0003 Alexandria 424-06-0005 

ICWW Bridge 

Approaches 

(Louisa) 

Intercoastal 

Waterway Bridge 

(Prospect Ave.) 

Pinville-Tioga 

Highway Railroad 

Overpass 

Bayou Boeuf 

Bridge 

Pile and Soil 

Identification 

Pile ID 
TP4, 30" Square 

PPC 

TP1, 18" Square 

PPC 

TP1, 14" Square 

PPC 

TP4, 14" Square 

PPC 

Pile Length (ft.) 91.9   85 

Embedded Length (ft.)  84.3  95  31 79 

Pile Classification Skin Skin Skin Skin 

Predominant Soil* Cohesive Cohesive Cohesive Cohesive 

Methods of 

Predicting 

Pile Capacity 

by Cone 

Penetration 

Test 

Predicted Ultimate Load 

(ton) 
Qu Qu Qu Qu 

Schmertmann 411.2 107.8 132.2 124.3 

de Ruiter & Beringen 321.8 116.7 80.5 79.5 

LCPC 310 112.2 110.1 97.4 

Average 347.7 112.2 107.6 100.4 

Static 

Analysis 

α-method and Nordlund 

method 
— —  —  —  

Dynamic 

measurement 

CAPWAP (EOD) — —  —  — 

CAPWAP (14 days-BOR) — — —  — 

Load Test 

Interpretatio

n Method 

Davisson method 360.8 216 90 120 

* Cohesive (mainly clayey and silty clay soils) and Cohesionless (mainly sandy soils); Qu: Total ultimate capacity 
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Table 4  
 Results of the analysis conducted on square precast prestressed concrete piles driven into Louisiana soils (continued) 

  State Project Identification 

424-07-0009 424-07-0009 450-36-0002 
283-03-0052       

(New Orleans) 

Gibson-raceland 

highway 

Gibson-raceland 

highway 

Luling Bridge - 

US61 

West Bank 

Expressway 

Pile and Soil 

Identification 

Pile ID 
TP4A, 30" Square 

PPC 

TP4, 30" Square 

PPC 

TP8, 30" Square 

PPC 

TP1, 18" Square 

PPC 

Pile Length (ft.) 125 125 120  

Embedded Length (ft.) 124 120 112  120 

Pile Classification — Skin End Bearing Skin 

Predominant Soil*  — Cohesive Cohesive Cohesive 

Methods of 

Predicting 

Pile Capacity 

by Cone 

Penetration 

Test 

Predicted Ultimate Load 

(ton) 
Qu Qu Qu Qu 

Schmertmann 739.2 740.2 794.7 128.6 

de Ruiter & Beringen 506 507 656.4 179.2 

LCPC 606.3 607.3 796.6 169.1 

Average 617.2 618.2 749.2 159 

Static 

Analysis 

α-method and Nordlund 

method 
—  —  — —  

Dynamic 

measurement 

CAPWAP (EOD) — —  — —  

CAPWAP (14 days-BOR) — —  — —  

Load Test 

Interpretation 

Method 

Davisson method 633 320 482 372  

* Cohesive (mainly clayey and silty clay soils) and Cohesionless (mainly sandy soils); Qu: Total ultimate capacity 
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Table 4  
 Results of the analysis conducted on square precast prestressed concrete piles driven into Louisiana soils (continued) 

  State Project Identification 

090-01-0015 

Lake Bistineau 

Spillway Bridge 

& Approaches 

Pile and Soil 

Identification 

Pile ID 
TP6, 24" Square 

PPC 

Pile Length (ft) — 

Embedded Length (ft)  60 

Pile Classification End Bearing 

Predominant Soil* Cohesive 

Methods of 

Predicting 

Pile Capacity 

by Cone 

Penetration 

Test 

Predicted Ultimate Load 

(ton) 
Qu 

Schmertmann 347.7 

de Ruiter & Beringen 241.5 

LCPC 258.3 

Average 282.5 

Static 

Analysis 

α-method and Nordlund 

method 
— 

Dynamic 

measurement 

CAPWAP (EOD) —  

CAPWAP (14 days - BOR) — 

Load Test 

Interpretation 

Method 

Davisson method 270.5 

* Cohesive (mainly clayey and silty clay soils) and Cohesionless (mainly sandy soils); Qu: Total ultimate capacity 
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Table 5  
 Evaluation summary of the different prediction methods 

 

 

 

 

 

 

 

 

* Davisson method and modified Davisson method  
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Figure 10  

 Rm versus Rp (Static method)  

