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ABSTRACT

In 2017, American Society of Civil Engineers (ASCE) reported that 9.1% of national bridges 
are classified as structurally deficient. Many of these bridges are concrete bridges that also 
suffer from girder serviceability issues such as excessive deflections and cracking. In 
response to this problem, external post-tensioning techniques utilizing steel tendons and 
carbon-fiber-reinforced polymer (CFRP) were developed. External post-tensioning induces 
an uplifting force in the girder that results in a reduction of deflections and crack widths. The 
external post-tensioning techniques are, however, expensive in terms of material costs, 
energy expenditures, construction time, lane closure times, etc. Application of anchorage in-
situ is an additional hurdle that further drives up the costs. In this study, a novel post-
tensioning technique utilizing shape-memory alloys (SMAs) is proposed. SMAs are a class of 
alloys that have two material phases: the low-temperature phase – martensite; and the high-
temperature phase – austenite. When martensite is plastically deformed, SMA can regain its 
original shape through heating, and the subsequent transformation from martensite to 
austenite occurs. The proposed post-tensioning method employs prestrained near-surface-
mounted (NSM) NiTiNb wires that are heated to induce shape-recovery of the NiTiNb and 
generate post-tensioning in the strengthened concrete girders. To determine the feasibility of 
upscaling the proposed method a series of experiments were performed: (1) tensile tests on 
austenite to determine the stress-strain behavior of NiTiNb; (2) restrained recovery tests to 
characterize the post-tensioning potential of NiTiNb; (3) NiTiNb-grout bond characterization 
tests on notched plain concrete beam specimens; and (4) post-tensioning and flexural tests on 
reinforced concrete girders to verify the performance of the post-tensioning technique in 
structural-scale girders. Tensile tests on austenite indicated that the material has an initial 
elastic modulus of 10,000 ksi, with initial plastic deformation limit (detwinning) of 
approximately 85 ksi, and ultimate strength of approximately 150 ksi. Under the restrained 
recovery test, 2.5% prestrained NiTiNb wires achieved a maximum recovery stress of 73 ksi 
at 150 °C. Following cooling to ambient temperature, the wires retained about 92% of the 
maximum recovery stress, or 67 ksi. Bond characterization tests revealed poor bond between 
the grout and NiTiNb which negatively affected the transfer of post-tensioning force and 
strength of the plain concrete specimens; however, implementation of an anchorage device 
utilizing strand chucks significantly improved the behavior. Post-tensioning the cracked 
reinforced concrete girders reduced the crack width and residual midspan deflection by 74% 
and 0.06 in., respectively. Subsequent loading of the post-tensioned girders to failure 
indicated an increase in the yield moment and the ultimate moment capacity of the girders by 
up to 58% and 45% over control girder without NiTiNb, respectively. Overall, the proposed 
post-tensioning technique was successful in strengthening the structural-scale girders.
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INTRODUCTION

ASCE Report Card for 2017 suggests that approximately 9.1% of national bridges are 
classified as structurally deficient. Many of the deficient bridges fail to meet the 
serviceability limit state requirements imposed on maximum permissible deflections and 
crack widths. Repair methods based on post-tensioning were developed to address the 
serviceability problems by installing external tendons on a structure to provide the uplifting 
force (Figure 1). These tendons can be made of steel or carbon fiber reinforced polymer 
(CFRP) composites (e.g., Figure 1). Even though effective in improving the serviceability 
and strength of the flexural members, the technique is expensive in terms of material costs, 
energy expenditures, construction time, lane closure times, etc. Additionally, transfer of force 
between the external tendon and the flexural member is solely dependent on the proper 
anchorage of the prestressing cables which, if not executed properly, can lead to significant 
problems in the long term. Based on a similar concept, methods to post-tension concrete 
bridge girders implementing near surface mounted (NSM) prestressed CFRP strips and bars 
were developed (Figure 2). The main complication with their widespread adoption are 
ineffective, expensive, and difficult-to-construct anchorages. There is a need, thus, for a more 
economical and sustainable method to address the serviceability issues in concrete bridges. 

This work seeks to verify the feasibility of using heat-induced post-tensioning in existing 
cracked reinforced concrete girders through the implementation of shape-memory alloys 
(SMAs) that can recover their original shape upon heating above the material’s 
transformation temperature. In this study, near-surface mounted (NSM) NiTiNb alloy wires 
were evaluated for post-tensioning of bridge girders without the conventionally experienced 
problems with anchorages, high construction costs, long lane closure times, long construction 
times, etc. The experimental program consisted of a series of materials characterization tests 
on NiTiNb wires, bond characterization tests on plain concrete beams, post-tensioning tests 
on cracked reinforced concrete girders, and flexural tests on the post-tensioned girders.
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Figure 1. External post-tensioning [Structural Group, Inc. 2016].

(a) (b)

Figure 2. (a) Near-surface mounted (NSM) FRP reinforcement; (b) Prestressed NSM FRP 
[1].
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LITERATURE REVIEW

This section provides a short introduction to shape-memory alloys, and their unique shape-
recovery properties – shape-memory effect and superelasticity. In addition, a state-of-the-art 
overview of SMA applications in civil engineering is provided. Finally, studies focusing on 
the bond characteristics between SMA and concrete are briefly summarized at the end of the 
chapter.

Shape Memory Alloys

Shape memory materials (SMM) are a class of materials which can recover their original 
shape from significant and seemingly permanent deformation when an external stimulus 
(e.g., heat) is applied. SMM may be alloys, also known as shape memory alloys (SMA), or 
polymers – shape memory polymers (SMP). SMAs are characterized with significantly 
higher strength and elastic modulus than SMP, which makes them uniquely suitable for a 
variety of structural applications. 

SMAs have two material phases: (1) the high-temperature phase – austenite (cubic crystalline 
structure), and (2) low-temperature phase – martensite (tetragonal, orthorhombic, or 
monoclinic crystalline structure). The SMA can reversibly transform from one phase to the 
other when heated or cooled down through the transformation temperatures. The 
transformations occur over a temperature range (Figure 3a). During the cooling, the 
transformation from austenite to martensite starts at martensitic start temperature ( ) and is 𝑀𝑠

completed at martensitic finish temperature ( ) (Figure 3a-top). Similarly, the heating 𝑀𝑓

transformation from martensite to austenite begins at austenitic start temperature ( ) and is 𝐴𝑠

finished at austenitic finish temperature ( ) (Figure 3a-bottom). Transformation 𝐴𝑓

temperatures can be changed by tailoring the molar ratio of alloy elements in an SMA. 
Characterization of transformation temperatures is usually performed via differential 
scanning calorimetry (DSC). An example DSC curve for a SMA is shown in Figure 4.

Shape-memory Effect

Martensite can take two variants: (1) twinned martensite (in which crystals are oriented in 
varying directions); and (2) detwinned martensite (in which one crystal orientation is 
dominant). Transformation from twinned to detwinned martensite is accomplished by 
application of external stress; the detwinning is initiated at the detwinning start stress ( ), 𝜎𝑠

and the process is completed at detwinning finish stress ( ) (Figure 3b). Upon the release of 𝜎𝑓

external loading (from some stress greater than  to ‘zero’ stress) the deformation of 𝜎𝑓

martensite’s crystalline structure is retained (Figure 3c). Heating of the SMA to a 
temperature above  will then result in shape recovery through transformation of detwinned 𝐴𝑓
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martensite to austenite (Figure 3c) – such transformation is termed reverse transformation. 
Cooling of SMA to a temperature below  triggers transformation from austenite to 𝑀𝑓

twinned martensite – also known as forward transformation. The described behavior, named 
shape-memory effect (SME), is a one-way process: subsequent heating above  does not 𝐴𝑓

additionally alter the shape of SMA. 

Shape memory effect exhibited by an SMA is shown as a function of stress, strain, and 
temperature in Figure 3d. Cooling of austenite to a temperature below  results in 𝑀𝑓

transformation from austenite to twinned martensite (Figure 3d from A to B). By applying 
external stress that exceeds , transformation to detwinned martensite is accomplished 𝜎𝑓

(Figure 3d from B to C). By releasing the applied stress, the SMA is then elastically unloaded 
to some permanent strain (Figure 3d from C to D). With subsequent heating of the SMA, the 
reverse transformation from detwinned martensite to austenite is initiated once  is reached 𝐴𝑠

(Figure 3d from D to E). When the SMA is at a temperature higher than  the full shape 𝐴𝑓

recovery is attained (Figure 3d point F). Once the heat source is removed, the forward 
transformation from austenite to martensite is accomplished once the temperature is below 

.𝑀𝑓

The magnitude of transformation temperatures ( , , , ) increases with the applied 𝑀𝑠 𝑀𝑓 𝐴𝑠 𝐴𝑓

load. The relationship between applied stress and transformation temperatures is 
schematically shown via a stress-temperature phase diagram in Figure 5. The increase in the 
magnitude of transformation temperatures under stress must be considered when SMAs are 
used as actuators: when reverse shape recovery is initiated in a constrained detwinned SMA, 
the  and  transformation temperatures will increase as the restrained recovery stress 𝐴𝑠 𝐴𝑓

develops in the SMA with heating. This necessitates heating the SMA above the 
transformation temperature obtained via DSC (in an unstressed state) to achieve a complete 
reverse transformation and maximum recovery stress.

Another important property of SMAs in actuator applications is their thermal hysteresis, 
which is defined as a temperature difference between the  and . In situations where it is 𝐴𝑠  𝑀𝑠

desirable to retain the SMA recovery stress following removal of the heat source, it is 
required that the service temperature ( ) which the SMA reaches upon cooling be much 𝑇𝑠

greater than , or . If this condition is not satisfied and  and/or  is/are lower 𝑀𝑠 𝑇𝑠 ≫ 𝑀𝑠 𝑀𝑓 𝑀𝑠

than , the SMA recovery stress could be completely lost during the cooling process due to 𝑇𝑠

the forward transformation (austenite to twinned martensite).
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(a)

(c)

(b)

(d)

Figure 3. Thermomechanical characteristics of SMA: (a) Nitinol phase transformations; (b) 
transformation from twinned to detwinned martensite with external stress; (c) shape recovery 
of detwinned martensite through austenitic transformation; and (d) stress-strain-temperature 

diagram of nitinol [2].

Figure 4. Example DSC curve of an SMA [2].
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 Figure 5. Stress-temperature phase diagram of SMA [2].

Superelasticity

In addition to SME, SMAs also possess another property that allows for shape recovery – 
superelasticity. When the material is in the austenite phase and a sufficiently large stress is 
applied to it, the SMA undergoes transformation to detwinned martensite. Upon release of 
the applied stress, the SMA returns to its original shape. The superelastic behavior is 
demonstrated in Figure 6. As stress is applied to the SMA, the transformation to detwinned 
martensite starts at stress  and is complete at stress . As the external stress is released, 𝜎𝑀𝑠 𝜎𝑀𝑓

the transformation back to austenite is initiated and completed when stress reaches  and 𝜎𝐴𝑠

, respectively.𝜎𝐴𝑓

Figure 6. Superelastic stress-strain behavior of SMA [2].
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Types of Shape Memory Alloys

The SMA generally contain two or three elements in their composition. The addition of a 
third element to binary SMA (SMA having two elements) results in a ternary SMA and can 
alter the properties of the base alloy. This gives the designers flexibility to choose from a 
large variety of SMAs, which can be applied to different problems in the industry. The third 
element is added to the binary SMA to modify their thermal properties like transformation 
temperature or the width of the thermal hysteresis. SMAs can also be classified into different 
categories based on the primary alloying element, mode of actuation (thermal, magnetic, 
etc.), operating temperatures and the desired behavior (SME or superelasticity). In the 
subsequent sections, the effect of the alloying element on the transformation temperature is 
primarily discussed, with particular emphasis on the nickel-titanium-niobium (NiTiNb) alloy, 
since that is the SMA which was used in this study [2].

Nickel-Titanium (NiTi)-Based Alloys

The binary NiTi SMA has been widely used in different commercial applications due to its 
excellent SME, superelasticity, resistance to corrosion and biocompatibility. Buehler et al. 
(1963) studied the SME in equiatomic (50 at. % of Ni and Ti) NiTi SMA and discovered that 
this alloy had the highest Af out of all the NiTi based SMA. Increasing the amount of nickel 
by 1% over 50 at. % decreases the Af by up to 40 ⁰C. However, decreasing the atomic 
percentage of nickel does not cause any change in the transformation temperatures [2].

For an SMA to be applied in structural engineering, it needs to have the minimum response 
to large differences in temperature, so that it can be safely transported and installed without 
being accidentally actuated by the ambient temperature. In structural engineering, the SME 
must be triggered when prestressing forces are required to repair damaged structures. When 
the SMA is used for their superelastic properties, the temperature of the SMA must be above 
the Af temperature. Applying a stress above  will convert the SMA to detwinned 𝜎𝑀𝑓

martensite phase and removing the subsequent removal of the load will cause superelastic 
recovery due to transformation to austenite phase. Hence, when an SMA is chosen for 
structural applications because of their SME, the thermal hysteresis needs to be sufficiently 
wide to avoid accidental triggering of SME as well as loss of prestressing force [2, 3]. 

