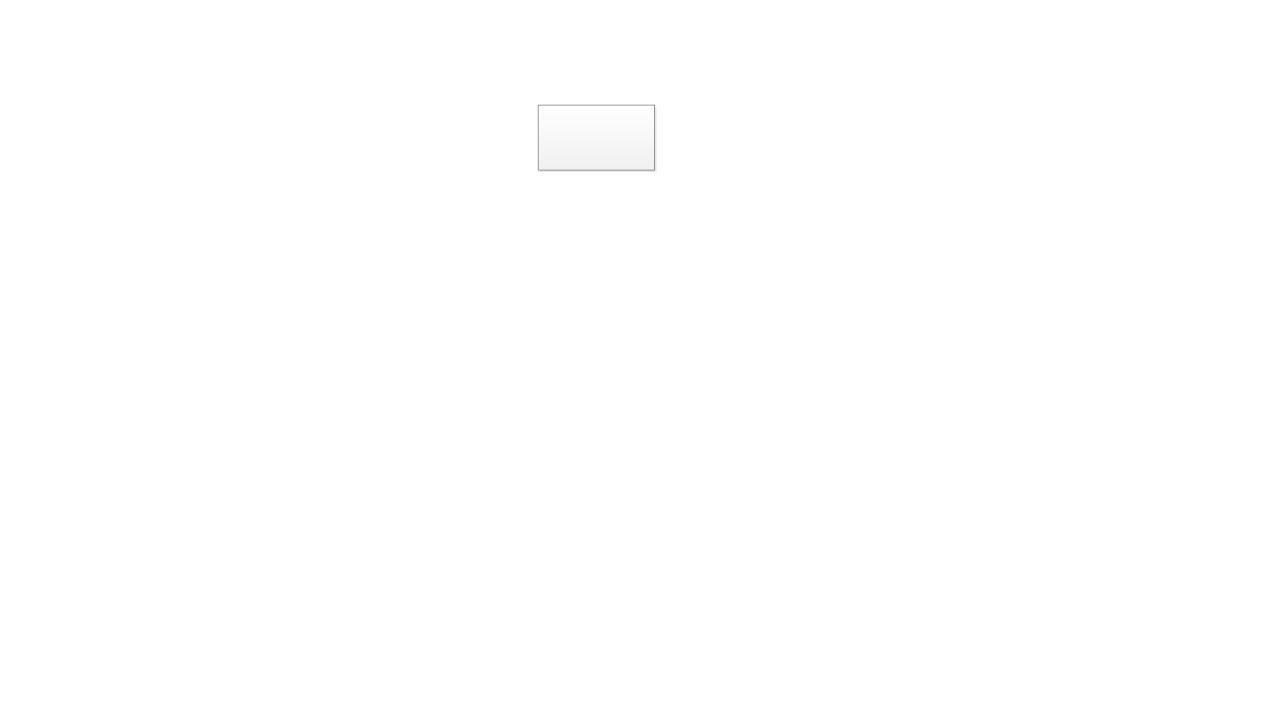
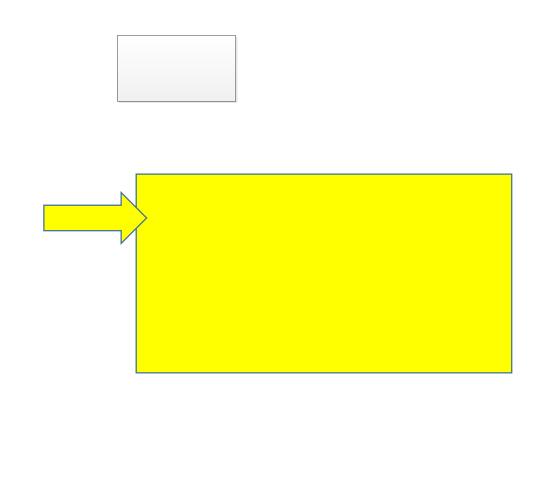
Pilot Asphalt Specification Review Technician Duties

November 20th, 2015 Chris Abadie Materials Engineer Administrator District 61 Conference Room


Roadway Sampling Specification

 Mainline Roadway lot is based on length of Consecutive mainline paving. Three-2500 ft. sections is a sublot, 7500 ft. Five sublots is one lot, 37,500 ft.

Technician Responsibilities LADOTD Asphalt Specifications


- Verify Plant monthly,
- Method 1 is the default sampling method for roadway cores.
- The District Lab (ADI) will statistically compare DOTD data to contractor data. (LaPave performs statistics automatically).
- When DLE measure of Roadway core G_{mm} does not match (+/-0.024) the JMF G_{mm} , resolution cores are measured by independent laboratory and material does not meet specs, I/A lab to investigate and recommend fix for problem.

Contractors Duties at Plant

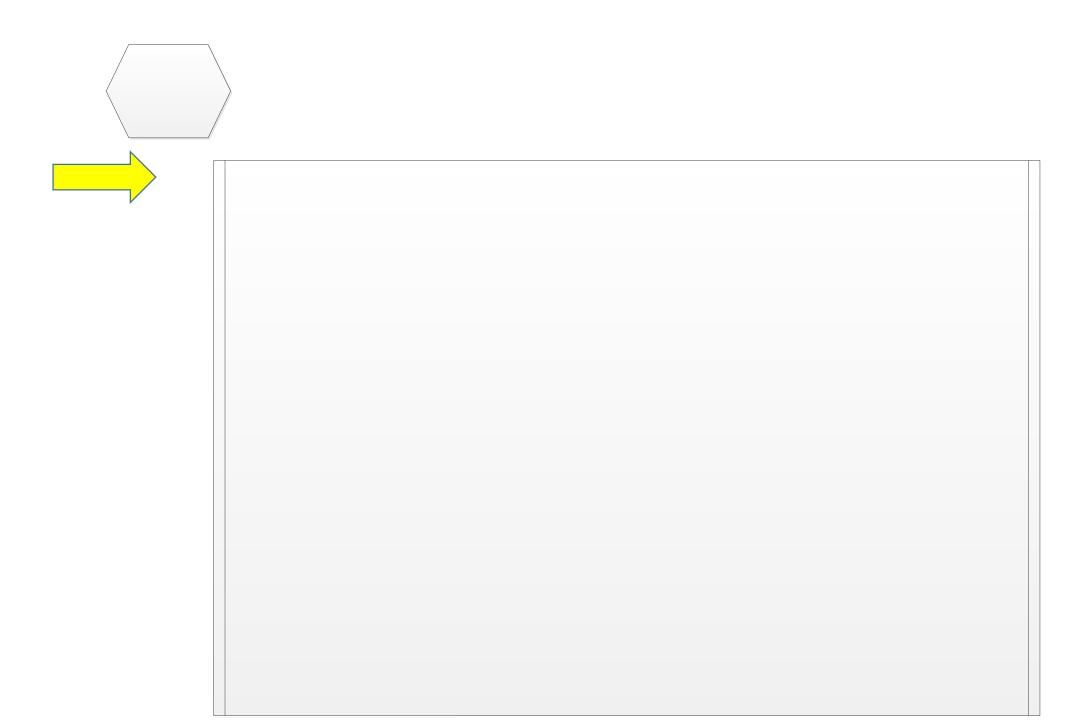
- P-lot (plant lot)- 1 sample / 1000 tons Loose mix Sample from truck
 - AC Content and Gradation (Ignition oven)
 - Gyratory, G_{mb} (65 or 75 Gyration, Level 1 or 2)
 - Loose mix sample from Truck, G_{mm} (Rice Gravity)
- Report on LaPave transfer data daily as directed by DLE
- Collect Certificate of Delivery of each Asphalt shipment.
- QC expected but not required to report
 - ie: Moisture Content / Gradation of stockpiles etc.


DOTD Dist. Responsibility

- Test Core for G_{mm} to verify JMF G_{mm} after determining Gmb and Density of the roadway cores. (+/- 0.024 tolerance) If first measure is out of tolerance, use an average three. If G_{mm} Out of tolerance:
 - Use the five resolution cores tested by I/A lab for determining the new G_{mm} for the lot. I/A lab, DLE and contractor to establish new Gmm for JMF as necessary.
- Send one core per lot to Matlab for Moninitor sample, (GPC liquid asphalt testing)
- Always –Request Sample of Core, Binder, or loose mix if questionable.

DOTD Dist. Responsibility

- District to test 15 Acceptance cores (Method 1). Cut dry, test, and report in LaPave within 48 hours of receipt of contractors report of verification cores. (DLE and ADI coordinated effort)
 - Note resolution cores to be kept until lot is paid.
- (Method 2) Report Average of 5 verification cores. Minimum average must be within 1.5% of the acceptance cores reported. If not-resolution cores to be tested by independent lab. Pay on independent test results.


District Lab Responsibilites-Method 2

The District Lab Engineer will designate when this method is used based on statistical comparisons (F/t) of at least 30 DOTD test results and 10 contractor test results.

The District Lab (ADI) will continue to statistically compare contractor and DOTD data. (LaPave performs comparison automatically).

The District lab will test 5 verification cores per lot.

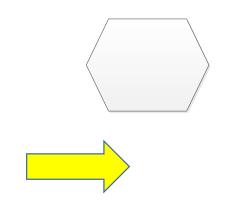
When F/T fails and material does not meet specs, I/A lab to investigate and recommend fix for problem.

ADI Coordinates a core delivery plan that insures prompt delivery of sample cores to the District such as:

Roadway inspector delivers to PE office (enter sample into SMM) ADI takes cores from Jobsite to PE office or District Lab (proximity based)

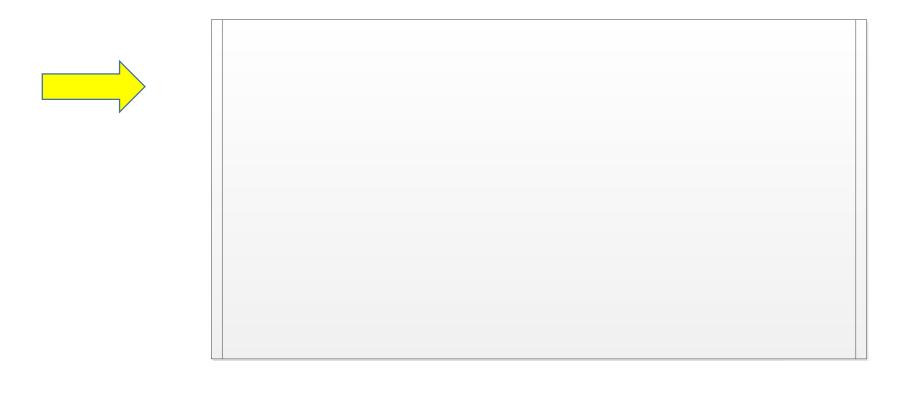
Contractor takes possession of cores in locked box and delivers to PE office or Dist. lab.

DOTD Roadway inspector Responsibility


- Identify mainline roadway cores cut by contractor as Acceptance, Verification or Resolution and numbered. (District ADI)
- Identify minor mix with density three per 1000 tons.(District ADI) Set start station for start of paving. Sublots are 7500'
- Collect truck tickets and mark the truck ticket that best represents the material every 2500' of paving (one third of one sub-lot). depending on thickness and width (1.5"@11'= 10 trucks, 2"@ 11' = 15 trucks approximately)

DOTD Roadway inspector Responsibility

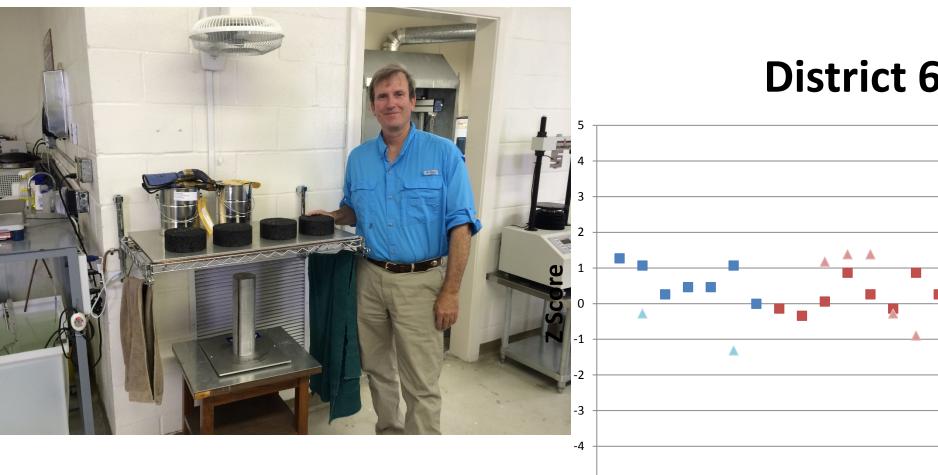
- Log ticket number, tons received, stations represented, lot and sub-lot number, and JMF number.
- One lot is five sub-lots, 37,500'.
- Sum the five sub-lots recorded for PE to approve
 PE responsible for payment. (Same system as today, pay by the ton placed on the road)
 - PE to apply pay adjustments in SM at end of job or as necessary by Plan Change using SMM pay adjustment reported by DLE for each lot (which is based on theoretical yield).
- Provide core location plan to contractor based on random sample selection
- Place Acceptance and resolution cores (Method 1) or verification and resolution cores (Method 2) from same sublot in core box provided contractor.
- Take possession of roadway core after contractor has cut cores and follow ADI core handling plan.


