Laboratory Performance Asphalt Mixtures Containing High RAP Content with Crumb Rubber Additives

Louay Mohammad
Sam Cooper, Jr.
LA Transportation Research Center
Louisiana State University

Sustainable Materials for Pavement Infrastructure: Use of Waste Tires in Asphalt Mixtures
September 5, 2012
Baton Rouge, Louisiana
My Story

- Background
- Objectives
- Scope
- Methodology
- Discussion of Results
- Conclusions
Sustainability -- Definition

- Meeting the needs of the present without compromising the future
 - 1987 United Nation conference
 - World Commission on Environment and Development (WCED)
- “Do onto future generations as you would have them do onto you"
 - Golden Rule
- "Sustainable means using methods, systems and materials that won't deplete resources or harm natural cycles"
 - Rosenbaum, 1993
Sustainable Development

- **Economical Sustainability**
 - Balanced cost-revenue relationship
 - LCA
 - Managing Resources

- **Environmental**
 - Friendly to the ecosystems
 - Minimum harm to the surroundings
 - Recycling
 - minimize the use of natural resources
 - Renewable sources of energy
 - reduce energy consumption,
 - reduce greenhouse gas emissions

- **Materials Performance**
 - Better or similar performance
 - Meet people’s needs
 - ensure a high level of user comfort

- Three aspects must be considered altogether
Sustainability
Materials/Technology

- Recycled Materials
 - Waste Tires
Background

- LDOTD asphalt cement specification requires elastomeric type of polymer modifier
 - Styrene Butadiene Styrene (SBS)
 - enhanced performance
 - rutting and fatigue cracking

- Shortage in SBS
 - 2008
 - reported by several polymer suppliers

- Potential to utilize crumb rubber from waste tires
 - absorption properties
 - carry engineered additives
 - Improve performance
 - revitalize aged binders
 - fatigue cracking
Background

- Most State Specification
 - Limit the % of RAP allowed in flexible pavement layers
 - HMA mixture
 - asphalt binders *hardened and oxidized*
 - causing premature cracking in pavements

- What is the solution to Increase Use of RAP?
 - soften the asphalt cement binder of RAP materials
 - engineered additives
 - crumb rubber from waste tires in *dry process*
 - Carrying agent of engineered additives
 - will enable the use of higher % RAP
Background

- Method of sustainability in the asphalt industry
 - Use of recycled materials
 - Direct impact on cost and the environment
 - GREEN & LEED
 - Leadership in Energy and Environmental Design

- NCHRP 10-91 [RFP]
 - Guidebook for Selecting and Implementing Sustainable Highway Construction Practices
 - … identify effective sustainability practices that can be implemented during the construction of highway projects…”
Objectives

- Fundamentally characterize the laboratory performance
 - Conventional HMA mixtures
 - Mixtures containing high RAP content and waste tire crumb rubber/engineered additives
 - Dry process
Scope

- Four 19.0 mm Level 2 HMA mixtures
 - Siliceous limestone aggregates
 - commonly used in Louisiana
 - **Mixture 1: Conventional one, 76CO**
 - No RAP
 - Binder: PG 76-22M
 - control mixture
 - **Mixture 2: 76CRM**
 - No RAP
 - Binder: PG 64-22 + 30 mesh CR & engineered additives: *wet blend*
 - PG 76-22M
 - **Mixture 3: 76RAP15**
 - 15% RAP
 - Binder: PG 76-22M
 - **Mixture 4: 64RAP40**
 - 40% RAP
 - Binder: PG 64-22
 - 30 mesh CR & engineered additives: *dry blend*
Crumb Rubber/Engineered Additives (Dry Process)

CR Component 1
- 80% 30 Mesh CR
- 20% Asphaltenes

CR Component 2
- 80% 30 Mesh CR
- 20% De-metalized Oil

CR Supplied by: Mr. John Osborn of Elastomeric Concentrates, LLC
Asphalt Mixture Preparation

- RAP
- CR/Eng. Additives
- Oven, 163°C
- Superheated Agg/RAP
Laboratory Materials Characterization