The widening of the hysteresis loop can be achieved by adding a third element – Niobium 
(Nb) – to the existing binary NiTi alloy to form NiTiNb alloy. The widening of the thermal 
hysteresis occurs due to the partitioning of the strain into a recoverable part and an 
irrecoverable part. The recoverable strain is caused by the NiTi part and the irrecoverable 
strain is caused by the soft Nb part. Despite the widening of thermal hysteresis, the NiTiNb 
alloy has some residual strain when the pre-deformed alloy is actuated to trigger the SME. 
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An important factor which affects the width of the hysteresis is the amount of Nb in the 
ternary NiTiNb alloy. The NiTiNb alloys generally have a wider thermal hysteresis than NiTi 
alloys (Ms of -74.29 ⁰C and As of 122.5 ⁰C). A lower Nb content increases the width of the 
hysteresis loop by increasing the difference between the  and . For example, 𝐴𝑠 𝑀𝑠

Ti46.9Ni50.1Nb3 (Ms of -68.15 ⁰C and As of -43.15 ⁰C) has a wider thermal hysteresis than 
Ti44Ni47Nb9 (Ms of -73.15 ⁰C and As of -23.15 ⁰C) [2, 3]. 

There are other applications of SMAs, where they are used as micro-actuators e.g., sensors in 
structural health monitoring systems. In these circumstances, it is desirable to have a narrow 
mechanical hysteresis. A narrow mechanical hysteresis would make the material more 
sensitive to the changes in strain of the structure. The application of stress would lead to the 
development of strain in the SMA and causes a phase transformation which in turn would 
change the electrical resistance of the material. 

Adding copper (Cu) to the binary NiTi alloy replaces the Ni to form NiTiCu alloys. Although 
the addition of Cu makes the hysteresis loop narrower, this also reduces the superelastic 
effect of the alloy by more than 50% when compared to the binary NiTi alloy. The Cu 
amount between 5 and 10 at. % is preferred for the choice of materials being used as 
actuators. When the Cu content is between 5 and 10 at. %, the material shows a clear phase 
transformation. A Cu amount greater than 10 at. % should be avoided as it tends to make the 
alloy lose its ductility[2, 4]. 

Some application of the SMA may require high Af and stable operating conditions like for 
example, the core region of an aircraft engine or downhole applications in the oil and gas 
industry. This led to the development of a new type of SMA known as the High-Temperature 
Shape Memory Alloy (HTSMA) which were formed by the addition of ternary elements like 
Palladium (Pd), platinum (Pt), Hafnium (Hf), Gold (Au) and Zirconium (Zr) to the binary 
NiTi alloy. The addition of these materials results in Af between 100 ⁰C to 800 ⁰C. The 
commercial application of alloys with ternary elements Pd and Pt have been limited due to 
the high material cost. Although alloys with ternary element Hf and Zr have a lower cost than 
the ones with Pt and Pd, they have lower Af. A significant limitation of HTSMAs is their 
lower transformation strain (~3%) when compared to binary NiTi alloys [2, 5].

Copper (Cu)-Based Alloys

The Cu-based SMA became an attractive substitute for the NiTi SMA because of the lower 
cost as well as good electrical and thermal conductivity. These alloys usually have a 
narrower hysteresis than the NiTi alloys. The Af of these alloys are highly dependent on their 
composition and a change in the atomic percentage of the order of 10 is required to change 
the Af by 5 ⁰C. 
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The Cu-Zn based alloys are characterized by good ductility and resistance to intergranular 
fracture when compared to other Cu-based alloys. CuZnAl, which is obtained by adding a 
third element Aluminum (Al) was found to have a significantly higher Ms as compared to the 
binary alloys (e.g., increasing the Al content from 5 percentage by weight (5 wt. %) to 10 wt. 
% increases the Ms from -180 ⁰C to 100 ⁰C). CuZnAl has a transformation strain of about 3-
4% and an operational temperature below 100 ⁰C. CuZnAl alloy shows complete shape 
recovery and superelasticity within stress levels of approximately 200 MPa.

Another type of Cu-based alloys is the CuAlNi which is formed by adding Nickel (Ni) to the 
binary CuAl alloy. Compared to the CuZn alloys, CuAlNi has lower ductility and is prone to 
intergranular cracking which leads the alloy to fracture at a stress of about 280 MPa. The 
transformation strain in this class of SMA is limited to 3%, and the alloy exhibits poor 
response to fatigue. The benefit of adding Ni to CuAl is that it makes the alloy less sensitive 
to stabilization (tendency to stay in martensite phase by increasing the reverse transformation 
temperature) and aging (treatment of alloys at high temperature which makes the properties 
change and settle very slowly). The transformation temperatures change with the amount of 
Ni and Al but, the relative change in the transformation temperatures is insignificant which 
makes the width of thermal hysteresis stay quite constant [2, 5].

Iron (Fe)-Based Alloys

Iron-based SMAs have found significant use in structural engineering applications due to 
their lower cost, wider thermal hysteresis, higher elastic stiffness, and ductility when 
compared to most NiTi-based SMAs; however, they have lower shape recovery strain (about 
4%) as compared to NiTi and Cu-based alloys. Moreover, Fe-based alloys offer better 
workability, weldability, and machinability which make them attractive for larger and more 
complex engineering structures. The most common Fe-based SMAs are FeNiCoTi and 
FeMnSi [2, 6]. 

Cobalt (Co)-Based Alloys

CoNiAl alloy can be formed by adding cobalt (Co) to NiAl or Ni to CoAl binary alloy. Their 
application in structural engineering is limited because they possess a very low Af (about -26 
⁰C) and a narrow thermal hysteresis. This alloy exhibits a transformation strain of about 4% 
when it is subject to thermal cycles and has stable superelastic behavior at a temperature 
sufficiently above the Af. CoNiAl alloy has a unique property by which it can undergo a 
forward transformation due to magnetic-field-induced reorientation when subjected to 
magnetic fields. This makes it an attractive choice for applications where magnetic actuation 
is required [2, 7].
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Applications of SMAs in Civil Engineering

Numerous applications of SMAs in civil engineering are reported in the literature. A brief 
overview of those studies is provided in this section. 

Applications Utilizing Shape-Memory Effect 

SMAs have been developed and used since the 1960s in a wide range of applications in 
medical, robotics, aerospace and in the automobile industries. One of the most notable 
applications of SMA is as actuators. For example, SMA actuators have found applications in 
robotic systems which require powerful, compact and lightweight actuators. As opposed to 
electric, hydraulic or other actuators which lose power when they are downscaled, the SMA 
actuators have a high strength to weight ratio, which makes them ideal for miniaturized 
applications. In one of these applications, straight SMA fibers were attached between two 
disks in an actuator with the intention of achieving amplified mechanical displacement. The 
disks were kept separated by preloaded springs, but when the SMA fibers were heated, they 
contracted by the SME and thus achieved mechanical displacement (Figure 7a, Figure 7b). 
The prospect of using SMA in structural engineering as a prestressing material by utilizing 
their SME and superelasticity properties have been recognized. Research is being conducted 
to determine the feasibility and effectiveness in such applications [8]. 

  (a)                                                                    (b)
Figure 7. SMA actuator showing: (a) the overall arrangement of the actuator; and (b) SME 

displayed in two disks connected by SMA fibers [8].

The advent of SMA in the buildings and infrastructure started with Soroushian et al. (2001) 
[9] who used Fe-based SMA rods to apply post-tensioning forces to repair damaged bridge 
girders. A methodology to repair the cracks caused by insufficient shear strength of a bridge 
girder was developed and verified in the laboratory. Implementation of this design was 
carried out in the field on an out-of-service bridge in Michigan (Figure 9). SMA rods were 
recovered in a restrained condition and the stress generated due to the restrained shape 
recovery was utilized to reduce the width of the shear cracks. Five SMA rods of 7⁄8 in. (22.2 
mm) diameter were mounted externally across the cracks at an angle of 35 degrees on both 
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sides of the beam web (Figure 8). The SMA rods were heated in a retrained condition above 
their Af by passing current, which resulted in a shape recovery and generation of recovery 
stress in the rods. Localized prestressing of the beam web via SMA rods resulted in a 40% 
reduction in crack width (from 0.022 in. to 0.013 in.). The rods developed a recovery stress of 
120 MPa (17 ksi), which was 32% lower than the maximum measured recovery stress (176 
MPa or 25 ksi) in the laboratory experiments. The loss in recovery stress was explained by 
relatively large slippage at the anchorage.   

Figure 8. Schematic diagram for SMA rods used to control of shear cracks in a bridge girder 
[9].

Figure 9. SMA rods installed in a bridge girder in Michigan to control of shear cracks [9]. 

An experimental study on 1.5 ft. long concrete beams was conducted by Deng et al. (2006) 
[11] to evaluate the post-tensioning potential of 6-8% prestrained NiTi (50 wt. % Ti) wires 
by using their SME. The NiTi wires were embedded in the reinforced concrete beams by 
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inserting the wires in the forms before pouring concrete. A computer-based data acquisition 
and control system was used to record midspan deflection of the beam and the temperature in 
NiTi wires (Figure 10). The SME was initiated by heating the SMA wires via Ohmic heating. 
The recovery stress steadily increased until the wires reached the Af temperature (40 ⁰C). The 
total upward beam displacement, due to the maximum recovery stress generated by the NiTi 
wires, was 0.41 mm. When the wires cooled down below Af to room temperature, the 
transition from austenite to martensite occurred, and therefore the recovery stress dropped 
which caused the upward deflection of the beam to reduce from 0.41 mm to 0.36 mm (Figure 
11a). The upward deflection depended on the actuation factors like the profile of current and 
actuation time.  It was observed that a gradual increase of the current intensity from 37 A to 
43 A in 150 minutes caused a greater reduction in the midspan deflection as compared to the 
condition where the current was increased stepwise from 0 A to 43 A over the same duration. 
The initial pre-strain also affects the recovery force; it was found that higher prestrain does 
not necessarily yield the highest recovery force (Figure 11b). A greater area of NiTi wires led 
to an increase in the recovery stress which increased the upward deflection.

Figure 10. Experimental setup for study on NSM SMA [11].
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(a)      (b)
Figure 11. Response to restrained heating of the NiTi wires: (a) Deflection vs. Temperature 

curve for different pre-strain; and (b) Recovery stress vs. Temperature curve of the wires 
[11].

Li et al. (2006) [12] experimentally evaluated the ability of SMA wires to control deflections 
in concrete beams. In this study, the SME of 2 mm diameter NiTi (50.8 wt. % Ni) wires was 
activated via Ohmic heating. In addition to this, the scope of this study also included carrying 
out permanent repair of the structures using carbon fiber reinforced polymer (CFRP) after 
initial repair with NiTi wires. The change in resistance of the NiTi wires was used to assess 
the midspan deflection of the beams. At first, 1.65 ft. long beams were loaded in a three-point 
bending setup to induce midspan cracking (Figure 12a). After inducing the cracks, the NiTi 
wires were actuated by passing constant currents of 14 A and 16 A. Actuation using a 16 A 
current generated more recovery stress than a 14 A current for the same temperature change.  
The test results showed a reduction of crack width from 3.98 mm to 0.65 mm following the 
shape recovery of NiTi wires. The specimens which had greater NiTi reinforcement ratio 
were more effective at reducing the midspan deflection and closing cracks. The specimen 
with 0.08% NiTi reinforcement ratio reduced the midspan deflection by about 58% whereas 
the specimen with 0.16% NiTi reinforcement ratio reduced the midspan deflection by about 
73%.

From this study, the possibility of using SMA as a strain sensor emerged based on the 
observation that change in resistance of the SMA had a linear relationship with the midspan 
deflection of the beams. Strengthening of the repaired beams using CFRP plates increased 
the load carrying capacity of the specimens by up to 50% and hence, was considered a good 
permanent repair method. 
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        (a)       (b)                                                           
Figure 12. Post-tensioning process showing: (a) test setup for three-point bending; and (b) 

schematic diagram of instrumentation for the test [12].

NiTiNb has a significantly wider thermal hysteresis than NiTi; thus, within the service 
temperatures typically experienced by civil infrastructure, the loss in the recovery stress at 
lower temperatures is minimal. Dommer and Andrawes (2012) [13] conducted 
thermomechanical characterization of NiTiNb wires to investigate the feasibility of using 
NiTiNb wires for active confinement of reinforced concrete columns by wrapping the wires 
spirally around the columns and applying transverse pressure (Figure 13). The results of 
short-term and long-term recovery tests (Figure 14a, Figure 14b) indicated that the NiTiNb 
wires could retain above 500 MPa of recovery stress over a wide range of temperatures 
(between -10 °C and 55 °C). The study explored resistive heating and torch heating as 
methods for triggering the SME. Both methods resulted in the generation of same recovery 
stress indicating that SME response is independent of the heating method.  Based on these 
findings, the authors concluded that NiTiNb wires were suitable for active confinement of 
columns. 

Figure 13. Schematic diagram of active confinement using SMA spirals [13].
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Figure 14. Thermomechanical behavior of NiTiNb wires showing: (a) Temperature vs. Time 
curve; and (b) Recovery Stress vs. Time curve under different temperature for the long-term 

test [13].