Note: Roadway report form includes signature block to track all core handlers

DOTD ADI Responsibility

- Place minor mix cores in separate core box also provide by the contractor.
- Insure Core handling plan is followed to transport cores from roadway to District Lab and Contractor. Note: Use chain of Custody letter or signature on roadway core form when locked core box changes hands.

Contractors Duties at Roadway

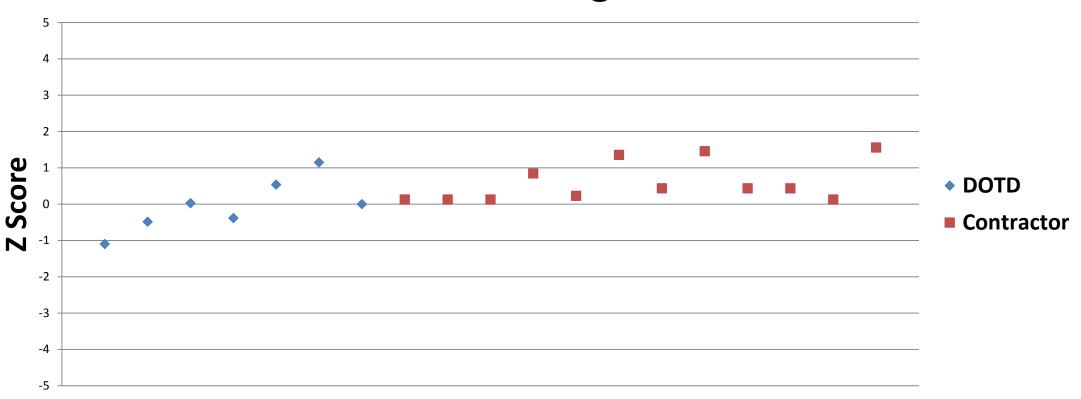

- Communicate paving plans to Project Engineer, ensure equipment is functional, pave and compact asphalt to the minimum density (ie 92% for Level 1 and 2 Mainline paving lots).
- Drill 6" diameter core at location within 18" of spot marked by DOTD roadway inspector.
- One/2500' for acceptance and two/7500' for DLE.
- For minor mix, three cores per 1000 tons will be identified by roadway inspector.

Contractor- Handling Cores

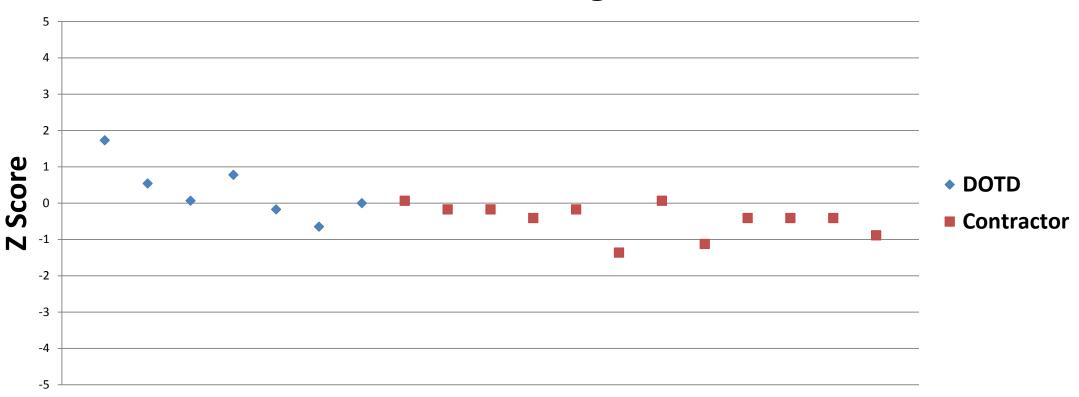
- Provide a core box with latch to roadway inspector for properly identified acceptance and resolution cores.
- Bring "verification" cores (Method 1) or Acceptance Cores (Method 2) to contractors certified lab for testing, enter data on LaPave and immediately transfer data by email to DLE.
- Also core and test three, (3) minor mix cores per 1000 tons.