Pile Capacity Prediction Method 
Rp/Rm

* Best fit calculations 

Mean  Rfit/Rm
* R2 

Static α-method 1.12 0.32 1.00 0.84 

Schmertmann method 1.20 0.37 1.20 0.81 

LCPC method 1.05 0.38 1.11 0.78 

de-Ruiter & Beringen method 0.90 0.28 0.94 0.84 

Average of CPT methods 1.05 0.33 1.08 0.82 

CAPWAP–EOD method 0.35 0.23 0.32 0.69 

CAPWAP–14 days BOR method 0.83 0.22 0.92 0.91 
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Figure 11  

 Rm versus Rp (Schmertmann method) 
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Figure 12  

 Rm versus Rp (LCPC method) 
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Figure 13  

 Rm versus Rp (De Ruiter method) 
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Figure 14  

 Rm versus Rp (CPT - Average method) 
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Figure 15  

 Rm versus Rp (CAPWAP-EOD) 
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Figure 16  

 Rm versus Rp (CAPWAP-14 days BOR) 
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LRFD Calibration 

Figures 17 to 23 present the histogram and the normal and log-normal distribution of the 

measured to predicted pile resistance (Rm/Rp) of the static method, three CPT methods, the 

average of three CPT methods, and dynamic measurement with signal matching analysis 

(CAPWAP), respectively. Also Figures 24 to 30 illustrate the cumulative distribution 

function (CDF) of the bias values for each design method. As shown in the figures, generally 

the log-normal distribution matches the histogram and CDF better than the normal 

distribution. In addition, the resistance bias factor (R = Rm/Rp) can range theoretically from 0 

to infinity with an optimum value of one; therefore, the distribution of the resistance bias can 

be assumed to follow a log-normal distribution [42]. In this study, the log-normal 

distribution was used to evaluate the different methods based on prediction accuracy and to 

calibrate the resistance factors.  

Reliability analyses were conducted and the resistance factors for all pile design methods 

were calibrated at QD/QL = 3. This ratio was selected since the reliability index (converges 

for QD/QL exceeding 3 [23]. Figures 31 through 37 present the resistance factors determined 

for various reliability indexes (β) for the different pile design methods. As shown in the 

figures, the resistance factors () determined by the advanced methods (FORM and Monte 

Carlo simulation method) are relatively close and generally higher than the resistance factors 

() obtained from FOSM. 

A review of the literature indicates that the required target reliability indexes are between 

2.33 and 3 for geotechnical applications. The resistance factors () determined by FOSM, 

FORM, and the Monte Carlo simulation method for different pile design methods 

corresponding to reliability index of 2.33 are tabulated in Table 6. The resistance factors for 

the static method determined in this study are 0.56 (FOSM) and 0.63 (FORM and Monte 

Carlo simulation method), which is higher than the  value recommended by AASHTO (e.g., 

 = 0.34-0.45 for static method, and  = 0.50 for Schmertmann method) [11]. It should be 

noted that this value is only valid for subsurface conditions similar to Louisiana soils that 

consist mainly of soft cohesive soils with some cohesionless inter-layering soils. For this 

condition, the driven pile resistance was determined using the -Tomlinson method 

dominantly and the Nordlund method was employed for cohesionless inter-layering soils. 

Among the three direct CPT methods, the De Ruiter and Beringen method shows the highest 

resistance factor [ = 0.66 (FOSM), 0.74 (FORM), and 0.73 (Monte Carlo simulation 

method)], while the Schmertmann method shows the lowest resistance factor [= 0.44 

(FOSM), 0.48 (FORM), and 0.49 (Monte Carlo simulation)], which is lower than the 
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AASHTO value of 0.5. For the dynamic measurement with signal matching analysis, the 

resistance factors obtained for the CAPWAP (EOD) is 1.31 (FOSM) and 1.41 (FORM), 

which is higher than those of CAPWAP (14 days BOR) of 0.55 (FOSM), 0.61 (FORM) and 

0.62 (Monte Carlo simulation method). This is mainly due to the pile setup effect. Although 

the CAPWAP (EOD) has a high resistance factor, it is not an economical and reliable 

approach because it significantly underestimates the resistance and has low efficiency factors 

of 0.36 (FOSM) and 0.39 (FORM). The dynamic measurement is mainly used for pile 

drivability rather than for design.  

