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Atterberg limits, unconsolidated undrained (UU) triaxial, small direct shear, consolidation, and 

California bearing ratio (CBR) tests, were also conducted to evaluate the specimen and operator-

related variability of different soil properties.  In addition, the specific site variability was also 

evaluated using the results from soil borings with laboratory tests and/or the results of in-situ tests 

such as cone penetration test (CPT) and standard penetration tests (SPT). 

The spatial variability of soil properties can be expressed in terms of mean, coefficient of variation, 

scale of fluctuation, and correlation length. Several statistical techniques such as X-Bar/R, ANOVA, 

second moment (SM) analysis, semivariogram, Bayesian, probabilistic analysis can be used to 

characterize and evaluate the soil variability. The results from laboratory, in-box, and field testing 

programs were analyzed using the Gauge R&R, ANOVA, and SM analysis; and the variability of soil 

properties were expressed in terms of standard deviations and coefficient of variations (COV). 

The results of laboratory, in-box, and field tests showed that the COVs from SM analysis are smaller 

than the COVs from ANOVA method. The operator-related variations showed lower values of COVs 

than those generated from location/specimen-related variability. Additionally, analyses of variability 

from in-box tests indicated lower COVs than the field tests. The COVs for the under-construction 

sections were higher than the COVs for the constructed sections at ALF site. In the case of laboratory 

tests, the specimen-related variability had higher COVs than the operator-related variability. 

The semivariogram approach was used to evaluate the site variability of six sites from CPT tests and 

four sites from soil boring data. The vertical and horizontal correlation ranges were determined for 

each site and used to evaluate the reduction factor and the spatial COV for evaluating the resistance 

factors for the load and resistance factor design (LRFD) of pile foundations. 

A two-level Bayesian analyses were used to update the mean bias and standard deviation of the 

measured/predicted pile capacity variables estimated using the Laboratoire Central des Ponts et 

Chausees (LCPC) Pile-CPT method for three sites. In Level 1, the state variables were updated from 

the national data; while in Level 2, the site variables were updated from state data. The updated mean 

bias and standard deviation for each specific site were used to calibrate the resistance factors for 

LRFD design of pile foundations. 

The probabilistic method was used to analyze the CPT data obtained from LA 1 site with 13 CPT 

tests using the Stanford Geostatistical Modeling Software (SGeMS) software, which provides 

confidence intervals (0 to 100%) of the estimated data between the tested points. The probability that 

the estimated CPT data fall between  standard deviation were calculated and further used to update 

the spatial variability and the LRFD resistance factor of LCPC Pile-CPT method. 

The effect of variability in soil properties in the slope stability analysis was investigated using the 

Slide 2018 2D software. Different scenarios were modeled for drained and undrained conditions. The 
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results showed that the factor of safety decreases with increasing the COV of cohesion and friction 

angle and with increasing the vertical and horizontal correlation lengths. 

The effect of site variability on shallow and deep foundations was investigated for single and multiple 

soil borings with different distances from the foundation using Fenton and Griffiths and Naghibi and 

Fenton approaches. The results showed that the ultimate bearing capacity and the resistance factor 

decreases with increasing the COV of soil properties and the distance between the foundation and soil 

boring. 
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Abstract 

The properties of geomaterials usually vary from one location to another within the same 

site—in both the vertical and horizontal directions. The variability of soil properties is a 

complex phenomenon that results from several sources of uncertainties, including 

inherited spatial variability, measurement error, statistical error, and model bias error. 

This study aimed at investigating the different methods and techniques used to evaluate 

the spatial variability of soil properties; the different sources of geotechnical variability; 

quantifying the variability of soil properties for inclusion in analysis; and design of 

different geotechnical engineering applications. This included conducting in-box tests 

and field tests on constructed sections at the Accelerated Load Facility (ALF) site and 

under-construction sections from different projects using different devices, such as 

Dynamic Cone Penetrometer (DCP), Light Falling Weight Deflectometer (LFWD), and 

Geogauge. Typical laboratory tests, such as Atterberg limits, unconsolidated undrained 

(UU) triaxial, small direct shear, consolidation, and California bearing ratio (CBR) tests, 

were also conducted to evaluate the specimen and operator-related variability of different 

soil properties.  In addition, the specific site variability was also evaluated using the 

results from soil borings with laboratory tests and/or the results of in-situ tests such as 

cone penetration test (CPT) and standard penetration tests (SPT). 

The spatial variability of soil properties can be expressed in terms of mean, coefficient of 

variation, scale of fluctuation, and correlation length. Several statistical techniques such 

as X-Bar/R, ANOVA, second moment (SM) analysis, semivariogram, Bayesian, 

probabilistic analysis can be used to characterize and evaluate the soil variability. The 

results from laboratory, in-box, and field testing programs were analyzed using the Gauge 

R&R, ANOVA, and SM analysis; and the variability of soil properties were expressed in 

terms of standard deviations and coefficient of variations (COV). 

The results of laboratory, in-box, and field tests showed that the COVs from SM analysis 

are smaller than the COVs from ANOVA method. The operator-related variations showed 

lower values of COVs than those generated from location/specimen-related variability. 

Additionally, analyses of variability from in-box tests indicated lower COVs than the 

field tests. The COVs for the under-construction sections were higher than the COVs for 

the constructed sections at ALF site. In the case of laboratory tests, the specimen-related 

variability had higher COVs than the operator-related variability. 
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The semivariogram approach was used to evaluate the site variability of six sites from 

CPT tests and four sites from soil boring data. The vertical and horizontal correlation 

ranges were determined for each site and used to evaluate the reduction factor and the 

spatial COV for evaluating the resistance factors for the load and resistance factor design 

(LRFD) of pile foundations. 

A two-level Bayesian analyses were used to update the mean bias and standard deviation 

of the measured/predicted pile capacity variables estimated using the Laboratoire Central 

des Ponts et Chausees (LCPC) Pile CPT method for three sites. In Level 1, the state 

variables were updated from the national data; while in Level 2, the site variables were 

updated from state data. The updated mean bias and standard deviation for each specific 

site were used to calibrate the resistance factors for LRFD design of pile foundations. 

The probabilistic method was used to analyze the CPT data obtained from LA 1 site with 

13 CPT tests using the Stanford Geostatistical Modeling Software (SGeMS) software, 

which provides confidence intervals (0 to 100%) of the estimated data between the tested 

points. The probability that the estimated CPT data fall between the standard deviation 

were calculated and further used to update the spatial variability and the LRFD resistance 

factor of LCPC Pile-CPT method. 

The effect of variability in soil properties in the slope stability analysis was investigated 

using the Slide 2018 2D software. Different scenarios were modeled for drained and 

undrained conditions. The results showed that the factor of safety decreases with 

increasing the COV of cohesion and friction angle and with increasing the vertical and 

horizontal correlation lengths. 

The effect of site variability on shallow and deep foundations was investigated for single 

and multiple soil borings with different distances from the foundation using Fenton and 

Griffiths and Naghibi and Fenton approaches. The results showed that the ultimate 

bearing capacity and the resistance factor decreases with increasing the COV of soil 

properties and the distance between the foundation and soil boring. 
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Implementation Statement 

This study aimed at evaluating the different sources of geotechnical variability that 

include laboratory and field testing, variability of testing devices, and quantifying the 

spatial variability of soil properties for incorporation into analysis and design of different 

geotechnical engineering applications. The findings of this study can be implemented into 

the design and analysis of deep foundations, shallow foundations, slope stability, and any 

other geotechnical application as summarized below:  

1. The variability of different soil properties evaluated in terms of coefficient of 

variation (COV) from the laboratory and the AASHTO Materials Reference 

Laboratory (AMRL) test results can be implemented in reliability analysis and 

design for different geotechnical engineering applications.  

2. The variability and spatial distribution of in-situ testing measurements of field 

sections, in terms of COV using the different devices, such as DCP, LFWD, 

Geogauge, Nuclear Density Gauge (NDG), and E-Gauge, can be implemented in 

forensic analysis and design of pavements, embankments, slopes, etc. 

3. The semivariorgam analysis can be used to evaluate the spatial variability from 

multiple CPT tests and/or multiple soil borings to determine the vertical and 

horizontal correlation ranges of the site variability, which will be used to evaluate 

the spatial COV for the specific site for use in many geotechnical engineering 

applications. This includes specific site calibration of resistance factor for LRFD 

design of shallow and deep foundations, settlement calculation, and slope stability 

analysis. 

4. The Bayesian analysis technique can be incorporated to update the mean bias and 

standard deviation, and hence the COV of the measured/predicted pile capacity 

variables as more pile load test data are available. This technique can be applied 

to update state variables (level 1) or specific site variables (level 2) for use to 

calibrate the resistance factors for LRFD design of pile foundations.   

5. The application of the probabilistic analysis approach using the SGeMS software 

can provide us with the confidence level of estimated data between the tested 

points from kriging analysis, and hence the probability that the estimated data fall 

between  standard deviation. The results of probabilistic analysis can be used to 
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update the spatial variability of the specific site for calibrating the LRFD 

resistance factor for different geotechnical engineering applications, such as 

LRFD design of pile foundation. 

6. The variations of soil properties can be implemented to evaluating the slope 

stability analysis of slopes, embankments, and mechanically stabilized earth 

(MSE) walls. 

7. The method proposed by Fenton and Griffiths can be implemented to incorporate 

the variability in soil properties and distance from soil boring(s) for analysis and 

design of shallow foundations. 

8. The method proposed by Naghibi and Fenton can be implemented to incorporate 

the variability in soil properties and distance from soil boring(s) for analysis and 

design of deep foundations. 
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Introduction 

The subsurface soil conditions of all natural deposits are usually subjected to significant 

degree of variability in terms of soil type, layering, and their properties, which are rarely 

homogeneous. Unlike structural engineers who deal with mostly homogeneous man-

made materials, such as concrete and steel, geotechnical engineers have to cope with 

highly variable natural materials (soils and rocks). As a result, high variance is expected 

in the resistance of geotechnical structures (e.g., foundations, slopes, earth-retaining 

structures) due to the vertical and horizontal spatial variations of soil properties for the 

site. Generally, the soil borings and in-situ tests are carried out at fixed-spaced locations 

(e.g., every 100 feet), and the laboratory tests are conducted on samples retrieved from 

discrete depths, which can result in special variations of soil properties for the specific 

site.  Due to variability problem, the accuracy and reliability of the measured data to be 

used in the design geotechnical structure are somehow unknown. Therefore, geotechnical 

engineering often deals with different kinds of uncertainties that can result in either 

under-design, which can cause failure, or overdesign, which increases the construction 

cost if these uncertainties are not considered properly in the design. 

Site investigation and characterization of subsurface soil conditions are very crucial for 

geotechnical engineering design and analysis. The scope of site exploration and 

investigation is mainly controlled by how much the customer and project authorities are 

willing to spend, rather than by what is needed to explain the subsurface soil condition. 

To design foundations and other geotechnical structures, specialists are preferably 

looking for exclusive soil properties at numerous locations. However, reaching this goal 

can be unlikely and expensive, since it may consume huge amounts of finance, labor, and 

material as well as time. Fortunately, some soil properties are spatially correlated with 

each other and thus can be related to many environmental issues (e.g., [1], [2], [3]). 

The soil properties inherently vary spatially from point to point within the same site (both 

horizontally and vertically) due to several factors including depositional environment, 

degree of weathering, and physical processes (e.g., [4], [5]). The inherent spatial 

variability of soil renders inescapable uncertainty in geotechnical design [4]. Soil 

variability is a complex phenomenon that arises from many different sources of 

uncertainties. The four primary sources of geotechnical uncertainty are inherited spatial 

variability (horizontally and vertically) of the soil deposit during deposition, random 

measurement error, statistical uncertainty, and model bias uncertainty. The first source of 
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uncertainties results from the natural geologic processes that continuously modify the in-

situ characteristics of the soil properties, which vary from location to location. Different 

factors such as the random mixture of various soil types and composition, variation in 

water content, variation in density, and variation of stress level over time contribute to the 

in-site variation in the soil properties. The inherent soil variability is described as a 

random field that can be described precisely by the mean (m), coefficient of variation 

(COV), and scale of fluctuation. Measurement error is caused by equipment and/or 

operator induced variation, which can take place from one test to another. Equipment 

error arises from variations when tests are set up and loads are delivered. Operator 

induced variation occurs when personal judgement is required to read scales and take 

measurement, or during sample preparation and handling. Statistical uncertainty is 

associated with choosing the best equation/correlation required to interpret collected data 

from a range of equations. Statistical uncertainty is expected to be significant because the 

volume of soil sampled can be a large fraction of the volume of interest. The bias model 

uncertainties are due to variations between the model's predictions from the measured 

values, which arise from transformation when the important property was not measured 

directly but rather projected using a credible transformation/interpretation model or other 

sufficiently reasonable (or measured) information (e.g., [6], [7], [8]). These sorts of 

uncertainties can be lumped together and termed as total site variability (e.g., [7], [8]).  

Several techniques have been proposed to evaluate the site variability. These techniques 

involved Geographic Information Systems (GIS), geostatistical studies, multivariate 

statistical analysis, and other methods. The GIS was initially developed as a tool for data 

retrieval and displaying geographic information, and later enhanced for spatial analysis 

[9]. GIS with various spatial interpolation methods, including inverse distance and 

kriging, was used in several regional scales for soil quality survey studies (e.g., [10], 

[11]). The traditional interpolation techniques including inverse distance and kriging are 

inadequate for the uncertainty assessment with the soil variables. Kriging algorithm is apt 

to smooth out a local spatial variation of the variable. Goovaerts et al. [12] indicated that 

small values are typically overestimated and large values are underestimated, with the 

local error variance being the minimum and the variance of kriging estimates being six 

times smaller than the sample variance. However, the Sequential Gaussian Simulation 

(SGS) can be used to generate variable maps and reproduce actual statistics, histograms, 

and variograms of the spatial variability for the data without smoothing effect. 

Defining the spatial variability from the measured data requires engineers to determine 

the correlation between data pairs that are separated by different distances (vertically and 
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horizontally) using different parameters. One of the main fundamental parameters used is 

the covariance Cov(qi,qj) between data values qi and qj separated by a distance (h). The 

other parameter that is used to measure site variability in terms of the extent of spatial 

dependency between samples is known as the semi-variogram, (h), which can be defined 

as the distance range (a) that defines the end of correlation between the data pairs. 

Researchers are also looking for new techniques to evaluate site variability parameters 

using advanced statistical methods, such as the Bayesian analysis, probability analysis, or 

distribution by adopting the sequential Gaussian simulation using the Stanford 

Geostatistical Modeling Software (SGeMS). 

Several researchers in literature studied the effect of site variability for different 

geoterchnical engineering applications. Onyejekwe et al. [13] performed geostatistical 

spatial analysis to evaluate the undrained shear strength profile at any specific location 

within the site. Lacasse and Nadim [4] showed that the geotechnical parameters had 

variability in both vertical and horizontal directions with a greater inclination for the 

geotechnical properties. McVay et al. [14] conducted a study to evaluate the resistance 

factors (ϕR) for the Load and Resistance Factor Design (LRFD) of piles that incorporates 

the spatial variability of local rock and soil strength. Otero [15] performed a study to 

improve the LRFD resistance factors (ϕR) for non-redundant shaft design incorporating 

the new design methods for larger single shaft design. Faraone [16] presented a 

methodology that incorporates the framework of reliability-based design, while 

accounting for the site-specific spatial variability, which is applicable to several deep 

foundation design practices. Fenton and Griffiths [17] investigated the effect of variation 

in soil parameters on the bearing capacity of shallow foundations. Naghibi and Fenton 

[18] investigated the effect of site soil variability with varied distance from soil boring to 

calculate resistance factor for deep foundation. Several studies are also available in 

literature on the effect of spatial variability on the slope stability analysis (e.g., [19], [20], 

[21]). 

This study aimed at evaluating the operator-induced and equipment-induced variations, 

evaluating the different sources of geotechnical variability from both soil 

boring/laboratory and in-situ testing; and quantifying the special variability of soil 

properties for incorporation into analysis and design of different geotechnical engineering 

applications such as LRFD design of pile foundations, bearing capacity shallow 

foundations, and slope stability analysis.  
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 Literature Review  

General 

The subsurface soil deposits are usually heterogeneity in nature, which contribute to the 

spatial variation in soil types, soil layering, and soil properties. Therefore, the soil 

properties of all natural soil deposits have certain degrees of variability and vary 

inherently from point to point within the same site, in both the vertical and horizontal 

directions, due to many reasons including the depositional environment, the degree of 

weathering, and the physical process [e.g., [4], [5]. Looking at the microscopic level, the 

soils are associated with different types of phases that can include minerals, gasses, ions, 

and other non-mixable fluids and micro organisms. Meanwhile, at the macroscale level, 

the soil heterogeneity leads to geological processes of soil varying, which imparts soil 

spatial formation such as physical, chemical and biological weathering, deposition, 

consolidation, cementation, desiccation, leaching, and diagenesis.  

Researchers have long recognized the necessity of assessing variability and uncertainty in 

geotechnical engineering design, and reliability-based design (RBD) approaches have 

been developed internationally over the last 30 years. For example, Terzaghi et al. 

emphasized the importance of uncertainty and unpredictability in geotechnical 

engineering design and practice [22]. Several studies have been done by various 

researchers (e.g., [6], [8], [14], [23], [24]) to enhance the state of knowledge in 

geotechnical engineering by assessing variability and uncertainty, and applying 

reliability-based design methodologies.  

The variability of subsurface soil condition and soil properties is a complex phenomenon 

that results from many different sources of uncertainties. The inherent soil variability is 

usually described as a random field with mean (m), coefficient of variation (COV), and 

scale of fluctuation of data. Before examining the historical progress of the study of 

spatial variability in the field of geotechnical engineering, it is necessary, by way of 

background, to treat the various mathematical techniques used in this area of research. 

This section will present the work available in literature on geotechnical engineering 

variability and uncertainty analysis.  
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Variability and Uncertainty in Geotechnical Engineering 

In geotechnical engineering analyses, variability is a primary source of uncertainty. Many 

areas of geotechnical engineering, notably the characterization of soil properties, are 

fraught with uncertainty. There are two types of uncertainty in geotechnical properties: 

aleatory and epistemic uncertainty ( [4], [25], [26]). Aleatory uncertainty is a 

consequence of the spatial variability of the soil characteristic and indicates the property's 

intrinsic randomness. Lack of information and flaws in measurement and/or calculation 

cause epistemic uncertainty. For example, systematic inaccuracy is caused by factors 

such as property measurement methods, modeling errors, and the amount of available 

data. Human error is the third source of uncertainty. However, because it is difficult to 

separate and its effects on probability are frequently included in compilations of statistics 

on aleatory uncertainty, it is not usually considered in uncertainty assessments [27]. 

Figure 1 presents the schematic of the sources of uncertainty in geotechnical soil 

properties.  

Figure 1. Sources of uncertainty in geotechnical soil properties (Adapted from [25]) 

 

In the field of geotechnical engineering, traditional tools for dealing with soil 

heterogeneity have relied on a high factor of safety and local experience. This creates 

inconsistency in performance measurement, prompting widespread recognition of the 

need for more reliable techniques to incorporate soil heterogeneity into a more 

quantitative scheme suited to engineering design. Since the performance of geotechnical 

structures depends on local extremes of characteristics within a subsurface profile, it is 

critical to probabilistically characterize the soil profile [28]. The probabilistic 

classification of soil profiles offers a format for evaluating geotechnical information 

about subsurface soil conditions at a specific site; a foundation for performance 
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prediction of a geotechnical engineering structure and evaluating the probability of 

failure; and allows a geotechnical engineer to better evaluate various site investigation 

and testing programs [29]. 

Baecher originally described two key sources of variability in rock mass attributes, found 

from site investigations, as inherent spatial variation and mistakes induced by sampling 

and testing when conducting site characterization on rock masses [30]. Baecher and 

Einstein and Baecher proposed a method for coping with large amounts of uncertainty in 

rock mass joints based on statistical reasoning and formal inference  [30], [31]. Baecher 

concluded that the sources of uncertainties are due to geological uncertainty resulting 

from site formations, geometry, and previous history; model uncertainty caused by 

physical model offerings; parametric uncertainty arising from spatial variability, 

measurement error, and estimation bias; and finally, uncertainty arising from omissions or 

overlooking geological details  [30], [32], [33], [34]. 

Geotechnical variability is a complex attribute that results from many disparate sources of 

uncertainties. As shown in Figure 2, Christian et al. [35] classified the uncertainty in 

soil/rock parameters into two groups: (1) data scatter, which includes spatial variation of 

the soil deposit and random testing/measurement errors; and (2) systematic error, which 

includes statistical error and measurement bias. The spatial variability usually results 

from the natural geologic processes and deposits that produced and continuously modify 

the in-situ characteristics of soil, which makes the soil properties to vary, horizontally and 

vertically, from place to place. Different parameters (e.g. the mixture of various soil, 

water content, density, stress level) contribute to the change of soil properties. 

Measurement errors are caused by equipment or operator-induced variation, which can 

take place from one test to another. Operator-induced variation occurs when personal 

judgement is required to read scales, take measurements, or during sample preparation 

and handling and possible soil disturbance. Equipment error arises from variations in the 

way tests are set up, loads are delivered, or soil response is sensed. For example, in the 

light falling weight deflectometer (LFWD) tests, the load plate of LFWD may be situated 

on the material to be tested differently in succeeding tests. Drop height and rod resistance 

may vary slightly from one drop to another, and temperature changes can affect the 

damping properties of the rubber buffer.  

Statistical error is predominantly caused by the use of a small number of measurements; 

whereas the model bias arises when a correlation model is selected to interpret specific 

data. 
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Figure 2. Uncertainty in soil properties [35] 

 

Baecher and Christian [36] adopted Hacking's terminology [37] for two basic forms of 

uncertainty: aleatory and epistemic uncertainty, which reflect natural variability and lack 

of information, respectively. As illustrated in Figure 3, Baecher and Christian [36] 

categorized the uncertainty in geotechnical engineering design into three broad groups: 

natural variability (temporal, spatial), knowledge uncertainty (model, parameters), and 

decision model uncertainty (objectives, values, and time preferences). 

Figure 3. Categories of uncertainty in risk analysis [36] 

 

As defined by Baecher and Christian [36], the natural variability is the variability of soil 

qualities across time and space, expressed as variability at a single place with changes in 

time (temporal) and variability throughout space at a single time (spatial). Another name 

for natural variability is the aleatory uncertainty. Since it has been introduced into the 

design due to a lack of information, data, and understanding, Baecher and Christian's 

knowledge uncertainty is known as subjective uncertainty. It is also known as epistemic 

uncertainty. Figure 3 describes how the model and parameter uncertainties can be 
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subdivided from the knowledge uncertainty. In geotechnical design, Baecher and 

Christian's decision model uncertainty, which comprises of objectives, values, and time 

preferences, entails implementing designs that reflect both aleatory and epistemic 

uncertainties. 

Phoon and Kulhawy ( [6], [7], [38]) evaluated three key types of uncertainty in 

geotechnical variability: (1) inherent variability, (2) model uncertainty, and (3) 

measurement error. The generic depiction of uncertainty for soil parameters studied by 

Kulhawy and his co-authors is shown in Figure 4. For a homogeneous random field 

model, the inherent variability is represented using the coefficient of variation and scale 

of fluctuation [38]. Unlike the model uncertainty, the transformation model uncertainty 

considered by Kulhawy and Phoon reflects uncertainty originating from the application 

of empirical models or correlation models to convert indirect measurements to required 

design parameters [7]. The equipment, procedural/operator, and random testing effects all 

contribute to measurement error during the measurement procedure [6]. 

Figure 4. Uncertainty in soil property estimates [38] 

 

Unlike most prior researchers, Griffiths and Fenton [19] concentrated on aleatory 

uncertainty, soil fluctuation that occurs naturally. Their research focuses on the spatial 

variability of soil parameters and the application of random field finite element models 

for reliability-based design. Vanmarcke's random field theory, which uses the correlation 

structure of one-dimensional random processes in terms of a variance function and a 

scale of fluctuation, was adopted by Griffiths and Fenton [39]. The random field theory 

aids in the construction of models for studying soil spatial variability and is the 

foundation of Griffiths and Fenton's reliability analysis. Griffiths and Fenton use a 

positive connection between soil parameters obtained at near distances to reflect the soil 
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information at a given place. Griffith et al. [24] also developed the random finite element 

method (RFEM) in reliability-based design by combining random field theory and the 

finite element approach with Monte Carlo simulation methodologies. Fenton researched 

quantifying soil qualities in order to create spatial correlation structures that might be 

used to make inferences about other locations with similar soil engineering properties      

( [40], [41]). Fenton used the fractal model to examine the tip resistance measurements 

from cone penetration tests (CPT) and constructed a global correlation model to 

characterize the spatial variability of tip resistance [23]. 

Onyejekwe et al. [13] conducted a research study with the goal of statistically describing 

the variability of geotechnical factors in order to increase geotechnical engineers' 

adoption of reliability-based design (RBD). The first and second statistical moments, as 

well as the coefficient of variation (COV) were used to describe the geotechnical 

characteristics. Their probability distributions and fluctuation scales, were also 

calculated. The degree of fit of study data to known empirical correlations was studied. 

Correlations between difficult-to-obtain parameters and more easily-obtain parameters 

were generated. They revealed that the Semivariogram Function (SVF) is better suitable 

for determining the scale of variation from widely dispersed, noncontinuous, irregular 

data received from laboratory testing than the Autocorrelation Function (ACF). A 

framework was suggested in his research that combines the spatial averaging impact of 

parameters computed from widely dispersed, irregular, and non-continuous data using the 

scale of fluctuation and variance reduction factor. 

McVay et al. [14] noted that the Florida Department of Transportation (FDOT) and the 

Federal Highway Administration (FHWA) use a constant load and resistance factored 

design (LRFD) for deep foundation design, which depend on redundancy and 

independent of pile or shaft dimension. They stated that the properties of soil differ from 

one location to another and are often spatially associated. Since the skin friction (and end 

bearing) need spatial averaging of the soil properties across the pile shaft, the resulting 

total shaft resistance variability (CVR) will not be the same as the soil/rock field 

measurement variability (CVq). The varying degree of spatial correlation, as expressed by 

a covariance function, and the correlation length (a) will also affect the total shaft 

resistance variability (CVR). They showed that while CVR is a function of pile/shaft 

dimensions, CVq value and spatial correlation, the value of resistance factors (ϕR) is not 

constant for any given location. They provided four quadrant iterative design charts for 

single and group pile/shaft layouts, which consider side and tip resistances as well as 

layered systems, which were produced to assist the designer. 
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Faraone [16] debated that AASHTO specifies resistance factors (ϕR) for use in a variety 

of design approaches, foundation types, and levels of field verification in current 

reliability-based design practice for deep foundations (e.g., load testing). These values of 

ϕ are calibrated using databases of measured vs anticipated resistances and are based on 

defined target reliabilities. This calibration has the drawback of not accounting for the 

varying degrees of design parameter variability that can be seen across different sites 

(i.e., homogeneous versus heterogeneous sites). He introduced a reliability-based design 

methodology that he thinks accounts for site-specific spatial variability and may be 

applied to a variety of deep foundation design practices. Through stochastic modeling, 

geostatistical tools are employed to describe site heterogeneity and quantify uncertainty 

of either foundation resistance or rock mass modulus. 

Data Scatter 

The first source of uncertainties results from the natural geologic processes that 

continuously modify the in-situ characteristics of soil. The soil properties vary from place 

to place. Different parameters (e.g. the mixture of various soil, water content, density, 

stress level) contribute to the change of soil properties. Measurement error is caused by 

equipment- or operator- induced variation, which can take place from one test location to 

another. Operator-induced variation occurs when personal judgement is required to read 

scales, take measurements, or during sample preparation and handling. Equipment error 

arises from variations when tests are set up and loads are delivered. For example in the 

case of the LFWD, drop height, rod resistance, and seating of the load plate can vary 

from one drop to another, and the rubber buffer can be influenced by temperature change. 

Collectively, these two sources can be described as data scatter ( [6], [7], [8]). 

Various geologic, physical-chemical, and environmental processes contribute to the 

development of soil deposit. Some of these processes continue for long periods of time 

and can modify the soil characteristics. Due to the ongoing natural processes, soil 

properties will vary in both the horizontal and vertical directions The spatial variability 

can be depicted precisely by the central trend, the COV, and the scale of fluctuation. 

Soil Profile 

The spatial variation of soil properties can be classified into a deterministic trend 

component "f" and a random component "ε". The relationship can be formulated as 

follows ( [7], [42], [43]): 
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sp(z) = f(z) + ε(z) [1] 

where sp is the soil property, z is the depth, and the vertical spatial soil variability is 

represented by the random component. First, the random component is measured by all 

geostatistical operations, and the deterministic component is added later.  

While quantifying spatial variability, it is required to model sp(z) as a homogeneous 

random function or field [44]. Two considerations are required to maintain when the 

function sp(z) is considered statistically homogeneous: (1) there are no change in mean 

trend and variation of "ε" along the depth; and (2) the correlation is a function only of the 

deviations between two separation distances, rather than their absolute position. When 

data is collected from a homogenous soil layer, fluctuations in the soil property profile 

are probably considered to be uniform. Figure 5 presents the spatial soil variability with 

depth along soil profile.  

Coefficient of Variation 

The standard deviation of inherent soil variability (σw) for a homogeneous variability 

function sp(z) can be defined as follows [42]: 

σw=√
1

n-1
∑ [ε(zi)]2n

i=1  [2]   

where, n is the number of data points, and ε(zi) is the fluctuation at depth zi. 

Dimensionless representation of inherent soil variability known as the coefficient of 

variation (COVw) can be more useful by normalizing  σw with respect to the mean soil 

property trend (f) as follows: 

COVw= 
 σw

f
 [3] 
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Figure 5. Spatial soil variability ( [6], [7]) 

 

Scale of Fluctuation 

Another statistical parameter that is required to describe site variability is the correlation 

distance or scale of fluctuation, δv, as shown in Figure 6, which can provide a specific 

indication of the property values that show a strong correlation.  

δv = 0.8 d̅ [4] 

where, δv is the vertical scale of fluctuation, and d̅ is the average distance between the 

intersections of the profile of fluctuating property and its trend function, as shown in 

Figure 6.  
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Figure 6. Estimation of vertical scale of fluctuation ( [6], [7]) 

 

Measurement Error 

The second source of uncertainties, which are measurement-related uncertainties, can be 

divided into three categories: accuracy, repeatability (precision) and reproducibility [45]. 

The accuracy is referred to the average of individual measurements as compared with the 

true value, which is influenced by the resolution, bias, stability (change in bias over 

time), and linearity (change in bias over normal operating range) of the measurements 

[45]. Figure 7 illustrates the accuracy, stability, and linearity of the measurements. 

Repeatability is defined as the variation that occurs when the same operator repeatedly 

measures the same sample using the same devise under the same conditions (see Figure 

8a) [45]. Reproducibility is related to the variations that occur between two or more 

operators or devises measuring the same sample using the same measurement method in 

a stable environment (see Figure 8b) [45].    

Repeatability and reproducibility (R&R) can be estimated using the Gauge R&R (GRR) 

analysis method. The Gauge is any device that can be used to obtain measurement. The 

R&R is defined as the coordination of the device variability (repeatability) and operator 

variability (reproducibility). The concept of GRR is illustrated in Figure 8c. The results of 

a Gauge R&R study are EV (repeatability or equipment variability), AV (reproducibility 

or the operator variability), and SV (specimen variability) [43]. 

 

 



—  36  — 

 

Figure 7. Illustration of accuracy, stability, and linearity of measurements [45] 

  

Systematic Error 

The third source of uncertainty in geotechnical measurements is the statistical errors that 

result from the limited amount of information. When it is required to estimate the mean 

trend of measurements, the use of limited number of tests can lead to possible statistical 
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error. This type of measurement uncertainty can be minimized by performing tests on 

more soil samples [6], [8], [38].   

The fourth source of uncertainty, known as the model bias, is introduced when empirical 

or other correlation models are used for field or laboratory measurements, which are 

consequently transformed into design soil properties. This bias uncertainty can be 

estimated empirically by comparing the model predictions made from the measured 

values against the observed values. Collectively, these two sources can be described as 

the systematic error [8]. 

Figure 8. Illustration of repeatability, reproducibility, and GRR of measurements [45] 

  

Methods and Techniques for Evaluating Site Variability 

As stated earlier, the in-situ properties of all soil deposits, by nature, are usually subjected 

to certain degree of variability (spatially in both the vertical and horizontal directions) 

within the same site, which was inherited with time since soil deposition. The variation of 

soil properties can be statistically characterized by the mean, m, and standard deviation, 

σ. The dimensionless representation of inherent soil variability, known as the coefficient 
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of variation, COV, can be useful by normalizing the standard deviation, , with respect to 

the mean of the soil property trend, m, as follows: 

COV= 
σ

m
                                                                                    [5] 

Orchant et al. [46] combined all possible error sources in one term using the following 

equation: 

        σ𝑚𝑒𝑎𝑠𝑢𝑟𝑒
2  = σ𝑒𝑞𝑢𝑖𝑝

2  + σ𝑜𝑝/𝑝𝑟𝑜𝑐
2  + σ𝑟𝑎𝑛𝑑𝑜𝑚

2                                                     [6] 

where: σ𝑚𝑒𝑎𝑠𝑢𝑟𝑒
2 = total variance of measurement, σ𝑒𝑞𝑢𝑖𝑝

2 = variance of equipment effects, 

σ𝑜𝑝/𝑝𝑟𝑜𝑐
2  = variance of operator / procedural effects, and σ𝑟𝑎𝑛𝑑𝑜𝑚

2   = variance of random 

testing effects. If the operator has a good experience and the machine is well maintained 

and calibrated, the associated errors are expected to be substantially reduced. Orchant et 

al. [46] evaluated the variation of CPT data from different sites and found out that the 

total measurement error of the CPT is normally within the range of 5% to 15%. 

Different methods and techniques have been introduced in literature to evaluate the 

spatial variability of soil properties of a specific site from either the soil borings with 

laboratory testing or from in-situ testing. The following sub-sections will present several 

evaluation methods and their potential application in many geotechnical engineering 

analysis and design.  

X-Bar/R and ANOVA Analyses 

Several methods and techniques can be used to perform the Gauge R&R analysis, which 

includes the average and range (X-Bar/R) method and the analysis of variance (ANOVA) 

method. The X-Bar/R method allows repeatability, reproducibility and specimen-to-

specimen variability where device-operator interaction is not considered. On the other 

hand, ANOVA method is more precise in considering the interaction between the operator 

and the device [43].  

The equations used in the X-Bar/R and ANOVA methods are presented in Table 1 and 

Table 2, where m replicate measurements that are performed by p operators on n 

specimens. The parameter yijk, which refers to the measurement made using the device (i) 

by operator (j) on specimen (k), can be expressed using the following equation [43]:  

yijk =  xi + uj  +  wij + εijk [7] 
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where, xi is the actual value of the desired parameter; uj represents the operator variation; 

wij represents the interaction between the specimen and operator; and εijk represents the 

repeatability error. The Gauge R&R value can be obtained from the following expression 

[43]: 

GRR = √EV2+AV
2
 [8] 

where, EV represents the repeatability of equipment variation, and AV represents the 

reproductively of the operator variation. The total variation (TV) of a measurement 

system can be calculated by adding the Gauge R&R variations to the specimen variation 

(SV) as follows [43]: 

TV = √EV2+AV
2
+SV

2
 [9] 

Table 1. Equations used to calculate variability parameters - X-Bar/R Method according to AIAG 

Guidelines (Measurement System Analysis Manual, 4th Edition) 

Repeatability 

-Equipment 

Variation 

(EV) 

Reproducibility - 

Operator 

Variation (AV)  

Repeatability & 

Reproducibility 

(GRR)  

Specimen 

Variation 

(SV) 

Total 

Variation   

(TV) 

R̅

d2

 √[
RO

d2
*
]

2

- (
EV2

nr
) √EV2+AV

2
 

RS

d2
*
 √GRR

2
+SV

2
 

aAutomotive Industry Action Group (AIAG), R̅ = average range of measurements, d2 = bias correction factor 

obtained from statistical Tables, RO = range of the operator averages, d2
* = correction factor for estimating 

variances obtained from statistical Tables, n= number of specimens, r = number of measurement repetitions, 

RS = range of the specimen average. 
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Table 2. Equations used to calculate variability parameters - ANOVA Method (Measurement System 

Analysis Manual, 4th Edition) 

Source of  

Variation 

Degree of  

Freedom 

Sum of  

Squares, SS 

Mean Sum of 

Squares, 

MSS 

Estimate of 

Variance 

Component 

Expected 

Value of 

Variance 

Estimate** 

Specimens n-1 mp ∑ (y̅
i..

-y̅
...

)
2

n

i=1

 
SSO

n-1
 

MSSO-MSSI

mp
 υ2 

Operators p-1 nm ∑ (y̅
.j.

-y̅
...

)
2

p

j=1

 
SSA

p-1
 

MSSA-MSSI

mn
 θ

2
 

Interaction (n-1)(p-1) SSI = SST-SSO-SSA-SSE 
SSI

(n-1)(p-1)
 

MSSI-MSSE

m
 α2 

Error np(m-1) ∑ ∑ ∑ (y
ijk

-y̅
ij.

)
2

m

k=1

p

j=1

n

i=1

 
SSE

np(m-1)
 MSSE σ2 

var(yijk)=υ2 + 2 + α2 + 2, SSO = Sum of Squares of Objects, SSA = Sum of Squares of Operators, SSI = 

Sum of Squares of Interactions, SSE = Sum of Squares of Errors, MSSO = Mean Sum of Squares of Objects, 

MSSI = Mean Sum of Squares of Interactions, MSSA = Mean Sum of Squares of Operators, MSSE = Mean 

Sum of Squares of Errors. 𝑦̅𝑖.. represents the average of the measurements from the ith object (the “dot” symbol 

shows averaging over the second and third indices, j and k).  

Second Moment Probabilistic Method 

In the second moment probabilistic methods, the uncertainty in a random variable are 

usually evauated through its first two moments, i.e. the mean (a central tendency 

parameter) and the variance (a dispersion parameter). The second moment method and 

their modeling of soil parameters are widely used in the geotechnical literature because of 

their efficiency in transmitting important properties of datasets. Phoon and Kulhawy [6] 

used the second moment probabilistic approach to statistically estimate the site soil 

variability and measurement error in an extensive manner. They applied the second 

moment approach (using the mean and coefficient of variation) to combine the inherent 

soil variability, measurement error, and the transformation uncertainty.  
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A summary of the COVs of inherent variability, scale of fluctuation, and measurement 

error for various test measurements were presented in their study. They found out that the 

vertical and horizontal scale of fluctuation of index parameter were the greatest. They 

performed several laboratory tests (e.g. undrained shear strength, friction angle, liquid 

and plastic limit, total and dry unit). In case of measurement error, they also reported that 

the COVs of measurement error for most laboratory strength tests were estimated to be 

between 5% and 15%.  They also found out that the COVs of clay properties are greater 

than sand soil. 

A detailed analysis of the measurement error has been conducted by Kulhawy and 

Trautmann [47] for the field test measurements. They performed regression analyses to 

determine the amount of variation assignable to each test parameter. They applied the 

second moment statistics (mean and coefficient of variation) to estimate the random 

testing errors where replicate data were available. 

In modeling uncertainty in the second moment probabilistic method, it is necessary to 

assume that uncertainty propagation techniques (such as Monte Carlo simulation) are 

compatible with the random variables [48]. The first-order second-moment (FOSM) 

method has been effectively used in literature to investigate the propagation of second 

moment uncertainties by calculating an approximate estimate of the central tendency 

parameter (e.g., mean) and the dispersion parameter (e.g., standard deviation) of a 

random variable that is a function of other random variables [48]. 

Spatial Correlation and Semivariogram 

Geotechnical design engineers frequently fail to recognize the spatial variability of the 

collected geotechnical data and its potential inverse impact on geotechnical engineering 

applications, such as improper and/or unsafe design of shallow and deep foundations, and 

slope stability analysis. The simple evaluation of mean values from soil borings or in-situ 

testing within a zone or layer is a useful measure of the spatial variability of the intended 

soil property/parameter. Differences in soil parameters are strongly related to the spatial 

variability throughout a site, resulting in corresponding variations in the design value of 

geo-structure, such as the axial capacities of deep foundation. Additionally, since spatial 

variability has a degree of correlation that decreases with distance, the recommended 

LRFD resistance factors for design of geo-structures (such as foundation) based on data 

within the footprint versus data outside the footprint can be significantly different. 
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Correlation in Soil Properties 

In geotechnical engineering, using correlations and empirical relationships to predict the 

value of one parameter based on the value of another (perhaps more easily obtained 

parameter) can be considered a quick and cost-effective approach, provided that the 

relevant correlations are used. The quantification of the correlation between two or more 

soil qualities can provide a more accurate assessment of design parameter uncertainty and 

an indicator of the degree of independence between the parameters in probabilistic 

analysis (i.e., [48], [49], [50]).   

The correlation between two or more soil attributes has been found to be influenced by 

soil type, the testing method used to get the numerical value of the parameter, and the 

homogeneity of the soil to variable degrees [48]. There have been a lot of correlations 

between soil parameters that have been published. Over 50 of these connections are 

presented in an article by Kulhawy and Mayne [51]. 

Histogram, Mean and Variance 

The data for each soil layer or zone needs be plotted in a histogram once the site has been 

divided into layers or zones and the data has been de-trended for stationarity criteria. An 

engineer can see the frequency ranges of data as well as its distribution using the 

histogram (e.g., mode and mean align, etc.). The presence of several peaks or modes in 

the histogram can also be utilized to determine whether multiple distributions do exist 

inside each zone or layer. 

Both the mean () and variance (σ2) of the dataset (qi) should be first determined in 

addition to the histogram. For example, 

 𝜇 =
1

𝑛
∑ 𝑞𝑖

𝑛
𝑖=1                                                                                                     [10] 

 𝜎2 =
1

𝑛−1
∑ (𝑞𝑖 − 𝜇)2𝑛

𝑖=1                                                                                    [11] 

The coefficient of variation (COV) is a dimensionless measure of the inherent soil 

variability that can be made more helpful by normalizing the standard deviation with 

regard to the mean soil property trend, μ, as follows: 

 COV=
σ

𝜇
                                                                                                             [12] 



—  43  — 

 

where, μ is the dataset's mean, n is the number of data points, qi are the data values, and σ 

is the dataset's standard deviation. The spread or dispersion of data around the mean is 

represented by COV, a dimensionless number.  

Engineers should select the best probability distribution function (PDF) that best 

represents the observed data based on the shape of the histogram's distribution (e.g., 

uniform, triangular, normal, lognormal, etc.) as well as summary statistics (mean vs. 

mode, etc.). Almost all soil parameters (e.g., strength, modulus, etc.) have no negative 

values and a wide range of positive values, resulting in considerable disparities in mode 

(most frequent) vs mean values and are best described by lognormal distribution. 

Following the discussion of second moment statistics (mean, standard deviation, 

coefficient of variation (COV), and probability distribution) and correlation in soil 

properties, it can be concluded that second moment statistics are heavily dataset 

dependent, with data distribution heavily influenced by soil type and in-situ state. 

Published values, with their wide range of values, frequently fail to adequately represent 

the local circumstances and, as a result, may fail to produce efficient, cost-effective 

outcomes. As a result, site-specific second moment statistics must be developed. 

Spatial Variability Analysis 

The geographical variability of the parameters is not taken into consideration by the 

second-moment-based methodologies for characterization the uncertainty in geotechnical 

parameters. Geotechnical parameters are known to have lateral and depth-dependent 

relationships. They vary spatially, with a larger tendency for close neighbors to have 

similar values than distant neighbors. This is why the second moment statistics alone are 

insufficient to characterize the geotechnical parameter uncertainty ( [4], [27], [48]). 

Figure 9 shows why the second moment statistics alone are insufficient to quantify the 

uncertainty of geotechnical parameter. The figure depicts the simulated spatial data with 

identical distributions (top and bottom left) but distinct magnitudes of spatial correlation: 

weak correlation (top right) and strong correlation (bottom right) [52]. 
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Figure 9. Spatial data with similar distributions (top and bottom left) but different magnitudes of 

spatial correlation [52] 

 

Geostatistics is based on regionalized variables with properties that are partly random and 

partly spatial, and that are consistent from one point to another point [53]. The 

semivariogram, which is used to quantify the degree of spatial dependency between 

samples along a certain orientation and to illustrate the degree of continuity of the 

characteristic in question, is one of the most basic statistical measures in geostatistics.  

The stationarity of data is required in order to undertake geostatistical analysis. If the 

following conditions are met, data is said to be stationary: (a) there is no trend in the data; 

(b) the variance is constant with distance (homoscedastic); (c) there are no seasonal 

variations; and (d) there are no irregular fluctuations. In time series analysis, the need for 

stationarity is more severe than in geostatistics. It is common practice, in both random 

field theory and geostatistics, to convert a nonstationary dataset into a stationary one by 

removing a low-order polynomial trend, usually no more than a quadratic, using the 

Ordinary Least Squares (OLS) approach ( [29], [48]).  
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In semivariogram analysis, engineers must first assess the correlation between data/sets 

separated by different distances using different factors in order to define the spatial 

variability from measured data. The covariance C(h) between data values qi and qj 

separated by a distance h is one of the most important fundamental parameters used. The 

covariance C(h) is calculated as follows: 

 𝐶(ℎ) =
1

𝑛
∑ (𝑞𝑖 − 𝜇)(𝑞𝑗 − 𝜇)𝑛

𝑖.𝑗=1                                                                [13] 

where, qi and qj  are the data pairings separated by h, and n is the total number of data 

pairs. The C(h) value equals the variance for completely correlated data (i.e., qi = qj). 

C(h) = 0 if there is no correlation (i.e., the product of the terms is both plus and minus 

and sums to zero). The correlation coefficient, ρ(h), is a dimensionless representation of 

the data's correlation. 

 𝜌(ℎ) =
𝐶(ℎ)

𝜎2                                                                                                        [14] 

The limits of zero and one (0 < ρ(h) < 1) represent no correlation and perfect correlation, 

respectively. Another characterization of the spatial correlation in geostatistics is the 

semivariogram, γ(h), which is given by the following equation: 

 𝛾(ℎ) =
1

2𝑛
∑(𝑞𝑖 − 𝑞𝑗)2                                                                                     [15] 

The variogram γ(h) can also be evaluated from the covariance C(h) and the variance of 

data σ2 as follows: 

 𝛾(ℎ) = 𝜎2 − 𝐶(ℎ)                                                                                           [16] 

Figure 10 presents typical instances of C(h), ρ(h), and γ(h) as a function of h with each 

function indicating a decreasing correlation as h increases. The correlation function goes 

to zero at a distance of h = a (called the range), or the data pairings become uncorrelated. 

In the case of Equation 16, γ(h=a) = σ2 [C(h)=0], the variogram's top value, or sill, is 

attained. The spatial covariance function can be predicted using a variety of theoretical 

models. There are four types of models: spherical, exponential, Gaussian, and circular ( 

[6], [7]). The spherical model is the most extensively used of these models, and it is 

defined as follows: 

     C(ℎ𝑖) = 1-1.5ℎ𝑖+0.5ℎ𝑖
3 for ℎ𝑖< 1  
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     C(ℎ𝑖) = 0 for ℎ𝑖≥ 1                [17] 

Figure 10. Graphical examples of: (a) Spatial covariance function C(h); (b) Spatial correlation 

function ρ(h); and (c) Variogram γ(h) [14] 

 

Different Component of the Semivariogram 

The semivariogram curve describes the measured sample points' spatial autocorrelation. 

A model is fitted through each pair of locations once they have been mapped. There are 

some properties that are frequently used to characterize these models. Figure 11presents 

the three different components of the semivariogram, which include the range, sill, and 

nugget. 

Range: Examining the model of a semivariogram, we can see that it levels out at a given 

distance, h, between sample/test locations. The range is defined as distance at which the 

model begins to flatten out. Spatial autocorrelation exists between test/sample locations 

separated by a distances less than the range, but not between test/sample locations farther 

apart than the range. The range's physical meaning is that pairs of points that are this far 

apart or more are not spatially connected. 

Sill: The sill is the value that the semivariogram model achieves at the range (the y-axis 

value). The partial sill is the same as the full sill, but without the nugget. 

Nugget: The semivariogram value is 0 in theory for zero separation distance (lag = 0). 

The semivariogram, on the other hand, frequently exhibits a nugget effect, which is a 

value greater than 0 at an infinitesimally small separation distance. The nugget equals 

0.10, for example, if the semivariogram model intercepts the y-axis at 0.10. 
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Measurement mistakes; spatial sources of variation at distances smaller than the sampling 

interval; or both, might be blamed for the nugget effect. The mistake inherent in 

measuring apparatus causes measurement error. Natural events vary in spatial scale 

across a wide variety of scales. The nugget effect will manifest as variation at microscales 

smaller than the sample distances. Before you start collecting data, you need learn about 

the different dimensions of geographic variation. 

Figure 11. Different components of the semivariogram 

 

Evaluation of Scale of Fluctuation from Semivariogram 

The statistics and probabilistic analysis of the geotechnical parameters are the main focus 

of the deployment of reliability based design (RBD). The statistics elements needed for 

RBD are the mean, variance, and scale of fluctuation, θ. These statistics are not only site-

specific but also dataset-specific. The mean and variance are easy to compute when data 

is available. However, calculation of the scale of fluctuation is a bit complex, requiring 

more data and a well-defined soil profile [54].  

In-situ field tests such as the cone penetration test (CPT) can provide sufficient data to 

establish a well-defined profile but are not widespread used. The more used method is the 

standard penetration test (SPT), which cannot provide ample data to establish a well-

defined profile, which is required for computing the scale of fluctuation. The continuous 

Shelby tube sampling method is the alternate method and has the inherent capacity of 

providing sufficient data to establish a well-defined profile that can be used to compute 

the scale of fluctuation. Tests can be performed at a closer spacing (closer than SPT) and 

direct and indirect measurements of geotechnical properties can be carried out ( [13], 

[54]).  
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The semivariogram is one of the best approaches to evacuate the scale of fluctuation. The 

experimental variogram is first plotted and a best-fit model is obtained, and the 

parameters of the model are determined. One of the model parameters, the range of 

influence, a, is then used to evaluate the scale of fluctuation using the appropriate 

equation for the semivariogram (Gaussian, exponential, spherical, and circular), as given 

in Table 3 [55]. 

Table 3. Relationship between range of influence and scale of fluctuation [55] 

 

Several programs available in the market to model the semivariogram, such as VESPER 

and ArcGIS. The VESPER 6 program was used in this study to determine the scale of 

fluctuation. 

Implementing site variability from semivariogram into LRFD design of piles  

The ranges obtained from the semivariogram analyses are used to determine the reduction 

factor, αr [14], which will be applied to calculate the spatial coefficient of variation 

COVR,spatial as a function of COVq, of the field measurements (e.g., CPT-qt, SPT-N, Su) 

using the following equation: 

Here COVq = σ/m is the coefficient of variation in the sample data q. For application to 

pile foundation design, the generalized expression for COVR can be given as follows [14]: 

 COVR,spatial = √α𝑟 COVq                                            [18]                  
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where, D is the pile diameter; LLj are the known (deterministic) length intervals of the shaft; 

mLj are the expected values of fsLj (and hence q) in each layer; mEB is the value (expected) 

of end bearing resistance; 𝛼𝐿𝑗 is the α for each layer; σLj
2 is the variance in q for each layer; 

and σEB
2 is the variance in end bearing resistance. Equation 19 reduces to Equation 18 for 

nL = 1 (single layer) and mEB =σEB
2 = 0 (no end bearing) [14]. 

In the above equation, the reduction factor, αr, is a function of (
L

av
,  

D

ah
),  where av and ah are 

the correlation ranges in both the vertical and horizontal directions, respectively; and L and 

D are the pile length and pile diameter, respectively.  Since the horizontal correlation is too 

large compared to the pile diameter, the value of 
D

ah
 is usually approaching to zero, 

D

ah
≈ 0, 

in many cases. Elkateb et al. [5] derived the following equation to determine αr for spherical 

model:  

αr = 1 - 
L

2 av
 + 

L3

20 av
3  For 0 ≤ 

L

 av
 ≤ 1 

                 [20] 

αr = 1 - 
3 av

4  L
 + 

av
2

5 L2 For 
L

 av
 ≥ 1 

In order to consider, both 
L

av
 and 

D

ah
, we have to use the figure 1.8 given by McVay et al. 

[14]. Results from McVay et al. [14] numerical integration in terms of r
1/2

 as a function 

of the dimensionless variables 
L

av
 and 

D

ah
 are presented in Figure 12 (spherical).  

Once the value of spatial coefficient of variation, COVR, is defined, the resistance factor, 

ϕR, for pile design according to the load and resistance factor design (LRFD) method can 

be calculated using the following modified first-order second moment method (MFOSM) 

calibration equation proposed by McVay et al. [14]: 

ϕR =

𝜆𝑅 (𝛾𝐷
𝑄𝐷
𝑄𝐿

+ 𝛾𝐿) √
1 + 𝐶𝑂𝑉𝑄

2

1 + 𝐶𝑂𝑉𝑅
2

(𝜆𝑄𝐷
𝑄𝐷
𝑄𝐿

+ 𝜆𝑄𝐿) exp (𝛽𝑇√ln(1 + 𝐶𝑂𝑉𝑅
2) (1 + 𝐶𝑂𝑉𝑄

2))

       [21] 

where, λR is the resistance bias factor; QD is the dead load and QL is the live load;  βT is 

the target reliability index; γD is the dead load factor and γL is the live load factor; λQD is 

COVR,spatial =
√𝜋2𝐷2 ∑ 𝐿𝐿𝑗

2 𝛼𝐿𝑗𝜎𝐿𝑗
2 + 𝜎𝐸𝐵

2𝑛𝐿
𝑗=1

𝜋𝐷 ∑ 𝐿𝐿𝑗𝑚𝐿𝑗
𝑛𝐿
𝑗=1 + 𝑚𝐸𝐵

 
                         [19] 
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the dead load bias factor (measured divided by predicted) and λQL is the live load bias 

factor. COVQD is for the dead load and COVQL is for the live load. The QD/QL is the ratio 

of dead and live load (which is assumed to be 3 in this study). 