Independent Assurance Lab

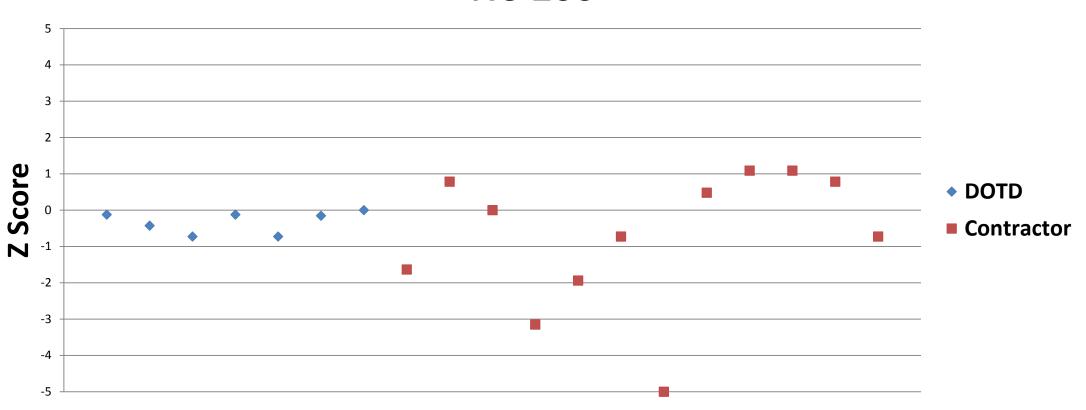
District 61 Gmm

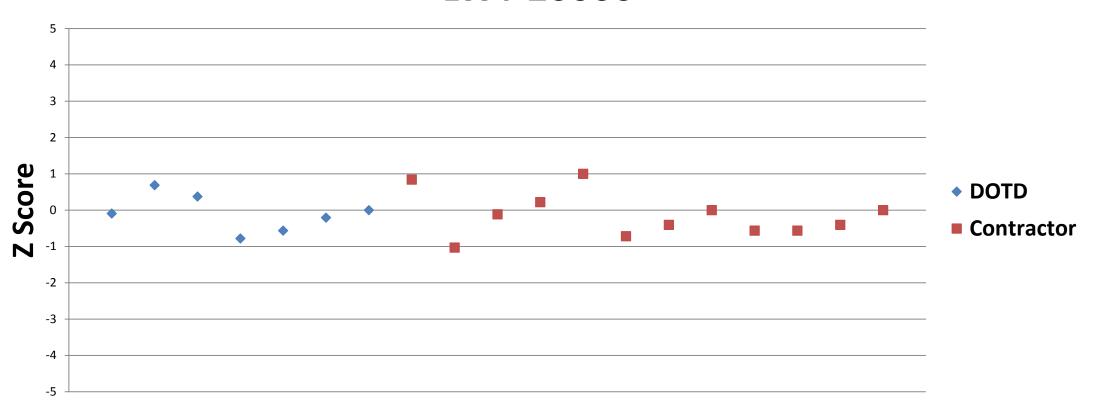

2014 DOTD

2014 Contractor

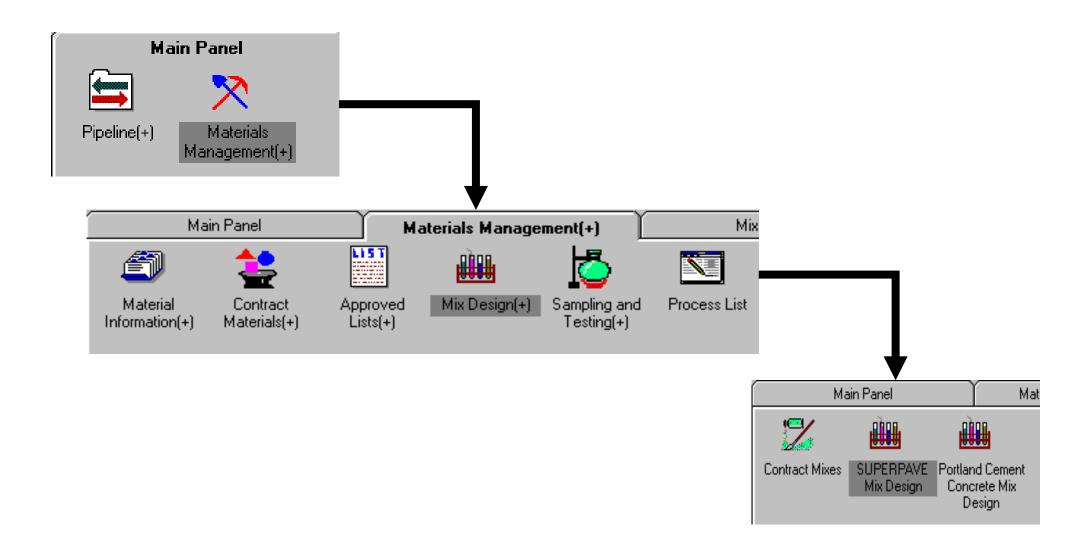

▲ 2013 DOTD

2013 Contractor

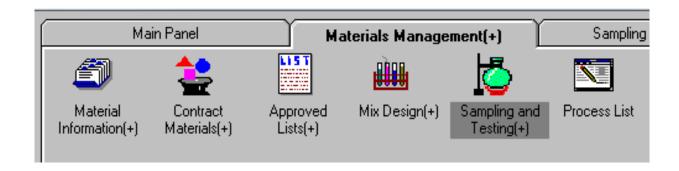

Gmb Avg


Void Avg

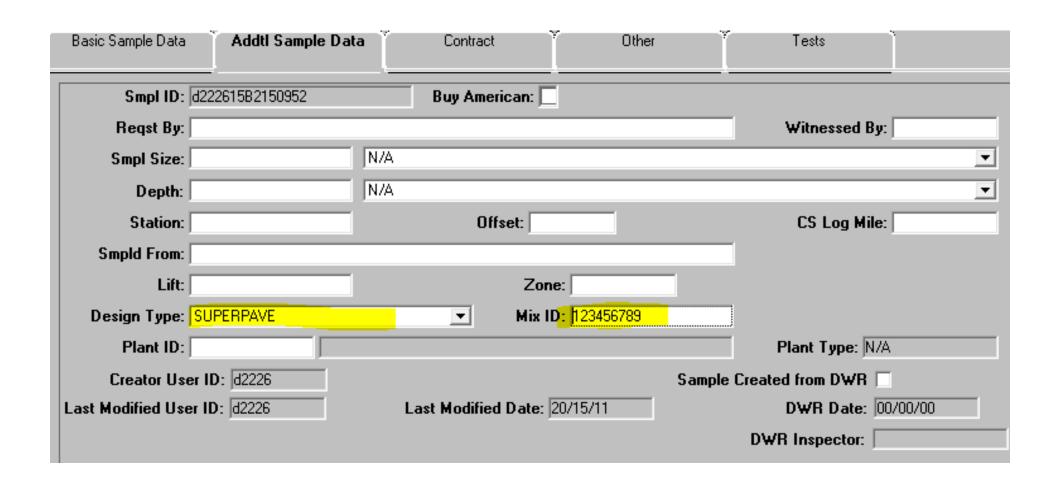
No 200

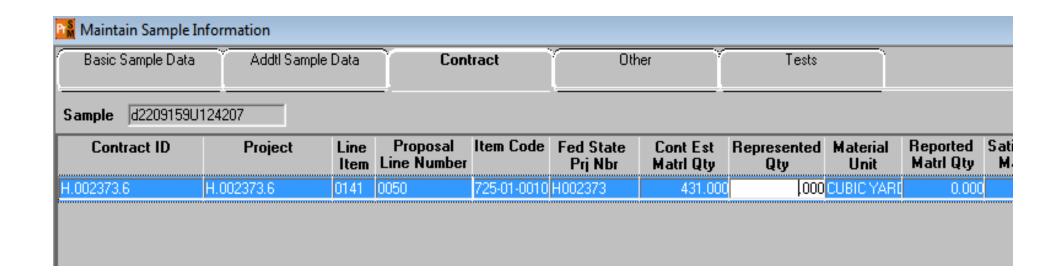


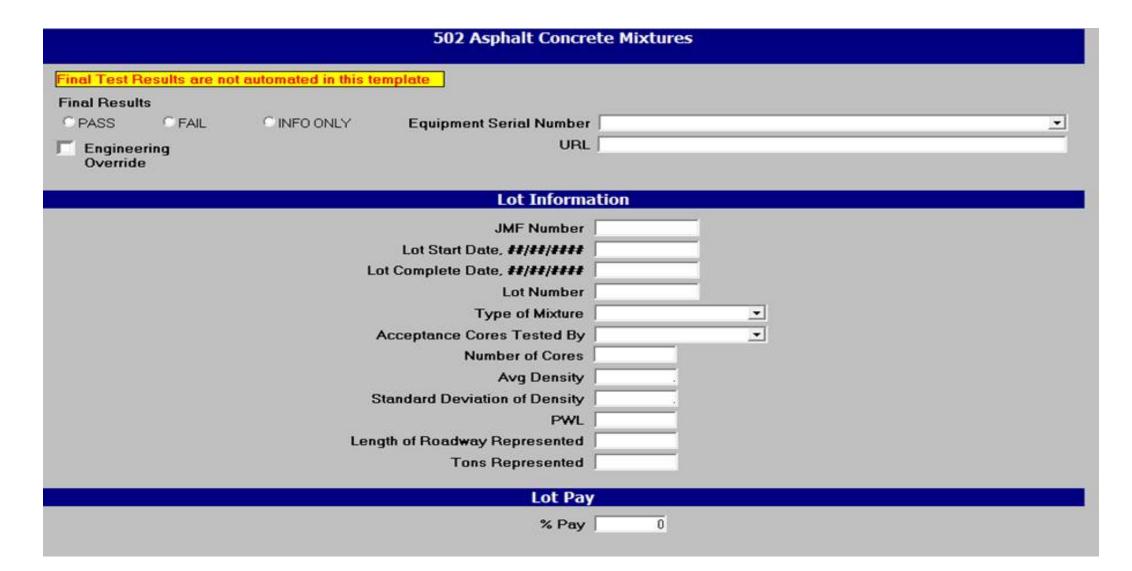
LWT 20000


Site Manager Materials Data Entry Asphalt Concrete Lots

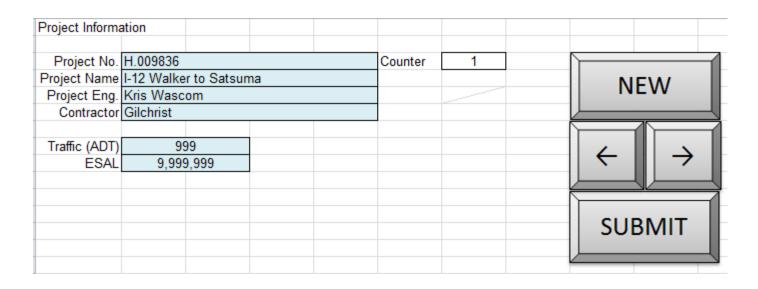
SiteManager Materials – JMF Entry




SiteManager Materials – JMF Entry


SUPERPAVE Mix Design Description								
Description	Properties	Y Materials	Gradations					
	Mix ID:	12345						
Ma	aterial Code:	0502M00020	Base Course, Level 1, 1.0"					
Producer Su	pplier Code:	APS00000040	Buzzi Unicem USA Selma Plant - Festus, MO					
Desi	igner Name:							
	AC Type:							
	Міх Туре:							
Subi	mittal Date:	10/01/15	Termination Date: 00/00/00					
Арр	roved Date:	00/00/00	Approved By User ID:					

Basic Samp	e Data Addti Samp	le Data Co	ontract	Other	Tests		
Smpl ID	: d222615B5171125		Status: Pending				▼
Revised By	: 🗆		Revising:		Sample Date:	11/05/15	
Link To	:		ink From:		Date Entered:	11/05/15	
Smpl Type	Acceptance	<u>▼</u> A	cpt Meth: Test Re	sults			▾
Materia	: 0502M00010	Asphalt 0	Concrete				
Sample	:						
P/S	: Barriere Construction Co	mpany, LLC - Boutte			PS00000560		
Туре	: HMA Drum		City: Boutt	9			
Prod Nm	:						
Mnfcti	:						
Town	:		Geo	g Area: N/A			▼
Intd Use	: Lot 3 Acceptance						
Repr Qty	: 2,000.000 ion			▼ Lab Con	trol Number: CNd222615B	5171125	
Auth By	: [Auth D	ate: 00/00/00	L	ab Reference Number:		
Lock Type	: No Lock	Locked	d By:		Lock Date:		


LaPave Walkthrough

Asphalt 501/502

Basics

- File is locked down to prevent overwriting of formulas
- Light blue cells are for user inputs, some may be drop downs
- Simulates a database
- One file per JMF
 - Each file can handle multiple projects/lots using the same JMF

Project Tab

Basic Project information used for headers of other pages.

Buttons are have macros

[New] – blanks entries for new project

[<-] and [->] - scroll previous and next project

[Submit] – saves project information

JMF Input Tab

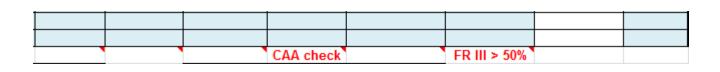
	\mathcal{L}	<u> </u>	<u>u</u> N															
	•				PAVE AS	PHALTIC	CONC	RETE MI	XTURES									
Desires No.	11.000404	Miss Os de	00 =======	IME N	107 010/04		Plant Code	11000	T#- (ADT)	11 000		ESAL	0.420	001			-	
Project No.		A 3235	26-English	Design Level	167-AWM				Traffic (ADT) Prod. Rate	11,600		Adi.Fac	2,139 1.0					
Project Name		ob Oncale	Mix Type	Design Level	0	Plant Type	3-dry	er arum		300			1/25/2	0042		-		
Project Eng. Contractor		ob Oncale Construction	IVIIX Type	Binder	Course Binder	INC	m Agg Size Specs	2013	Mix Temp AC Corr Factor	295 0.23		Date	2.07	2013		-II GET	SMM	ID I
Contractor Contr. Mix #	PB110		Use PS0000088		al Bridge Com	#4004						Design LWT Rut No. Passes	2.87 20000					
Contr. IVIIX #	PBTIU	SIVIIVI P/S	PS0000000	u - Coasta	al Bridge Corr	ipany #1204	- Port Allen	SIVIIVI ID	00000151	1091036		No. Passes	20000					
Source	Source	Aggregate	Mat'l	%	Bulk		FAA	Sand Eq.	Flat & Elong	CAA	FR	%Ret	%Ret	Aggr.				7
Code		Туре	Code		Gravity	Absorption	Method A		%5:1			No.8	No.4	Class		INAL	PORT	
ABBW	Lafarge	# 67 Limestone	834	6.2	2.681	0.8				100	3	97.4	96.1	Coarse		IIVII	ORI	
AY27	Barriere #4	+1/2 Crush Gravel	831	24.7	2.496	1.8				88	3	94.5	91.6	Coarse				1
ABBS	Pine Bluff	# 78 Limestone	834	5.8	2.669	0.91				100	3	97.7	90.0	Coarse				=
7.000	7 1110 21011	# 70 Emiliodiono		0.0	2.555	0.01						07.7	00.0	000.00				
RP09	Barriere	C. Crush RAP	840	24.0	2.670					98	3	56.2	41.4	Rap				
111 03	Daniero	J. Oldsii IVII	040	24.0	2.010					30		30.2	71.7	, cap				
AY27	Barriere # 4	-1/2" Crush Gravel	831	10.1	2.456	2.7	45					59.8	31.4	Fine				
ABBS	Pine Bluff	Manufactured Sand	834	17.0	2.450	1.3	45	98		100	2	16.9	0.1	Fine				
AV27	Barriere # 4	Mason Sand	830	11.2	2.637	0.31	40	93		100	3	0.1	0.0	Fine				
H222	Barriere	Bag House Fines	839	1.0	2.722	0.51	40	33				0.0	0.0	Other				
HZZZ	Barriere	Bag House Fines	639	100.0	2.122							0.0	0.0	Otner				
						0/							0 0					
	Source Code	Material	Mat'l Code		e Name	%	Sp. Gravity			arm Mix As _l			Gyr. Rev					
Asphalt	41DQ	PG70-22M	658		lero	3.4	1.03		Warm Mix		Yes	Nini	7					
Asp. fm. RAP		RAP AC			riere	1.0	1.03		Method		0.02	Ndes	65					
Anti-strip	5730	Adhere LA 2	105	ArrMaz (Chemicals	0.6			Rate	2	2.00%	Nmax	100					
									If Chemical -									
		Avg Oven Extract			ed Results	1			Brand Name:									
Sieve	% Passing	% Passing			Tolerance													
2" 50	100	100		100						aindown Co								
1.5" 37.5	100	100		100	96 100				Туре		None							
1" 25	100	100		100	96 100				Rate									
3/4" 19	99	98		99	95 100				If Chemical -									
1/2" 12.5	87	88		90	86 94				Brand Name:									
3/8" 9.5	73	75		77	73 81													
#4 4.75	53	53		55	51 59													
#8 2.36	43	42		43	40 46			PSG				Rap 1	Rap 2		correct	rap agg%	n [*]	
#16 1.18	33	33		31	29 33			%Design AC			Туре	C. Crush RAP						
#30 0.6	25	25		24	22 26			%Crushed			% MixRapTotal							
#50 0.3	13	14		13	11 15			G _{sb} avg	2.597		% AC in RAP	3.9						
#100 0.15	7	8		7	5 9			Comp Temp			% MixRap Agg	24.0						
#200 0.075	5.1	6.0		5.4	4.7 6.1						% MixRap AC	1.0						
											7.0							
Extracted %AC		4.4	1	4.4	4.2 4.6													
Remarks:																		
LaPave new sp														11/9/2015				
Lar ave new sp	00 710.11.09													11/3/2013				

[Import] button will import JMF data from another LaPave file of similar type [Get SMM ID] button will create a mix design ID to be transferred to SMM

JMF Input Tab

Project No.	H.009491	Mix Code	26-English	JMF No	167-AWM		Plant Code	H222	Traffic (ADT)	11,600
Project Name	L	A 3235		Design Level	1	Plant Type	3-drye	er drum	Prod. Rate	300
Project Eng.	Jac	ob Oncale	Mix Type	Binder	Course	No	m Agg Size	0.75 in.	Mix Temp	295
Contractor	Barriere	Construction	Use	ML -	Binder		Specs	2013	AC Corr Factor	0.23
Contr. Mix #	PB110	SMM P/S	PS0000088	0 - Coasta	al Bridge Com	oany #1204 -	- Port Allen	SMM ID	00880151	1091036

JMF header info


- Mix Type, Use, and Nom Agg Size will set limits for other parts of the application
- Project No. will populate with the list of projects entered in the Project tab
- SMM P/S is populated with the list of active producer/supplier codes from SMM
- SMM ID will be entered into SMM to link LaPave to SMM
 - SMM ID
 - last 5 digits of P/S code (00880)
 - Timestamp (1511091036) = 11/09/2015 at 10:36am

