COUNTERMEASURES TO IMPROVE LOW-VOLUME ROAD SAFETY IN THE SOUTHEAST
Table of Contents

- Introduction.. 1
- Install Safety Edge ... 1
- Add Center Line Rumble Strips .. 1
- Add Edge Line Rumble Strips ... 1
- Install Advanced Intersection Warning Signs .. 1
- Install Horizontal Alignment Signs .. 1
- Install Retro-Reflective Strips on Sign Posts ... 1
- Install Rumble Strips for Intersection/Curve Approaches ... 1
- Add Pavement Markers .. 1
- Add Pavement Markings ... 1
- Add High-Friction Pavement Surface ... 1
- Remove/Shield Fixed Objects ... 1
- Widen Shoulders .. 1
- Add Left Turn Lane ... 1
- Increase Clear Zone .. 1
- Re-Align Roadway Segments... 1
INTRODUCTION

Of the four million miles of public roadways in the United States, almost three million miles are rural roads [1]. In 2016, 50 percent of all fatal crashes occurred along rural roads, but only 30 percent of the total vehicle miles traveled were in rural areas [2]. Low-volume roads (LVRs) carry an annual average daily traffic (AADT) volume of fewer than 2,000 vehicles per day (vpd); they account for approximately 20 percent of the rural National Highway System and over 50 percent of the Federal-Aid System [1]. Despite these roadways carrying low traffic volumes, historical crash data indicate their crash rates are higher than other highways, accounting for half of all fatalities [2]. Typically, LVRs are classified as local roads, and most are located in rural areas. In 2016, the fatality rate on rural roads was 1.96 fatalities per 100 million vehicles miles of travel (MVMT); conversely, for all roads the fatality rate was 1.18 fatalities per 100 MVMT [2].

In 2016, most of the Southeast Transportation Consortium’s (STC) member states saw higher fatality rates than the rest of the nation. For example, 834 fatal crashes occurred in Kentucky; 607 took place on rural roads (approximately 73 percent). In Mississippi, 98 percent of the 690 fatal crashes occurred on rural roads [2]. Because traffic data are lacking for local roads, it is exceptionally difficult to estimate crash rates and exposure, which are needed to prioritize roads for safety interventions. The high number of LVR miles in these states may contribute to their high fatal crash rates.

To identify effective countermeasures for improving LVR safety in the Southeast, a literature review and web-based survey were conducted [3]. This document summarizes the main features of each countermeasure identified. However, this document does not cover all aspects of installing countermeasures. Rather, its goal is to provide readers with a basic understanding of their application and potential effectiveness. Entries for each countermeasure contain the following information:

- Description: General description of the countermeasure
- Implementation: Description of possible applications
- Crashes Affected: Identification of potentially affected crash types
- Effectiveness: Documentation of crash reduction through Crash Modification Factors (CMF)
- Cost: Estimates of cost for installation and maintenance
- Sources: Documentation of references used for the summary sheet.

Table 1 summarizes key features of the countermeasures addressed in this document and sorts them according to cost.
Table 1. Summary of countermeasure attributes