In another study, Andrawes et al. (2010) [14] compared cylinders with active confinement 
provided by the SME of the NiTiNb wires, and passive confinement provided by GFRP 
wraps. Some of the specimens had a combination of NiTiNb wire and GFRP confinement. 
First, thermomechanical characterization of 6.4% prestrained NiTiNb wires of 2 mm 
diameter was performed by conducting a restrained recovery test. The maximum recovery 
stress was found to be 565 MPa at a temperature of 108 oC, but the stress reduced to 470 
MPa (by about 20%) after cooling down to a temperature of 16 oC. Evaluation of NiTiNb 
wires with different prestrains indicated that the recovery stress linearly increased with the 
prestrain (Figure 15). The recovery stress increased by 22% for with raise in prestrain from 
2.8 to 6.4%

Figure 15. Recovery Stress vs. Prestrain curve for NiTiNb wires [14].
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Concrete cylinders were tested in compression under a displacement-controlled loading rate 
of 1 mm/min. The cylinders remained intact even after experiencing significant cracking and 
crushing (Figure 16b) because of the active pressure applied by the NiTiNb spirals. During 
the compression test, as the specimen was experiencing excessive deformations, the NiTiNb 
spiral fractured suddenly and the cylinder failed diagonally (Figure 16c). Comparing the 
strengthening effect of active and passive NiTiNb-GFRP wrapped specimens, it was found 
that active confinement imparted greater strength than the passive confinement. The 
comparison between the hybrid (NiTiNb-GFRP) and GFRP confined specimens show that 
the peak strength offered by the two were almost identical, but the ultimate strain was 
increased in the hybrid sample due to the ductility offered by the NiTiNb wires. This study 
also provided a comparative analysis of the tensile strength of spliced NiTiNb wires 
connected using U-clamps, sleeves and welded connections (Figure 17). The U-clamps and 
the welded connections had the maximum and minimum tensile strength respectively.

     (a)                                       (b)                                     (c)
Figure 16. Active confinement of Shape Memory alloy during different stages of 

compression testing: (a) before applying compression; (b) during compression; and (c) after 
failure [14].
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(a)

(b)

(c)
Figure 17. Different type of splices and connections: (a) sleeve connection; (b) U-clamp 

connection; and (c) welded connection [14].

Kotamala (2004) [16] studied the feasibility of using NiTi wires to prestress concrete beams 
with the aim of increasing their flexural capacity. The tensile tests indicated that ultimate 
strength and strain at failure were affected by the detwinning load and not by the temperature 
of the wires.  The modulus of elasticity increased significantly for the wires in austenite 
phase (Figure 18).  

Figure 18. Tensile properties of NiTi wires at different temperatures [16].

In this study, prestressing was conducted on 20 in. long concrete beams which had a cross 
section of 3 in. x 6 in. NiTi wires of diameter 0.119 in. with 4% prestrain were eccentrically 
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placed in the concrete beams. Heating the NiTi wires above their   (60-70 ⁰C), by passing a 𝐴𝑓

20 A current, generated 1335 lbf recovery force. Only 61% (810 lbf) of the recovery force 
was transferred to the concrete as the prestressing force. The loss in prestressing force was 
accredited to poor bond characteristics between the concrete and the SMA wires. However, it 
was observed that the overall flexural strength of the beams, prestressed with NiTi wires 
increased by almost 95 psi (Figure 19).

Figure 19. Comparison of flexural strength of beams [16].

The feasibility of self-post-tensioning bridge girders using the recovery stress generated from 
the restrained shape recovery of NiTiNb wires, when actuated via the heat of hydration of 
grouts, was investigated by Ozbulut et al. (2016) [17] (Figure 20). While using in-situ repair 
techniques, activating the NiTiNb wires using the heat of hydration of the grouts, which are 
used to fill the grooves in which the wires are installed, is easier than jacking or resistive 
heating. The NiTiNb wires utilized in the experiments had a relatively low reverse 
transformation temperature of 11 °C, which was activated by the heat of hydration of 
cementitious grouts (temperature goes up to 53 °C). The restrained recovery tests on 10% 
prestrained NiTiNb wires generated a sufficiently high recovery stress (above 500 MPa) 
which could be transferred to concrete as post-tensioning force. The amount of post-
tensioning force generated can be adjusted in this self-post tensioned method by choosing 
grouts which generate different amounts of heat to bring about partial shape recovery. 

The generation of the recovery stress depends on the temperature increment caused by the 
heat of hydration of the grout. The temperature should rise above the to trigger complete 𝐴𝑓

shape recovery. Experiments on different grouts (Table 1) demonstrated that the maximum 
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rise in temperature was brought about by the Sika grout (53 °C). The rise in temperature by 
53 °C was only sufficient transform SMA partially to the austenite phase causing incomplete 
shape recovery. The bond characteristics of the NiTiNb wires with the grout was obtained by 
conducting pullout tests on 3.5 mm diameter wires embedded in 102 mm x 102 mm 
cylindrical concrete specimens. The average bond stress was found to be 1.3 MPa and there 
was no significant slippage as observed from the digital image correlation results. It was 
concluded that NiTiNb SMA wires can be used in the self-post tensioning of concrete bridge 
girders with grouts that can raise the temperature of the wire above .  In addition to this,  𝐴𝑓

the grout provides higher resistance to corrosion of the NiTiNb wires and increases the 
service life of the structure.

Figure 20. The process of self-post-tensioning using NiTiNb SMA wires [17].

Table 1. Temperature increase due to the heat of hydration of different grouts [17].

Specimen Grout
Water- 
Grout 
Ratio

Initial Temperature 
(⁰C)

Maximum 
Temperature 

(⁰C)

Temperature 
Increase (⁰C)

S1 Euclid 0.25 21 41 20
S2 Euclid 0.25 22 41 19
S3 Euclid 0.25 21 41 20
S4 Sika 0.24 21 48 27
S5 Sika 0.24 22 53 31
S6 Sika 0.24 21 48 27
S7 Five Star 0.25 22 41 19
S8 Five Star 0.25 22 41 19
S9 MasterFlow 0.27 22 41 19
S10 MasterFlow 0.27 22 41 19
S11 MasterFlow 0.32 22 40 18
S12 MasterFlow 0.32 22 40 18
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Song et al. (2006) [26] used the SME of NiTi SMA wires to post-tension concrete specimens 
by using the recovery stress generated due to heating. At first, the change in resistance of the 
NiTi wires due to loading was used to measure the strain distribution in the concrete 
specimens without the help of any other external sensors. Three-point bending tests (Figure 
21a) were carried out on concrete beam specimens of size 13.5 in. x 6 in. x 2 in. infused with 
NiTi wires of 0.015 in. diameter. Subsequently, the macro-sized cracks were closed using the 
post-tensioning force generated due to the shape recovery of the NiTi wires It was concluded 
that structures affected by explosions and earthquakes can be rehabilitated by heating the 
SMA externally so that the wires undergo shape recovery to reduce the macro-sized cracks 
(Figure 21b). 

Figure 21. Shape recovery of NiTi infused concrete specimens: (a) after cracking; and (b) 
after shape recovery of NiTi wires [26].

The feasibility of using the SME of iron-based SMA (Fe-SMA) strips in place of CFRP strips 
for the prestressed strengthening of concrete structures was studied by Czaderski et al. (2014) 
[18]. The recovery stress of Fe-SMA varied between 250 to 300 MPa, which was relatively 
lower than that of NiTiNb SMA. The benefit of pre-stressing with Fe-SMA is the lower 
material cost and higher elastic stiffness. In this experiment, the prestressing was done by 
embedding the prestrained Fe-SMA in the concrete blocks and heating the SMA to induce 
recovery stress. The Fe-SMA strips were able to transfer a 3 MPa prestress when they were 
recovered.  Lap-shear experiments (Figure 22) were conducted to study the bond behavior of 
the strips. The failure mode for ribbed Fe-SMA glued with cement-based mortar was 
compared to that of flat Fe-SMA without ribs and CFRP strips. It was observed that the 
failure in ribbed Fe-SMA was along the free length of the strip while the failure mode in flat 
Fe-SMA having no ribs and CFRP was sliding of the strip. Thus, it can be concluded that it is 
feasible to use ribbed Fe-SMA for the strengthening of concrete sections. However, CFRP 
strips with a cement-based mortar and Fe-SMA having no ribs cannot be used for 
strengthening application because of their poor bond quality. 
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Figure 22. Test setup for lap shear test [18].

Applications Utilizing Superelasticity 

The superelastic NiTi SMA restrainers were used as reinforcement for bridge decks to avoid 
excessive movement and unseating of the bridge girders during cyclic loadings (e.g., 
earthquakes). Andrawes et al. (2005) [10] conducted a nonlinear dynamic analysis of a 
typical California multiple-frame reinforced concrete box girder bridge using a suite of 10 
ground motion records. A comparison of performances was made using different models of 
both superelastic SMA restrainers and the traditional steel cable restrainers. The superelastic 
restrainers reduced the relative hinge displacements significantly more than the steel 
restrainers. The average maximum hinge opening was reduced by up to 43% for superelastic 
restrainers, whereas the steel restrainers reduced the hinge displacement by only 16%. The 
reduction in hinge opening is attributed to the high elastic strains of the superelastic 
elements. The superelastic restrainers also displayed significant damping characteristics. The 
steel restrainers performed inadequately in most cases due to their low elastic strain limit. 
The study showed similar behavior in both the steel and superelastic restrainers during the 
first few cycles, but after the steel restrainers yield, residual strain accumulates in the steel 
whereas the superelastic restrainers have a re-centering ability and can recover the original 
length after being deformed at a strain between 6-8%. It was also observed that the maximum 
frame drifts did not depend on the type of restrainers.

A study was conducted by Ozbulut et al. (2016) [15] where these NiTi multistrand cables 
(Figure 23) were subjected to the uniaxial tensile test under various cyclic amplitudes and 
loading frequencies. The performance of the cables was evaluated in terms of energy 
dissipation, viscous damping, secant stiffness and residual strain. The cables consisted of 7 
strands of wires each having an outer diameter of 8 mm and a length of 150 mm. The test 
setup is shown in Figure 24. The dissipated energy increased steadily with the increasing 
strain amplitude up to 7.2% (Figure 25a). The viscous damping first increased and then 
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became constant, but a small decrease was observed when some of the strands in the cable 
broke (Figure 25b). The secant stiffness decreased with the increase in strain amplitude 
(Figure 25c). For 100 loading cycles, the maximum residual strain was found to be 1.1%. 
The dissipated energy decreased by 34% as the number of cycles increased. It was observed 
that after the 40th cycle, increasing the number of cycles did not affect the properties of the 
NiTi multistrand cable. The study also showed that the performance of the cable changed 
while varying the strain rate of loading. The change in performance occurred because the 
higher rate of loading did not allow the latent heat from the wires to dissipate into the 
atmosphere, thus changing their transformation temperatures.

    
        (a)  (b)

Figure 23.Different views of multistrand NiTi cables: (a) cross-sectional view; and (b) 
longitudinal view [15].

Figure 24. Test setup consisting of laser extensometer, DIC camera and infrared camera [15].
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   (a)    (b)      (c)

Figure 25. Variation of: (a) dissipated energy; (b) equivalent viscous damping; and (c) secant 
stiffness with strain amplitude [15].

The feasibility of using NiTi SMA wires as longitudinal reinforcement to reduce residual 
deflections by using their superelastic property was studied by Czaderski et al. (2006) [29]. 
SMA wires of 4 mm diameter were used to reinforce a 1.14 m long concrete beam. Tensile 
tests at different temperatures indicated that the Young’s modulus in the martensite phase is 
3.5 times lower than in the austenite phase. Subsequently, pullout tests were conducted on 
the wires to determine their bond strengths. Results indicated that different surface 
conditioning techniques (such as sandblasting) provide better bonding capability of the wires. 
Finally, four-point bending tests were performed on concrete beams reinforced with NiTi 
wires (Figure 26) and concrete beams without NiTi wires. The four-point bending test results 
showed that stiffness and yield strength of concrete beam reinforced with NiTi was 
noticeably higher in the austenite phase than martensite. The beams reinforced with NiTi 
wires were subjected to several deformation cycles to study the crack patterns. The stiffness 
of the beams decreased after deformation cycle 2 and a maximum crack width of 1.1 mm was 
measured during the 2nd and 4th cycle. Brittle fracture occurred at the mid-span of one of the 
NiTi wires during the 7th cycle. Finally, after the 8th cycle, the beam failed due to the brittle 
fracture of two NiTi wires. The reason for brittle failure of wires was fatigue corrosion 
cracking resulting from cyclic loading in presence of water and chlorides of the epoxy 
adhesive which was used for bonding the wires and concrete. 
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Figure 26. Four-point bending setup [29].

Saiidi et al. (2007) [19] used NiTi as tensile reinforcement in concrete beams and studied 
their effectiveness in reducing the permanent deformation in the beams by using their 
superelasticity. In this study eight (8) beams were designed and tested, out of which four 
beams were reinforced with NiTi wires and the other four were reinforced with conventional 
steel. In addition to this, analytical studies were also conducted on four beams of size 5 ft. x 5 
in. x 6 in. with a combination of high strength steel and NiTi wires, and CFRP and NiTi 
wires. The beams were subject to four-point loading and designed to fail in flexure. The ratio 
of residual displacement to maximum displacement for the beams having NiTi wires as 
longitudinal reinforcement was 0.0333, whereas the beams with mild steel reinforcement had 
a ratio of 0.338. The NiTi reinforcement reduced the residual displacement by 90% when 
compared to the mild steel (Figure 27). The measured residual strain was 7% of the 
maximum strain for the beams reinforced with NiTi wires, and 85% of the maximum strain 
for the beams reinforced with steel. Due to the low modulus of elasticity of the NiTi wire, 
however, the stiffness of SMA reinforced beams were lower by 38%. The analytical test 
results on the SMA-mild steel reinforced beams showed an increase in stiffness (by up to 
25%) over SMA reinforced beams with the ability to recover deformations partially.
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(a)         (b)

Figure 27. Load vs. Deflection curve of: (a) NiTi SMA reinforced; and (b) mild steel 
reinforced beam [19].