JMF Innut Tah

Source	Source	Aggregate	Mat'l	%	Bulk		FAA	Sand Eq.	Flat & Elong	CAA	FR	%Ret	%Ret	Aggr.
Code		Туре	Code		Gravity	Absorption	Method A	- 4.75 mm	%5:1			No.8	No.4	Class
ABBW	Lafarge	# 67 Limestone	834	6.2	2.681	0.8				100	3	97.4	96.1	Coarse
AY27	Barriere #4	+1/2 Crush Gravel	831	24.7	2.496	1.8				88	3	94.5	91.6	Coarse
ABBS	Pine Bluff	# 78 Limestone	834	5.8	2.669	0.91				100	3	97.7	90.0	Coarse
RP09	Barriere	C. Crush RAP	840	24.0	2.670	1				98	3	56.2	41.4	Rap
						Υ								
AY27	Barriere # 4	-1/2" Crush Gravel	831	10.1	2.456	2.7	45					59.8	31.4	Fine
ABBS	Pine Bluff	Manufactured Sand	834	17.0	2.650	1.3	45	98		100	3	16.9	0.1	Fine
AY27	Barriere # 4	Mason Sand	830	11.2	2.637	0.31	40	93				0.1	0.0	Fine
H222	Barriere	Bag House Fines	839	1.0	2.722							0.0	0.0	Other
				100.0										

Aggregate entry

- Enter information here, be sure to select Coarse, Fine, Rap, or Other in the Class column
- Rap % will compute from the Rap section below (next slide)
- Aggregate % will be transferred to the aggregate design tab
- %Ret No.8 and No.4 are populated from the aggregate design tab
- Flags will show if entry does not meet spec for selected mix type
- Source Code will be new SMM P/S codes, this will soon be populated drop downs
- Updates will soon include flags for spec checks

JMF Innut Tah

					100.0									
		Source Code	Material	Mat'l Code	Source	e Name	%	Sp. Gravity		l v	larm Mix Asphalt		Gyr. Rev	
Asp	halt	41DQ	PG70-22M	658	Va	lero	3.4	1.03		Warm Mix	Yes	Nini	7	
Asp. fn	n. RAP	RP09	RAP AC		Bar	riere	1.0	1.03		Method	0.02	Ndes	65	
Anti-	strip	5730	Adhere LA 2	105	ArrMaz (Chemicals	0.6			Rate	2.00%	Nmax	100	
										If Chemical -				
		Cold Feed	Avg Oven Extract			d Results				Brand Name:				
Sie	ve	% Passing	% Passing		% Passing	Tolerance								
2"	50	100	100		100					D	raindown Control			
1.5"	37.5	100	100		100	96 100				Туре	None			
1"	25	100	100		100	96 100				Rate				
3/4"	19	99	98		99	95 100				If Chemical -				
1/2"	12.5	87	88		90	86 94				Brand Name:				
3/8"	9.5	73	75		77	73 81								
#4	4.75	53	53		55	51 59								
#8	2.36	43	42		43	40 46			PSG	1.03		Rap 1	Rap 2	
#16	1.18	33	33		31	29 33			%Design AC	4.4	Туре	C. Crush RAP		
#30	0.6	25	25		24	22 26			%Crushed		% MixRapTotal	25.0		
#50	0.3	13	14		13	11 15			G₅bavg	2.597	% AC in RAP	3.9		
#100	0.15	7	8		7	5 9			Comp Temp	295	% MixRap Agg	24.0		
#200	0.075	5.1	6.0		5.4	4.7 6.1					% MixRap AC	1.0		
xtract	ed %AC		4.4		4.4	4.2 4.6								
Rei	marks:													
aPave	502 v1	5.09.30												9/30/2

Enter Asphalt Information

- Warm mix and Rap information are here also
- Gradations are populated from design and validation

JMF Check Tab

- Summary sheet to check values
- Signature lines

ABBQ Velcas \$78 L.S. 631 20.0 2.720 2.691 0.40 1.3 5 ## III 9							JIVI	r our	EKPAV	E FOR	LIVI					
Poles (Fig. Kris Varsoom Net Type OFF Non Agg Stee OST Net Teng OST Net Teng OST Net Teng OST Net Teng OST O	Project No.	H.009836	M	lix Code	26	JMF No.	14		Plant Code	H142		Traffic (ADT)	999			
Submitted Gilchiest Mile Use Mile Mile Use Mi	Project Name	I-12 Walker	to Sats	uma				Plant Type	3-drye	er drum		Prod. Rate				
Source Source Source Source Source Source Source Source Type Code Type Code Gravity Gravity Method A.75 mr X.3:1 CAA MD FR X.8 MBBQ Velce \$78.1								No	m Agg Size							
Source Code Type Code Code Type Code	Submitted	Gilo	hrist		MixUse	ML - V				2013		Date				
Code	ontractor Mix#	1					AC (Corr Factor	0.02							
ABBQ		Source		- 1		%							CAA	MD	FR	
ABBQ		River Mat				70 O				riethou A	4.131111		100	+	Ш	80
ABBQ					$\overline{}$									**	_	95
Combined Aggregates Properties 100.0 2.663 2.617 0.75 48 63 0.5 78.1										48	69			+		10
Code Grade																
Code Grade																
Asphalt 41DR PG76-22M 660 Valero 6.5 1.03 Method No. sp. fm. RAF Fate F	Combined A	ggregates F	oroper	ties		100.0	2.669	2.617	0.75	48	69	0.5	78.1			
Asphalt 41DR PG76-22M 660 Valero 6.5 1.03 Method No. sp. fm. RAF Fate F		odolCr-4-	M	orial	u c	Course	Mama	-	Cn Granie	_		sem Adia A	- No	-		
Sp. fm. RAF										•				+		
Anti-strip 5727 Perma Tac 95 105 Asph. Products 0.7 Rate		4 IUR	FOIL	- ZZM	000	vai	eiu	0.0				INC	-	+		
	_	E727		T 00	105	A L D		0.7	1.03					+		
Cold Fee Aug Oven Extract	Anti-strip	2171	erma	Tac 33	105	Aspn. P	roducts	U. 1						+		
Cold Feeking Oven Estract Sieve S	esign Subn	nitted by Co	ntracto	or												
Sieve X Passin X Passing																
Comm	Average Volu	metrics	Si	0110										+		
## ASHTO T324 ## ASPTO T324 ## ASSTO T324 ## ASS	Gmm	2 420			74 1 U33III	74 T 433	9		Toterance		· ibeis	Cellaloa.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	+		
1							_				Bate	30.00	12	+		
Math			1"	25	100	100		100						+		
VMA 30.9 VFA 112* 12.5 93 92 92 88 - 96 Rap 1 Rap 2 VVA 035 318* 9.5 72 66 66 62 - 70 Rap 1 Rap 2 XDesignAC 6.5 44 4.75 24 21 21 17 - 25 Type XDesignAC 6.5 48 2.36 13 12 11 8 - 14 Percent Gsb agg 2.617 416 1.18 10 9 8 6 - 10 Residual; 0 2cmp Temp 230 0.6 8 7 7 5 - 9 Agg X 0 2Crushed 100 450 0.3 7 6 6 4 - 8 Rap ACX 0 Gse 2.662 200 0.075 2.8 3.3 3.8 2.3 - 5.3 0 0 6 6.5 6 6.5 0 0 0 7 7 7 5 - 9 6 6.5 <td< td=""><td>mb@Des.co</td><td>1.933</td><td>3/4"</td><td></td><td></td><td></td><td></td><td></td><td>96 100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	mb@Des.co	1.933	3/4"						96 100							
VFA 35 3/8" 9.5 72 66 66 62 - 70 Rap 1 Rap 2 ZVoids 20.1 44 4.75 24 21 21 17 - 25 Type 4 ZVerighaC 6.5 88 2.36 13 12 11 8 - 14 Percent 9 Sob agg 2.617 416 1.18 10 3 8 6 - 10 Residual: Comp Temp 290 450 0.6 8 7 7 5 - 9 Agg x 9 **Crushed 100 9.5 0.3 7 6 6 4 - 8 Rap ACx 9 **Gse 2.662 Pabsorb 0.67 4 - 8 8 ap ACx 9 4 - 8 Rap ACx 9 4 - 8 4 - 8 Rap ACx 8 6.5 6.6 6.5 - 8 6.5 6.6 6.5 - 8 6.5 6.6 6.5 - 8 6.6 6.5 - 8 6.6 6.5 - 8 7 7.33 </td <td></td> <td>30.9</td> <td>1/2"</td> <td></td> <td></td> <td></td> <td></td> <td>92</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>		30.9	1/2"					92						_		
XVoids 20.1 84 4.75 24 21 21 17 - 25 Type		35							62 70			Rap 1	Rap 2			
XDesignAC 6.5 88 2.36 13 12 11 8 - 14 Percent Sbb agg 2.617 \$16 1.18 10 9 8 6 - 10 Residual; School	%Voids	20.1	#4								Tupe			1		
Comp	%DesignAC	6.5	#8													
Comp Temp 290 430 0.6 8 7 7 5 - 9 Agg x		2.617	# 16	1.18				8								
## Crushed 100 #50 0.3 7 6 8 4 - 8 Rap ACX		290	#30	0.6	8	7		7	5 9							
\$100 0.15		100	* 50			6		6	4 8					1		
Pabsorb 0.67 Pbe 5.8 AASHTO T324 AASHTO T283 as modified by PP28 Average Rut (mm) 7.33 Results (Pass/Fail) PASS Proposal approved by: Validation approved by: Date: Date: Approved for this Project by: Date: Date:			# 100	0.15	Ï	5		5			·					
Phe 5.8 AASHTO T324 AASHTO T283 as modified by PP28 Ggr. Re Ndes 50 Control PSI Design TSRX Proposal approved by: Date: Submitted for contractor by Date: Date:			# 200	0.075	2.8	3.3		3.8	2.3 5.3							
AASHTO T324 AASHTO T324 AASHTO T283 as modified by PP28 Average Rut (mm) 7.33 Results (Pass/Fail) PASS Design TSR2 Proposal approved by: Date: Validation approved by: Date: Approved for this Project by: Date:			€ Eztra	cted AC	;	6.5		6.6	6.5							
Average Rut (mm) Results (Pass/Fail) PASS Design TSR: Proposal approved by: Date: Submitted for contractor by Date: Approved for this Project by: Date:	Pbe	5.8														
Proposal approved by: Date: Validation approved by: Date: Date: Approved for this Project by: Date:											nodified b	y PP28		Ndes		
Proposal approved by: Validation approved by: Date: Submitted for contractor by Date: Approved for this Project by: Date:																
Validation approved by: Date: Submitted for contractor by Date: Approved for this Project by: Date:	Results	(Pass/Fail)	P/	ASS					Desi	gn TSR%						
Validation approved by: Date: Submitted for contractor by Date: Approved for this Project by: Date:																
Submitted for contractor by Date: Approved for this Project by: Date:	Proposal appr	oved by:									Date:			_		
Approved for this Project by: Date:	/alidation app	roved by:									Date:					
	Submitted for	contractor by									Date:					
Remarks:											Date:					
	Approved for th	is Project by:									Duto.			$\overline{}$		