<table>
<thead>
<tr>
<th>Countermeasure</th>
<th>Affected Crashes</th>
<th>Cost</th>
<th>Maintenance</th>
<th>Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cost</td>
<td>Frequency</td>
<td>CMF</td>
</tr>
<tr>
<td>Install safety edge</td>
<td>Run-off-road</td>
<td>Low</td>
<td>-</td>
<td>20 years</td>
</tr>
<tr>
<td></td>
<td>Drop off</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Add centerline rumble strips</td>
<td>Run-off-road</td>
<td>Low</td>
<td>-</td>
<td>10 years</td>
</tr>
<tr>
<td></td>
<td>Head on</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sideswipe</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adverse weather condition crashes</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Add edge line rumble strips</td>
<td>Run-off-road</td>
<td>Low</td>
<td>-</td>
<td>10 years</td>
</tr>
<tr>
<td></td>
<td>Adverse weather crashes</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Install advanced intersection warning signs</td>
<td>Right angle</td>
<td>Low</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rear end</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Head on</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Install horizontal alignment signs</td>
<td>Run-off-road</td>
<td>Low</td>
<td>$1,280</td>
<td>5 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install retroreflective strips on sign posts</td>
<td>Run-off-road</td>
<td>Low</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right angle</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rear end</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Head on</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Install rumble strips for intersection/curve approaches</td>
<td>Run-off-road</td>
<td>Low</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right angle</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rear end</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Head on</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Add pavement markers</td>
<td>Run-off-road wet or night conditions</td>
<td>Low-Medium</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Add pavement markings</td>
<td>Run-off-road</td>
<td>Medium</td>
<td>-</td>
<td>5 years</td>
</tr>
<tr>
<td></td>
<td>Head on</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sideswipe</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Night crashes</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Add high-friction pavement surface</td>
<td>Run-off-road wet conditions</td>
<td>High</td>
<td>-</td>
<td>10 years</td>
</tr>
<tr>
<td>Remove/shield fixed objects</td>
<td>Run-off-road fixed object</td>
<td>High</td>
<td>$7,000</td>
<td>5 years</td>
</tr>
<tr>
<td>Widen shoulders</td>
<td>Run-off-road</td>
<td>High-Very High</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Sideswipe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Head on</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add left-turn lane</td>
<td>Head on</td>
<td>Very High</td>
<td>$20,000</td>
<td>10 years</td>
</tr>
<tr>
<td></td>
<td>Rear end</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Left-turn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increase clear zone</td>
<td>Run-off-road fixed object</td>
<td>Very High</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Countermeasure Effort

<table>
<thead>
<tr>
<th>Countermeasure</th>
<th>Affected Crashes</th>
<th>Cost</th>
<th>Maintenance</th>
<th>Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cost</td>
<td>Frequency</td>
</tr>
<tr>
<td>Re-align roadway segments</td>
<td>Head on</td>
<td>Very High</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Sideswipe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rear end</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Run-off-road</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sources

DESCRIPTION
“A safety edge is a treatment intended to minimize drop-off-related crashes. With this treatment, the pavement edge is sloped at an angle (30-35 degrees) to make it easier for a driver to safely reenter the roadway after inadvertently driving onto the shoulder. This treatment is designed to be a standard policy for any overlay project.” [1]

IMPLEMENTATION
This treatment frequently aims to allow for safe correction of vehicles that have left the traveled way and encounter a pavement-shoulder drop-off [1]. The safety edge is typically implemented on the entire length of a project where frequent edge drop-offs occur, particularly on rural roads with unpaved shoulders [1]. Iowa first used the safety edge in 2008 along a county road in Clinton County. In 2010, Iowa DOT adopted the safety edge as a Standard Practice for construction and rehabilitation projects [2].

CRASHES AFFECTED
Run-off-road and drop-off related crashes

EFFECTIVENESS
The benefit-cost ratio for installing a safety edge on a road with lower volume narrower conditions is 40.9 [1]. Safety edge treatments appear to have a small positive crash reduction effect with the best effectiveness measure for rural two-lane highways having a CRF of 5.7 [3].

COST
Low; Initial investment: $2,145 per mile; Cost of maintenance: N/A; Frequency of maintenance: 20 years

SOURCES
ADD CENTER LINE RUMBLE STRIPS

DESCRIPTION

“Rumble strips are raised or grooved patterns on the roadway that provide both an audible warning (rumbling sound) and a physical vibration to alert drivers that they are leaving the driving lane. Rumble strips may be installed on the center line of undivided highways, on the roadway shoulder, or on the roadway surface (transverse rumble strips).” [1]

IMPLEMENTATION

Centerline rumble strips are used to prevent multi-vehicle cross-centerline and roadway departure crashes [2]. The noise and vibration alert a distracted or drowsy driver that a steering correction is required. When visibility is poor due to rain, fog, snow, and darkness, centerline rumble strips can help keep drivers in their lane. Rumble strips should be installed on all new rural two-lane highways with posted speeds of 50 mph or greater [1]. Centerline rumble strips are a strong countermeasure for improving safety along rural, undivided, two-lane roads [3].