Figure 12. Integrating 𝐫
𝟏/𝟐

 as a function of L/av and D/ah for piles for the spherical model [14] 

 

The value of the resistance bias factor, 𝜆𝑅, depends on the method used to design the pile 

foundations. In this study, we will use the Laboratoire Central des Ponts et Chausees 

(LCPC) method [56] to design the piles from the CPT data. The LCPC is a direct pile-CPT 

method that showed one of the best performance pile-CPT methods on estimating the 

ultimate pile resistance in Louisiana [57]. The resistance bias factor, λR, and COVR,method 

for the LCPC method are 1.04 and 0.31, respectively. For design of piles using the soil 

borings and laboratory tests, the static analysis method recommended by the Federal 

Highway Administration (FHWA) will be considered. The FHWA recommends using the 

Nordlund method for sand layers based on results of SPT data, and the α-Tomlinson 

method for clay layers based on undrained shear strength, Su. The values of λR and 

COVR,method for the Nordlund method are 1.02 and 0.48, respectively; and the values of λR 

and COVR,method for the α-Tomlinson method are 0.87 and 0.48, respectively [58]. 

It should be noted here that the coefficients of variation of resistance, COVR, presented 

above for the different design methods (i.e., COVR = 0.31, 0.48 or 0.48) do not include the 

effect of site variability, which treats the site with low variability the same as the site with 

high variability. In this study, we will incorporate the effect of site variability in calibrating 

the resistance factor, ϕR, for use in LRFD design of driven piles. 

The value of resistance bias factor, λR, is calculated as: 
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𝜆𝑅 =
∑ 𝜆𝑅𝑖

𝑁
 [22] 

where, λRi is the resistance bias factor for each site and N is the number of sites. The 

coefficient of variation of the random loads, COVQ, was introduced by McVay et al. [14] 

using the following equation:  

 𝐶𝑂𝑉𝑄 = √

𝑄𝐷
2

𝑄𝐿
2 𝜆𝑄𝐷

2𝐶𝑂𝑉𝑄𝐷
2 + 𝜆𝑄𝐿

2𝐶𝑂𝑉𝑄𝐿
2

𝑄𝐷
2

𝑄𝐿
2 𝜆𝑄𝐷

2 + 2
𝑄𝐷

𝑄𝐿
𝜆𝑄𝐷𝜆𝑄𝐿 + 𝜆𝑄𝐿

2
   [23] 

where, COVQD and COVQL are the coefficient of variations (COV) for the dead load and 

live load, respectively. According to the FHWA [59], the dimensionless parameters in the 

above equations can be defined as the follows: 

𝛾𝐿 = 1.75; 𝜆𝑄𝐿 = 1.15; 𝐶𝑂𝑉𝑄𝐿 = 0.18; 𝛾𝐷 = 1.25; 𝜆𝑄𝐷 = 1.08;  𝐶𝑂𝑉𝑄𝐷 = 0.128 

Bayesian Analysis 

The Bayesian statistical analysis was introduced in 1763, and the Bayes' technique was 

adopted by Laplace and other notable probabilists at that time. However, it was not 

favorable during the nineteenth century due to the lack of understanding on how to 

appropriately handle the prior probabilities. The development of an entirely different 

theory, known as frequentist statistics, occurred in the first half of the twentieth century. 

The modern Bayesian analysis method started in the second half of the twentieth century, 

by Jimmy Savage in the United States and Dennis Lindley in the United Kingdom. But 

the Bayesian inference remained extremely difficult to implement until the late 1980s and 

early 1990s, when powerful computers became widely available and new computational 

methods were developed. The surge of interest in Bayesian statistics has resulted in 

considerable study in Bayesian methodology, as well as the application of Bayesian 

methods to pressing challenges in a variety of fields, including astrophysics, weather 

forecasting, health care policy, criminal justice and, engineering.  

Bayesian analysis is a statistical paradigm that uses probability assertions to answer 

research queries regarding unknown parameters. In Bayesian analysis, rather than one 

fixed value, a parameter is described by a complete distribution of values, as in classical 

frequentist analysis. The essence of Bayesian analysis is in estimating this distribution, 

and the posterior distribution of a parameter of interest. 
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Prior Distribution 

A prior probability distribution of an unknown quantity, also known as the prior in 

Bayesian statistical inference, is the probability distribution that would describe one's 

assumptions about the quantity before any evidence is taken into account. For example, 

the prior could be a probability distribution indicating the relative proportions of voters 

who will vote for a specific politician in a future election. Rather of being an observable 

variable, the unknown quantity could be a model parameter or a latent variable. 

The posterior probability distribution, which is the conditional distribution of the 

unknown quantity given the data, is calculated using Bayes' theorem, which produces the 

renormalized pointwise product of the prior and the likelihood function. Similarly, the 

unconditional probability ascribed to a random event or an ambiguous claim before any 

relevant data is taken into consideration is known as the prior probability. 

A prior can be calculated using historical data, such as previous experiments. It can also 

be derived from an experienced expert's completely subjective opinion. When no 

information is available, an uninformative prior might be generated to indicate a balance 

among outcomes. 

Informative priors: A precise, definite information about a variable is expressed by an 

informative prior. A prior distribution for the temperature at noon tomorrow is an 

example. Making the prior a normal distribution with an expected value equal to today's 

noontime temperature and a variance equal to the day-to-day volatility of atmospheric 

temperature, or a temperature distribution for that day of the year, is a reasonable method. 

This example, like many priors, has the property that the posterior from one problem 

(today's temperature) becomes the prior for another problem (tomorrow's temperature); 

pre-existing evidence that has already been taken into account is part of the prior, and as 

more evidence accumulates, the posterior is largely determined by the evidence rather 

than any original assumption, provided that the original assumption admitted the 

possibility of what the evidence shows. The phrases "prior" and "posterior" refer to a 

specific datum or observation in general. 

Weakly informative priors: A variable's partial information is expressed by a weakly 

informative prior. For example, if the prior distribution for the temperature in St. Louis at 

noon tomorrow is a normal distribution with a mean of 50 degrees Fahrenheit and a 

standard deviation of 40 degrees, the temperature is very loosely constrained to the range 
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(10 degrees, 90 degrees) with a small chance of being below 30 degrees or above 130 

degrees. A weakly informative prior is used for regularization, or keeping inferences 

within a tolerable range. 

In this research, in level 1 analysis of Bayesian framework, the statistical data for Prior1 

(i.e., weakly informative prior) are usually taken from previously nationwide (or 

statewide) testing database when available. 

Likelihood function 

The joint probability of the observed data as a function of the parameters of the chosen 

statistical model is described by the likelihood function (sometimes simply called the 

likelihood).  

The likelihood function p(y|θ) assigns a probabilistic forecast to the observed data (y) for 

each given parameter value ( in the parameter space. The likelihood includes both the 

data-generating process and the missing-data mechanism that created the observed 

sample because it is effectively the product of sampling densities. The parameters' 

likelihood is not a probability density function (PDF). Meanwhile, in Bayesian statistics, 

the likelihood function acts as a conduit for sample information, p(θ|y), to alter the 

parameter's posterior probability. Fisher [60] was the first to advocate for the use of 

likelihood, believing it to be a self-contained framework for statistical modeling and 

inference. Later, Barnard and Birnbaum endorsed the likelihood principle, claiming that 

the likelihood function contains all the important information for inference ( [61] [62]). 

The likelihood function, however, is important in both frequentist and Bayesian statistics 

[63]. 

Posterior probability 

The conditional probability of a random occurrence or an uncertain claim is the posterior 

probability given the relevant data or background in Bayesian statistics. In this usage, 

"posterior" indicates taking into consideration all relevant evidence relating to the 

particular matter under investigation. The posterior probability distribution is the 

probability distribution of an unknown quantity that is handled as a random variable and 

is based on data from an experiment or survey. 

A posterior distribution is made up of a prior distribution for a parameter and a likelihood 

model that provides parameter information based on observed data. The posterior 

distribution can be calculated analytically or estimated using one of the Markov chain 
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Monte Carlo (MCMC) methods, depending on the prior distribution and likelihood model 

used. 

The posterior distribution is used in Bayesian inference to create various summaries for 

model parameters, such as posterior means, medians, percentiles, and interval estimates 

known as credible intervals. Furthermore, all model parameter statistical tests may be 

stated as probability assertions based on the predicted posterior distribution. The ability 

to incorporate prior information into the analysis; an intuitive interpretation of credible 

intervals as fixed ranges to which a parameter is known to belong with a predetermined 

probability; and the ability to assign an actual probability to any hypothesis of interest are 

all unique features of Bayesian analysis. 

Bayesian inference 

In Bayesian, statistical conclusions regarding a parameter θ, or unobserved data y ̃, 

probability assertions are used. These probability statements are represented in our 

notation as p(θ|y) or p(y ̃| y) and are conditional on the observed value of y. Bayesian 

inference differs from the approach to statistical inference described in many textbooks, 

which is based on a retrospective evaluation of the procedure used to estimate θ (or y ̃) 

over the distribution of possible y values conditional on the true unknown value of θ at 

the fundamental level of conditioning on observed data. 

Using the basic feature of conditional probability known as Bayes' rule, simply 

conditioning on the known value of the data y produces the posterior density: 

𝑝(𝜃|𝑦) =
𝑝(𝜃,𝑦)

𝑝(𝑦)
=

𝑝(𝜃) 𝑝(𝑦|𝜃)

𝑝(𝑦)
                                                                                     [24] 

An equivalent form of the above equation omits the factor p(y), which does not depend 

on θ, and with fixed y, it can be considered as a constant, resulting of the posterior 

density which is the right side of the following equation: 

𝑝(𝜃|𝑦) ∝ 𝑝(𝜃) 𝑝(𝑦|𝜃)                                                                                              [25] 

where, p(θ|y) is the posterior function, p(θ) is the prior distribution, and p(y|θ) is the 

likelihood function. 

There are many reasons to use Bayesian approaches, which can be used in a variety of 

domains. Several foundational theorems demonstrated that the only way to make 

consistent and sound decisions in the face of uncertainty is to employ the Bayesian 
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approaches. The pragmatic advantages of the Bayesian approach have fueled its rapid 

expansion over the last 20 years and are the cause for its adoption in an ever-widening 

range of sectors. Bayesian approaches can solve vast and complex statistical issues with 

relative ease due to powerful computational resources, whereas frequentist methods can 

only approximate or fail completely. 

Bayesian analysis in geotechnical analysis 

The presumption that the bias factors for the various project sites in any specific area 

have similar measurements and variabilities may not be generally valid. The variety in 

components (e.g., soil properties and workmanship) from site to site can cause the 

statistical analysis of the bias factor and standard deviation to be contrast in different sites 

within the same area [64]. The significance of the site-specific variability in the design of 

pile foundations based on load test database have been demonstrated in several research 

studies (e.g., [64], [65], [66]). They found out that the variability of the bias factor for a 

specific site, is usually lower than that in the regional area. 

Most of the time, any interpretation model is just a guess or improvement of the present 

reality, model vulnerability, or uncertainty that consistently exist ( [67], [68]). On the off 

chance that the model’s uncertainties are not thought of, the model expectations, and 

henceforth the choices dependent on the predictions could be one-sided or biased. Tang 

and Gilbert [69] and Lacasse and Nadim [70] found out that the predicted failure 

probabilities without considering the model uncertainties were not representing the real 

failure probabilities of geotechnical frameworks. Inquiries have been completed to 

consider the impacts of uncertainty associated with input parameters and perception 

uncertainty on the assurance of model vulnerability. For example, Gilbert and Tang [71] 

performed geotechnical reliability analysis and proposed a model to update and 

incorporate the model’s uncertainty mean for the offshore applications. Juang et al. [72] 

developed a methodology to isolate the uncertainties in the liquefaction assessment 

model from the parameters’ uncertainties with the guide of a Bayesian mapping capacity. 

Zhang [73] proposed a Bayesian technique for updating the associate model’s 

uncertainties for slope stability analysis. The concept of likelihood was introduced by 

Zhang [73] to develop a methodology to incorporate the uncertainties in the model’s 

parameters. Ching et al. [74] utilized a Bayesian framework to develop a pile load 

capacity model using the associated uncertainties to calibrate the resistance factors for 

LRFD design of piles. The basic concept of all Bayesian statistics is based on Bayes' 

theorem and that is posterior function depends on the prior and likelihood information.  
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The prior information is a key piece of Bayesian derivation that deals with the data about 

an uncertain parameter that is joined with the likelihood of new information to yield the 

posterior information (prediction), which is utilized for future deductions and choices that 

include the uncertain parameter. Generally, the likelihood is anything but a probability, 

which is relative to the probability function. The likelihood function of a defined 

hypothesis (H) at the point, when given a few information or data (D), is the probability 

of getting D given that H is multiplied by a positive constant, K. Then the likelihood of H 

will be L(H) = K × P(D|H). As a rule, the hypothesis deals with the estimation of a 

parameter in a factual model, such as the mean of a normal distribution. Since the 

likelihood is different from a probability, most of the time it disregards the different rules 

of probability; such as in the case of likelihood, the distribution area does not need to be 

1. When the information from the prior is legitimately joined with the likelihood of the 

data, it yields a satisfactory posterior information [75]. The distribution of the posterior 

information, in the Bayesian analysis, is the overhauled or revised probability of an 

occasion happening, when new information is considered. The updated knowledge (or 

posterior) can be obtained from the prior information and likelihood using the Bayesian 

theorem. Statistically, it can be inferred that the posterior distribution is mainly the 

probability of any event X occurring (given that) when another event Y has already 

occurred. The posterior distributions ought to be a superior impression of the basic truth 

of an information producing process than the probability of prior, since the posterior 

distribution included more data. The posterior distribution can afterward turn into a prior 

distribution for an updated posterior distribution, in which this information can be 

incorporated into the analysis. 

Markov chain Monte Carlo Simulation (MCMC) 

Many sophisticated approaches for building and sampling from arbitrary posterior 

distributions have been proposed. Markov chain simulation (also known as Markov chain 

Monte Carlo, or MCMC) is a general method that involves extracting values from 

approximate distributions and then correcting those draws to better approximate the target 

posterior distribution, p(θ│y). The draws create a Markov chain since the sampling is 

done sequentially and the distribution of the sampled draws is determined by the previous 

value drawn. The key to the method's effectiveness, however, is that the approximation 

distributions improve at each step of the simulation, i.e., they converge to the target 

distribution. The Markov property is useful in establishing the convergence. 



—  57  — 

 

Figure 13 presents a simple Markov chain simulation, which is a Metropolis algorithm in 

this case, in which θ is a two-component vector with a bivariate unit normal posterior 

distribution θ ~ N (0,I), and is a vector with only two components. Figure 13a depicts the 

simulation's initial stages. Each of the five jagged lines in the figure presents the early 

path of a random walk starting near the center or extremes of the target distribution and 

leaping through the distribution according to a suitable sequence of random iterations. 

Figure 13b shows the final step of the same Markov chain simulation, in which the 

simulated random walks have all traced a path through the space of θ with a shared 

stationary distribution equal to the goal distribution. 

Bayesian Framework used to update the Prior Information 

The application of Bayesian framework to update data usually consist of two levels of 

analyses. In level 1 of the Bayesian framework, Prior1 (i.e., weakly informative prior) 

statistical data is usually taken from previous nationwide (or statewide) testing database 

when available. In the absence of such data, the authors can propose rationale values of  

and σ based on their judgment of the region. The prior distribution is taken as the 

probability density function (PDF) of the available prior information or data (e.g., 

previous database or engineering experience and judgment). It measures probabilistically 

the earlier prior information in the deficiency or shortage of information. In the absence 

of dominant prior information or data, a comparatively uninformative prior knowledge 

can be functional ( [76], [77]) that composed with standard ranges of parameters ( [6], 

[70], [78]). As the prior knowledge improves with time, in the future or in the next level 

of data and analysis, an increasingly useful prior can be evaluated from earlier 

information [77]. The definition of the prior distribution using prior data and knowledge 

is thoroughly discussed in the literature (e.g., [79]). 
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Figure 13. A Markov chain simulation with five separate sequences (a) after 50 iterations, away from 

the convergence (b) the sequences are closer to convergence after 1000 iterations 

 

In this study, the Bayesian method was used to update the statistical data (mean, , and 

standard deviation,  σ) of pile load test database in order to get the an updated 

information (i.e., posterior distribution) for the new tested site. The statewide observation 

data obtained from the pile load test database is expressed through a likelihood1 

(likelihood function at level 1) function (logarithmic function). After deriving the prior 

and likelihood distribution for the level 1 using the Bayesian analysis, the posterior1 

distribution (posterior function at level 1) that reflects the updated information (i.e., 

posterior knowledge) can be derived [80]. The posterior1 distribution data includes the 

combination of the prior information and the observation distribution (likelihood 

distribution) data. The posterior information generated in the preceding level of the 

Bayesian analysis can be considered as the prior information and utilized along with the 

extra site observation data to additionally update the information/data [81]. The Bayesian 

analysis deals with increasingly improving the existing information of the new project 

site conditions as the site observation data are gathered. 

In level 2 of the Bayesian analysis, the posterior1 function obtained in the level 1 analysis 

can be taken as the prior2 knowledge or data. For example, data collected from pile load 

tests in the new site can be considered as the likelihood2 knowledge. After the prior2 and 

likelihood2 function are determined for the level 2 Bayesian analysis, posterior2 (updated 

knowledge) can be evaluated, which is associated with the prior knowledge/data and new 

observation data of the specific site. 

The two levels of updating the mean bias (λ) and standard deviation of the bias values (σ) 

of data for any specific site are usually consist of three key elements, the prior 
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distribution, the likelihood function, and posterior distribution within the Bayesian 

framework. Figure 14 presents a flowchart of the Bayesian framework describing the two 

levels of updating the λ and σ for any new specific site. The distribution of posterior is 

proportional to the product of the prior and the likelihood, as will be described later in the 

Methodology section. 

Figure 14. Bayesian framework for two levels of updating the mean bias (λ) and standard deviation 

of bias (σ) of data for any specific site 

 

 

Probabilistic Analysis 

Spatial interpolation techniques not only include simple mathematical or empirical 

methods such as inverse distance weighting and cubic spline interpolation but also 

include geostatistical methods. Whereas the former methods have limitations in 

processing all data in the target area owing to their irregular correlation, geostatistical-

related techniques are effective for spatial interpolation across a wide area when 

considering the spatial tendency and influencing range of the raw data. The most 
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significant difference between them comes from considering or not considering the 

spatial variation (uncertainty) based on distance and direction. 

Whereas the values of the inverse distance are weighed the same at a specific distance, 

those of an ordinary kriging, which is a representative method used in geostatistics, may 

vary even at the same distance [82]. The conventional two point based geostatistical 

methods adopt a variogram (semivariogram) or covariance to quantify the spatial 

variability. Accordingly, the prediction accuracy of a spatial interpolation is known to be 

equal to or higher than that of inverse distance weighing (e.g., [83], [84], [85]). 

Since originating in the mining industry, geostatistics have been utilized in various fields 

such as meteorology, geology, and petroleum engineering (e.g., [82], [83], [84]). 

Recently, they have been used in geotechnical engineering and engineering geology for 

creating 3D geotechnical models of soil or rock properties (e.g., [85], [86], [87]) and for 

characterization of the subsurface strata (e.g., [88] , [89]). Recently, some studies have 

attempted to analyze geotechnical datasets with different characteristics using geo-

statistics (e.g., [90]). 

Kriging Method 

It is believed that geostatistics have been derived from the research on the geology and 

mining done by Krige [91]. However, it was introduced before in the field of agronomy 

and meteorology [92]. Geostatistics includes various methods that use kriging formulas to 

estimate missing data. 

Semivariance and Variogram: The first step in the kriging interpolation method is the 

computation of an experimental semivariogram. Generally, to examine the spatial 

distribution structure of the soil properties, the basic tool of semivariograms were used. 

The semivariance can be described by the following equation: 

𝛾(ℎ) =
1

2𝑛
∑ (𝑧(𝑥𝑖) − 𝑧(𝑥𝑖 + ℎ))2𝑛

𝑖=1                                                                           [26] 

where ‘n’ is the number of data points separated by distance ‘h,’ and γ(h) is the 

semivariogram (commonly referred to as variogram) [92]. 

The semivariogram has some important key properties (Figure 15). The first one is the 

‘nugget.’ The nugget effect means when the variogram does not start from 0 and 

estimates the error caused by measurement and spatial variability. The ‘range’ is the 

distance value where ‘sill’ is reached. In general, if a nugget/sill ratio is less than 25%, it 
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indicates strong spatial dependency. When it is greater than 75%, it indicates weak spatial 

dependency; otherwise, the spatial dependency is called moderate [93]. The size of a 

search distance that will be used in the spatial interpolation methods is determined by the 

range [94]. 

Figure 15. Semivariogram terminology and properties [95] 

 

There are some simple variogram models, including: exponential, spherical, Gaussian, 

linear, and power model ( [92], [94]). Generally, all types of spatial interpolation 

techniques can be represented as the weighted average of known data. They can be 

estimated from the general spatial interpolation equation, as follows: 

𝑍(𝑥0) = ∑ 𝜆𝑖𝑧(𝑥𝑖)
𝑛
𝑖=1                                                                                                      [27] 

where, ‘Z’ is the expected value at an unsampled location ‘x0,’ ‘z’ is the measured value 

at sampled location ‘xi,’ ‘λi’ is the kriging weight, and ‘n’ is the number of sampled points 

for the spatial interpolation [92]. However, all kind of kriging interpolation methods have 

a basic equation, which is slightly modified version of the above equation, as follows: 

𝑍(𝑥0) − 𝜇 = ∑ 𝜆𝑖[𝑍(𝑥𝑖) − 𝜇(𝑥0)]𝑛
𝑖=1                                                                             [28] 

where, ‘μ’ is the stationary known mean, and ‘μ(x0)’ is the mean of the sampled data. Step 

by step procedure of kriging interpolation methods were done by Clark and Harper [96]. 

To define the spatial continuity, the kriging approach uses the semivariogram, which is 

also used to measure the strength of statistical correlation as a function of distance.  

The general formula of simple kriging (SK) depends on the above equation for its weight. 

After a slight modification, we can derive the following equation: 
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𝑍(𝑥0) = ∑ 𝜆𝑖𝑍(𝑥𝑖) + [1 − ∑ 𝜆𝑖
𝑛
𝑖=1 ]𝑛

𝑖=1 𝜇                                                                      [29] 

Ordinary Kriging (OK): Statistical properties of sampled data can be incorporated using 

the ordinary kriging (OK) method, which is pretty similar to SK. The main difference is 

that OK considers the attribute value by replacing μ with a local mean μ(x0) that is the 

mean of samples within the search window. The equation for ordinary kriging will then 

be given as follows: 

𝑍(𝑥0) = ∑ 𝜆𝑖𝑍(𝑥𝑖) + [1 − ∑ 𝜆𝑖
𝑛
𝑖=1 ]𝑛

𝑖=1 𝜇(𝑥0)                                                              [30] 

For ordinary kriging, [1 − ∑ 𝜆𝑖
𝑛
𝑖=1 ] = 0, that is ∑ 𝜆𝑖

𝑛
𝑖=1 = 1, which is achieved from 

equation 26. Therefore, ordinary kriging uses equations 26 and 30 to make the estimation 

and estimates local constant mean [96]. Figure 16 given by the Environmental Systems 

Research Institute (ESRI) [97] presents an example of one spatial dimension of ordinary 

kriging (where µ is an unknown constant). 

Figure 16. Example of ordinary kriging with one spatial dimension [97] 

 

Conditional Simulations 

A conditional simulation is a type of variable generation method used as an alternative to 

ordinary kriging, which has a smoothing effect. In addition to maintaining the distribution 

characteristics of dataset, it is possible to simulate its heterogeneity [98]. Uncertainty can 

also be assessed by generating the stochastic results multiple times [99]. As the principle 

of a conditional simulation, the prediction value of uninvestigated locations has a random 

function rather than a fixed value. Parametric or nonparametric methods are used to 

construct a random function. In this study, a three-dimensional interpolation of the 
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geotechnical property is performed using a sequential Gaussian simulation (SGS) as a 

parametric method and a sequential indicator simulation (SIS) as a non-parametric 

method. 

In an SGS, the distribution of a point or grid to be simulated is assumed to have a normal 

distribution. Its mean and variance are the prediction value and error variance calculated 

through simple kriging, respectively. It is suitable for predicting the given dataset 

following a normal distribution. If the distribution of the experiment data is not normal, 

preprocessing such as a normal score or a log normal transform is required. 

An SIS is a non-parametric method used to obtain the local cumulative distribution 

function of the predicted points or grids through indicator kriging, and can be applied to a 

dataset with any form of distribution [100]. It can be also employed even if the dataset 

has a highly skewed distribution or a large coefficient of variation without any specific 

preprocessing [101]. It uses the indicator variables instead of the given data to draw the 

local cumulative distribution function. The process of calculating the indicator variable is 

called the indicator transform, which is conducted using the indicator thresholds. 

Sequential Gaussian simulation (SGS) 

The values obtained by the kriging or cokriging system are predicted with minimized 

estimation variance and, therefore, show lower fluctuation than the actual, unknown 

values [102]. Hence, conditional simulation models are used to reproduce the actual 

statistics, maintain the texture of the variation, and take precedence over local accuracy. 

Unconditional simulation is simply the application of the general Monte Carlo technique 

whereby values are created with a particular covariance or semivariogram functions. 

However, in conditional simulation, in addition to creating possible values of random 

variables elsewhere, the generator must return the data values to known places. 

The conditional simulation techniques can be categorized into indirect and direct 

approaches. Indirect approaches are based on unconditional simulation, which is 

transformed to the conditional ones [103]. These approaches are used when the mean and 

variance are known and constant over the region of interest. However, direct approaches, 

such as SGS, are used when the mean and variance are unknown or variable. In this 

study, it was assumed that the mean does not stabilize and the variance always increases 

over increasingly large domains, which opened up a wider field of application. Hence, the 

SGS method was implemented to perform conditional simulations. 
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The sequential Gaussian simulation is a straightforward algorithm for generating a 

realization of a multivariate Gaussian field. In this technique, each variable is simulated 

sequentially according to its normal conditional cumulative distribution function (CCDF) 

through a kriging or cokriging estimation system. The basic conditional sequential 

simulation steps are mentioned as follows [104]: 

1. Define a random path which meets all nodes of the grid in each realization, 

2. Define a search ellipsoid for each grid node to find the adjacent known data, 

3. Use kriging/cokriging with a semivariogram model to determine the mean and 

variance of CCDF, 

4. Draw a value from the CCDF of the random variable, 

5. Add this new value to the initial conditioning dataset, and 

6. Repeat until all nodes are simulated. 

As is discussed by Dowd, the SGS method has several advantages including automatic 

handling of anisotropies, data conditioning, and fast computer implementation since an 

efficient kriging/cokriging algorithm with a moving neighborhood search capability is all 

that is required [105]. 

Variograms of transformed data are calculated and modeled. It is necessary to define a 

grid for simulation and a random path to asses’ grids nodes. According to the kriging 

mean and variance, a Gaussian probability distribution is determined in each node. For 

estimating at each node it’s necessary to choose a random path. A random value, which is 

drawn from Gaussian probability distribution, is known as a simulated value in each 

node. The basic steps in SGS algorithm are shown in Figure 17 [106]. 
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Figure 17. The basic steps of SGS algorithm [106] 

 

In many applications, the major objective has been to obtain the “best” estimate of the 

variable studied. To achieve this objective, estimation methods have progressed from 

geometric triangulation and polygonal approaches to a variety of kriging algorithms. All 

of these estimation approaches produce a map of locally averaged values and in the case 

of kriging, a map of the estimation variance at each estimated location. The result models 

produced by these estimation methods have several limitations. These limitations include:  

 The spatial variability and histogram of the estimates is “smoothed” compared to 

that known from sample data, 

 The assessment of uncertainty (by means of the kriging variance) is strongly 

controlled by the sampling configuration without reference to the magnitude of the 

sample grades that inform the estimated value.  

 It is very difficult to obtain a quantification of the uncertainty of a collection of 

blocks because the uncertainty in each block is not independent of the uncertainty 

in the adjoining block.  
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In contrast to the estimation methods, geostatistical simulation provides maps of the 

variable that honor the sample data values, reproduce the histogram, and reproduce the 

spatial variability of the variable of interest. In addition, simulation is a probabilistic 

procedure that results in many different realizations of the same attribute. Each 

realization honors sample values, geological interpretation, data statistics and spatial 

continuity. 

Unlike estimation, where a best map can be generated under some definition of quality 

(for kriging it is the minimization of the mean square error), realizations are accepted or 

rejected based on their capacity to honor the data, geology, histogram, variogram, and 

any secondary information. Therefore, there is no single best realization, since they are 

all considered equally likely to occur. The set of equally probable realizations allows us 

to obtain a distribution of the possible grade at that location. Similar procedures exist for 

categories such as the geological unit. This distribution of outcomes is interpreted as the 

uncertainty in the variable. This allows to report an uncertainty value that is conditioned 

by the surrounding sample values and geological attributes. The set of simulated values 

on a point scale allows us to consider the uncertainty of a collection of related points or 

joint uncertainty. This means a change of support can be performed, and simulations at 

block support are obtained. The set of block support realizations represents the 

uncertainty of the variable at that support.  

In summary, the conditional simulation provides a quantification of the uncertainty 

surrounding an estimate. These values may account for the support and information 

effects, hence allowing quantification of uncertainty in any response variable. Response 

variables that depend upon several input variables can be correctly assessed with 

simulation and their uncertainty, quantified. This is the case of the response in mine 

planning, in geometallurgical studies or in geotechnical classification. A complete 

introduction to SGS method is available in [106] and [107]. The procedure of SGS 

algorithm used in this study is described in Figure 18. 

In general, the SGS algorithm relies on the multi-Gaussian approach [106]. Therefore, 

prior to the application of SGS algorithm, the observations were checked by the 

Kolmogorov-Smirnov (K-S) test to verify whether they were normally distributed. After 

treating the outliers ( [108], [109]) and creating a lognormal transformation, a lognormal 

distribution was obtained for the given soil layer. The semivariogram for the given soil 

layer were then calculated with the transformed data. After 100 realizations in different 

numbers of random seeds, the resulting data were back transformed into the original scale 

(e.g., [110], [111]).  
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Figure 18. Steps of SGS, based on Goovaerts [107] 

 

Application of Site Variability in Geotechnical Analysis 

Application of Site Variability in Slope Stability Analysis 

Slope stability analysis is a highly challenging task in geotechnical engineering as the 

influence of uncertainty involved in geotechnical properties on failure behavior of slopes 

is inevitable. Traditional slope stability methods, such as limit equilibrium method 

(LEM), ordinary method of slices, Bishop’s simplified method, Janbu’s simplified 

method and Spencer method, have been used for slope stability analysis. The traditional 

deterministic slope stability approaches that are based on a single factor of safety (FS) 

cannot explicitly encounter the uncertainties involved in geotechnical properties and 

failure mechanism, leading to erroneous results of slope stability. Hence, slope stability 

practice is highly persuadable to probabilistic treatment, which allows quantification of 

the uncertainty and rationally integrating the same into the analysis. Many researchers 

studied the effect of spatial variation of the soil properties on the probabilistic slope 

analysis (e.g., [19], [112], [113], [114]). A more advanced approach of probabilistic 
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analysis in geotechnical engineering for incorporating spatial variability of soil, referred 

as the ‘random finite element method’ (RFEM) (e.g., [112]), was developed in 1990s. The 

RFEM is a completely different approach for evaluating failure probability. In RFEM, the 

soil properties are considered random variables at any location within the soil domain. A 

typical two-dimensional random field with low and high correlation lengths is shown in 

Figure 19.  

The random limit equilibrium method (RLEM), a random field that was first generated 

using the local average subdivision (LAS) method developed by Fenton and Vanmarcke 

[23] and then mapped into a grid of elements (mesh). Each mesh element in the random 

field has different values of soil properties, and cells close to one another have values that 

are closer in magnitude, based spatial correlation length. In each realization, a search is 

carried out to find the mesh elements intersected by the slip surface. The random soil 

property values are assigned to the slices whose base mid-point falls within that element. 

A limit equilibrium approach is then used to calculate factor of safety (FS) for each trial 

(simulation). The probability of failure is calculated as the ratio of the number of 

simulations resulting in FS < 1 to the total number of simulations.  

Figure 19. Typical 2D random filed for slope with a) Small correlation length, and b) high correlation 

length [20] 

 

The spatial variability analysis using the random variable approach has been 

implemented in many geotechnical software such as GeoStudio, Soil Vision, and 

Rocscience Slide 2018. In this study, the Rocscience Slide 2018 software was used to 

evaluate the effect of site variability in slope stability analysis. The spatial variability 

analysis is a sub-option of the probabilistic analysis in Slide software, which allows the 

user to simulate the variability of soil properties, such as strength and unit weight, with 

location within the soil mass. A traditional probabilistic slope stability analysis does not 
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account for this type of variability. In a traditional probabilistic analysis, a statistical 

distribution is defined for a parameter (e.g., cohesion c, friction angle, ϕ), and for each 

simulation, the entire soil mass is assigned a single random value as shown in Figure 20a. 

With the spatial variability analysis, a statistical distribution will be defined for each 

parameter (e.g., c, ϕ). Correlation length between the parameters are defined in both x 

and y direction, and for each simulation, a random field of values is generated for soil 

mass as shown in Figure 20b. During the slope stability analysis, any slip surface that 

passes through the spatially variable material, will encounter variability of properties 

along the slip surface. 

Since most of the geotechnical design parameters (e.g., c, ϕ, and unit weight) have certain 

degree of spatial variability, the slope stability analysis that incorporates the spatial 

variability is considered more realistic to define the factor of safety and probability of 

failure. The use of spatially variable analysis has been shown to affect the calculated 

probability of failure of slopes. For example, slope stability models that account for 

spatial variability of soil properties (e.g. c and unit weight) results in a lower probability 

of failure, as compared to the same analysis without including spatial variability [115]. A 

probabilistic analysis that does not consider spatial variability has been shown to result in 

unrealistic and overly conservative probabilities of failure [115]. 

Figure 20. (a) Single random sample value (cohesion) applied to entire soil region, (b) Random field 

of spatially variable cohesion 
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The conventional slope stability methods frequently fail to predict the progressive failure 

phenomenon. The finite element method (FEM) was proposed to solve this constraint, 

and two major applications for analyzing slope stability were created. The first 

application involves applying the soil's body force to the slope system in order to perform 

an elasto-plastic stress analysis. The stresses and the Mohr–Coulomb criterion can then 

be used to calculate the local safety factors (FS) after the stresses have been determined. 

The overall FS can also be defined using the actual driving force and the ultimate shear 

force. It's worth noting that the FS and critical failure surface position from FEM analysis 

are frequently close to those from a limit equilibrium analysis [116]. A number of 

scholars have used the FEM, including Shamekhi and Tannant [117], who used it to 

analyze slope stability, and Lu et al. [118], who used a numerical method based on the 

FEM to evaluate slope stability during seismic loading. 

The primary aim for developing probabilistic techniques for slope stability analysis is to 

recognize the variations in soil properties. Although a sensitivity analysis can be used to 

determine these variables, it cannot estimate the likelihood of a slope failure. The chance 

or likelihood of a slope failure is computed using the stochastic character of the input 

components, which is based on the fundamental notions of a probabilistic technique. 

When the chances of failure are greater than the safety considered, a slope collapse is 

more likely. This is a more realistic approach than categorizing a FS as stable or unstable. 

A quantitative explanation of the failure probability can also be used in a risk or decision 

analysis. Different researchers have used the probabilistic approaches for slope stability 

analysis. Shou and Wang [119] analyzed the Chiufengershan landslide's failure and 

proposed a Monte Carlo analysis to look into the residual slope. The probability analysis 

suggested that the residual slope was more important than the static slope analysis. 

Leynaud and Sultan [120] proposed a probabilistic approach to account for complicated 

geometry using a modified version of 3D slope stability software. Stankovic et al. [121] 

employed Monte Carlo simulation and the first order reliability method enforced with the 

response surface method at an open pit mine "Potrlica" in Pljevlja, Monte Negro, to 

conduct a probabilistic analysis of slope stability. Griffiths and Fenton [19] investigated 

the probability of failure of a clayey slope using several probabilistic analysis methods. 
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Application of Site Variability in Shallow Foundation 

Many researchers investigated the effect of site variability on the bearing capacity of the 

sallow foundations (e.g., [17], [122]). Fenton and Griffiths [17] modeled shallow 

foundation loaded over soils using random field theory and elasto-plastic finite element to 

investigate the effect of site variability, and the cross correlation length on the bearing 

capacity of shallow foundations.  

In the load and resistance factor design (LRFD) for shallow foundations, the design 

resistance factor can be affected by many factors including the distance between the 

sampling borehole and the foundation, the correlation length, the probability of failure, 

and the variation of soil parameters (e.g., cohesion c, and internal friction angle ). The 

soil parameters can be interpreted from the in-situ field tests such as cone penetration 

tests (CPT), standard penetration (SPT) tests, or from the laboratory tests. The variation 

in the soil parameters depends on the inherited variability due to the original soil 

formation, the operator and machine error, and the model bias. The effect of the variation 

on soil parameters on the bearing capacity of shallow foundation was studied in detail by 

Fenton et al. [123]. Both the variations in ϕ and c were included in the analysis to define 

the resistance factor for shallow foundations. The statistical relationship between the two 

soil properties (c and ϕ) is referred as cross-correlation. 

Bearing Capacity of Shallow Foundation 

Terzaghi [124] provide a complete approach for determining the ultimate bearing capacity 

of shallow foundations. He proposed that the surface (failure) in soil at ultimate load for a 

continuous, or strip, foundation be considered to be comparable to that shown in Figure 

21.The ultimate bearing capacity, qu, of shallow foundations can be estimated using the 

following relationship [124]: 

𝑞𝑢 = 𝑐𝑁𝑐 + 𝑞𝑁𝑞 +
1

2
𝛾𝐵𝑁𝛾                                                                    [31] 

where, c is the cohesion, q is the overburden stress, γ is the unit soil weight, B is the footing 

width, and Nc, Nq, and Nγ are the bearing capacity factors. Tarzaghi [124] used an 

approximation method to determine qu; that is when γ=0 (i.e., weightless soil) and q=0, 

then qu = c.Nc, which will be used in this study for the analysis.  
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Figure 21. Tarzaghi bearing capacity analysis [124] 

 

Incorporating site variability into shallow foundation resistance factor 

The bearing capacity of shallow foundation depends on the soil properties, foundation 

dimensions and depth. Due to spatial variation in soil properties the failure surface under 

the footing will follow the weakest path through the soil, constrained by the stress field. 

The resistance factor based on the soil properties is: 

ɸ𝑠𝑓𝑅̂𝑢  ≥  I ∑ 𝛼𝑖𝑖 𝐿𝑖̂                         [32] 

where, 𝑅̂𝑢= Resistance of the soil, ɸ𝑠𝑓= Geotechnical resistance factor for shallow 

foundation, and ‘sf’ = shallow foundation, I = importance factor, αi = load factor, and 𝐿𝑖̂ = 

characteristic load. The soil properties used to calculate the resistance, 𝑅̂ are: 

𝑐̂ = ∏ 𝑐𝑖
𝑜 = exp(

1

𝑚
∑ ln 𝑐𝑖

𝑜𝑚
𝑖=1 )𝑚

𝑖=1                          [33] 

ɸ̂ = (
1

𝑚
∑ ɸ𝑖

𝑜𝑚
𝑖=1 )                [34] 

For cohesion, the geometric average is used because of its lognormal distribution. The 

friction angle is computed as an arithmetic average.  To determine the characteristic 
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ultimate geotechnical resistance, 𝑅̂𝑢, it will first be assumed that the soil is weightless. 

This simplifies the calculation of the ultimate bearing capacity, qu, to:  

𝑞𝑢 = 𝑐𝑁𝑐                 [35] 

The assumption of weightlessness is conservative since the soil weight contributes to the 

overall bearing capacity. This assumption also allows the analysis to explicitly focus on 

the role of cNc on ultimate bearing capacity, since this is the only term that includes the 

effects of spatial variability relating to both shear strength parameters c and .  

Most of the bearing capacities theories assume that the failure slip surface takes on a 

logarithmic spiral shape: 

𝑁𝑐 =  
𝑒л𝑡𝑎𝑛ɸ 𝑡𝑎𝑛2 (

л

4
+ 

ɸ

2
)−1

tan ɸ
               [36] 

The ultimate geotechnical resistance 𝑅̂u as function in bearing capacity, 𝑞̂u and foundation 

width, B, becomes as following: 

𝑅̂𝑢 = B𝑞̂𝑢                 [37] 

𝑞̂𝑢 = 𝑐̂𝑁̂𝑐                 [38] 

The characteristic of 𝑁̂𝑐   factor is determined using the characteristic friction angle. For 

strip footing the LRFD equation as following: 

ɸ𝑠𝑓B𝑞̂𝑢 =  I[𝛼𝐿𝐿̂𝐿 + 𝛼𝐷𝐿̂𝐷]                                            [39] 

The width of the footing could be calculated as: 

B =  
I[𝛼𝐿𝐿̂𝐿+𝛼𝐷𝐿̂𝐷]

ɸ𝑠𝑓𝑞̂𝑢
                          [40] 

The random soil model  

The cohesion, c, is assumed to be lognormally distributed with mean, μc, standard 

deviation, σc, and some spatial correlation structure, 𝜃ln 𝑐. The lognormal distribution is 

selected because it is commonly used to represent nonnegative soil properties and has a 

simple relationship with the normal. The lognormally distributed random field can be 
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obtained from a normally distributed random field, 𝐺ln 𝑐(𝑥⏟), having zero mean, unit 

variance, and spatial correlation length, 𝜃ln 𝑐, through the transformation 

𝑐(𝑥⏟) = exp [𝜇𝑙𝑛c + 𝜎𝑙𝑛c𝐺ln 𝑐(𝑥⏟)]                                    [41] 

where, (𝑥⏟) is the spatial position at which c is desired, the mean and variance of lnc are 

obtained from the specified mean, and variance of cohesion using the transformations are 

𝜇𝑙𝑛c = ln(𝜇c) −
1

2
𝜎𝑙𝑛c

2  and  𝜎𝑙𝑛c
2 = ln (1 + 𝑣c

2), respectively; where 𝑣c = 𝜎c/𝜇c is the 

coefficient of variation of the cohesion. 

The correlation coefficient between the log cohesion at some point 𝑥⏟
1
 and a second point 

𝑥⏟
2
, is specified by a correlation function, ρ. In this study, a simple exponentially decaying 

(Markovian) correlation function will be assumed, having the form: 

𝜌(𝑡) = exp {−
2|𝑡|

𝜃
}                          [42] 

where, t =  𝑥⏟
1

− 𝑥⏟
2
 is the distance between the two points. 

It should be noted that the correlation function selected above acts between values of lnc 

because lnc is normally distributed, and a normally distributed random field is simply 

defined by its mean and covariance structure. In practice, the correlation length, 𝜃ln 𝑐, can 

be estimated by evaluating the spatial statistics of the log cohesion data directly [125]. 

The spatial correlation function, ρ(t), has a corresponding variance reduction factor, 

𝛾𝑙𝑛𝑐(𝐷), which specifies how the variance is reduced upon local averaging of lnc over 

some domain D. In the two-dimensional analysis considered here, 𝐷 = 𝐷1 × 𝐷2 is the 

area. The two-dimensional variance reduction factor is defined as: 

𝛾ln 𝑐(𝐷1, 𝐷2) =
4

(𝐷1𝐷2)2 ∫ ∫ (𝐷1 − 𝑡1)(𝐷2 − 𝑡2)𝜌(𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2
𝐷2

0

𝐷1

0
                       [43] 

which can be evaluated using Gaussian quadrature (see [17] and [126], for more details). 

The soil friction angle, , is assumed to be lognormally distributed with mean, μϕ, 

standard deviation, σϕ, and some spatial correlation structure. The lognormal distribution 

is selected because it is commonly used to represent nonnegative soil properties and has a 

simple relationship with the normal; a lognormally distributed random field can be 

obtained from a normally distributed random field having zero mean, unit variance.  
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It seems reasonable to assume that if the spatial correlation structure of a soil is caused by 

changes in the constitutive nature of the soil over space, then both cohesion and friction 

angle would have similar correlation lengths. Since both fields have the same correlation 

function, 𝜌(𝑡). They will also have the same variance reduction function, i.e., 𝛾𝑙𝑛𝑐(𝐷) =

𝛾ϕ(𝐷) = 𝛾(𝐷). A detailed description on the random soil model was given by Fenton et 

al. [123]. 

Analytical solution of the probability of failure 

In this section, an analytical approximation to the probability of bearing capacity failure 

of a strip footing is summarized. Equation 38 was developed assuming an ideal soil 

whose shear strength is the same everywhere (i.e. a uniform soil). When soil properties 

are spatially variable, as they are in reality, then the hypothesis made in this study is that 

Equation 31 can be replaced by the following equation: 

𝑞𝑢 = 𝑐̅𝑁̅𝑐                                                             [44] 

Where, 𝑐̅ and 𝑁̅𝑐 are the equivalent cohesion and equivalent Nc factor, defined as those 

uniform soil parameters which lead to the same bearing capacity as observed in the real, 

spatially varying soil. In other words, it is proposed that equivalent soil properties, 𝑐̅ and 

𝑁̅𝑐, exist such that a uniform soil having these properties will have the same bearing 

capacity as the actual spatially variable soil. The value of 𝑁̅ is obtained by using the 

equivalent friction angle, 𝜙̅, in Equation 34, 

𝑁̅𝑐 =  
𝑒л𝑡𝑎𝑛ɸ̅ 𝑡𝑎𝑛2 (

л

4
+ 

ɸ̅

2
)−1

tan ɸ̅
                          [45] 

then the width of footing become 

B =  
I[𝛼𝐿𝐿̂𝐿+𝛼𝐷𝐿̂𝐷]

ɸ𝑠𝑓𝑐̅𝑁̅𝑐
                         [46] 

If the load L exceed the resistance load, qu B, bearing failure will happen. The probability 

of failure could be calculated as: 

𝑝𝑓 = 𝑃[𝐿 > 𝑞𝑢𝐵] = 𝑃[𝐿 > 𝑐̅𝑁̅𝑐𝐵]                       [47] 

The probability of failure should be less than the acceptable failure probability pm. The 

probability of failure can be calculated as: 
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𝑝𝑓 = 𝑃 [𝐿
𝑐̂𝑁̂𝑐

𝑐̅𝑁̅𝑐
> (

𝐼[𝛼𝐿𝐿̂𝐿+𝛼𝐷𝐿̂𝐷]

𝜑𝑠𝑓
)]                                         [48] 

Letting  

𝑌 = 𝐿
 𝑐̂𝑁̂𝑐 

  𝑐̅ 𝑁̅c
                                       [49] 

means that 

𝑝𝑓 = 𝑃 [𝑌 > (
𝐼[𝛼𝐿𝐿̂𝐿+𝛼𝐷𝐿̂𝐷]

𝜑𝑠𝑓
)]                                [50] 

and the task is to find the distribution of Y. Assuming that Y is lognormally distributed 

(an assumption found to be reasonable by Fenton et al. [127], and which is also supported 

to some extent by the central limit theorem), then: 

𝑙𝑛𝑌 = 𝑙𝑛𝐿 + 𝑙𝑛𝑁̂𝑐 + 𝑙𝑛𝑐̂ − 𝑙𝑛𝑁̅𝑐 − 𝑙𝑛𝑐̅                      [51] 

The mean of 𝑙𝑛𝑌 is: 

𝜇𝑙𝑛𝑌 = 𝜇𝑙𝑛𝐿 + 𝜇𝑙𝑛𝑁̂𝑐
+ 𝜇𝑙𝑛𝑐̂ − 𝜇𝑙𝑛𝑁̅𝑐

− 𝜇𝑙𝑛𝑐̅                     [52] 

The variance of 𝑙𝑛𝑌 is: 

𝜎𝑙𝑛𝑌
2 = 𝜎𝑙𝑛𝐿

2 + 𝜎𝑙𝑛𝑁̂𝑐

2 + 𝜎𝑙𝑛𝑐̂
2 + 𝜎𝑙𝑛𝑁̅𝑐

2 + 𝜎𝑙𝑛𝑐̅
2 − 2𝐶𝑜𝑣(𝑙𝑛𝑐̅, 𝑙𝑛𝑐̂) − 2𝐶𝑜𝑣(𝑙𝑛𝑁̅𝑐 , 𝑙𝑛𝑁̂𝑐)   [53] 

where the load, L, and soil properties, c and  have been assumed mutually independent.  

To find the parameters in the mean and variance of 𝑙𝑛𝑌 equations, the following two 

assumptions are made; 

(1) The equivalent cohesion 𝑐̅, is the geometric average of cohesion field over the 

influence zone D under the footing. 

𝑐̅ =  exp {
1

𝐷
∫ ln 𝑐

𝐷

0
(𝑥⏟) 𝑑 𝑥⏟}            [54] 

(2) The equivalent friction angle, ɸ̅, is the arithmetic average of the friction angle 

over the zone of influence, D, 

ɸ̅ =  
1

𝐷
∫ ɸ(

𝐷

0
𝑥⏟ )𝑑 𝑥⏟             [55] 
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Probably the greatest source of uncertainty in this analysis involves the choice of the 

domain, D, over which the equivalent soil properties are averaged under the footing. The 

averaging domain was found by trial andanalysis solution of error to be best 

approximated by 𝐷 = 𝑊 × 𝑊, centered directly under the footing (see Figure 22). In this 

study, W is the influence depth taken as 80% of the average mean depth of the wedge 

zone directly beneath the footing, as given by the classical Prandtl failure mechanism, 

𝑊 =  
0.8

2
𝜇𝐵̂tan (

л

4
+

𝜇ɸ

2
 )                        [56] 

The friction angle in radians. The estimated footing width is 𝜇𝐵  

𝜇𝐵̂ =
I(𝛼𝐿   𝐿𝐿̂+ 𝛼𝐷   𝐿𝐷̂)

ɸ𝑠𝑓𝜇𝑐 𝜇𝑁𝑐

                         [57] 

The footing shown on Figure 22 is just one possible realization since the footing width, 

B, is actually a random variable. Fenton and Griffiths [17] study assumed that the footing 

width was known, rather than designed, and recognized that the larger averaging region 

did not well represent the mean bearing capacity, which of course is the most important 

value in probability calculations. In the simulations performed to validate the theory 

presented here, the soil depth is taken to be H = 4.8 m and ∆x = 0.15 m, where ∆x is the 

width of the columns of finite elements used in the simulations (see Figure 22). 

To first order, the mean of 𝑁𝑐 is: 

𝜇𝑁𝑐
=

𝑒
л𝑡𝑎𝑛𝜇ɸ 

𝑡𝑎𝑛2 (
л

4
+ 

𝜇ɸ

2
)−1

tan 𝜇ɸ
                            [58] 

Using the above information and assumptions, the components of mean and variance of 

𝑙𝑛𝑌 equations can be computed as follows (given the basic statistical parameters of the 

loads, c, , number and locations of the soil samples, and the averaging domain size D); 

(1) Assuming that the total load L is equal to the sum of the maximum live load, LLe, 

acting over the lifetime of the structure and the static dead load, LD (i.e. L = LLe + 

LD), both of which are random, then the specified mean and variance of total load 

using the transformations are 𝜇𝑙𝑛L = ln(𝜇L) −
1

2
𝑙𝑛 (1 + 𝑣L

2) and  𝜎𝑙𝑛L
2 = ln (1 + 𝑣L

2), 

respectively. where 𝑣L = 𝜎L/𝜇L, is the coefficient of variation of total load. 

(2) Calculating the mean and variance of 𝑙𝑛𝑐̂: 

𝜇𝑙𝑛𝑐̂ = 𝜇𝑙𝑛𝑐                 [59] 
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Figure 22. Typical sketch used to determine the shallow foundation bearing capacity failure 

 

Assuming that 𝑙𝑛𝑐̂ actually represents a local average of ln c over a domain of size ∆x 

H; where ∆x is the horizontal dimension of the soil sample, which can be thought of as 

the horizontal zone of influence of a CPT or SPT sounding; and H is the depth over 

which the samples are taken, then 𝜎𝑙𝑛𝑐̂
2  is probably more accurately computed as: 

𝜎𝑙𝑛𝑐̂
2 =

𝜎𝑙𝑛𝑐
2

𝑚2
∑ ∑ 𝜌(𝑥⏟

𝑖

0 − 𝑥⏟
𝑗

0)𝑚
𝑗=1

𝑚
𝑖=1 = 𝜎𝑙𝑛𝑐

2 𝛾(∆𝑥, 𝐻)                     [60] 

(3) Calculating the mean and variance of 𝑙𝑛𝑐̅: 

𝜇𝑙𝑛𝑐̅ = 𝜇𝑙𝑛𝑐                          [61a] 

𝜎𝑙𝑛𝑐̅
2 = 𝜎𝑙𝑛𝑐

2 𝛾(𝐷)                        [61b] 

where γ(D) = γ(W, W), as discussed above.     

