Laboratory Performance Asphalt Mixtures Containing High RAP Content with Crumb Rubber Additives

Louay Mohammad Sam Cooper, Jr. LA Transportation Research Center Louisiana State University

Sustainable Materials for Pavement Infrastructure: Use of Waste Tires in Asphalt Mixtures September 5, 2012 Baton Rouge, Louisiana

LOUISIANA STATE UNIVERSITY

My Story

- Background
- Objectives
- Scope
- Methodology
- Discussion of Results
- Conclusions

Sustainability -- Definition

- Meeting the needs of the present without compromising the future
 - □ 1987 United Nation conference
 - □ World Commission on Environment and Development (WCED)
- "Do onto future generations as you would have them do onto you"
 - □ Golden Rule
- "Sustainable means using methods, systems and materials that won't deplete resources or harm natural cycles"
 - □ Rosenbaum, 1993

Sustainable Development

- Economical Sustainability
 - □ Balanced cost-revenue relationship
 - LCA
 - Managing Resources
- Environmental
 - □ Friendly to the ecosystems
 - □ Minimum harm to the surroundings
 - □ Recycling
 - minimize the use of natural resources
 - □ Renewable sources of energy
 - reduce energy consumption,
 - reduce greenhouse gas emissions
- Materials Performance
 - □ Better or similar performance
 - □ Meet people's needs
 - □ ensure a high level of user comfort

Sustainability Materials/Technology

Recycled Materials
Waste Tires

Background

LDOTD asphalt cement specification requires

- □ elastomeric type of polymer modifier
 - Styrene Butadiene Styrene (SBS)
- □ enhanced performance
 - rutting and fatigue cracking
- Shortage in SBS
 - □ 2008
 - □ reported by several polymer suppliers
- Potential to utilize crumb rubber from <u>waste tires</u>
 - □ absorption properties
 - carry <u>engineered additives</u>
 - □ Improve performance
 - revitalize aged binders
 - □ fatigue cracking

Background

Most State Specification

- Limit the % of RAP allowed in flexible pavement layers
 - HMA mixture
- □ asphalt binders *hardened and oxidized*
- causing premature cracking in pavements
- What is the solution to Increase Use of RAP?
 - □ soften the asphalt cement binder of RAP materials
 - engineered additives
 - □ crumb rubber from waste tires in *dry process*
 - Carrying agent of engineered additives
 - will enable the use of higher % RAP

Background

Method of sustainability in the asphalt industry
 Use of recycled materials
 Direct impact on cost and the environment

Direct impact on cost and the environment

□GREEN & LEED

Leadership in Energy and Environmental Design

NCHRP 10-91 [RFP]

□ Guidebook for Selecting and Implementing Sustainable Highway Construction Practices

I identify effective sustainability practices that can be implemented during the construction of highway projects..."

Objectives

- Fundamentally characterize the laboratory performance
 - **Conventional HMA mixtures**
 - Mixtures containing high RAP content and waste tire crumb rubber/engineered additives
 - Dry process

Scope

Four 19.0 mm Level 2 HMA mixtures

- Siliceous limestone aggregates
 - commonly used in Louisiana
- □ Mixture 1: Conventional one, 76CO
 - No RAP
 - Binder: PG 76-22M
 - control mixture
- □ Mixture 2: 76CRM
 - No RAP
 - Binder: PG 64-22 + 30 mesh CR & engineered additives: <u>wet blend</u>
 DG 76-22M

□ Mixture 3: 76RAP15

- 15% RAP
- Binder: PG 76-22M

□ Mixture 4: 64RAP40

- 40% RAP
- Binder: PG 64-22
 - □ 30 mesh CR & engineered additives: *dry blend*

Crumb Rubber/Engineered Additives (Dry Process)

CR Supplied by: Mr. John Osborn of Elastomeric Concentrates, LLC

Asphalt Mixture Preparation

Superheated Agg/RAP

Laboratory Materials Characterization

Binder

PG grading

<u>Mixture</u>

- Permanent Deformation
 - Loaded Wheel Test
 - Dynamic Modulus Test
- Fracture/Durability
 - Semi Circular Bend Test
 - Moisture Susceptibility
 - Lottman Test
- Triplicate
- $V_A = 7.0\% \pm 0.5$

Dynamic Modulus |E*| Test

- IPC SPT (AMPT)
- AASHTO TP-62
- Sinusoidal axial compressive stress is applied to a specimen
 - temperature and frequency

• Dynamic modulus
$$|E^*| = \frac{\sigma_0}{\varepsilon_0}$$

• Phase Angle
$$\phi = \frac{T_i}{T_p} \times 360^\circ$$

Frequency (HZ)	25, 10, 5, 1, 0.5, 0.1
Temp. (°C)	-10, 4.4, 25, 38, 54.4

Fracture Property – 25C Semi-Circular Bend (SCB) Test

The critical value of fracture resistance

$$J_c = -(\frac{1}{b})\frac{dU}{da}$$

Loading rate: 0.5 mm/min Notch Depth (mm): 25.4, 31.8, 38.0 Test temperature: 25 °C Dimension: 150mm dia by 57mm wide

b = Sample Thickness, a = notch depth, U = strain energy to failure

Fracture Property – 25C Semi-Circular Bend (SCB) Test

High Temperature Property – 50C Loaded Wheel Tracking Test

- AASHTO T 324
- Damage by rolling a steel wheel across the surface of a sample
 - Cylindrical, Slab
- 50 °C, Wet or dry
- Deformation at 20,000 passes is recorded

Wheel Diameter: 203.5 mm (8 inch) Wheel Width: 47mm (1.85 inch) Fixed Load: 703 N (158 lbs) Rolling Speed: 1.1 km/hr Passing Rate: 56 passes/min

Moisture Susceptibility Test Results -- %TSR No Antistrip Additives

Dry ITS: 140Psi-150Psi

Fracture Property – 25C Semi-Circular Bend (SCB) Test

Correlation – TSR vs Jc

Complex Modulus Test Results – E* Ratio to PG 76-22M

Correlation -- Fatigue Factor vs J_c

High Temperature Property – 50C, Wet Loaded Wheel Tracking Test Results

76RAP15 64RAP40

Mix Type

Summary

- Addition of CR additives had a positive influence on the asphalt cement binder and provide
- Moisture Susceptibility
 - Mixtures 76CO, 76RAP15, 64RAP40
 - Passed with %TSR
- Intermediate Temperature
 - □ Critical Strain Energy, Jc from SCB test
 - Met the minimum value of 0.6 for fracture resistant mixtures
- High Temperature
 - □ Mixture performed well, < 6mm
- Fair Correlations
 - %TSR vs. Jc
 - E* fatigue factor vs. Jc

Future Research

- Innovations that will maximize the use of CRM asphalt mixtures in flexible pavements.
 - □ Dry process feed systems;
 - Engineered asphalt-rubber system processed from waste tires that can be used in dry process for several applications such as:
 - Warm mix asphalt mixture;
 - Environmental and economical benefits
 - Allowing the use of higher percentages of RAP; and
 - Modifications of binder properties to improve the mixture resistance to moisture damage.
- Pavement thickness equivalency
 - between conventional mixes and CRM asphalt mixes
 - ensure cost competiveness of these mixes.