CRASHES AFFECTED

Run-off-road; head on; sideswipe; adverse weather conditions

EFFECTIVENESS

Installing centerline rumble strips has a crash reduction factor of 15 to 25 percent [2]. The CMF for installing centerline rumble strips in lower volume, narrower conditions is 0.75 to 0.85 with a benefit-cost ratio of 26.1 [1]. A 25 percent reduction in frontal and opposing-direction sideswipe crashes and an overall 12 percent drop in all crashes has been observed following their installation along rural, two-lane roads.

COST

Low; Initial investment: $5,000 per lane-mile; Cost of maintenance: N/A; Frequency of maintenance: 10 years (two applications)

SOURCES

DESCRIPTION
“Rumble strips are raised or grooved patterns on the roadway that provide both an audible warning (rumbling sound) and a physical vibration to alert drivers that they are leaving the driving lane. Rumble strips may be installed on the center line of undivided highways, on the roadway shoulder, or on the roadway surface (transverse rumble strips)”. [1]

IMPLEMENTATION
Edge line rumble strips are installed to prevent run-off-road crashes [2]. The noise and vibration alert a distracted or drowsy driver that a steering correction is required. When visibility is poor due to rain, fog, snow, and darkness, edge line rumble strips can help keep drivers in their lane. Rumble strips should be installed on all new rural two-lane highways with posted speeds of 50 mph or greater [1]. Installing edge line rumble strips is a strong countermeasure for improving safety along rural, undivided, two-lane roads [3].

CRASHES AFFECTED
Run-off-road; adverse weather conditions

EFFECTIVENESS
Installing edge line rumble strips in lower volume, narrower conditions has a CMF of 0.78 to 0.90 with a benefit-cost ratio of 71.8 [1]. Installing edge line strips following installation of centerline rumble strips can lower crash rates 47 percent and produce a 15.3 percent decline in fatal or injury crash rates [4].

COST
Low; Initial investment: $3,000 per lane-mile; Cost of maintenance: N/A; Frequency of maintenance: 10 years (two applications)

SOURCES
DESCRIPTION

“Advanced intersection warning signs can help alert drivers to the upcoming presence of an intersection. Signs can be placed with sufficient distance prior to the intersection to allow drivers to perceive and react and can be installed on both sides of the roadway to solicit greater awareness.” [1]

IMPLEMENTATION

Installing advanced warning signs for intersections warns drivers of approaching intersections and can help reduce crash rates. These signs are highly recommended for high-crash, stop-controlled intersections in rural areas [1]. One type of advanced warning sign that has been used in Iowa is a sign and beacon combination [2].

CRASHES AFFECTED

Right angle; rear end; head on

EFFECTIVENESS

Installing advanced intersection warning signs resulted in a CMF of 0.733 for total, 0.803 for right angle, and 0.425 for rear end crashes [3].

COST

Low; Initial investment: $5,000 per location; Cost of maintenance: N/A; Frequency of maintenance: N/A

SOURCES

INSTALL HORIZONTAL ALIGNMENT SIGNS

DESCRIPTION

“Horizontal alignment signs, informally called curve warning signs, can improve safety by alerting drivers to changes in roadway geometry that may not be apparent or expected. These signs provide visual information for the driver about the nature of the curve they are approaching, letting them know whether it’s a gradual curve, a sharp turn, a hairpin turn, or some combination. Different types of curve warning signs are identified in The Manual on Uniform Traffic Control Devices (MUTCD).” [1]

IMPLEMENTATION

Advanced curve warning signs have a demonstrated track record of improving the safety of horizontal curves [2]. Installations take a variety of forms, including LED-enhanced curve warning signs [3], larger signs, and repeated signs for greater emphasis [4]. These signs should be used on any curve with a run-off-road crash history.