The superelastic property of SMA has also been used to repair and strengthen heritage 
structures with architectural significance. For example, Indirli and Castellano (2000) [20] 
used the superelasticity of a system of pre-tensioned NiTi SMA rods connected in series with 
steel bars to restrain horizontal movement of a bell tower which was heavily damaged during 
an earthquake in Trignano, Italy in1996. 

A study of slender heritage buildings, where superelastic NiTi SMA tie bars have been 
installed to resist excessive deformation and prevent collapse, was carried out by the same 
research group. The NiTi tie bars, which ran throughout the height of the tower, were 
anchored at the foundation. The tie bars were used to retrofit and rehabilitate the S. Giorgio 
Church Bell Tower which was severely damaged in a previous earthquake in 1996. This 
structure was declared intact after a subsequent earthquake in 2000 [20]. 

Song et al. (2006) [26] reviewed the application of SMA as actuators, passive energy 
dissipaters and dampers. They also studied the application of SMA as structural rehabilitators 
in smart structures. Over the years, many different materials like gold, cadmium and iron-
based alloys have been used for their SME. Out of these, the best thermomechanical and 
thermoelectrical properties were exhibited by the NiTiNb SMA. The damping behavior of 
SMA depended on the factors like temperature, loading frequency and the number of loading 
cycles. It was also observed that the pre-strained martensitic NiTiNb had better damping 
capacity than NiTiNb SMA in the austenite phase. The dissipation of energy was dependent 
directly on the diameter of the wire and the effect of ambient temperature was negligible. 

The SMA wires show damping property in tension as well as bending by their 
superelasticity. The SMA wires can be used in ground isolation systems, where isolators 
made of NiTi SMA wires can be installed at the junction of ground and superstructure to 
filter the seismic energy transferred from the ground and restore the structure to its original 
position. Both martensitic and superelastic NiTi wires can facilitate energy dissipation 
mechanisms when infused in structural elements because the wires are able to absorb the 
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vibration due to their hysteretic stress-strain relationship. The martensitic NiTi wires have a 
better damping capacity as compared to the superelastic SMAs but they must be externally 
heated to regain their original shape whereas the superelastic SMA, although having a lower 
damping capacity, has a strong re-centering property which results in lower residual strains. 
Figure 28 shows the use of superelastic NiTi SMA wires used in isolating systems by 
different researchers [22].

    (a)     (b)
Figure 28. Base isolation techniques by: (a) Wilde et al [22]; and (b) Dolce et al. [23].

Feasibility of using base isolating systems made of NiTi SMA bars exhibiting superelastic 
property was investigated for elevated highway bridges by Wilde et al. (2000) [22]. It was 
observed that the excitation level had a substantial effect on the effectiveness of the base 
isolation system. At small excitation levels, a system of NiTi bars firmly link the pier and the 
deck slab but at medium excitation, stress-induced forward transformation leads to a relative 
displacement between the pier and bridge deck. At high loading state, the SMA behaves 
superelastically, and there were minimal displacements observed when compared to ordinary 
damping systems. 

A NiTi-based isolation system was investigated for its load carrying capabilities. Dolce et al. 
(2001) [23] found that the isolation system can carry 600 KN force and withstand up to 180 
mm deflection. The NiTi wires were wound around three stubs connected to tubes, which 
allowed reciprocal movement between the substructure and the superstructure. The system 
was very effective in filtering energy transmission. The feasibility of using the NiTi-based 
base isolation system as a re-centering isolation system was thus verified. 

Casciati et al. (1998) [24] used finite element method to analyze static and dynamic 
responses of bridges to earthquakes which have been retrofitted with martensitic NiTi bars. 
The result of such simulations verifies the feasibility of using NiTi SMA as damping 
elements for bridges. The techniques of application of NiTi in different types of bridges are 
shown in Figure 29.
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Figure 29. NiTi SMA bars used as damping element for bridges [24].

Anchorage made of NiTi SMA rods have been used as vibration dampeners in connections 
between beam-columns and other parts of the structures as shown in Figure 30. Tamai et al. 
(2003) [21, 30] found that anchorages made using NiTi rods of 20-30 mm diameter improved 
the response of the joints during seismic ground motion. Results obtained from numerical 
simulation of these connections subject to pulsating tension loading tests show that the 
connections have a good capability of dissipating energy and reducing vibration under severe 
ground motions.

Martensitic NiTi tendons were used as primary load transferring elements in structures by 
Leon et al. (2001) [22]. The tendons achieved 4% repeatable hysteresis in rotation and 
sustained a strain up to 5% without incurring any permanent damage.

Figure 30. SMA used as connectors between structural members [30].

Superelastic SMA wires have been used for shape restoration of concrete beams by Sakai et 
al. (2003) [25]. The results of this study indicated that mortar beams reinforced with NiTi 
SMA wires could recover their shape entirely even after developing substantial cracks and 
deflection. Superelastic restoration of multistrand NiTi SMA cables was used to close cracks 
in concrete beams (Figure 31a) after being loaded to 11000 lbf and developing significant 
cracks. Fourteen (14) multistrand NiTi cables of 0.125 in. diameter with 2% prestrain were 
used to achieve post-tensioning of a 2 ft. long concrete beam with a cross section 4 in. x 6 in. 
The cables were restrained at both ends with a special type of clamps. The cables developed 
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post-tensioning forces due to their superelastic property when the applied load was removed. 
After the specimen cracked at 11000 lbf load the cracks were closed by the NiTi cables as 
shown in Figure 31b [25]. 

 
Figure 31. Elastic restoration of concrete beam: (a) cracking of the beam; and (b) restoration 

of the crack. [25].

Bond Characteristics of SMA with concrete 

The bond between SMA wires or bars and concrete is of paramount importance when 
anchorage is not provided. Characterization of the bond between SMAs and concrete are 
summarized in this section.

Billah and Alam (2016) [27] conducted various experiments to study the bond characteristics 
between NiTi SMA bars and concrete. The change in bond behavior with the variation of 
parameters such as bar diameter, concrete strength, bonded length, concrete cover and 
surface treatment (sand coating) were studied by the authors.  Several cylindrical concrete 
samples were prepared with a 450 mm long, 0.75% prestrained NiTi bar embedded at the 
center. The samples were subjected to pushout tests under varying testing parameters, as 
shown in Figure 32. For smooth NiTi bars, the stress increased elastically up to a peak load 
after which the bond failed. The unloading portion of the curve descended linearly until it 
reached a residual stress and remained constant beyond that.  The slip was negligible during 
the loading phase and started to increase after the sample cracked during the unloading phase 
and large slippage was observed as the sample reached its residual load level (Figure 33). 
The smooth bars failed without any splitting crack indicating that there was no significant 
bond between smooth bars and concrete. The average residual bond strength of a NiTi bar 
coated with 600 μm sand was 29% and 35% higher than a bar coated with 300 μm sand, and 
a smooth bar respectively. Test results also indicated that the average maximum and average 
residual bond strength decreased with the increase in embedment length. The bond strength 
increased with the increase in strength of concrete. The average maximum bond strength 
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decreased with the increase in bar diameter, whereas the residual bond strength remained 
quite unchanged. 

Figure 32. Test setup of the push-out test [27].

Figure 33. Load vs. Slip curve for smooth NiTi SMA bars [27].

The effect of various parameters such as surface conditioning (sandblasting), bar diameter, 
embedment length and anchorage on the effectiveness of the NSM NiTi SMA bars, used in 
strengthening applications, was studied by Daghash et al. (2017) [28]. For this experiment, a 
C-shaped cube concrete specimen of size 305 mm and average compressive strength 38 MPa 
was made with a groove equivalent to twice the diameter of the bars (Figure 34a). The 
specimens were subjected to a pull-out test at a constant displacement rate as shown in 
Figure 34b. The test results were interpreted based on average bond stress and the stress-slip 
curves of different samples. Sandblasting was found to be an effective surface treatment 
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technique which increased the average maximum bond strength. The increase in surface 
roughness improved the mechanical interlock between the bar and the epoxy resulting in 
increased bond strength. The bond strength decreased with the increase in bar diameter and 
bond length. The bond strength first increased with the increase in bond length for up to 7 
times the diameter of the bar and then started to decrease. This happens due to the change in 
failure mode from epoxy splitting to gradual bar slippage at peak stresses. The difference in 
slippage between the loaded and unloaded ends of the bar at peak stresses is caused due to 
the change in failure mode. Moreover, providing end hooks also gave significant mechanical 
anchorage to the NiTi bars and increased the average bond strength by almost 33%.

(a)

(b)
Figure 34. Pullout test: (a) specimen details; and (b) test setup [28].
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OBJECTIVE

This work seeks to verify the feasibility of using heat-induced post-tensioning via NSM 
SMA in existing cracked reinforced concrete girders (Figure 35). In this study a NiTiNb 
alloy was evaluated for feasibility in post-tensioning of existing bridge girders without the 
conventionally experienced problems with anchorages, high construction costs, long lane 
closure times, long construction times, etc. 

Flexural cracks induced due to loss in
resistance and/or overload

Installation of near-surface mounted (NSM) SMA cables
and their shape recovery via Ohmic heating

Shape recovery of SMA under restraint induces post-tensioning
force that recovers deflections and decreases crack widths

Post-tensioning
 force

Post-tensioning
 force

SMA

Existing steel
reinforcement

NSM grooves

SMA

Anchorage 
device

Figure 35. Concept of reinforced concrete girder post-tensioning with NSM NiTiNb.
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SCOPE

The feasibility of utilizing SMAs for post-tensioning was evaluated through a series of 
material characterization tests on NiTiNb wires, bond characterization tests on plain concrete 
beams reinforced with NiTiNb and post-tensioning as well as flexural tests on reinforced 
concrete girders. The following specific experiments were performed:

1. Tensile tests on NiTiNb wires in austenite phase to determine the material’s stress-
strain behavior.

2. Restrained recovery tests on NiTiNb wires via Ohmic heating to determine the recovery 
stress and the potential post-tensioning force.

3. Bond characterization tests on plain concrete beams to assess the quality of the bond 
between the NiTiNb wire and the grouting material. 

4. Post-tensioning tests on cracked reinforced concrete girders to verify the feasibility of 
the post-tensioning technique on structural-scale girders.

5. Four-point flexural tests on post-tensioned girders to observe the strengthening of the 
girders because of post-tensioning.
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METHODOLOGY

The experimental program included four types of experiments: (1) tensile tests and restrained 
recovery tests on NiTiNb wires; (2) bond characterization tests on plain concrete beam 
specimens reinforced with NiTiNb wires; (3) post-tensioning tests on cracked reinforced 
concrete girders; and (4) four-point flexural tests on post-tensioned girders.

Overview of Experimental Program

Tensile Tests on NiTiNb Wires

Tensile tests were conducted on NiTiNb in austenite phase to obtain the stress-strain 
response of the material in its high-stiffness phase, following phase transformation. In 
addition, to quantify the prestressing potential of the NiTiNb, the recovery tests were 
conducted on restrained SMA to obtain the recovery stress. 

Table 2. Summary of tensile tests on NiTiNb.

Type of test No. of replicates

Tensile test on austenite 3

Restrained recovery test 3

Bond Characterization Tests on Plain Concrete Specimens

Following the material characterization of NiTiNb wires, bond characterization tests were 
performed on multiple types of plain concrete beam specimens to characterize the quality of 
bond between the near-surface mounted NiTiNb wire and the grouting materials. The test 
specimen consisted of a 14 in. x 4 in. x 4 in. plain concrete beam with a 0.1 in. notch at 
midspan to simulate cracked concrete (Figure 36). Near-surface mounted (NSM) NiTiNb 
wire is placed in the longitudinal groove to serve as main tensile reinforcement. A portion of 
the NiTiNb wire was debonded and embedded in the grout to avoid the effects of 
compressive stress at the supports on the NiTiNb bond performance. Conditions of the 
middle portion of the groove were varied and kept as a test variable. In addition, anchorage 
device used at the ends of the specimen was also another test variable. 

The experimental program was designed to evaluate the effects of different test variables on 
the specimen strength, to help determine the bond characteristics of the NiTiNb wire with the 
grouting material. The most favorable conditions for successful transfer of the post-
tensioning force to the reinforced concrete girder were also decided based on the results of 



45

the bond characterization tests. The variables included: specimens post-tensioned with 
NiTiNb wire (PT) vs. specimens reinforced with austenite (AU); specimens with middle 
portion of NiTiNb bonded before NiTiNb recovery (BOB) (hatched area of the groove in 
Figure 36 filled with grout) vs. unbonded NiTiNb wire (UB) (hatched area of the groove in 
Figure 36 left unfilled) vs. specimens with middle portion of NiTiNb bonded after NiTiNb 
recovery (BOA) (hatched area of the groove in Figure 36 filled with grout); specimens with 
anchoring device (A) vs specimens without anchoring device (N). Specimen nomenclature 
was adopted based on the described variables. Summary of all test specimens is provided in 
Table 3.