 

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

Rm / RP

0

5

10

15

20

25

30

P
ro

b
a

b
ili

ty
 (

%
) Log-Normal Distribution

Normal Distribution

Static Method

 
Figure 17  

 Histogram and PDF of resistance bias factors (Static method) 
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Figure 18  

 Histogram and PDF of resistance bias factors (Schmertmann method) 
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Figure 19  

 Histogram and PDF of resistance bias factors (LCPC method) 
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Figure 20  

 Histogram and PDF of resistance bias factors (De Ruiter method) 
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Figure 21  

 Histogram and PDF of resistance bias factors (CPT - Average method) 
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Figure 22  

 Histogram and PDF of resistance bias factors (CAPWAP-EOD) 
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Figure 23  

 Histogram and PDF of resistance bias factors (CAPWAP-14 days BOR) 
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Figure 24  

 Cumulative distribution function (CDF) of bias values (Static method) 
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Figure 25  

 Cumulative distribution function (CDF) of bias values (Schmertmann method) 



 61

0 0.4 0.8 1.2 1.6 2 2.4
Bias ()

-3

-2

-1

0

1

2

3

S
ta

n
d

ar
d

 N
o

rm
al

 V
ar

ia
b

le
, 
z

LCPC Method
Measured Bias Vlaue
Predicted Normal Dist.
Predicted Log-Normal Dist.

 
Figure 26  

 Cumulative distribution function (CDF) of bias values (LCPC method) 
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Figure 27 

  Cumulative distribution function (CDF) of bias values (De Ruiter method) 
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Figure 28  
 Cumulative distribution function (CDF) of bias values (CPT-Average method) 
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Figure 29  
 Cumulative distribution function (CDF) of bias values (CAPWAP-EOD) 
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Figure 30  

 Cumulative distribution function (CDF) of bias values (CAPWAP-14 days BOR) 
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Figure 31  

 Resistance factors for different reliability indexes (Static method) 
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Figure 32  

 Resistance factors for different reliability indexes (Schmertmann method) 
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Figure 33  

 Figure 26 Resistance factors for different reliability indexes (LCPC method) 
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Figure 34  

 Resistance factors for different reliability indexes (De Ruiter method) 
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Figure 35  

 Resistance factors for different reliability indexes (CPT - Average method) 
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Figure 36  

 Resistance factors for different reliability indexes (CAPWAP-EOD) 
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Figure 37  

 Resistance factors for different reliability indexes (CAPWAP-14 days BOR) 
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Table 6  
 Resistance Factors () for Driven Piles (T = 2.33) 

 

Design Method 

Proposed Resistance Factor () and 

Efficiency Factor () for Louisiana Soil Resistance 

Factor,  

[AASHTO 

(11)] 

FOSM FORM 
Monte Carlo 

Simulation 

     

Static method 

-Tomlinson 

method and  

Nordlund 

method

0.56 0.58 0.63 0.66 0.63 0.66 0.35-0.45 

Direct CPT 

method 

Schmertmann 0.44 0.47 0.48 0.52 0.49 0.53 0.50 

LCPC/LCP 0.54 0.51 0.60 0.56 0.59 0.56 — 

De Ruiter and 

Beringen 
0.66 0.55 0.74 0.62 0.73 0.61 — 

CPT average 0.55 0.53 0.61 0.59 0.62 0.59 — 

Dynamic 

measurement 

CAPWAP 

(EOD) 
1.31 0.36 1.41 0.39 — — — 

CAPWAP (14 

days BOR) 
0.55 0.44 0.61 0.52 0.62 0.47 0.65 
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CONCLUSIONS 

This study presents a reliability based evaluation of different design methods for predicting 

the ultimate axial resistance of piles driven into Louisiana soils. Resistance factors () of 

single driven piles needed to implement the LRFD design methodology were determined for 

each design method. A pile load test (a soil database of 53 square PPC piles of different sizes 

and lengths) that was tested to failure was collected from LADOTD archives and used to 

calibrate the resistance factors. For each pile load test, the measured ultimate pile resistance 

was estimated using the Davisson interpretation method and modified Davisson method for 

piles with a larger size. In addition, the load carrying resistance of each pile was predicted 

using the static method, three CPT methods (Schmertmann, De Ruiter-Beringen, and LCPC 

methods), the average of three CPT methods, and the dynamic CAPWAP (EOD and BOR) 

methods.  

Statistical analyses comparing the predicted and measured pile resistances were conducted to 

evaluate the performance of the different pile design methods. The results of the statistical 

analyses showed that the static method (-Tomlinson method and Nordlund method) over- 

predicted the pile resistance by 12 percent. Among the three direct CPT methods, the De 

Ruiter-Beringen method was the most consistent prediction method with the lowest COV. 