CRASHES AFFECTED

Run-off-road

EFFECTIVENESS

Installing enhanced curve warning signs can reduce all crashes by 10 percent and decrease serious crashes by 35 percent [4]. They can reduce fatalities as well [3].

COST

Low; Initial investment: $2,400 per sign; Cost of maintenance: $1,280 (life-cycle cost); Frequency of maintenance: 5 years

SOURCES

INSTALL RETRO-REFLECTIVE STRIPS ON SIGN POSTS

DESCRIPTION
“The use of retroreflective strips on sign posts may be beneficial when there is a need to draw additional attention to the signs, especially at night. Reflective strips may be added to stop signs, curve or intersection warning signs, and other regulatory or guidance signs, etc.” [1]

IMPLEMENTATION
Retroreflective strips must cover the entire post; their color should match the color of the sign. The MUTCD provides guidance on placing and locating this auxiliary signing [2].

CRASHES AFFECTED
Run-off-road; right angle; rear end; head on

EFFECTIVENESS
In one study, installing retroreflective strips on chevron curve warning signs did not significantly affect vehicle speed or lateral lane position [3]. No safety evaluation of these installations has been performed.

COST
Low; Initial investment: $5,000 per location; Cost of maintenance: N/A; Frequency of maintenance: N/A

SOURCES
INSTALL RUMBLE STRIPS FOR INTERSECTION/CURVE APPROACHES

DESCRIPTION

“Rumble strips are raised or grooved patterns on the roadway that provide both an audible warning (rumbling sound) and physical vibration to alert drivers of an upcoming intersection, curve, or other geometry change. Rumble strips may be installed on the center line of undivided highways, on the roadway shoulder, or on the roadway surface (transverse rumble strips).” [1]

IMPLEMENTATION

This countermeasure has not been used extensively in the US. Agencies have installed them in rural areas to warn drivers of approaching intersections or curves and sometimes to warn about reduced speed zone.

CRASHES AFFECTED

Run-off-road (for curves); right angle; rear end; head on

EFFECTIVENESS

Installing rumble strips at intersections can reduce fatal, incapacitating, and non-impacting injury crashes by 21 percent and lower fatal and incapacitating injuries by 39 percent [2]. Speed reductions of approximately 5 percent have been noted for a curve installation [3].

COST

Low; Initial investment: $5,000 per location; Cost of maintenance: N/A; Frequency of maintenance: N/A

SOURCES

ADD PAVEMENT MARKERS

DESCRIPTION

“Raised pavement markers are designed to supplement the delineation provided by pavement markings. During certain conditions, particularly on wet roads in the dark, motorists may have difficulty determining the location of the center line and edge line pavement markings, increasing the likelihood of roadway departure. By installing raised pavement markers, the pavement markings are much more prominent in adverse weather conditions, providing important information to the driver.” [1]

IMPLEMENTATION

Raised pavement markers are used to improve nighttime visibility (especially in wet conditions) and increase sight distance. The pavement markers must conform to the color of the line in which they are used. Installation can improve curve delineation and provide an auditory signal to drivers warning them for required steering actions. Markers require proper installation to prevent their failure, including removal by snowplows [3].

CRASHES AFFECTED

Run-off-road in wet or night conditions

EFFECTIVENESS

Installing raised pavement markers can result in a CMF less than or equal to 0.76 [1] and reduce roadway departure crashes by up to 85.6 percent while lowering injury numbers [2].

COST

Low to medium; Initial investment: $20,000 Cost of maintenance: N/A; Frequency of maintenance: N/A

SOURCES

DESCRIPTION
“Edge line markings separate the travel lane from the shoulder and communicate the intended roadway alignment and travel path to the driver. Centerline markings separate two opposing traffic streams on a roadway, guide the road user, and delineate travel lanes.” [1]

IMPLEMENTATION
Agency guidelines must be followed when installing edge line and centerline markings on LVRs. Various combinations of edge and center line markings may be used depending on roadway width. Installing centerline and edge line pavement markings can enhance the visibility of road curves. Locations with a history of night crashes may benefit from such installations.