JMF Tab

Printable JMF page in DOTD format Populates from design and validation tabs

				ML 20L	CULMA	E ASPHA				E MIXI	UHES						
	icłEnglisl		(M/E)				ecs	20									\Box
Project No.	H.00983		ant Code		142	Mix Type		GFC		Miz Use	ML -				s.Level		
	Plant Typ		1 = Batc		ess					od.Rate	0	м	iz.Tim		Org 0	Vet	
ESAL 9,999,9 Adj. Factor	1.00		3 = Dryei ADT/lane		99	Nom.A	Contin				AC Co	r Ess		.02	Seq No		14
			satsuma				gg.sıze Bilchris		.ə in.		Project				/ascor		
Toject Isalile	1-12 W all	Kei (O S	acsuma	Miz Typ		OGFC	ancinis	È			Miz Use		4L - Y			<u> </u>	
Aggregate																	
	Source	Cours	e Name		T	Material	Aggr.		lk Sp	Abs.	FAA	Sand	I F	lat&	CAA	Fr.	%Be
Material	Code	Sourc	e Name	Aggr.	Type	Code	×	Gr	. Gsb	ADS.	FAA	Eq		ong	CAA	Rate	#8
Cr. Aggr	AB13	Rive	er Mnt	#78	S.S.	634	70.0	2	.590	0.9				0.3	100		III
Cr. Aggr	ABBQ		ılcan		L.S.	631	20.0		.691	0.4				1.3	5	200	III
Fine Aggr	ABBQ	Vu	ılcan	#11	L.S.	630	10.0	2	.660	0.4	48	69	\perp				
								_			\vdash		+		-		
								_			\vdash		_				
\longrightarrow								\vdash			\vdash		+		+	-	_
+							-	\vdash			\vdash		+		+	-	-
+				_				\vdash			\vdash		+		+	-	
+							-	\vdash					+		+		
Composite							GSB	,	.617	0.75	48	69	+	0.5	78		
		Asp	halt Cem	ent and	Additives							Load	ed VI	eel '	Test		
Material	So	urce	Mate	erial	Mat'l				of Miz								
Material	С	ode	Na	ne	Code	Source	Name	2.0	or Mis		Design		No	Pas	ses	500	00
Asphalt Ceme	ent 41	DR	PG76	-22 M	660	Vale	ro		6.5						Rut	7.3	3
Rap Asphalt	t																
Anti Strip	5	727	Perma	Tac 99	105	Asph. Pr	oducts		0.7		Yalidat	ion:	No	Pas	ses	500	00
															Rut	3.1	5
		-					_							_			
DESIGN				LIDATIC			JMF										
Parameter	Submitt	al A	verage		Dev		(per v										_
Gmm	2.420		2.414	0.0	0673		2.399		2.429		omitted I		ontrac	tor i			
%Gmm,Nini	75.7							\vdash		Da	te Subm	itted			0	1500500	
Drain Down	0.19	_						Н						-			
YMA	30.9		29.5		200												
VFA	35	_	38		00												
% Voids	20.1	_	18.3	0.:	208		17.3		19.3	-			echn	ician			
% Design AC	6.5	_	200		00		200		040		D					_	
Comp Temp 6 DF Crushed	290 100	_	300 100		00 00		288 98		312	-	Propos	ат др	prove	·a	Y=Ye		
S DF Clusheu	100	_	100	0.	00		30					Bq:		_	N=N		
1 in (25mm)	100	+	100	0	00			Н		l		ate					
3/4 (19mm)	100	\neg	100		00		96		100	l	Ī	-		T			
/2in (12.5mm)	92	+	92		10		88		96								
8/8in (9.5mm)	66	+	66		30		62		70	1			Signa	ture			
lo. 4 (4.75mm	21	\top	21		90		17		25	İ							
lo. 8(2.38mm)	12		11		20		8		14	İ	Yalidati	ion A	pprov	ed	Y=	Yes	Y
No.16(1.18mm)	9		8		90		6		10						N=	No	
No.30(600um)	7		7	0.	66		5		9			By:					
lo.50(300um)	6		6		35		4		8			ate					
lo. 100(150um	4.7	\perp	5		25												
lo. 200(75um)	3.3		3.8		173		2.3		5.3		lumber o	of Val	idatio	n At	tempts		1
	6.5	\perp	6.6	0.3	252		6.5			ļ							(y/n
AC Extracted		\perp						Ш		ļ	LVT	= P	ASS				Y
			2.662	0.0	1889					ļ							
Gise	2.662																
Pba	0.67		0.67	0.1	528						Avg. wi	thin J	MF s	pec.	limits		Y
Gse				0.1	528 116						Avg. wi	thin J	MF s	pec.	limits		Y

502 Validation In Dut Tah

Prog Name LA 2255	Proj. No.	H.00	9491	Plant	H222		esign level	1	Mix Type	Wearin	g Course	Purp.Code	3-Accept.	DATE	3/12/2013			
No. Subors S	Proj. Name.	LA	3235	JMF No.	167-AWM	Lot No.	167-001		Mix Use	ML - \								
Theoretical Vavoum Seecific Gravin, Clim 'Boe, Sample 1	Lot Size	1277.27		Start Date	3/12/2013		End Date	3/12/2013										
White No.	No. Sublots	5	%AC	4.4		G _{sb}	2.597		Ρ,	95.6	AC	Corr Factor	0.23					
White No.																		
White No.																		
White No.		T	neoretical Ma	ximum Spec	cific Gravity.	Gmm "Rice	e" Sample	1		Th	neoretical Ma	ximum Spec	cific Gravity	. Gmm "Rice	" Sample	2		
Wild Phys. B 100				Α	В	С	D	E				Α	В	С	D	E		
WeetPick H2D at Mr 25882 25885 24856												1849.7						
State Stat		Wt of Pyc	% H2O							Wt of Pyc	& H2O							
Gradation #, Fletaine x Passing Volumetrics Stadation Fletaine x Passing Volumetrics Stadation Fletaine x Passing Volumetrics Stadation Fletaine x Passing Volumetrics Stadation Fletaine x Passing Volumetrics Stadation Stadatio		Wt of Pyc,	H2O & Mix	2589.2	2538.5	2485.3	2459.3	2349.6		Wt of Pyc,	H2O & Mix	2565.2	2559.6	2659.3	2500.6	2543.2		
Gradation #, Fletaine x Passing Volumetrics Stadation Fletaine x Passing Volumetrics Stadation Fletaine x Passing Volumetrics Stadation Fletaine x Passing Volumetrics Stadation Fletaine x Passing Volumetrics Stadation Stadatio							ou n	OT "D					01101	07.110				
2 6 0 100 0 Roce 1 2431 8 Proce 2 2435 8 Proce 2 24		A Descion	as December	Volum	antrian.				Di	Volum	- otrice				Di	a luma etria	_	
15 37 6		rt. Hetaine												rt. Hetaine				
1	15" 375												15" 37.5					
34 19 197 38.5																		
1/2 12.5 19.27 88.5	3/4" 19	19.7	98.9		Brick 1			9.4			Brick 1	Brick 2	3/4" 19				Brick 1	
## 475 384.7 54.4 \$5.0 460.1 405.5 4 476 49.6 56.9 \$5.0 466.2 466.3 44.75 356.2 582 \$5.0 \$66.3 44.75 356.2 \$62.5 356.8 \$45.4 \$8.0 \$65.3 \$65.	1/2" 12.5	192.7	88.5					198.7			4652.8	4663.4	1/2" 12.5				4645.3	4652.8
#8 2.8 28 211.5 42.9 Mojerterm 121.4 120.6 ml 2.9 28 290.3 44.2 Mojerterm 121.4 120.6 ml 2.8 20.6 20.7 24.5 20.0 20.5 24.5 20.0 20.5 24.5 20.0 20.5 24.5 20.0 20.5 24.5 20.0 20.5 24.5 20.0 20.5 24.5 20.0 20.5 24.5 20.0 20.5 20.0 20.5 20.0 20.5 20.0 20.5 20.0 20.5 20.0 20.5 20.0 20.5 20.0 2		243.2			2687.0	2700.3					2693.0	2714.7		181.0			2686.8	
## 18 18 200 23 31 37 390-4styrm 114 20 113 21 45 21 25 25 25 26 24 30 66 123 225 25 25 25 25 25 25					4661.1									356.2				
## 170 0 6 13.9 24.4 Spmal(mm)																		
### ### ### ### ### ### ### ### ### ##					113.9												114.0	
## 200 0.075 3.4 3.6 9 %A.C. Meter 3.4 200 0.75 2.4 5.4 5.4 2.5 2.5 2.0 2.5 2.5 2.0 2.5				J@max(mm)		112.2				J@max(mm)		112.6				@max(mm)		112.1
Pass 10.8	#100 0.15		6.9		%AC Meter		#100 0.15		7.3			3.4	#100 0.15		7.6			
Dec Loss 81.9	#200 0.075	34.1	5.0		Comp Temp	295	\$200 0.075	42.4	5.4		Comp Temp	295	#200 0.075	31.1	5.7	C	omp Temp	295
Dec Loss 81.9	Pass	10.8		Sample	Taken-Tons	90	Pass	18.9		Samp	le Taken-Tons	378	Pass	11.4		Sample 3	aken-Tons	617
Curshed 144.9 Crushed 91		81.9		·	Mix Temp	290	Dec Loss	105.1				305	Dec Loss	80.8				305
System S	Cum Total	1840.9		Antistrip	0.5			2283 7		Antistrip	0.6			1622.1		Antistrip		
Crushed 91 Tr. Batt 0 Int.Digivi 1840.9 Bist.Mis wAC 2000 ArterVash 1759 Bist.Mis wAC 2000 ArterVash 1541.3 Bist.Mis wAC 2000 ArterVash 1541.3 Bist.Mis wAC 1966 X. Dist 0 Bist.Mis wAC 1966 X. Dist 1966 X. Dist 1																		
Best-Min wAC 2000 After vish 1759 Set Min wAC 2000 Set Min														90				
Bakt minus AC 1908 W. Crush 764 673											Int.DryWt	2283.7						
SUBLOT #D GradationVt. Retained x Passing CradationVt. Retained x Pa				2000	AfterWash	1759					AfterWash	2178.6						
SUBLOT #D GradationVL Retained x Passing 2" 50 100.0 Rice 1 2.441 2" 50 100.0 Rice 2 2.427 1.5" 37.5 100.0 Rice 2 2.427 1.5" 37.5 100.0 Rice 2 2.427 1.5" 37.5 100.0 Rice 2 2.452 1.5" 37.5 1.5"								Bs						Bs				
CardationVt. Retainext Passing Cardation Car			%LOSS	4.60	Wt. Crush	764.673	_		%LOSS	4.70	Vt. Crush	886.32			%LOSS	4.70	Wt. Crush	610.29
CardationVt. Retainext Passing Cardation Car		CHDI	OT #D				-			CHDI	OT #E							
2" 50		Gradation	UI#U	v Passina	Volum	atrice						v Dagging	Volum	etrice				
1.5" 37.5		2" 50	wt. netaillet	100.0	Pice 1						wt. netaillet							
1																		
1/2" 12.5 15.76 89.7 Abrick Brick 2 3/4" 19 100.0 Brick 1 Brick 2 3/4" 19 100.0 Brick 1 Brick 2 14.37 89.3 Abrick 1 57.6 89.7 Abrick 1 4655.5 12.2" 12.5 14.37 89.3 Abrick 1 4640.5 4657.5 12.2" 12.5 14.37 89.3 Abrick 1 4640.5 4657.5 12.2" 12.5 12.1 14.37 89.3 Abrick 1 4640.5 4657.5 12.2" 12.5 12.1 12.5				100.0	11100 2	2.12.							11100 2	2.102				
1/2" 12.5 157.6 89.7			21.4			Brick 1	Brick 2							Brick 1	Brick 2			
## 4 4.75 380.6 55.3 SSD 4660.6 4659.9 ## 4 4.75 303.9 \$5.6 SSD 4648.3 4660.7 ## 8 2.38 229.8 42.1		1/2" 12.5	157.6	89.7	Air					1/2" 12.5			Air		4657.5			
#8 2.36		3/8" 9.5	219.7	77.1	Water		2705.5			3/8" 9.5	191.5	75.1	Water	2685.2	2714.2			
#16 1.18 208.5 30.2 N@des(mm) 114.7 113.8 #16 1.18 151.5 29.6 N@max(mm) 112.6 #30 0.6 126.1 22.9 N@max(mm) 112.6 #30 0.6 126.1 22.9 N@max(mm) 112.6 #30 0.6 94.0 22.7 Homax(mm) 112.2 #30 0.6 94.0 22.7 Homax(mm) 112.2 #30 0.6 94.0 22.7 Homax(mm) 112.2 #4.0 0.75 32.8 5.2 Comp Temp 295 #200 0.75 32.8 5.2 Comp Temp 295 #200 0.75 25.1 5.5 Comp Temp 295 Pass 8.6 Sample Taken-Tons 904 Pass 9.3 Sample Taken-Tons 1040 Mix Temp 290 Cum. Total 1743.6 Antistrip %AC 4.3 Crushed 90 Tr. Bekt 0 Int.Drg/wt 1743.6 Bskt-Mix w/AC 2000 After/vash 1661.1 Bskt minus AC 1910 XLOSS 4.50 Wt. Crush 701.37 Pask Number 2 Pask				55.3	SSD					#4 4.75		52.6	SSD	4648.3				
#16 1.18 208.5 30.2 N@des(mm) 114.7 113.8 #16 1.18 151.5 29.6 N@des(mm) 113.7 113.3 #20 0.6 128.1 22.9 N@man(mm) 112.6 #50 0.3 180.0 12.6 #50 0.3 180.0 12.6 #50 0.3 180.0 12.6 #50 0.3 180.0 12.6 #50 0.3 180.0 12.6 #50 0.3 134.3 12.7 #50 0.3 134.3 12.7 #50 0.5 32.8 5.2 Comp Temp 295 #200 0.075 25.1 5.5 Comp Temp 295 Pass 8.6 Sample Taken-Tons 904 Pass 9.3 Sample Taken-Tons 1040 No. Temp 290 Dec Loss 65.2 Mix Temp 290 Mix Temp 290 Crushed 90 Tr. Bakt 0 Int. Drijv\ 1743.6 Crushed 90 Tr. Bakt 0 Int. Drijv\ 1743.6 Bskt. minus AC 2000 After Wash 1681.1 Bskt. minus AC 1910 X Diff 0 X LOSS 4.50 Wt. Crush 701.37 Roadway Density Cores A B C D E SSD Gmb					N@int(mm)								N@int(mm)					
#50 0.3 180.0 12.6 #50 0.3 134.3 12.7 #50 0.3 134.3 12.7 #50 0.3 134.3 12.7 #50 0.5 #50 0.7 #50 0.5 #5		#16 1.18		30.2	N@des(mm)	114.7				#16 1.18		29.6	V@des(mm)	113.7				
#100 0.15 96.0 7.1 %AC Meter 3.4 #100 0.15 71.2 7.4 %AC Meter 3.4 #200 0.075 32.8 5.2 Comp Temp 295 #200 0.075 25.1 5.5 Comp Temp 295 Pass 8.6 Sample Taken-Tons 904 Pass 9.3 Sample Taken-Tons 1040 Pass 9.3 Sample Taken-Ton			126.1		N@max(mm)		112.6						J@max(mm)		112.2			
#200 0.075 32.8 5.2					_		0.1								0.1			
Pass Pass			96.0															
Dec Loss 32.5 Cum Total 1743.6 Antistrip	- 7		32.8	5.2			295		#		25.1	5.5						
Cum Total 1743.6					Sample								Sample					
Section Sect					Antistrin	x remp	200						Antistrin	ank romp	200	1		
Crushed 90 Tr. Bskt 0 Int.DryNt 1743.6 Eskt-Mix w/AC 2000 After/wash 1661.1 Eskt-Mix w/AC 2000 After/wash 1281.7					, month								. unadip					
Tr. Bakt			90															
Bskt-Mix wAC 2000 AlterVash 1661.1 Bskt-Mix wAC 2000 AlterVash 1261.7				Tr. Bskt		Int.DryVt	1743.6					Tr. Bskt		Int.DryWt	1346.9			
XLOSS 4.50 Wt. Crush 701.37 XLOSS 4.60 Wt. Crush 600.754				kt•Mis w/AC	2000	AfterWash	1661.1					kt+Mix w/AC	2000		1281.7			
Roadway Density Cores			Bs								Bs							
A B C D E				%LOSS	4.50	Wt. Crush	701.37					%LOSS	4.60	Wt. Crush	600.754			
A B C D E										Deserte	rou Domeir	Caras						
Use									Λ				F					
Station Location								Hea	A	0	C	U						
Location																		
Thickness Air Water SSD Gmb																		
Air Water SSD SGMb																		
Water SSD SD																		
Gmb								Water										
L Tonnage L																		
								Lonnage						1				