(4) Calculating the mean and variance of 𝑙𝑛𝑁̂𝑐: 

𝜇𝑙𝑛𝑁̂𝑐
=  𝜇𝑙𝑛𝑁𝑐

= 𝑙𝑛
𝑒

л𝑡𝑎𝑛𝜇ɸ 
𝑡𝑎𝑛2 (

л

4
+ 

𝜇ɸ

2
)−1

tan 𝜇ɸ
           [62a] 

𝜎𝑙𝑛𝑁̂𝑐

2 = 𝜎ɸ̂
2 [

𝑏𝑑

𝑏𝑑2 −1
[л(1 + 𝑎2)𝑑 + 1 + 𝑑2  ] −

1+𝑎2

𝑎
]

2

                   [62b] 

where, 𝑎 = tan (𝜇ɸ ), b = 𝑒л𝑎, 𝑑 = tan (
л

4
+

𝜇ɸ 

2
). The variance of ɸ̂ can be obtained by 
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𝜎ɸ̂
2 =

𝜎ɸ
2

𝑚2
∑ ∑ 𝜌(𝑥⏟

𝑖

0 − 𝑥⏟
𝑗

0)𝑚
𝑗=1

𝑚
𝑖=1 = 𝜎ɸ

2𝛾(∆𝑥, 𝐻)     [62c] 

(5) Calculating the mean and variance of 𝑙𝑛𝑁̅𝑐: 

𝜇𝑙𝑛𝑁̅𝑐
= 𝜇𝑙𝑛𝑁̂𝑐

=  𝜇𝑙𝑛𝑁𝑐
        [63a] 

𝜎𝑙𝑛𝑁̅𝑐

2 = 𝜎ɸ̅
2 [

𝑏𝑑

𝑏𝑑2 −1
[л(1 + 𝑎2)𝑑 + 1 + 𝑑2  ] −

1+𝑎2

𝑎
]

2

   [63b] 

where, 𝑎 = tan (𝜇ɸ ), b = 𝑒л𝑎, 𝑑 = tan (
л

4
+

𝜇ɸ 

2
). The variance of ɸ̂ can be obtained by 

𝜎ɸ̅
2 = 𝜎ɸ

2𝛾(𝑊, 𝑊)        [63c] 

(6) The covariance between the observed cohesion values and the equivalent cohesion 

beneath the footing is obtained as follows for 𝐷 = 𝑊 × 𝑊 and 𝑄 = ∆𝑥 × 𝐻; 

𝐶𝑜𝑣(𝑙𝑛𝑐̅, 𝑙𝑛𝑐̂) =
𝜎𝑙𝑛𝑐

2

𝐷2𝑄2 ∫ ∫ 𝜌(𝑥⏟
1

− 𝑥⏟
2

)
𝑄

0

𝐷

0
𝑑 𝑥⏟

1
𝑑 𝑥⏟

2
= 𝜎𝑙𝑛𝑐

2 𝛾𝐷𝑄   [64] 

where 𝛾𝐷𝑄 is the average correlation coefficient between the two areas D and Q [123]. 

The area D denotes the averaging region below the footing over which equivalent 

properties are defined and the area Q denotes the region over which soil samples are 

gathered. These areas are illustrated in Figure 22.  

(7) Calculating the 𝐶𝑜𝑣 (𝑙𝑛𝑁̅𝑐, 𝑙𝑛𝑁̂𝑐) 

𝐶𝑜𝑣 (𝑙𝑛𝑁̅𝑐, 𝑙𝑛𝑁̂𝑐) = 𝜎𝑙𝑛𝑁𝑐

2 𝛾𝐷𝑄            [65] 

Substituting these results into mean and variance equation of 𝑙𝑛𝑌 gives  

𝜇𝑙𝑛𝑌 = 𝜇𝑙𝑛𝐿                      [66a] 

𝜎𝑙𝑛𝑌
2 = 𝜎𝑙𝑛𝐿

2 + [𝜎𝑙𝑛𝑐
2 + 𝜎𝑙𝑛𝑁𝑐

2 ][𝛾(∆𝑥, 𝐻) + 𝛾(𝑊, 𝑊) − 2𝛾𝐷𝑄]     [66b] 

Letting 

q =  I[𝛼𝐿𝐿̂𝐿 + 𝛼𝐷𝐿̂𝐷]             [67] 

Allows the probability of failure to be expressed as: 
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𝑝𝑓 = 𝑃 [𝑌 >
𝑞

ɸ𝑠𝑓
] = 𝑃 [𝑙𝑛 𝑌 > 𝑙𝑛 (

𝑞

ɸ𝑠𝑓
)] = 1 − Φ (

𝑙𝑛(
𝑞

ɸ𝑠𝑓
)−𝜇𝑙𝑛𝑌

 𝜎𝑙𝑛𝑌
)                   [68] 

where Φ is the standard normal cumulative distribution function. The resistance factor 

could be calculated as:  

ɸ𝑠𝑓 =
I(𝛼𝐿   𝐿𝐿̂+ 𝛼𝐷   𝐿𝐷̂) 

exp (𝜇ln 𝑌+𝜎ln 𝑌𝛽)
              [69] 

Incorporating variability into reliability analysis 

The reliability index is used to offer a reliability-based study of a shallow foundation with 

a vertical load (central). The limit state function used in this research is g(x) = C – D; 

where, C is the foundation capacity and D is the demand. g(x)>0 represents safe 

condition while g(x)<0 represents unsafe condition. The Hasofer-Lind reliability index 

(βHL) is widely used method, and the equation of this method is given as follows [128]: 

𝛽𝐻𝐿 = min (√(𝑋 − 𝜇)𝑇𝐶−1(𝑋 − 𝜇))                        [70] 

Where, the vector of random parameters (n) is denoted as X, μ is the mean values (in 

vector format) and their covariance matrix is denoted as C. Figure 23 shows the Hasofer- 

Lind reliability index and the corresponding design point. 

Figure 23. Hasofer- Lind reliability index and the design point [129] 
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Application of Site Variability in Deep Foundation 

A punching shear failure occurs when the force applied to the pile (deep foundation) 

surpasses the shear strength of the surrounding ground [130]. The pile is supported by the 

soil through friction, end bearing, and cohesion between the pile sides and the soil. 

Naghibi [131] and Naghibi and Fenton [18] proposed a methodology to implement site 

variability for deep foundations where only cohesive resistance was addressed, as it 

would be in a soil under the total stress condition (entirely cohesive), i.e., ignoring the 

end-bearing. They also applied similar analysis to examine the effective stress resistance 

of piles for cohesionless soil when the end bearing was ignored. The method proposed by 

Naghibi [125] and Naghibi and Fenton [18] will be described below for cohesive and 

cohesionless soils. 

For Cohesive Soil Condition 

The ultimate pile resistance due to soil cohesion (c) between the surrounding soil and the 

pile foundation surface is given by: 

𝑅𝑢 = ∫ 𝑝𝜏(𝑧)𝑑𝑧
𝐻

0
           [71]   

where, p is the perimeter of the pile, τ(z) is the pile’s ultimate shear stress (at depth z), 

and the length of the pile is H. 

-Tomlinson Method 

Several approaches can be used to determine the ultimate shear stress occurring between 

the soil and the pile under total stress circumstances. The most widely method used for 

cohesive soils is the α-Tomlinson method. Total stress analysis is a critical component of 

the  method. For any specific soil with friction angle,  = 0, based on the α method, the 

following equation can be used to represent the surface shear resistance (unit) in soils 

under the total stress conditions: 

𝜏(𝑧) = 𝛼𝑐(𝑧)                               [72] 

where, c(z) is the cohesion of the soil (average) around the pile (at depth z), and α is the 

empirical adhesion factor, as suggested by the Federal Highway Administration (FHWA). 

Figure 24 shows the  factors for driven piles in clay according to FHWA. 
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Figure 24.  factors for driven piles in clay according to FHWA [132] 

 

Substituting Equation 72 into Equation 71, the ultimate cohesive resistance becomes 

𝑅𝑢 = ∫ 𝑝𝛼𝑐(𝑧)𝑑𝑧
𝐻

0
                   [73] 

It is assumed in analysis that the type of the pile is chosen, so the perimeter (p) is known 

and the design entails determining H. The p seems to have no impact on the resistance 

factors (required), as will be proven later. Because these data are typically acquired 

through an investigation aimed at describing the site, the term characteristic is preferred 

in this study. Just the ultimate limit state is taken into account in this design, and the 

factored load must not exceed the factored resistance, 

ɸ𝑑𝑓𝑅̂𝑢 ≥ ∑ 𝐼𝑖𝛼𝑖𝐹̂𝑖𝑖                                                      [74] 

where, df  is the ultimate geotechnical resistance factor for deep foundation, 𝑅̂𝑢is the 

geotechnical resistance (ultimate) based on the nominal soil properties (characteristic), Ii 

is the importance factor, 𝛼𝑖𝐹̂𝑖is the load factor. 

In this study, the combination of dead load plus live load will be studied, 

𝐹̂ = 𝛼𝐿𝐹̂𝐿 + 𝛼𝐷𝐹̂𝐷                            [75] 

where 𝐹̂𝐿 is the live load (characteristic), 𝐹̂𝐿 is the dead load (characteristic), αL and αD 

are the live load factors and dead load factors, respectively, αT is the total load factor 

(equivalent). The FHWA-specified load factors will be employed in this study (where αL 

= 1.75 and αD =1.25). However, the idea described here can simply be applied to different 

load combinations and circumstances. 
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In some circumstances, the means of the load (characteristic) values utilized in any 

design are defined, however, they can be defined more broadly as means as 

𝐹̂𝐿 = 𝑘𝐿𝜇𝐿                  [76a] 

𝐹̂𝐷 = 𝑘𝐷𝜇𝐷                                                   [76b] 

where, μL is the means of the live load, μD is the means of the dead loads, kL is the live 

load bias factors, and kD  is the dead load bias factors [133]. The values of kL and kD were 

estimated to be 1.41 and 1.18, respectively.  

The soil cohesion (characteristic) 𝑐̂, is the weighted average of the 𝑐̂𝑖 (sampled 

observations), 

𝑐̂ =
1

𝑚
∑ 𝑐̂𝑖

𝑚
𝑖=1                                                                                     [77]  

The ultimate geotechnical resistance, 𝑅̂𝑢, can be derived from the Equation 73 by 

assuming c(z) = 𝑐̂, 

𝑅̂𝑢 = 𝑝𝐻𝛼𝑐̂                                                                                     [78] 

According to The Federal Highway Administration (FHWA) two reliability indexes, 2.33 

and 3.0, were considered in this study. 

Random soil model 

In this study, we assumed cohesion of soil (c) is distributed lognormally with 𝜇c (mean), 

𝜎c (standard deviation), and 𝜃ln 𝑐 (spatial correlation structure). Because it is often used to 

illustrate nonnegative soil attributes and has a relationship with the normal distribution, the 

lognormal distribution was chosen; Out of a normally distributed (random field) function 

[𝐺𝑙𝑛𝑐(𝑧), with mean (=0), unit variance, and 𝜃ln 𝑐 (spatial correlation length)], a 

lognormally distributed (random field) function can be created, by following 

transformation: 

𝑐(𝑧) = exp [𝜇𝑙𝑛𝑐 + 𝜎𝑙𝑛𝑐𝐺𝑙𝑛𝑐(𝑧)]              [79] 

where,  

𝜇𝑙𝑛c = ln(𝜇c) −
1

2
𝜎𝑙𝑛c

2                   [80a] 
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𝜎𝑙𝑛c
2 = ln (1 + 𝑣c

2)                   [80b] 

The coefficient of variation of the cohesion, 𝑣c = 𝜎c/𝜇c and (z) is the spatial position. A 

Markovian correlation (simple exponentially decaying) function is assumed in this study, 

where, ρ is the correlation function, in the form of 

𝜌(𝑡) = exp {−
2|𝑡|

𝜃
}                    [81] 

where 𝑡 =  𝑧1– 𝑧2 is the inter point distance. 

In the above equation, 𝜃 (spatial correlation length) is generally described as the separation 

distance between two 𝑙𝑛𝑐 values that are significantly associated. The 𝜌(𝑡) (spatial 

correlation function) has a variance reduction function, γ(H), which is defined by: 

𝛾(𝐻) =
1

𝐻2 ∫ ∫ 𝜌(𝑧1 − 𝑧2)𝑑𝑧1𝑑𝑧2
𝐻

0

𝐻

0
                               [82]  

Both 𝜇𝑐 and α will cancel out of the probability (failure) prediction equations, as will be 

shown later, so their values are completely arbitrary and have no impact on the geotechnical 

resistance factor utilized in the design process. 

Random load model 

The dead loads (mostly static) and live loads (mostly dynamic) make up the load acting on 

a foundation. The dead load can be calculated, and therefore, the mean and the variance of 

dead loads are quite well understood. The live loads, on the other hand, are more 

challenging to probabilistically characterize. The total load, F will be: 

𝐹 = 𝐹𝐿 + 𝐹𝐷                                                         [83] 

The mean and the variance of the load, F, are given by: 

𝜇𝐹 = 𝜇𝐿 + 𝜇𝐷                             [84a] 

𝜎𝐹
2 = 𝜎𝐿

2 + 𝜎𝐷
2                            [84b] 

The dead loads and the live loads are considered to be distributed lognormally. So, the total 

load is also distributed lognormally, which is also supported by Fenton et al. [123]. So,  

𝜇𝑙𝑛𝐹 = ln(𝜇𝐹) −
1

2
𝜎𝑙𝑛𝐹

2                [85a] 
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𝜎𝑙𝑛𝐹
2 = ln (1 +

𝜎𝐹
2

𝜇𝐹
2)                [85b] 

Theoretical approach to estimate probability of failure of cohesive soil 

The soil is first represented as a spatially variable random field to assess the probability of 

a pile failure. In general, cohesion varies in all the three dimensions, however, considering 

the third dimension has minimal effect since piles are one dimensional, a 2D random field 

analysis is used, where the pile is positioned vertically about the soil samples, as the soil 

boring, CPT test or SPT sounding, are performed vertically in a distinct, perhaps different 

locations, as depicted in Figure 25. The following is a hypothetical estimate to the pile 

failure probability in soils at total stress circumstances. When soil parameters are spatially 

varied, as they are in practice, the value of Ru becomes: 

𝑅𝑢 = 𝑝𝐻𝛼𝑐̅                                [86] 

where 𝑐̅ is the cohesion (equivalent). The average of the spatially variable cohesion (𝑐̅) 

across the pile length H is hypothesized given as: 

𝑐̅ =
1

𝐻
∫ 𝑐(𝑧)𝑑𝑧 ≅  

1

𝑛
∑ 𝑐𝑖̅

𝑛
𝑖=1

𝐻

0
                     [87] 

Figure 25. Location of pile and soil sample 

 

By replacing Equation 87 into Equation 74 yields the requisite design pile length, H as: 

ɸ𝑑𝑓𝑝𝐻𝛼𝑐̂ =  𝛼𝐿𝐹̂𝐿 + 𝛼𝐷𝐹̂𝐷 → 𝐻 =
𝛼𝐿𝐹̂𝐿+𝛼𝐷𝐹̂𝐷

ɸ𝑑𝑓𝑝𝛼𝑐̂
              [88] 
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By further replacing Equation 88 into Equation 86, the ultimate resistance, Ru, can be 

estimated as: 

𝑅𝑢 = (
𝛼𝐿𝐹̂𝐿+𝛼𝐷𝐹̂𝐷

ɸ𝑑𝑓
) (

𝑐̅

𝑐̂
)                           [89] 

The probability of failure, 𝑝𝑓, will be given as: 

𝑝𝑓 = 𝑃[𝐹 > 𝑅𝑢]                 [90] 

and a successful design methodology will have 𝑝𝑓 ≤ 𝑝𝑚. Substituting Equation 89 into 

Equation 90 leads to 

𝑝𝑓 = 𝑃 [𝐹 > (
𝛼𝐿𝐹̂𝐿+𝛼𝐷𝐹̂𝐷

ɸ𝑑𝑓
) (

𝑐̅

𝑐̂
)]                [91] 

     = 𝑃 [
𝐹𝑐̂

𝑐̅
> (

𝛼𝐿𝐹̂𝐿+𝛼𝐷𝐹̂𝐷

ɸ𝑑𝑓
)] 

It is noteworthy that the α (adhesion factor) and p (perimeter length) have both been 

cancelled out of the failure probability calculations. This indicates that these parameters 

have no effect on the resistance factors needed for this investigation. Rearranging the above 

equation leads to 

𝑝𝑓 = 𝑃 [
𝐹

𝛼𝐿𝐹̂𝐿+𝛼𝐷𝐹̂𝐷
>

1

ɸ𝑑𝑓
(

𝑐̅

𝑐̂
)]               [92] 

Returning to Equation 91 for 𝑝𝑓 calculation, the next two components are defined as 

follows: 

𝑊 =
𝐹𝑐̂

𝑐̅
                  [93a] 

𝑄̂ = 𝛼𝐿𝐹̂𝐿 + 𝛼𝐷𝐹̂𝐷                 [93b] 

So that Equation 92 can be written as: 

𝑝𝑓 = 𝑃 [𝑊 >
𝑄̂

ɸ𝑑𝑓
]                             [94] 

W (distribution) must be determined in order to solve Equation 94. If all of the F (random 

load), and 𝑐̂ and 𝑐̅ (cohesion values) are considered to be lognormally distributed [123], W 
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will therefore be lognormally distributed as well, and its values can be found by looking at 

the individual F, 𝑙𝑛𝑐̂, and 𝑙𝑛𝑐̅ distributions. If W is distributed in a lognormal way, 

𝑙𝑛𝑊 = 𝑙𝑛𝐹 + 𝑙𝑛𝑐̂ − 𝑙𝑛𝑐̅                  [95] 

pf can be derived from the following: 

𝑝𝑓 = 𝑃 [𝑊 >
𝑄̂

ɸ𝑑𝑓
] = 𝑃 [𝑙𝑛𝑊 > ln (

𝑄̂

ɸ𝑑𝑓
)] = 1 − Ф [

ln(
𝑄̂

ɸ𝑑𝑓
)−𝜇𝑙𝑛𝑊

𝜎𝑙𝑛𝑊
]             [96] 

where,  is the cumulative distribution function (standard normal). 

To find 𝑝𝑓, we have to determine 𝑙𝑛𝑊’s mean and the variance. 𝑙𝑛𝑊’s mean and the 

variance as: 

𝜇𝑙𝑛𝑊 = 𝜇𝑙𝑛𝐹 + 𝜇𝑙𝑛𝑐̂ − 𝜇𝑙𝑛𝑐̅                            [97a] 

𝜎𝑙𝑛𝑊
2 = 𝜎𝑙𝑛𝐹

2 + 𝜎𝑙𝑛𝑐̂
2 + 𝜎𝑙𝑛𝑐̅

2 − 2𝐶𝑜𝑣(𝑙𝑛𝑐̂, 𝑙𝑛𝑐̅)              [97b] 

The components of 97 were given by Naghibi [131]: 

𝜇𝑙𝑛𝑐̂ = 𝐸[𝑙𝑛𝑐̂] = 𝐸 [𝑙𝑛 (
1

𝑚
∑ 𝑐𝑖̂

𝑚
𝑖=1 )] ≅ ln (𝜇𝑐)                         [98a]        

𝜎𝑙𝑛𝑐̂
2 ≅

𝜎𝑙𝑛𝑐
2

𝑚2
∑ ∑ 𝜌(𝑧𝑖

0 − 𝑧𝑗
0)𝑚

𝑗=1
𝑚
𝑖=1                                       [98b]      

𝜎𝑙𝑛𝑐̂
2 = 𝜎𝑙𝑛𝑐

2 𝛾(𝐷)                             [98c]       

where, 𝛾(𝐷) is the variance reduction function, given by Equation 82. 

𝜇𝑙𝑛𝑐̅ = 𝐸 [𝑙𝑛 (
1

𝐻
∫ 𝑐(𝑧)𝑑𝑧

𝐻

0
)] ≅ ln (𝜇𝑐)                          [99a]     

𝜎𝑙𝑛𝑐̅
2 = 𝜎𝑙𝑛𝑐

2 𝛾(𝐻)                             [99b]             

where, 𝛾(𝐻) is defined by Equation 82. 

𝐶𝑜𝑣(𝑙𝑛𝑐̂, 𝑙𝑛𝑐̅) ≅
𝜎𝑙𝑛𝑐

2

𝑚𝐻
∑ ∫ 𝜌 [√𝑟2 + (𝑧 − 𝑧𝑖

0)2] 𝑑𝑧 ≅ 𝜎𝑙𝑛𝑐
2 𝛾𝐻𝐷

𝐻

0
𝑚
𝑖=1             [100]          
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where, 𝛾𝐻𝐷 is the correlation coefficient (average) between cohesion across domain D and 

cohesion along H. 𝛾𝐻𝐷 can be defined as: 

𝛾𝐻𝐷 ≅
1

𝑚𝐻
∑ ∫ 𝜌 [√𝑟2 + (𝑧 − 𝑧𝑖

0)2] 𝑑𝑧
𝐻

0
𝑚
𝑖=1                                      [101] 

As indicated in Figure 25, r is the distance (horizontal) between the centerline of the pile 

and the soil sample (centerline). 

Substituting Equation 98 into Equation 101 leads to 

𝜇𝑙𝑛𝑊 = 𝜇𝑙𝑛𝐹                                                                                                [102a]   

𝜎𝑙𝑛𝑊
2 = 𝜎𝑙𝑛𝐹

2 + 𝜎𝑙𝑛𝑐
2 [𝛾(𝐷) + 𝛾(𝐻) − 2𝛾𝐻𝐷]                                     [102b]  

The reliability index, 𝛽 will be given as: 

𝛽 =
ln(

𝑞

ɸ𝑑𝑓
)−𝜇𝑙𝑛𝑊

𝜎𝑙𝑛𝑊
                                                                         [103] 

              

The geotechnical resistance factor (ɸ𝑑𝑓) can then be calculated as: 

ɸ𝑑𝑓 = exp (𝑙𝑛𝑞 − 𝜇𝑙𝑛𝑊 − 𝛽𝜎𝑙𝑛𝑊)                                     [104] 

Cohesionless soil 

The friction angle of sand () is assumed to be lognormally distributed with 𝜇ϕ (mean), 𝜎ϕ 

(standard deviation), and 𝜃ln ϕ (spatial correlation structure). Out of a normally distributed 

(random field) function [𝐺𝑙𝑛ϕ(𝑧), with mean (=0), unit variance, and 𝜃ln ϕ (spatial 

correlation length)], a lognormally distributed (random field) function can be created, by 

following transformation:  

ϕ(𝑧) = exp [𝜇𝑙𝑛ϕ + 𝜎𝑙𝑛ϕ𝐺𝑙𝑛ϕ(𝑧)]              [105]         

where,  

𝜎𝑙𝑛ϕ
2 = ln (1 + 𝑣ϕ

2 )                          [106a] 
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𝜇𝑙𝑛ϕ = ln(𝜇ϕ) −
1

2
𝜎𝑙𝑛ϕ

2               [106b]        

The coefficient of variation of , 𝑣ϕ = 𝜎ϕ/𝜇ϕ and (z) is the spatial position. A Markovian 

correlation (simple exponentially decaying) function is assumed in this study, where, ρ is 

the correlation function, in the form of 

𝜌(𝑡) = exp {−
2|𝑡|

𝜃
}                                                                                  [107]   

where, t = z1–z2 is the inter point distance. 

In the above Equation, the 𝜃 (spatial correlation length) is generally described as the 

separation distance between two lnc values that are significantly associated. The 𝜌(𝑡) 

(spatial correlation function) has a variance reduction function, 𝛾(𝐻), which is defined by:  

𝛾(𝐻) =
1

𝐻2 ∫ ∫ 𝜌(𝑧1 − 𝑧2)𝑑𝑧1𝑑𝑧2
𝐻

0

𝐻

0
                                                             [108]  

In this study, the random load model was considered similar as the cohesive soil. 

Theoretical approach to estimating probability of failure of cohesionless soil 

The soil is first represented as a spatially variable random field to assess the probability of 

a pile failing. This research investigates a 2D random field where the pile is positioned 

vertically about the soil samples, as the soil boring, CPT test or SPT sounding, are 

performed vertically in a distinct, perhaps different locations. When soil parameters are 

spatially varied, as they are in practice, the ultimate resistance, Ru, can then be estimated 

using the following equations: 

𝑅𝑢 =
1

2
𝑝𝑎𝛾𝐻2(1 − 𝑠𝑖𝑛 𝜙̅) 𝑡𝑎𝑛 (𝑏𝜙̅)                                                         [109]  

where ϕ̅ is the cohesion (equivalent). The average of the spatially variable cohesion (ϕ̅) 

across the pile length H is hypothesized here, 

𝜙̅ =
1

𝐻
∫ ϕ(𝑧)𝑑𝑧 ≅  

1

𝑛
∑ ϕ̅𝑖

𝑛
𝑖=1

𝐻

0
                         [110] 

The required minimum design pile length, H, can be obtained by  

ɸ𝑑𝑓 (
1

2
𝑝𝑎𝛾𝐻2(1 − 𝑠𝑖𝑛 𝜙̂) 𝑡𝑎𝑛 (𝑏𝜙̂)) =  𝛼𝐿𝐹̂𝐿 + 𝛼𝐷𝐹̂𝐷 → 𝐻 = √

2(𝛼𝐿𝐹̂𝐿+𝛼𝐷𝐹̂𝐷)

ɸ𝑑𝑓𝑝𝑎𝛾(1−𝑠𝑖𝑛 𝜙̂) 𝑡𝑎𝑛 (𝑏𝜙̂)
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                                                                                                                               [111] 

The ultimate geotechnical resistance, Ru, can be written as, 

𝑅𝑢 = (
𝛼𝐿𝐹̂𝐿+𝛼𝐷𝐹̂𝐷

ɸ𝑑𝑓
) (

(1−𝑠𝑖𝑛 𝜙̅) 𝑡𝑎𝑛 (𝑏𝜙̅) 

(1−𝑠𝑖𝑛 𝜙̂) 𝑡𝑎𝑛 (𝑏𝜙̂)
)                                                         [112]         

The probability of failure, ρf, will be: 

𝑝𝑓 = 𝑃[𝐹 > 𝑅𝑢]                           [113] 

and a successful design methodology will have 𝜌𝑓 ≤ 𝜌𝑚. Substituting Equation 89 into 

Equation 113 leads to: 

𝑝𝑓 = 𝑃 [𝐹 > (
𝛼𝐿𝐹̂𝐿+𝛼𝐷𝐹̂𝐷

ɸ𝑑𝑓
) (

(1−𝑠𝑖𝑛 𝜙̅) 𝑡𝑎𝑛 (𝑏𝜙̅) 

(1−𝑠𝑖𝑛 𝜙̂) 𝑡𝑎𝑛 (𝑏𝜙̂)
)]               

      =𝑃 [(
𝐹(1−𝑠𝑖𝑛 𝜙̂) 𝑡𝑎𝑛 (𝑏𝜙̂) 

(1−𝑠𝑖𝑛 𝜙̅) 𝑡𝑎𝑛 (𝑏𝜙̅)
) > (

𝛼𝐿𝐹̂𝐿+𝛼𝐷𝐹̂𝐷

ɸ𝑑𝑓
)]                                                      [114] 

Assuming that, 

𝑋̂ = (1 − 𝑠𝑖𝑛 𝜙̂) 𝑡𝑎𝑛 (𝑏𝜙̂), 𝑋̅ = (1 − 𝑠𝑖𝑛 𝜙̅) 𝑡𝑎𝑛 (𝑏𝜙̅), 𝑞 = 𝛼𝐿𝐹̂𝐿 + 𝛼𝐷𝐹̂𝐷 then, 𝑌 =  
𝐹 𝑋̂

𝑋̅
 

So that Equation 114 can be written as 

𝑝𝑓 = 𝑃 [𝑌 >
𝑞

ɸ𝑑𝑓
]           [115] 

If Y is lognormally distributed, then: 

𝑙𝑛𝑌 = 𝑙𝑛𝐹 + 𝑙𝑛𝑋̂ − 𝑙𝑛𝑋̅         [116] 

The probability of failure, 𝑝𝑓, can be derived from the following: 

𝑝𝑓 = 𝑃 [𝑌 >
𝑞

ɸ𝑑𝑓
] = 𝑃 [𝑙𝑛𝑌 > ln (

𝑞

ɸ𝑑𝑓
)] = 1 − Ф [

ln(
𝑞

ɸ𝑑𝑓
)−𝜇𝑙𝑛𝑌

𝜎𝑙𝑛𝑌
]    [117] 

where,  is the cumulative distribution function (standard normal). 
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The probability of failure (𝑝𝑓) in the above equation can be determined by 𝜇𝑙𝑛𝑌 = 𝜇𝑙𝑛𝐹 +

𝜇𝑙𝑛𝑋̂ − 𝜇𝑙𝑛𝑋̅ and 𝜎𝑙𝑛𝑌
2 = 𝜎𝑙𝑛𝐹

2 + 𝜎𝑙𝑛𝑋̂
2 + 𝜎𝑙𝑛𝑋̅

2 − 2𝐶𝑜𝑣(𝑙𝑛𝑋̂, 𝑙𝑛𝑋̅) and solving the equations 

[131].  

The reliability index, 𝛽, can be expressed as, 

𝛽 =
ln(

𝑞

ɸ𝑑𝑓
)−𝜇𝑙𝑛𝑌

𝜎𝑙𝑛𝑌
           [118] 

The geotechnical resistance factor, ɸ𝑑𝑓, can then be calculated as: 

ɸ𝑑𝑓 = exp (𝑙𝑛𝑞 − 𝜇𝑙𝑛𝑌 − 𝛽𝜎𝑙𝑛𝑌)         [119] 
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Research Objectives 

The main objective of this research was to evaluate the different sources of geotechnical 

variability and quantify the special variability of soil properties for incorporation into 

analysis and design of different geotechnical engineering applications. This included: 

a) Evaluating the operator-induced and equipment-induced variations on the design 

soil properties 

b) Evaluating site spatial variations of design soil properties 

c) Evaluating the best spatial interpolation method to generate synthetic CPT 

profiles and soil boring data (Standard Penetration Test, SPT, values and 

undrained shear strength, Su) from the existing CPT and soil boring data of the 

specific site  

d) Incorporating the special site variability into LRFD design of pile foundations, 

e) Incorporating the special site variability into different geotechnical engineering 

applications 
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Scope 

This objective of this research study were achieved through conducting extensive in-box, 

laboratory and field tests to evaluate variability of the measured strength/stiffness 

parameters from different devices and the variability of the different soil properties; in 

addition to evaluating the spatial site variability from soil borings and/or in-situ tests for 

many geotechnical engineering analysis and design. 

The in-box tests included constructing several geomaterial sections (5 ft. long  3 ft. 

wide) of different types of soils and aggregate stones that were compacted and tested 

using different devices including DCP, LFWD, Geogauge, plate load, Dirt Seismic 

Properties Analyzer (D-SPA), Nuclear Density Gauge (NDG) and E-Gauge. The tests 

were conducted by different operators, in which each operator tested each section several 

times at different locations. The field tests were conducted using Geogauge, LFWD and 

DCP on 14 constructed sections at ALF site and 3 under-construction sections from 

different projects.  In each field test, measurements were taken by several operators at 

different locations. The operator-related and location-related variabilities in terms of 

COV was evaluated for each device measurement using the X/Bar-R, ANOVA, and 

second moment methods. 

Typical laboratory tests that included Atterberg limits tests, unconsolidated undrained 

(UU) triaxial tests, small direct shear tests, consolidation tests, and California bearing 

ratio (CBR) tests were conducted on different specimens of various soil types using 

different operators to evaluate specimen-related and operator-related variability of the 

different soil properties in terms of COV. The tests were performed by several operators 

on three specimen of the same soil type. 

Several geostatistical methods and techniques, such as semivariogram and probabilistic 

approach, were used to evaluate the spatial site variability from soil borings with 

laboratory data and/or in-situ CPT data for incorporating the effect of specific site 

variability into many geotechniocal engineering applications such shallow foundation, 

deep foundations settlement and slope stability analysis.   

The Bayesian analysis technique was used to update the mean bias, standard deviation, 

and COV, of the measured/predicted pile capacity of specific site from national and state 

variables and using the pile load test data of the new site. The updated variables were 
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used to calibrate the resistance factors for LRFD design of pile foundations of the specific 

site.   

The method proposed by Fenton and Griffiths [17] was used to incorporate the variability 

in soil properties and the distance from soil boring(s) for analysis and design of shallow 

foundations. 

The method proposed by Naghibi and Fenton [18] was used to incorporate the variability 

in soil properties and distance from soil boring(s) for analysis and design of deep 

foundations. 

 

. 
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Methodology 

This section will present the different approaches used to evaluate the variability of soil 

properties and the different sources of geotechnical variability, and quantify the 

variability of soil properties for inclusion in analysis and design of different geotechnical 

engineering applications. This includes conducting: (1) in-box laboratory tests using 

different devices such as Geogauge, Light Falling Weight Deflectometer (LFWD), and 

Dynamic Cone Penetrometer (DCP); (2) field tests using Geogauge, LFWD, and DCP on 

constructed sections at ALF sites and under-construction sections from different projects; 

(3) typical laboratory tests such as unconsolidated undrained (UU), direct shear tests, and 

consolidation tests; and (4) evaluations of site variability from soil borings and in-situ 

Cone Penetration Test (CPT). This section will also include different geostatistic methods 

and techniques used for incorporating site variability in different geotechnical 

engineering applications, such as bearing capacity of shallow foundations, ultimate 

capacity of pile foundations, and slope stability analysis. The incorporated techniques 

include spatial correlation and semivariogram modeling, Bayesian technique, 

probabilistic approach Fenton and Griffiths method, and Naghibi and Fenton method. 

In-box Laboratory Tests  

This study included conducting extensive in-box laboratory tests on several geomaterials 

including different types of soils and aggregate stone sections that were compacted and 

tested in the geotechnical lab at the Louisiana Transportation Research Center (LTRC). 

Twelve test sections were prepared, compacted and tested inside a box with dimensions 

of 5 ft. L  3 ft. W  4 ft. D. The sections were tested using different devices including 

Geogauge, Light Falling Weight Deflectometer (LFWD), Dynamic Cone Penetrometer 

(DCP), Plate Load, Dirt Seismic Properties Analyzer (D-SPA), Nuclear Density Gauge 

(NDG) and E-Gauge. Detailed descriptions of these devices, their measurements and 

corresponding equations are presented in Appendix A. Summary of these devices and 

their measurements are presented in Table 4. 

The Geogauge, LFWD and D-SPA devices were conducted with five operators and each 

operator tested three times in the front, middle and back locations of the blue box, 

respectively. The DCP test was run by three operators and each operator conducted the 

test one time in the front, middle, and back location of the box. The plate load test (PLT) 
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was performed in the middle location of the box, in which only one operator did the test. 

The NDG and E-Gauge tests were performed in the front, middle and back locations and 

one operator performed the test. 

Table 4. Devices used to measure soil variability 

Different Devices to Measure Variability  

SL Device  Measure  Units  

1 Geogauge Stiffness Modulus  MPa 

2 Light Falling Weight Deflectometer 

(LFWD) 
Deformation Modulus MPa 

3 
Dynamic Cone Penetrometer  

Dynamic Cone Penetration Index 

(DCPI) 

mm/ 

blow 

4 Dirt Seismic Properties Analyzer      

(D-SPA) 
Shear Modulus  ksi  

5 
Nuclear Density Gauge (NDG) 

Dry Density pcf 

Moisture Content % 

6 Low Nuclear Density Gauge (E-

Gauge) 

Dry Density pcf 

Moisture Content % 

7 Plate Load Deformation Modulus MPa 

The reason for taking measurements in the same section with different operators is to 

evaluate variability of soil properties among the operators. Besides, the location-related 

variability can also be evaluated by taking measurements in different locations. The 

collected testing data were used to perform statistical analyses using the X-Bar/R and 

ANOVA method to assess the mean value and the coefficient of variation of testing 

devices’ measurements. 

Materials Used in the In-Box Tests 

Twelve different geomaterials were used for conducting the in-box laboratory tests. These 

materials are: low PI (PI=11) clay soil, medium PI 1 (PI=21) clay soil, medium PI 2 

(PI=31) clay soil, medium PI 3 (PI=38) clay soil, high PI (PI=53) clay soil, sand, 

Kentucky limestone, and Mexican limestone. In addition, three stabilized sections were 

also tested including medium PI 3 (PI=38) mixed with 5% lime and 4% cement by 

volume; high PI (PI=53) mixed with 5% lime and 4% cement by volume and low PI 

(PI=11) mixed with 3% cement by volume. 
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Layout of the In-Box Tests 

The experimental testing program in this study was conducted inside a box with 

dimensions of 5 ft. L  3 ft. W  4 ft. D to evaluate the variability of compacted soil 

layers using different devices and different operators. For each test, four layers were 

compacted with the same type of geomaterial up to 24 in. thickness maintaining the 95% 

of the maximum dry density and optimum moisture content. Each layer was compacted 

inside the box to 6 in. thickness, as is illustrated in Figure 26. The in-box constructed 

sections were tested using different devices (i.e., Geogauge, LFWD, DCP, Plate Load, D-

SPA, NDG and E-Gauge) using different operators as shown in Figure 27.  

Figure 26. Cross-section layout of compacted layers inside the box 

 

After compacting the layers, five operators ran the tests using the same device to check 

the variability of the measurements with respect to Geogauge, LFWD and D-SPA. Each 

operator took three measurements in different locations of the box for the same 

compacted geomaterial layers. The same procedure was applied for the different geo 

materials. Three operators ran the DCP tests in different locations of the box, following 

the same procedure for all geomaterials. The PLT was conducted by one operator in the 

middle location of the box. Tests were conducted by NDG and E-Gauge maintaining one 

operator in three different locations of the box. Figure 28a presents the layout for the 

Geogauge, D-SPA and plate load tests. Figure 28b presents the layout for the LFWD 

tests. Figure 28c presents the layout for DCP tests. The layout for the NDG and E-Gauge 

tests are similar to Figure 28a. 
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Figure 27. In-box testing: (a) Geogauge test, (b) LFWD test, (c) DCP test, (d) Plate load test, (e) D-

SPA test, (f) NDG, and (g) E-Gauge test 
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Figure 28. Layout of test setup in different location of the box 

 
(a) Geogauge, DSPA and plate load tests             (b) LFWD tests                                        (c) DCP tests 

Field Tests on Constructed Sections  

This study included conducting field tests on several constructed and under-constructed 

sections in different projects within Louisiana. In addition, 14 test sections were tested at 

the accelerated load facility (ALF) site of DOTD. Three under-constructed test sections 

were also tested at the LA 98 and LA 417. In each field test, the Geogauge, LFWD and 

DCP measurements were taken to evaluate the soil’s site variability among locations and 

operators. In addition, the dry unit weight and moisture content were obtained using the 

Nuclear Density Gauge and E-Gauge devices.  

Constructed Sections at ALF site 

Eight sections were constructed at the ALF site. Among these, four sections were 

constructed with 5 ft.  5 ft. dimensions at the lower level location of ALF site, and the 

another four sections were constructed with 4 ft.  4 ft. dimensions at the upper level 

location of ALF site. Each section was constructed with 12-in. thickness. All sections 

were constructed with cementitious materials including either low PI (PI=11) or high PI 

(PI=53) soils. Figure 29 presents the layout of the lower level sections constructed at 

ALF; while Figure 30 illustrates the test setup layout for all the lower level test sections 

at ALF. The layout of the upper level sections constructed at ALF is presented in Figure 

31, and the layout of test setup for all the upper lever sections is illustrated in Figure 32. 
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Figure 29. Layout of the lower level constructed sections at ALF 

 

Figure 30. Layout of test setup for the lower level sections at ALF 

  

Measurements were taken using Geogauge and LFWD at each point (A, B, C, and D, or 

1, 2, 3, and 4) including the center in every section. Five operators took the 

measurements using Geogauge and LFWD devices at every section. DCP, NDG and E-

Gauge measurements were taken at every point except the center. The DCP was 

conducted by three operators in each section whereas NDG and E-Gauge were operated 

by one operator.  

In addition, six sections (I to VI) with dimensions of 70 ft.  13 ft. that were constructed 

at the upper location of ALF under another research project to study micro cracks of 

cement stabilized sections were also tested. The cement soil sections were designed with 

a minimum 7-day UCS of 150 and 300. Section I was the control section. The stabilized 

sections II, III, and IV were constructed using 8% cement, and maintaining an 8.5-in. 

thickness for each section. The stabilized sections V and VI were constructed using 6% 

cement, and maintaining a 12-in. thickness each. The A-2-7 (AASHTO) geomaterials was 
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used in the construction of all the six sections. Figure 33 depicts the layout of the 

constructed soil cement sections with no micro-cracking (MC), low MC, medium MC 

and high MC. Figure 34 illustrates the five points where tests were performed. 

Figure 31. Layout of the upper level sections constructed at ALF 

 

Figure 32. Layout of test setup for the upper level sections at ALF 
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Figure 33. Layout of soil cement sections at ALF 

 

Figure 34. Test setup layout of the soil cement sections at ALF 

 

All the constructed sections at ALF site were tested using the Geogauge, LFWD and DCP 

devices taken at each point. The Geogauge and LFWD tests were run by five operators; 

whereas, the DCP tests were conducted with three operators. The NDG and E-Gauge tests 

were performed by one operator at each point. 

Under-Constructed Sections at LA 98 and LA 417 

The field testing program also included testing three under-constructed sections at LA 98 

and LA 417 highway sites. The sections were tested with different devices to determine 

compacted soil site variability among operator and locations. Five testing devices (i.e., 

Geogauge, LFWD, DCP, NDG and E-Gauge) were engaged and run by different 

operators for evaluating the site variability. The Geogauge and LFWD tests were 

performed by five operators; whereas, one operator was involved in taking measurements 

for the DCP, NDG and E-Gauge tests.   
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Tests were conducted on the cement stabilized base layer at two different stations 

(266+00 and 267+00) within the LA 98 site, which are located in Lafayette, LA. The base 

section was constructed using 10 in. thick stabilized with 7% cement. Tests were also 

performed on a another cement stabilized base layer at station (101+25) of the LA 417, 

which is located near False River of Louisiana. The thickness of the base layer was 24 in., 

which was stabilized with 10% cement. The layout of the test sections and test setup 

layout of the devices were the same for all sections. Figure 35 presents the layout and 

testing setup for the under-constructed field base sections. 

Figure 35. Layout and testing setup of the under-constructed field base sections 

          

Laboratory Testing Program  

The laboratory testing program involved conducting several laboratory tests on various 

types of soil in order to evaluate the laboratory variation of soil properties. The laboratory 

tests included the unconsolidated undrained (UU) test, Atterberg Limit test, small direct 

shear test, one dimensional consolidation test, and the California Bearing Ratio (CBR) 

test. All the laboratory tests were performed in accordance with the ASTM procedure 

methods.  

The soils used in the laboratory tests were collected from the ALF site. The soil samples 

were put inside the oven to dry out for three days at a 60o C temperature. The soil 

samples were then remolded at the optimum moisture contents for all the lab tests. 
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Unconsolidated Undrained (UU) Test 

The UU tests were conducted using the triaxial machine in the soil lab at LTRC. The soil 

samples used for the UU tests are: Low PI (PI=11), Medium PI 1 (PI=21), Medium PI 2 

(PI=31), Medium PI 3 (PI=38) and High PI (PI=53) clay soils. The tests are performed 

according to ASTM D2850 - 15 for all soil samples. In order to determine the laboratory 

variability of soil properties, the UU tests were run by five operators for each soil type. 

Each operator prepared 3 samples of the same soil type maintaining optimum moisture 

content. Figure 36 shows the soil samples prepared for the UU test of one operator. The 

soil samples in UU tests were loaded up to 15% strain for all soil types.  Figure 37 

presents an example of the stress-strain curve obtained of Low PI (PI=11) soil that was 

performed by one operator, and Figure 38 shows the Mohr’s circle for the same tests. 

The strength of this test is performed under undrained conditions and is applicable to 

field conditions where soils are subjected to a change in stress without time for 

consolidation to take place. Also, the field stress conditions are applied to those in the 

tests. The shear strength measured from the UU tests expressed in terms of total stresses 

is commonly used in the short-term embankment stability analyses, earth pressure 

calculations, and foundation design. 

Figure 36. Samples prepared for UU test. 
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Figure 37. Stress-strain curve of Low PI (PI=11) soil 

 

Figure 38. Mohr’s circles for the UU tests 

 

Atterberg Limit Tests  

The Atterberg limits are critical water contents of fine-grained soils that define the 

transitional boundaries between the different consistency states of the soil (solid, semi-

solid, plastic and liquid) to another consistency state. They are also known as consistency 

limits. These Atterberg limits are: shrinkage limit (SL), plastic limit (PL), and liquid limit 

(LL), which are outlined in ASTM D4943 testing procedure. The behavior and 

consistency of the soil, as well as engineering properties, are different at varying degrees 

of moisture content. Thus, the boundary between each state can be established based on 

the change in water content and hence the soil's behavior. The Atterberg limits are usually 
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used for classification of cohesive soils, distinguish between silt and clay soils, and to 

distinguish between different compositions of silts and clays. Several correlations have 

been developed to relate the indices obtained from Atterberg limits (e.g., plasticity index, 

PI = LL - PL) to different soil properties and behavior. 

For the laboratory tests, remolded soils were used to determine the liquid limit and plastic 

limit of the different soil samples. Samples were prepared using different moisture 

contents by five different operators. Each operator prepared 3 samples with similar 

moisture content for the same soil type and the process was followed for all other soil 

types. Figure 39 shows some soil samples prepared to determine the liquid limit and 

plastic limit of one soil. 

Figure 39. Samples prepared for the Atterberg limit tests 

 

Small Direct Shear Test 

The small direct shear test was performed in this study to measure the laboratory 

variation in the consolidated-drained shear strength of sandy and clayey soils. The shear 

strength is one of the most significant engineering parameter of geotechnical engineering 

analysis and design since it is necessary whenever a structure relies on the soil’s shearing 

resistance. The shear strength is required for engineering situations such as evaluating the 

stability of slopes or cuts, determining the bearing capacity for foundations, and 

measuring the pressure exerted by a soil on a retaining wall. The direct shear test was 

performed following the ASTM D3080-72 procedure. Figure 40 presents a soil sample 

ready to undergo shear test.  
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Dry sandy soil and clay soils with different consistencies were tested in the direct shear 

test devise to measure the corresponding shear strength parameters (i.e., friction angle, ϕ, 

and cohesion, c). The clay soils included in the tests are: Low PI (PI=11), Medium PI 1 

(PI=21), Medium PI 2 (PI=31), Medium PI 3 (PI=38) and High PI (PI=53) soils. The 

direct shear tests were conducted by five operators, in which every operator prepared nine 

samples for each type of soil material. For all the tests, shearing was maintained up to 

10% strain. 

Figure 40. Small direct shear test 

 

One Dimensional Consolidation Test  

This one dimensional consolidation test is usually performed on fine-grained soils, which 

are undisturbed and naturally sediment in water, in order to evaluate the consolidation 

parameters. In this study, the consolidation tests were performed to evaluate the variation 

in laboratory measured consolidation parameters (i.e., compression index, Cc, and 

coefficient of consolidation, cv). The testing procedure and the evaluation techniques are 

specified in the ASTM D2435-04 reference. The basic test procedure is applicable to 

specimens of compacted soils and undisturbed samples of soils formed by other processes 

such as chemical alteration, weathering, and stress distribution.  

The consolidation parameters of the soil determined from the consolidation test are used 

to calculate the magnitude and time rate of both primary and secondary consolidation 

settlements of a structure or an earth fill. The properties determined from this test are of 

key significance in the evaluation and design of structural performance. Figure 41 shows 

the one-dimensional consolidation test devises.  
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The one dimensional consolidation tests were conducted on clays soils with the following 

different consistencies: Low PI (PI=11), Medium PI 1 (PI=21), Medium PI 2 (PI=31), 

Medium PI 3 (PI=38) and High PI (PI=53) soils. To evaluate the laboratory variability of 

consolidation parameters, the consolidation tests were performed by three operators, in 

which each prepared and tested three specimens of the same soil prepared at the optimum 

moisture content. 

Figure 41.One-dimensional consolidation test 

 

The results of consolidation tests can be used to evaluate the pre-consolidation pressure 

(Pc), compression index (Cc), and recompression index (Cr) from the measured void ratio 

vs log (pressure) curve. The coefficient of consolidation, cv, can be evaluated from the 

settlement versus time curve for each load increment using either Casagrande or Taylor 

methods. The following equation can be used to calculate cv using: 

cv= 
𝑇50 * Hdr

2

t50
    (𝐶𝑎𝑠𝑎𝑔𝑟𝑎𝑛𝑑𝑒)    𝑜𝑟    cv= 

𝑇90 * Hdr
2

t90
   (𝑇𝑎𝑦𝑙𝑜𝑟) [120] 

where, T50 = dimensionless time factor for 50% consolidation, equals 0.197; T90 = 

dimensionless time factor for 90% consolidation, equals 0.848; t50 = time corresponding 

to 50% degree of consolidation; t90 = time corresponding to 90% degree of consolidation; 

and Hdr = length of the drainage path at 50% consolidation. For double-sided drainage, 

Hdr = half the specimen height at the specific load increment; and for one-sided drainage, 

Hdr = full-specimen height at the specific load increment. 
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California Bearing Ratio (CBR) Test  

The California Bearing Ratio (CBR) test is a comparative test that is usually designed as 

an indicator of the strength of subbase and base course materials in highways and airfield 

pavement systems. The testing procedure is explained in ASTM D1883-99. The CBR test 

is generally performed on remolded (compacted) specimens, although it can be conducted 

on undisturbed soils. Remolded specimens can be compacted to their maximum unit 

weights at their optimum moisture contents if the CBR is desired these values. However, 

the CBR tests can also be performed at the desired unit weights and moisture contents. 

Soil samples are tested after being placed in water for 96 hours in order to simulate the 

very poor soil conditions. Figure 42 shows the CBR test in the universal testing machine. 

Figure 42. California bearing ration (CBR) test 

 

The CBR is defined as the ratio of the bearing load that penetrates a geomaterial to a 

specific depth as compared with the load that penetrates a well-graded crushed stone to 

the same depth. It is expressed as a percentage. A load is applied by a piston with a 

diameter of 1.95 in. to penetrate it into the soil. The penetrations versus load values are 

plotted on a graph and corrected following the procedure specified in the test standard. 

The corrected stress values corresponding to penetration depths of 0.10 in. and 0.20 in. 

are divided by the standard stresses of 1,000 psi and 1,500 psi, and then multiplied by 

100. The CBR can be expressed as follows: 

CBR = 
penetration stress (psi) required to penetrate 0.10 in.or 0.20 in.

standard stresses (1,000 psi and 1,500 psi)
                              [121] 
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If the bearing ratio based on a penetration stress required to penetrate 0.20 in. with a 

corresponding standard penetration stress of 1,500 psi is greater than the one for a 0.10 

in., the test should be repeated, and if the result is still similar, the ratio based on the 0.20 

in. penetration should be reported as the CBR value. 

The materials used for the CBR tests are: sand, recycled asphalt pavement (RAP), 

Kentucky limestone and Mexican limestone. In order to evaluate the laboratory variations 

of CBR values, five operators were involved in performing the CBR tests for all 

materials, and each operator prepared and tested three specimens for the same material.   

Evaluation of Site Variability using Semivariogram 

In this study, the site variability from different project sites were evaluated using the 

semivariobram approach, and the results were implemented into LRFD design of pile 

foundations. Field data from six project sites with multi CPT tests performed at different 

locations within each site, and four project sites with multi soil borings conducted at 

different locations within each site were collected. These include: Metairie, ALF, Bayou 

Lacassine, US 90, LA 85, Hammond, and LA 1 CPT project sites; and Metairie, Bayou 

Lacassine, Red River, and Williams Boulevard soil boring sites. The spatial variability of 

CPT data (corrected tip resistance, qt) and the spatial variability from soil boring data 

(either SPT-N or undrained shear strength, Su) for each site were evaluated using the 

semivariogram approach. The coefficient of variation due to spatial variability 

(COVRspatial) was determined for each site for use to calibrate the specific site resistance 

factor. 

Description of CPT Sites 

Six different project sites in Louisiana with several CPT tests performed at each site were 

used to evaluate the effect of site variability on the LRFD design of driven piles. The 

profiles of the different CPT data with depth were obtained for each site. The first project 

site is in Metairie, which covers 5,382,000 ft2 (500,000 m2), located at 29°59′52″N and 

90°10′39″W, and is situated at 3 ft. above the mean sea level. The project consists of 

constructing five dedicated ramps at the Interstate 10/Causeway Boulevard interchange 

located in Metairie in Jefferson Parish of Louisiana. Fourteen CPT tests were performed 

at different locations to a depth of 120 ft. as shown in Figure 43a. The second site is the 

Accelerated Loading Facility (ALF) site of the Louisiana Transportation Research Center 

(LTRC), which covers an area about 21,528 ft2 (2000 m2), which is located at 
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30°26′12.37″N and 91°14′39″W. Ten CPT tests were performed at different locations 

down to 50 ft. depth as shown in Figure 43b. For the third site at Bayou Lacassine, the 

area is about 107,640 ft2 (10000 m2), located at 30°04′13″N and 92°52′52″W, in which 10 

CPT tests were performed at different locations down to 75 ft. as shown in Figure 43c. 

For the fourth site at US 90 and LA 85, the area is about 1,345,500 ft2 (125,000 m2), and 

is located at 29°55′17″N and 91°43′34″W. Twenty-two CPT tests were performed at 

different locations to a depth of 90 ft. as shown in Figure 43d. The area of the fifth site at 

Hammond is about 5,812,500 ft2 (540,000 m2), located at 30°28′50″N and 90°29′29″W, 

in which seven CPT tests were performed at different locations as shown in Figure 43e. 

For the sixth LA 1 site, the area is about 21,530 ft2 (2,000 m2), located at 30°26′00″N and 

91°12′37.45″W, in which 13 CPT tests (75 ft. deep) were performed at different locations 

as shown in Figure 43f. 