CRASHES AFFECTED
Run-off-road; head on; sideswipe; night crashes

EFFECTIVENESS
For lower volume, narrower conditions, installing edge line pavement markings can yield CMF between 0.56 and 0.62. Using centerline pavement markings can result in a CMF of 0.67 [1]. Installing these features may reduce crashes by up to 24 percent [2] and have a benefit-cost ratio of 20.2 [1]. Improving marking reflectivity can result in a CMF of 0.85 [3].

COST
Medium; Initial investment: $16,000 per lane-mile; Cost of maintenance: N/A; Frequency of maintenance: 5 years (two applications)

SOURCES
DESCRIPTION
“Vehicles often leave the road due to lack of friction—especially in wet conditions when water between the tires and pavement could cause hydroplaning. Pavement friction treatments can reduce the number of wet-road crashes by improving friction at specific locations.” [1]

IMPLEMENTATION
High friction surface treatments are layers of durable aggregate that resist polishing [2]. This treatment is cost-effective because it lasts for a pavement’s entire service life. This treatment is applied most frequently to horizontal curves to reduce run-off-road crashes in wet and dry conditions [3].

CRASHES AFFECTED
Run-off-road in wet conditions

EFFECTIVENESS
For lower volume, narrower conditions, the benefit-cost ratio for improving pavement friction is 4.1; the CMF ranges from 0.25 to 0.60 [1]. Installing high friction surface treatments can reduce wet-weather crashes between 40 percent and 75 percent [4]. In wet conditions, run-off-road crash rates can fall by 91 percent; for dry conditions these treatments can lower crash rates by 78 percent [3].

COST
High; Initial investment: $25 per square yard; Cost of maintenance: N/A; Frequency of maintenance: 10 years (two applications)

SOURCES
DESCRIPTION

“Removing, redesigning, marking, or relocating fixed objects within the clear zone reduces the likelihood of a crash. If a crash occurs, adding breakaway features, crash cushions, or redirection devices reduces crash severity.” [1]

IMPLEMENTATION

Fixed objects that can pose threats include culverts, bridges, driveways, trees, ditches, slopes, utility poles, and public broadcast service routing stations. LVRs may not have adequate clear zones to let errant vehicles avoid these fixed objects. Guardrail systems may be used to shield fixed objects; however, for small objects their installation may not be cost-effective. Removing, redesigning, relocating, reducing, and shielding are steps that can be taken to reduce fixed object crashes. However, some of these treatments are not practical (e.g., relocating trees or removing utility poles).

CRASHES AFFECTED

Run-off-road; fixed object

EFFECTIVENESS

Removing fixed objects on two-lane rural roads has the potential to reduce crashes by up to 16 percent [2]. Relocating select hazardous utility poles has a CMF of less than 0.71 [1]. For lower volume, narrower conditions, removing or shielding fixed objects in the clear zone has a benefit-cost ratio of 4.6 and a CMF of less than 0.71.

COST

High; Initial investment: $10,000 per acre; Cost of maintenance: $7,000 per location; Frequency of maintenance: 5 years

SOURCES

DESCRIPTION

"Increasing shoulder widths may offer several benefits such as providing an area for drivers to maneuver to avoid crashes, increasing safety by providing a stable, clear recovery area for divers who have left the travel lane, improving stopping sight distance at horizontal curves by providing an offset to objects such as barrier and bridge piers, providing a shelf for snow in northern climates, improving bicycle accommodations and providing space for emergency storage of disabled vehicles." [1]

IMPLEMENTATION

Shoulder widening can address run-off-road crashes by providing additional space in which errant vehicles may recover. Shoulder widening can help reduce run-off-road (fixed object, rollover, and other run-off-road crashes); head on; and opposite- and same-direction sideswipe crashes on rural, two-lane roads [2].