502 Validation Input Tab

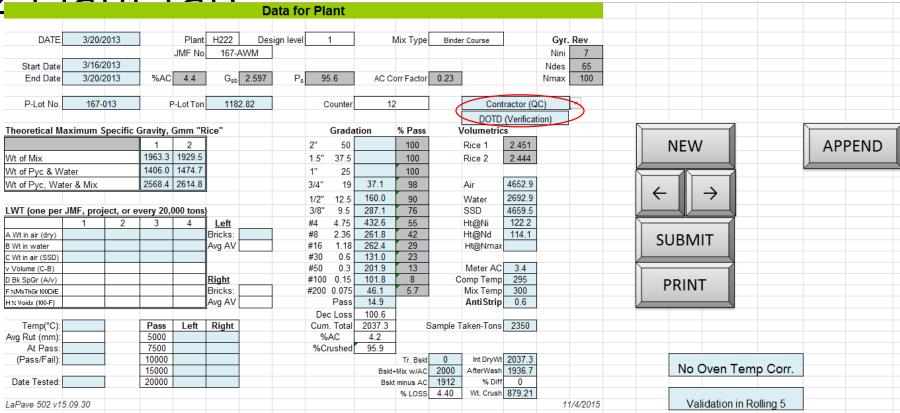
Theoretical Ma	ximum Spe	cific Gravity.	Gmm "Ric	e" Sample	e 1	Theore	tical Maxi	imum Spec	ific Gravity	. Gmm "Rice	" Sample	2
	Α	В	С	D	E			Α	В	С	D	E
Wt of Mix	2010.1	1921.8	1829.5	1784.5	1596.5	Wt of Mix		1849.7	1842.6	2010.2	1745.0	1804.4
Wt of Pyc & H2O	1406.0	1406.0	1406.0	1406.0	1406.0	Wt of Pyc & H20	20	1474.7	1474.7	1474.7	1474.7	1474.7
Wt of Pyc, H2O & Mix	2589.2	2538.5	2485.3	2459.3	2349.6	Wt of Pyc, H2O	& Mix	2565.2	2559.6	2659.3	2500.6	2543.2

- Gmm for each Sublot of Validation (A-E)
- Two Samples

502 Validation Input Tab

- P-lot inputs for each sublot in validation

CHRI	OT#A					
		/t Retaine	% Passing	Volun	netrics	
2"	50	rt. Hetaine	100.0	Rice 1	2.431	
1.5"	37.5		100.0	Rice 2	2.436	
1"	25		100.0			
3/4"	19	19.7	98.9		Brick 1	Brick 2
1/2"	12.5	192.7	88.5	Air	4653.6	4652.1
3/8"	9.5	243.2	75.3	Water	2687.0	2700.3
#4	4.75	384.7	54.4	SSD	4661.1	4655.1
#8	2.36	211.5	42.9	N@int(mm)	121.4	120.6
#16	1.18	206.2	31.7	N@des(mm)	113.9	113.2
#30	0.6	133.9	24.4	J@max(mm)		112.2
#50	0.3	213.5	12.8			
#100	0.15	108.7	6.9		%AC Meter	3.4
#200	0.075	34.1	5.0		Comp Temp	295
	Pass	10.8		Sample	e Taken-Tons	90
Dec	Loss	81.9			Mix Temp	290
Cum	. Total	1840.9		Antistrip	0.5	
	%AC	4.4				
Cr	ushed	91				
			Tr. Bskt		Int.DryWt	
			Bskt+Mix w/AC	2000	AfterWash	1759
			Bskt minus AC	1908	% Diff	0
			%LOSS	4.60	Wt. Crush	764.673


502 Validation Tab

Summary for validation inputs

- Runs statistics for validation
- Flags if parameters are not meeting spec of selected mix type in JMF
- 502 will show PWL and %pay if cores are entered

					SUPER	RPAVE V	ALIDATIO	ON FORM						
Projec	Н	.009491	Mix Type	Binder	Course	JMF No	167-AWM	Plant	H222	Date	3/12/2013			
1 10,00			Wilk Type		167-001	Lot Size	1277	- Tunc	,,,,,,	Date	0/12/2010			
			""	""		ur.		Can		_	DIAM	DIA	DIAM	W !!! . 0
_		#1	#2	#3	#4	#5	Mean	StDev	QL	Qu	PWLL	PWLu	PWL	Validate?
Gmm		2.434	2.434	2.437	2.434	2.449	2.4376	0.006504	2.31	2.31	100	100	100	OK
Gmb, ND		2.357	2.363	2.362	2.354	2.364	2.3600	0.004301					-	
%Gmm, NI		90.8	91.2	91.0	90.6	90.2	90.76	0.3847		0.62		72	72	OK
%Gmm, ND		96.8	97.1	96.9	96.7	96.5	96.80	0.2236	5.81	3.13	100	100	100	OK
%Voids		3.2	2.9	3.1	3.3	3.5	3.20	0.2236	3.13	5.81	100	100	100	OK
VMA		13.2	13	13.1	13.3	13	13.12	0.1304	8.59		100		100	OK
VFA		76	78	76	75	73	75.6	1.817	3.63	2.42	100	100	100	OK
Gmb, NM		2.380	2.387	2.383	2.382	2.393	2.3850	0.005148						
%Gmm, NM		97.8	98.1	97.8	97.9	97.7	97.86	0.1517		0.92		81	81	OK
slope		6.200	6.100	6.100	6.300	6.510	6.2420	0.171231					-	
orrection facto	r	1.020	1.182	1.181	1.177	1.182	1.15	0.0720						
Gsb agg		2.597	2.597	2.597	2.597	2.597	2.5970	0.000000						
2" 50		100.0	100.0	100.0	100.0	100.0	100.00	0.0000	-	-	-		-	
1.5" 37.5		100.0	100.0	100.0	100.0	100.0	100.00	0.0000						
1" 25		100.0	100.0	100.0	100.0	100.0	100.00	0.0000					-	OK
3/4" 19		98.9	99.6	100.0	98.8	100.0	99.46	0.5814	6.88	0.93	100	82	82	OK
1/2" 12.5		88.5	90.9	91.3	89.7	89.3	89.94	1.1524	3.47	3.47	100	100	100	Over Spec Limit
3/8" 9.5		75.3	78.4	80.2	77.1	75.1	77.22	2.1487	1.86	1.86	100	100	100	Over specialiii
#4 4.75		54.4	56.9	58.2	55.3	52.6	55.48	2.1742	1.84	1.84	100	100	100	
#8 2.36		42.9	44.2	45.4	42.1	40.9	43.10	1.7593	1.71	1.71	100	100	100	ОК
#16 1.18		31.7	32.4	33.1	30.2	29.6	31.40	1.4714	1.36	1.36	93	93	86	OK
#30 0.60		24.4	24.9	25.6	22.9	22.7	24.10	1.2629	1.58	1.58	98	98	96	
#50 0.00 #50 0.30		12.8	13.2	13.7	12.6	12.7	13.00	0.4528	4.42	4.42	100	100	100	
		6.9	7.3	7.6		7.4	7.26		7.40	7.40	100	100	100	
#100 0.15				7.0 5.7	7.1 5.2			0.2702			100	100	100	011
#200 0.075		5	5.4			5.5	5.36	0.2702	2.59	2.59				OK
%AC		4.4	4.5	4.5	4.3	4.4	4.42	0.0837	2.39	2.39	100	100	100	
dust/Peff		1.14	1.23	1.30	1.18	1.34	1.238	0.08258	7.73	4.38	100	100	100	OK
Gse		2.597	2.597	2.600	2.597	2.615	2.6012	0.007823					-	
Pba		0.0	0.0	0.0	0.0	0.3	0.060	0.13420			-			
Pbe		4.4	4.4	4.4	4.4	4.1	4.34	0.13420						
%Antistrip		0.5	0.6				0.55	0.0707						
%Crushed		91.0	90.0	90.0	90.0	94.0	91.00	1.7321						
Comp Temp		295	295	295	295	295	295.00	0.0						
Mix Temp		290	305	305	290	295	297.00	7.6						
Meter AC		3.4	3.4	3.4	3.4	3.4	3.40	0.0			-			
			Roadw	ay Density	Cores] [Tonnage	% Pay		1		
		Core A	Core B	Core C	Core D	Core E		Mainline						
			-	-				Minor A						
				-				Minor B						
							4	Minor C						
uses PWL for	Mainli	no if 2 or me	oro cublote a	ro Mainline	uco			Minor D						
			e, Ramp >30			irport Conto		Minor E						
iviairiirie – v	VC, D	inder, base	, Kamp >30	uit, ints. A	CC/Dec, A	irport Cente	ar [eighted by	tonnage as	ssociated w	ith cores		
	-		P2D-			133871			JJ	.g				
ainline Dens	Ct.	Mean	StDev	QL	Q _U	PWL								
		Total To			0								1	
		Gmm			2.438			Fir	nal % Pa	y		-		
										-				
			ent Factor		1.00			Adius	ted Tonr	nage	0			
		II A dimete d	Total Tons		0	I		, ,,,,,,,,		9-	•		II .	