Figure 43. Plan view of the CPT locations for the different sites 
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Description of Soil Boring Sites 

Four different project sites in Louisiana with several soil borings performed in each site 

were considered in this study to evaluate the effect of site variability on LRFD design of 

driven piles. The profiles of soil boring data (undrained shear strength, Su, and SPT-N) 

with depth were obtained for each site. Two of the project sites (Metairie and Bayou 

Lacassine) are the same sites used for CPT test data. Fifteen soil borings were performed 

at different locations in Metairie site down to 105 ft. depth as shown in Figure 44a. For 

the Bayou Lacassine site, 12 soil borings (75 ft. deep) were performed in this project as 

described in Figure 44. The third site is the Red River project site at Alexandria, 

Louisiana. The area in this site is about 6,460 ft2 (600 m2), located at 31°19′36″N and 

92°26′55″W, in which eight soil borings were performed to 105 ft. depth at different 

locations as shown in Figure 44c. The fourth site is the Williams Boulevard project site 

with an area of about 1,722,200 ft2 (160,000 m2), which is located at 30°0′34″N and 

90°14′17″W. In this site, eight soil borings (120 ft. deep) were performed at different 

locations as shown in Figure 44d. 

Subsurface Soil Characterization 

The subsurface soil conditions for the different project sites were characterized using the 

results of CPT tests and/or the soil borings and the associated laboratory test results. In 

this study, the site variability of six project sites with CPT data and four sites with soil 

borings and laboratory tests were evaluated, in which the Metairie and Bayou Lacassine 

sites have both data. The profile soil type, profile of corrected tip resistance (qt = qc + (1 - 

a) × u2) from CPT data and/or profiles of SPT-N values and undrained shear strength, Su, 

from soil borings were determined for all sites. Here, (a) is the ratio of the effective area 

of the cone (a = An/Ac), where An and Ac are the area of cross-section and the projected 

area of the load cell and the cone, respectively. Additionally, (u2) is the pore water 

pressure measured behind cone base. For example, the profile of soil type for Metairie 

site, the results of SPT tests, Su values, and the profiles of average qt values per ft. for all 

the CPTs obtained from the site are presented in Figure 45. The site consists of silty clay 

soils down to about 30 ft. deep, followed by a sandy soil layer to about 45 ft. deep, then 

clay soils to about 85 ft. deep. Below that lie another sandy layer down to 120 ft. The 

profile of CPT tests was used to classify the subsurface soil using the probabilistic region 

“soil behavior” estimation method introduced by Zhamg and Tumay [134], in addition to 

the CPT soil classification proposed by Robertson [110] as shown in the Figure 45 for 

Metairie site. The profiles of CPT data and CPT soil classifications, and the profiles of 

SPT-N values and Su for the other CPT and soil boring sites are presented in Appendix B. 
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Figure 44. Plan view of the Soil Boring locations for the different sites 

 

For the CPT sites, the coefficient of variation (COV) of the corrected cone tip resistance 

(qt) data were calculated for each site. For Metairie site, the maximum, minimum and 

average COV of qt values are 2.46, 0.00 and 0.74 tsf, respectively. The maximum, 

minimum, and average COV of qt values for the Bayou Lacassine site are 2.63, 0.09, and 

0.46 tsf, respectively. For ALF site, the maximum, minimum, and average COV of qt 

values are 1.48, 0.09, and 0.39 tsf, respectively. The maximum, minimum, and average 

COV of qt values for US 90 and LA 85 site, are 3.26, 0.07, and 0.48 tsf, respectively. For 

Hammond site, the maximum, minimum and average COV of qt values are 2.01, 0.25 and 

0.98 tsf, respectively. Finally, for LA 1 site, the maximum, minimum, and average COV 

of qt values are 1.67, 0.15, and 0.55 tsf, respectively. 

For the soil boring sites, the COV of Su and SPT-N values were calculated for each site. 

The maximum, minimum, and average COV of Su from soil borings for the Metairie site 

are 0.67, 0.17, and 0.27, respectively. The maximum, minimum, and average COV of 

SPT-N from soil borings are 0.70, 0.13, and 0.31, respectively. For Bayou Lacassine, the 
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maximum, minimum, and average COV of Su from soil borings are 0.80, 0.29, and 0.51, 

respectively. The maximum, minimum, and average COV of Su for the Red River site are 

0.91, 0.11, and 0.35, respectively. For the Williams Boulevard site, the maximum, 

minimum, and average COV of Su are 0.39, 0.13, and 0.26, respectively. 

Figure 45. Profiles of soil boring data, CPT Data, and CPT soil classification at Metairie site 

 

For the purpose of evaluating spatial site variability using the semivariogram analysis, the 

soil profile for each of the CPT and soil boring sites were divided into soil layers. In 

Metairie site, six soil layers were identified for analysis: 0-28 ft., 28-40 ft., 40-50 ft., 50-

78 ft., 78-111 ft. and 111-120 ft. The subsurface condition for ALF site reveals four soil 

layers: 0-4 ft., 4-24 ft., 24-38 ft. and 38-50 ft. For Bayou Lacassine site, there were five 

soil layers identified for analysis: 0-5 ft., 5-20 ft., 20-30 ft., 30-52 ft. and 52-75 ft. Six 

soil layers were identified for the US 90 and LA 85 site: 0-10 ft., 10-25 ft., 25-38 ft., 38-

49 ft., 49-64 ft. and 64-90 ft. For Hammond site, there have been three soil layers 

identified for analysis: 0-9 ft., 9-19 ft. and 19-24ft. The subsurface condition for LA 1 site 

shows four soil layers: 0-10 ft., 10-34 ft., 34-46 ft. and 46-75 ft. For the Red River site, 

there have been four soil layers identified for analysis: 0-20 ft., and 20-50 ft., 50-70 ft., 
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and 70-115 ft. Finally, the subsurface soil condition for Williams Boulevard site reveals 

four soil layers: 0-30 ft., 30-60 ft., 60 ft.-90 ft., and 90-120 ft. 

Evaluation of Site Variability using Bayesian Analysis 

In this study, the Bayesian updating technique that follows the Baye's rule was used to 

probabilistically analyze and update the results of pile load tests that were collected in a 

previous study by Amirmojahedi and Abu-Farsakh [57] in order to get an updated data 

information (i.e., posterior distribution). The Bayesian technique was coded using 

MATLAB. Herein, the Bayesian technique is used to model the mean bias (λ = measured/ 

predicted ultimate pile capacity) and standard deviation of the bias (σ) obtained from the 

pile load test database collected from different previous project sites (34 sites) in order to 

update λ and σ for the new specific site. The updated values of λ and σ can be used in the 

design of pile foundation for the new site, taking into consideration the specific site 

variability. 

Pile Load Test Database 

The database used in this study consists of 80 precast prestressed concrete (PPC) test 

piles of different sizes and lengths that were collected from 34 different project sites 

across Louisiana. Figure 46 depicts the locations of the collected PPC test piles. All the 

piles in the database were square precast prestressed concrete (PPC) piles that were 

loaded to failure under static load tests. The pile lengths range from 36 ft. (11 m) to 200 

ft. (61 m), and the pile widths range from 14 in. (356 mm) to 36 on. (914 mm). In each 

site, several CPT tests and soil borings were conducted, which were used for soil 

classification and evaluation of soil properties for different soil layers along the piles' 

lengths.  

The pile load tests were performed based on quick load test as described by ASTM 

D1143 testing procedure [136]. The tests were performed 14 days after pile driving, 

partially accounted for pile setup. The load was increased from 10% to 15% of the design 

load up to 3 times the design load (or unless a failure occurs first), and settlement was 

measured for each load increment. In this study, only the piles that failed before reaching 

the maximum load were considered. The load-settlement curve for each pile load test was 

interpreted to evaluate the measured ultimate pile capacity, Qm, using the Davisson 

interpretation method [113]. This method is defined as the load causes the pile top 
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deflection to be equal to the elastic compression of the pile plus 0.15 in. (3.81 mm) plus 

1/120 of the pile's width/diameter. In this study, the CPT data for the tests conducted 

close to piles were used to estimate the ultimate pile capacity, Qp, using the LCPC Pile 

design method [56]. The model bias factor, λ = Qm/Qp, and the corresponding standard 

deviation, σ, were calculated for the collected database. 

Figure 46. Locations of PPC test piles [57] 

 

Geotechnical Characterization of Database Sites 

As stated earlier, the pile load test database was collected from 34 different project sites 

in Louisiana obtained from a previous study ( [57], [138]). CPT tests and soil borings 

were conducted close to each pile load test. Soil data consist of information on the CPT 

or soil boring locations; soil type and stratigraphy; profiles of CPT data; and results of 

SPT-N values and laboratory testing (shear strength, physical properties, etc.), which 

were collected for each pile load test location. Detailed information on the subsurface soil 

conditions of the 80 pile load test locations can be found in Amirmojahedi [138]. Piles 

were driven into different sandy, clayey, and layered soils. However, the predominant soil 

type in most piles is silty clay soil. Figure 47 presents an example of the soil type and 

layering, soil properties (e.g., Su), profile of corrected cone tip resistance (qt), and the 

CPT classification using probabilistic region estimation method [134] for a test pile 

located at Houma Intracoastal Waterway (I.C.W.W.) Bridges project site. 
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The evaluation of pile capacities using the static analysis methods and CPT methods 

reveals that more than 70% of the pile capacity for 69 piles out of 80 piles comes from 

the side resistance.  This means that most of the piles in this study can be considered as 

friction piles. 

Figure 47 Subsurface soil condition at Houma I.C.W.W. Bridges project site [138] 

 

Updating Data Information 

The Bayesian technique was used in this study to update the mean bias (λ) and standard 

deviation of the bias (σ) values obtained from previous pile load test database for the new 

specific site. The updated values of λ (or σ) are collectively represented as b in the vector 

form; and the bias values of pile load test data (previous) is represented by D. For a given 

a dataset, D, the posterior probability density of the parameters b, p(b D) can be 

evaluated as follows: 

      𝑝(𝑏|𝐷) =
𝑝(𝐷|𝑏)𝑝(𝑏)

𝑝(𝐷)
∝ 𝑝(𝐷|𝑏)𝑝(𝑏)                                                   [122] 

In the above equation, p(b) is the unconditional joint probability distribution of the 

parameters in b (λ or σ). p(b) is typically referred to as the prior distribution, which is 

updated when new data, D, becomes available. p(D b) is the likelihood (for level 1 of the 
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analysis, using 33 sites) of the data for given parameters b. p(D) is the probability of the 

observed data D. Since p(D) does not vary for a given dataset, the posterior distribution 

of b is proportional to the product of the prior and the likelihood, as described in the 

above equation. 

Initially, when the first dataset D is used (in level 1), the prior p(b) can be based on 

existing data/knowledge and engineering judgement. In order to obtain the likelihood, 

p(D b), a probability distribution for the bias values, such as lognormal, needs to be 

assumed. For example, assuming that the data points in D follow a lognormal 

distribution, the value of p(D b) can be evaluated the following equation: 

    𝑝(𝐷|𝑏) = ∏ 𝐿𝑁(𝐷𝑖, 𝑏)
𝑛𝑡𝑜𝑡
𝑖                      [123] 

where, ntot is the number of data points in the dataset D, Di is an individual data point, 

and LN(Di,b) represents the probability density value of the lognormal distribution with 

parameters b at a value of Di. The above equation treats each data point, Di, equally. 

However, data points can also be given a weight to indicate higher confidence or 

importance to the data point (i.e., confidence bias site parameter for level 2). For this 

purpose, the non-negative weights for each data point, wi, can be used as followed: 

    𝑝(𝐷|𝑏) = ∏ (𝐿𝑁(𝐷𝑖, 𝑏))
𝑤𝑖𝑛𝑡𝑜𝑡

𝑖                     [124] 

With the prior distribution and the likelihood values, the posterior distribution of b, which 

is proportional to p(D b)p(b) can be sampled using the Markov Chain Monte Carlo 

(MCMC) methods, which is based on the principle of random walks. The MCMC 

simulation is the technique to draw samples from the target PDF (in case of this research 

it is posterior PDF) with a Markov Chain, which converges with the target distribution. 

When the Markov Chain reaches convergence, the samples drawn from the Markov 

Chain are the same as those in the target distribution, so the samples in the Markov Chain 

can be used to study the properties of the target distribution. The validity of this method 

does not rely on the large sample assumption. Herein, an affine invariant MCMC 

algorithm by Goodman and Weare [139] that was implemented by Grinsted [140] is used. 

 For the next dataset (i.e., level 2 of the analysis), the above mentioned updating process 

can be used to determine the posterior2 by using the previous posterior1 distribution as 

the new prior2 distribution. Herein, the posterior distribution of b is modeled as a non-

parametric joint multivariate density function using a multivariate kernel smoothing 

function that was implemented in MATLAB. 
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Evaluation of Site Variability using Probabilistic Analysis 

Probabilistic analysis were used in this study to analyze the CPT data obtained from LA 1 

site in Louisiana. Thirteen CPT tests were performed at LA 1 site.  Analysis was 

performed through employing the program SGeMS. A characteristic of geostatistics and 

other stochastic methods is the ability to assign confidence intervals to the estimates. The 

confidence intervals are derived from cumulative distributions of random functions. Once 

a cumulative distribution is known, the options in terms of what confidence limits to 

employ are up to the user and can be any number in the domain extending from 0 to 

100%. 

Description and Subsurface Condition at LA 1 Site 

In this study, the LA 1 site in Louisiana with several performed CPT was used to evaluate 

the probabilistic analysis. For the LA 1 site, the area is about 21,530 ft2 (2,000 m2), 

located at 30°26′00″N and 91°12′37.45″W, in which 13 CPT tests (75 ft. deep) were 

performed at different locations as shown in Figure 48. 

Figure 48. Locations of the CPT points at LA 1 site 

     
   (a) Location of the CPT points                             (b) Location of CPT points in SGeMS  

The subsurface soil conditions for the LA 1 site was characterized using the results of 

CPT tests, as well as, the associated laboratory test results. The profiles of 13 CPT tests, 

the corresponding CPT soil classifications using the probabilistic region estimation 

method [134], and the CPT soil classification proposed by Robertson [135] are presented 

in Figure 141 of Appendix B. The maximum, minimum, and average COV of corrected 
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tip resistance (qt) values for LA 1 site, are 1.67, 0.15, and 0.55 tsf, respectively. The site 

consists of alternating clayey and sandy layers. For the purpose of analysis, the 

subsurface soil condition at LA 1 site was divided into four soil layers: 0-10 ft., 10-34 ft., 

34-46 ft. and 46-75 ft.  

SGeMS Probabilistic Analysis 

The SGeMS can read data from files in its own format and can also read files in GSLIB 

format, which is pretty much the standard format for geostatistical data. We have 13 CPT 

points in the LA 1 site. For each soil layer, the average for each CPT was calculated and 

then incorporated into the SGeMS data format. We have to give three inputs in the data, 

like X, Y, and Z (data). Here, in our analysis, X, Y, and Z are latitude, longitude and data 

(average CPT) for each CPT location. Then we plotted the data in the SGeMs platform. 

After plotting the data, the variogram analysis was conducted. From the variogram 

analysis results, kriging can be done. In this study, we followed the ordinary kriging. To 

do the kriging in SGeMs, we need to expand the estimation entry on the algorithms panel 

and select the entry kriging. The middle part of the algorithms panel should then display 

two tabs, (General and Data and Variogram) for specifying the parameter controlling the 

kriging process. Next, 50 realizations of CPT using sequential Gaussian simulation were 

generated so that we can do the probabilistic analysis.  

What the SGS algorithm really needs is the variogram of the normal-score transformed 

data, which was not computed. We can take a short-cut by assuming that the variogram of 

the normal score transformed data would look very much like the variogram of the raw 

data scaled to a unit sill. This is the case for these data, since the shape of the univariate 

porosity distribution is in fact reasonably normal. 

If the probability distribution for the true value is N [z ̂(x0), σ
2 (x0)], then its cumulative 

distribution is given as follows: 

𝑃𝑟𝑜𝑏 [𝑧 ≤ 𝑡]𝑥0
= 𝐹(𝑡)𝑥0

= ∫
1

√2𝜋
𝑒

−
(𝑡−𝑧̂(𝑥0))2

2𝜎2(𝑥0)
𝑑𝑧𝑡

−∞
             [125] 

The probability estimate and its estimation variance completely determine the distribution 

of the variate (here CPT data) from which one can calculate the probability associated to 

any threshold or interval. 
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Suppose, we need to get the probability values when the data is between q(t,avg) - st.dev 

and q(t,avg) + st.dev. Then, the corresponding equation will be: 

𝑃𝑟𝑜𝑏 [𝑞𝑡,𝑎𝑣𝑔 − 𝑠𝑡. 𝑑𝑒𝑣 ≤ 𝑞𝑡 ≤ 𝑞𝑡,𝑎𝑣𝑔 + 𝑠𝑡. 𝑑𝑒𝑣 ]𝑥0
= 𝑃𝑟𝑜𝑏 [𝑧 ≤ 𝑞𝑡,𝑎𝑣𝑔 + 𝑠𝑡. 𝑑𝑒𝑣 ]𝑥0

−

𝑃𝑟𝑜𝑏 [𝑧 ≤ 𝑞𝑡,𝑎𝑣𝑔 − 𝑠𝑡. 𝑑𝑒𝑣 ]𝑥0
                  [126] 

Application of Site Variability in the Slope Stability Analysis 

In order to study the effect of the spatial variability on the slope stability analysis, model 

of two soil layer and embankment was modeled and run for different scenarios. The 

model represents a typical subsurface soil condition. The clay soil layer on top and sand 

layer under it. The model details are shown in Figure 49. The soil properties used in the 

model for slope stability analysis (for drained and undrained conditions) are shown in 

Table 5. 

Different scenarios were modeled to study the effect of variability of the soil layers and 

embankment properties variability on the embankment stability at drained condition. 

Bishop simplified, Janbu simplified and Spencer slice methods were used in the analyses. 

Brief description of the typical slice methods can be found in Appendix C. In this study 

126 scenarios were run to investigate the effect of site variability (by increasing COV of 

friction angle, , cohesion, c, unit weight, , and changing the vertical and horizontal 

correlation lengths) on the coefficient variation of the factor of safety. 

Figure 49. Case study model for slope stability analysis 
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Table 5. Geotechnical Properties of soil layers for drained and undrained conditions 

Layer Properties Symbol Drained Values Undrained Values 

Filling 

Cohesion c 1 kPa 1 kPa 

Friction Angle  35o 35o 

Unit Weight  20 kN/m3 20 kN/m3 

clay 

Cohesion c (or Su) 20 kPa 40 kPa 

Friction Angle  25o 0 

Unit Weight  20 kN/m3 20 kN/m3 

sand 

Cohesion c 1 kPa 1 kPa 

Friction Angle  35o 35o 

Unit Weight  18 kN/m3 18 kN/m3 

In this study, we considered the range of different soil parameters according to the 

variations reported in literature, as summarized in Table 6. For example, for the friction 

angle, , for sandy/clayey soil, we considered the range of COV of  as 0-25% . In case 

of cohesion, c, we considered the range of COV of c to be 0-50%. When we are 

considering unit weight, , we considered the range of COV of  as 0-10%. For the 

horizontal correlation length, we assumed low, mid and high horizontal correlation 

lengths as 65.6 ft. (20 m), 131.2 ft. (40 m), and 196.8 ft. (60 m), respectively according to 

the literature. However, for the vertical correlation length, we assumed low, mid and high 

vertical correlation length as 16.4 ft. (5 m), 6.6 ft. (2 m), and 0.98 ft. (0.3 m), 

respectively, according to the literature. 

 Table 6. Summary of variability of different soil parameters 

Soil Type Parameter Parameter Range 

Sandy and Clayey Friction angle ([7], [78])  COV ranges from 0-25% 

Clayey 
Cohesion ([7], [141], 

(Shahin & Cheung, 2011) 
COV ranges from 0-50% 

Sandy and Clayey Unit weight ([7], [55]) COV ranges from 0-10% 

Sandy and Clayey Correlation length ([7]) 
Horizontal - 20, 40, 60m 

Vertical – 0.3, 2, 5m 
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In the case of the spatial variability analyses, the statistics tool in the Slide 2018 2D 

software was activated. The coefficient variation of the material properties was put as 

value of the standard deviation for each single soil property. Latin-Hypercube 

probabilistic analysis sampling method was used to accomplish probabilistic analysis. A 

total of 1000 samples were generated and used in the analyses for each scenario. Log 

normal sample distribution was used.  

For each iteration, the software used random properties as shown in Figure 50, and Figure 

51 shows the different random generation of the friction angle at iterations numbers 2 and 

1, respectively.  

Figure 52, Figure 53, and Figure 54 show the factor of safety (FS) after the completion of 

slope stability analysis for scenario 11, 13 and 4, respectively. In case of the undrained 

condition, for clayey layers friction angle,  = 0, was considered. 

Figure 50. Property contour value of friction angle of sample 2 of scenario 6 
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Figure 51. Property contour value of friction angle of sample 1 of scenario 34 

 

 

Figure 52. Factor of safety and critical slip circle of scenario 11 
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Figure 53. Factor of safety and critical slip circle of scenario 13 

 

Figure 54. Factor of safety and critical slip circle of scenario 4 

 

Application of Site Variability in Shallow Foundation Analysis 

Effect of Site Variability on Bearing Capacity 

Many researchers investigated the effect of site variability on the bearing capacity of the 

sallow foundations. In this study, different approaches will be used to study the effect of 

site variability on the bearing capacity of shallow foundation. These methods include the 
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second moment statistical analysis using the semivariogram ( [54], [55]), and the Fenton 

and Griffiths [17] method. 

To implement the spatial variability in shallow foundation design using the second 

moment statistical analysis using Vesper 6 software, a 6’ x 6’ foundation example is 

planned for design with a factor of safety (FS) of 3. In this analysis, lab data from 

unconsolidated undrained (UU) tests are considered as input parameter. The geotechnical 

design parameter that includes the undrained shear strength (Su) is presented in Table 7; 

while the schematic diagram of the foundation example is described in Figure 55. 

The first step in implementing spatial variability using the second moment statistical 

analysis is to plot the semivariogram for the Su data and evaluate the range of influence 

(a) and the scale of fluctuation (θ), as will be described in the Results and Analysis 

section.   

Table 7. Su (psf) data assumed for analysis 

Depth (ft.) Su (psf) 

5 2475 

6 2616 

7 2518 

8 2664 

9 2359 

10 2541 

11 2706 

12 3100 

13 3072 
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Figure 55. Schematic diagram of shallow foundation for analysis 

 

The Fenton and Griffiths [17] model is also used in this study to implement the spatial 

variability in evaluating the bearing capacity of shallow foundations. An open source 

software Rbear2D (http://random.engmath.dal.ca/rfem/) developed by Grifftith was used 

to compute the bearing capacity of shallow foundation considering site variability. The 

main software panel is presented in Figure 56. The software was used to analyze a 2D 

shallow foundation of 6 ft. width and element size of 0.5 ft.  0.2 ft. Total of 1000 

simulations were performed in this study. 
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Figure 56. User interface of Rbear2D software 

 

The vertical and horizontal correlation length were assumed to be 1 ft. (high vertical 

variability) and 60 ft. (high horizontal variability), respectively. The number of elements 

is 25 in the x-direction and 10 in the y-direction. The random distribution of soil 

properties is shown in Figure 57. In the case of soil without variation, the deformed soil 

mesh and the stress vectors under the foundation are similar to Therzaghis theory as 

shown in Figure 58 and Figure 59, respectively. The effect of the soil variability is 

investigated for different COV of cohesion and friction angle. The stress vector and mesh 

deformation are not symmetrical as shown in Figure 60. The deformed mesh usually 

follows the weakest soil path. At the end of every run, the bearing capacity and 
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corresponding standard deviation values were defined. As the soil variation increases, the 

bearing capacity decreases. 

Figure 57. Random distribution soil properties 

 

Figure 58. Typical deformed mesh at failure for soil without variation 
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Figure 59. Typical soil stress vectors for soil without variation 

 

Figure 60. Typical distorted mesh deformation for soil with COV = 50% 

 

Variation of Soil Parameters 

In this study, sandy soils with friction angles of 42o, 38o, 32o, respectively represent 

dense, medium dense, and loose sands (within range in literature) were selected to 

investigate the effect of soil variability on the bearing capacity of shallow foundations. In 

addition, clayey soils with cohesion and friction angle of 33o, 7 kPa; 30o, 4 kPa; and 20o, 

2 kPa were selected to represent stiff, medium stiff, and soft clays, respectively, for the 

drained analysis condition. However, for the undrained condition, clay soils with 

undrained cohesion of 72, 36, 14.5 kPa were selected to represent stiff, medium stiff, and 

soft clays, respectively. 

In this study, the range of COV for friction angle we considered to be from 0 to 25% 

(within range in literature), with an increase of 5% to investigate the effect of site 

variability. For cohesion, we considered the range of COV of cohesion from 0 to 50% 

(within range in literature), in which we increased COV by 10% to study the effect of site 

variability. For the horizontal variation, we assumed high horizontal correlation length of 

60 ft.; while for the vertical variation, we also assumed high vertical correlation length of 
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1 ft., according to the literature. Table 8, Table 9, and Table 10 present the summary of 

variation of soil parameters for sand, drained condition clay and undrained condition clay, 

respectively. 

Table 8. Parameters for different types of sandy soil 

Soil Type  
Cohesion, c 

(kPa) 
Friction angle,  

(Degrees) 
COV (%) 

Sand 

Dense Sand 0 42 

0-25% Medium dense sand 0 38 

Loose sand 0 32 

Table 9. Parameters for different clayey soils for drained condition 

Soil Type  
Cohesion, c 

(kPa) 

Friction 

angle,  

(Degrees) 

COVc (%) COV (%) 

Clay 

Stiff clay 7 33 

0-50% 0-25% Medium stiff clay 4 30 

Soft clay 2 20 

Table 10. Parameters for different clayey soils for undrained condition 

Soil Type  Cohesion, c 

(kPa) 
Friction angle,  

(Degrees) 
COVc (%) 

Clay 

Stiff clay 72 0 

0-50% Medium stiff clay 36 0 

Soft clay 14.5 0 

Reliability Analysis 

Meyerhof gave the following equation to calculate the ultimate bearing capacity (qu) for 

shallow foundation with footing width (B) and depth of footing (Df): 

𝑞𝑢 = c𝑁𝑐𝑠𝑐𝑑𝑐 + 𝛾𝐷𝑓𝑁𝑞𝑠𝑞𝑑𝑞 + 0.5𝛾𝐵𝑁𝛾𝑠𝛾𝑑𝛾                              [127] 

where, Nc, Nq, and Nγ, are the bearing capacity factors; sc, sq, and sγ are the shape factors; 

and dc, dq , and dγ are the depth factors. The following is how the performance function is 

calculated in relation to the soil's ultimate bearing capacity: 

𝑔 = 𝑞𝑢 − 𝑃𝑆                    [128] 
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where PS is the vertical load. In this study, B and Df were selected as 6 ft. and 3 ft., 

respectively. Three vertical loads of 27.4, 34.2, and 41.1 kips/ft. (400, 500 and 600 kN/m) 

were considered. The unit weight, cohesion and friction angle were selected as 127.5 pcf 

(20 kN/m3), 209 psf (10 kPa) and 30o, respectively. A Matlab code was developed for this 

part of analysis. 

Application of Site Variability in Deep Foundation Analysis 

In this study, we adopted the Naghibi [131] and Naghibi and Fenton [18] methodology 

for both the cohesive and cohesionless soils to evaluate the effect of soil variability on 

deep foundation design. We also expanded the applicability of Naghibi’s [131] approach 

for the analysis of mixed soils. For the analysis of clayey (cohesive) soil, we did our 

analysis on the Red River site, which is located at Alexandria, Louisiana. Eight soil 

borings were performed to 95 ft. depth at different locations of the Red River site (Figure 

142). For the analysis of mixed soil, we did our analysis on the Metairie site in which 15 

soil borings were performed at different locations down to 105 ft. depth (Figure 45). A 

detailed discussion on the cohesive and cohesionless soil sites will be given later. An 

analysis was first performed for the cohesionless soil (using friction angle of 30o) without 

considering the end bearing. Soil friction angle, ϕ, was considered with different COVϕ 

values of 0%, 10%, 20%, 30%, 40% and 50%. Different sampling location distances of 

16.4 ft. (5 m), 32.8 ft. (10 m), 49.2 ft. (15 m), 65.6 ft. (20 m), and 82 ft. (25 m) were 

considered in this part of analysis. 

In this study, we also updated the Naghibi’s method (for both cohesive, cohesionless and 

mixed soils) in order to incorporate the end-bearing capacity in the design of deep 

foundations.   

Incorporating End Bearing into Cohesive Soils 

The unit end bearing capacity of piles tip on clay is given as follows [142]: 

𝑅𝐸𝐵 = 𝑁𝑐𝑆𝑢                                                      [129] 

where, 𝑅𝐸𝐵 = unit end bearing of the pile, and  𝑁𝑐= bearing capacity factor = 9.0. According 

to Skempton [137], 𝑆𝑢 = average undrained shear strength of clay for 1D below the tip.   

Recalling the ultimate side resistance of a pile due to cohesion (c) is given as follows: 

𝑅̂𝑢 = 𝑝𝐻𝛼𝑐̂                                    [130] 
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Adding the above two equations, the ultimate resistance of a pile becomes: 

 𝑅̂𝑢 = 𝑝𝐻𝛼𝑐̂ + 𝑅𝐸𝐵                                                                                                     [131] 

Including 𝑅𝐸𝐵 = 9𝑐, the above equation becomes: 

𝑅𝑢 = (
𝛼𝐿𝐹̂𝐿+𝛼𝐷𝐹̂𝐷

ɸ𝑑𝑓
) (

𝑐̅

𝑐̂
) + 𝑅𝐸𝐵                                                                [132] 

then, 𝑅𝑢 = (
𝛼𝐿𝐹̂𝐿+𝛼𝐷𝐹̂𝐷+𝑅𝐸𝐵

ɸ𝑑𝑓
) (

𝑐̅

𝑐̂
)         [133] 

Assuming 𝑝𝑓 = 𝑃[𝐹 > 𝑅𝑢], the above equation becomes: 

𝑝𝑓 = 𝑃 [𝐹 > (
𝛼𝐿𝐹̂𝐿+𝛼𝐷𝐹̂𝐷+𝑅𝐸𝐵

ɸ𝑑𝑓
) (

𝑐̅

𝑐̂
)]                                                                            [134] 

then, 𝑝𝑓 = 𝑃 [
𝐹𝑐̂

𝑐̅
> (

𝛼𝐿𝐹̂𝐿+𝛼𝐷𝐹̂𝐷+𝑅𝐸𝐵

ɸ𝑑𝑓
)]        [135] 

Refereeing to the above equation for the failure probability calculation, the next two 

components are defined as follows: 

𝑊 =
𝐹𝑐̂

𝑐̅
           [136a] 

𝑞 = 𝛼𝐿𝐹̂𝐿 + 𝛼𝐷𝐹̂𝐷 + 𝑅𝐸𝐵         [136b] 

By solving these equations, we will get: 

𝑝𝑓 = 𝑃 [𝑊 >
𝑞

ɸ𝑑𝑓
] = 𝑃 [𝑙𝑛𝑊 > ln (

𝑞

ɸ𝑑𝑓
)] = 1 − Ф [

ln(
𝑞

ɸ𝑑𝑓
)−𝜇𝑙𝑛𝑊

𝜎𝑙𝑛𝑊
]    [137] 

then the geotechnical resistance factor, df, can be determined as: 

ɸ𝑑𝑓 = exp (𝑙𝑛𝑞 − 𝜇𝑙𝑛𝑊 − 𝛽𝜎𝑙𝑛𝑊)        [138] 

Incorporating End Bearing into Cohesionless Soil 

The toe resistance of piles tip on cohesionless soil is calculated using the Nordlund method 

as follows:   

𝑅𝐸𝐵 = 𝛼𝑡𝑁′𝑞𝐴𝑡𝑞𝑡          [139] 

where, αt is the dimensionless factor (dependent on friction angle) (see Figure 61);  𝑁′𝑞 is 

the bearing capacity factor (see Figure 62); qt is the effective overburden pressure (at the 
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pile toe); and At is the cross-sectional area of the pile (at the pile toe). The average  value 

within the toe influence zone [from 3D (diameter of the pile) above the toe to 3D below 

the toe], is selected as the  value. 

Figure 61. Relationship between αt coefficient and friction angle for cohesionless soils 

 

Figure 62. Relationship between 𝑁′𝑞 and friction angle for cohesionless soils 

 

The characteristic ultimate geotechnical resistance, 𝑅̂𝑢, is obtained as: 

𝑅̂𝑢 =
1

2
𝑝𝑎𝛾𝐻2(1 − 𝑠𝑖𝑛 𝜙̂) 𝑡𝑎𝑛 (𝑏𝜙̂) + 𝑅𝐸𝐵; where, 𝑅𝐸𝐵 = 𝛼𝑡𝑁′𝑞𝐴𝑡𝑞𝑡   [140]      

The failure probability (actual), 𝜌𝑓, will be given as: 

𝑝𝑓 = 𝑃[𝐹 > 𝑅𝑢]          [141] 
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And a successful design methodology will have pf ≤ pm. By including the end bearing REB, 

the pf becomes:  

𝑝𝑓 = 𝑃 [𝐹 > (
𝛼𝐿𝐹̂𝐿+𝛼𝐷𝐹̂𝐷+𝑅𝐸𝐵

ɸ𝑑𝑓
) (

(1−𝑠𝑖𝑛 𝜙̅) 𝑡𝑎𝑛 (𝑏𝜙̅) 

(1−𝑠𝑖𝑛 𝜙̂) 𝑡𝑎𝑛 (𝑏𝜙̂)
)]=𝑃 [(

𝐹(1−𝑠𝑖𝑛 𝜙̂) 𝑡𝑎𝑛 (𝑏𝜙̂) 

(1−𝑠𝑖𝑛 𝜙̅) 𝑡𝑎𝑛 (𝑏𝜙̅)
) >

(
𝛼𝐿𝐹̂𝐿+𝛼𝐷𝐹̂𝐷+𝑅𝐸𝐵

ɸ𝑑𝑓
)]            [142] 

letting, 

𝑋̂ = (1 − 𝑠𝑖𝑛 𝜙̂) 𝑡𝑎𝑛 (𝑏𝜙̂); 𝑋̅ = (1 − 𝑠𝑖𝑛 𝜙̅) 𝑡𝑎𝑛 (𝑏𝜙̅); 𝑞 = 𝛼𝐿𝐹̂𝐿 + 𝛼𝐷𝐹̂𝐷 + 𝑅𝐸𝐵; and 

𝑌 =  
𝐹 𝑋̂

𝑋̅
 

So the above equation can be written as: 

𝑝𝑓 = 𝑃 [𝑌 >
𝑞

ɸ𝑑𝑓
]             [143] 

The 𝑝𝑓 can be derived from the following: 

𝑝𝑓 = 1 − Ф [
ln(

𝑄̂

ɸ𝑑𝑓
)−𝜇𝑙𝑛𝑌

𝜎𝑙𝑛𝑌
]         [144] 

The reliability index, β, can be expressed as: 

𝛽 =
ln(

𝑞

ɸ𝑑𝑓
)−𝜇𝑙𝑛𝑌

𝜎𝑙𝑛𝑌
           [145] 

The geotechnical resistance factor (ɸ𝑑𝑓) is then calculated as follows: 

ɸ𝑑𝑓 = exp (𝑙𝑛𝑞 − 𝜇𝑙𝑛𝑌 − 𝛽𝜎𝑙𝑛𝑌)         [146] 

In case of mixed soil layers, according to FHWA, for the piles terminated into a cohesive 

layer, use the REB (unit end bearing) for cohesive soil. For piles terminated into a 

cohesionless layer, use the REB (unit end bearing) for cohesionless soil.  
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Studied Case Sites 

Cohesive Soil Site 

The Red River site was selected here to analyze the effect of site variability on deep 

foundations for cohesive soil condition. Eight soil borings were performed in this site 

down to 105 ft. depth. The locations of soil borings for the Red River site were presented 

earlier in Figure 44c, and the subsurface soil profile with soil classification and undrained 

shear strength are presented in Figure 142 of Appendix B. For the Red River site, four 

soil layers were identified for analysis: 0-20 ft., and 20-50 ft., 50-70 ft., and 70-115 ft.    

For the analysis purpose, we assumed our pile is located at the black (round) point. The 

corresponding distances of soil borings R1, R2, …, and R8 from the pile location are 40.5 

ft. (12.33 m), 46.8 ft. (14.27 m), …, and 120.0 ft. (36.57 m), respectively as described in 

Figure 63(a-c). The weighted average of undrained shear strength (Su), coefficient of 

variation of Su (COVSu), and standard deviation of Su (Su) for R1 are 2201 psf (105.39 

kPa), 0.31 and 44, respectively. The weighted average of Su, COVSu, and Su for R2 are 

1773.6 psf (84.92 kPa), 0.25 and 47, respectively. Finally, the weighted average of Su, 

COVSu, and Su for R8 are 1957.8 psf (93.74 kPa), 0.47 and 44, respectively. 

Cohensionless Soil Site 

Since we do not have any site in this study with only cohesionless soil, we considered a 

site with an average value of friction angle, ϕ = 30o, and different coefficients of 

variations, COVϕ, that ranged from 0% to 50%. In addition, we considered different 

boreholes with different sampling distances that ranged between 16.4 ft. (5 m) and 82 ft. 

(25 m). 

Mixed Soil Site 

The Metairie site was selected for analyzing the effect of soil variability on deep 

foundations for mixed soil condition. Fifteen soil borings were performed at different 

locations in Metairie site down to 105 ft. depth. The locations of these soil borings were 

presented earlier in Figure 44a. The subsurface soil profile with soil classification and 

undrained shear strength for Metairie site are presented in Figure 45. Four different soil 

layers were identified in Metairie site for use in analysis: two clayey layers (I: 0 to 29 ft. 

and III: 48 to 78 ft.), with total of 59 ft.; and two sandy layers (II: 29 to 48 ft. and IV: 78 

to 105 ft.), with total of 46 ft.  
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Figure 63. Distance from the pile and soil classification of different point at Red River site 

 

The mean of Su, COVSu, and Su for the layer I are 229.8 psf (11.00 kPa), 0.31 and 3.4, 

respectively. For layer III, the mean of Su, COVSu, and Su are 647.5 psf (31.00 kPa), 0.24 

and 8.3, respectively. For layer II, the mean of friction angle, , COVϕ, and ϕ are 42o, 

0.36 and 15.12, respectively. For layer IV, the mean of , COVϕ, and ϕ are 36o, 0.32 and 

11.73, respectively. Therefore, the overall weighted averages for the two clay layers (I: 0 

to 29 ft. and III: 48 to 78 ft.) are the mean of Su, COVSu, and Su are 480.4 psf (23.00 

kPa, 0.27. and 5.85, respectively. The overall weighted averages for the sandy soil layers 

(II: 29 to 48 ft. and IV: 78 to 105 ft.) are the mean of , COVϕ, and ϕ are 39o, 0.35, and 

13.06, respectively.  

For the analysis purpose, we assumed our pile is located at the black (round) point. The 

corresponding distances of soil borings M1, M2, and M11 from the pile location are 188 
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ft. (57.31 m), 190.5 ft. (58.07 m), and 129.2 ft. (39.37 m), respectively, as shown in 

Figure 64(a-c). Meanwhile, Figure 64 (d-f) shows the values of undrained shear strength 

and friction angle for the soil borings M1, M2, and M11. 

Figure 64. Distance from the pile and soil classification of different point at Metairie site 
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Analysis and Results  

Laboratory and Field Tests 

This section includes the results and analysis of all experimental data, which include in-

box, field and laboratory tests. Analyses are performed based on the Gauge R & R 

method, which includes the X-Bar/R method and the ANOVA (Analysis of Variance). 

Besides, the second moment (SM) statistics is also used where Gauge R & R method 

could not apply. The X-Bar/R and the ANOVA methods are followed from Measurement 

System Analysis (MSA) manual (4th Edition) (page 118-121, 195-198). 

Results and Analysis of In-Box Tests  

Tests were performed in the front, middle, and the back locations of the box. In order to 

apply the X-Bar/R and the ANOVA methods, the front, middle, and back locations are 

considered as specimen 1, 2, and 3, respectively. Data are then corrected with typical 

Poison’s ratio if necessary. Figure 65 illustrates the specimen determination for analysis. 

Figure 65. Specimen determination for analysis 

 

The Gauge R & R method can be applied for the Geogauge, Light Falling Weight 

Deflectometer (LFWD) and Dirt Portable Seismic Analyzer (D-SPA) whereas only the 

FOSM can be applied for the DCP, NDG, and the E-Gauge. The Gauge R & R method 
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can’t be applied for the DCP as repeatability can’t be measured, and for the NDG and the 

E-Gauge, reproducibility can’t be determined.  

Analysis of Geogauge, LFWD and D-SPA Data according to X-Bar/R Method 

To assess the variability within the device, operator and specimen; the repeatability and 

reproducibility; and specimen variability have to be considered.  The Geogauge, LFWD, 

and D-SPA data can be evaluated using the X-Bar/R method as this method allows 

repeatability (repetition), reproducibility (operator variation), and specimen variability.  

Table 11 illustrates the calculation of averages, total averages, ranges, and average ranges 

of data for different operators according to the X-Bar/R method for the five different 

operators for sand soil and Geoguge device. 

Table 11. Analysis of data according to X-Bar/R method for sand soil using Geogauge  

Material  Location  Operator 1 

    Data  Average  
Total 

Average  
Range  

Average 

Range  

    MPa MPa MPa MPa MPa 

Sand  

Front or 

Specimen 1 

59.16 

60.03 

58.78 

2.00 

1.82 

59.77 

61.16 

Middle or 

Specimen 2 

60.55 

60.84 0.43 60.98 

60.98 

Back or 

Specimen 3 

56.65 

55.46 3.04 53.61 

56.13 
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Material  Location  Operator 2 

    Data  Average  
Total 

Average  
Range  

Average 

Range  

    MPa MPa MPa MPa MPa 

Sand  

Front or 

Specimen 1 

54.04 

50.49 

49.73 

6.51 

2.86 

47.54 

49.88 

Middle or 

Specimen 2 

50.05 

49.24 1.47 48.58 

49.10 

Back or 

Specimen 3 

49.36 

49.45 0.61 49.79 

49.19 

 

Material  Location  Operator 3 

    Data  Average  
Total 

Average  
Range  

Average 

Range  

    MPa MPa MPa MPa MPa 

Sand  

Front or 

Specimen 1 

59.34 

58.53 

57.75 

1.65 

2.46 

58.55 

57.69 

Middle or 

Specimen 2 

55.78 

55.43 3.47 53.52 

56.99 

Back or 

Specimen 3 

58.29 

59.31 2.26 59.08 

60.55 

 

 

 

 

 



—  142  — 

 

 

Material  Location  Operator 4 

    Data  Average  
Total 

Average  
Range  

Average 

Range  

    MPa MPa MPa MPa MPa 

Sand  

Front or 

Specimen 1 

56.04 

55.61 

54.81 

0.78 

2.05 

55.52 

55.26 

Middle or 

Specimen 2 

50.75 

51.99 3.64 50.83 

54.39 

Back or 

Specimen 3 

55.87 

56.82 1.73 57.60 

56.99 

 

Material  Location  Operator 5 

    Data  Average  
Total 

Average  
Range  

Average 

Range  

    MPa MPa MPa MPa MPa 

Sand  

Front or 

Specimen 1 

49.79 

51.12 

51.02 

3.73 

2.89 

50.05 

53.52 

Middle or 

Specimen 2 

51.61 

51.76 2.69 50.49 

53.18 

Back or 

Specimen 3 

50.92 

50.17 2.26 50.92 

48.67 

At first, the total average and average range need to be calculated for each operator to 

determine the repeatability and reproducibility. The bias correction factors can be 

determined from Table 3. After calculating the specimen variability, the total variability 

can be evaluated. Using the total variability and data average, the coefficient of variations 

can be determined. All equations required to calculate total variability are described 

earlier in Table 1.  Table 12, Table 13, Table 14, and Table 15 show calculations of 

repeatability, reproducibility, specimen variability and the coefficient of total variability, 

respectively. 
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Table 12. Repeatability analysis according to X-Bar/R method 

Analysis - Repeatability (EV) 

Average Range        

(R-Bar) 

Bias Correction Factor 

(d2) 

Repeatability or Equipment 

Variation, σ repeatability (R-bar/d2)  

MPa   MPa 

2.89 1.693 1.7 

Table 13. Reproducibility analysis according to X-Bar/R method 

Analysis - Reproducibility (AV) 

Range of 

average 

of 

operators 

(Ro) 

Bias 

Correction 

Factor 

(d2*) 

Number of 

specimens, 

(n)  

Number of 

measurements 

repetition, (r)  

EV² 

(Equipment 

Variation, σ 

repeatability) 

Reproducibility σ 

reproducibility         

MPa         MPa 

9.05 1.74 3.00 3.00 1.43 5.18 

Table 14. Specimen variability analysis according to X-Bar/R method 

Material  Specimen 1  Specimen 2 Specimen 3 Specimen Variability (SV) 

  Data Avg. Data Avg. Data Avg. 

Range of the 

specimen 

average        

(Rs) 

Bias 

Correction 

Factor 

(d2*) 

Specimen 

Variability, 

σ specimen             

(Rs/d2*) 

  MPa MPa MPa MPa   MPa 

Sand  55.15 53.85 54.24 1.3 3.5 0.37 

Table 15. The coefficient of variation (COV) analysis according to X-Bar/R method 

Combined 

Device 

Variability  

Specimen 

Variability 

(SV) 

Total Variability (TV) 

Average of 

Modulus 

Measurements 

COV of Total 

Variability 

GRR (GAUGE 

R&R),  

√(EV²+AV²) 

Specimen 

Variability,  

σspecimen             

(Rs/d2*) 

Total Variability, 

√(EV²+AV²+SV²)  
Total Average 

The 

coefficient of 

variations   

MPa MPa MPa MPa % 

5.4 0.4 5.5 54.4 10.0 
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Analysis of Geogauge, LFWD and D-SPA data according to ANOVA Method 

Another statistical technique to evaluate the total variability is analysis of variance 

(ANOVA). This technique is superior to the X-Bar/R method as it incorporates operator – 

specimen interaction. Equations required to calculate the total variability are taken from 

Table 2. ANOVA analysis is performed via the Statistical Analysis System (SAS) 

program where the probability is taken for the 95 percent confidence interval. Table 16 

describes the process to calculate the total variability. 

Table 16. The coefficient of variation (COV) analysis of Geogauge according to ANOVA method 

Geogauge - ANOVA 

Material 

Type  

Avg.  EV²   AV² = θ² + α²  

SV²  

Gauge R & 

R 

TV (Total 

Variability) 

COV 

  

  MSSE θ²   α²  θ² + 

α² 

ʋ² √( EV² + 

AV²) 

    

  MPa           MPa MPa % 

Sand  54.4 2.2 14.5 3.7 18.2 0.4 4.5 4.6 8.4 
Here, EV = Equipment Variability, AV = Appraiser (Operator) Variability, SV = Specimen Variability, 

MSSE = Mean Sum of Square Error. 

 

Summary of the COV for the Geogauge, LFWD, and D-SPA is presented in Table 17. The 

table shows that the COV for Geogauge ranges from 5.1% to 15.3% for the X-Bar/R 

method; while it varies from 7.4% to 18.1% for the ANOVA method. For LFWD, the 

COV ranges from 7.4% to 14.3% and 8.2% to 24.4% for the X-Bar/R method and the 

ANOVA method, respectively. For D-SPA, the COV ranges from 4.2% to 9.6% for the X-

Bar/R method; while it varies from 6.7% to 15.4% for the ANOVA method. In addition, 

the COV was also calculated using the second moment statistics and is also presented in 

Table 17. The ranges of COV of Geogauge, LFWD, and D-SPA data ranges from 6.7% to 

15.6%, 10.9% to 20.8% and 5.9% to 13.4%, respectively. Moreover, the COV for the 

high PI (PI=53) with 5% lime and 4% cement, medium PI 2 (PI=31) and high PI (PI=53) 

are the greatest for Geogauge, LFWD and D-SPA, respectively.  

While comparing the variability among the materials tested in the box with the Geogauge 

and LFWD devices, the medium PI 2 (PI=31) soil shows the higher COV. Among all 

statistical techniques, the maximum COVs were obtained from ANOVA and second 

moment methods for LFWD, which are 24.4% and 20.8%, respectively. In the case of the 
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D-SPA, the maximum COV was evaluated using the ANOVA method for medium PI 3 

(PI=35) soil. 

Table 17. Summary of COVs of Geogauge, LFWD, and D-SPA data according to the X-Bar/R and 

ANOVA methods 

Material 

Geogauge LFWD DSPA 

Second 

Momen

t 

X-

Bar/ 

R  

ANOVA 
Second 

Moment 

X-

Bar/ 

R  

ANOV

A 

Second 

Momen

t 

X- 

Bar / 

R  

ANOVA 

COV 
CO

V 
COV COV 

CO

V 
COV COV 

CO

V 
COV 

  % % % % % % % % % 

Sand  7.6 9.9 8.3 10.9 7.4 13.1 6.5 5.5 6.7 

RAP 7.1 7.2 7.4 11.4 12.9 12.4 5.9 4.2 6.8 

Low PI 

(PI=11) 
11.4 8.8 12.2 14.2 11.6 19.1 - - - 

High PI 

(PI=53) 
7.2 5.1 8.3 11.3 10.6 11.8 10.0 5.4 10.2 

High PI 

(PI=53) 

+5% lime 

+ 4% 

Cement 

14.9 12.5 16.5 15.9 10.3 18.4 - - - 

Medium 

PI 3 

(PI=35) + 

5% lime + 

4% 

Cement 

11.0 10.8 11.8 15.6 12.4 18.7 - - - 

Kentucky 

Limestone  
11.7 8.7 13.7 11.9 13.1 13.4 - - - 

       - - - 

Mexican 

Limestone  
8.2 8.4 8.6 7.8 8.8 8.2 - - - 

Medium 

PI 1 

(PI=21) 

6.7 7.2 6.9 16.3 11.7 19.4 - - - 

Medium 

PI 2 

(PI=31) 

15.6 13 18.1 20.8 14.3 24.4 9.2 7.8 10.2 

Medium 

PI 3 

(PI=35) 

14 10.1 15.8 16.8 11.3 18.3 13.4 9.6 15.4 

Low PI 

(PI=11) 

with 3% 

Cement  

15.2 15.3 17 16.9 9.5 20.4 - - - 
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Analysis of Dynamic Cone Penetrometer (DCP) Data  

The DCP tests were conducted on 12 different geomaterials inside the box. The profile of 

DCP index (DCPI) in (mm/blow) was calculated for each test. The DCPI is an indication 

of the strength of material with depth. The lower the DCPI, the higher the strength of 

geomaterial. For the compacted materials with high maximum dry density and optimum 

moisture content, the DCPI values were low. Figure 66 presents examples of DCPI 

profile for sand, which shows the DCPI values decrease along the depths. 

Figure 66. Examples of DCPI profiles for sand 

 

As the DCP tests were performed by three operators, the operator-related variabilities are 

grouped into three segments. Therefore, the COV can be found for operator 1, operator 2, 

and operator 3, which is shown in Table 18. From the summary of the operator-related 

variability, the COV range from 1.6% to 16.4%. The value of COV was the lowest for 

Kentucky limestone and the highest for High PI (PI=53) soil. 

Summary of the location-related variability of the DCPI average (mm/blow) is presented 

in Table 19, in which the COV range from 0.4% to 18.1%. 
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Table 18. Summary of operator-related variability of DCPI avg. (mm/blow) 

 
Material Operator 1 Operator 2 Operator 3 

DCPI 

Avg. 

SD  COV  DCPI 

Avg. 

SD  COV  DCPI 

Avg. 

SD  COV  

  mm/ 

blow 

mm/ 

blow 

% mm/ 

blow 

mm/ 

blow 

% mm/ 

blow 

mm/ 

blow 

% 

Low PI (PI=11) 15.8 1.5 9.5 15.9 0.7 4.5 15.3 0.5 3.0 

Mexican Limestone  2.7 0.1 2.1 3.1 0.3 10.0 2.3 0.1 2.5 

High PI (PI=53) 52.5 8.6 16.4 48.5 5.0 10.4 50.7 5.5 10.8 

Medium PI 1 (PI=21) 27.9 1.0 3.5 27.1 0.9 3.2 31.7 3.8 12.0 

Medium PI 2 (PI=31) 28.3 0.8 2.7 31.4 2.0 6.3 34.6 1.8 5.2 

Medium PI 3 (PI=38) 36.8 4.7 12.8 35.3 5.4 15.2 37.0 5.9 16.0 

Sand 24.7 1.3 5.3 26.9 0.7 2.4 27.7 3.4 12.3 

RAP 9.0 0.4 4.0 8.0 0.3 3.8 6.8 0.4 5.3 

Kentucky Limestone 3.3 0.1 1.8 3.6 0.1 1.6 3.0 0.1 3.9 

Medium PI 3 (PI=38) 

with 5% Lime & 4% 

Cement 

17.8 0.8 4.7 17.9 2.0 11.0 17.8 0.7 4.2 

Low PI (PI=11) with 3% 

Cement 
14.7 1.1 7.4 13.1 0.9 7.0 15.0 0.7 4.4 

High PI (PI=53) with 5% 

Lime & 4% Cement 
20.2 2.1 10.2 20.2 2.0 9.7 20.7 1.3 6.3 

Table 19. Summary of location-related variability of DCPI avg. (mm/blow) 

 
Material Location 1 Location 2 Location 3 

DCPI 

Avg. 

SD  COV  DCPI 

Avg. 

SD  COV  DCPI 

Avg. 