NiTiNb wire

4
in

4 in

Grout

4
in

notch

debondeddebonded

P/2 P/2 

P

anchorage
device

anchorage
device

Filled with grout and 
NiTiNb debonded

Grouted or without
grout

Filled with grout and 
NiTiNb debonded

4
in

4
in

1 in 12 in 1 in

1.5 in4.3 in

NiTiNb wire
NiTiNb wire

Figure 36. Bond characterization test method schematic.

BOB - PT - A - 1

Bond conditions:
BOB: Bonded before post-tensioning
BOA: Bonded after post-tensioning
UB: Unbonded

Specimen number

Anchorage: 
A: Anchored NiTiNb wire
N: No anchorage provided

Post-tensioning:
PT: Post-tensioning 
AU: Austenite

Figure 37. Specimen nomenclature.
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Table 3. Summary of bond characterization test specimens.

Specimen

Control-1 (plain concrete)

Control-2 (plain concrete)

BOB-AU-N-1

BOB-AU-N-2

BOB-PT-N-1

BOB-PT-N-2

BOB-PT-N-3

BOB-PT-A-1

BOB-PT-A-2

UB-PT-A-1

UB-PT-A-2

BOA-PT-A-1

Tests on Reinforced Concrete Girders

Reinforced concrete girders measuring 7.5 ft. in length and having a cross section of 9 in. x 
16 in. were tested to evaluate the feasibility of the proposed post-tensioning technique in a 
structural-scale girder. The tests were carried out in three stages: (1) loading of the girders in 
stages to develop cracks and residual midspan deflection; (2) post-tensioning of the cracked 
girders via Ohmic heating of the NiTiNb wires; and (3) loading of the post-tensioned girders 
in stages up to failure. A control specimen without NiTiNb wires was first loaded up to 
failure to assess the behavior of the girder without post-tensioning with the NiTiNb wires. 
All the girders had similar longitudinal and transverse steel reinforcement and were prepared 
with the same batch of concrete. The experiments were performed by keeping the number of 
NiTiNb wires in each of the girders as a test variable. Summary of the reinforced concrete 
girder test specimens is provided in Table 4.
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Table 4. Summary of reinforced concrete girder test specimens.

Name of Specimens Number of NiTiNb 
wires

Control 0 

8-SMA 8

10-SMA 10

12-SMA 12

Materials

NiTiNb Wire

The SMA selected for this study was NiTiNb. The ternary alloy was selected over a more 
common binary NiTi due to its wide thermal hysteresis which makes it appropriate for the 
range of temperatures experienced by bridges. NiTiNb alloy 8-ft. wires measuring 0.154 in. 
(3.92 mm) in diameter were used in this study. The wires were supplied with a minimum 
2.5% guaranteed prestrain. Per manufacturer, the material was reported to have a minimum 
As of 60 °C in the prestrained state. Transition temperatures, as reported by the manufacturer, 
are summarized in Table 5. The wires had a standard black oxide surface finish. 

Table 5. DSC transformation temperatures at lead and tail of coil after annealing at 850 °C 
for 30 minutes, as per manufacturer. 

Location on the coil Mf Ms As Af
Lead -79 -56 -18 6
Tail -80 -59 -19 4

Concrete for Bond Characterization Test Specimens

Bond characterization specimens were made of concrete in which a water to cementitious 
material ratio (w/cm) of 0.37 was maintained. The concrete mixture was composed of: river 
sand, coarse aggregate with gradation curve #89, and Portland Cement Type I/II. No 
admixtures were used. Coarse aggregate moisture content was determined as per ASTM 
C566 [32], prior to mixing the concrete, to adjust the batch quantities. The moisture content 
of the coarse aggregate was found to be 8.60%. No pozzolans were included in the mix 
design. The final mix proportions are shown in Table 6. Average compressive strengths at 7 
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and 28 days obtained from 4 in. x 8 in. concrete cylinders (ASTM C39 [33]) were 
respectively 6600 psi and 8000 psi.

Table 6. Concrete mix design.

MATERIAL SOURCE WT. 
PER YD3 
(LB)

SPECIFIC 
GRAVITY

VOL. 
PER 
YD3 
(CF)

WT. 
PER 
BATCH 
(LB)

ADJ. 
WT. 
PER 
BATCH 
(LB)

CEMENT Holcim 871.8 3.15 4.43 248.6 248.6

WATER Local 340.0 1.00 5.45 92.7 76.1

FINE AGG. River 
Sand

930.0 2.460 6.06 265.2 259.0

COARSE AGG. #89 1356.3 2.300 9.45 386.8 409.6

AIR (DESIGN) Local 0.0  1.620   

TOTAL  3498.02  27.00   

Concrete for Reinforced Concrete Girder Test Specimens

Casting of the reinforced concrete girders was done using ready-mix concrete which was 
delivered by Barry Concrete, Inc. The mixed design for a concrete of target strength 3500 psi 
was performed by Barry Concrete, Inc. The water to cementitious material ratio (w/cm) of 
the mix was 0.49. A mixture of Ash Grove Type I/II Portland Cement and Type C Fly Ash 
(3:1 by weight) was used as cementitious material. A mixture of Grade A gravel (conforming 
to ASTM C33 [34]) and pea gravel was used as coarse aggregate. River sand (conforming to 
ASTM C33 [34]) was used as fine aggregate. A water-reducing admixture (Sikament 686) 
was used to maintain the workability of the fresh concrete while reducing the demand for 
water in the mix. An air-entraining admixture (SikaAir 2100) was used to maintain good 
workability and to prevent segregation and bleeding of the fresh concrete. The moisture 
content of the coarse aggregate and the fine aggregate was assumed to be 1% and 4%, 
respectively. The weights of the different components were adjusted accordingly to account 
for the moisture content of the aggregates. The final mix proportions are shown in Table 7. 
Average compressive strengths at 7 and 28 days, obtained from the 4 in. x 8 in. concrete 
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cylinders (ASTM C39 [33]), were 3500 psi and 5026 psi respectively. Three-point bending 
tests (per ASTM C78 [35]) on plain concrete bond characterization specimens showed that 
the flexural strength of concrete to be 530 psi.

Table 7. Concrete mix design.

MATERIAL SOURCE SPECIFIC 
GRAVITY

VOL. PER 
YD3 (CF)

WT. PER 
BATCH 
(LB)

ADJ. WT. PER 
BATCH (LB)

CEMENT Ash Grove 3.15 1.80 353 353

FLYASH ISG 2.65 0.70 117 117

WATER Local 1.00 3.69 230 166

FINE AGG. 
(SAND)

Grangeville 2.62 7.56 1235 1284

COARSE AGG. 
(GRADE A 
GRAVEL)

Grangeville 2.59 9.38 1481 1496

COARSE AGG. 
(PEA GRAVEL)

Grangeville 2.60 2.53 400 404

AIR (DESIGN) Local 1.35 1.17 1.17

TOTAL 27.00

Steel Reinforcement for Reinforced Concrete Girders

The longitudinal reinforcement consisted of #4 deformed bar and the stirrups were made of 
#3 deformed bar. The steel bars were Grade 60 conforming to ASTM A615 [36] as per the 
material testing report provided by the supplier. The mill test certificate for the steel bars 
indicated a yield stress of 69 ksi and a tensile strength of 107 ksi.
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Specimen Preparation

Tensile Test Specimens

Six 11-in. SMA wires cut from the 8-ft. wire supplied by the manufacturer. Three specimens 
used for characterization of the tensile properties of austenite were heated above Af via 
Ohmic heating by passing current of approximately 44 A until the temperature of the wire 
reached 200 ⁰C. The heating-initiated shape recovery and consequent transformation from 
martensite to austenite. Once the specimens cooled down to room temperature, strain gages 
were attached to the surface of the wire. The remaining three specimens were used for the 
recovery test on NiTiNb and required no special preparation.

 Bond Characterization Test Specimens

Concrete Casting. Plain concrete beam specimens were cast for bond characterization tests. 
Fine aggregate (sand) was oven-dried for 24 hours to minimize the absorbed moisture. 
Coarse aggregate was soaked in water for at least 24 hours to saturate at the time of mixing. 
Concrete was mixed in a portable mixer. Coarse aggregate, sand and cement were added to 
the mixer first. Dry ingredients were mixed for 3-5 minutes before adding water into the mix. 
Water was poured gradually to achieve uniform dispersion. Slump was measured according 
to ASTM C143 [37] and was found to be 4 in. The concrete air content of 4-5% was 
measured as per ASTM C231 [38].  

Following mixing, concrete was immediately poured into aluminum-plywood forms as 
shown in Figure 38. The forms were coated with a form-release agent to facilitate specimen 
removal and cleaning of the forms. Concrete was poured half-way into the forms and 
vibrated for 30 seconds. Forms were fully filled and again vibrated for 30 seconds. Excessive 
concrete from the top surface was removed. The top surface was then levelled using a trowel 
(Figure 39). After filling the forms, concrete was allowed to harden for 24 hours before 
demolding. The specimens were cured in a curing tank in the lime solution according to 
ASTM C31 [39] for 28 days.
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Figure 38. Aluminum-Plywood forms.

Figure 39. Forms filled with fresh concrete.

Beam Cutting. Following curing, the plain concrete beams were cut to introduce a 1 in. notch 
in the middle to simulate cracked concrete (per Figure 36). The thickness of the notch was 
approximately 1/8 in. The bottom ½ in. of the notch was widened to allow for placement of a 
strain gage on NiTiNb wire at the later stages of the test. A longitudinal groove measuring 
approximately 0.39 in. x 0.39 in. was introduced to facilitate the placement of NSM NiTiNb 
wire (Figure 40). A plain concrete beam with the notch and longitudinal groove is shown in 
Figure 41.
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Figure 40. Saw-cutting of longitudinal groove.

Figure 41. Axonometric view (from the bottom) of a bond characterization specimen with 1-
in notch and longitudinal groove.

Different types of specimens were prepared for testing, per Table 3. Debonded region, as 
indicated in Figure 36, was maintained by wrapping that portion of NiTiNb wire with tape. 
Debonded NiTiNb on each side of the notch was instrumented with a thermocouple to allow 
for temperature measurements; another thermocouple was installed within the notch region. 
The NiTiNb wire was then placed into the groove, and the debonded portion of the groove 
was filled with SikaQuick® VOH grout mixed with a latex admixture (SikaLatex® R) to 
enhance bonding between the grout and NiTiNb. The grout was allowed to cure for a 
minimum of 3 days (corresponding to grout compressive strength of 3000-4000 psi, per 
manufacturer) before testing the specimens. In the specimens with bonded NiTiNb wire, the 
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portion of the groove adjacent to the notch (hatched area in Figure 36) was also filled with 
the same grout. In specimens with unbonded NiTiNb, the wire was left exposed (Figure 43b). 

Anchored specimens utilized the anchoring device consisting of strand chucks supported 
against the 1/8 in. thick steel plate resting on the concrete surface. Components of the strand 
chuck are: jaw segments, retaining ring, and the strand chuck body (Figure 44). The strand 
chuck body has a tapered hole which allows the jaw segments to slide in. While jaw 
segments are smooth on the outer surface, the inner diameter is populated with rows of fine 
ridges (also known as “teeth”). When the wire is placed between the jaw segments the jaw 
segment teeth bite into it preventing it from slipping. Retaining ring is used to keep the jaw 
segments together. Strand chuck components on one of the specimen ends are demonstrated 
in Figure 45.

Figure 42. NiTiNb wires prepared for placement in the grooves: Type K thermocouples’ 
probes were affixed to the wire surface followed by wrapping with scotch tape to provide 

debonded length.
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        (a)     (b)

Figure 43. Example of bond characterization specimens with: (a) bonded NiTiNb without 
anchorage; and (b) unbonded NiTiNb with anchorage. 

Jaw segment

Retaining ring

Assembled strand chuck

Strand chuck body Retaining Ring

Jaw Segments

  
Figure 44. Strand chuck components.
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Figure 45. Components of the anchorage system utilizing strand chucks.

Reinforced Concrete Girder Test Specimens

Design. The reinforced concrete girder test specimens were designed to behave as a single-
reinforced concrete beam according to ACI 318-14 [32]. The dimensions of the reinforced 
concrete girder specimens were fixed at 7.5 ft. x 16 in. x 9 in. The longitudinal tensile 
reinforcement consisted of 3-#4 steel bars. 2-#4 bars were provided on the top to hold the 
stirrups in place. Nineteen (19) 2-legged stirrups made of #3 bars were provided at a spacing 
of 4 in. from the support up to the start of the loading span. The design is shown in Figure 46.
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Figure 46. Design details of reinforced concrete girders: (a) side-section view; and (b) cross-
section view.

Formwork. The formwork for the reinforced concrete girders were made of plywood sheets, 
wooden runners and cross braces as shown in Figure 47.

Figure 47. Formwork for casting of reinforced concrete girders.
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Assembling Reinforcement Cages. After building the formwork, the reinforcement cages 
were assembled. The steel bars were cut and bent by the supplier according to the design 
drawings. Subsequently, the bars were delivered to the laboratory where they were assembled 
and placed in the forms. Lifting lugs were also attached to the top bars of the girders (on both 
the ends) to facilitate lifting and moving.