502 Plant tah

Input for P-Lot

- Separates contractor and verification data, using same template
- Can update and resubmit data

[New] – blanks entries for new sublot [<-] and [->] - scroll previous and next [Submit] – saves sublot [Append] – imports lot/sublot data from another Lapave file

502 Plant tab

Rolling 5 P-lots

- Independent of project
- Shows statistics and PWL for last 5
- Key parameters will check against spec for selected mix type
- Additional parameters for information only

Notice that this will start at the active p-lot selected and show the four previous p-lots

						Rolling 5 f	or Plan	t				
Rolling 5	Active					JMF	MEAN	StDev	QL	QU	PWL	
P-Lot No.	67-013	167-012	167-011	167-010	167-009							
P-Lot Ton	1182.82	992.68	1019.6	1008.7								
Gmm	2.448	2.446	2.444	2.441	2.442	2.4376	2.4442	0.002864	5.24	5.24	100	OK
Gmb.ND	2.366	2.359	2.365	2.363	2.366	2.36	2.3638	0.002950	8.14	8.14	100	
%Gmm,NI	90.2	89.7	90.3	90.7	90.9	90.76	90.36	0.4669	-	1.37	94	OK
%Gmm.ND	96.7	96.4	96.8	96.8	96.9	96.80	96.72	0.1924	6.34	4.05	100	
VFA	74	73	75	75	76	75.6	74.6	1.140	4.91	4.74	100	OK
VMA	12.9	13.2	12.9	13.0	12.9	13.12	12.98	0.1304	7.52		100	OK
%Voids	3.3	3.6	3.2	3.2	3.1	3.20	3.28	0.1924	4.05	6.34	100	OK
Extracted AC	4.2	4.2	4.4	4.6	4.7	4.40	4.42	0.2280	0.88	0.88	60	OK
Comp Temp	295	295	295	295	295	295	295.0	0.0				
								-10				
Gradation						JMF	MEAN	StDev	QL	QU	PWL	
2" 50	100.0	100.0	100.0	100.0	100.0	100.00	100.00	0.0000				
1.5" 37.5	100.0	100.0	100.0	100.0	100.0	100.00	100.00	0.0000				
1" 25	100.0	100.0	100.0	100.0	100.0	100.00	100.00	0.0000				OK
3/4" 19	98.2	99.4	98.5	100.0	98.8	99.46	98.98	0.7225	5.54	1.41	95	OK
1/2" 12 5	90.3	89.1	88.4	88.7	88.4	89.94	88.98	0.7918	5.05	5.05	100	OK
3/8" 9.5	76.2	77.3	76.8	76.1	75.5	77.22	76.38	0.6907	5.79	5.79	100	
#4 4.75	55.0	54.1	57.0	55.2	55.2	55.48	55.30	1.0536	3.80	3.80	100	
#8 2.36	42.1	40.4	43.5	42.1	42.8	43.10	42.18	1.1520	2.60	2.60	100	OK
#16 1.18	29.3	28.6	30.6	30.3	30.5	31.40	29.86	0.87	2.29	2.29	100	
#30 06	22.8	21.6	23.3	22.8	23.2	24.10	22.74	0.6768	2.96	2.96	100	
#50 03	12.9	13.1	13.9	12.6	12.8	13.00	13.06	0.5030	3.98	3.98	100	
#100 0.15	7.9	8.1	8.6	6.9	7.1	7.26	7.72	0.7085	2.82	2.82	100	
#200 0.075	5.7	5.8	6.0	5.0	5.1	5.36	5.52	0.4438	1.58	1.58	96	OK
Other Factors	(Information	onal Too	ls Only)			JMF	MEAN	StDev	QL	QU	PWL	
GmbEst,ND	2.308	2.292		2.309	2.314	_	2.3094	0.011610				
GmbEst.Nmax		7-7-				2.385						
%Gmm.Nmax						97.86						
Design AC	4.4	4.4	4.4	4.4	4.4	-	4.40	0.0000				
%Antistrip	0.6	0.6	0.6	0.6	0.6	0.55	0.60					
Meter AC	3.4	3.4	3.4	3.4	3.4	-	3.40	0.0000				
%Crushed	95.9	96.7	96.0	97.0	96.8	91.00	96.48	0.4970				
Mix Temp	300	290	300	305	310	295	301.0	7.4				
Gse	2.614	2.611	2.609	2.605	2.606	2.601	2.609					
Pba	0.3	0.2	0.2	0.1	0.1	0.1	0.2	0.084				
Pbe	4.1	4.2	4.2	4.3	4.3	4.3	4.2	0.084				
dust/Peff	1.39	1.38	1.43	1.16	1.19	1.24	1.31					
slope	6.72	6.92	6.72	6.30	6.20	,	6.57	0.307				
			1.0176	1.0234	1.0225	1.009	1.0236	0.00421				

502 P-Lot compare sample

	Sta	tistica	I Comp	pariso	ns for I	Produ	ction	Plant	
JMF No.	167-A	WM		Plant	H222		Mix Type	Binder	Course
Plant Veri	fication Ch	eck		DOTD	Verification	n P-lot: 🤇	16	7-013	\mathbf{E}
Verifi	cation		Plan	t QC		Abs Di	fference	Allowable	Tolerance
Counter	3		Counter	12					
P-lot	167-013		P-lot	167-013					
Gmm	2.448		Gmm	2.448		0.	000	0.0)15
Gmb	2.366		Gmb	2.366		0.	000	0.0)24
% Voids	3.3		% Voids	3.3		().0	1	.3
VMA	12.9		VMA	12.9		().0	0	.5
% AC	5.25		% AC	4.4		().9	0	.4
No. 4	55		No. 4	55		().0	6	.0
No. 8	42.1		No. 8	42.1		().0	5	.0
No. 200	5.7		No. 200	5.7		().0	1	.2
LWT			LWT						

Statistical comparisons of contractor and verification plant data

- Top part - select P-Lot that had sample taken for both to compare directly

502 Plant Statistics check

Statistical comparisons of contractor and verification plant data

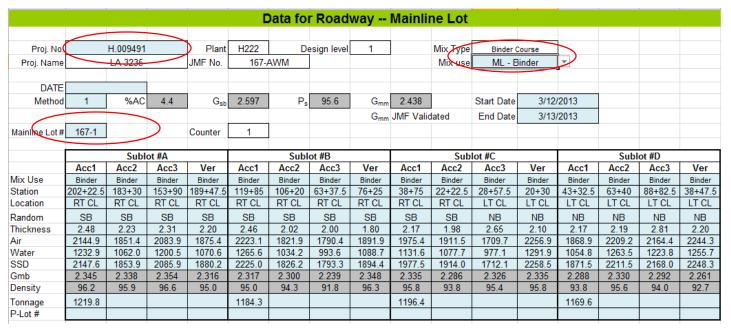
- Bottom part select Plot to start for both contractor and verification data
- Analysis shows F and T tests for up to rolling 30 plant QC and rolling 10 verification

			-013	V			on start:	167					
	Equal										mm	d1	d2
imm	Yes										7111111	Verification	
SmbND	Yes										Average	2.446	2.443
6 Void	Yes										St Dev	0.0053	0.0060
/MA	Yes									\	/ariance	0.0000	0.0000
/FA	Yes										df	2	16
6AC	No										F	0.7	738
lo. 4	Yes									F	Critical	3.6	630
lo. 8	Yes									V	ariance?	Eo	qual
lo. 200	Yes										P(T<=t)	0.4	394
										Equa	I Datasets?	Y	'es
					30 Plant								
P-Lot	Gmm	GmbND	%Void	VMA	VFA	%AC	No. 4	No. 8	No. 200	G	mbND	d1	d2
167-013	2.448	2.366	3.3	12.9	74	4.4	55	42.1	5.7			Verification	
167-012	2.446	2.359	3.6	13.2	73	4.2	54.1	40.4	5.8	-	Average	2.363	2.362
167-011	2.444	2.365	3.2	12.9	75	4.4	57	43.5	6		St Dev	0.0036	0.003
167-010	2.441	2.363	3.2	13	75	4.6	55.2	42.1	5	\	/ariance	0.0000	0.000
167-009	2.442	2.366	3.1	12.9	76	4.7	55.2	42.8	5.1		df	2	16
167-008	2.444	2.366	3.2	12.9	75	4.8	60.5	46	5.9		F		889
167-007	2.455	2.366	3.6	12.9	72	4.3	55.9	43.9	5.5		Critical		630
167-006	2.447	2.360	3.6	13.1	73	4.3	53.4	41.2	5.5		ariance?		qual
167-005	2.445	2.364	3.3	13	75	4.5	55.5	42.9	5.4		P(T<=t)		793
167-004	2.442	2.356	3.5	13	73	4.6	53.9	41.4	5.2	Equa	l Datasets?	Y	'es
167-003	2.450	2.364	3.5	12.7	72	4.3	50.5	39.3	5				
167-02	2.440	2.359	3.3	12.9	74	4.4	51.8	39.7	5.2	0/	Void	d1	d2
Val E	2.449	2.364	3.5	13	73	4.4	52.6	40.9	5.5	70	volu	Verification	Accepta
Val D	2.434	2.354	3.3	13.3	75	4.3	55.3	42.1	5.2		Average	3.367	3.318
Val C	2.437	2.362	3.1	13.1	76	4.5	58.2	45.4	5.7		St Dev	0.1155	0.203
Val B	2.434	2.363	2.9	13	78	4.5	56.9	44.2	5.4	\	/ariance	0.0133	0.041
Val A	2.434	2.357	3.2	13.2	76	4.4	54.4	42.9	5		df	2	16
											F	0.3	209
										F	Critical	3.6	630
										V	ariance?	Εσ	qual
											P(T<=t)	0.6	943
										Equa	I Datasets?	Y	es
											/MA	d1	d2
									\perp			Verification	
											Average	13.033	13.00
											St Dev	0.1528	0.145
										\	/ariance	0.0233	0.021
		\vdash									df	2	16
											F		980
											Critical		630
											ariance?		qual
					OTD Veri						P(T<=t)		207
P-Lot	Gmm	GmbND	%Void	VMA	VFA	%AC	No. 4	No. 8	No. 200	Equa	I Datasets?	Y	es
167-013	2.448	2.366	3.3	12.9	74	5.25	55	42.1	5.7			+	
167-009	2.45	2.364	3.5	13	73	5.5	50.4	39.1	5.3		VFA	d1	d2
167-02	2.44	2.359	3.3	13.2	75	5.5	51.8	39.7	5.2			Verification	Accepta 74.41
											Average	74.000	

502 Mainline Roadway. Datasheet Mix Type H.009491 Plant H222 Design level 1 Proj. No. Binder Course LA 3235 JMF No. 167-AWM Mix use ML - Binder Proi. Name Gmm Re-Verified DATE %AC 4.4 G_{sb} 2.597 P_s 95.6 G_{mm} 2.438 Method Start Date 3/12/2013 G_{mm} JMF Validated End Date 3/13/2013 Mainline Lot # 167-1 Counter 1 Sublot #A Sublot #B Sublot #C Sublot #D **NEW** Acc2 Acc3 Acc2 Acc2 Acc2 Acc3 Ver Ver Acc1 Acc3 Ver Acc1 Acc3 Ver Acc1 Mix Use Binder Binder Binder Binder Binder Binder Binder Binder Binder Binder Station 202+22.5 183+30 153+90 189+47.5 119+85 106+20 63+37.5 76+25 38+75 22+22.5 28+57.5 20+30 43+32.5 63+40 88+82.5 38+47. RT CL RT CL RT CL RT CL RT CL RT CL RT CL RT CL RT CL RT CL LT CL LT CL LT CL LT CL LT CL LT CL Location \rightarrow \leftarrow SB SB SB SB SB SB SB SB SB NB NB NB NB NB 2.48 2.23 2.31 2.20 2.46 2.02 2.00 2.17 1.98 2.10 2.17 2.19 2.20 1.80 2.65 2.81 Thickness 2144.9 1851.4 2083.9 1875.4 2223.1 1821.9 1790.4 1891.9 1975.4 1911.5 1709.7 2256.9 1868.9 2209.2 2164.4 2244.3 Water 1062.0 1200.5 1070.6 1265.6 1034.2 993.6 1088.7 1131.6 1077.7 977.1 1291.9 1054.8 1263.5 1223.8 1255.7 **SUBMIT** SSD 2147.6 1853.9 2085.9 1880.2 2225.0 1826.2 1793.3 1894.4 1977.5 1914.0 1712.1 2258.5 1871.5 2211.5 2168.0 2248.3 Gmb 2.345 2.338 2.354 2.316 2.317 2.300 2.239 2.348 2.335 2.286 2.326 2.335 2.288 2.330 2.292 2.261 Density 95.9 96.6 95.0 95.0 94.3 91.8 95.8 93.8 95.4 95.8 93.8 95.6 94.0 92.7 1219.8 1184.3 1196.4 1169.6 Tonnage PRINT P-Lot # Sublot #E Sublot #F Resolution Acc1 Acc2 Acc3 Ver Acc1 Acc2 Acc3 Ver #A #B #C #D #E #F Mix Use Mix Use Binder Binder Binder Binder Binder Binder Binder Binder Station 29+47.5 144+35 173+97.5 175+42.5 Station 83+52.4 80+47.5 | 132+32.5 Location LT CL LT CL LT CL LT CL Location RT CL LT CL LT CL LT CL Random NB NB NB NB Random SB SB NB NB 2.25 2.40 2.07 1.80 Thickness Thickness 2450.8 2074.0 1911.9 2425.7 Water 1388.5 1401.6 1182.2 1095.0 Water 2453.4 2076.7 SSD 2428.1 1914.5 2.333 2.330 2.333 Gmb Gmb 2.319 95.6 Density 95.7 95.1 95.7 Density Tonnage Tonnage P-Lot # P-Lot # Gmm Check Resolution Sublot #B Ac2 Ac1 Ac1 Avg 1965.7 Pvc&Water Pvc.Wtr&M 2491.5