SD  COV  

  mm/ 

blow 

mm/ 

blow 

% mm/ 

blow 

mm/ 

blow 

% mm/ 

blow 

mm/ 

blow 

% 

Low PI (PI=11) 15.0 0.1 0.4 16.6 0.9 5.2 15.4 0.8 5.3 

Mexican Limestone  2.7 0.4 13.2 2.8 0.5 18.1 2.6 0.3 11.0 

High PI (PI=53) 58.2 5.8 10.0 50.1 2.9 5.7 44.0 2.9 6.6 

Medium PI 1 (PI=21) 31.6 4.0 12.7 32.9 4.4 13.3 29.5 4.6 15.7 

Medium PI 2 (PI=31) 32.8 3.7 11.3 31.4 3.5 11.1 30.0 2.5 8.4 

Medium PI 3 (PI=38) 38.3 1.1 2.9 40.4 1.0 2.5 30.3 1.2 3.8 

Sand 27.1 1.0 3.5 24.7 1.5 6.0 27.5 3.3 12.0 

RAP 7.9 1.3 16.6 7.8 0.9 11.6 8.2 1.2 14.1 

Kentucky Limestone 3.3 0.4 10.8 3.3 0.3 9.6 3.3 0.4 10.8 

Medium PI 3 (PI=38) 

with 5% Lime & 4% 

Cement 

18.4 1.6 8.9 18.1 0.8 4.3 17.0 0.6 3.8 

Low PI (PI=11) with 3% 

Cement 
14.4 0.6 3.9 14.8 1.3 9.0 13.6 1.6 11.4 

High PI (PI=53) with 5% 

Lime & 4% Cement 
20.2 2.1 10.2 20.2 2.0 9.7 20.7 1.3 6.3 
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Analysis of Nuclear Density Gauge (NDG) Data 

The NDG tests were performed in three different locations of the box by one operator. 

Therefore, only the location-related variability analysis was performed for the NDG. The 

location-related variability can be analyzed for dry density and moisture content. Table 20 

and Table 21 present the location-related variabilities for dry density and moisture 

content of the materials, respectively.  

It can be seen from the tables that the COVs range from 0.5% to 6.1% for dry density and 

from 2.4% to 25.1% for moisture content.  For dry density, the High PI (PI=53) with 5% 

lime, 4% cement, and Mexican limestone show the maximum and minimum COVs, 

respectively. For the moisture content, maximum and minimum COV were observed for 

the high PI (PI=53) with 5% lime & 4% cement and the low PI (PI=11) with 3% cement, 

respectively. 

Table 20. Summary of location-related variability of COV of NDG (dry density) 

 
Material Front Location  Middle Location Back Location 

Data 

Avg. 

SD COV Data 

Avg. 

SD COV Data 

Avg. 

SD COV 

  pcf pcf  % pcf pcf  % pcf pcf  % 

Low PI (PI=11) 104.6 1.3 1.3 105.7 1.7 1.6 104.6 1.8 1.7 

Mexican 

Limestone  
125.4 0.8 0.6 124.2 0.6 0.5 125.3 1.8 1.5 

High PI (PI=53) 77.7 2.4 3.1 78.0 1.3 1.6 76.9 2.1 2.7 

Medium PI 1 

(PI=21) 
103.1 2.9 2.8 102.1 0.7 0.7 101.2 1.0 0.9 

Medium PI 2 

(PI=31) 
93.6 2.7 2.8 95.4 2.9 3.1 94.7 1.8 1.9 

Medium PI 3 

(PI=38) 
91.5 2.4 2.6 90.8 1.9 2.1 88.6 2.1 2.3 

Sand 101.3 1.7 1.7 101.0 1.9 1.9 100.4 1.1 1.1 

RAP 122.4 5.1 4.2 123.5 5.1 4.1 122.7 5.2 4.2 

Kentucky 

Limestone 
139.3 1.6 1.1 138.4 2.1 1.5 138.5 1.2 0.9 

Medium PI 3 

(PI=38) with 5% 

Lime & 4% 

Cement 

93.4 1.3 1.4 91.6 0.8 0.8 92.3 0.7 0.7 

Low PI (PI=11) 

with 3% Cement 
100.3 3.1 3.1 97.3 0.6 0.6 99.6 0.9 0.9 

High PI (PI=53) 

with 5% Lime & 

4% Cement 

100.7 6.2 6.1 88.5 1.7 2.0 93.7 1.6 1.7 
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Table 21. Summary of location-related variability of COV of NDG (moisture content)  

Summary of NDG (Moisture Content) Based on Locations  

Material Front Location  Middle Location Back Location 

Data 

Avg. 

SD COV Data 

Avg. 

SD COV Data 

Avg. 

SD COV 

  % % % % % % % % % 

Low PI (PI=11) 16.8 0.7 4.1 16.6 0.8 4.5 16.4 0.7 4.5 

Mexican Limestone  10.1 1.0 10.2 10.1 1.2 12.2 9.6 1.4 14.6 

High PI (PI=53) 36.9 1.7 4.7 37.0 1.5 4.1 36.1 1.5 4.2 

Medium PI 1 

(PI=21) 
18.9 0.7 3.6 19.3 0.8 4.4 19.3 0.8 3.9 

Medium PI 2 

(PI=31) 
22.3 1.1 5.0 21.1 0.9 4.0 20.8 0.7 3.3 

Medium PI 3 

(PI=38) 
23.5 0.7 2.9 23.5 1.4 5.9 23.9 1.5 6.4 

Sand 9.3 1 10.7 9.1 1.1 12.3 9.4 0.9 9.9 

RAP 5.4 1.1 19.8 5.4 1.1 19.5 5.6 1 18.5 

Low PI (PI=11) 16.8 0.7 4.1 16.6 0.8 4.5 16.4 0.7 4.5 

Kentucky 

Limestone 
6.6 0.5 7.3 6.6 0.5 6.9 6.7 0.4 6.5 

Medium PI 3 

(PI=38) with 5% 

Lime & 4% 

Cement 

23.4 1.1 4.8 24.4 1 4 24 0.6 2.6 

Low PI (PI=11) 

with 3% Cement 
16.3 1.1 6.8 17 0.7 4.2 16.9 0.4 2.4 

High PI (PI=53) 

with 5% Lime & 

4% Cement 

17.7 3.4 25.1 20 0.6 2.8 17.3 1.6 9.1 

Analysis of E-Gauge Data 

Like the Nuclear Density Gauge, the E-Gauge test was also performed in three different 

locations inside the box. The E-Gauge test was also performed by a single operator. This 

test can measure both the dry density and moisture content. While performing the test, the 

moisture probe sometimes did not work due to internal problems with the device. In that 

case, only the wet density of the tested material could be measured. Table 22 and Table 

23 summarize the COVs induced by dry/wet density and moisture content, respectively.  

Table 22 shows that the COVs range from 0.37% to 8.19% and from 0.41% to 4.02% for 

dry density and wet density, respectively. The COV of moisture content varies from 

1.76% to 18.8% (Table 23). The maximum and minimum COV for dry density were 



—  150  — 

 

noticed for high PI (PI=53) and high PI (PI=53) with 5% lime and 4% cement, 

respectively. For the case of moisture content, the maximum and minimum COV were 

observed for high PI and high PI with 5% lime and 4% cement, respectively. 

Table 22. Summary of location-related variability of COV of E-Gauge (dry/wet density) 

 
Material Front Location  Middle Location Back Location 

Data 

Avg. 

SD  COV Data 

Avg. 

SD  COV Data 

Avg. 

SD  COV 

  pcf pcf  % pcf pcf  % pcf pcf  % 

High PI (PI=53) (Dry 

Density) 

88.65 6.92 7.81 88.06 6.94 7.88 87.07 7.13 8.19 

Medium PI 1 (PI=21) 

(Wet Density) 

114.85 1.05 0.92 115.97 2.71 2.33 116.11 2.68 2.31 

Medium PI 3 (PI=38) 

(Wet Density) 

116.74 0.60 0.52 116.24 0.93 0.80 115.91 0.96 0.83 

Sand (Wet Density) 106.36 3.46 3.25 106.93 3.74 3.49 106.41 4.28 4.02 

RAP (Wet Density) 120.94 2.88 2.38 120.94 3.25 2.69 121.40 2.92 2.41 

Kentucky Limestone 

(Wet Density) 

158.01 0.64 0.41 157.82 0.82 0.52 158.23 0.84 0.53 

Medium PI 3 (PI=38) 

with 5% Lime & 4% 

Cement (Dry Density) 

95.98 0.53 0.55 96.77 0.50 0.52 97.40 0.42 0.43 

Low PI (PI=11) with 

3% Cement (Dry 

Density) 

105.27 0.55 0.52 106.33 0.81 0.77 107.30 0.50 0.47 

High PI (PI=53) with 

5% Lime & 4% 

Cement (Dry Density) 

92.93 1.16 1.25 87.00 0.70 0.80 81.70 0.30 0.37 

Table 23. Summary of location-related variability of COV of E-Gauge (moisture content) 

 
Material Front Location  Middle Location Back Location 

Data 

Avg. 

SD  COV Data 

Avg. 

SD  COV Data 

Avg. 

SD  COV 

  % % % % % % % % % 

High PI (PI=53) 25.11 4.54 18.10 24.26 4.19 17.26 25.44 4.78 18.80 

Medium PI 3 

(PI=38) with 5% 

Lime & 4% 

Cement 

21.07 0.42 1.98 20.20 0.36 1.78 20.50 0.60 2.93 

Low PI (PI=11) 

with 3% Cement 
14.20 0.46 3.23 13.87 0.60 4.35 13.87 0.35 2.53 

High PI (PI=53) 

with 5% Lime & 

4% Cement 

24.17 0.72 2.99 24.97 2.05 8.21 26.23 0.46 1.76 
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Analysis of Plate Load Test Data 

In plate load tests (PLT), the determination of amounts of plastic and elastic deformations 

are desirable. Besides, the initial modulus and reloading modulus are evaluated with the 

help of normal stress vs settlement plot. The initial modulus [EPLT(i)] and the reloading 

modului can be evaluated from the test results (Figure 67) using the following equation: 

EPLT =  
1.18 P.R

δ
                                                                                                     [147]    

where: P = applied load on plate, δ = deflection of the plate, and R = radius of plate. 

The PLTs were performed in the middle location of the box. The tests may not be 

included to analyze for variability as this test was performed by a single operator with 

one repetition. The PLTs were conducted on 12 geomaterials to determine the initial 

modulus [EPLT(i)] and the first reloading modulus [EPLT(R1)]. 

Figure 67. Plate load test of low PI (PI=11) soil 

 

Referring to Figure 67, the initial modulus can be evaluated from the initial portion of the 

stress-settlement curve, where the slope of the initial modulus extends to the increase of 

the initial loading; and, the first reloading modulus can be evaluated from the reloading 

part of the curve. The first reloading modulus is the average value between the unloading 
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curve of the first cycle and reloading curve of the second cycle. The calculated initial and 

reloading moduli are presented in Table 24. 

Table 24. Calculation of initial and reloading modulus of low PI (PI=11) soil 

Type  Stress  Load  Poison's 

Ratio 

Radius 

of 

Plate  

Deflection  Modulus 

Value  

Modulus 

Value  

  psi lb   inch inch psi MPa 

Initial Modulus 

(EPLT(i))  
65 2872 0.4 3.75 0.035 11700 80.7 

Reloading 

Modulus 

(EPLT(R1))  

65 2872 0.4 3.75 0.067 6112 42.1 

Summary of initial and reloading modules of all materials is shown in Table 25. The 

maximum EPLT(i) was observed for Kentucky limestone (344.9 MPa) and the minimum 

was obtained for high PI (PI=53) soil (23.5 MPa). However, the maximum and minimum 

EPLT(R1) was obtained for Kentucky limestone (222.5 MPa) and high PI (PI=53) (11.7 

MPa), respectively. 

Table 25. Summary of plate load test of all materials 

Summary of Plate Load Test  

Material Initial 

Modulus  

Reloading 

Modulus  

MPa MPa 

Low PI (PI=11) 80.7 42.1 

Mexican Limestone  311.2 163.5 

High PI (PI=53) 23.5 11.7 

Medium PI 1 (PI=21) 44.5 24.3 

Medium PI 2 (PI=31) 38.9 19.4 

Medium PI 3 (PI=38) 32.0 12.4 

Sand 23.6 42.1 

RAP 68.1 54.5 

Kentucky Limestone 344.9 222.5 

Medium PI 3 (PI=38) with 5% Lime 

& 4% Cement 
114.6 43.5 

Low PI (PI=11) with 3% Cement 150.8 41.8 

High PI (PI=53) with 5% Lime & 4% 

Cement 
110.3 33.2 
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Results and Analysis of Constructed Field Tests 

Analyses of the constructed field test data were performed the same way as the in-box 

test data. The X-Bar/R and ANOVA methods can also be applied to Geogauge and LFWD 

tests in the field. There were 14 sections constructed at the Accelerated Loading Facility 

(ALF). Four sections were construed on embankment location and another four sections 

were constructed at lower level over natural soil. There were also six more sections that 

were constructed on embankment location as part of micro-cracking research project. In 

the case of dynamic cone penetrometer, the operator and location-related variability were 

analyzed using the second moment statistics. In the case of the Nuclear Density Gauge 

(NDG) and E-Gauge, only the location-related variability can be evaluated since these 

devices were conducted by a single operator.  Table 26 shows the properties of the 14 

constructed sections that will be analyzed for the variability assessment. 

Table 26. Properties of the 14 constructed sections at ALF 

Section Type Properties of the sections 
Section 1  Low PI (PI = 11) with 7% Lime + 15% Fly Ash 

Section 2  Heavy Clay (PI = 38) with 7% Lime + 6% Cement 

Section 3 Low PI (PI = 11) with 8% Cement 

Section 4  Heavy Clay (PI = 38) with 3%Lime + 2% Cement 

Section A  Low PI (PI = 11) with 5% Lime + 11% Fly Ash 

Section B  Heavy Clay (PI = 38) with 2.5% Lime + 2% Cement 

Section C  Heavy Clay (PI = 38) with 6.0% Lime + 4% Cement 

Section D  Low PI (PI = 11), 5% Cement 

Soil Cement Section 1  8% Soil Cement, No Micro-Cracking 

Soil Cement Section 2  8% Soil Cement, Low Micro-Cracking 

Soil Cement Section 3  8% Soil Cement, Medium Micro-Cracking 

Soil Cement Section 4  8% Soil Cement, High Micro-Cracking 

Soil Cement Section 5  6% Soil Cement, No Micro-Cracking 

Soil Cement Section 6  6% Soil Cement, Medium Micro-Cracking 

Analysis of Geogauge and LFWD Test Data 

Analyses of the Geogauge and the LFWD include the X/Bar-R, ANOVA, and second 

moment methods. The results of analyses are presented in terms of the coefficient of 

variations (COV). The COV for both the Geogauge and the LFWD data were determined 

for total variability, where the total variability is grouped into repeatability, 

reproducibility and specimen variability. Table 27 shows a summary of the COVs of the 

Geogauge and the LFWD according to the X-Bar/R, ANOVA, and second moment 

methods. The table shows that the COV for the Geogauge ranges from 7.7% to 21.0%; 
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the X-Bar/R method, from 11.4% to 23.6%; the ANOVA method from 11.1% to 20.2%; 

and for the second moment method. Meanwhile, for LFWD, the COV ranges from 7.3% 

to 20.3% for the X-Bar/R method, 7.9% to 18.9% for the ANOVA method, and 7.0% to 

16.7% for the second moment method. 

Table 27. Summary of COV of Geogauge and LFWD according to X-Bar/R and ANOVA method 

Soil Type 

Geogauge LFWD 

Second 

Moment  

X-Bar  ANOVA Second 

Moment  

X-Bar  ANOVA 

COV COV COV COV COV COV 
 % % % % % % 

Section 1  13.2 17.5 14.3 7.1 9.1 7.9 

Section 2  15.5 7.7 16.3 10.9 13.9 8.2 

Section 3 12.5 15.7 15.3 9.3 19.8 10.0 

Section 4  14.4 10.3 16.1 14.2 18.0 13.2 

Section A  20.2 16.4 23.6 7.0 7.3 8.1 

Section B  11.1 12.3 11.8 7.5 7.4 13.0 

Section C  18.6 14.7 21.6 13.9 9.4 14.9 

Section D  11.6 18.9 11.4 12.5 13.6 14.3 

Soil Cement Section 1  12.1 17.0 14.0 8.5 8.0 9.8 

Soil Cement Section 2  13.2 21.0 16.3 14.7 15.1 15.8 

Soil Cement Section 3  12.9 18.1 14.9 16.5 18.3 18.9 

Soil Cement Section 4  11.6 9.2 13.6 16.7 20.3 18.6 

Soil Cement Section 5  11.9 10.2 14.2 12.1 10.3 13.1 

Soil Cement Section 6  11.6 17.2 13.9 8.9 9.0 9.2 

Analysis of Dynamic Cone Penetrometer (DCP) Data 

The DCP tests were conducted in each of the constructed sections at ALF. The thickness 

of each section is 12 in. or 30.5 cm. Figure 68 shows the DCP test results for two 

sections—Section 4 and Section C. The DCP tests were conducted by three operators, 

and as there were four locations of each constructed section, every operator conducted 

DCP tests four times. From the summary of DCPI (mm/blow), the COV for operator-

related variability ranges from 3.2% to 20.3%; while the COV for location-related 

variability varies from 2.6% to 29.4%, which are presented in Table 28 and Table 29, 

respectively. For the micro-cracking sections, the COV of DCPI fluctuates from 14.90% 

to 20.1%, which is presented in Table 30. 
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Figure 68. DCPI profiles of section 4 and section C at ALF site 

 

Table 28. Summary of operator-related variability of COV of DCPI 

Material Operator 1 Operator 2 Operator 3 

  
DCPI 

Avg. 
SD  COV  

DCPI 

Avg. 
SD  COV  

DCPI 

Avg. 
SD  COV  

  
mm/ 

blow 

mm/ 

blow 
% 

mm/ 

blow 

mm/ 

blow 
% 

mm/ 

blow 

mm/ 

blow 
% 

Section 

1 
26.4 1.5 5.6 27.2 0.9 3.2 27.7 1.0 3.7 

Section 

2 
12.9 2.3 17.7 19.0 3.3 17.1 17.8 1.9 10.4 

Section 

3 
6.8 0.4 6.3 6.8 0.4 6.6 9.3 1.0 10.8 

Section 

4 
15.2 1.3 8.4 18.6 2.8 14.9 16.0 0.8 5.1 

Section 

A 
26.3 1.7 6.3 26.3 2.3 8.6 26.9 1.8 6.9 

Section 

B 
33.2 5.6 16.7 32.3 6.5 20.1 32.2 4.4 13.6 

Section 

C 
13.3 2.1 15.8 11.6 1.7 15.0 11.2 0.9 8.2 

Section 

D 
11.3 2.3 20.3 12.9 2.1 16.5 11.2 0.9 8.2 
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Table 29. Summary of location-related variability of COV of DCPI 

Material Location 1 Location 2 Location 3 Location 4 

  
DCPI 

Avg. 
COV  

DCPI 

Avg. 
COV  

DCPI 

Avg. 
COV  

DCPI 

Avg. 
COV  

  
mm/ 

blow 
% 

mm/ 

blow 
% 

mm/ 

blow 
% 

mm/ 

blow 
% 

Section 

1 
27.0 4.9 26.6 2.6 27.0 7.6 27.8 2.7 

Section 

2 
18.1 20.1 16.2 29.4 14.4 21.8 17.5 20.5 

Section 

3 
7.4 13.6 7.4 16.3 7.6 19.9 7.6 19.2 

Section 

4 
17.1 18.4 16.5 3.9 15.6 8.4 17.1 21.2 

Section 

A 
24.7 7.8 26.5 7.2 27.0 4.8 27.8 2.9 

Section 

B 
31.2 5.0 32.7 3.6 26.7 7.8 39.7 2.9 

Section 

C 
11.3 16.8 10.8 5.1 13.4 8.8 12.6 19.0 

Section 

D 
10.6 4.3 12.3 20.8 13.4 8.6 10.8 17.2 

Table 30. Summary of whole section variability of COV of micro-cracking sections 

Materials 
DCPI 

Avg. 

SD  COV  

  mm/blow  mm/blow  % 
Soil Cement Section 1  10.7 1.9 17.5 

Soil Cement Section 2  12.3 2.5 20.1 

Soil Cement Section 3  10.3 1.6 15.5 

Soil Cement Section 4  11.2 2.1 18.8 

Soil Cement Section 5  9.4 1.4 14.9 

Soil Cement Section 6  9.8 1.7 16.9 

From Table 28 and Table 29, it can be seen that section D (low PI (PI = 11), with 5% 

cement) showed the maximum COV for operator-related variability; whereas, Section 2 

(Heavy Clay (PI = 38) with 7% lime and 6% cement) showed the maximum COV for 

location-related variability. The minimum COVs are found for Section 1 (low PI (PI = 

11) with 7% lime and 15% Fly Ash). From Table 30, the maximum and minimum COVs 

are observed for Soil Cement Section 2 (8% soil cement, low MC) and Soil Cement 

Section 5 (6% soil cement, no MC), respectively. 
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Analysis of Nuclear Density Gauge (NDG) Data 

The Nuclear Density Gauge (NDG) tests were conducted on four (or five) different 

locations of each section, and it was run by a single operator. The NDG tests were 

performed on four locations at the eight constructed sections (Sections 1-4 and Sections 

A-D). However for micro-cracking cement sections (Soil Cement Section 1 to Soil 

Cement Section 6), the NDG tests were performed on five locations at three sections 

(Sections 1, 4 and 6); while the tests couldn’t be run on Section 2, 3 and 5 as the device 

didn’t work at that time. Table 31 and Table 32 present the location-related variabilities 

for dry density of the eight sections and three micro-cracking sections, respectively. 

Table 31. Summary of location-related variability of NDG (dry density) at the eight sections 

 

Material 

Location 1 Location 2 Location 3 Location 4 

Avg. 

Dry 

Density 

 

COV  

Avg. 

Dry 

Density 

 

COV  

Avg. 

Dry 

Density 

 

COV  

Avg. 

Dry 

Density 

 

COV  

  pcf % pcf % pcf % pcf % 

Section 1  83.9 0.8 80.2 3.9 76.6 1.7 78.7 0.9 

Section 2  97.3 0.6 99.9 3.2 99.3 1.1 84.5 2.1 

Section 3  97.5 0.6 96.3 1.0 100.6 0.6 98.9 0.9 

Section 4 72.7 2.1 75.5 0.7 70.7 1.4 71.2 2.0 

Section A  76.6 1.5 76.8 1.2 75.1 0.2 78.2 2.0 

Section B  74.2 1.3 72.8 2.9 70.9 1.3 71.0 1.9 

Section C  95.4 0.7 96.2 0.2 92.9 1.2 89.4 0.4 

Section D  93.1 2.6 92.2 4.2 96.8 1.7 90.9 2.0 

Table 32. Summary of location-related variability of NDG (dry density) at the three micro-cracking 

sections 

 

Material 

Location 1 Location 2 Location 3 Location 4 Location 5 

Avg. 

Dry 

Density 

 

COV  

Avg. 

Dry 

Density 

 

COV  

Avg. 

Dry 

Density  

 

COV  

Avg. 

Dry 

Density 

 

COV  

Avg. 

Dry 

Density 

 

COV  

  pcf % pcf % pcf % pcf % pcf % 

Soil Cement 

Section 1  
140.6 2.9 146.5 1.1 140.4 1.8 126.7 2.4 138.6 1.4 

Soil Cement 

Section 4  
135.3 2.3 146.6 1.6 140.5 1.8 127.4 2.0 127.9 2.0 

Soil Cement 

Section 6 
127.7 2.0 137.2 1.9 137.0 1.5 119.7 1.4 131.7 1.4 
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It can be seen from Table 31 that the location-related COV of the dry density for the eight 

sections range from 0.2% to 4.2%. It is also noticed from Table 32 that the location-

related COV of the dry density for the Micro-cracking cement sections range from 1.4% 

to 2.9%. 

The calculations of location-related variabilities for moisture content is similar to the dry 

density calculation, which are presented in Table 33 and Table 34 for the eight sections 

and the three micro-cracking cement sections, respectively. 

Table 33. Summary of location-related variability of NDG (moisture content) for the eight sections 

 

Material 

Location 1 Location 2 Location 3 Location 4 

Moisture 

Content, m.c.  

COV  Avg. 

m.c. 

COV  Avg. 

m.c. 

COV  Avg. 

m.c. 

COV  

  % % % % % % % % 

Section 1  28.0 4.0 24.2 3.8 30.3 2.2 30.6 4.1 

Section 2  20.2 2.3 19.0 5.3 15.8 1.7 24.7 6.9 

Section 3  17.8 4.4 18.4 3.7 17.7 2.0 19.3 3.2 

Section 4 38.2 1.4 34.7 2.0 39.4 0.7 39.0 3.9 

Section A  30.9 4.4 31.7 2.4 32.0 3.8 28.8 2.6 

Section B  38.0 4.6 34.5 13.3 37.4 5.4 33.1 1.8 

Section C  19.8 1.3 18.2 2.2 17.9 1.5 19.2 1.9 

Section D  25.4 5.6 19.4 9.8 21.4 17.5 23.1 9.6 

Table 34. Summary of location-related variability of NDG (moisture content) of the micro-cracking 

three sections 

Material Location 1 Location 2 Location 3 Location 4 Location 5 

Avg. 

m.c. 

COV  Avg. 

m.c. 

COV  Avg. 

m.c. 

COV  Avg. 

m.c. 

COV  Avg. 

m.c. 

COV  

  % % % % % % % % % % 

Soil Cement 

Section 1  
12.5 9.2 13.6 7.0 15.1 5.4 13.9 5.8 13.7 1.4 

Soil Cement 

Section 4  
12.4 8.7 13.2 9.0 16.1 7.2 14.5 7.8 14.8 8.8 

Soil Cement 

Section 6 
10.7 9.9 11.2 9.9 12.8 9.9 10.9 9.9 9.9 9.9 

The results in Table 33 show that the location-related COV of moisture content for the 

eight sections vary from 0.7% to 17.5%; while the location-related COV of moisture 

content vary from 1.4% to 9.9% for the micro-cracking sections (Table 34). 
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Analysis of E-Gauge Data 

Like the NDG, the E-Gauge tests were also conducted on the constructed sections at ALF 

site. The dry density and moisture content are analyzed only for the location-related 

variability. The results for dry density are presented in Table 35 and Table 36, for the 

eight constructed sections and the three micro-cracking sections, respectively. The tables 

show that the location-related COV range from 0.1% to 9.3% for the eight constructed 

sections and from 1.1% to 2.9% for the three micro-cracking sections.  

The location-related variability for the moisture content are presented in Table 37 and 

Table 38 for the eight constructed sections and the three micro-cracking sections, 

respectively. The tables show that the COVs range from 0.2% to 19.5% for the eight 

constructed sections and from 1.4% to 10.9% for the three micro-cracking sections. 

Table 35. Summary of location-related variability of E-Gauge (dry density) for the eight constructed 

sections 

Material Location 1 Location 2 Location 3 Location 4 

Avg. 

Dry 

Density 

COV  Avg. 

Dry 

Density 

COV  Avg. 

Dry 

Density 

COV  Avg. 

Dry 

Density 

COV  

  pcf % pcf % pcf % pcf % 

Section 1  92.0 1.9 95.7 0.9 93.5 1.2 95.4 1.4 

Section 2  94.4 3.1 100.5 0.9 103.0 1.2 100.2 1.4 

Section 3  94.9 0.8 94.5 1.1 94.2 1.1 95.1 0.7 

Section 4 67.7 0.3 75.2 9.3 69.7 8.9 61.0 4.6 

Section A  76.4 0.1 68.5 1.3 75.9 4.2 74.4 0.3 

Section B  77.8 0.7 77.2 0.5 72.9 4.7 77.5 2.9 

Section C  97.3 1.2 105.5 1.6 132.9 1.5 102.2 2.1 

Section D  98.2 4.3 93.0 0.5 94.2 4.5 92.0 0.2 

Table 36. Summary of location-related variability of E-Gauge (dry density) for the three micro-

cracking sections 

Material Location 1 Location 2 Location 3 Location 4 Location 5 

Avg. 

Dry 

Density 

COV  Avg. 

Dry 

Density 

COV  Avg. 

Dry 

Density  

COV  Avg. 

Dry 

Density 

COV  Avg. 

Dry 

Density 

COV  

  pcf % pcf % pcf % pcf % pcf % 

Soil Cement 

Section 1  
145.2 2.9 147.8 1.1 141.5 1.8 124.8 2.5 138.6 1.8 

Soil Cement 

Section 4  
135.3 2.6 152.6 1.5 143.2 1.7 128.6 2.8 128.9 2.0 

Soil Cement 

Section 6 
133.3 1.4 139.3 1.4 133.0 1.4 119.7 1.4 131.7 1.4 
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Table 37. Summary of location-related variability of E-Gauge (moisture content) for the eight 

constructed sections 

Material Location 1 Location 2 Location 3 Location 4 

Moisture 

Content  

COV  Dry 

Density 

COV  Dry 

Density 

COV  Dry 

Density 

COV  

  % % % % % % % % 

Section 1  20.8 19.5 19.5 0.8 21.7 4.0 20.6 4.4 

Section 2  21.8 19.2 20.5 0.8 22.8 4.0 21.7 4.4 

Section 3  19.5 2.8 20.1 1.3 19.6 1.6 20.4 1.2 

Section 4 47.3 0.2 43.0 8.9 46.7 8.8 53.1 4.6 

Section A  33.3 1.2 48.0 0.7 37.5 4.4 36.9 0.3 

Section B  27.6 0.8 30.7 0.3 33.1 4.4 30.0 3.0 

Section C  21.8 1.6 12.7 7.8 14.8 6.7 20.5 5.2 

Section D  21.8 4.2 21.3 0.7 24.3 4.5 27.0 0.6 

Table 38. Summary of location-related variability of COV of E-Gauge (moisture content) for the 

three micro-cracking sections 

Material Location 1 Location 2 Location 3 Location 4 Location 5 

Avg. 

m.c. 

COV  Avg. 

m.c. 

COV  Avg. 

m.c. 

COV  Avg. 

m.c. 

COV  Avg. 

m.c. 

COV  

  % % % % % % % % % % 

Soil Cement 

Section 1  
11.3 9.9 11.8 9.9 13.5 9.9 11.5 9.9 9.9 9.9 

Soil Cement 

Section 4  
15.9 8.2 13.7 10.9 15.1 7.2 14.5 7.8 15.9 8.2 

Soil Cement 

Section 6 
13.5 1.4 13.6 1.4 16.9 5.4 13.8 1.4 13.7 1.4 

Analysis of Under-Constructed Field Tests  

Analysis of the under-constructed field tests was performed using the second moment 

statistics, which is applied for Geogauge, LFWD, DCP, NDG and E-Gauge. There were 

two under-constructed sections at LA 98 and one under-constructed section at LA 417 on 

which the tests were performed.  Table 39 presents the description of the three under-

constructed sections at LA 98 and LA 417. 
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Table 39. Properties of the three under-constructed sections at LA 98 and LA 417 

Section  Description of the sections 
LA 98 Station 1  Cement stabilized base course material with 7% 

cement by volume LA 98 Station 2  

LA 417  Cement stabilized subgrade material with 10% 

cement by volume 

Analysis of Geogauge and LFWD Data 

In order to assess the variability, the Geogauge and the LFWD tests were performed on 

different locations of the under-constructed sections. In this analysis, the operator and 

location-related variabilities were determined using the X-Bar/R and the ANOVA. The 

results of operator- and location-related variabilities for the Geogauge data are presented 

in Table 40 and Table 41, respectively. The tables indicate that the COVs of the operator 

and the location-related variabilities range from 20.3% to 32.5% and from 20.3% to 31.9, 

respectively. The maximum COV value is seen for operator 3 of LA 98 Station 2 

(32.5%); while the lowest value of COV is noticed for location 5 of LA 417 (20.3%). 

In the case of LFWD, the results of operator- and location-related variabilities are 

presented in Table 42 and Table 43, respectively. The tables show that the COVs for the 

operator-related variability range from 11.7% to 37.5%, whereas the COVs for the 

location-related variability range from 18.6% to 31.8%. 

Table 40. Summary of operator-related variability of Geogauge 

Material 

Operator 1 Operator 2 Operator 3 Operator 4 Operator 5 

Data 

Avg. 
COV  

Data 

Avg. 
COV  

Data 

Avg. 
COV  

Data 

Avg. 
COV  

Data 

Avg. 
COV  

  MPa % MPa % MPa % MPa % MPa % 

LA 98 

Station 1 
236.5 29.4 269.7 27.1 246.6 31.5 299.0 25.8 278.4 20.3 

LA 98 

Station 2  
242.3 29.3 281.2 30.6 255.8 32.5 334.1 26.5 285.7 22.5 

LA 417  267.5 24.4 272.0 28.2 246.6 31.5 299.0 25.8 273.3 20.4 
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Table 41. Summary of location-related variability of Geogauge 

Material 

Location 1 Location 2 Location 3 Location 4 Location 5 

Data 

Avg. 
COV  

Data 

Avg. 
COV  

Data 

Avg. 
COV  

Data 

Avg. 
COV  

Data 

Avg. 
COV  

  MPa % MPa % MPa % MPa % MPa % 

LA 98 

Station 1 282.4 29.1 251.6 25.9 238.4 25.5 284.2 31.7 258.0 20.5 

LA 98 

Station 2  313.2 29.9 244.8 25.5 272.7 31.0 312.6 31.9 245.1 20.4 

LA 417  302.4 25.2 245.1 28.4 241.5 21.6 298.1 26.4 259.9 20.3 

Table 42. Summary of operator-related variability of LFWD 

Material 

Operator 1 Operator 2 Operator 3 Operator 4 Operator 5 

Data 

Avg. 
COV  

Data 

Avg. 
COV  

Data 

Avg. 
COV  

Data 

Avg. 
COV  

Data 

Avg. 
COV  

  MPa % MPa % MPa % MPa % MPa % 

LA 98 

Station 1 182.9 21.3 208.9 17.4 188.8 21.3 202.2 23.8 143.0 11.7 

LA 98 

Station 2  192.7 24.2 219.4 18.9 198.3 23.1 212.6 24.8 150.2 13.3 

LA 417  214.6 31.2 223.5 35.0 184.8 22.8 227.0 37.5 224.3 34.0 

Table 43. Summary of location-related variability of LFWD 

Material 

Location 1 Location 2 Location 3 Location 4 Location 5 

Data 

Avg. 
COV  

Data 

Avg. 
COV  

Data 

Avg. 
COV  

Data 

Avg. 
COV  

Data 

Avg. 
COV  

  MPa % MPa % MPa % MPa % MPa % 

LA 98 

Station 1 188.0 23.2 183.9 22.7 205.8 24.7 152.4 20.0 180.6 23.8 

LA 98 

Station 2  197.7 27.5 192.5 22.7 217.3 25.9 164.7 25.2 186.7 26.8 

LA 417  220.0 31.8 178.8 31.6 272.6 26.9 230.5 18.6 172.3 21.9 

Analysis of Dynamic Cone Penetrometer (DCP) data 

The DCP tests were performed at the center of each point of a location of station, and the 

COVs were determined for the whole station.  Analysis of the DCP was performed using 
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the first-order second moment (FOSM) analysis.  Figure 69 depicts the DCPI (mm/blow) 

profile for LA 98 Station 1, which was tested on five points. The base layer LA 98 Station 

1 is about 10 in.. The average values of the DCPI (mm/blow) for each point are presented 

in the figure, in which the DCPI (mm/blow) varies from 4.1 mm/blow to 5.8 mm/blow 

for LA 98 Station 2 and LA 98 Station 1, respectively. 

Figure 69. DCPI (mm/blow) profile of LA 98 station 1 

 

Summary of the COVs for all stations is shown in Table 44, where the maximum and the 

minimum values of COV are 29.8% and 15.4%, respectively. The maximum value of 

COV is seen for LA 98 Station 1; whereas, the minimum value of COV is observed for 

LA 98 Station 2. 

Table 44. Summary of the DCPI variability for the under-constructed sections 

Stations DCPI Avg. SD COV 
 mm/blow mm/blow % 

LA 98 Station 1 5.8 0.9 15.4 

LA 98 Station 2 4.1 1.2 29.8 

LA 417 4.8 1.1 23.6 
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Analysis of Nuclear Density Gauge (NDG) Data 

Although the Nuclear Density Gauge (NDG) was tested at the center of each point of a 

location of station, the location-related variability can be applied as measurements were 

taken three times. Table 45 and Table 46 show the location-related variability of the dry 

density and the moisture content, respectively. The tables show that the COVs for NDG 

range from 0.2% to 2.3% and from 0.8% to 10.2%, for the dry density and moisture 

content, respectively  

Table 45. Summary of location-related variability of NDG (dry density) for the under-constructed 

sections 

Material 

Point A Point B Point C Point D Point E 

Dry 

Density 
CV  

Dry 

Density 
CV  

Dry 

Density 
CV  

Dry 

Density 
CV  

Dry 

Density 
CV  

  pcf % pcf % pcf % pcf % pcf % 
LA 98 

Station 1 
99.5 2.3 99.3 0.8 105.1 0.8 99.1 1.4 99.1 1.4 

LA 98 

Station 2  
101.7 1.4 101.2 0.6 102.3 0.6 106.5 0.4 115.7 1.7 

LA 417  95.6 0.2 96.7 0.2 101.9 1.0 101.7 0.8 95.7 1.7 

Table 46. Summary of location-related variability of NDG (moisture content) for the under-

constructed sections 

Material 
Point A Point B Point C Point D Point E 

Avg. 
m.c. 

COV  
Avg. 
m.c. 

COV  
Avg. 
m.c. 

COV  
Avg. 
m.c. 

COV  
Avg. 
m.c. 

COV  

  % % % % % % % % % % 
LA 98 

Station 1 
17.6 3.5 17.8 3.9 13.2 0.8 17.1 3.4 17.1 3.4 

LA 98 

Station 2  
17.0 3.0 18.9 1.1 17.2 1.5 13.8 3.3 17.4 4.9 

LA 417  14.3 2.7 14.3 5.4 15.4 10.2 14.7 9.3 15.3 8.7 

Analysis of E-Gauge Data 

The tests and analyses performed using the E-Gauge were similar to the NDG, in which 

tests were performed at the center of each point of a location of station. Table 47 and 

Table 48 present the summary of the COVs for the dry density and moisture content, 

respectively. As shown in the tables, the COVs range from 0.10% to 3.7% and from 0.8% 

to 12.0% for dry density and moisture content, respectively. The maximum COV values 
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for both the dry density and moisture content are observed for LA 417; while the 

minimum COV values for both the dry density and the moisture content are found for LA 

417 and LA 98 Station 2, respectively. 

Table 47. Summary of location-related variability of E-Gauge (dry density) 

Material 

Point A Point B Point C Point D Point E 

Dry 

Density 
COV  

Dry 

Density 
COV  

Dry 

Density 
COV  

Dry 

Density 
COV  

Dry 

Density 
COV  

  pcf % pcf % pcf % pcf % pcf % 

LA 98 

Station 1 
105.9 0.3 102.4 0.9 99.3 1.1 105.5 2.1 104.8 1.5 

LA 98 

Station 2  
107.5 1.1 107.4 0.2 107.6 0.7 110.0 1.0 96.5 2.1 

LA 417  116.0 0.3 109.3 3.5 110.7 0.1 101.9 0.3 109.9 3.7 

Table 48. Summary of location-related variability of E-Gauge (moisture content) 

Material 
Point A Point B Point C Point D Point E 

Avg. 
m.c. 

COV  
Avg. 
m.c. 

COV  
Avg. 
m.c. 

COV  
Avg. 
m.c. 

COV  
Avg. 
m.c. 

COV  

  % % % % % % % % % % 
LA 98 

Station 1 
15.3 1.4 16.2 0.9 16.6 1.3 15.3 3.0 16.3 3.2 

LA 98 

Station 2  
18.8 1.3 20.7 0.8 20.1 1.0 15.1 1.4 21.5 2.1 

LA 417  3.5 8.2 5.5 4.2 3.6 3.2 3.4 12.0 3.8 1.5 

Analysis of Lab Test Data  

Analyses of lab tests have been performed based on the operator and specimen-related 

variability. The lab tests include the unconsolidated undrained (UU) triaxial, Atterberg 

limits, small direct shear, one-dimensional consolidation and California bearing ratio 

(CBR) tests. 
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Analysis of Unconsolidated Undrained (UU) Triaxial Test data 

UU triaxial tests were performed by five different operators, in which each operator 

tested three specimens of the same soil type (low PI, high PI, and medium PI 1, 2 and 3 

soils).  The operator- and specimen-related variabilities were evaluated for the UU tests 

Bar/R and ANOVA, and the results are presented in Table 49 and Table 50, respectively. 

The tables show that the COVs of UU test results vary from 1.0% to 10.9% and from 

3.8% to 17.1% for the operator and specimen-related variabilities, respectively.  

Table 49. Summary of operator-related variability for UU tests 

Material  Operator 1 Operator 2 Operator 3 Operator 4 Operator 5 

Su, 

Avg.  

COV Su, 

Avg.  

COV Su, 

Avg.  

COV Su, 

Avg.  

COV Su, 

Avg.  

COV 

psf % psf % psf % psf % psf % 

High PI 

(PI=53) 
621.7 1.2 814.3 5.5 845.3 6.9 672.5 9.2 862.4 8.3 

Low PI 

(PI=11) 
3799.8 10.5 3984.8 6.4 3248.7 9.6 3209.3 1.0 3113.8 2.8 

Medium 

PI 1 

(PI=21) 

2536.3 2.8 2521.2 6.1 2959.6 7.4 2659.1 7.1 2524.9 3.9 

Medium 

PI 2 

(PI=31) 

2087.8 8.4 2195.3 1.4 2341.1 4.4 2257.2 10.9 2272.2 6.2 

Medium 

PI 3  
1888.6 5.8 1440.0 8.6 1736.9 4.5 1678.3 6.9 1675.2 4.3 

Table 50. Summary of specimen-related variability of UU tests 

Material  Specimen 1 Specimen 2 Specimen 3 

Su, 

Avg.  

COV Su, Avg.  COV Su, Avg.  COV 

psf % psf % psf % 

High PI (PI=53) 748.9 17.1 804.8 14.5 736.0 13.1 

Low PI (PI=11) 3421.8 9.1 3488.5 15.6 3503.5 13.7 

Medium PI 1 (PI=21) 2632.9 3.8 2689.0 10.4 2598.8 10.4 

Medium PI 2 (PI=31) 2244.1 3.8 2228.5 6.5 2219.6 11.0 

Medium PI 3 (PI=38) 1651.9 11.2 1666.0 10.6 1733.6 10.6 
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Analysis of Atterberg Limits Data 

The Atterberg limit tests were performed by five operators to evaluate the operator-

related variability in which each operator prepared three specimens to evaluate the 

specimen-related variability. Table 51 shows the summary of operator-related variability, 

and Table 52 presents the summary of specimen-related variability. The results show that 

the COVs of the liquid limit vary from 0.9% to 7.8%, and the COVs of the plastic limit 

range from 1.9% to 18.2%. Additionally, the COV of the plasticity index range from 

1.1% to 26.4%. 

Table 51. Summary of operator-related variability for the Atterberg limits 

Material  Type Operator 1 Operator 2 Operator 3 Operator 4 Operator 5 

Avg. COV Avg. COV Avg. COV Avg. COV Avg. COV 

% % % % % % % % % % 

Low PI 

(PI=11) 

LL 32 1.8 31 3.2 31 3.7 35 1.7 34 7.8 

PL 21 4.8 20 2.8 18 8.6 18 11.4 20 2.9 

PI 11 10.8 11 14.3 13 4.4 16 14.1 14 16.9 

Medium 

PI 1 

(PI=21) 

LL 42 5.5 41 1.4 43 4.0 41 2.4 39 6.8 

PL 26 5.9 26 7.7 21 2.8 25 18.2 19 6.0 

PI 16 9.8 15 13.6 22 6.8 19 11.9 20 10.6 

High PI 

(PI=53) 

LL 88 4.5 92 2.5 100 4.7 94 1.8 99 4.8 

PL 35 4.4 38 7.6 50 7.1 41 5.0 48 8.6 

PI 53 6.0 54 1.1 50 4.0 53 4.4 51 4.1 

Medium 

PI 2 

(PI=31) 

LL 55 2.1 48 1.2 50 3.0 52 3.0 49 6.3 

PL 19 3.1 19 7.9 22 5.2 24 2.4 20 8.7 

PI 36 4.8 29 5.3 28 6.2 28 7.1 29 15.7 

Medium 

PI 3 

(PI=38) 

LL 62 0.9 61 1.9 64 3.6 58 4.6 62 0.9 

PL 30 9.7 30 1.9 30 2.0 28 5.4 31 1.9 

PI 32 8.3 31 4.9 34 6.7 30 10.3 31 1.9 

Note: LL = Liquid Limit, PL = Plastic Limit and PI = Plasticity Index 

Analysis of Small Direct Shear Test Data 

Small direct shear tests were conducted on both sand and clay soil types to evaluate the 

operator and specimen-related variability. In order to do so, five different operators 

conducted the tests on three specimens.  

Figure 70 presents an example of direct shear test results on sand soil, and Figure 71 

presents an example of direct shear test results on the low PI (PI=11) clay soil. The 

friction angle, , was determined for each test from the shear stress-normal stress plot. 
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The cohesion, c, for clay soils was determined for each test from the intercept of shear 

stress - normal stress line with the y-axis  

Table 52. Summary of specimen-related variability for the Atterberg limits 

Specimen-related Variability  

Material  Type Specimen 1 Specimen 2 Specimen 3 

Average  SD COV Average  SD COV Average  SD COV 

% % % % % % % % % 

Low PI 

(PI=11) 

LL 33 2.2 6.6 33 2.2 6.6 32 1.9 5.8 

PL 19 1.8 9.3 20 1.1 5.8 20 2.3 11.7 

PI 14 1.5 11.2 13 2.6 19.6 12 2.8 22.5 

Medium 

PI 1 

(PI=21) 

LL 42 1.5 3.6 41 2.9 7.0 41 1.5 3.7 

PL 22 3.4 15.6 24 3.4 14.1 25 4.2 17.2 

PI 20 2.6 13.1 17 4.4 26.4 16 3.9 24.6 

High PI 

(PI=53) 

LL 98 7.3 7.4 93 5.8 6.3 94 2.3 2.5 

PL 45 7.5 16.7 41 6.7 16.5 42 5.4 12.9 

PI 53 0.9 1.7 52 2.5 4.9 52 3.4 6.5 

Medium 

PI 2 

(PI=31) 

LL 52 2.3 4.4 50 2.5 5.0 50 3.8 7.6 

PL 21 2.2 10.6 21 2.7 13.1 21 2.2 10.2 

PI 31 2.7 8.6 29 3.7 12.7 29 5.3 18.0 

Medium 

PI 3 

(PI=38) 

LL 62 1.6 2.7 60 3.1 5.2 62 2.8 4.5 

PL 30 1.1 3.7 29 1.3 4.6 30 2.2 7.2 

PI 32 2.0 6.3 31 2.4 7.9 32 3.3 10.3 

Figure 70. Example of direct shear test results on sand soil  
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Figure 71. Example of direct shear test results on clay soil 

   

Table 53 presents the operator-related variability of small direct shear test on clay soil, 

which shows that the COVs of cohesion, c, range from 3.5% to 19.5%. Whereas Table 54 

presents the specimen-related variability of small direct shear test on clay, which shows 

that the COVs of c range from 5.7% to 20.0%. 

The operator-related and specimen-related variability of small direct shear test on sand 

soil are presented in Table 55 and Table 56, respectively. The tables show that the 

operator-related COVs of  range from 0.4% to 1.8%, and the specimen-related COVs of 

 range from 7.8% to 8.8%. 

Table 53. Summary of operator-related variability of small direct shear test on clay 

Material Operator 1 Operator 2 Operator 3 Operator 4 Operator 5 

 Avg. 

c 
COV 

 Avg. 

c 
COV 

 Avg. 

c 
COV 

 Avg. 

c 
COV 

 Avg. 

c 
COV 

psf % psf % psf % psf % psf % 

Low PI 

(PI=11) 
816.0 13.4 868.8 9.1 868.8 14.1 897.6 15.8 859.2 14.6 

Medium 

PI 1 

(PI=21) 

633.6 11.8 576.0 5.0 648.0 10.2 561.6 11.8 628.8 3.5 

Medium 

PI 2 

(PI=31) 

436.8 5.0 446.4 14.1 422.4 12.0 484.8 7.5 436.8 8.3 

Medium 

PI 3 

(PI=38) 

321.6 6.8 321.6 11.3 369.6 12.5 331.2 7.5 379.2 19.5 

High PI 

(PI=53) 
259.2 14.7 220.8 16.4 288.0 10.0 297.6 7.4 254.4 14.2 
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Table 54. Summary of specimen-related variability of small direct shear test for clay 

Material  

 

Specimen 1 Specimen 2 Specimen 3 

 Avg. 

Cohesion 
COV 

 Avg. 

Cohesion 
COV 

 Avg. 

Cohesion 
COV 

psf % psf % psf % 

Low PI 

(PI=11) 
933.1 5.7 751.7 8.8 901.4 8.9 

Medium PI 1 

(PI=21) 
599.0 10.8 607.7 10.1 622.1 10.0 

Medium PI 2 

(PI=31) 
460.8 9.4 463.7 7.7 411.8 8.4 

Medium PI 3 

(PI=38) 
374.4 15.4 334.1 11.6 325.4 8.6 

High PI 

(PI=53) 
256.3 20.0 267.8 13.5 267.8 14.0 

Table 55. Summary of operator-related variability of small direct shear test on sand 

Material Operator 1 Operator 2 Operator 3 Operator 4 Operator 5 

Avg. φ  COV Avg. φ  COV Avg. φ  COV Avg. φ  COV Avg. φ  COV 

Degree % Degree % Degree % Degree % Degree % 

Sand 31.1 1.8 36.4 0.5 30.3 0.5 35.4 0.9 35.3 0.4 

Table 56. Summary of specimen-related variability of small direct shear test for sand 

Material  Specimen 1 Specimen 2 Specimen 3 

Avg. φ  COV Avg. φ  COV Avg. φ  COV 

Degree % Degree % Degree % 

Sand  33.9 8.2 33.7 8.8 33.6 7.8 

Analysis of One Dimensional Consolidation Test Data 

One dimensional consolidation tests were conducted on clay specimens ranging from low 

PI (PI=11) to high PI (PI=53). This test was operated by three different operators to 

evaluate the operator-related variability; while every operator conducted this test three 

times to determine specimen-related variability. For geotechnical engineering, the 

significance of this test is to determine the consolidation parameters (coefficient of 

consolidation, Cv, compression index, Cc, recompression (or swelling) index, Cr, and 

preconsolidation pressure, Pc) that are needed to assess the magnitude and time rate of 

consolidation settlement of clay soils. 
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The coefficient of consolidation, Cv, can be evaluated for each load increment using log 

time (t) versus displacement, d; curve and evaluate the d50 and t50 (Terzaghi method) from 

√t versus d; and evaluate d50 and √t90 (Tylor method). In this method, Taylor method was 

used to evaluate the coefficient of consolidation, Cv, using the following equation:  

        cv= 
T90  HD

2

t90
                                                                                                      [148] 

where: T90 = time factor for 90 percent consolidation; t = time corresponding to the 

particular degree of consolidation; HD = length of drainage path. 

Table 57 and Table 58 present the operator and the specimen-related variability for the 

preconsolidation pressure (Pc). The tables show that the COVs of Pc range from 5.0% to 

19.5%, and from 3.3% to 20.4% for the operator and specimen variations, respectively. 

From Table 57, the maximum and the minimum values of operator-related COV are seen 

for medium PI 2 (PI=31) and medium PI 3 (PI=38), respectively. However, from Table 

58, the maximum and the minimum values of specimen-related COV are observed for 

high PI (PI=53) and low PI (PI=11) and medium PI 1 (PI=21), respectively. 

The operator-related COVs for the compression index (Cc) are presented in Table 59, 

which vary from 1.4% to 16.8%; whereas the specimen-related COVs for Cc range from 

0.8% to 18.4%, as shown in Table 60. 