Binder
- PG grading

Mixture
- Permanent Deformation
 - Loaded Wheel Test
 - Dynamic Modulus Test
- Fracture/Durability
 - Semi Circular Bend Test
 - Moisture Susceptibility
 - Lottman Test
- Triplicate
- $V_A = 7.0\% \pm 0.5$
Dynamic Modulus $|E^*|$ Test

- IPC SPT (AMPT)
- AASHTO TP-62
- Sinusoidal axial compressive stress is applied to a specimen
 - temperature and frequency

- Dynamic modulus $|E^*| = \frac{\sigma_0}{\varepsilon_0}$

- Phase Angle $\phi = \frac{T_i}{T_p} \times 360^\circ$

<table>
<thead>
<tr>
<th>Frequency (HZ)</th>
<th>25, 10, 5, 1, 0.5, 0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp. (°C)</td>
<td>-10, 4.4, 25, 38, 54.4</td>
</tr>
</tbody>
</table>
Fracture Property – 25C
Semi-Circular Bend (SCB) Test

- The critical value of fracture resistance

\[J_c = -\left(\frac{1}{b}\right) \frac{dU}{da} \]

- Loading rate: 0.5 mm/min
- Notch Depth (mm): 25.4, 31.8, 38.0
- Test temperature: 25 °C
- Dimension: 150mm dia by 57mm wide

b = Sample Thickness,
a = notch depth,
U = strain energy to failure
Fracture Property – 25C
Semi-Circular Bend (SCB) Test

150mm x 57mm
High Temperature Property – 50C Loaded Wheel Tracking Test

- AASHTO T 324
- Damage by rolling a steel wheel across the surface of a sample
 - Cylindrical, Slab
- 50 °C, Wet or dry
- Deformation at 20,000 passes is recorded

Wheel Diameter: 203.5 mm (8 inch)
Wheel Width: 47mm (1.85 inch)
Fixed Load: 703 N (158 lbs)
Rolling Speed: 1.1 km/hr
Passing Rate: 56 passes/min
Moisture Susceptibility Test Results -- %TSR
No Antistrip Additives

Dry ITS: 140Psi-150Psi
Fracture Property – 25C
Semi-Circular Bend (SCB) Test

Mix Type

76CO 76CRM 76RAP15 64RAP40

J_c (Kj/m2)

0.2 0.4 0.6 0.8 1.0 1.2

Mix Type
Correlation – TSR vs Jc

\[y = 31.06x + 51.94 \]

\[R^2 = 0.60 \]
Complex Modulus Test Results –
E^* Ratio to PG 76-22M
Correlation -- Fatigue Factor vs J_c

$y = -81.17x + 375.93$

$R^2 = 0.52$
High Temperature Property – 50C, Wet Loaded Wheel Tracking Test Results

Mix Type

Rut Depth @ 20k cyc, mm

Mix Type

76CO 76CRM 76RAP15 64RAP40
Summary

- Addition of CR additives had a positive influence on the asphalt cement binder and provide

Moisture Susceptibility
- Mixtures 76CO, 76RAP15, 64RAP40
- Passed with %TSR

Intermediate Temperature
- Critical Strain Energy, Jc from SCB test
 - Met the minimum value of 0.6 for fracture resistant mixtures

High Temperature
- Mixture performed well, < 6mm

Fair Correlations
- %TSR vs. Jc
- E* fatigue factor vs. Jc
Future Research

- Innovations that will maximize the use of CRM asphalt mixtures in flexible pavements.
 - Dry process feed systems;
 - Engineered asphalt-rubber system processed from waste tires that can be used in dry process for several applications such as:
 - Warm mix asphalt mixture;
 - Environmental and economical benefits
 - Allowing the use of higher percentages of RAP; and
 - Modifications of binder properties to improve the mixture resistance to moisture damage.

- Pavement thickness equivalency
 - between conventional mixes and CRM asphalt mixes
 - ensure cost competitiveness of these mixes.