Figure 48. Assembled reinforcement cages.

Concrete Casting. Four (4) reinforced concrete girders measuring 7.5 ft. x 16 in. x 9 in. were 
cast for the post-tensioning and flexural tests. Prior to casting, plumbers putty was applied to 
seal any gaps in the formwork, thus preventing leakage of cement slurry during casting. Form 
releasing agent was applied on the inside surface of the forms to facilitate easy demolding.  
The reinforcement cages were placed inside the forms after attaching cover blocks on bottom 
and side of the cages to maintain the cover on all sides. The cover in the bottom of the girder 
was 2.5 in. and on the top and two sides was 1.5 in. 
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Figure 49. Reinforcement cages placed in the form.

The concrete was mixed and delivered in a transit mixture truck by Barry Concrete, Inc. The 
concrete was poured using a hose attached to a concrete pump (Figure 50). Slump of the 
fresh concrete, measured according to ASTM C143 [37], was 3.75 in. The air content of the 
mix was 2.5%, measured as per ASTM C23 [38]. During casting, the forms were filled 
halfway and vibrated using immersion vibrators to ensure proper compaction of the concrete. 
The forms were subsequently filled up to the top with concrete and vibrated a second time. 
The top surface of the girders were finished using straight edges and trowels (Figure 51). 
After the casting was completed, the girders were allowed to harden for 24 hours before 
demolding. The girders were cured for 10 days by spraying with water and covering with 
plastic sheets to minimize evaporation. After 10 days of curing, the girders were lifted off the 
base board and placed on concrete support blocks for subsequent stages of specimen 
preparation.
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Figure 50. Concrete pumping arrangement.

(a)

(b)
Figure 51. Reinforced concrete girders: (a) during casting; and (b) after final setting and 

demolding.

Cutting Grooves in the Reinforced Concrete Girders. Grooves were introduced at the 
bottom surface of the girders to install the NiTiNb wires in the cover region. The various 
arrangements of the NiTiNb wires in the grooves are shown in Figure 52. First, the girders 
were flipped upside down. Then, the grooves were cut using a Metabo MFE40 wall chaser 
with two blades separated by a gap of 9 mm. The grooves were 40 mm deep, so that two 
NiTiNb wires can be accommodated in each groove along with the strand chucks at the ends 
of the girder. Each groove was wide enough (9 mm) to prevent friction between the wires 
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and the groove walls. During cutting, a portable vacuum cleaner was attached to the wall 
chaser to collect the dust to keep the work environment free from dust. The cut was made in 
two passes, each 20 mm deep, to reduce the wear of the blades (Figure 53a). The remaining 
concrete inside the grooves was chiseled out after cutting with the wall chaser. Pressurized 
water was used to expel the concrete debris from inside the grooves. The final cuts are shown 
in Figure 53b.
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Figure 52. Arrangement of NiTiNb wires in different reinforced concrete girders: (a) bottom 
view; and (b) end view.
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(a)                                                                   (b)

Figure 53. Cutting groves in the cover region of the girders: (a) sawing with Metabo MFE40 
Wall Chaser; and (b) a girder with grooves.

Grouting and Placing of the NiTiNb Wires in the Grooves. NiTiNb wires, measuring 0.154 
in. (3.92 mm) in diameter and 8 ft. in length, were placed inside the grooves and kept 
unbonded throughout. 1/4 in. thick steel plates, measuring 9 in. x 6 in., were attached at the 
ends of the girders to ensure proper bearing of the strand chucks. To ensure adequate bearing 
surface at the supports, the grooves in the support region were filled with SikaQuick® VOH 
grout mixed with a latex admixture (SikaLatex® R) in a ratio of 44:7 (by weight) as 
prescribed by the manufacturer (Figure 54). NiTiNb wires at the support region were kept 
unbonded by placing them in polyvinyl chloride (PVC) tubes (Figure 54) before filling 
grooves with the grout.
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(a)                                                                   (b)

(c)
Figure 54. Different stages of placing NiTiNb wires in grooves: (a) first ‘layer’ of wires 
passed through PVC tubes placed inside each groove; (b) second ‘layer’ of wires passed 

through the PVC tubes; and (c) final grouting within the support region.

Experimental Procedures

Tensile Test

All tensile tests were performed on a 22-kip MTS universal testing machine. 

Tensile Tests on Austenite. The specimens were placed in the testing machine using the 
hydraulic grips; the sample had a grip length of 2 in. and a total gage length of 6.5 in. A 2-in. 
extensometer was affixed to the specimen, in addition to the previously attached strain gage. 
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The experiments were performed under the constant displacement rate of 10 mm/min. The 
specimen was loaded until rupture. The load, cross-head displacement and strain data were 
recorded. 

Figure 55. Tensile test setup.

Restrained Recovery Test. The specimens were placed in the testing machine using the 
hydraulic grips; the sample had a grip length of 2 in. and a total gage length of 7 in. A 2-in. 
extensometer and Type-K thermocouple were affixed to the specimen (Figure 56a). The test 
was conducted so that the NiTiNb wire underwent constrained shape recovery (Figure 56). 
The first phase of the test was conducted by Ohmic heating of the wire by passing 
approximately 44 A current until the specimen reached at least 170 °C. During shape 
recovery, recovery load, strain and temperature were recorded. Once the specimen achieved 
full recovery, the current source was turned off and the specimen was allowed to cool down 
to room temperature to determine the loss in recovery stress associated with cooling of the 
wire. 
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Figure 56.  Recovery test setup.

Bond Characterization Test Procedures

Shape-recovery of NiTiNb. With the exception of BOB-AU-N group, all tests on bond 
characterization test specimens were started by shape-recovery of NiTiNb wire to induce 
post-tensioning to the specimens. To induce shape recovery in NiTiNb, the exposed ends of 
the wire were hooked up to a power source. The temperature development was measured 
with three Type K thermocouples: two of them placed within the debonded region of NiTiNb 
(Figure 57), and one placed on one exposed end of the wire. During heating, the crack 
opening displacement (COD) at the notch was measured with a COD clip gage affixed to the 
specimen with knife edges (Figure 57). 

Bond Characterization Tests. Following shape-recovery of NiTiNb, three-point bending 
tests were conducted (Figure 57) to assess the quality of bond between NiTiNb wire and 
grout. The tests were performed in a 22-kip MTS universal testing machine in closed-loop 
control under a COD rate of 0.001 mm/min as the loading rate.
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Figure 57. Instrumentation on bond characterization specimens.

Reinforced Concrete Girders Test Procedures

Control reinforced concrete girder (without grooves and NiTiNb wires) was loaded, in stages, 
up to failure in a four-point flexural setup as shown in Figure 58. Three (3) reinforced 
concrete girders were cracked to simulate typical girder damage, and tested in the following 
sequence: (1) post-tensioning the cracked girders by heating the NiTiNb wires to induce 
shape-recovery; and (2) loading the post-tensioned girders up to failure. 
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Actuator

Spreader beam

Figure 58. Four-point bending test setup.

Cracking of the Reinforced Concrete Girders. Three (3) reinforced concrete girders, which 
were to be post-tensioned, were loaded in stages until they developed significant cracks and 
residual midspan deflection. The girders were supported on 3/4th in. thick neoprene pads and 
the load was applied with a hydraulic system consisting of Enerpac pump and 100-kip 
actuator (Figure 59). The pump and the actuator were connected using hoses carrying 
hydraulic fluid. The load on the girder was distributed using a steel spreader beam (W 8 x 25) 
to achieve a four-point loading condition (Figure 58). NiTiNb wires were placed in the 
grooves before cracking and left unanchored to prevent the development of additional strain 
while loading the girders. 

The instrumentation was set up to collect the load, midspan deflection, support deflections 
and strain in the top fiber of concrete via a LabView based data acquisition system 
configured with National Instrument modules (Figure 60). The actual midspan deflection was 
measured by deducting the support deflection from the measured midspan deflection. Once 
the cracking moment of the girders was exceeded, the cracks were traced and the 
corresponding loads were marked on the girders with color pens. The final crack widths after 
cracking the girders were measured with a concrete crack ruler. 
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(a)                                                       (b)

Figure 59. Loading mechanism for the flexural test consisting of: (a) Enerpac pump; and (b) 
actuator. 

Post-tensioning of Reinforced Concrete Girders. The NiTiNb wires were installed at the 
bottom cover of each of the three cracked girders and kept unbonded throughout the length of 
the girders. The number of NiTiNb wires in each of the girders was kept as a test variable. 
Three of the widest cracks were instrumented with LVDTs to monitor the change in crack 
widths during post-tensioning (Figure 60a). The strain at the top fiber of concrete on either 
side of the girders were instrumented with strain gages and will henceforth be referred to as 
SG1 to denote the strain on side 1 (to the negative z-axis) and SG2 to denote the strain on 
side 2 (to the positive z-axis) as shown in section A-A (Figure 60b). Similarly, LVDTs 
recording midspan deflection on either side of the girder will be referred to as MD1 for 
midspan deflection of side 1 and MD2 for midspan deflection of side 2.The LVDTs 
recording support deflection will be referred to as SD1 and SD2 for the support in the 
negative x-direction and positive x-direction respectively. The deflection obtained by 
deducting the average of SD1 and SD2 from the MD1 and MD2 will henceforth be denoted 
as the effective midspan deflection of side 1 (EMD1) and effective midspan deflection of 
side 2 (EMD2). The NiTiNb wires were instrumented with K- type thermocouple probes to 
measure the change in temperature of the wires. The thermocouples were denoted as T1, T2, 
T3 etc., where the number indicates the wire number on which they were attached. The wires 
were numbered starting from the side 1 of the first row and proceeding in a clockwise 
direction up to side 1 of the second row (Figure 61b). The NiTiNb wires were anchored at the 
ends of the girder using the same strand chucks which were used during the bond 
characterization tests. The strand chucks were made flush against the steel end plates to 
minimize prestressing losses as NiTiNb wires underwent shape recovery. 
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The NiTiNb wires were activated via Ohmic heating by using a power source with a rating of 
100 V and 30 A (or 3000 W). At first, 4 wires in the first row (wires numbered 1-4) were 
heated together (Figure 61) until the temperature of each wire exceeded 150 ⁰C and 
subsequently allowed to cool down to ambient temperature. It was ensured that not more than 
four (4) wires were heated together at any point of time to avoid overloading the power 
source. The wires in the second row (wires numbered 5-8) were heated individually after 
providing electrical insulation by wrapping all surfaces of the strand chucks with a heat-
resistant scotch tape to prevent contact with the steel end plate (Figure 61b). The crack 
widths after post-tensioning were also measured and recorded manually using a concrete 
crack ruler.
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Figure 60. Instrumentation of reinforced concrete girders: (a) elevation view; and (b) cross- 
section view.
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                                (a)                                                                         (b)

Figure 61. Heating procedure: (a) wires numbered 1-4; and (b) wires numbered 5-8 in 8-
SMA girder.

Flexural Test on Post-tensioned Reinforced Concrete Girders. Four-point flexural tests 
were performed on the post-tensioned girders by loading them up to failure in four-point 
bending (Figure 60a, Figure 62). The flexural tests were conducted to observe the change in 
yield and ultimate moment capacity, cracked stiffness and ductility of the girders after post-
tensioning. The loading was carried out in stages: (1) the girder was first loaded beyond 
cracking moment and unloaded; (2) loaded beyond the yield moment and unloaded; and (3) 
loaded until the concrete crushed in compression. After every stage of loading, the cracks 
were traced and the corresponding loads were marked on the girders with a marker pen. The 
load, midspan deflection, support deflections, strain at the top fiber of concrete and crack 
width data were recorded. The crack widths were manually measured using a concrete crack 
ruler after the failure of the girders.

 
Figure 62. Four-point flexural test after post-tensioning.
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DISCUSSION OF RESULTS

Tensile Test Results

Tensile Tests on Austenite

Figure 63 show a typical stress-strain response of NiTiNb samples in austenite phase. The 
NiTiNb exhibits linear response characterized by an initial modulus of elasticity of 
approximately 10,000 ksi until the material undergoes transformation to detwinned 
martensite. The transformation initiates at approximately 85 ksi and is completed at 
approximately 90 ksi. As expected, detwinned martensite phase demonstrates lower modulus 
of elasticity than austenite. The test ended by detwinned martensite rupture at approximately 
145-150 ksi. The average strain at rupture was found to be 33.5%. Excellent repeatability in 
test results was observed between the 3 replicates.
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Figure 63. Typical stress-strain curve of NiTiNb in austenite phase.

Restrained Recovery Test

Typical restrained recovery tests results are shown in Figure 64. At the temperature is 
increased, the recovery stress is generated in the restrained NiTiNb wire. The maximum 
recovery stress, corresponding to the maximum heating temperature, was approximately 73 
ksi. The data also shows that no further recovery stress is generated beyond 150 °C. Once 
each wire reached at least 180 °C, the power source was turned off and wires were allowed to 
cool down to ambient temperature (23-25 °C) to determine the residual recovery stress. At 
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room temperature, each wire retained approximately 92% of the maximum recovery stress 
(or 67 ksi). Excellent repeatability in test results was observed between the 3 replicates.

Figure 64. Restrained recovery test results showing relationship between material 
temperature and generated recovery stress. 