Table 57. Summary of operator-related variability of preconsolidation pressure (Pc) 

Material Operator 1 Operator 2 Operator 3 

Pc 

(Avg.) 
SD COV 

Pc 

(Avg.) 
SD COV 

Pc 

(Avg.) 
SD COV 

tsf tsf % tsf tsf % tsf tsf % 

Low PI 

(PI=11) 
1.57 0.21 13.3 1.78 0.10 5.8 1.60 0.10 6.3 

Medium PI 1 

(PI=21) 
1.35 0.22 16.1 1.48 0.20 13.6 1.42 0.10 7.3 

Medium PI 2 

(PI=31) 
1.13 0.15 13.5 1.07 0.21 19.5 1.13 0.12 10.2 

Medium PI 3 

(PI=38) 
1.28 0.18 13.7 1.52 0.08 5.0 1.43 0.15 10.7 

High PI 

(PI=53) 
0.65 0.05 7.7 0.68 0.12 16.9 0.48 0.03 6.0 
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Table 58. Summary of specimen-related variability of preconsolidation pressure (Pc) 

Material Specimen 1 Specimen 2 Specimen 3 

Pc 

(Avg.) 
SD COV 

Pc 

(Avg.) 
SD COV 

Pc 

(Avg.) 
SD COV 

tsf tsf % tsf tsf % tsf tsf % 

Low PI 

(PI=11) 1.58 0.18 11.1 1.73 0.06 3.3 1.63 0.23 14.1 

Medium PI 1 

(PI=21) 1.62 0.13 7.8 1.77 0.06 3.3 1.60 0.26 16.5 

Medium PI 2 

(PI=31) 1.13 0.21 18.4 1.07 0.12 10.8 1.13 0.15 13.5 

Medium PI 3 

(PI=38) 1.52 0.08 5.0 1.37 0.25 18.4 1.35 0.09 6.4 

High PI 

(PI=53) 0.65 0.13 20.4 0.55 0.10 18.2 0.62 0.13 20.4 

Table 59. Summary of operator-related variability of compression index (Cc) 

Material Operator 1 Operator 2 Operator 3 

Cc 

(Avg.) 
SD COV 

Cc 

(Avg.) 
SD COV 

Cc 

(Avg.) 
SD COV 

    %     %     % 

Low PI 

(PI=11) 

0.158 0.007 4.4 0.141 0.024 16.8 0.139 0.015 10.6 

Medium PI 

1 (PI=21) 

0.189 0.015 8.1 0.199 0.016 7.9 0.208 0.016 7.7 

Medium PI 

2 (PI=31) 

0.236 0.004 1.9 0.261 0.024 9.3 0.227 0.003 1.4 

Medium PI 

3 (PI=38) 

0.289 0.031 10.5 0.263 0.015 5.7 0.284 0.029 10.2 

High PI 

(PI=53) 

0.448 0.023 5.1 0.414 0.021 5.0 0.377 0.006 1.5 
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Table 60. Summary of specimen-related variability of compression index (Cc) 

Material Specimen 1 Specimen 2 Specimen 3 

Cc 

(Avg.) 
SD COV 

Cc 

(Avg.) 
SD COV 

Cc 

(Avg.) 
SD COV 

    %     %     % 

Low PI 

(PI=11) 

0.128 0.024 18.4 0.138 0.015 10.7 0.138 0.015 10.9 

Medium PI 

1 (PI=21) 

0.184 0.014 7.5 0.200 0.006 2.8 0.212 0.013 6.1 

Medium PI 

2 (PI=31) 

0.233 0.002 0.8 0.244 0.021 8.7 0.247 0.030 12.2 

Medium PI 

3 (PI=38) 

0.262 0.021 8.1 0.277 0.027 9.6 0.298 0.021 7.1 

High PI 

(PI=53) 

0.416 0.033 7.9 0.408 0.029 7.1 0.415 0.053 12.8 

 

The operator and specimen-related variability for the recompression index (Cr) are 

presented in Table 61 and Table 62, respectively. The results show that the operator-

related COVs for Cr range from 5.6% to 18.2%., while the specimen-related COVs for Cr 

range from 3.6% to 17.1%. The maximum operator and specimen COV values are seen 

for Low PI (PI=11) and Medium PI 1 (PI=21), respectively; and the minimum operator 

and specimen COV values are noticed for Medium PI 3 (PI=38) and Low PI (PI=11), 

respectively. 

Table 61. Summary of operator-related variability of recompression index (Cr) 

Material Operator 1 Operator 2 Operator 3 

Cr 

(Avg.) 
SD COV 

Cr 

(Avg.) 
SD COV 

Cr 

(Avg.) 
SD COV 

    %     %     % 

Low PI 

(PI=11) 

0.021 0.003 11.8 0.022 0.004 18.2 0.016 0.003 16.8 

Medium PI 1 

(PI=21) 

0.032 0.003 9.5 0.030 0.002 7.0 0.035 0.003 9.9 

Medium PI 2 

(PI=31) 

0.041 0.007 16.8 0.038 0.002 5.7 0.042 0.003 7.5 

Medium PI 3 

(PI=38) 

0.058 0.003 5.6 0.064 0.004 6.5 0.068 0.008 12.3 

High PI 

(PI=53) 

0.107 0.013 12.4 0.117 0.009 7.4 0.108 0.008 7.0 
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Table 62. Summary of specimen-related variability of recompression index (Cr) 

Material Specimen 1 Specimen 2 Specimen 3 

Cr 

(Avg.) 
SD COV 

Cr 

(Avg.) 
SD COV 

Cr 

(Avg.) 
SD COV 

    %     %     % 

Low PI 

(PI=11) 

0.014 0.001 3.6 0.017 0.002 13.8 0.022 0.001 6.6 

Medium PI 

1 (PI=21) 

0.034 0.006 17.1 0.031 0.001 3.9 0.032 0.002 6.7 

Medium PI 

2 (PI=31) 

0.039 0.003 7.9 0.038 0.002 5.7 0.044 0.005 10.7 

Medium PI 

3 (PI=38) 

0.064 0.009 14.1 0.065 0.006 9.3 0.061 0.007 11.0 

High PI 

(PI=53) 

0.110 0.010 9.4 0.112 0.013 12.0 0.110 0.010 9.2 

The operator and specimen-related variability for the coefficient of consolidation (Cv) are 

presented in Table 63 and Table 64, respectively. The tables show that the operator-

related COVs of Cv range from 2.3% to 20.9%; while the specimen-related COVs for Cv 

range from 5.5% to 30.6%. 

Table 63. Summary of operator-related variability of the coefficient of consolidation (Cv) 

Material Operator 1 Operator 2 Operator 3 

Cv 

(Avg.) 
SD COV 

Cv 

(Avg.) 
SD COV 

Cv 

(Avg.) 
SD COV 

in²/min in²/min % in²/min in²/min % in²/min in²/min % 

Low PI 

(PI=11) 

0.101 0.016 15.4 0.127 0.024 19.2 0.147 0.011 7.2 

Medium 

PI 1 

(PI=21) 

0.161 0.017 10.5 0.197 0.038 19.1 0.168 0.014 8.1 

Medium 

PI 2 

(PI=31) 

0.118 0.003 2.3 0.108 0.014 13.0 0.120 0.025 20.9 

Medium 

PI 3 

(PI=38) 

0.116 0.010 8.9 0.194 0.017 8.8 0.166 0.012 7.3 

High PI 

(PI=53) 

0.140 0.017 12.0 0.102 0.020 19.2 0.099 0.008 8.6 
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Table 64. Summary of specimen-related variability of the coefficient of consolidation (Cv) 

Material 

 

Specimen 1 Specimen 2 Specimen 3 

Cv 

(Avg.) 
SD COV 

Cv 

(Avg.) 
SD COV 

Cv 

(Avg.) 
SD COV 

in²/min in²/min % in²/min in²/min % in²/min in²/min % 

Low PI 

(PI=11) 

0.126 0.030 23.5 0.122 0.029 23.9 0.127 0.028 22.0 

Medium 

PI 1 

(PI=21) 

0.167 0.017 10.0 0.176 0.010 5.5 0.183 0.049 27.0 

Medium 

PI 2 

(PI=31) 

0.092 0.028 30.6 0.117 0.013 10.9 0.127 0.010 8.2 

Medium 

PI 3 

(PI=38) 

0.161 0.041 25.5 0.145 0.036 24.9 0.170 0.042 24.5 

High PI 

(PI=53) 

0.127 0.027 21.0 0.115 0.027 23.3 0.100 0.019 18.7 

Analysis of California Bearing Ratio (CBR) Test Data  

The California Bearing Ratio (CBR) test was conducted by five operators to evaluate the 

operator-related variability and on three specimens to evaluate the specimen-related 

variability. The tests were conducted in four different materials: Kentucky limestone, 

Mexican limestone, RAP, and sand soil. In order to analyze data, it was first required to 

correct the stresses if necessary. As shown in Figure 72, the adjusted origins have been 

formed from the slope of the curve and then the corrected stresses are found from the y-

axis for 0.1-in. and 0.2-in. penetrations. The figure shows the plot of CBR test, which 

indicates the adjusted origins along with the corrected stresses for 0.1-in. and 0.2-in. 

penetration. 
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Figure 72. Resistance to penetration (psi) vesrus penetration plot for Kentucky limestone 

 

The operator and specimen-related variations of CBR results were evaluated and the 

results are summarized in Table 65 and Table 66, respectively. The results show that the 

operator-related COVs for CBR range from 4.2% to 15.6%, and the specimen-related 

COVs for CBR range from 5.7% to 16.0%. Furthermore, from Table 65, the maximum 

and minimum values of operator-related COVs are observed for sand and Mexican 

limestone, respectively. However, from Table 66, the maximum and the minimum values 

of specimen-related COVs are seen for Mexican Limestone and RAP, respectively. 

Table 65. Summary of operator-related variability of CBR 

 

Material 

 

Operator 1 Operator 2 Operator 3 Operator 4 Operator 5 

CBR 

(Avg.)  
COV 

CBR 

(Avg.)  
COV 

CBR 

(Avg.)  
COV 

CBR 

(Avg.)  
COV 

CBR 

(Avg.)  
COV 

% % % % % % % % % % 

Kentucky 

Limestone 

43.3 8.1 56.7 6.2 42.0 6.3 49.3 12.2 50.3 5.0 

Mexican 

Limestone 

40.0 6.6 50.3 6.1 39.3 5.3 36.7 4.2 39.3 6.4 

RAP 25.7 11.9 24.0 8.3 23.7 10.6 23.7 10.6 24.3 8.6 

Sand 13.7 11.2 12.7 12.1 11.7 4.9 12.3 4.7 13.3 15.6 
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Table 66. Summary of specimen-related variability of CBR 

 

Material 

 

Specimen 1 Specimen 2 Specimen 3 

CBR 

(Avg.)  
COV 

CBR 

(Avg.)  
COV 

CBR 

(Avg.)  
COV 

% % % % % % 

Kentucky 

Limestone 
46.4 13.9 48.2 11.7 50.4 15.1 

Mexican 

Limestone 
40.8 10.2 40.6 14.6 42.0 16.0 

RAP 23.6 8.8 22.8 5.7 26.4 5.7 

Sand 12.4 9.2 12.6 14.4 13.2 9.9 

 

Analysis of Combined Variability from AMRL and Lab Data 

Analyses of combined variability from both the AASHTO Materials Reference 

Laboratory (AMRL) and lab test data can be determined using different statistical 

techniques. It is simple to calculate the coefficient of variations (COVs) when the average 

values and standard deviations are given for different dataset. The combined mean (or 

average), µa, of different combinations of datasets (µ1 to µn) can be estimated statistically 

using the following equation:    

Average, µa = 
µ1 * n1+µ2 * n2+ µ3 * n3+… µn * nn 

n1+n2+n3+…nn 
                                                   [149] 

In order to estimate the combined standard deviation (or combined pooled variance) of 

different population sets, samples taken from each population are first used to measure 

the variance, 2, for each set. The combined pooled variance, p
2, can then be evaluated 

using the following equation: 

p
2 = 

∑ (ni
k
i=1 -1)i

2

∑ (ni
k
i=1 -1) 

 =  
(n1-1)1

2+ (n2-1)2
2+…+(nk-1)k

2

n1+ n2+…+nk-k
                                                  [150] 

The collected data from AMRL and lab tests were analyzed to evaluate the combined 

variability for different tests. To estimate the combined variability, there are three group 

of datasets indicating set 1, set 2 and set 3. The AMRL data are composed of set 1 and set 

2; whereas lab test data is incorporated with set 3. The collected AMRL data range from 

2009–2010 to 2016–2017. Here, the Atterberg Limits and CBR tests are analyzed to 

evaluate the combined lab variability.  
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For each test, the mean (average) for each dataset is first calculated, and the combined 

mean, µa, of the three sets is evaluated using Equation 149. The standard deviation (or 

variance) is then calculated for each dataset.  Finally, the combined variability is 

calculated and expressed in terms of standard deviation, , and the coefficient of 

variations, COV. Table 67 presents the calculation of combined variability of Atterberg 

limits of low PI soils for the combined AMRL 2016-2017 and lab test data. The combined 

COV for the liquid limit (LL) is 4.3%, and the combined COV for the plastic index (PI) is 

6.7%. Table 68 summarizes the calculated COVs of Atterberg limits for different PI soils 

(Low, medium, and high PI) using the different AMRL datasets (2009-2010 to 2016-

2017). 

 

It can seen from Table 68 that the COVs vary from 4.3% to 8.4% for the LL, where the 

lowest and the highest COVs are for the 2016-17 and 2009-10 datasets, respectively. 

However, the COVs of the PL range from 6.7% to 9.4%, with the minimum and 

maximum of COVs for 2016-17 and 2013-14, respectively. 

Table 67. Combined variability analysis of Atterberg limits for combined AMRL and lab data  

 

Low PI 

(PI=11) 

Soil 

AMRL Data 2016-2017 Lab Test Data 
Combined 

Variability 
Sample 1 Sample 2 Sample 3 

No. 

of 

Data 

Avg. SD 

No. 

of 

Data 

Avg. SD 

No. 

of 

Data 

Avg. SD Avg. SD COV 

n1 µ1 σ1 n2 µ2 σ2 n3 µ3 σ3 µ σ % 

LL 1588 33.1 1.4 1588 32.7 1.4 15 32.5 2.0 32.9 1.4 4.3 

PI 1588 18.8 1.3 1588 18.8 1.3 15 19.5 1.7 18.8 1.3 6.7 

*LL = Liquid Limit, PL = Plastic Limit and PI = Plasticity Index 
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Table 68. Summary of the COVs of Atterberg limit test for AMRL data 

 

Year  

Low PI 

(PI=11) 

Medium PI 1 

(PI=21) 

Medium PI 2 

(PI=31) 

Medium PI 3 

(PI=38) 

High PI  

(PI=53) 

LL PL LL PL LL PL LL PL LL PL 

COV COV COV COV COV COV COV COV COV COV 

% % % % % % % % % % 

2009-10 8.3 8.0 8.3 8.2 8.3 8.0 8.3 8.0 8.4 8.6 

2010-11 7.7 7.4 7.7 7.5 7.7 7.4 7.7 7.4 7.7 7.9 

2011-12 6.6 7.5 6.6 7.6 6.6 7.5 6.6 7.5 6.7 8.0 

2012-13 5.9 7.8 5.9 8.0 5.9 7.9 5.9 7.8 6.0 8.2 

2013-14 6.6 9.2 6.6 9.2 6.6 9.2 6.6 9.1 6.6 9.4 

2014-15 7.4 8.5 7.4 8.6 7.4 8.5 7.4 8.4 7.4 8.9 

2015-16 5.2 7.0 5.2 7.2 5.2 7.1 5.2 7.0 5.3 7.5 

2016-17 4.3 6.7 4.3 6.8 4.3 6.8 4.3 6.7 4.4 7.0 

 

The summary of COVs of CBR test from AMRL data for the different geomaterials 

(sand, RAP, Kentucky limestone, and Mexican limestone) are summarized in Table 69. 

The results show that the COVs range from 16.5% (for Mexican limestone and 2009-

2010 AMR data) to 34.9% (for sand and 2012-2013 AMR data). 
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Table 69. Summary of COVs of CBR test for AMRL data 

 

 

Year  

Sand RAP 
Kentucky 

Limestone 

Mexican 

Limestone 

CBR at 

0.1 inch 

CBR at 

0.2 

inch 

CBR at 

0.1 

inch 

CBR at 

0.2 

inch 

CBR at 

0.1 inch 

CBR at 

0.2 

inch 

CBR at 

0.1 

inch 

CBR at 

0.2 

inch 

COV COV COV COV COV COV COV COV 

% % % % % % % % 

         

2009-

10 
16.8 24.7 16.8 24.5 16.8 24.3 16.5 24.3 

2010-

11 
31.8 30.5 31.7 30.3 31.5 24.6 31.6 24.7 

2011-

12 
27.3 26.2 27.2 26.0 27.0 25.7 26.9 25.8 

2012-

13 
34.9 32.9 34.8 32.4 34.4 32.0 33.7 31.3 

2013-

14 
31.5 30.0 31.4 29.9 31.1 29.6 31.2 29.7 

2014-

15 
33.1 24.3 31.9 28.5 30.4 28.1 30.4 28.2 

2015-

16 
33.9 24.2 33.8 24.1 33.6 24.0 33.7 24.0 

2016-

17 
33.3 22.9 33.2 22.9 33.0 22.7 33.1 22.8 

Evaluation of Site Variability using Semivariogram 

Site Variability from CPT data and LCPC- Pile CPT Method  

To investigate site variability from the CPT data and its effect on the LRFD design of 

piles using the LCPC Pile-CPT design method, the corrected tip resistance, qt, were 

collected from six different project sites (Metairie, ALF, US 90, and LA 85, Hammond, 

Bayou Lacassine, and LA 1) for evaluation per site. The CPT location points for each site 

are presented earlier in Figure 43. The soil profile, soil properties, CPT data and CPT soil 

classification for Metairie site with depth were presented earlier in Figure 45. The soil 

profiles, soil properties, CPT data, and CPT soil classifications for the other sites are 

presented in Appendix B. In order to investigate the effect of site variability for each site 

using the geo-statistics tools, all the collected data for each site need to be first transferred 

to stationary data without any trend prior to performing the semivariogram analyses. The 
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CPT data collected for Metairie site and ALF site (as examples) were transformed from 

nonstationary data (with trend) to stationary data for each layer by removing the trend 

values using the equations presented on Figure 73a and Figure 74a, respectively.  The 

corresponding transformed CPT data from Metairie site and ALF site are shown in Figure 

73b and Figure 74b, respectively. Data transformation from nonstationary data (with 

trend) to stationary data were also performed for the other four CPT sites in this study, 

following the same procedure done for Metairie and ALF sites, and are presented in 

Appendix D. All the data used to evaluate site variability from CPT data for the six sites 

are stationary data without any trend. 

Figure 73. Transferring the data from non-stationary to stationary data for Matierie site: (a) non-

stationary data with trend line; (b) stationary data 

 

Semivariogram analyses were performed on the CPR-qt data using the JeoStat software 

for each soil layer of the six CPT sites. The resulted experimental semivariograms for the 

six soil layers at Metairie site for vertical and horizontal directions are presented in 

Figure 75 and Figure 76, respectively. The spherical model presented in Equation 20 was 

adopted here to fit the model′s semivariogram with the experimental data to define the 

vertical and horizontal correlation ranges, av and ah, for each soil layer. The results values 

of av and ah for the six soil layers at Metairie site were determined as shown in the 

figures. The values of av for the Matierie site are 5.90 ft., 8.80 ft., 8.08 ft., 12.20 ft., 
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12.40, and 8.0 ft. for the soil layers 1st, 2nd, 3rd, 4th, 5th and 6th layers, respectively. 

However, the values of ah for the Matairie site are 100 ft., 150 ft., 110 ft., 100 ft., 117.5 ft. 

and 100 ft. for 1st, 2nd, 3rd, 4th, 5th and 6th layers, respectively. Apparently, the range of 

ah values (100 to 150 ft.) is much higher than the range of av values (5.9 to 12.4 ft.) due to 

large spacing between the CPT test locations (≥24 ft.), which will result on minimal 

effect of the horizontal variability.  

Figure 74. Transferring the data from non-stationary to stationary data for ALF Site: (a) non-

stationary data with trend line; (b) stationary data 

 

Semivariogram analyses were also conducted on LA 1 site to fit the experimental CPT-qt 

data into spherical semivariograms, and to determine the ranges of vertical and horizontal 

correlation, av and ah, for each soil layer. The resulted experimental vertical and 

horizontal semivariograms for the four soil layers at LA 1 site are presented in Figure 77 

and Figure 78, respectively. The ranges of av for the LA 1 site are 5 ft., 11.5 ft., 10.4 ft., 

and 11.9 ft. for the 1st, 2nd, 3rd, and 4th layers, respectively; while the range of ah are 

12.5 ft., 13 ft., 14 ft., and 17.5 ft. for the 1st, 2nd, 3rd, and 4th layers, respectively. The 

horizontal correlation factors, ah, for LA 1 are also higher than av. Similar semivariogram 

analyses were conducted on the other four CPT sites in this study, following the same 

procedure done for Metairie and LA 1 sites, and the results are presented in Appendix D. 
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Figure 75. Experimental and spherical vertical semivariogram models for the CPT-qt data of soil 

layers at Metairie site 
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Figure 76. Experimental and spherical horizontal semivariogram models for the CPT-qt data of soil 

layers at Metairie site 
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Figure 77. Experimental and spherical vertical semivariogram models for the CPT-qt data of soil 

layers at LA 1 site 

 

The variance reduction factor, r, depends on both the spatial correlation of variable 

(CPT-qt) and the pile or shaft geometry. It can be calculated using C(hi) from Equation 17 

and a set of relevant parameters L, D, av, and ah. Figure 12 presents the relationship 

between r
1/2

 and the dimensionless ratios L/av and D/ah [14]. The figure shows that r 

decreases with increasing of either L/av or D/ah. When either L/av or D/ah is very large 

(i.e., a variogram with very short range), r becomes very small (approaches zero). 

However, in situations were both L/av and D/ah equal zero, there will be no effective 

averaging or variance reduction, resulting in r = 1.  

When considering the effect of horizontal site variability, generally, there will be two 

scenarios: (a) the horizontal range, ah, is unknown (i.e., the horizontal distances between 

test points are large), and (b) the horizontal range, ah, is determined. 
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Figure 78. Experimental and spherical horizontal semivariogram models for the CPT-qt data of soil 

layers at LA 1 site 

 

When the CPT tests and soil borings are located far away from each other, the resulting 

horizontal range, ah, will be much larger than the vertical range, av (i.e., has negligible 

effect). For these conditions, the authors are recommending to assume ah = (2-4) av (i.e., 

the horizontal range is two to four times of the vertical range) depending on the 

importance of the project. However, a conservative approach of D/ah ≈0 can also be 

adopted. Then the value r
1/2

can be extracted by using the dimensionless variables L/av 

and D/ah from Figure 12.   

When the horizontal range, ah, can be determined, such as the case for Metairie and LA 1 

sites, both values of av and ah will be used to evaluate r using Figure 12. To investigate 

site variability (including horizontal range) of the CPT-qt data and its effect on the LRFD 

design of piles using the LCPC Pile-CPT design method, the qt data collected from the 

two sites (Metairie and LA 1) will be evaluated separately. The CPT location points for 
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the two sites are presented earlier in Figure 43; and the soil profile, soil properties CPT 

data are presented in Figure 45 and Appendix B for the Metairie and LA 1 sites, 

respectively. The first step to investigate the effect of site variability for each site using 

the geo-statistics tools is to transfer the collected data to stationary data without any 

trend. Then develop the experimental vertical and horizontal semivariograms to evaluate 

the correlation factors av and ah for each soil layer per site. 

Once the values of av and ah are evaluated for each site, the reduction factor, r can be 

determined using the dimensionless variables L/av and D/ah and using Figure 12. The 

spatial coefficient of variation, COVR,spatial, can be evaluated using Equation 19, and the 

load coefficient of variation, COVQ, can be evaluated using Equation 23. Here, the layer 

wise, σ, and the mean, m, were calculated from the qt data (using the JeoStat software). 

The resistance factor considering spatial variability, ϕspatial, for each site was then 

evaluated using Equation 21. 

The values of COVR,spatial for the Metairie site (from qt data) using the generated ah, 

ah=2av, and D/ah≈0 were calculated to be 0.2167, 0.2149, and 0.20, respectively. The 

corresponding LRFD resistance factors based on spatial variability, ϕspatial, are 0.7342, 

0.7293, and 0.76, for the generated ah, ah=2av, and D/ah ≈0, respectively. 

The values of COVR,spatial for the LA 1 site (from qt data) using the generated ah, ah=2av, 

and D/ah≈0 were calculated to be 0.1044, 0.1058 and 0.10, respectively. The 

corresponding LRFD resistance factors based on spatial variability, ϕspatial, are 0.9229, 

0.9206 and 0.93, for the generated ah, ah=2av, and D/ah ≈0, respectively. 

These resistance factors were calculated using the COVR,spatial only. The LRFD resistance 

factors were also calculated using the design method resistance coefficient of variation, 

COVR,method, which is equal to 0.31 for LCPC pile CPT design method [57]. The 

corresponding method’s resistance factor, ϕmethod, for LCPC design method equals 0.61, 

which is the same for all scenarios. In this study, the authors recommended earlier to 

incorporate both the site variability, COVR,spatial, and the method variability, COVR,method, 

in the LRFD calibration of resistance factor, ϕtotal, using the following proposed equation 

[143]: 

  𝐶𝑂𝑉𝑅,𝑡𝑜𝑡𝑎𝑙 =  
𝑐1. 𝐶𝑂𝑉𝑅,𝑠𝑝𝑎𝑡𝑖𝑎𝑙 +  𝑐2. 𝐶𝑂𝑉𝑅,𝑚𝑒𝑡ℎ𝑜𝑑 

𝑐1 + 𝑐2
                                 [149] 

The calculated COVs and the corresponding calibrated resistance factors (ϕ) for the 

different scenarios are summarized in Table 70. It is clear that when the site has lower 
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variability than the design method variability (i.e., COVR,spatial <  COVR,method), the value 

of the COVR,total will be decreased and the corresponding resistance factor will be 

increased, and vice versa.  

The table shows that the COVR,spatial, COVR,total, and  ϕtotal for Metairie site using the 

generated ah are 0.2167, 0.2633, and 0.66, respectively. Using ah=2av, the COVR,spatial = 

0.2149, COVR,total =0.2624, and ϕtotal = 0.6582. However for the D/ah ≈0 case, the 

COVR,spatial, COVR,total, and ϕtotal are 0.20, 0.255, and 0.67, respectively.  

For LA 1, the table shows that the values of COVR,spatial, COVR,total, and ϕtotal using the 

generated ah are 0.1044, 0.2072, and 0.7498, respectively. When assuming ah=2av, the 

COVR,spatial = 0.1058, COVR,total =0.2079, and the ϕtotal = 0.7486. Finally, the values of 

COVR,spatial, COVR,total, and ϕtotal for the case of D/ah ≈0 are 0.10, 0.205, and 0.75, 

respectively. It can be seen from Table 70 that the effect of considering the horizontal 

range in analysis is not significant. Therefore, for simplification of the analysis, we can 

assume D/ah ≈0.  

Table 70. Calibrated resistance factors, ϕR, for LCPC design method for Metairie and LA 1 sites 

Parameters Metairie LA 1 

 Generated ah ah=2av 
𝐷

𝑎ℎ
≈ 0 Generated ah ah=2av 

𝐷

𝑎ℎ
≈ 0 

COVR,spatial 0.2167 0.2149 0.20 0.1044 0.1058 0.10 

COVR,method  

(LCPC) 
0.31 

COVR,total 0.2633 0.2624 0.255 0.2072 0.2079 0.205 

COVQ
2 0.0111 

ϕspatial 0.7342 0.7293 0.76 0.9229 0.9206 0.93 

ϕmethod (LCPC) 0.61 

ϕtotal 0.660 0.6582 0.67 0.7498 0.7486 0.75 

 

The variability analyses for the other four sites were done using the vertical range only 

(i.e., assuming D/ah ≈0), since the effect horizontal range is not significant. Additionally, 

the minimum spacing between the CPT test locations are considered large compared to 

the pile width used in these project.  

The vertical ranges, av, for the ALF site are 3 ft., 12.7 ft., 3 ft., and 4 ft. for 1st, 2nd, 3rd, 

and 4th layers, respectively. In case of Bayou Laccassine, the vertical ranges, av, for the 

1st, 2nd, 3rd, 4th and 5th layers are 4.35 ft., 10.50 ft., 6.7 ft., 11 ft. and 8.30 ft., 
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respectively. The vertical ranges, av, for the US 90 and LA 85 site are 4.9 ft., 8.5 ft., 2.6 

ft., 6.8 ft., 4.9 ft., and 4.8 ft. for 1st, 2nd, 3rd, 4th, 5th, and 6th layers, respectively. For 

Hammond site, the vertical ranges, av, for the 1st, 2nd and 3rd layers are 2.08 ft., 5.50 ft., 

and 1.5 ft., respectively.  

The calculated coefficients of variabilities (COV) and the corresponding calibrated 

resistance factors (ϕR) for the four sites (ALF, Bayou Laccassine, US 90 and LA 85, and 

Hammond sites) are summarized in Table 71. It is clear that when the site has lower 

variability than the design method variability (i.e., COVR,spatial <  COVR,method), the value 

of COVR,total decreases and the corresponding resistance factor increases, and vice versa.  

Table 71. Calibrated resistance factors, ϕR, for LCPC design method for the other four sites 

Parameters 
ALF BL US 90 Hammond 

COVR,spatial 0.11 0.08 0.09 0.16 

COVR,method  (LCPC) 0.31 

COVR,total 0.21 0.195 0.20 0.235 

COVQ
2 0.0111 

ϕspatial  0.91 0.96 0.94 0.83 

ϕmethod (LCPC) 0.61 

ϕtotal 0.74 0.77 0.76 0.70 

The results in Table 71 show that the COVR,spatial, COVR,total, and  ϕtotal for ALF site are 

0.11, 0.21, and 0.74, respectively. For Bayou Lacassine site, the COVR,spatial, COVR,total, 

and ϕtotal are 0.08, 0195 and 0.77, respectively. The values of COVR,spatial, COVR,total, and 

ϕtotal for the US 90 and LA 85 site are 0.09, 0.20, and 0.76, respectively. Finally, for the 

Hammond site, the COVR,spatial = 0.16, COVR,total =0.235, and the ϕtotal = 0.70. It can seen 

from Table 70and Table 71 that the values of ϕtotal are different for the different sites, 

basically due to variability on the COVR,spatial of the sites. The relatively high site 

variability of Metairie resulted on lower resistance factor, ϕtotal = 0.67, as compared to 

other sites; while the low site variability of Bayou Lacassine resulted on higher resistance 

factor, ϕtotal = 0.77, than the other sites. 

Site Variability and FHWA Static Pile Design Method 

The FHWA pile design method adopted the Nordlund (effective stress) method for the 

sand layers and the α-Tomlinson (total stress) method for clay layers along the pile 

length. Usually, the SPT data are used to evaluate the friction angle in Nordlund method; 
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while the α-Tomlinson method is based on the undrained shear strength, Su. For sites 

consist of sandy soils, the Nordlund design method is usually used for pile design; while 

for sites with cohesive clayey soils, the α-Tomlinson design method is usually used for 

pile design. However, for mixed soil conditions, both design methods are used.  

Amongst the four sites evaluated in this study for soil borings, the subsurface soil 

conditions in three sites (i.e., Bayou Lacassine, Red River and Williams Boulevard) are 

clayey soils, and therefore the α-Tomlinson design method based on Su will be used in 

these sites. However, the subsurface soil condition at Metairie sites consists of mixed soil 

layers, therefore, both the Nordlund and α-Tomlinson design methods will be analyzed. 

Site Variability from Undrained Shear Strength and α-Tomlinson Method  

To investigate site variability from undrained shear strength, Su, data for the -Tomlinson 

method, soil boring data were collected from three sites (i.e., Bayou Lacassine, Red River 

and Williams Boulevard). The distribution of soil borings for the three sites are shown in 

Figure 44. For Bayou Lacassine, the maximum, minimum, and average COV of Su 

(COVSu) from soil borings are 0.80, 0.29 and 0.51, respectively. For the Red River site, 

the maximum, minimum, and average of COVSu are 0.91, 0.11, and 0.35, respectively. 

For the Williams Boulevard site, the maximum, minimum, and average of COVSu are 

0.39, 0.13, and 0.26, respectively. All the Su data used in the study are stationary data 

without any trend. The profile of soil type/layers and Su data for the Red River site (as an 

example) are shown in Figure 79. Experimental semivariogram analyses were performed 

using the JeoStat software to evaluate the vertical correlation range, av, for the soil layers 

of each site (as shown in Figure 80 for the Red River site). Analyses were done in the 

vertical direction only since the horizontal distance between the soil borings were very 

large. The spherical model, as described in Equation 20, was used to fit the spherical 

semivariogram model with the experimental Su data, and to evaluate the vertical 

correlation range, av, for each soil layer. Figure 80 presents the semivariogram and 

corresponding av values for the four soil layers at the Red River site. The value of av are 

7.0 ft., 10.7 ft., 5.5 ft., and 6.0 ft. for the 1st, 2nd, 3rd, and 4th soil layers, respectively. 

Similar analyses were performed for the other two soil boring sites to fit the experimental 

data of Su into spherical semivariograms, and to evaluate the vertical ranges, av, for each 

soil layer. For the Bayou Laccassine site, the vertical ranges, av, for the 1st, 2nd, 3rd, 4th 

and 5th layer are 3.20 ft., 5.90 ft., 6.10 ft., 9.50 ft., and 14.50 ft., respectively. The 
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vertical range, av, for the Williams Boulevard site are 19.50 ft., 24.0 ft., 24.0 ft., and 

10.80 ft. for the 1st, 2nd, 3rd, and 4th layer, respectively. 

Figure 79. Profile of soil layers and Su data for the Red River site 

 

The values of av evaluated from the semivariograms analysis were used to calibrate the 

LRFD resistance factor, ϕR, as shown in Table 72. As described earlier, the value of 

reduction factor, r, for each soil layer was calculated using Equation 20. The spatial 

coefficient of variation, COVR,spatial, for each site was evaluated using Equation 19, and 

the load coefficient of variation, COVQ, was evaluated from Equation 23. Finally, the 

resistance factor considering spatial variability, ϕspatial, for each site was calculated using 

Equation 21. The values of COVR,spatial for Bayou Laccasine, Red River and Williams 

Boulevard sites were calculated as 0.22, 0.19, and 0.14, respectively, as shown in Table 

72. The corresponding LRFD resistance factors based on site variability only, ϕspatial, are 

0.61, 0.65, and 0.72 for Bayou Laccasine, Red River, and Williams Boulevard sites, 

respectively. The LRFD resistance factors for the α-Tomlinson method, ϕmethod, 
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corresponding to the bias λR = 0.87 and COVR,method = 0.48 is equal 0.34 [58]. To 

incorporate both the site variability, COVR,spatial, and the method variability, COVR,method, 

in the LRFD calibration of resistance factor, ϕtotal, Equation 21 was used to calculate 

COVR,total, and to calibrate the corresponding ϕtotal. Table 72 summarizes the coefficients 

of variations (COV) and the corresponding calibrated resistance factors (ϕR) for the three 

project sites. Again, for sites with lower site variability than the design method variability 

(i.e., COVR,spatial <  COVR,method), the value of the COVR,total decreased and the 

corresponding resistance factor, ϕtotal, increased, and vice versa. For the three investigated 

sites here, COVR,spatial <  COVR,method, and therefore both the ϕspatial (0.61 to 0.72) and the 

ϕtotal (0.45 to 0.49) are higher than the ϕmethod (0.34). 

Figure 80. Experimental and spherical semivariogram models for Su data of the Red River site 

 

Site Variability of Mixed Soil at Metairie Site and Combined Static Method  

The subsurface soil condition at Metairie site consists of four layers, two clayey layers (I: 

0 to 29 ft. and III: 48 to 78 ft.), and two sandy layers (II: 29 to 48 ft. and IV: 78 to 105 

ft.). For Layer I and III, the maximum, minimum, and average COV of Su (COVSu) from 
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soil borings are 0.67, 0.17 and 0.27, respectively. For Layer II and IV, the maximum, 

minimum, and average COV of SPT-N (COVSPT-N) from soil borings are 0.70, 0.13, and 

0.31, respectively. Therefore, the collected Su data will be used to evaluate the site 

variability for Layers I and III for incorporation into the α-Tomlinson pile design method, 

and the collected SPT-N data will be used to evaluate the site variability for Layers II and 

IV for integration into the Nordlund pile design method, separately. This means we will 

calibrate two methods′ resistance factors; one for α-Tomlinson method (ϕR,Tomlinson 

method) and one for Nordlund method (ϕR,Nordlund method).  In addition, the combined site 

variability from both the Su and SPT-N collected data was used to calibrate the resistance 

factor for the combined static analysis method (ϕR-static method). A recent study by [57] 

calibrated the FHWA static method for piles driven in mixed soil conditions in Louisiana, 

and the values of λR and COVR,Static were calculated to be 0.91 and 0.42, respectively. 

Table 72. Calibrated resistance factors, ϕR, for α-Tomlinson static design method 

Parameters Bayou Lacassine Red River Williams Blvd 

COVR, spatial 0.22 0.19 0.14 

COVR, method (α method) 0.48 

COVR, total 0.35 0.33 0.31 

COVQ
2 0.0111 

ϕspatial 0.61 0.65 0.72 

ϕmethod (α method) 0.34 

ϕtotal 0.45 0.47 0.49 

 

The measured Su data and SPT-N data collected from the different boreholes at Metairie 

site are plotted versus depth for the four layers as shown in Figure 81a and Figure 81b, 

respectively. All the Su and SPT-N data used in Metairie site are stationary data without 

any trend. Experimental semivariogram analyses were performed using the JeoStat 

software for the four soil layers at Metairie site as shown in Figure 82. The analyses were 

done in the vertical direction only due to large horizontal distances between the soil 

borings. Spherical model (Equation 17) was used to fit the semivariogram model with the 

experimental Su or SPT-N data, and to determine the vertical correlation range, av, for 

each soil layer. Figure 82a and Figure 82b present the semivariograms and the 

corresponding av values for the clay layers I and III, respectively. Figure 82c and Figure 

82d present the semivariograms and the corresponding av values for the sand layers II and 

IV, respectively. The values of vertical range, av, for the soil layers I, II, III, and IV are 

8.8 ft., 14.4 ft., 12.2 ft., and 24.0 ft., respectively. 
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Figure 81. Measured undrained shear strength, Su, and SPT-N data for Metairie site 

 

Figure 82. Experimental and spherical semivariogram models for Su data of the Metairie site 
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The correlation vertical range, av, determined from the semivariogram were used to 

evaluate the reduction factor, r, for each soil layer and the spatial coefficient of 

variation, COVR,spatial, (for both Su and SPT-N) using Equation 20 and Equation 19, 

respectively. As shown in Table 73, the COVR,spatial for layers I and III, layers II and IV, 

and for Metairie site are 0.10, 0.17, and 0.166, respectively. The load coefficient of 

variation, COVQ, was evaluated from Equation 23. The resistance factor considering to 

spatial variability, ϕspatial, for -Tomlinson method (layers I and III), Nordlund method 

(layers II and IV), and combined static method (all layers) were calculated using 

Equation 21. The corresponding resistance factors based on ϕspatial only are 0.82, 0.74, 

and 0.70 for the α-Tomlinson method, Nordlund method, and combined static method, 

respectively. The resistance factors for the methods, ϕmethod, are 0.34, 0.41, and 0.40, for 

the α-Tomlinson method Nordlund method, and combined static method, respectively. 

Equation 149 was then used to calculate the COVR, total to incorporate both site 

variabilities, COVR,spatial, and COVR,method, into the LRFD calibration of resistance factor, 

ϕtotal, assuming c1 = c2 = 0.5. Table 73 summarizes the coefficients of variations (COV) 

and the corresponding calibrated resistance factors (ϕR) for the α-Tomlinson method, 

Nordlund method, and combined static method. It is clear that the site variability for the 

Metairie site is lower than the design method variability (i.e., COVR,spatial <  COVR-method ), 

and therefore a credit will be given to the site by increasing the resistance factors, ϕspatial 

and ϕtotal, used for designing of pile foundations using α-Tomlinson method, Nordlund 

method, or combined static method. Both the ϕspatial (0.74 to 0.82) and the ϕtotal (0.58 to 

0.62) are higher than the ϕmethod (0.34 to 0.41). 

Table 73. Calibrated resistance factors, ϕR, for Metairie site 

Parameters 
α-Tomlinson Method 

(Layers I and III) 

Nordlund Method 

(Layers II and IV) 

Combined Static 

Method 

(All Layers) 

COVR, spatial 0.10 0.17 0.166 

COVR, method 0.48 0.48 0.42 

COVR, total 0.29 0.32 0.29 

COVQ
2 0.0111 0.0111 0.0111 

ϕspatial 0.82 0.74 0.70 

ϕmethod 0.34 0.41 0.40 

ϕtotal 0.62 0.58 0.53 
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Discussion of Semivariogram Analysis 

The value of resistance factor, ϕR, in LRFD design of pile foundations is directly related 

to the resistance coefficient of variation (COVR) due to uncertainty in subsurface soil 

resulting from spatial variability, statistical error, measurement error, and model bias. In 

this section, the CPT data (qt) and soil borings data (Su and SPT-N) were used to evaluate 

the site variability of different soil layers in combination with the variation reduction 

factor, r. The main sources of measurement errors in CPT are the soil formation and 

equipment error (i.e., cone type, calibration), with less effect of the operator on test 

results. However, the main measurement errors sources in Su data are soil formation, soil 

sampling, specimen handling and transportation, and operator/equipment. In the case of 

SPT measurement, the soil formation and equipment error are the main sources of the 

measurement’s errors. It is expected that the SPT equipment source of errors (discrete 

number of blows) are higher than the CPT equipment errors (continuous electrical 

measurement). 

The results of site variability using semivariogram analysis showed there is little effect of 

the horizontal range, ah, on evaluating the reduction factor, r, and the resistance factos 

(), since the distance between the CPT tests and soil borings are usually very large 

compared the pile diameter and the ratio D/ah ≈ 0. Therefore, for the simplification of the 

analysis, we can assume D/ah ≈ 0.  Exploring the results presented for the ten sites, the 

reader can realize that the spatial resistance coefficient of variation, COVR,spatial, from 

CPT-qt data ranges from 0.08 to 0.20; the COVR,spatial from Su data ranges from 0.14 to 

0.22; and the COVR,spatial from SPT-N data for Metairie site is 0.17. Interestingly, the 

values of COVR,spatial for all ten sites (either from CPT or soil boring) are lower than the 

COVR,method, which are evaluated from data collected from many sites at different 

locations nationwide [58] or statewide [57]. In COVR,method, no consideration is given to 

the specific site variability, although variability between different sites in Louisiana were 

indirectly included in the LCPC pile-CPT method and the combined static method. Some 

researchers, like McVay et al. [14], used the COVR,spatial to calibrate the resistance factor, 

ϕspatial, for use in LRFD design of piles for the specific site. The authors recommend using 

Equation 149 to evaluate the COVR,total, which incorporates both the the COVR,spatial and 

the COVR,method, and to calibrate the total resistance factor, ϕtotal, for use in LRFD design 

of pile foundations. 

It is clear that for the sites with lower site variability than the design method variability 

(i.e., COVR,spatial <  COVR-method), the value of the COVR,total decreased and the 
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corresponding resistance factor, ϕtotal, increased (as well as ϕspatial), and vice versa. This 

means a credit will be given to low variability sites as compared to high variability sites 

in terms of increasing the resistance factors, either using ϕspatial or ϕtotal, for use in the 

design of pile foundations. Since the site variability from using CPT-qt data is lower than 

soil boring data (Su and SPT-N), the corresponding ϕspatial, ϕtotal, for LCPC pile-CPT 

design method are higher than the static α-Tomlinson and the Nordlund design methods. 

Evaluation of Site Variability using Bayesian Analysis 

Geotechnical Characterization 

In order to utilize the CPT data for estimating the ultimate pile capacity using any pile-

CPT method, it is important to classify the soils and evaluate soil layering and type so 

that the proper correlation factors can be selected to evaluate the unit end bearing 

capacity and unit side resistance of the soil layers along the pile shaft, which are based on 

soil type, pile type, and installation method. In this study, the probabilistic region 

estimation CPT classification method introduced by Zhang and Tumay [134] was 

adopted in this study to classify the soil layers along piles’ lengths. The probabilistic 

estimation method determines the probability of soil behavior (clay, sand, and silt). 

Figure 83 depicts an example of the soil description, moisture content, liquid limit, plastic 

limit, undrained shear strength, cone tip resistance, and the probability of soil behavior 

for a test pile located at the Houma I.C.W.W. Bridges project.  

Bayesian Update on the New Sites 

Houma I.C.W.W. Bridges Project in Terrebonne Parish   

In this study, 33 sites out of the 34 total sites were considered as old sites that will be 

used as likelihood in level 1 of the Bayesian analysis, and the site at Houma I.C.W.W. 

Bridges project in Terrebonne Parish in Louisiana is considered and used as the 

likelihood in level 2 of the Bayesian analysis. In Houma bridge site, six pile load tests 

were performed. The Davisson’s measured ultimate pile capacities, Qm, for the 6 pile 

load tests were 110, 60, 117, 115, 107, and 170 tons, respectively. However, the estimate 

ultimate pile capacities, Qp, using the LCPC methods for those piles were 115.5, 81, 95.9, 

108.6, 77.3, and 117.9 tons, respectively. Therefore, the biases (λ = Qm/Qp) for 6 pile load 

tests are 0.95, 0.74, 1.22, 1.05, 1.38, and 1.44, and the corresponding mean bias (λ) and 
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standard deviation (σ) are 1.04 and 0.30, respectively, assuming lognormal distribution of 

data. 

Figure 83. Subsurface soil condition at Houma I.C.W.W. Bridges project site 

 

In level 1 of the Bayesian analysis, the previous data (33 sites out of 34 sites) is 

considered as the likelihood, with mean bias, λ= 1.03 (average λ = Qm/Qp) for pile load 

tests in 33 sites, and the corresponding standard deviation, σ = 0.32, assuming lognormal 

distribution of data. The prior parameter for this part of analysis is assumed to be λ= 0.8 

and σ = 0.40 (conservative values) with lognormal distribution. It should be noted here 

that we could use other reliable data (say based on engineering judgement) as prior data 

for level 1 analysis. However, an accurate selection of the prior data in level 1 Bayesian 

analysis has insignificant impact on the posterior data of level 2 analysis [144]. After 

executing the level 1 analysis, we will generate the posterior data, which is in this case λ 

= 1.07 and σ = 0.38 with normal distribution, which will be considered as prior data in 

level 2 Bayesian analysis.  

In level 2 Bayesian analysis, due to the framework of the code, the level 1 posterior data 

and parameters will be considered as prior data in this level. As stated earlier, the Houma 

bridges site in Louisiana will be considered as the likelihood for level 2 of the Bayesian 

analysis, with λ = 1.04 and σ = 0.30.  
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After level 2 analysis, we will generate the posterior data and parameter (λ = 1.035 and σ 

= 0.31) for the normal distribution. These updated posterior parameters (λ and σ) will be 

used for calibrating the LRFD resistance factor (R) for use in the design of PPC based on 

LCPC pile-CPT design method. Figure 84a and Figure 84b present the distributions of 

the prior, likelihood and posterior data for level 1 and level 2, respectively, of the 

Bayesian analysis for the Houma bridge site.  

Figure 84a shows that the prior data (λ=0.8 and σ=0.40) in level 1 Bayesian analysis has 

little impact on the posterior data (λ=1.07 and σ=0.38), when likelihood1 is given (λ=1.03 

and σ=0.32). However, Figure 84b shows that in level 2, the posterior (λ=1.035 and 

σ=0.31) or the updated parameters for the Houma bridge site lie between the prior2 

parameters (λ=1.07 and σ=0.38) and the likelihood2 parameters (λ=1.04 and σ=0.30) 

distribution, taking into consideration the specific site variability. 

Gibson Highway at St. Mary Parish Project   

To demonstrate the effectiveness of Bayesian analysis, another site in Gibson Highway 

(Morgan City) in St. Mary Parish in Louisiana is considered and used as the likelihood in 

level 2 of Bayesian analysis. In this site, 6 pile load tests were performed whose values of 

Qm were 102.5, 518, 482, 568, 565, and 111 tons for piles TP1 to TP6, respectively. 

Meanwhile, the values of Qp for those test piles estimated based on LCPC method were 

121.4, 594.6, 615.4, 652.2, 771.9, and 115.6 tons. The corresponding biases (λ = Qm/Qp) 

for those piles are 0.84, 0.87, 0.78, 0.87, 0.73, and 0.96. Accordingly, the mean bias (λ) 

and standard deviation (σ) are 0.84 and 0.08, respectively, for lognormal distribution. 

In level 1 of the Bayesian analysis, the data for the other 33 sites (out of 34 sites) is 

considered as the likelihood with mean bias, λ= 1.05, and corresponding standard 

deviation, σ = 0.33, and assuming lognormal distribution of data. The prior parameters 

for this part of analysis is assumed to be λ= 0.8 and σ = 0.40 with lognormal distribution. 

After executing the level 1 analysis, we will generate the posterior data, which is in this 

case λ = 1.09 and σ = 0.38 with normal distribution, which will be considered as prior 

data in level 2 Bayesian analysis. 

In level 2 Bayesian analysis, the level 1 posterior data and parameters will be considered 

as prior data in this level. As stated earlier, the Gibson Highway in St. Mary Parish will 

be considered as the likelihood for level 2 of the Bayesian analysis, with λ = 0.84 and σ = 

0.08 for Gibson Highway site, and lognormal distribution. 
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Figure 84. Prior, likelihood, and posterior distribution with mean at different Bayesian levels 

 

After the level 2 analysis, we will generate the posterior data and parameter (λ = 1.03 and 

σ = 0.31) for the normal distribution. These updated posterior parameters (λ and σ) will 

be used for calibrating the LRFD resistance factor () of LCPC design method. The prior, 
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likelihood and posterior distributions for level 1 and level 2 are presented in Figure 84c 

and Figure 84d, respectively.  As shown in Figure 84c, the values of prior data (λ=0.8 and 

σ=0.40) in level 1 of Bayesian analysis has little impact on the posterior parameters 

(λ=1.09, σ=0.38) when likelihood1 is given (λ=1.05, σ=0.33). The results of Figure 84d 

shows that, the values of the updated posterior parameters Gibson Highway site in level 2 

(λ=1.03, σ=0.31) lie between the prior2 parameters (λ=1.09, σ=0.38) and likelihood2 

parameters (λ=0.84, σ=0.08) distribution that considers the specific site variability. 

Causeway Boulevard at Jefferson Project   

Another site is Causeway Boulevard in Jefferson Parish in Louisiana was also considered 

to demonstrate the effectiveness of Bayesian analysis. This site has 7 pile load tests with 

the measured capacities, Qm, as 126, 97.5, 159, 134, 143, 149.5, and 110.5 tons, for test 

piles TP1 to TP7, respectively. The values of estimated pile capacities, Qp, based on 

LCPC design method were 254.2, 148.2, 234.6, 172.5, 177.2, 165.6, and 139.4 tons. 

Therefore, the corresponding values of bias, λ, for these piles are 0.49, 0.66, 0.68, 0.78, 

0.81, 0.90, and 0.79. The calculated mean bias (λ) and standard deviation (σ) for the 

Causeway Boulevard site are 0.73 and 0.13, with lognormal distribution. 

In level 1 of the Bayesian analysis, the data from the other 33 sites (out of 34) is 

considered as the likelihood in the Bayesian analysis (with  λ= 1.06 and σ = 0.32), and 

assuming lognormal distribution. The prior parameter for this analysis is assumed to be 

λ= 0.8 and σ = 0.40 with lognormal distribution. After executing the level 1 analysis, the 

posterior data will be generated, with values of λ = 1.08 and σ = 0.37 and normal 

distribution. These values will be considered as prior data in level 2 Bayesian analysis. 

In level 2 Bayesian analysis, the level 1 posterior data and parameters will be considered 

as prior data in this level. As stated earlier, the Causeway Boulevard in Jefferson Parish 

will be considered as the likelihood for level 2 of the Bayesian analysis (with λ = 0.73 

and σ = 0.13) with lognormal distribution.  

After level 2 analysis, we will generate the posterior parameters as λ = 0.95 and σ = 0.30, 

for the normal distribution. These updated posterior parameters (λ and σ) will be used for 

calibrating the LRFD resistance factor (R) for the LCPC pile-CPT design method. The 

prior, likelihood, and posterior distributions for level 1 and level 2 are presented in Figure 

84e and Figure 84f, respectively.  Again, Figure 84e demonstrated that the prior data 

(λ=0.8 and σ=0.40) in level 1 Bayesian analysis has insignificant impact on the posterior 

data (λ=1.08, σ=0.37), when likelihood1 is given (λ=1.06 and σ=0.32). However, Figure 
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84f shows that the values of updated posterior parameters in level 2 (λ=0.95, σ=0.30) are 

between the prior2 parameters (λ=1.08, σ=0.37) and likelihood2 parameters (λ=0.73, 

σ=0.13), which means the specific site variability was considered. 

Effect of Confidence Bias Site Parameter 

Generally, designers and researchers have more confidence on the test results for the new 

specific site (or data) than the previous test (or data) of other sites; therefore, it is rational 

to put more weight on the new test results for updating data within the Bayesian 

framework.  In this study, the authors introduced a new term called confidence bias site 

parameter (wb) to put more weight on the test results/data for the new specific site during 

the Bayesian updating process. In this study, the effect of weight parameter or confidence 

bias site parameter was checked for different scenarios with different site variabilities 

(i.e., low site variability, high site variability). Herein, the low site variability refers to site 

variability with mean bias, λ= 1.02, and standard deviation, σ = 0.20; while the high site 

variability represents site variability with λ= 1.10 and σ = 0.40. In this analysis, we 

divided the 80 pile load test database into two different sets: (i) we randomly selected 75 

test piles as old database and 5 test piles for a new site; and (ii) we randomly selected 70 

test piles as old database and 10 test piles for a new site. 

In this part, the Bayesian analysis was also performed in two levels. The old database 

data are considered as likelihood at level 1, while the prior parameters for level 1 is taken 

as mean bias, λ= 0.8 and standard deviation, σ = 0.40. After level 1 analysis, we will get 

the posterior parameters (λ and σ); which will be considered as prior parameters in level 2 

Bayesian analysis. Therefore, the new sites values will be used as likelihood data in level 

2 analysis. After completing the level 2 Bayesian analysis, an updated posterior 

parameters (final λ and σ) will be delivered. Three different confidence bias site 

parameter, wb, were considered in this analysis, i.e., wb = 1.0, 1.5, and 2.0. 

The results for the confidence bias site parameter, wb = 1 is presented in Figure 85a. The 

figure shows that for the case of high site variability of old database and low site 

variability at new site; and when using 75 piles as old database and 5 piles for the new 

site, the resulted updated posterior parameters were mean bias, λ= 1.08, and standard 

deviation, σ = 0.36. Figure 85b presents the case for low site variability at old database, 

high site variability at new site with wb = 1, and same split of pile load tests (75 for old 

database and 5 for new site). The results yield the updated posterior parameters values of 

λ= 1.05 and σ = 0.365. It can be concluded that without imposing any weight to new site 

data (i.e., wb = 1), the updated posterior parameters will stay closer to the higher number 
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of pile, which is in this case, the old database. Figure 85c shows the result for the case 

when using 70 pile load tests with high site variability for the old database and 10 pile 

load tests with low site variability at the new site, and using wb = 1.0. The resulted 

updated posterior parameters were λ = 1.07 and σ = 0.34. However, when using 70 piles 

with low site variability for old database and 10 piles with high site variability at the new 

site (Figure 85d), the results for wb = 1.0 yield λ = 1.04 and σ = 0.34 as updated posterior 

parameters. Again, the results show that without considering any weight (i.e., wb = 1), the 

updated posterior parameters will stay closer to the higher number of piles, which is the 

old database in this case. However, when the number of piles for the new site increases, 

the updated posterior parameters tend to shift toward the new site parameters, as 

expected.  