CRASHES AFFECTED

Run-off-road; sideswipe; head on

EFFECTIVENESS

Compared to having no shoulder, the presence of a 10-foot shoulder reduces the probability of a fatal crash from 8.2 percent to 5.7 percent [3]. Crashes were 83 percent more likely when no shoulder was present compared to when a 4-foot shoulder had been installed [2]. The Highway Safety Manual provides CMFs based on shoulder width [5].

COST

High to very high; Initial investment: $50,000-100,000 per mile for 2-foot paved shoulder; Cost of maintenance: N/A; Frequency of maintenance: N/A

SOURCES

ADD LEFT TURN LANE

DESCRIPTION

“Left turn lanes are used as auxiliary lanes for storage or to accommodate left turning vehicles with decreasing speed as they approach the intersection. Installing left turn lanes can reduce rear-end crashes by allowing vehicles to proceed through the intersection without having to stop or slow down for vehicles waiting to make a left turn.” [1]

IMPLEMENTATION

A left-turn lane helps prevent rear-end crashes between a stopped or slowing vehicle attempting to turn left. Installations in rural areas were proven more effective in reducing crashes than in urban areas.

CRASHES AFFECTED

Head on; rear end; left-turn crashes

EFFECTIVENESS

The benefit-cost ratio for installing a left-turn lane on a lower volume four-way intersection is 6.0; for a three-leg intersection it is 3.7 [1]. Installing a two-way left-turn lane (TWLTL) can result in 36 percent reduction in total crashes and lower rear end crashes by 47 percent [2].

COST

Very high; Initial investment: $400,000 per intersection; Cost of maintenance: $20,000 per location; Frequency of maintenance: 10 years

SOURCES

INCREASE CLEAR ZONE

DESCRIPTION

“A clear zone is an unobstructed, traversable roadside area that allows a driver to stop safely or regain control of a vehicle that has left the roadway. Clear roadsides consider both fixed objects and terrain that may cause vehicles to rollover. Creating or increasing clear zones within horizontal curve sections may help agencies maximize use of the treatment while minimizing costs, as opposed to providing a clear zone throughout an entire corridor.” [1]

IMPLEMENTATION

Clear zones can be expanded by removing or relocating fixed objects near the roadway and using breakaway posts [2]. Flattening slopes and eliminating pavement edge drops can also help drivers recover an errant vehicle.

CRASHES AFFECTED

Run-off-road; fixed object

EFFECTIVENESS

The CMF for increasing the clear zone from 3.3 feet to 16.7 feet on rural two-lane roads is 0.78 [3]. Increasing the clear zone by 5 feet can reduce fixed-object and run-off-road crashes by 13 percent, while a 20-foot increase can reduce the same type of crashes by 44 percent [4].

COST

Very high; Initial investment: $300,000 per mile; Cost of maintenance: N/A; Frequency of maintenance: N/A

SOURCES

DESCRIPTION

“Horizontal and vertical geometry may be reconstructed in a variety of ways. For example, horizontal and vertical curves may benefit from increased radii, thereby increasing sight distance. Modifying road geometry may also include eliminating horizontal or vertical curves and providing a more direct alignment. Although changing alignment is a high-cost treatment, in some cases sight distance is restricted by horizontal and vertical curvature. Straightening a roadway will increase sight distance and allow for better visibility of other vehicles.” [1]

IMPLEMENTATION

This treatment frequently aims to correct reduced or limited sight distance. It can also help lower high crash rates attributable to reduced or limited sight distance. Realignment can address intersection deficiencies, including sight distance and approach alignment. Realigning intersections may be more critical when horizontal or vertical geometry restricts sight distance and less expensive countermeasures cannot lower crash rates. Despite the potential expense of realignment, it can help to significantly reduce crash rates [2].

CRASHES AFFECTED

Head on; sideswipe; rear end; run-off-road

EFFECTIVENESS

Geometric realignment can reduce crashes by 28 percent [2]. This countermeasure has not yet been fully evaluated due to its high costs and the changes in geometry following installation.

COST

Very high; Initial investment: $300,000 per mile; Cost of maintenance: N/A; Frequency of maintenance: N/A

SOURCES