Bond Characterization Test Results

Shape-Recovery of NiTiNb

In the bond characterization tests where shape recovery-initiated post-tensioning was 
performed, temperature was monitored with three thermocouples: two of them placed on the 
portion of the NiTiNb wire embedded in grout, and one on the exposed portion of the wire. 
Temperature measurements during shape recovery (Figure 65) clearly indicate that portion of 
NiTiNb wire in contact with grout is heating at a lower rate than exposed portion of the wire. 
This is not surprising as the conductivity of concrete is on the order of magnitude of 1.0

, while that of air is 0.026 . Heat loss in NiTiNb caused by its contact with  𝑊/𝑚𝐾 𝑊/𝑚𝐾
grout meant that to reach a temperature approaching that required for complete shape 
recovery, the heating time had to be significantly increased over that reported in Figure 64; in 
each specimen the heating was stopped once the exposed portion of the NiTiNb wire reached 
250 °C for safety reasons. It was observed that concrete surface temperature was significantly 
raised once the exposed portion of the wire started to reach 250 °C.
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Figure 65. Measured temperatures at different locations on the NiTiNb wire. 

The COD measurements during shape recovery (Figure 66) demonstrated reduction in COD 
as the temperature initially approached the maximum. The COD reduction was more 
significant in the specimens with anchored NiTiNb wires, which indicates that the bond 
between the NiTiNb wire and the grout is poor, and that anchorage plays an essential role in 
the transfer of post-tensioning force. However, even though the temperature was held 
somewhat constant upon reaching its maximum, the COD in all samples started to increase: 
this behavior is accredited to the development of a thermal gradient between the top and 
bottom surfaces of the specimen induced by heating of the wires. Such thermal gradient 
caused deflection of the specimen downwards which ultimately counteracted the compressive 
stress at the bottom of the specimen developed via post-tensioning. While the thermal 
gradient resulted in a change of the stress state at the notch tip from compression to tension 
in the samples without anchorage, the same did not occur in the specimens with anchored 
NiTiNb wires. It is expected that the thermal gradient-related crack opening would dissipate 
as the concrete at the bottom of the specimen cools down. However, the data collection was 
stopped as soon as the NiTiNb wire temperature approached ambient temperature, so the 
current data does not provide evidence as to how COD would be affected upon concrete 
reaching its equilibrium temperature. 
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Figure 66. Typical change in COD with NiTiNb shape recovery.

Bond Characterization Tests

Results from typical three-point bending tests, which characterize the bond between the grout 
and the NiTiNb wire, are shown in Figure 67. The relationship between applied load and 
COD remains linear until the crack above the notch forms and the load drops. The failure of 
the specimen is due to the unstable crack growth originating from the notch. 

Strength, strain and slip data for all specimens is summarized in Table 8. Specimens without 
anchorage did not experience notable improvement in strength over control specimens. 
Interestingly, the specimens reinforced with austenite demonstrated slightly higher strength 
than that where specimens were post-tensioned with NiTiNb. Post-tensioning of NiTiNb may 
have introduced stresses that exceed the strength of the bond which would explain why BOB-
PT-N group showed no increase in strength over control. Strain measurements in NiTiNb at 
maximum load (Table 8) indicate very small strains at specimen failure; this is not surprising 
as given the rigidity of the test setup and relatively small depth of NiTiNb in the cross-
section. While no significant slip (Table 8) was observed during loading from 0 to maximum 
load, LVDTs clearly captured slip between maximum and “residual” load levels indicating 
bond failure immediately after the specimen strength was reached. It is not clear why there is 
an order of magnitude higher slip in BOB-AU-N when compared to BOB-PT-N.
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It is apparent that presence of anchorage results in an increase of specimen strength over 
control group: this is thought to be due to the post-tensioning that introduces compressive 
stress field at the notch at the beginning of the test. The group of anchored specimens where 
NiTiNb was bonded with grout prior to post-tensioning did not experience as great of an 
increase in strength as the rest of the anchored group. A possible reason for this behavior is 
that post-tensioning force is distributed along the bonded region, so the effect of the post-
tensioning on the stress state at the notch tip is not as drastic as it is in the unbonded 
anchored specimens. Strains in NiTiNb at maximum load (Table 8) were small. However, an 
order of magnitude difference in strain measurements between bonded (BOB-PT-A and 
BOA-PT-A) and unbonded specimens (UB-PT-A) was observed: this is not surprising as 
strain is uniformly distributed along the unbonded portion of the NiTiNb, while in bonded 
specimens localized maximum strain would develop below the notch at the measurement 
location (Figure 57). LVDT slip measurements (Table 8) in anchored specimens indicated no 
slip during the test most probably because most of the slip occurred during the transfer of 
post-tensioning. 
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Figure 67. Typical load vs. COD behavior in bond characterization specimens.
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Table 8. Summary of flexural specimen strengths.

Specimen Maximum 
Load (lbf)

Strain at 
max. load 
(µε)

Slip between 0 
and max. load (in.)

Slip following load 
drop from max. to 
"residual” (in)

Control-1

Control-2

1583.51

1889.13

n/a n/a n/a

BOB-AU-N-1

BOB-AU-N-2

2185.22

1860.87

374

68

0

0

0.036

0.089

BOB-PT-N-1

BOB-PT-N-2

BOB-PT-N-3

1657.28

1823.4

1797.45

-

220

-

-

0

0

-

0.006

0.003

BOB-PT-A-1

BOB-PT-A-2

1936.56

2188.82

470

150

- no lvdt used - no lvdt used

UB-PT-A-1

UB-PT-A-2

2806.51

2315.67

59

61

0

0

0

0

BOA-PT-A-1 2828.13 693 0 0

Presence of anchorage has a clear influence on the post-cracking behavior of the bond 
characterization specimens (Figure 67). The specimens without anchorage experienced a 
sharp drop in load followed by a constant load level due to the friction between the NiTiNb 
wire and grout. On the contrary, in the specimens with anchorage, the load picks up quickly 
after the initial crack formation until the test is interrupted upon COD gage reaching its 
maximum opening displacement of approximately 0.16 in. The increase in load is possible 
because anchorage allows NiTiNb wire to carry tensile force which provides additional 
moment capacity to the specimen.

Once the specimens without anchorage were unloaded there was no significant change in the 
final crack width. Anchored specimens, however, exhibited an interesting behavior induced 
by superelastic recovery of NiTiNb (Figure 68). Following unloading, COD returned to zero 
and a crack in the top of the specimen formed due to the tensile stress generated by 
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superelastic recovery of NiTiNb. Once again, the observed behavior demonstrates the 
advantage of using anchorage in conjunction with NSM NiTiNb reinforcement. 

Evaluation of strain developed in NiTiNb wire in an anchored specimen (Figure 69) shows a 
significant increase in strain following initial cracking, proving that following cracking 
NiTiNb begins to provide the tensile capacity to the specimen. Upon unloading the strain 
recovers due to a superelastic effect and goes into compression which ultimately leads to the 
development of tensile stress at the top of the specimen and subsequent cracking (Figure 68 
photograph no. 4). 

The effectiveness of strand chucks as anchorage was also confirmed via post-mortem 
inspection of the anchored portion of NiTiNb wires. Micrographs of the wire surface clearly 
show a well-developed pattern of bite marks (Figure 70) indicating that jaw segments were 
effective at preventing lateral sliding of the wire. 

Figure 68. Typical load vs. COD behavior of anchored specimens (plotted here is specimen 
UB-PT-A-1): (1) initial crack formation; (2) maximum crack opening; (3) crack closure 

induced by superelastic recovery of NiTiNb; (4) crack formation at the top of the specimen 
induced by superelastic recovery of NiTiNb. 
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Figure 69. Typical load vs. strain in NiTiNb plot for anchored specimens (plotted here is 
specimen UB-PT-A-1); number marks 1-4 relate to photographs in Figure 68.

      
                                (a)     (b)

Figure 70. Bite marks on anchored portion of NiTiNb wire.

Reinforced Concrete Girder Test Results

Post-Tensioning of Cracked Reinforced Concrete Girders

Prior to post-tensioning, three (3) reinforced concrete girders were cracked by loading them 
in stages. The extent of cracking the girders significantly influenced their behavior during 
post-tensioning. A Control girder without grooves or NiTiNb wires was loaded up to failure 
before cracking the girders to be post-tensioned. The yield moment of the Control girder was 
found to be 45 kip-ft and the girders to be post-tensioned were cracked up to a moment 
which is expressed as a multiple of the yield moment of Control girder. The 8-SMA, 10-
SMA and 12-SMA girders were cracked up to 0.89, 1.15 and 1.06 times the yield moment of 
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the Control girder, respectively. A summary of the crack width, stiffness of cracked girders 
and residual midspan deflection is provided in Table 9.

Table 9. Summary of the results after cracking the girders to be post-tensioned.

Specimen Maximum crack 
width (mm)

Cracked Stiffness 
(kip-ft/in.)

Residual Midspan 
Deflection
(in.)

8-SMA 0.18 305.5 0.075

10-SMA 0.64 299.4 0.175

12-SMA 0.64 269.6 0.115

The effectiveness of post-tensioning tests on the cracked girders was evaluated by observing 
the variation of crack widths, residual midspan deflection and tensile strain at the top fiber of 
concrete with temperature as shown in Figure 71 (8-SMA), Figure 72 (10-SMA) and Figure 
73 (12-SMA). Since the girders were instrumented on each side (of the cross-section) to 
measure the residual midspan deflection and strain on the top fiber of concrete, it is essential 
to define the sides of the girders as side 1 and side 2 (as discussed according to Figure 60a 
and Figure 60b) before the results are discussed. The residual midspan deflection is referred 
to as EMD1 and EMD2, and the strain is referred to as SG1 and SG2 (as explained with 
reference to Figure 60b) to discuss the results of the post-tensioning tests. It should be noted 
that due to malfunction of the acquisition system, the data during post-tensioning of wires 
numbered 6 to 10 in the 10-SMA girder were not recorded. The data at the end of the post-
tensioning was recorded and the transition from the time when the data stopped recording 
until the end of post-tensioning is represented by a dotted line (Figure 72). 

The crack width was found to decrease as the NiTiNb wires were heated above 150 ⁰C. The 
decrease in crack widths was due to the compressive post-tensioning force transferred from 
the NiTiNb wires to the concrete via end anchorage. The crack widths reduced as the number 
of NiTiNb wires in the girders increased; the maximum reduction of crack width (74%) was 
observed in the 12-SMA girder. The crack width stopped reducing midway through the post-
tensioning process in the 8-SMA girder. A possible reason for this behavior is that the crack 
widths in the 8-SMA girder were relatively narrower than the 10-SMA and 12-SMA girders 
after cracking (as seen from Table 9). 
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As per ACI 224R-01 [31], the acceptable limit of crack widths is 0.41 mm for structures in 
dry air or protected by membranes, and 0.30 mm for structures in humid and moist air or 
surrounded by soil. From the post-tensioning results, it was observed that the crack widths 
were reduced well below 0.30 mm for the girders in laboratory condition. Hence, it can be 
concluded that the crack widths of the post-tensioned girders are well within the acceptable 
limits for the conditions mentioned above. The crack widths for structures subject to deicing 
chemicals and exposed to seawater environments have lower acceptable limits (0.18 and 0.15 
mm, respectively) and the crack widths observed in the post-tensioned girders do not fall 
under those limits. Nonetheless, the results clearly indicate that the proposed post-tensioning 
method significantly reduces the crack widths.

The residual midspan deflection also decreased with the increase in temperature in the 
NiTiNb wires throughout post-tensioning. The negative moment introduced by the 
compressive post-tensioning force in the NiTiNb wires was responsible for the reduction in 
residual midspan deflection. The EMD1 and EMD2 for all the post-tensioned girders are in 
good agreement (Figure 71, Figure 72 and Figure 73). The 8-SMA showed a lower reduction 
in residual midspan deflection (0.065 in. to 0.036 in.) due to lower post cracking stiffness and 
residual deflection after cracking, relative to the 10-SMA and 12-SMA girders. The post-
tensioning reduced the residual deflection from 0.17 in. to 0.102 in. in 10-SMA girder and 
from 0.114 in. to 0.058 in. in the 12-SMA girder. Although the magnitude of reduction is 
higher in case of 10-SMA girder, it should be noted that the residual deflection after cracking 
was higher in the 10-SMA girder. Hence, it follows that the reduction of residual deflection 
was the higher in the 10-SMA girder, even though higher post-tensioning force was 
generated in the 12-SMA girder.