Both dynamic measurements with signal matching analysis methods (CAPWAP-EOD and 14 

days BOR) showed under-predication of pile resistance with a setup factor of 2.9.  

Reliability analyses based on FOSM, FORM, and the Monte Carlo simulation method were 

conducted to calibrate the resistance factors () for the investigated pile design methods. 

These factors are needed to comply with the FHWA mandate in the LRFD design of single 

driven piles. The design input parameters were adopted from the AASHTO LRFD design 

specifications for bridge substructure. The resistance factors () that corresponded to a dead 

load to live load ratio (QD/QL) of 3 as a function of target reliability index (βT) were 

presented. Based on the results of reliability analyses for βT = 2.33, the De Ruiter-Beringen 

method showed the highest resistance factor [De-Ruiter = 0.66 (FOSM), 0.74 (FORM), and 

0.73 (Monte Carlo simulation method)], while the Schmertmann method showed the lowest 

resistance factor [Schmertmann = 0.44 (FOSM), 0.48 (FORM), and 0.49 (Monte Carlo 

simulation method)], which is lower than the AASHTO recommended value of 0.5. The 

resistance factors obtained for the CAPWAP (EOD) were 1.31 (FOSM), 1.41 (FORM), 

which is higher than CAPWAP (14 day BOR) resistance factors of 0.55 (FOSM), 0.61 

(FORM), and 0.62 (Monte Carlo simulation method). This is mainly due to pile setup. 

Although the CAPWAP (EOD) has a high resistance factor, it is not an economical and 
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reliable approach because it significantly underestimates the resistance and has a low 

efficiency factor. However, the dynamic measurement is mainly used for pile drivability 

rather than for design. 
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RECOMMENDATIONS 

1. LADOTD engineers need to start implementing the resistance factors () recommended 

for the different pile design methods based on Louisiana pile load test—a soil database in 

the LRFD design of driven piles for all future state projects. 

2. It is recommended to select a few projects to demonstrate the cost benefit study and 

comparison between the LRFD design and the traditional ASD design.  

3. It is recommended to hold a workshop to train LADOTD engineers in the LRFD design 

of pile foundations.  

4. It is recommended to continue collecting pile load test data from new projects, especially 

for those cases in which the end bearing and side frictional capacities can be separated for 

possible future re-calibration of resistance factors of different pile design methods every 

two years.   

5. Since the Co-PI’s are from the geotechnical design section at LADOTD, they are already 

in the process of implementing previously mentioned recommendation items 1, 2, and 3 

based on the findings of this research project. 

6. It should be noted that performing complete reliability analyses of a pile foundation 

requires the inclusions of all risk factors.  Scour is a critical factor in the selection of pile 

tip elevations. The risk associated with scouring directly impacts the reliability of pile 

foundations. This is mainly due to expected changes on the in-situ stress state 

(overburden and stress history) of the subsurface soil that will affect the laboratory and 

in-situ test results. However, the scope of this study does not include the evaluation of 

scour and is recommended to be considered in the future.   



 



 73

ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

AASHTO   American Association of Highway and Transportation Officials 

ASD   Allowable Stress Design 

BOR   Beginning of Restrike 

CAPWAP  Case Pile Wave Analysis Program 

EOD  End of Driving 

CDF   Cumulative Distribution Function 

COV   Coefficient of Variation 

CPT  Cone Penetration Test 

DOT   Department of Transportation 

EOD   End of Driving 

FHWA   Federal Highway Administration 

FORM   First Order Reliability Method 

FOSM   Fisrt Order Second Moment 

FS    Factor of Safety 

LADOTD   Louisiana Department of Transportation and Development 

LCPC  Laboratiore Central Des Ponts et Chausses 

LDP-CPT   Louisiana Pile Design by Cone Penetration Test 

LRFD   Load and Resistance Factor Design 

LTRC  Louisiana Transportation Research Center 

MC   Monte Carlo Method 

NC   Normally Consolidated 

OC   Overconsolidated 

PDF   Probability Density Function 

PPC   Precast-Prestressed Concrete 

SLS   Serviceability Limit State 

SPT  Standard Penetration Test 

ULS  Ultimate Limit State or Strength Limit State
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APPENDIX  

Summary of Geotechnical Data for the State Projects Investigated 
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Figure 84  

 424-06-0005  TP#4 
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Figure 85  

 424-07-0009  TP#4 and 4A 
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Figure 86  

 450-36-0002  TP#8 
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Figure 87  

 283-03-0052 (New Orleans)  TP#1 
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Figure 88  

 090-01-0015  TP#6 
 

 

 

 

 

 

 