Figure 85. Probability density function at different site variability when confidence bias site 

parameter, wb = 1 
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As discussed earlier, it is logic to apply weight (i.e., wb > 1.0) on the test results of the 

new site, giving it more importance than the old database. In this study, three values of 

confidence bias site parameter, wb, are considered on the test results of new site, i.e., wb = 

1, 1.5 and 2. The effect of wb on the updated posterior parameters were evaluated for two 

sets of data: 75 piles for old database versus 5 piles for new site, and 70 piles for old 

database versus 10 piles for new site (selected randomly). Two site variabilities were 

considered for each case, low and high site variabilities. The updated posterior 

parameters obtained at different wb values and different site variabilities for the two sets 

of data are summarized in Table 74. As shown in the table, the updated values of the 

posterior parameters when using wb = 1.0 are λ= 1.08 and σ = 0.36 for the case of 75 pile 

tests of high site variability for old database and 5 pile tests of low site variability at the 

new site; while for the same dataset case but using wb = 1.5, the values of updated 

posterior parameters are λ = 1.062 and σ = 0.31. However, when using wb = 2 for the 

same dataset, the values of updated posterior parameters reduce to λ= 1.05 and σ = 0.28. 

The values of updated posterior parameters (λ and σ) for the same set of data (i.e., 75 

piles for old database and 5 piles for the new site), but with low site variability of old site 

and high site variability at the new site are also presented in Table 74, which shows an 

increase of updated λ and σ from (1.05, 0.365) to (1.07, 0.36) with increasing wb from 1 

to 2. The results for the second set of data (i.e., 70 piles for old database and 10 piles for 

the new site) for different site variabilities and different wb values are also presented in 

Table 74, which gave the same trend of results. For the case of high site variability of old 

site and low site variability at new site, the values of updated λ and σ reduced from (1.07, 

0.34) to (1.04, 0.27) with increasing wb from 1 to 2. However, for the case of low site 

variability of old site and high site variability at new site, the updated values of increased 

from (1.04, 0.34) to (1.075, 0.37) with increasing wb from 1 to 2. 

It can be concluded that when applying the confidence bias site parameter, wb, to the new 

site data, the updated λ and σ parameters shift toward the new site values, which is 

rationale and will result on updating the LRFD resistance factors (that are calibrated 

nationwide or statewide) taking into consideration the specific site variability. The use of 

wb = 1.0 means that the pile load tests at the new specific site are treated at the same level 

of confidence as the prior pile load test values from nationwide or statewide database. 

Since the variability of the model bias factor within a specific site is often smaller than 

that of a region, most of the time uncertainties will be lower in the new site. Therefore, 

when the new site’s pile load test (likelihood2) is completed, more consideration should 

be given to the new test data in the Bayesian analysis. Unfortunately, there is no 
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guidelines in literature on the proper selection of wb value. Any value between 1 and 2 

can be adopted for wb, depending on the specific site condition and the extent of testing. 

The authors recommend using a confidence bias site parameter, wb = 1.5, as a starting 

point. 

Effect of λ and σ Parameters on LRFD Design of Piles 

The resistance factor, ϕR, for pile design according to the load and resistance factor 

design (LRFD) method can be calculated using the following modified first order second 

moment method (MFOSM) calibration equation proposed by McVay et al. [14]: 


𝑅

=

𝜆𝑅 (𝛾𝐷
𝑄𝐷
𝑄𝐿

+ 𝛾𝐿) √
1 + 𝐶𝑂𝑉𝑄

2

1 + 𝐶𝑂𝑉𝑅
2

(𝜆𝑄𝐷
𝑄𝐷
𝑄𝐿

+ 𝜆𝑄𝐿) exp (𝛽𝑇√ln(1 + 𝐶𝑂𝑉𝑅
2) (1 + 𝐶𝑂𝑉𝑄

2))

     [150] 

λR is the resistance bias factor; QD is the dead load and QL is the live load;  βT is the target 

reliability index; γD is the dead load factor and γL is the live load factor; λQD is the dead 

load bias factor (measured divided by predicted) and λQL is the live load bias factor. COVQD 

is for the dead load and COVQL is for the live load. The QD/QL is the ratio of dead and live 

load (which is assumed to be 3 in this study). The coefficient of variation of the random 

loads, COVQ, was introduced by McVay et al. [14] using the following equation:  
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𝑄𝐿
2 𝜆𝑄𝐷

2 + 2
𝑄𝐷
𝑄𝐿

𝜆𝑄𝐷𝜆𝑄𝐿 + 𝜆𝑄𝐿
2
               [151] 

where, COVQD is for the dead load and COVQL is for the live load. According to the FHWA 

[59], the dimensionless parameters in the above equations can be defined as the follows: 

     𝛾𝐿 = 1.75; 𝜆𝑄𝐿 = 1.15; 𝐶𝑂𝑉𝑄𝐿 = 0.18; 𝛾𝐷 = 1.25; 𝜆𝑄𝐷 = 1.08;  𝐶𝑂𝑉𝑄𝐷 = 0.128 

In this study, we will consider the LCPC method [56] to design piles from CPT data. The 

LCPC is a direct Pile-CPT method that showed one of the best performance Pile-CPT 

methods on estimating the ultimate resistance for piles driven in Louisiana soils [57]. The 

mean resistance bias, λR, and COVR for the LCPC method are 1.04 and 0.31, 

respectively.  
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Table 74. Updated parameters at different site variability for different wb parameter levels 

Confidence Bias site Parameter, wb = 1 

Database New site 
Updated 

Parameters 

COVR 

Resistance 

Factor 

(ϕR) 

Efficiency 

Factor 

(ϕR/λ) 

No. 

of 

piles 

Parameters 

No. 

of 

piles 

Parameters 

Mean 

Bias 

(λ) 

Standard 

Deviation 

(σ) 

When new site has lower number of piles; Low site variability 

75 
λ 1.10 

5 
λ 1.02 

1.08 0.36 0.33 0.56 0.52 
σ 0.40 σ 0.20 

When new site has lower number of piles; High site variability 

75 
λ 1.02 

5 
λ 1.10 

1.05 0.365 0.35 0.54 0.52 
σ 0.20 σ 0.40 

When new site has higher number of piles; Low site variability 

70 
λ 1.10 

10 
λ 1.02 

1.07 0.34 0.32 0.58 0.54 
σ 0.40 σ 0.20 

When new site has higher number of piles; High site variability 

70 
λ 1.02 

10 
λ 1.10 

1.04 0.34 0.33 0.57 0.55 
σ 0.20 σ 0.40 

Confidence Bias site Parameter, wb = 1.5 

When new site has lower number of piles; Low site variability 

75 
λ 1.10 

5 
λ 1.02 

1.062 0.31 0.29 0.62 0.58 
σ 0.40 σ 0.20 

When new site has lower number of piles; High site variability 

75 
λ 1.02 

5 
λ 1.10 

1.056 0.35 0.33 0.56 0.54 
σ 0.20 σ 0.40 

When new site has higher number of piles; Low site variability 

70 
λ 1.10 

10 
λ 1.02 

1.06 0.30 0.28 0.63 0.60 
σ 0.40 σ 0.20 

When new site has higher number of piles; High site variability 

70 
λ 1.02 

10 
λ 1.10 

1.05 0.32 0.30 0.60 0.57 
σ 0.20 σ 0.40 

Confidence Bias site Parameter, wb = 2 

When new site has lower number of piles; Low site variability 

75 
λ 1.10 

5 
λ 1.02 

1.05 0.28 0.27 0.65 0.62 
σ 0.40 σ 0.20 

When new site has lower number of piles; High site variability 

75 
λ 1.02 

5 
λ 1.10 

1.07 0.36 0.34 0.56 0.52 
σ 0.20 σ 0.40 

When new site has higher number of piles; Low site variability 

70 
λ 1.10 

10 
λ 1.02 

1.04 0.27 0.26 0.67 0.64 
σ 0.40 σ 0.20 

When new site has higher number of piles; High site variability 

70 
λ 1.02 

10 
λ 1.10 

1.075 0.37 0.34 0.55 0.51 
σ 0.40 σ 0.20 
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However, when using the Bayesian analysis, the values of λR and corresponding standard 

deviation, σR (and COVR = σR/λR), will be updated to λ and σ based on number of pile 

load tests and variability of the specific new site. In this case, the COVR will be also 

updated from σ/λ. So the updated λ and updated COVR will be used to recalibrate the 

resistance factor (R) for the specific new site. For example, the updated posterior2 values 

of (λ, COVR) for Houma bridge site are (1.035, 0.31); the updated posterior2 values of (λ, 

COVR) for Gibson Highway site are (1.03, 0.31); and the updated posterior2 values of (λ, 

COVR) for Causeway Boulevard site are (0.95, 0.30). 

Table 74 presents the summary of the variable parameters (λ, , COVR) for the different 

scenarios (number of old piles versus number of piles at new site, different site 

variability, and different confidence bias site parameter) and the corresponding LRFD 

calibration resistance factors (R) and efficiency factors (R/λ). It can been seen from the 

table that the resistance factor increases with decreasing variability of the new specific 

site, which is also affected by the ratio of old piles versus new piles and the value of 

confidence bias site parameter, wb. More credit will be given to sites (in terms of R) for 

low variability sites with lager number of piles and using wb > 1. 

Evaluation of Site Variability using Probabilistic Analysis 

Probabilistic analysis were performed on LA 1 CPT site using the SGeMS software. The 

software provides confidence intervals (CI) to the estimated data in between the test 

points. When a cumulative distribution has been determined, the operator can choose 

from a range of confidence limits ranging from 0 to 100 percent. At LA 1 site, 13 CPT 

tests (75 ft. deep) were performed at different locations as described in Figure 48. The 

subsurface soil for each CPT test location was divided into four soil layers (0-10 ft., 10-

34 ft., 34-46 ft. and 46-75 ft.), based on CPT soil classification. For each soil layer of the 

CPT test, the average CPT-qt value was calculated and then incorporated into the SGeMS 

data format as input in X, Y, and Z, in which X is the latitude, Y is the longitude, and Z is 

the data (here the average CPT-qt). Then the data will be plotted in the SGeMs. After 

plotting the data, variogram analysis will be performed. From the results of variogram 

analysis, kriging analysis can be performed on the data space. In this study, we followed 

the ordinary kriging. Next step, we generated fifty realizations of CPT-qt data distribution 

using the sequential Gaussian simulation (SGS), so that we can do the probabilistic 

analysis.  
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SGS Simulations 

The SGeMs software was used to simulate the CPT test data from the 13 test locations at 

LA 1 site.  The simulated values of CPT generated 2176 (6434) cells. Given our 

knowledge of the site, every image is a plausible depiction of the real parameter 

distribution. Fifty realizations were generated using the SGS algorithm.  Figure 86 

depicts five images of these realizations for the 1st layer at LA 1 site. 

 Figure 86. Five realizations (out of 50 realizations) at the 1st layer of LA 1 site 

 

Estimation/Mean vs Ordinary Kriging 

One of the goals of simulation was to obtain the estimation/mean map from the 50 

realizations.  The estimation/mean map is a map that resulted from averaging the 50 

realizations. Since the estimation/mean map is the average of all realizations, the results 

is expected to be similar to the kriging map [106]. Figure 87 compares the kriged plan 

versus the estimation/mean map for each soil layer of the LA 1 site. As shown in the 

figure, the results of estimation through simulation and kriging are very close (almost 

same). 
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Figure 87. Estimation/mean of the 50 realizations versus ordinary kriging 
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Figure 88 presents the data points, estimation/mean map of 50 simulations and the 

Varance of the 50 simulations for the CPT-qt data for the 1st soil layer at LA 1 site, 

respectively. The figure shows that when we have qt data available on some points (area), 

or even in the surrounding location (red to yellow areas), the realization gives low 

variance. However, when we do not have qt data available close to some points (blue 

areas), the resulted variance will be high. 

Figure 88. (a) Data points, (b) Estimation/mean map of 50 simulations, and (c) Variance of 50 

simulations for the CPT data of LA 1 site 

 

Probability Analysis 

For the probability analysis, we need to find the probability that the value of corrected 

cone tip resistance, qt, fall between qt-avg -  < qt < qt,avg + , on a given location (i.e., 

black circled), where  is the standard deviation of qt values. For this analysis we have to 

develop two realizations using the previous 50 realizations. The first one is the 

probability of the CPT-qt lower than qt-avg - , and another one is the probability of CPT-

qt data lower than qt,avg + . Figure 89 presents the data points, probability of qt < qt-avg - 

, and probability of qt < qt,avg +  for each of the four soil layers at LA 1 site. Table 75 

presents the values of the different parameters for each layer.  

For the CPT points of layer 1 of LA 1 site, the values of qt,avg, ,  qt,avg - , and qt,avg +  

are 6.66, 1.24, 5.41, and 7.90, respectively. Using the values of qt,avg - , and qt,avg +  

data into Equation 126, we got the probability that qt will fall within the range qt,avg -  < 

qt < qt,avg +  is 78%. For the the CPT points of layer 2, the values of qt,avg, ,  qt,avg - , 

and qt,avg +  are 12.64, 3.42, 9.22, and 16.06, respectively. Using the values of qt,avg - , 

and qt,avg +  data into Equation 126, we will obtain the probability that qt will fall within 

the range qt,avg -  < qt < qt,avg +  is 70%. For the CPT points of layer 3, the values of 
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qt,avg, ,  qt,avg - , and qt,avg +  are 15.04, 3.46, 11.58, and 18.51, respectively. Using the 

values of qt,avg -  and qt,avg +  data into Equation 126, we will got the probability of qt 

fall between qt,avg -  and qt,avg +  is 87%. For the CPT points of layer 4, the values of 

qt,avg, ,  qt,avg - , and qt,avg +  are 24.17, 3.18, 21.00, and 27.35, respectively. Using 

qt,avg -  and qt,avg +  data into Equation 126, we got the probability that qt lies within the 

range of qt,avg -  < qt < qt,avg +  is 73%. After complete analysis, we can say that the 

prediction probability of [qt,avg -  ≤ qt ≤ qt,avg +  ]xo for each layer of LA 1 site ranges 

from 70% to 87%. 

Table 75. Layer-wise data analysis and the probability 

Parameters 1st Layer 2nd Layer 3rd Layer 4th Layer 

𝑞𝑡,𝑎𝑣𝑔 (tsf) 6.66 12.64 15.04 24.17 

𝑠𝑡. 𝑑𝑒𝑣 (tsf) 1.24 3.42 3.46 3.18 

𝑞𝑡,𝑎𝑣𝑔 − 𝑠𝑡. 𝑑𝑒𝑣 5.41 9.22 11.58 21.00 

𝑞𝑡,𝑎𝑣𝑔 + 𝑠𝑡. 𝑑𝑒𝑣 7.90 16.06 18.51 27.35 

𝑃𝑟𝑜𝑏 [𝑧 ≤ 𝑞𝑡,𝑎𝑣𝑔 − 𝑠𝑡. 𝑑𝑒𝑣 ]𝑥0
 5% 28% 8% 2% 

𝑃𝑟𝑜𝑏 [𝑧 ≤ 𝑞𝑡,𝑎𝑣𝑔 + 𝑠𝑡. 𝑑𝑒𝑣 ]𝑥0
 83% 98% 95% 75% 

𝑃𝑟𝑜𝑏 [𝑞𝑡,𝑎𝑣𝑔 − 𝑠𝑡. 𝑑𝑒𝑣 ≤ 𝑞𝑡 ≤ 𝑞𝑡,𝑎𝑣𝑔 + 𝑠𝑡. 𝑑𝑒𝑣 ]𝑥0
 78% 70% 87% 73% 

 

Incorporating SGS Simulations into LRFD (Resistance Factor) 

From the results in Table 75, we can see that the prediction probabilities of  [qt,avg -  ≤ qt 

≤ qt,avg + ]xo for LA 1 site are 78%, 70%, 87% and 73% for the 1st, 2nd, 3rd and 4th 

layer, respectively. The thickness of the 1st, 2nd, 3rd and 4th layer is 10ft., 24ft., 12ft. and 

29ft., respectively. So, the weighted average prediction probability for LA 1 site is 75%. 

In order to calibrate the resistance factor for the LCPC Pile-CPT design method taking 

into consideration the probabilistic SGS simulation of site variability at LA 1 site, the 

value of special COV of resistance (COVR,spatial) and the COVR,total were updated for LA 1 

to be 0.13 and 0.22, respectively, using the prediction probability of 75%. The 

corresponding resistance factors ϕspatial and ϕtotal were calibrated to be 0.87 and 0.73, 

respectively. These values are higher than the LCPC resistance factor of ϕmethod (LCPC) = 

0.61. Table 76 depicts the calibrated resistance factors, ϕspatial and ϕtotal, after modifying 

the COVR,spatial, as compared to the ϕmethod (LCPC). 
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Figure 89. (a) Data points, (b) Probability of qt below qt-avg-, and (c) Probability of qt below qt,avg+ 
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Table 76. Calculated resistance factors, ϕR, after modifying COVR,spatial 

Parameters 
LA 1 Including SGS  

(Modifying COVR,spatial) 

COVR,spatial 0.13 

COVR,method  (LCPC) 0.31 

COVR,total 0.22 

COVQ
2 0.0111 

ϕspatial  0.87 

ϕmethod (LCPC) 0.61 

ϕtotal 0.73 

Application of Site Variability in Slope Stability Analysis 

Drained Condition 

Variation of Friction Angle 

Different scenarios were modeled in this section to study the effect of variability in 

friction angle of the soil layers on the slope stability of embankment. Here, the COV of 

unit weight and cohesion were kept constant as 5% and 20%, respectively. In the first 

part of analysis, the vertical correlation length was changed from 15 ft. (5 m) (low 

vertical variability) to 1 ft. (0.3 m) (high vertical variability). The correlation length in the 

horizontal direction was selected to be 60 ft. (20 m). The Bishop simplified, Janbu 

simplified, and Spencer method were used in this analyses. In this study, 15 scenarios 

were ran to investigate the effect of site variability (by increasing the COV of friction 

angle and changing the vertical correlation length) on the factor of safety for slope 

stability. Table 5 summarizes the material properties considered in the analyses of 

drained condition. In the case of the spatial variability analyses, the statistics tool in the 

Slide 2018 2D software was activated. The COVs of the material properties were put as 

value of the standard deviation for each single soil property. Latin-Hypercube 

probabilistic analysis sampling method was used to accomplish the probabilistic analysis. 

A 1000 samples were generated and used in the analyses for each scenario. The log 

normal sample distribution was used. Figure 90 presents the factor of safety versus COV 

of friction angle at different vertical variability levels of the drained condition. 

For the scenarios 1, 2, 3, 4, and 5, the COVs for friction angle were 5%, 10%, 15%, 20%, 

and 25%, respectively; while the COVs for unit weight and cohesion were kept constant 

as 5% and 20%, respectively. In these cases, the vertical and horizontal correlation 
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lengths of 6 ft. (2 m) (medium vertical variability) and 60 ft. (20 m), respectively, were 

assumed. For the scenarios 6, 7, 8, 9, and 10, the values COV for the friction angle were 

5%, 10%, 15%, 20%, and 25%, respectively, and the COVs for unit weight and cohesion 

were kept constant as 5% and 20%, respectively. In these cases, the vertical and 

horizontal correlation lengths were assumed as 1 ft. (0.3 m) (high vertical variability) and 

60 ft. (20 m), respectively. For the scenarios 11, 12, 13, 14, and 15, the COVs for friction 

angle were 5%, 10%, 15%, 20%, and 25%, respectively; while the COVs for unit weight 

and cohesion were kept constant as 5% and 20%, respectively. In these cases, the vertical 

and horizontal correlation lengths were assumed to be 15 ft. (5 m) (low vertical 

variability) and 60 ft. (20 m), respectively. In these scenarios, the main objective was to 

investigate the effect of variation in the COV of friction angle and vertical correlation 

length on the mean factor of safety for slope stability of drained condition. The slope 

stability results for scenarios 1 to 15 are shown in Figure 90. The figure clearly shows 

that the factor of safety for all methods decreases with increasing the COV of friction 

angle. For the same COV, the figure shows that the factor of safety increasing with 

increasing the vertical correlation length. Out of the three analysis methods, Janbu 

simplified method gives lower factor of safety than other two methods (Bishop simplified 

and Spencer), which can be seen in the Figure 90. Table 85 of Appendix E shows the 

factor of safety versus COV of friction angle, , at different vertical variability levels for 

the drained condition. 

Variation of Unit Weight 

Different scenarios were model to study the effect of variability in unit weight of the soil 

layers on the embankment slope stability. Here, the COV of friction angle and cohesion 

were kept constant as 10% and 20 %, respectively. In this part of the analysis, the vertical 

correlation length was changed from 15 ft. (5 m) (low vertical variability) to 1 ft. (0.3 m) 

(high vertical variability). The Bishop simplified, Janbu simplified, and Spencer method 

were used in the analyses. A total of 15 scenarios were run to investigate the effect of site 

variability in terms of increasing the COV of unit weight for different vertical correlation 

lengths on the factor of safety for slope stability. Table 86 presents the summary of all the 

scenarios considered in this analyses. The spatial variability analyses were performed 

using the Slide 2018 2D software. A 1000 samples were generated and used in the 

analyses for each scenario. The resulted factor of safety versus COV of unit weight at 

different vertical variability levels are presented in Figure 91. 
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Figure 90. Factor of safety vs COV of  at different vertical variability levels of drained condition 

 

Figure 91. Factor of safety vs COV of unit weight at different vertical variability levels of drained 

condition 

 

For the scenarios 16, 17, 18, 19, and 20, the values of COV of unit weight were 2%, 4%, 

5%, 8%, and 10%, respectively; while the COV of friction angle and cohesion were kept 
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constant as 10% and 20%, respectively. In these cases, the vertical and horizontal 

correlation lengths were assumed as 6 ft. (2m) (medium vertical variability) and 60 ft. (20 

m), respectively. For the scenarios 21, 22, 23, 24, and 25, the values of COV for unit 

weight were 2%, 4%, 5%, 8%, and 10%, respectively; while the COVs of variation for 

friction angle and cohesion were kept constant as 10% and 20%, respectively. In these 

cases, the vertical and horizontal correlation lengths were assumed as 1 ft. (0.3 m) (high 

vertical variability) and 60 ft. (20 m), respectively. For the scenarios 26, 27, 28, 29, and 

30, the values of COVs of the unit weight were 2%, 4%, 5%, 8%, and 10%, respectively; 

while the COVs for friction angle and cohesion were kept constant as 10% and 20%, 

respectively. In these cases, the vertical and horizontal correlation lengths were assumed 

to be 15 ft. (5 m) (low vertical variability) and 60 ft. (20 m), respectively. The results of 

slope stability analysis for scenario 16 to 30 are shown in Figure 91. The figure shows 

that the factor of safety for all scenarios did not change significantly when COV of unit 

weight was increased from 2% to 10%. The figure also show that the factor of safety 

increases with increasing the vertical correlation length (i.e., vertical variability changes 

from high to low). Again, out of three methods, Janbu simplified method gave lower 

factor of safety than the other two methods. Table 86 of Appendix E presents the factor of 

safety versus COV of unit weight at different vertical variability levels of the drained 

condition. 

Variation of Cohesion 

Different scenarios were model to study the effect of variability in cohesion of soil layers 

on the slope stability of embankment. Here, the COV of friction angle and unit weight 

were kept constant as 10% and 5%, respectively. In this analysis, the vertical correlation 

length was changed from 15 ft. (5 m) (low vertical variability) to 1 ft. (0.3 m) (high 

vertical variability). A total of 15 scenarios were run to investigate the effect of COV of 

cohesion and the vertical correlation length on factor of safety for slope stability using the 

Slide 2018 2D software. A total of 1000 samples were generated and used in the analyses 

for each scenario. The resulted factor of safety versus COV of cohesion at different 

vertical correlation lengths are presented in Figure 92. 

For the scenarios 31, 32, 33, 34, and 35, the COVs for cohesion were 10%, 20%, 30%, 

40%, and 50%, respectively; while the COVs for friction angle and unit weight were kept 

constant as 10% and 5%, respectively. In these cases, the vertical and horizontal 

correlation lengths were taken as 6 ft. (2 m) (medium vertical variability) and 60 ft. (20 

m), respectively. For the scenarios 36, 37, 38, 39, and 40, the COVs for cohesion were 

assumed as 10%, 20%, 30%, 40%, and 50%, respectively, and the COVs for friction 
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angle and unit weight were kept constant as 10% and 5%, respectively. In these cases, the 

vertical and horizontal correlation lengths were assumed as 1 ft. (0.3 m) (high vertical 

variability) and 60 ft. (20 m), respectively. For the scenarios 41, 42, 43, 44, and 45, the 

COV values for cohesion were assumed as 10%, 20%, 30%, 40%, and 50%, respectively; 

and the COVs for friction angle and unit weight were kept constant at 10% and 5%, 

respectively. In these cases, vertical and horizontal correlation lengths were assumed as 

15 ft. (5 m) (low vertical variability) and 60 ft. (20 m), respectively. The results of slope 

stability analysis for scenario 31 to 45 are presented in Figure 92. The figure shows that 

the factor of safety for all scenarios did not change significantly when the COV of 

cohesion were increased from 10% to 50%. Meanwhile, the factor of safety increased 

with increasing the vertical correlation length (i.e., decreasing vertical variability). Again, 

the Janbu simplified method has lower factor of safety than the other two methods. Table 

87 of Appendix E presents the factor of safety versus COV of cohesion at different 

vertical variability levels for the drained condition. 

Figure 92. Factor of safety vs COV of cohesion at different vertical variability levels of drained 

condition 

 

Undrained Condition 

High Vertical Variability of Undrained Cohesion 
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Different scenarios were modeled to study the effect of variability in the undrained 

cohesion (C or Su) of the clay soil layer on the slope stability of embankment. Here, the 

COV of undrained cohesion was ranged from 10% to 50%, while the COV of  (for sand 

and embankment fill) and unit weight were kept constant as 10% and 5%, respectively. In 

this analysis, the vertical correlation length was assumed to be 1 ft. (0.3) (for high vertical 

variability) and the horizontal correlation length was changed from 60 ft. (20 m) to 180 

ft. (60 m). The Bishop simplified, Janbu simplified, and Spencer method were used in the 

analyses. In this study 15 scenarios were run to investigate to the effect of site variability 

(by increasing COV of cohesion and changing the horizontal correlation length) on the 

factor of safety for slope stability. The spatial variability analyses were performed using 

the Slide 2018 2D software. A total of 1000 samples were generated and used in the 

analyses for each scenario. 

For the scenarios 46, 47, 48, 49, and 50, the vertical and horizontal correlation lengths 

were assumed to be 1 ft. and 60 ft., respectively. For the scenarios 51, 52, 53, 54, and 55, 

the values of vertical and horizontal correlations were taken as 1 ft. and 120 ft., 

respectively. For the scenarios 56, 57, 58, 59, and 60, the vertical and horizontal 

correlation lengths were assumed to be 1 ft. and 180 ft., respectively. The results of slope 

stability for scenario 46 to 60 are shown in Figure 93. The figure shows that the factor of 

safety decreases with increasing the COV of undrained cohesion and increases with 

increasing the horizontal correlation length. However, the degree in the effect of 

variability in undrained cohesion depends on the length of failure surface within the clay 

layer. Out of three methods, Janbu simplified method has lower factor of safety than the 

other two methods. Table 88 of Appendix E shows the factor of safety versus the COV of 

undrained cohesion for the high vertical variability of undrained condition. 

Medium Vertical Variability of Undrained Cohesion 

In this part, the COV of undrained cohesion was ranged from 10% to 50%; while the 

COV of  (for sand and embankment fill) and unit weight were kept constant at 10% and 

5%, respectively. Here, the vertical correlation length was assumed to be 6 ft. (2 m) (for 

medium vertical variability) and the horizontal correlation length was changed from 60 ft. 

(20 m) to 180 ft. (60 m). 15 different scenarios were run to investigate the effect of COV 

of undrained cohesion and the horizontal correlation length on the factor of safety for 

slope stability. A total of 1000 samples were generated and used in the analyses for each 

scenario.  
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Figure 93. Factor of safety vs COV of undrained cohesion for high vertical variability and different 

horizontal correlation lengths of the undrained condition 

 

For the scenarios 61, 62, 63, 64, and 65, the vertical and horizontal correlation lengths 

were assumed to be 6 ft. and 60 ft., respectively. For the scenarios 66, 67, 68, 69, and 70, 

the vertical and horizontal correlation lengths were assumed to be 6 ft. and 120 ft., 

respectively. For the scenarios 71, 72, 73, 74, and 75, the vertical and horizontal 

correlation lengths were assumed to be 6 ft. and 180 ft., respectively. The results of slope 

stability analysis on these scenarios are presented in Figure 94, which shows that the 

factor of safety for all cases decreases with increasing the COV of undrained cohesion 

and increases with increasing the horizontal correlation length. Again the degree of 

variability effect depends on the length of failure surface within the clay layer. Again, the 

Janbu simplified method has lower factor of safety than the other two methods. Table 89 

of Appendix E presents the factor of safety versus the COV of undrained cohesion for the 

medium vertical variability of undrained condition. 
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Figure 94. Factor of safety vs COV of undrained cohesion for medium vertical variability and 

different horizontal correlation lengths of the undrained condition 

 

Low Vertical Variability of Undrained Cohesion 

Here the COV of undrained cohesion was ranged from 10% to 50%; while the COV of  

(for sand and embankment fill) and unit weight were kept constant at 10% and 5%, 

respectively. The vertical correlation length was assumed to be 15 ft. (5 m) (for low 

vertical variability) and the horizontal correlation length was changed from 60 ft. (20 m) 

to 180 ft. (60 m). 15 different scenarios were run to investigate the effect of COV of the 

undrained cohesion and the horizontal correlation length on the factor of safety for slope 

stability. A total of 1000 samples were generated and used in the analyses for each 

scenario. 

For the scenarios 76 to 80, the values of vertical and horizontal correlations were taken as 

15 ft. and 60 ft., respectively. For the scenarios 81 to 85, the values of vertical and 

horizontal correlations were taken as 15 ft. and 120 ft., respectively. And for scenarios 86 

through 90, the vertical and horizontal correlation lengths were assumed to be 15 ft. and 

180 ft., respectively. The results of slope stability for the scenario 76 to 90 are presented 

in Figure 95. The figure demonstrated that the factor of safety decreases with increasing 

the COV of undrained cohesion and increases with increasing the horizontal correlation 
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length. The effect of variability in undrained cohesion depends on the length of failure 

surface within the clay layer. As for the other cases, the Janbu simplified method has 

lower factor of safety than the other two methods. Table 90 of Appendix E shows the 

factor of safety versus the COV of cohesion for the low vertical variability of undrained 

condition. 

Proportional COV 

High Vertical Variability 

In this part of analysis, different scenarios were modeled to study the effect of soil 

variability (in terms of cohesion, unit weight and friction angle) of the soil layers on the 

slope stability of embankments. Here, increment no. 1 means the COV of cohesion, unit 

weight and friction angle are 20%, 2%, and 5%, respectively. Increment no. 2 means the 

COV of cohesion, unit weight and friction angle are 30%, 4%, and 15%, respectively. 

Then, increment no. 3 means the COV of cohesion, unit weight and friction angle are 

40%, 8%, and 20%, respectively. Finally, increment no. 4 means the COV of cohesion, 

unit weight and friction angle are 50%, 10%, and 25%, respectively. This means we 

increased the COV values of cohesion, unit weight and friction angle in each increment. 

Here, the vertical correlation length was assumed to be 1 ft. (0.3 m) (for high vertical 

variability) and the horizontal correlation length was changed from 60 ft. (20 m) to 180 

ft. (60 m). Bishop simplified, Janbu simplified, and Spencer methods were used in the 

analyses. A total of 12 scenarios were run to investigate the effect of site variability (by 

increasing COV of cohesion, unit weight, and friction angle and changing the horizontal 

correlation length) on the factor of safety for slope stability. The Slide 2018 2D software 

was used for the spatial variability analyses. A total of 1000 samples were generated and 

used in the analyses for each scenario, assuming log normal sample distribution. 

For the scenarios 91 through 94, the vertical correlation length was assumed to be 1 ft. 

(0.3) (for high vertical variability) and the horizontal correlation length was assumed to 

be 60 ft. (20 m). For the scenarios 95 to 98, the vertical correlation length was assumed to 

be 1 ft. (0.3) (for high vertical variability) and the horizontal correlation length was 

assumed to be 120 ft. (40 m). For the scenarios 99 through 102, the vertical correlation 

length was assumed to be 1 ft. (0.3) (for high vertical variability) and the horizontal 

correlation length was assumed to be 180 ft. (60 m). The results of slope stability analysis 

for the scenarios 91 to 102 are shown in Figure 96. As shown in the figure, the factor of 

safety for all cases were decreased with the increase in the COV from increment 1 to 4. 

However, the figure also shows that the change in horizontal correlation length from 60 
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ft. to 180 ft. is not significant. Again, the Janbu simplified method gave lower factor of 

safety than the other two methods (Bishop simplified and Spencer). Table 91 of Appendix 

E shows the factor of safety versus the COV of increment for the high vertical variability. 

Figure 95. Factor of safety vs COV of undrained cohesion for low vertical variability and different 

horizontal correlation lengths of the undrained condition 

 

Figure 96. Factor of safety vs COV of cohesion, unit weight and friction angle at different horizontal 

variability levels (for high vertical variability) 
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Medium Vertical Variability 

Different scenarios were modeled here to study the effect of soil variability (cohesion, 

unit weight and friction angle) of the soil layers on the slope stability of embankments. 

The COVs for the different increments in this analysis are the same as for the high 

vertical variability, in which the COVs of cohesion, unit weight and friction angle were 

increased in each increment. The vertical correlation length was assumed to be 6 ft. (0.3 

m) (for medium vertical variability) and the horizontal correlation length was changed 

from 60 ft. (20 m) to 180 ft. (60 m). Bishop simplified, Janbu simplified and Spencer 

methods were used in the analyses. A total of 12 scenarios were run to investigate the 

effect of site variability on the factor of safety for slope stability through increasing 

COVs of soil properties and changing the horizontal correlation length. The Slide 2018 

2D software was used for the spatial variability analyses. 

For the scenarios 103 to 106, the vertical correlation length was assumed to be 6 ft. (2 m) 

(for medium vertical variability); while the horizontal correlation length was assumed to 

be 60 ft. (20 m). For the scenarios 107 to 110, the values of vertical and horizontal 

correlation lengths were assumed to be 6 ft. (2 m) and 120 ft. (40 m), respectively. For 

the scenarios 111 to 114, the vertical correlation length was assumed to be 6 ft. (2 m) and 

the horizontal correlation length was assumed to be 180 ft. (60 m). Figure 97 presents the 

results of slope stability analysis for scenarios 103 to 114. The figure demonstrates that 

the factor of safety decreases with increasing the COV of soil properties from increment 
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1 to 4, and that the effect of changing the horizontal correlation length from 60 ft. to 180 

ft. is not significant. Again, the factor of safety of Janbu simplified method is lower than 

the other two methods (Bishop simplified and Spencer).  

Table 92 of Appendix E depicts the factor of safety versus COV of increments for the 

medium vertical variability. 

Low Vertical Variability 

In this part of analysis, the effect of the low vertical variability of the soil layers on the 

slope stability of embankments was investigated using a vertical correlation length of 15 

ft. (5 m) (for low vertical variability) and changing the horizontal correlation length  from 

60 ft. (20 m) to 180 ft. (60 m). Bishop simplified, Janbu simplified, and Spencer methods 

were used in the analyses. A total of 12 scenarios were run using the Slide 2018 2D 

software to investigate the effect of site variability on the factor of safety for slope 

stability through increasing COVs of soil properties and changing the horizontal 

correlation length. A total of 1000 samples were generated and used in the analyses for 

each scenario, assuming log normal sample distribution. 

Figure 97. Factor of safety vs COV of cohesion, unit weight and friction angle at different horizontal 

variability levels (for medium vertical variability) 

 

For the scenarios 115 to 118, the vertical and horizontal correlation lengths were assumed 

to be 15 ft. (5 m) (for low vertical variability) and 60 ft. (20 m), respectively. For the 
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scenarios 119 through 122, the vertical correlation length was assumed to be 15 ft. (5 m) 

and the horizontal correlation length was assumed to be 120 ft. (40 m). For the scenarios 

123 to 126, the vertical and horizontal correlation lengths were assumed to be 15 ft. (5 m) 

and 180 ft. (60 m), respectively. The results of slope stability analysis are presented in 

Figure 98 which shows that the factor of safety were decreased with the increase in the 

COV from increment 1 to 4, and also demonstrates that changing in horizontal correlation 

length from 60 ft. to 180 ft. is not significant. Again, the Janbu simplified method gave 

the lowest factor of safety of slope stability. Table 93 of Appendix E presents the factor of 

safety versus the COV of increment for the low vertical variability. 

 

Figure 98. Factor of safety vs COV of cohesion, unit weight and friction angle at different horizontal 

variability levels (for low vertical variability) 

 

Application of Site Variability in Shallow Foundation 

Effect of Site Variability on the Bearing Capacity (Second Moment Analysis) 

The effect of site variability on the bearing capacity of shallow foundations was first 

investigated here using the second moment statistical analysis and Vesper 6 software on a 

6’  6’ foundation with a FS = 3. The undrained shear strength (Su) presented in Table 7 
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was used for the soil profile (here medium PI 1 soil), and the schematic diagram of the 

foundation example is described in Figure 55. 

The plot of the semivariogram for the Su data below the footing is presented in Figure 99. 

The range of influence (av) and the scale of fluctuation (θ) for the spherical model are 4.2 

feet and 3.2 feet, respectively. Scale of fluctuation is determined from Table 3. Once the 

scale of fluctuation is known, the plot of variance reduction factor, Γ2, against influence 

depth below footing for the Su profile can be developed by assuming hypothetical lengths 

below footing and substituting the θ value of Su into the following equation: 

Γ2(L)= [
θ

L
(1- 

θ

4L
)]

1

2
 for L/θ > 1/2                    [152a] 

Γ2(L)=1  for L/θ < 1/2                    [152b] 

Figure 99. Plot of semivariogram from Su data 

 

The plots of variance reduction factor, Γ2, against averaging length, L, for Su is presented 

in Figure 100. The variance reduction factor of Su for 9 feet length below footing is ~ 

58%. 

The ultimate bearing capacities of square can be calculated using the following equation: 

q
u
=1.3 c'Nc+qNq+0.4γNq                   [153] 

where c’ = cohesion, q = effective stress at the level of the bottom of the foundation, γ  = 

unit weight of soil and Nc, Nq, N = bearing capacity factors.  
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For undrained condition, ’ = zero, Nc =5.14, Nq =1 and N=0. The mean value, mean + 1 

standard deviation (), and mean value -1  of qu were analyzed to calculate a new 

(updated) standard deviation as presented in Table 77. The mean, mean + , mean -  of 

qu are presented in Table 78 for the second moment and the spatially averaged values. 

 

Figure 100. Variance reduction factor versus influence depth below footing 

 

Table 77. New standard deviation from variance reduction factor 

Material  

qu 
qu 

(Mean) 

Standard 

Deviation 
Variance 

Variance 

Reduction 

Factor 

New 

Variance 

New 

Standard 

Deviation 

psf psf psf         

Medium 

PI 

1(PI=21) 

18761.3 

20220.3 1899.7 3608783.0 0.58 2093094 1447 

19800.0 

19073.7 

20159.2 

17895.3 

19246.7 

20472.1 

23389.2 

23184.7 

 

Table 78. Probability of failure calculation 

# Property Mean +  -  Mean +  -  

    Su - Second Moment Su - Spatially-Averaged  

1 qu (psf) 20220.3 22119.9 18320.6 20220.3 21667.0 18773.5 

2 qall (psf) 6740.1 7373.3 6106.9 6740.1 7222.3 6257.8 
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# Property Mean +  -  Mean +  -  

3 Qu (lbs) 727929.4 796317.9 659540.9 727929.4 780012.5 675846.3 

4 Qall (lbs) 242643.1 265439.3 219847.0 242643.1 260004.2 225282.1 

5 FS 3.0 3.0 3.0 3.0 3.0 3.0 

6 ΔFS 0.8     0.6     

7 σFS 0.3986     0.3076     

8 COVFS 0.1329 13.3% Pf = 0 0.1025 10.3% Pf = 0 

For the determination of the reliability assessment, the allowable bearing capacity for the 

mean, Qall is assumed as the applied stress, Qapp. The values in the above table were 

computed using the following formulas: #1 - 4: computed from the generalized bearing 

capacity equation; #5: FS = Qult / Qapp; #6: ΔFS = FSmax – FSmin; #7: σFS  = [(ΔFS / 2)
2]0.5, 

the standard deviation of FS; #8: COVFS = coefficient of variation of FS; and Pf: 

probability of failure obtained from the standard lognormal Table 79 using mean FS and 

COVFS. 

Table 79. Probability of failure chart for bearing capacity analysis [55] 

 

It can be seen from Table 78 that including variability into bearing capacity analysis 

reduces the COV. Here, the calculated probability of failure is zero. From the lognormal 

probability Table 79, the reader can realize that when the COV decreases, the probability 

of failure also decreases. Hence, it can be concluded from Table 78 that incorporating 

variability into bearing capacity of shallow foundations can reduce both COV and 

probability of failure. 
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Effect of Site Variability on the Bearing Capacity (Fenton and Griffiths Method) 

Different scenarios were considered in this part of study to investigate the effect of 

variation in cohesion and friction angle of foundation soil, for both drained and undrained 

conditions, on the resistance factors of shallow foundations using a 6 ft. wide and 3 ft. 

depth strip footing.   

Sandy Soil 

In this analysis, researchers studied the effect of the coefficient of variation of friction 

angle, COV, on the bearing capacity of shallow foundation. Here the COV was 

increased from 0 to 25% with 5% increase increment. The ultimate bearing capacity was 

normalized by dividing the respective bearing capacity to the initial (with zero site 

variability) bearing capacity (qref) (in percent). For example, for the dense sand, to get the 

normalized bearing capacity for COV=25, the bearing capacity for COV=25 (which is 

1374 psf) was divided by the bearing capacity of COV=0 (which is 1664 psf), eventually 

resulting in 82.6%. The COV of the bearing capacity can be extracted from the Rbear2D 

software using the mean and standard deviation of soil properties. 

Figure 101 presents the ultimate bearing capacity versus COV for three different sandy 

soils (loose, medium and dense).  The figure shows that the bearing capacity for the three 

sandy soils decreases with increasing the COV. As expected, the magnitude of bearing 

capacity for dense soil gives higher capacity than the medium dense and loose sands. The 

normalized bearing capacity versus COV for different sandy soils is presented in Figure 

102.  The figure shows that, for all sandy soils, the normalized bearing capacity decreases 

with increasing the COV. However, for the dense and medium dense sand the 

normalized bearing capacity decreases more with increasing the COV as compared to 

loose sand.   
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Figure 101. Ultimate bearing capacity versus COV for different sands 

 

Figure 102. Normalized ultimate bearing capacity versus COV for different sands 

 

The relationship between the COV of the bearing capacity and COV for the different 

sandy soils is presented in Figure 103.  The figure demonstrated that the COV of the 

bearing capacity increases with increasing the COV. 
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Figure 103. COV of bearing capacity versus COV for different sands 

 

 

Clayey Soil (Drained Condition) 

In this part, researchers studied the effect of changing the COV of cohesion, COVc, and 

COV of friction angle, COV, on the bearing capacity of our footing model for different 

clay (soft, medium and stiff) soils for drained condition. The COVc was ranged from 0 to 

50% with an increment increase of 10%, and the COV was ranged from 0 to 20%, with 

an increment increase of 10%. Here, the COV was fixed with varying the COVc. 

Figure 104 presents the ultimate bearing capacity versus COVc for different clay soils, 

which shows that the bearing capacity for the three clay soils decreases with increasing 

the COVc. The magnitude of ultimate bearing capacity depends on the soil type. For 

example, stiff clay gives higher capacity than the medium stiff and soft clays. The 

normalized bearing capacity versus COVc for the three clay soils is presented in Figure 

105, which demonstrates a decrease in the normalized bearing capacity with the increase 

in COVc for all clay soils for the drained condition.  
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Figure 106 presents the COV of the bearing capacity versus the coefficient of variation of 

cohesion, COVc, for different clay soils.  The figure clearly shows that the COV of 

bearing capacity increases with the increasing the COVc for the three clay soils. In the 

three figures, the bearing capacity and the normalized bearing capacity decrease with 

increasing the COV, and that the COV of bearing capacity increases with increasing 

COV. 

Figure 104. Ultimate bearing capacity versus COV for different clay soils (drained condition) 
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Figure 105. Normalized bearing capacity versus COV for different clay soils (drained condition) 

 

 

Figure 106. COV of bearing capacity versus COV for different clay soils (drained condition) 
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Clayey Soil (Undrained Condition) 

In this section, we studied the effect of varying the COV of undrained cohesion (or 

undrained shear strength for  = 0) on the ultimate bearing capacity of our footing model 

for different clay soils (soft, medium and stiff) at the undrained condition. The selected 

range of COV of undrained cohesion was selected to be from 0 to 50%, with 10% 

increase increment.  

The ultimate bearing capacity versus the COV of undrained cohesion for the three clay 

soils under undrained condition is presented in Figure 107.  The figure show that the 

bearing capacity decreases with increasing the COV of undrained cohesion, and that the 

magnitude of bearing capacity changes with the clay soil type. For example, stiff clay 

gives higher capacity than the medium stiff clay and soft clay. Figure 108 presents the 

normalized bearing capacity versus the COV of undrained cohesion for the three clay 

soils, which clearly demonstrates that the normalized bearing capacity decreases with 

increasing COV of undrained cohesion. The relationship between the COV of the bearing 

capacity and the COV of undrained cohesion is presented in Figure 109. It is clear that 

the COV of bearing capacity increases with increasing the COV of undrained cohesion. 

Figure 107. Ultimate bearing capacity versus COVc for different clay soils (undrained condition) 
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Figure 108. Normalized bearing capacity versus COVc for different clay soils (undrained condition) 

 

 

 

Figure 109. COV of bearing capacity versus COVc for different clay soils (undrained condition) 
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Effect of Site Variability on Resistance Factor (Fenton and Griffiths Method) 

Different scenarios were considered in this study to investigate the effect of variation in 

cohesion and friction angle of foundation soil on the resistance factors of shallow 

foundations. The values of resistance factors, ϕsf, were calculated at different sampling 

borehole location radii 16.4 ft. (5 m), 32.8 ft. (10 m), 49.2 ft. (15 m), 65.6 ft. (20 m) and 

82 ft. (25 m) from the center of foundation, at different correlation lengths (0 m to 40 m), 

and for different values of soil cohesion, c, with different COVc (0%, 10%, 20%, 30%, 

40% and 50%), and for different values of soil friction angle, ϕ, with different, COVϕ 

(0%, 5%, 10%, 15%, 20% and 25%). 

Sandy Soil 

In this part, analysis was performed for the medium sand (= 38o) and the properties 

shown in Table 8. The soil friction angle, ϕ, was considered for different COVϕ (0%, 5%, 

10%, 15%, 20% and 25%). 

As shown in Figure 110, the resistance factor, ϕsf, decreased dramatically as the 

correlation length increased from 0 about 6-16 ft. (2-5 m), then started to increase beyond 

this correlation range. For all sampling radius, the shape of the resistance factor versus 

the correlation length curves are similar, but the values of minimum resistance factors 

decreased as the location of sampling borehole was far from the foundation. Figure 111 

presents the effect of the distance of borehole on the resistance factor for the different 

COVϕ levels, which demonstrates a decrease in resistance factor of shallow foundations 

with the increase in COVϕ and the distance from the borehole. 
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Figure 110. Resistance factor versus correlation length of medium sand for single boring 

 

 

Figure 111. Resistance factor versus distance from borehole for medium sand at different COVϕ 

levels 
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Clayey Soil (Drained Condition) 

The analysis here was performed for the medium stiff clay [ = 30o and c = 83.5 psf (4 

kPa)] and using the properties shown in Table 9. The soil friction angle, ϕ, was 

considered with different COVϕ (0%, 5%, 10%, 15%, 20% and 25%) and the cohesion, c, 

was considered with different COVc (0%, 10%, 20%, 30%, 40% and 50%).  

Analysis shows that the resistance factor decreased dramatically as the correlation length 

increased from 0 to about 6-26 ft. (2-8 m), which started to increase after that as shown in 

Figure 112. The shape of the resistance factor versus the correlation length curves is the 

same for all sampling radii. However, the values of resistance factors decrease with the 

increase of the location of sampling borehole from the foundation. Figure 113 presents 

the effect of the distance of borehole on the resistance factor for different COVϕ levels, 

which shoes a decrease in resistance factor of shallow foundations with the increase in 

COVϕ as well as the distance from the borehole. Figure 114 presents the effect of the 

distance of borehole on the resistance factor for different COVc levels, which also 

demonstrates a significant decrease in the resistance factor of shallow foundations with 

the increase in COVc and the distance from the borehole. 

Clayey Soil (Undrained Condition) 

Analysis was performed here for medium stiff clay (cohesion = 36 kPa) and the using the 

properties in Table 10. Cohesion, c, was considered with different coefficients of 

variation, COVc (0%, 10%, 20%, 30%, 40% and 50%). The results of resistance factor, 

sf, versus correlation length of medium stiff clay for single boring of drained condition 

are shown in Figure 115, which clearly show that the sf dramatically decreases with 

increasing the correlation length up to about 6-16 ft. (2-5 m), then after that it starts to 

increase with increasing the correlation range. For all sampling radii, the shape of the 

resistance factor versus correlation length curves are similar, but the values of sf 

decreases as the distance of sampling borehole was far increases from the foundation. 

The effect of the distance of borehole on the resistance factor for different COVc levels 

are presented in Figure 116, which clearly shows a significant decrease in the resistance 

factor of shallow foundations with the increase in distance of the borehole and COVc. 
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Figure 112. Resistance factor versus correlation length of medium stiff clay for single boring (drained 

condition) 

 

 

Figure 113. Resistance factor versus distance from borehole for medium stiff clay at different COVϕ 

levels (drained condition) 
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Figure 114. Resistance factor versus distance from borehole for medium stiff clay at different COVc 

levels (drained condition) 

 

 

Figure 115. Resistance factor versus correlation length for medium stiff clay at different COVϕ levels 

(undrained condition) 
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Figure 116. Resistance factor versus distance from borehole for medium stiff clay at different COVc 

levels (undrained condition) 

 

Effect of Site Variability on Reliability Index and Probability of Failure 

Different scenarios were analyzed here to study the effect of variability of the soil 

properties (in terms of cohesion, friction angle, unit weight and friction angle) on the 

reliability index and probability of failure of the foundation. Here, variability increment 

no. 1 represents the case when the COVs of cohesion, unit weight and friction angle are 

10%, 2% and 5%, respectively. In variability increment no. 2, the COVs of cohesion, unit 

weight and friction angle were taken as 20%, 4% and 10%, respectively. The variability 

increment no. 3 represents the case for the COVs of cohesion, unit weight and friction 

angle are 30%, 6% and 15%, respectively. The COVs for cohesion, unit weight and 

friction angle in variability increment no. 4 are 40%, 8% and 20%, respectively. Finally, 

in variability increment no. 5, the COVs of cohesion, unit weight and friction angle were 

selected as 50%, 10% and 25%, respectively. This means that we increased the COV 

values for cohesion, unit weight and friction angle simultaneously in each variability 

increment. In this analysis, for each vertical load of 27.4 kips/ft. (400 kN/m), 34.3 kips/ft. 

(500 kN/m), and 41.1 kips/ft. (600 kN/m), we calculated the reliability index for each 

variability increment and the corresponding probability of failure. In this study 15 

different scenarios were run to investigate the effect of site variability (by increasing 

COVs of cohesion, unit weight and friction angle and changing the vertical load) on the 

Hasofer-Lind reliability index. A matlab code was developed for use in this analysis. 
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The relationship between the reliability index/probability of failure and the variability 

increment for the 15 different scenarios are shown in Figure 117. The results show that 

the reliability indexes were decreased and the probability of failure were increased when 

the values of COV were increased from variability increment 1 to variability increment 5, 

and also with increasing vertical load. 

Application of Site Variability in Deep Foundation 

The method proposed by Naghibi [131] and Naghibi and Fenton [18] were used here to 

analyze and evaluate the effect of site variability on the design of deep foundation for 

both the cohesive and cohesionless soils. Additionally, we used our expanded approach of 

Naghibi’s [131] method for analyzing the mixed soils. 

Analysis without End Bearing 

Cohesive Soil Condition 

In this part of analysis, the Red River site was used to study the effect of site variability 

on deep foundations for cohesive soil condition without considering the end bearing 

capacity. As stated earlier, eight soil borings were performed at different locations down 

to 105 ft. depth.  

Figure 117. Reliability index vs probability of failure at different COV (at different loading levels)
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For analysis purpose, we assumed the pile is located at the black (round) point, and 

calculating the distances of soil borings to the pile as R1, R2, … and R8 shown earlier in 

Figure 63 (a-c). As shown in Table 80, the distances of the pile from the soil boring 

locations, R1, R2, R3, R4, R5, R6, R7, and R8 are 40.5 ft. (12.33 m), 46.8 ft. (14.27 m), 

14.23 ft. (4.34 m), 25.4 ft. (7.74 m), 51.0 ft.(15.55 m), 84.4 ft. (25.72 m), 82.1 ft. (25.02 

m), and 120.0 ft. (36.57 m), respectively. The average value of Su and COVSu was 

determined for each soil boring. Moreover, the inverse distance weighted (IWD) values 

of Su (IDW) and COVSu (IDW) were determined for the whole site. The resistance 

factors, ɸdf for each soil boring was calculated using Equation 73 and the corresponding 

distance from the pile location for a reliability index, β = 2.33. The average of ɸdf for all 

soil borings was calculated as 0.79. The resistance factor, ɸdf, for the entire site, was also 

calculated using the Su (IDW) and COVSu (IDW) values as 0.77. As shown in Table 80, 

the calculated resistance factor, ɸdf, for each soil boring depends on the distance between 

the pile and the location of the soil boring and the COVSu.  