The post-tensioning forces in the NiTiNb wires led to the development of compressive stress 
at the bottom of the girders. Subsequently, a tensile stress developed at the top fiber of 
concrete which led to the tensile strain increasing steadily as the wires were heated (Figure 
71) in all the post-tensioned girders. The increase in tensile strain cannot be correlated to the 
number of NiTiNb wires responsible for post-tensioning due to the discrepancy in SG1 and 
SG2 in all the girders. For example, the SG2 in the 10-SMA girder (180x10-6 in. /in.) is 
significantly higher than the SG1 (100x10-6 in. /in.). This behavior may have resulted from 
the imperfections in geometry induced by defects in the formwork while casting the girders 
and difference in the depth at which SG1 and SG2 were attached. Both of the above-
mentioned situations can cause different magnitude of tensile strain to record in SG1 and 
SG2. Another possible reason for the difference in SG1 and SG2 is the asymmetrical position 
of the NiTiNb wires in the girders due to improper placement which can result in the 
generation of uneven post-tensioning forces in either side of the girder.
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During heating of some of the wires, the tensile strain in the top of concrete was found to 
reduce on one side of the girder while increasing on the other side. Following the definition 
of the sides in the earlier discussion, it can be observed that when a wire adjacent to side 1 is 
heated (e.g., wire numbered 5 in Figure 71), the SG2 decreases due to lateral bending caused 
by the eccentricity of wire numbered 5 from the center of the cross-section. Similarly, when a 
wire adjacent to side 2 is heated (e.g., wire numbered 8 in Figure 71), the SG1 decreases. 
Similar behavior of the SG1 and SG2 is observed in the 10-SMA and 12-SMA girders. 
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Figure 71. Variation of strain on the top fiber of the middle of girder, residual midspan 
deflection, and crack width with temperature of 8-SMA girder.
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Figure 72. Variation of strain on the top fiber of the middle of girder, residual midspan 
deflection, and crack width with temperature of 10-SMA girder. 
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Figure 73. Variation of strain on the top fiber of the middle of girder, residual midspan 
deflection, and crack width with temperature of 12-SMA girder.
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Table 10. Summary of post-tensioning test results.

Specimen Crack width reduction (%) Residual midspan 
deflection recovery 
(in.)

Tensile strain in top 
fiber of concrete  
(10-6 in./in)

CONTROL n/a n/a n/a

8-SMA 27-39 0.017-0.026 59-77

10-SMA 34-45 0.058-0.06 100-180

12-SMA 45-74 0.046-0.056 95-121

Flexural Tests on Post-Tensioned Reinforced Concrete Girders 

Four-point flexural tests were conducted on the post-tensioned girders by loading the girders 
in stages up to failure. Control girder was loaded up to failure to serve as a baseline for 
comparing the behavior of the post-tensioned girders. The yield moment, ultimate moment 
capacity, cracked stiffness, and deflection ductility coefficient of the post-tensioned girders 
were compared to those of the Control girder. The cracked stiffness was determined by 
calculating the slope of the loading portion of the moment vs. deflection curve following 
initial girder cracking in Control girder, or the slope of moment vs. deflection curve before 
yield in the post-tensioned girders. The deflection ductility coefficient (µ) is defined by the 
following equation:

  µ =
𝛥𝑢

𝛥𝑦

where  is the deflection of the girder when the concrete in compression crushes and is 𝛥𝑢 𝛥𝑦 
the deflection at which the girder first yields. 

The moment vs. deflection behavior of the Control and post-tensioned reinforced concrete 
girders are shown in Figure 74. The post-tensioned girders have two parts in the moment vs. 
deflection curves: (1) the cracking of the girders prior to post-tensioning; and (2) the flexural 
loading after post-tensioning. The deflection at the start of loading of the post-tensioned 
girders is less than the deflection after cracking due to the recovery in residual deflection via 
post-tensioning, as marked in Figure 74. The moment vs. deflection diagrams of the girders 
clearly indicate a significant increase in yield moment in post-tensioned girders (up to 58%) 
as compared to the Control girder (Figure 74). The addition of tensile reinforcement in the 
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form of NiTiNb wires was responsible for the higher yield moment in the post-tensioned 
girders. The cracked stiffness of the girders was found to increase by up to 31% after post-
tensioning due to a higher cracked moment of inertia resulting from the addition of NiTiNb 
wires. 

The ultimate capacity of the post-tensioned girders was significantly higher (up to 45%) than 
that of the Control girder (Figure 74) due to the tensile stress carried by the NiTiNb wires in 
addition to the steel reinforcement. The 8-SMA girder had a lower increase in the ultimate 
moment capacity (35%) than the 10-SMA and 12-SMA girders because of the fewer number 
of NiTiNb wires. The greatest increase in the ultimate moment capacity was observed in the 
10-SMA girder despite the 12-SMA girder having the maximum number of NiTiNb wires. 
The reason for this anomaly is that cracking and spalling of concrete had occurred near the 
supports of 12-SMA during loading (Figure 76). Grooves were introduced in the side cover 
near the bottom of the 12-SMA girder to accommodate the NiTiNb wires and were not 
grouted after installing the wires. The compressive reaction forces from the supports during 
loading led to the development of shear stress around the side grooves near the supports 
causing cracking and spalling of concrete and subsequent bearing failure.

Even though the ultimate deflection capacity in post-tensioned girders did not change 
significantly from Control (as evidenced in Figure 74 and Table 11), comparison between 
deflection ductility coefficients of the girders showed that ductility had reduced in the post-
tensioned girders. The addition of NiTiNb wires increases the tensile reinforcement of the 
post-tensioned girders which leads to a higher deflection at mild steel yield. At concrete 
crushing, the addition of NiTiNb wires reduces the strain in steel reinforcement and increases 
the depth of the neutral axis which leads to a reduction in section curvature. Hence, the 
ductility coefficient in the post-tensioned girders is reduced with respect to the Control 
girder.

The recovery of midspan deflection after each stage of loading in the post-tensioned girders 
is compared with the Control girder in Figure 75. In this plot, the recovery of deflection is 
plotted with respect to the ratio of the maximum moment at a loading stage and the ultimate 
moment capacity (M/Mult). Complete recovery of deflection is observed in all the girders 
before reaching the yield moment. Beyond yield, the post-tensioned girders show a higher 
recovery of deflection with an increase in moment than the Control girder. Since the steel 
was deformed beyond its elastic limit, the recovery of deflection after each loading stage was 
mainly governed by the number of NiTiNb wires. Due to the highest number of NiTiNb 
wires, 12-SMA girder shows the highest recovery in deflection after unloading (60%) after 
unloading the 12-SMA girder after the first yield. The recovery in post-tensioned girders 
decreases after the subsequent loading stages after yield but remains greater than the Control 
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girder. The Control girder had only steel as tensile reinforcement and once the steel yielded, 
large residual deflection was observed after each stage of loading. The presence of post-
tensioning forces in the girders prior to loading is a possible reason for greater deflection 
recovery than Control girder. Greater recovery in post-tensioned girders can also be 
attributed to the NiTiNb superelastic recovery after the wires were stressed beyond their 
detwinning stress. 

Cracking was observed in all girders during each flexural test and is shown in Figure 77. It 
was noted that the largest crack width in the Control girder was 5 mm, whereas the largest 
crack width in the post-tensioned girders was 3.05 mm. The cracks in post-tensioned girders 
are narrower because of the compressive forces acting on the girders as a result of post-
tensioning prior to loading the girders. Superelastic behavior of austenite NiTiNb wires 
might have also contributed to the narrower cracks in post-tensioned girders. On the other 
hand, the absence of post-tensioning force prior to loading and significant plastic strain in the 
steel reinforcement led to the formation of wider cracks in the Control girder. All the girders 
except the 12-SMA girder showed similar distributed cracking (Figure 77). The less 
distributed cracking in the 12-SMA girders might be an effect of the greater number of 
NiTiNb wires as well as the premature failure at the support. Further research is needed to 
understand and quantify the effect of high SMA reinforcement ratio on the cracking pattern 
and ductility of the reinforced concrete girders.
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Figure 74. Moment vs. deflection curves of: (a) Control; (b) 8-SMA; (c) 10-SMA; and (d) 
12-SMA girders.
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Figure 75. Recovery of midspan deflection after each stage of loading.

  
(a)                                                                 (b)

Figure 76. Girder with grooves in the side cover showing: (a) cracking; and (b) spalling at 
support regions.
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Table 11. Summary of the results of the four-point flexural tests.

Specimen

Type

Yield 
Moment

(kip-ft)

Ultimate Moment 
capacity

 (kip-ft)

Cracked stiffness 

(kip-ft/in.)

Ultimate 
deflection 

(in.)

Deflection 
Ductility 
Coefficient

Control 44.79 57.91 294.67 0.96 4.86

8-SMA 61.67 78.05 327.62 

(after post-
tensioning)

0.97 4.09

10-SMA 70.83 83.68 346.15

(after post-
tensioning)

0.93 2.60

12-SMA 68.02 81.6 337.56

(after post-
tensioning)

1.07 2.72
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CONCLUSIONS

The goal of the presented work was to verify the feasibility of using heat-induced post-
tensioning in existing cracked reinforced concrete girders through the implementation of 
shape memory alloys (SMAs) that can recover their original shape upon heating above the 
material’s transformation temperature. In this study, use of near-surface mounted (NSM) 
NiTiNb alloy wires is proposed for post-tensioning of bridge girders without the 
conventionally experienced problems with anchorages, high construction costs, long lane 
closure times, long construction times, etc. A series of experiments were performed to 
evaluate the proposed strengthening method: (1) tensile tests on austenite to determine the 
stress-strain behavior of NiTiNb; (2) restrained recovery tests to characterize the post-
tensioning potential of NiTiNb; (3) bond characterization tests on notched plain concrete 
specimens reinforced with NiTiNb wires to test the bond between the NiTiNb wires and 
cementitious grout; (4) post-tensioning tests on cracked reinforced concrete girders to verify 
the feasibility of post-tensioning on structural-scale girders; and (5) four-point flexural tests 
on post-tensioned reinforced concrete girders to observe the changes in yield moment, 
ultimate moment capacity, cracked stiffness and deflection ductility coefficient following 
post-tensioning. Below is the summary of the main findings.

 Tensile tests on austenite indicated that the material has initial elastic modulus of 
10,000 ksi, with detwinning initiation stress of approximately 85 ksi and ultimate 
strength of approximately 150 ksi.

 Under restrained recovery test, 2.5%-prestrained NiTiNb wires achieved a maximum 
recovery stress of 73 ksi at 150 °C. Following cooling to ambient temperature, the 
wires retained about 92% of the maximum recovery stress, or 67 ksi.

 NiTiNb wires embedded in grout heat up at a much slower rate than those exposed to 
air. This is due to a relatively large thermal conductivity of grout and concrete. 

 Post-tensioning of the notched bond characterization specimens via heat-induced 
shape-recovery of NiTiNb was most successful in the specimens with anchored wires, 
as indicated by reduction in COD during heating. 

 Bond characterization tests indicated poor bond between NiTiNb and cementitious 
grout. Significant improvement in bond was accomplished when strand chucks were 
used as anchorage.

 Bond characterization specimens post-tensioned with NiTiNb wires demonstrated 
superelastic behavior following unloading which manifested in crack closure in the 
notched bond characterization specimens.
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 Post-tensioning of cracked reinforced concrete girders resulted in a 34-74% reduction 
in crack widths; the largest reduction was observed in the girder which was post-
tensioned with the maximum number of NiTiNb wires (12-SMA).

 The residual midspan deflection was recovered by up to 0.06 in. after the post-
tensioning was completed. The post-cracking stiffness and residual midspan 
deflection after cracking influenced the extent of the recovery of residual midspan 
deflection.

 Up to 180x10-6 in. /in. tensile strain developed on the top fiber of concrete which 
provided further evidence of the post-tensioning.

 Following post-tensioning the cracked girders, an increase in the yield moment (38-
58%) and ultimate moment capacity (35-45%) was observed over the Control girder.

 Grooves introduced in the side covers of girders to accommodate NiTiNb wires 
should be grouted around the support region to avoid cracking and spalling of the 
concrete in those areas.

 The cracked stiffness of the post-tensioned girders increased by up to 31% over the 
cracked stiffness before post-tensioning.

 The post-tensioned girders demonstrated up to 47% decrease in deflection ductility 
coefficient when compared to the Control girder despite of having similar ultimate 
deflection capacity. 
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RECOMMENDATIONS

The proposed post-tensioning technique shows promise for success but the construction 
methodology for installation of the wires in the damaged girders needs to be refined. The 
procedure used should be such that it requires easily available machineries and minimizes the 
repair time. The heating system used should be able to provide sufficient power to heat up all 
the wires at the same time; activation by open-flame gas torch should be explored. 

The presented results suggest that anchorage must be provided to ensure proper transfer of 
post-tensioning force and improvements in the strength of the repaired/strengthened girders. 
Authors also recommend heat-induced post-tensioning to be conducted on unbonded NiTiNb 
wires to avoid difficulties with heat loss to grout and concrete. Since the bond between 
NiTiNb and grout is poor, subsequent filling of the groove with grout is optional. In fact, it 
may be beneficial to leave the wires exposed to facilitate future structural health monitoring, 
inspections, and maintenance. 

Fatigue testing of the structures using SMA wires needs to be conducted to observe the 
behavior of the repaired structures when subject to cyclic loading. Additional work is 
required to determine the durability properties of NiTiNb when exposed to the aggressive 
environments which are typically experienced by bridges in northern regions and in close 
proximity to coastal areas. This includes studying the behavior of the wires when exposed to 
humid and corrosive environment for extended periods of time under sustained loading. 

Feasibility of using the SMA in places which experience earthquake shaking should also be 
studied. This would delve into another attractive property of the NiTiNb which is known as 
superelasticity. This property can be used effectively in dampers for structures which are 
subject to excessive displacements under earthquakes. 

SMA also has the potential of being applied in structural health monitoring where the change 
in resistance of the NiTiNb wires with strain may be used as a sensor. Combining SMA with 
other composites may lead to the development of smart structures which would be able to act 
as a sensor and an actuator at the same time. Hence, this material has a wide spectrum of 
possible applications which can be researched and developed to be used in structural 
engineering.
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