2.469

Diff from JMf


2.457

2.458

2.461

0.023

502 Example Acceptance and Verfication core data

Roadway inputs

- Make sure project is selected and lot is entered
- Entry fields will change if Minor is selected for mix use

[New] - blanks entries for new sublot
[<-] and [->] - scroll previous and next [Submit] - saves sublot
[Append] - imports lot/sublot data from another Lapave file

502 Mainline example resolution data input

	Resolution												
	#A	#B	#C	#D	#E	#F							
Mix Use	Binder	Binder	Binder	Binder	Binder	Binder							
Station	39+57.5	83+52.4	26+67.5	80+47.5	132+32.5								
Location	RT CL	RT CL	LT CL	LT CL	LT CL								
Random	SB	SB	NB	NB	NB								
nickness													
Air													
Water													
SSD													
Gmb													
Density													
Tonnage													
P-Lot #													

Roadway inputs

- Entry fields for resolution cores, enter data if required for resolution

502 Mainline Gmm verification, one to three cores per lot

		G	mm Chec	:k		Resolution						
Sublot	#B	#C	#D									
Core	Ac2	Ac1	Ac1	Avg								
Mix	1813.2	1965.7	1855.7									
Pyc&Water	1390.7	1390.7	1390.7									
Pyc,Wtr&Mix	2469.5	2556.5	2491.5									
Core G _{mm}	2.469	2.457	2.458	2.461								
Diff from JMF				0.023								

Roadway inputs

- Entry fields for Gmm check
- Sublot and core are drop downs to assign after random selections are determined
- Entry field for resolution Gmm if more required, flag will show
- Resolution will be used to compute lot information if it is computed

		G	mm Chec	:k	Resolution						
Sublot	#B	#B	#B		#A	#B	#C	#D	#E		
Core				Avg	Res	Res	Res	Res	Res		Avg
Mix	1979.7	2055.1	2016.4		2056.4	2056.4	2056.4	2056.4	2056.4		
Pyc&Water	1390.7	1390.7	1390.7		2064.1	2064.1	2064.1	2064.1	2064.1		
Pyc,Wtr&Mix	2571.3	2611.4	2584.7		3283	3283	3283	3283	3283		
Core G _{mm}	2.477	2.463	2.452	2.464	2.455	2.455	2.455	2.455	2.455		2.455
Diff from JMF				0.026							0.017

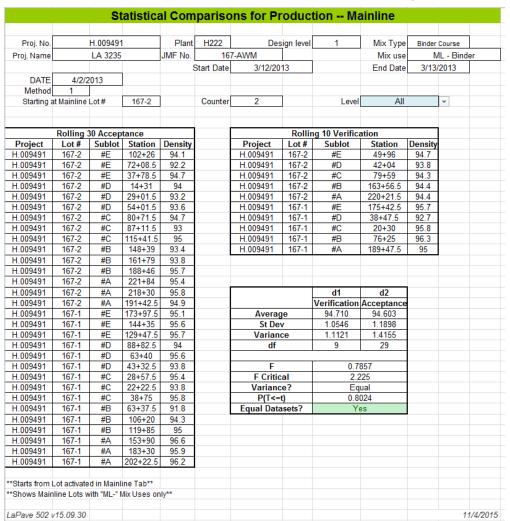
502 Mainline data sheet example to reset Gmm (using Resolution)

		- L		1 1		' /	, U		ן ו	י כ	1			ノ し		
						Data fo	Road	way	Mainli	ne Lot						
Proj. No.		H.009491		Plant	H222	D	esign level	1	1	Mix Type	Binder (Course				
Proj. Name		LA 3235		JMF No.		AWM				Mix use						
DATE	4/3/2	2013														
Method	1	%AC	4.4	G _{sb}	2.597	P _s	95.6	G _{mm}	2.455		Start Date	3/12/	2013			
								G _{mm}	Re-Verific	ed	End Date	3/13/	2013			
Mainline Lot#	167-3			Counter	3											
manning 20th	101 0			Counto												
		Subl	ot #A			Subl	ot #B			Sub	lot #C			Subl	ot #D	
	Acc1	Acc2	Acc3	Ver	Acc1	Acc2	Acc3	Ver	Acc1	Acc2	Acc3	Ver	Acc1	Acc2	Acc3	Ver
Mix Use	Binder	Binder	Binder	Binder	Binder	Binder		Binder								
Station Location	134+98.5 RT CL	149+38.5 RT CL	168+58.5 RT CL	140+76 RT CL	188+18.5 RT CL	232+80 RT CL		231+07 RT CL								
Random Thickness	NB 2.68	NB 2.35	NB 2.33	NB	NB 2.18	NB 1.68		NB								
Air	2123.3	2191.0	2192.2		1680.1	1338.6										
Water	1209.1	1248.5	1247.3		953.3	760.2										
SSD	2127.0	2193.4	2194.9		1681.8	1340.5										
Gmb	2.313	2.319	2.313		2.306	2.307										
Density	94.2	94.5	94.2		93.9	94.0										
Tonnage	1203.4															
P-Lot #	3															
		CLI	ot #E			CL.	ot #F		1				Resol			
	Acc1	Acc2	Acc3	Ver	Acc1	Acc2	Acc3	Ver			#A	#B	#C	#D	#E	#F
Mix Use	71001	71002	71000		71001	71002	71000			Mix Use	Binder	Binder			"-	
Station										Station	153+06	190+05.6				
Location										Location	RT CL	RT CL				
Random									l .	Random	NB	NB				
Thickness										hickness						
Air Mater									-	Air Water						
Water SSD									-	SSD						
Gmb										Gmb						
Density									İ	Density						
Tonnage										Tonnage						
P-Lot #										P-Lot #						
			CI						D 1 :							
Sublot		G	mm Che	CK ————	I				Resolution	on	T					
Core				Ava						_						
Mix				Avg												
Core G _{mm}																
Diff from JMF																

If a new Gmm target is determined for the JMF, it can be entered into the re-verified field Computations will use the re-verified instead of the design/validation Gmm

502 Mainline Lot Summary and Pay Adjustment calculations (read-only, no input)

					Data for	Roadway Mainl	ine Lot Pay			
	V	lainline D	ensity			Ma	ainline Acceptan	ce Density PWL		
Mainline	Ac1	Ac2	Ac3	Ver	Res	Ac Count	15	QL	2.12	
Sublot #A	94.9	95.8	95.4	94.4	93.7	Ac Mean	94.2	QU		
Sublot #B	95.7	93.8	93.4	94.4	95.7	Ac Stdev	1.053	PWL	99	
Sublot #C	95.0	93.0	94.7	94.3	95.8					
Sublot #D	93.6	93.2	94.0	93.8	94.0	Mainline Min	92			
Sublot #E	94.7	92.2	94.1	94.7	94.6	D-11 0/		100		
Sublot #F	-	-				Pay %)	100		
Method		1								
							ainline Resolution	on Density PWL		
Testing Lab	oratory	District La	ab			Res Count	5	QL	2.87	
Ac Count		15				Res Mean	94.8	QU		
Ac Mean		94.2				Res Stdev	0.961	PWL	100	
Ac Stdev		1.053								
						Mainline Min	92			
Testing Lab	oratory	Contracto	г							
Ver Count		5								
Ver Mean		94.3								
Ver Stdev		0.327								
						Mainline Lot	#	167-2		
Difference of	f Means	0.10				Total Tons		5703.9		
Rolling F &	T Equal	Yes				G _{mm}		2.455		
	T.					G _{mm} from		Resolution		
						Adjustment F	actor	1.00		
						Adjusted Total	I Tons	5703.9		
						1.10	Previou	s Lot		
						Lot#	167-1			
						Mix Use	ML - Binder			
						From	Acceptance			
						Pay %	100			
L - D 500	45.00.00									44/4804
LaPave 502	713.09.30									11/4/201

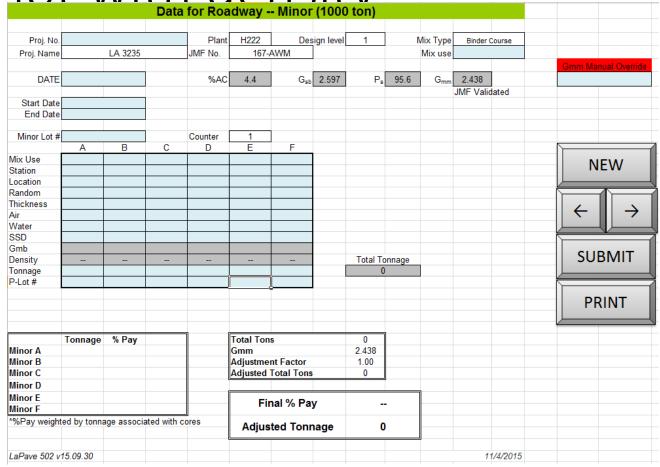

Summary of active mainline lot selected

- Show statistics, density summary, and pay
- Does not include IRI pay adjustments

502 Mainline Statistics comparing Acceptance and Verification (read only)

Rolling statistics starting at active mainline lot selected in Mainline tab

- Rolling 30 for acceptance and rolling
 10 for verification
- F and T tests between the data sets
- Can be run project specific or across all lots entered for mix design
- Ignores minor lots


502 Roadway Report Summarizes all lots of the project (select project by drop down)

	Roadway Summary Report														
Proj. No.	H.	009491		▼ Plant	H222		Design level	1		Mix Type	Binder	Course			
Proj. Name	L	A 3235		JMF No.	167-	AWM				JMF Mix use	ML -	Binder			
Project Eng.	Jaco	b Oncale													
Contractor	Barriere	Construction			Show:	Mainline	and Minor								
Mainline Lot	Mix Use	Method	Acc Mean	Ver Mean	Diff	Acc PWL	Acc Pay	Res Mean	Res PWL	Res Pay	Gmm	Gmm From	Adj Factor	Total Ton	Adj Ton
167-1	ML - Binder	1	95.0	95.1	0.1	100	100				2.438	JMF Validated	1.00	5977.1	5977.1
167-2	ML - Binder	1	94.2	94.3	0.1	99	100	94.8	100	100	2.455	Resolution	1.00	5703.9	5703.9
167-3	ML - Binder	1	94.2			100	100				2.455	Override	1.00	1203.4	1203.4

Summary of all lots in a project

- Lists key parameters and pay

502 Minor lot with density
Data for Roadway - Minor (1000 ton)

Used for Minor lots that do not use mainline methods

Reporting Tah

Print All	Email to District	Update Material Codes
Export for Attachement	Upload This File to Server	Check for Latest Version
Print Design Report	Y Optimum AC and Verification Samples data Y Optimum AC charts Y Combined Gradation Y 0.45 Curve Y Ignition Oven Correction Factors and Verification G Y LWT Design	radations
Print JMF Report	Y JMF Input Y JMF Y JMF Check	
Print Validation Report	Y Validation Input Y Validation Report	
	X	
Print Acceptance Report	Y Acceptance Input Y Acceptance Report	
Thin Acceptance Report	1 Acceptance Report	
Import All	District Email :	
Import All	CC:	
	66.	
	Attach : All	
Admin / Unlocked		
Admin / Unlocked		

[Import All] - import JMF and qc/acceptance/verification data (import data from old version) [Check Latest Version] - checks for newer version on the shared location [Upload File to Server] - uploads to shared location on DOTD network [Print]s - can select Y/N on sections to print Working on other features - [Email], [Export Attachment], and [Codes]

Link to example

\\h00001ms017\DOTDPublicShare\LaPave Transfers\Examples\Lapave 502 newspec 11-9-15.xlsm