Table 80. Calculation of resistance factor for the Red River site 

Soil 

Boring 

Distance 

from pile 

(ft.) 

Average 

Su 

Su 

(IDW) 
COVSu 

COVSu 
(IDW) 

Resistance 

Factor, ɸ𝑑𝑓  

(β=2.33) 

Average

ɸ𝑑𝑓  

(all borings) 

IDW 

Resistance 

Factor, ɸ𝑑𝑓  

(β=2.33) 

R 1 40.5 105.39 

80.90 

0.31 

0.32 

0.78 

0.79 0.77 

R 2 46.8 84.92 0.25 0.86 

R 3 14.23 54.89 0.48 0.71 

R 4 25.4 98.97 0.19 0.89 

R 5 51.0 88.14 0.21 0.87 

R 6 84.4 64.72 0.07 0.93 

R 7 82.1 124.65 0.19 0.84 

R 8 120.0 92.08 0.47 0.47 

Cohesionless Soil Condition 

Site variability analysis was performed here on a cohesionless soil site with an average 

value of friction angle of =30o without considering the end bearing. Different 

coefficients of variation of , COVϕ (i.e., 0%, 10%, 20%, 30%, 40% and 50%), was 

considered in this analysis. In addition, soil borings with different locations and sampling 

distances [i.e., 16.4 ft. (5 m), 32.8 ft. (10 m), 49.2 (15 m), 65.6 ft. (20 m), and 82.0 ft. (25 

m) from the pile location were considered. The resistance factors, ɸdf, for the pile in 

cohesionless soil (without end bearing) for the different COV scenarios and distance of 

boring from pile were calculated using Equation 88, and the results are presented in 
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Figure 118. The figure clearly demonstrates a significant decrease in the resistance factor 

of pile in cohesionless soil with the increase in COVϕ and the distance from the boring 

location. 

Mixed Soil Condition 

In this part of analysis, we considered the Metairie site for the mixed soil condition 

without considering the end bearing capacity. Fifteen soil borings were performed at 

different locations in Metairie site down to 105 ft. depth as shown in Figure 44a.  As 

described earlier, the Metairie site consists of two clay layers and two sand layers. The 

soil layering and properties are presented in Figure 45.  

Figure 118. Resistance factor of pile in cohesionless soil for different COVϕ scenarios 

 

For analysis purpose, we assumed the pile is located at the black (round) point, and 

calculating the distances of soil borings to the pile as M1, M2, … and M15 shown earlier 

in Figure 64(a-c). The distances of the pile from the soil boring locations are presented in 

Table 81. The average value of Su, COVSu, ϕ and COVϕ were determined for each soil 

boring location. In addition, the inverse distance weighted (IWD) values of Su (IDW), 

COVSu(IDW), ϕ (IDW) and COVϕ(IDW) were calculated for the entire site. The 

resistance factor, df, corresponding to β=2.33 was calculated for each soil boring 

location based on the distance of soil boring from the pile location using Equations 73 
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and 88. The average of df for all soil borings was calculated to be 0.65. Meanwhile, the 

resistance factor, df, for the entire site, was calculated using the Su (IDW), COVSu(IDW), 

ϕ (IDW) and COVϕ(IDW) as 0.71. The table shows that the resistance factor, df, for each 

soil boring depends on the distance of the pile from the soil boring and the COVSu and 

COVϕ. 

Table 81. Calculation of resistance factor for the Metairie site (without end bearing) 

Soil 

Boring 

Distance 

from Pile 

(ft.) 

Undrained 

Shear 

Strength, 

Su (kPa) 

COVSu 

Friction 

Angle, 

ϕ (deg.) 

COVϕ 
Resistance 

Factor, ɸdf 

(β=2.33) 

Average 

ɸdf (all 

borings) 

IDW 

Resistance 

factor, ɸdf  

M 1 188.0 32.98 0.35 37.50 0.23 0.55 

0.65 

0.71 

M 2 190.5 37.45 0.42 36.07 0.21 0.52 

M 3 158.0 33.86 0.31 32.31 0.27 0.55 

M 4 113.8 28.13 0.29 33.38 0.18 0.66 

M 5 72.3 25.56 0.44 40.42 0.11 0.64 

M 6 91.4 34.74 0.29 40.82 0.09 0.74 

M 7 24.6 30.48 0.25 41.93 0.09 0.78 

M 8 49.8 30.72 0.34 38.86 0.12 0.71 

M 9 179.0 28.25 0.36 45.79 0.07 0.66 

M 10 153.1 27.41 0.38 41.50 0.10 0.64 

M 11 129.2 24.30 0.37 36.82 0.13 0.66 

M 12 148.6 27.77 0.45 40.33 0.10 0.61  

M 13 121.8 28.25 0.37 42.50 0.14 0.666  

M 14 77.8 30.32 0.48 41.33 0.11 0.608  

M 15 110.5 31.00 0.34 45.00 0.17 0.622  

IDW  30.17 0.31 40.92 0.11   

Another analysis was conducted for the Metairie site using the average Su and  values 

for the four soil layers (two clay and two sand layers).  The weighted average of Su, 

COVSu, and Su for the clay layers are 480.4 psf (23.0 kPa), 0.27 and 5.85, respectively; 

and for the sandy layers, the weighted average of , COVϕ, and ϕ are 39o, 0.35 and 

13.06, respectively. Different sampling location distances [16.4 ft. (5 m), 32.8 ft. (10 m), 

49.2 ft. (15 m), 65.6 ft. (20 m), and 82.0 ft. (25 m)] were considered. The calculated 

resistance factors for the mixed soil (without considering end bearing) at different COVϕ 

(i.e., 0%, 10%, 20%, 30%, 40% and 50%) and COVSu (i.e., 0%, 10%, 20%, 30%, 40% 
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and 50%) scenarios are presented in Figure 119. The figure presents the effect of the 

distance of borehole on the resistance factor for different COVϕ and COVSu levels, which 

clearly demonstrates a significant decrease in the resistance factor of mixed soil with the 

increase in either the COVϕ or COVSu levels and the increase of distance between the pile 

and soil boring. 
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Figure 119. Calculated resistance factor for the mixed soil at different COVϕ and COVSu scenarios 

(without end bearing) 
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Analysis Including End Bearing 

Cohesive Soil Condition 

In this part of analysis, the Red River site was used again to study the effect of site 

variability on deep foundations for cohesive soil condition, but with including the end 

bearing capacity. We followed the same procedure we did before by assuming the pile to 

be located at the black point, and calculating the distances of soil borings to the pile (R1 

to R8), as described earlier in Figure 63 (a-c). The distances of soil borings were 

calculated as R1 = 40.5 ft. (12.33 m), .., and R8 = 120.0 ft. (36.57 m), as shown in Table 

82. The average value of Su and COVSu were calculated for each soil boring. The values 

of Su (IDW) and COVSu (IDW) were also determined for the whole site using the inverse 

distance weighted method. The resistance factor, ɸdf (for β=2.33) was calculated for each 

boring location considering the end bearing capacity using Equation 138. The average ɸdf 

for all soil layers was estimated to be 0.8. Additionally, the value of ɸdf for the whole site 

was determined using the Su (IDW) and COVSu (IDW), and the results are presented in 

Figure 120, which shows that the ɸdf value for each boring location depends on the 

distance between the pile and soil boring and the COVSu. The resistance factor, ɸdf, was 

increased from 0.77 to 0.78 for the Red River site, when the end bearing was considered.   

Table 82. Calculation of resistance factor for the Red River site (considering end bearing) 

Soil 

Boring 

Distance 

from pile 

(ft.) 

Su 
Su 

(IDW) 

Su 

(Tip) 

Su 

(Tip) 

(IDW) 
COVSu 

COVSu 

(IDW) 

Resistance 

Factor, 

ɸ𝑑𝑓 

(β=2.33) 

Average 

ɸdf 

(all soil 

borings) 

ɸ𝑑𝑓 

(IDW) 

R 1 40.5 105.39 

80.90 

60.0 

35.35 

0.31 

0.32 

0.81 

0.80 0.78 

R 2 46.8 84.92 25.0 0.25 0.88 

R 3 14.23 54.89 30.0 0.48 0.73 

R 4 25.4 98.97 35.0 0.19 0.89 

R 5 51.0 88.14 40.0 0.21 0.88 

R 6 84.4 64.72 35.0 0.07 0.94 

R 7 82.1 124.65 45.0 0.19 0.84 

R 8 120.0 92.08 15.0 0.47 0.47 

Cohesionless Soil Condition 

A cohesionless soil site with an average friction angle of =30o was selected here to study 

the effect of site variability on deep foundation with considering the end bearing capacity. 

To do so, different values of COV of  were selected (i.e., COVϕ = 0%, 10%, 20%, 30%, 

40% and 50%) in this analysis. Additionally, different locations and sampling distances 
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soil borings from the pile location [i.e., 16.4 ft. (5 m), 32.8 ft. (10 m), 49.2 (15 m), 65.6 

ft. (20 m), and 82.0 ft. (25 m) were considered. The resistance factors, ɸdf, for pile in 

cohesionless soil were calculated again for the different COV scenarios, but with 

considering the end bearing capacity, using Equation 146. The resulted values of ɸdf are 

presented in Figure 120, which shows that the resistance factor, ɸdf, decreases with the 

increasing the COVϕ and the distance from the soil boring location. 

Figure 121 presents the effect of the distance between the soil boring and the pile on the 

resistance factor, ɸdf, for different side and tip COVϕ levels. Here the COV for both the 

side and the tip were selected as 0%, 20%, and 40%. The figure clearly shows significant 

decrease in ɸdf with the increase in the COVϕ (side), COVϕ (tip), and the distance of 

borehole location from the pile. 

Figure 120. Resistance factor of pile in cohesionless soil for different COVϕ scenarios (considering 

end bearing) 
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Figure 121. Resistance factor of pile in cohesionless soil for different COVϕ scenarios (considering 

end bearing) 

 

Mixed Soil Condition 

The Metairie site was considered again for the mixed soil condition, but with considering 

the end bearing capacity this time. Analysis was performed for the pile located at the 

black (round) point described earlier in Figure 64(a-c), and calculating the distances of 

soil borings from the pile as M1, M2, … and M15 (as presented in Table 83). The values 

of Su, COVSu, ϕ and COVϕ were determined for each soil boring. Also, The values of Su 

(IDW), COVSu(IDW), ϕ (IDW) and COVϕ(IDW) were also determined for the entire site 

using the inverse distance weighted method. The resistance factor, df, for each soil boring 

locations were calculated at β=2.33 using equations 73 and 88 and the corresponding 

distance from pile. The average df for all soil borings was calculated to be 0.66. The 

resistance factor, df, for the entire site was calculated using the Su (IDW), COVSu(IDW), 

ϕ (IDW) and COVϕ(IDW) as 0.74. The results are presented in Figure 122, which shows 

that df for each soil boring is depend on the distance between the pile and soil boring and 

the COVSu and COVϕ. The value of df for the entire site (based on IDW) increased from 

0.71 to 0.74 when the end bearing is considered. 
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Table 83. Calculation of resistance factor for the Metairie site (including end bearing) 

Soil 

Boring 

Distance 

from Pile 

(m) 

Su 

(kPa) 
COVSu 

Friction 

Angle, 

ϕ (deg.)  

COVϕ 
ϕR 

(Tip) 

Resistance 

factor, df 

Average 

df 

(all soil 

borings 

df 

(IDW) 

M 1 57.31 32.98 0.35 37.50 0.23 42.0 0.58 

0.66 0.74 

M 2 58.07 37.45 0.42 36.07 0.21 38.0 0.552 

M 3 48.15 33.86 0.31 32.31 0.27 37.0 0.578 

M 4 34.70 28.13 0.29 33.38 0.18 32.0 0.692 

M 5 22.03 25.56 0.44 40.42 0.11 40.0 0.636 

M 6 27.85 34.74 0.29 40.82 0.09 36.0 0.744 

M 7 7.49 30.48 0.25 41.93 0.09 46.0 0.8 

M 8 15.18 30.72 0.34 38.86 0.12 35.0 0.722 

M 9 54.55 28.25 0.36 45.79 0.07 50.0 0.656 

M 10 46.66 27.41 0.38 41.50 0.10 44.0 0.644 

M 11 39.37 24.30 0.37 36.82 0.13 32.0 0.66 

M 12 45.30 27.77 0.45 40.33 0.10 38.0 0.61 

M 13 37.12 28.25 0.37 42.50 0.14 36.0 0.666 

M 14 23.70 30.32 0.48 41.33 0.11 35.0 0.608 

M 15 33.70 31.00 0.34 45.00 0.17 40 0.666 

IDW  30.17 0.31 40.92 0.11 41.82  

The Metairie site was analyzed again with considering end bearing using the average Su 

and  values for the four soil layers (two clay and two sand layers).  The weighted 

average of Su, and COVSu for the clay layers are 480.4 psf (23.0 kPa) and 0.27, 

respectively; and the weighted average of  and COVϕ for the sandy layers are 39o and 

0.35, respectively. Different sampling location distances were considered [from 16.4 ft. (5 

m) to 82.0 ft. (25 m)]. The resistance factors, df, for the mixed soil (including the end 

bearing) were calculated at different COVϕ (0%, to 50%) and different COVSu (0% to 

50%) scenarios using Equations 138 and 146, and are presented in Figure 122. The figure 

shows that the resistance factor, df, for the mixed soil decreases with increasing either 

the COVϕ or the COVSu levels and with increasing the distance between the soil boring 

and the pile. 
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Figure 122. Calculated resistance factor for the mixed soil at different COVϕ and COVSu scenarios 

(including the end bearing) 
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Conclusions 

Different approaches and techniques were examined to evaluate the spatial variability of 

soil properties and the different sources of geotechnical variability, and to quantify the 

soil variabilities for incorporation in analysis and design of different geotechnical 

engineering applications. This includes conducting in-box laboratory tests on different 

soil types using different devices such as Geogauge, LFWD, D-SPA and DCP; 

conducting field tests using Geogauge, LFWD and DCP on constructed sections at ALF 

site and under-construction sections from different projects; and conducting typical 

laboratory tests, such as unconsolidated undrained (UU), direct shear and tests, and 

consolidation tests were conducted, on different soil types. Different geostatistic methods 

and techniques were used to incorporating the effect of site variability from soil borings 

and in-situ CPT tests  into different geotechnical engineering applications, such as 

ultimate capacity of pile foundations, ultimate bearing capacity of shallow foundations, 

and slope stability analysis. The incorporated geostatistic techniques include X-Bar/R, 

ANOVA, second moment statistical analysis, spatial correlation and semivariogram 

modeling, Bayesian technique, probabilistic approach, and Fenton and Griffiths [133] 

modeling. Based on the findings of this study, the following conclusions can be made: 

 When comparing variabilities among the different devices, the in-box and field tests 

showed range values of coefficient of variation (COV). For the in-box test, the COV 

of Geogauge varied from 5.1% to 15.3% using the X-Bar/R method, whereas it 

ranged from 7.4% to 18.1% using the ANOVA method. For the LFWD, the COV 

ranged from 7.4% to 14.3% and 8.2% to 24.4% for the X-Bar/R and ANOVA 

methods, respectively. In the case of the Dirt Seismic Portable Analyzer (D-SPA), the 

COV differed from 4.2% to 9.6% for the X-Bar/R method; while the COVs varied 

from 6.7% to 15.4% for the ANOVA method. However, the ranges of the COVs of 

Geogauge, LFWD, and D-SPA devices evaluated using the second moment statistics 

were 6.7% to 15.6%, 10.9% to 20.8% and 5.9% to 13.4%, respectively. For the case 

DCP test, it was found that the COV of DCPI range from 1.6% to 16.4%, and 0.4% 

to 18.1%, for the operator and the location-related variability, respectively. For the 

case of the Nuclear Density Gauge (NDG), the COV ranged from 0.5% to 6.1% and 

from 2.4% to 25.1% for the dry density and the moisture content, respectively. When 

analyzing data using the E-Gauge device, the COVs ranged from 0.41% to 4.02% 

and from 1.76% to 18.8% for the dry density and for the moisture content, 

respectively. 
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 The field tests performed by different devices were grouped into the constructed and 

under-construction sections. In the case of constructed sections at ALF site, the COV 

of Geogauge varied from 7.7% to 21.0% using the X-Bar/R method, whereas the 

COV ranged from 11.4% to 23.6% using the ANOVA method. For the LFWD, the 

COVs ranged from 7.3% to 20.3% and from 7.9% to 18.9% for the X-Bar/R method 

and the ANOVA method, respectively. However, when analyzing data using the 

second moment statistical analysis, the ranges of COVs for the Geogauge and LFWD 

were 11.1% to 20.2% and 7.0% to 16.7%, respectively.  When comparing the 

operator and the location-related variabilities of the DCPI, it was found that the 

COVs ranged from 3.2% to 20.3%, and 2.6% to 29.4%, respectively. The COVs for 

the dry density and moisture content evaluated using the Nuclear Density Gauge 

(NDG) ranged from 0.2% to 4.2% and from 0.7% to 17.5%, respectively. In the case 

of the E-Gauge device, the COVs differed from 0.1% to 9.3% and from 0.2% to 

19.5% for the dry density and the moisture content, respectively. 

 The result of field tests conducted in three under-construction sections at LA 

highway showed that the COVs of Geogauge varied from 20.3% to 32.5% and from 

20.3% to 31.9% for the operator and the location-related variabilities, respectively. 

When assessing data for the LFWD, the COVs ranged from 11.7% to 37.5% and 

from 18.6% to 31.8%, for the operator and the location-related variabilities, 

respectively. Analysis of DCP tests showed that the COV of DCPI for the whole 

section ranged from 15.4% to 29.8%. The COVs for the dry density and moisture 

content measured using the Nuclear Density Gauge (NDG) ranged from 0.2% to 

2.3% and from 0.8% to 10.2%, respectively. In the case of the E-Gauge, the COVs 

ranged from 0.10% to 3.7% and from 0.8% to 12.0% for the dry density and the 

moisture content, respectively. 

 Analysis of laboratory test results showed that the COVs of the UU tests varied from 

1.0% to 10.9% and from 3.8% to 17.1% for the operator and specimen-related 

variabilities, respectively. The results of Atterberg Limits data showed that the COVs 

of liquid limit varied from 0.9% to 7.8%; the COVs of plastic limit ranged from 

1.9% to 18.2%, and the COVs of plasticity index ranged from 1.1% to 26.4%. For 

the small direct shear tests, the results showed that the operator-related and 

specimen-related variabilities COVs of friction angle, , ranged from 0.4% to 1.8%, 

and from 7.8% to 8.8%, respectively. Meanwhile, the COVs of the cohesion, c, 

ranged from 3.5% to 19.5%, and 5.7% to 20.0% for the operator and specimen-

related variabilities, respectively. For the one-dimensional consolidation test, the 
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operator and specimen-related COVs for the compression index (Cc) varied from 

1.4% to 16.8%, and 0.8% to 18.4%, respectively. The operator and specimen-related 

COVs for Cr ranged from 5.6% to 18.2%., and 3.6% to 17.1%, respectively. 

Meanwhile the COVs for the coefficient of consolidation (Cv) varied from 2.3% to 

20.9% and 5.5% to 30.6% for the operator and specimen-related variabilities, 

respectively. Analysis of CBR test data showed that the COVs varied from 4.2% to 

15.6%, and 5.7% to 16.0% for the operator and specimen-related variabilities, 

respectively. 

 Analysis of different AMRL test datasets (2009-2010 to 2016-2017) showed that the 

COV for the liquid limit, LL, varied from 4.3% to 8.4%; while the COV for the 

plastic limit, PL, varied from 6.7% to 9.4%. However, analysis of combined AMRL 

and lab test data showed that the combined COV for the LL is 4.3%, and the 

combined COV for the 6.7%. Analysis of the AMRL CBR test data showed that the 

COVs range from 16.5 % for Mexican limestone using the 2009-2010 AMRL data to 

34.9% for the RAB material using the 2012-2013 AMRL data. 

 The results of this study demonstrated that the spatial site variability can be 

evaluated from site exploration program involved multi CPT tests and/or multi soil 

borings with laboratory tests performed at different locations within the specific site. 

 The effect of site variability of soil properties can be implemented into LRFD design 

of pile foundations through evaluating the spatial and/or the total coefficients of 

variation (COVR,spatial, COVR,total) of the site using the semivariogram approach,  

which can be used as input parameters in Equation 21 to calibrate the resistance 

factor (ϕspatial or ϕtotal) for the specific site.  

 For sites that have site variability lower than the design method variability 

(i.e.,COVR,spatial <   COVR,method), the total coefficient of variation (COVR,total) 

decreases and the corresponding resistance factor (ϕspatial or ϕtotal) increases, and vice 

versa. Hence, giving a credit to low variability sites as compared to high variability 

sites in terms of increasing either ϕspatial or ϕtotal, for use in the design of pile 

foundations. 

 The CPT equipment source of errors are expected to be lower than the SPT 

equipment source of errors. Furthermore, the site variability from using CPT-qt data 

are usually lower than the site variability from using soil boring data (SPT-N or Su). 

Therefore, the corresponding resistance factors (ϕspatial, ϕtotal) for LCPC pile-CPT 
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design method are higher than the resistance factors for the static α-Tomlinson and 

Nordlund static design methods.  

 The results show that the selection of prior data in level 1 of Bayesian analysis has 

little effect on the updated posterior data of the new specific site, and hence the 

updated bias mean () and COV of the measured/predicted pile capacity, and the 

updated resistance factor for the specific site. In general, the updated posterior 

parameters for the new specific site in Bayesian analysis lie between the prior2 

parameters and the likelihood2 parameters, taking into consideration the specific site 

variability. 

 The authors introduced a new term called confidence bias site parameter (wb) to put 

more weight on the test data for the new specific site during the Bayesian updating 

process high as compared to database collected from previous sites.   

 When the soil variability of the new specific site increases from low to high as 

compared to previous sites data, the corresponding updated resistance factor (ϕR) 

decreases and vice versa. Meanwhile, when the number of tested piles in the new site 

increases, the value of ϕR increases for low specific site variability, while decreases 

for high specific site variability. As an example, for wb = 1.5, and lower number of 

piles in the new site, if we change the variability of new site from low to high, the 

values of ϕR reduced from 0.62 to 0.56. However, if we increase the number of piles 

in the new site (at low site variability) the value of ϕR increases from 0.62 to 0.63. 

Meanwhile, for the case of high site variability of old site and low site variability and 

lower number of piles at new site, the values of ϕR increased from 0.56 to 0.65 with 

increasing wb from 1 to 2. 

 The probabilistic analysis method can used to develop the estimation/mean map by 

taking the average of all realizations simulation the sequential Gaussian simulation. 

The results of sequential Gaussian simulation were compared with kriging mapping, 

which shows that the simulation and kriging estimation are nearly identical.  

 The prediction probability of corrected cone tip resistance  [qt,avg -st.dev ≤ qt 

≤qt,avg)+st.dev ]x0  for LA 1 site for 1st, 2nd, 3rd and 4th soil layers are 78%, 70%, 87% 

and 73%, respectively. The weighted average prediction probability for LA 1 site is 

75%, and the corresponding resistance factors (ϕspatial, ϕtotal) for LCPC pile-CPT 

design method are 0.87 and 0.73, respectively. 
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 This effect of site variability on the slope stability analysis was investigated. In case 

of drained condition, the factor of safety for the three slope stability analysis 

methods decreased when the COV of friction angle, , was increased from 5% to 

25%. For the same COV, the factor of safety increased with increasing the vertical 

correlation length (i.e., decrease in vertical variability). However, in case of unit 

weight and cohesion, the factor of safety did not change significantly when the COV 

of unit weight was increased from 2% to 10%, and when the COV of cohesion was 

increased from 10% to 50%. Out of three slope stability analysis methods, the Janbu 

simplified’s factor of safety was less than the other two methods (Bishop simplified 

and Spencer). 

 In case of undrained condition, the factor of safety for the three slope stability 

analysis methods decreased with increasing the COV of undrained cohesion, 

increased with increasing the vertical correlation length (i.e., decrease in vertical 

variability), and slightly increased with increasing the horizontal correlation length 

(i.e., decrease in horizontal variability). The effect of variability in undrained 

cohesion depends on the length of failure surface within the clay layer. 

 For the cases of proportion COVs of friction angle, cohesion, and weight, the results 

showed that the factor of safety for the three slope stability methods was decreased 

when the COV values were increased from the low variability increment 1 to the 

high variability increment 4. In addition, the factor of safety did not change 

significantly when the horizontal correlation length was changed from low to high 

variability. 

 The results of bearing capacity analysis of shallow foundations on medium dense 

sand (=38o) clearly demonstrates a significant decrease in the resistance factor, sf, 

of the shallow foundation with the increase in either the COVϕ or the distance of 

foundation from the soil boring. 

 For all sandy soils, the results showed that the normalized ultimate bearing capacity 

decreases with the increasing the COV. However, for the dense and medium dense 

sands, the rate of decrease in normalized ultimate bearing capacity with the increase 

in COV was higher than the loose sand. For all sandy soils, the coefficient of 

variation of bearing capacity was increased with increasing the COV.  
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 Analysis of bearing capacity of shallow foundations using Fenton and Griffiths [133] 

method on medium stiff clay for drained condition [ = 30o and cohesion = 83.5 psf 

(4 kPa)] showed that the ultimate bearing capacity and the resistance factor, sf, of 

the shallow foundation decreases with increasing either the COVϕ or the distance of 

foundation from soil boring. 

 For all clayey soils under drained condition, analysis showed that the normalized 

ultimate bearing capacity decreases with increasing the COV and/or COVc. 

Additionally, the COV of bearing capacity was increased with increasing either the 

COV or the COVc. 

 Analysis of bearing capacity of shallow foundations on medium stiff clay for 

undrained condition [cohesion = 752 psf (36 kPa)] also demonstrated significant 

decrease in the ultimate bearing capacity and the resistance factor, sf, of the shallow 

foundation with increasing of either the COVϕ or the distance of foundation from soil 

boring. 

 For all clayey soils under undrained condition, the normalized ultimate bearing 

capacity decreased with increasing the COVc. Moreover, the COV of the bearing 

capacity was increased with the increasing the COVc for all clayey soils. 

 For all soil types/conditions, the results showed that the resistance factor, ϕsf, 

decreased dramatically as the correlation length increased from 0 to about 6-16 ft. (2-

5 m), then started to increase beyond this correlation range. For all sampling radii, 

the shape of the resistance factor ϕsf, versus the correlation length curves are similar 

in the shape. 

 The results of reliability analysis for the different scenarios of proportion COVs of 

friction angle, cohesion, and weight, considered in this study, showed that the 

reliability index was decreased and the probability of failure was increased when the 

proportional COVs were increased from increment 1 (low variability) to 5 (high 

variability), and with increasing the vertical load. 

 Analysis of bearing capacity of deep foundations in cohesive soils based on 

Naghibi’s [131] and Naghibi and Fenton [18] approach showed that the ultimate 

bearing capacity and the resistance factor, df, decrease with increasing the COV of 

undrained shear strength, Su, and with increasing the distance between the pile and 

soil boring. For the case of multi soil borings. The value of df, can be calculated for 
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each soil boring based on the distance of pile from soil borings and calculate the 

average of all soil borings. Another approach is to calculate the inverse distance 

weighted values of Su(IDW) and COVSu(IDW) for the site, and use these values to 

calculate the resistance factors, df. For the cohesive soil site at river, the df 

corresponding to β=2.33 was calculated to be 0.78. 

 For cohesionless soils, the results clearly demonstrates that both the ultimate bearing 

capacity and the resistance factor, df, decreased significantly with the increase in 

COVϕ and/or the distance between pile and the soil boring.  

 For the case of mixed soil condition, the results also showed significant decrease in 

the ultimate bearing capacity and the resistance factor, df, with the increase in the 

COVϕ, COVSu, and the distance between the pile and soil boring. The df for multi 

soil borings in Metairie site was first calculated for each soil boring based the 

distance between the pile and each soil boring, and then the average of all soil 

borings was calculated. The df value for Metairie site was also calculated through 

evaluating the inverse distance weighted values of Su(IDW), COVSu(IDW), ϕ(IDW) 

and COVϕ(IDW) for the site, which gave a resistance factor, df, that corresponds to 

β=2.33 as 0.74. 
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Recommendations 

Based on the results of this research study, the following recommendations are offered to 

DOTD engineers: 

 It is recommended that the DOTD engineers to start assessing and using the 

variability of soil properties evaluated in the laboratory tests and AMRL for 

geotechnical engineering analysis and design for different applications.  

 Since remolded soil specimens were used in this study, it is recommended in future 

research to include Shelby-tube specimens to evaluate the variability of soil 

properties for different laboratory tests. 

 It is recommended that the DOTD engineers to start considering the variability of 

measurements by the different devices (DCP, Geogauge, LFWD, NDG, E-Gauge) in 

different geotechnical engineering applications. 

 Since only three under-construction sections were tested in this study to evaluate the 

variability of compacted soil. It is recommended to consider testing more under-

construction sections in a future study to better evaluate the quality control variability 

of compacted soil properties and variability of measurements from different in situ 

testing devices.  

 It is highly recommended to implement the semivariorgam analysis to evaluate the 

site variability from multi CPT tests and/or multi soil borings for use in different 

geotechnical engineering applications, especially to evaluate the site’s resistance 

factor for designing of deep foundations. 

 It is recommended to evaluate and apply the Bayesian analysis method to incorporate 

site variability for updating the State’s resistance factor, as more data are available, 

and to update the resistance factor for the new specific site.  

 It is recommended to explore the applicability of the probabilistic analysis approach 

to evaluate the specific site variability and its application in geotechnical engineering 

analysis and design. 

 It is highly recommended to consider variability in soil properties in evaluating the 

slope stability analysis of slopes, embankments and MSE walls. 
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 It is recommended to evaluate variability in the soil properties of fill materials for 

better analyzing the slope stability analysis of slopes and MSE walls. 

 It is recommend to explore using Fenton and Griffiths [133] method to incorporate 

the variability in soil properties and distance from soil boring(s) for analysis and 

design of shallow foundations. 

 It is recommend to explore using Naghibi [131] and Naghibi and Fenton [18] method 

to incorporate the variability in soil properties and distance from soil boring(s) for 

analysis and design of deep foundations.  
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Acronyms, Abbreviations, and Symbols 

Term Description 

a Correlation length  

AASHTO American Association of State Highway and Transportation Officials 

Ac Area of cross-section of the cone 

ACF Autocorrelation Function 

ah and av Correlation ranges in horizontal and vertical directions 

ALF Accelerated load facility 

AMRL AASHTO Materials Reference Laboratory 

An Area of cross-section and the projected area of the load cell 

ANOVA Analysis of variance 

AV Reproducibility or the operator variability 

B Footing width 

c Cohesion 

𝑐̂ Weighted average of cohesion 

CBR California bearing ratio 

C(h) Spatial covariance function 

Cc Compression index 

CCDF Conditional cumulative distribution function 

cm Centimeter 

Cov Covariance  

COV Coefficient of variation 

COVc Coefficient of variation of cohesion 

COVR,spatial Spatial coefficient of variation  

COV Coefficient of variation of friction angle 

CPT Cone penetration test 

Cr Recompression index 

cv Coefficient of consolidation 

CVq Measurement variability 

CVR Resistance variability 
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Term Description 

D Pile diameter 

d̅ Average distance 

dc, dq  and dγ Depth factors 

DCP Dynamic cone penetrometer 

DCPI Dynamic cone penetrometer index 

Df Depth of footing 

DOTD Department of Transportation and Development  

D-SPA Dirt seismic portable analyzer 

d2 Bias Correction Factor 

E Modulus of elasticity 

ELFWD Surface modulus from LFWD 

EPLT Plate load test modulus 

Eusw Young modulus from USW 

EV Repeatability or equipment variability 

f Trend component 

fr Frequency  

𝐹̂𝐷 Dead load (characteristic) 

𝐹̂𝐿 Live load (characteristic)  

ft. foot (feet) 

FDOT Florida Department of Transportation  

Fdr Force applied by shaker 

FEM Finite element method 

FHWA Federal Highway Administration 

FOSM First-order second-moment 

FS Factor of safety 

G Shear modulus 

𝑔 Performance function 

GIS Geographic Information Systems 

GRR Gauge R&R 

H Height 
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Term Description 

h Thickness 

Hdr Length of the drainage path 

IWD Inverse distance weighted 

K Geogauge stiffness 

k Modulus of subgrade reaction 

kD Dead load bias factor 

Kflex Stiffness of the flexible plate 

kL Live load bias factor 

kN Kilo newton 

kPa Kilo pascal 

ksi Kip per square inch 

Ksoil Stiffness of soil 

LFWD Light falling weight deflectometer 

L Length 

LAS Local average subdivision 

𝐿𝑖̂ Characteristic load 

LL Liquid Limit 

Lph Wavelength 

LRFD Load and resistance factor design 

LTRC Louisiana Transportation Research Center 

m meter 

mm Millimeter 

MC micro cracking 

m.c. Moisture content 

MCMC Markov chain Monte Carlo 

MPa Mega Pascal 

MSA Measurement System Analysis 

MSE Mechanically stabilized earth 

Nc, Nq and Nγ Bearing capacity factors 

NDG Nuclear density gauge 
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Term Description 

OLS Ordinary Least Squares 

P Applied load on plate 

𝑝𝑓 Probability of failure 

p(θ) Prior distribution 

p(y|θ) Likelihood function  

p(θ|y) Posterior function 

PI Plasticity index 

Pc Preconsolidation pressure 

pcf Pound per cubic foot 

PDF Probability density function  

PLT Plate load tests 

PR Penetration rate 

𝑃𝑟𝑜𝑏 Cumulative probability distribution 

PS Vertical load 

psi Pound per square inch 

psf Pound per square foot 

q Overburden stress 

qc Cone tip resistance  

QD Dead load  

QL Live load 

qt Corrected tip resistance 

qu Ultimate bearing capacity  

R Radius 

𝑅𝐸𝐵 Unit end bearing capacity 

RFEM Random finite element method 

RLEM Random limit equilibrium method 

RBD Reliability-based design  

Ru Ultimate resistance 

𝑅̂𝑢 Resistance of the soil 

sc, sq and sγ  Shape factors 
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Term Description 

SD Standard deviation 

SGeMS Stanford Geostatistical Modeling Software  

SGS Sequential Gaussian Simulation 

SM Second moment 

SPT Standard penetration test 

Su Undrained shear strength 

SV Specimen variability 

SVF Semivariogram function  

t Time 

TV Total variation 

tsf Ton per square foot 

u2 Porewater pressure 

UU Unconsolidated undrained 

USW Ultrasonic Surface Wave 

V1 Velocity at rigid plate 

V2 Velocity at flexible plate 

Vp Compression wave velocity 

Vph Average phase velocity 

VR Surface wave velocity 

Vs Shear wave velocity 

z Depth 

W Influence depth 

wb Confidence bias site parameter 

in. inch(es) 

2D Two dimensional 

α Empirical correction factor 

αi Load factor 

αr Reduction factor 

𝛽 Reliability index 

βHL Hasofer-Lind reliability index 
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Term Description 

δc Center deflection 

δv Vertical scale of fluctuation 

γ(h) Variogram  

λ Mean bias 

λR Resistance bias factor 

ν Poison’s ratio 

ε Random component 

ϕ Friction angle 

ɸ̅ Equivalent friction angle 

ɸ𝑑𝑓 Resistance factor for deep foundation 

ϕmethod Resistance factor for the design method 

ϕR Resistance factors 

ɸ𝑠𝑓 Resistance factor for shallow foundation 

 Mean 

μD Mean of the dead load 

μL Mean of the live load 

Γ2 Variance reduction factor 

γ Unit soil weight 

𝛾𝑙𝑛𝑐(𝐷) Variance reduction factor 

ψ Phase difference 

ρ Mass density 

ρ(h) Spatial correlation function  

σ Standard deviation 

app Applied stress 

σw Inherent soil variability 

θ Scale of fluctuation 
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Appendix A 

In-Box and Field Testing Devices 

This section covers the review of all devices (i.e. Geogauge, Light Falling Weight 

Deflectometer, Dynamic Cone Penetrometer, Dirt Seismic Portable Analyzer, Plate Load 

Test, Nuclear Density Gauge and E-Gauge) used in this research study for in-box and 

field tests. 

Geogauge Device 

The Geogauge device, or Soil Stiffness Gauge, is a hand-held portable device that renders 

rapid and precise means of measuring soil stiffness and soil modulus. The development 

of this device was initiated by the Federal Highway Administration (FHWA) and the U.S. 

Department of Defense to locate buried landmines. The FHWA research program 

including the cooperation between Bolts, Beranek and Newman of Cambridge, MA, CNA 

consulting engineers of Minneapolis, MN and Humboldt introduced the Soil Stiffness 

Gauge (SSG) known as Geogauge [145], which is presented in Figure 123. 

Figure 123. Geogauge device 

 

The Geogauge device measures the in-situ stiffness of compacted soil at a rate of about 

1.5 minutes per test. It has an annular ring that connects soil with an outside diameter of 

4.50 in. (114 mm), an inside diameter of 3.50 in. (89 mm), and a thickness of 0.50 in. (13 

mm). 
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Principle of Operation 

The Geogauge device applies a dynamic force to the soil, which generates very small 

displacement (< 1.27 x 10-6 m or <.00005") at 25 steady state frequencies in 4 Hz 

increments between 100 and 196 Hz. The stiffness is determined at each frequency and 

the average is displayed. The entire process takes about 1½ minutes. It is designed in a 

way that the highway traffic will not have influence on its measurement as the frequency 

generated by traffic is as low as 30 Hz, which is below the operating frequency of 

Geogauge [146].  

The shaker applies a small force, and this force is transferred to the ground, which is 

measured by differential displacement across the flexible plate by two velocity sensors 

(Figure 124). The expression can be expressed as follows: 

Fdr  = Kflex   (X2 - X1) = Kflex   (V2 - V1)                                                               [A1] 

where Fdr = force applied by shaker; Kflex  = stiffness of the flexible plate; X1 = 

displacement at rigid plate; X2 = displacement at flexible plate; V1 = velocity at rigid 

plate; and V2 = velocity at flexible plate 

Each compacted layer in a construction site can be thought of being a spring, which 

distributes the load to the lower layers. As for the springs: 

Ksoil= 
Fdr

X1
                                                                                                                    [A2] 

where Ksoil  = stiffness of soil 

Now, the soil stiffness can be expressed as: 

Ksoil=Kflex {∑
(X2-X1) 

X1

n

n
1 } =Kflex {∑

(V2-V1) 

V1

n

n
1 }                                                                 [A3] 

where n is the number of frequencies. 
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Figure 124. Schematic of the Geogauge [146] 

 

 

Geogauge Stiffness and Soil Modulus 

The elastic modulus of soil can be calculated from the measured Geogauge stiffness. If 

the soil is a linear elastic, homogeneous and isotropic half space, the relationship between 

the Geogauge stiffness and soil elastic modulus can be presented as: 

K= 
ER

(1-ν2). ω(n)
                                                                                                                    [A4] 

where E = modulus of elasticity; ν = Poison’s ratio; R = outside radius of the annular ring 

(2.25 in.); and ω(n) = a function of the ratio of the inside diameter and the outside 

diameter of the annular ring. 

From the geometry of Geogauge, the value of ω (n) is equal to 0.565. So, 

K= 
1.77ER

(1-ν2)
                                                                                      [A5] 

Stiffness is measured with the Geogauge by assuming proper Poison’s ratio for the 

treated material. If Poison’s ratio is assumed to be 0.35, a factor of 8.67 can be used to 

convert the Geogauge Stiffness (MN/m) into Stiffness Modulus (MPa). It is 

recommended from the Geogauge Manufacturer that Geogauge should not involve in 
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testing if measured layer stiffness and in-situ moduli value greater than 70 MN/m and 

610 MPa, respectively.  

Light Falling Weight Deflectometer 

The Light Falling Weight Deflectometer (LFWD) is a portable device that measures 

deflection using falling weight, the degree of compaction and the dynamic modulus of 

soil. It was developed in Germany as an alternative to the plate load test to overcome 

accessibility problems for roads and highways under construction. There are different 

versions of LFWDs currently used, which are based on different manufacturers and 

different countries, but they are following the similar principle. Previously conducted 

studies include German Dynamic Plate (GDP), the Transport Research Laboratory 

(prototype) Foundation Tester (TFT), and the Prima 100 LFWD.  

The LFWD device used in this research is the Zorn ZFG 3000 GPS, which is presented in 

Figure 125. The device has three major elements: a pulse-inducing weight, the loading 

plate and a set of geophone sensors (one in the center of the plate and others in lateral 

positions; seismic velocity transducers, accuracy ±2%, resolution 1 lm, frequency range 

0.2–300 Hz to determine settlement) [147]. The LFWD device weighs 26 kg and has a 10 

kg falling height, which impacts on a spring to create pulses of 18 milliseconds, and a 

guide rod (720 mm drop height) supported with lock pin and loading plate (100 mm, 200 

mm and 300 mm). 

Figure 125. Light falling weight deflectometer 
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Principle of Operation 

During a test procedure, the loading plate measures the center deflection and LFWD 

elastic modulus. The measured deflection at the center of the plate is used to calculate the 

surface modulus ELFWD using Boussinesq’s solution as follows [148]: 

ELFWD= 
k(1- ν2)σappR

δc
                                                                                           

[A6] 

where: k = π/2 or 2 for rigid and flexible plates, respectively; c = center deflection; ν  = 

Poisons ratio, σapp  = applied stress; and R = radius of the plate. 

Dynamic Cone Penetrometer  

The Dynamic Cone Penetration (DCP) test was first introduced in South Africa for 

evaluation of pavement strength. In 1969, Dr. Van Vuuren introduced a new form of DCP 

with a 30° cone. According to him, the DCP is a tool to measure the in-situ shear 

resistance of soil as soil’s shearing ability is to withstand load when it is applied. Kleyn et 

al. [149] suggested based on DCP that there is a minimum strength or suitability of the 

base course when sound pavement section is compared with a failed pavement section. 

Since then, DCP has been comprehensively used in South Africa, United Kingdom, 

Australia, New Zealand and several states in the U.S.A. The DCP device has been 

adopted as an effective tool in the assessment of the strength of pavements and subgrades.  

The DCP test requires less time for field application, needs less maintenance and 

performs on a pavement with higher accuracy. Operation of DCP replaces manually 

driven mechanisms. One of the advantages of DCP over other in-situ tests is that it can 

detect weak zones inside the pavement layer. Figure 126 presents the schematic of the 

Dynamic Cone Penetrometer. 

The Dynamic Cone Penetrometer consists of 8 kg (22lb) weights, which falls freely from 

an upper shaft at a distance of 22.6 in., and exerts dynamic energy of about 78.5 N. 

Specification of DCP are shown in Table 84. 
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Figure 126. Schematics of the dynamic cone penetrometer 

 

Principle of the DCP Test 

The Dynamic Cone Penetrometer test is executed by dropping a hammer of a specific 

weight with a certain height, which resembles both the SPT and CPT tests. The DCP 

includes features of SPT in a way that both tests require penetration depth per blow up to 

a certain depth. In DCP test, a cavity is created using a 60˚ cone, which is similar to CPT. 

The DCP test can take continuous measurement of the subgrade and pavement layers. 

The free-falling weight impacts on an anvil and the cone penetrates into the ground. The 

cone attached to the lower shaft needs to be replaced after one test. The entire process is 

repeated until the desired depth is achieved and the penetration depth for each blow is 

measured for each hammer drop. 
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Table 84. Specification of DCP [150] 

Standard Hammer Mass  17.6 lbs (8kg) or 

  10.1 lbs (4.6 kg) for weaker soil 

Hammer Falling Height 22.6 in. or 575 mm 

Anvil  3.2 in. or 81 mm 

Driving Rod Diameter  16 mm 

Lower Shaft (Typical) 39.4 in. or 1000.76 mm 

Replaceable Cone Apex Angle  60 degrees 

Replaceable Cone Diameter 0.8 in. or 20 mm 

DCP Penetration Index (DCPI) 

In order to determine the layer thickness, we need to find the slope of the curve between 

number of blows and depth of penetration (mm/blow), which is denoted as the DCP 

Penetration Index (DCPI). Test procedure and typical DCPI profile are given in Figure 

127 and Figure 128. The DCPI can be calculated using the following equation [151]:  

DCPI = 
P(i+1)-P(i)

B(i+1)-B(i)
                                                                                                           [A7] 

where: DCPI = Dynamic Cone Penetration Index (mm/blow); P = Penetration at ith or 

(i+1)th  hammer drops (mm); and B = blow count for the ith or (i+1)th  hammer drops. 

A representative value of DCPI for a certain amount of depth can be obtained using the 

following equation:                                                                               

DCPIavg = ∑ (DCPI)/Ni
N                                                                                         [A8]  

Where: N = Total number of DCPI recorded for a given depth 
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Figure 127. The dynamic cone penetration (DCP) test procedure 

 

Figure 128. Typical DCPI profile [152] 

 

 

Plate Load Test 

The Plate Load Rest (PLT) has been considered as a useful device for evaluating 

pavement structure in many European countries. It is a widely known test for measuring 

the bearing capacity of soil and modulus of subgrade reaction for pavement. This test is 

more time-consuming test than other in-situ testing devices, like Geogauge, LFWD, and 

DCP. Currently, it has been widespread used on both rigid and flexible pavement. The 
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influence depth of PLT test is about 1.5 to 2 times the diameter of the plate. Usually, plate 

diameter of 30 in. (76.2 cm) is used for runways, but for roadways smaller diameter of 12 

in. (30.5 cm) can also be used.  

During testing, smaller diameter plates are placed on the top of the plate to avoid 

bending. A hydraulic jack applies load on the plate and the load is then transferred to the 

soil by the plate. Measurements from four dial gauge readings indicate the settlement of 

the plate. These dial gauges are placed on horizontal beams, at right angles to each other 

[153]. 

Principle of Operation 

The PLT test method is performed in accordance with ASTM D1194. During this test, a 

load is applied until settlement increment comes to a steady magnitude. In order to 

perform this test, load increments are applied and maintained until all settlements become 

stable. Then, loads are removed in the same manner until the rebound curve is achieved. 

This process can be progressed for the next cycle until the desired curve is achieved.   

PLT Moduli Calculation  

The modulus of subgrade reaction of a tested material can be determined by the PLT, 

using the following equation [154]: 

k = 
P

δc
                                                                                           [A9] 

where: P = applied load on plate (psi), δc = deflection of center of plate (in.).Additionally, 

the elastic modulus of the tested soil can be evaluated from the PLT.  

The relationship from which the elastic modulus can be obtained is given as follows 

[154]:    

 EPLT =  
1.18 P.R

δc
                                                                                                     [A10]    

where: R = radius of plate.  

Figure 129 presents an example of PLT results, where the initial modulus, EPLT(i), can be 

determined from the slope of the first loading cycle, and the reloading modulus, EPLT(R2) 

is determined from the second cycle. 
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Figure 129. Typical results of plate load test [155] 

 

Dirt Seismic Portable Analyzer (D-SPA) 

The Seismic Properties Analyzer (SPA) is a device for measuring vibrations (sonic, 

ultrasonic and resonant vibrations) to evaluate the average modulus of concrete 

pavements and structures, asphalt pavements, base materials and compacted subgrade 

materials. The SPA device was designed and developed by Dr. Soheil Nazarian of the 

University of Texas at El Paso [156].    

 D-SPA Operating Principles 

D-SPA operates based on generating and detecting stress waves in a medium. When a 

vertical impact on the ground surface disturbs an elastic half-space, two types of waves 

will travel in the medium: the body wave, which is composed of compression and shear 

waves, and the surface wave. Among these waves, the compression waves are the fastest 

waves that travel through the ground, and occur when the material displacement takes 

place back and forth along the direction of wave propagation. The shear waves travel 

slower than the compression waves through the ground and occur when material 

displacement happens perpendicular to the direction of travel of the wave. The surface 

waves, primarily Rayleigh waves, are the slowest waves that travel along the surface of 

the ground and occur when the material is displaced in a cylindrical motion [157]. 
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Two receivers usually collect outputs after the arrival of compression, shear and surface 

waves, which are marked in Figure 130. Reliable estimation of compression wave is 

difficult as only less than 10 percent of seismic energy propagates in this form. Shear 

wave energy is about one-fourth of the seismic energy and can be easily identified in the 

record. As the speed of shear waves and surface waves are close to each other, it is 

difficult to separate shear waves from surface waves. Surface waves contain about two-

thirds of the seismic waves and it is easy to measure them.   

 Figure 130. Typical time records from D-SPA [158] 

 

Data reduction can be done in either the time domain or the frequency domain. In time 

domain analysis, time is recorded when seismic energy arrives at each sensor. The 

relation between velocity and time can be expressed as [159]:    

V= 
∆X

∆t
                                                                                                                        [A11]     

Where: V = Propagated velocity of any of the three waves (i.e. compression waves, Vp; 

shear waves, VS; or surface (Rayleigh) wave, VR); ∆X = Receiver spacing; and ∆t = 

Travel time. 

If the Poison’s ratio of soil and shear modulus are known, the Young modulus can be 

calculated using the following equation: 
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E = 2 (1+ν) G                                                                                                       [A12] 

Where: ν = Poison’s ratio of soil; G = Shear modulus; and E = Young’s modulus 

The shear modulus can be calculated from shear velocity and mass density using: 

G = ρ Vs
2                                                                                                               [A13] 

Since the surface wave velocity can be measured more accurately than shear velocity, VR   

is then converted to shear wave velocity, and the expression is as follows:  

VS   = VR   (1.13-0.16 ν)                                                                               [A14] 

So, if it is assumed that the properties of the upper most layer are uniform, the shear wave 

velocity can be calculated from Equation A13. Then, the Young’s modulus of the top 

layer can be calculated by combining Equations A12 and A13:  

 E = 2 ρ Vs
2 (1+ν)                                                                                        [A15] 

Where: VS = Velocity of shear waves, ρ = Mass density and ν = Poison’s ratio. 

Ultrasonic Surface Wave Method  

The Ultrasonic Surface Wave (USW) method can measure seismic modulus process by 

performing Fourier transformation on the two signals. Fourier transformation 

disintegrates the time record into components of different frequencies and analyzes each 

frequency component. Each component of the signal has an amplitude, frequency and 

wavelength. Fourier approach is included in the USW method based on the fact that 

longer wavelengths of a component are more affected by values of modulus from deeper 

beneath the surface, which is presented in Figure 131.  

After the data is collected from far and near receivers, the data is then reduced and a 

diagram of phase difference or phase versus frequency is constructed. Phase difference or 

phase curve is then analyzed to determine a value for seismic modulus at each frequency. 

If the phase difference (ψ) and frequency (fr) are known from a phase diagram (Figure 

132), travel time (Δt) can be calculated using the following formula: 

Δt = 
ψ

360fr
                                                                                                                      [A16] 
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Figure 131. Signal amplitude versus depth for different wavelengths [157] 

 

Figure 132. Phase difference versus frequency [157] 

 

Phase velocity (Propagation of velocity inside a medium) can be determined from 

Equation A16. After knowing the phase velocity using travel time (Δt), the wavelength 

can be determined using the following equation: 

 Lph = Vph/fr                                                                                                              [A17]         

Where: Lph = wavelength of the propagated velocity; and Vph = Average phase velocity of 

the top layer [158]. 

Now, the dispersion curve can be constructed using phase velocity (Vph) and wavelength 

(Lph), and the Young Modulus is calculated using the following equation: 

 Eusw = 2 ρ (1+ν).(V
R

(1.13-0.16 ν))
2
                                                                        [A18] 
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Impact-Echo Method 

The Impact-Echo method is widely accepted as a nondestructive evaluation method. In 

this test, signals or disturbances (mechanical or stress waves at a frequency in the range 

of 20-30 kHz) are transferred from the bottom of the source, which propagates outward 

from the contact point through the ground [160]. If the ground layer overlies with another 

layer, one disturbance is reflected back to the D-SPA and the remaining signal is 

transmitted into the second layer (Figure 133) [157]. 

Figure 133. Path of D-SPA disturbances [157] 

 

The reflected signal is collected by the receivers. Some of this energy is reflected from 

the surface and starts a second downward propagation. This process proceeds several 

times creating multiple echoes of the initial signal, which is shown in Figure 134 [157]. 

The time-domain signal is then converted into a frequency-domain signal by using 

Fourier analysis. Frequency-domain function and frequency-domain signal are monitored 

to detect the maximum frequency with maximum energy (referred to as peak frequency). 

Peak frequency (f) is then used to measure the thickness (h) of the soil layer using the 

following equation [160]: 

 h = α 
Vp

2fr
                                                                                                                 [A19] 

Where: Vp  = compression wave velocity that can be measured from the surface wave 

velocity; α = empirical correction factor, which is 0.96 for plate-like structure [161]. The 

above equation is based on the assumption that compression is uniform throughout the 
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depth of the tested material. Uncertainty may increase if heterogeneity exists inside the 

material [160]. 

Figure 134. D-SPA “echoes” from multiple reflections [157] 

 

Nuclear Density Gauge 

The Model 3430 Surface Moisture-Density Gauge known as Nuclear Density Gauge has 

been adopted for this study. The Moisture-Density Gauge can rapidly and unequivocally 

figure out dampness and thickness for soils, soil bases, aggregate, cement and asphaltic 

cement without the utilization of core samples or other ruinous techniques. Utilizing 

direct transmission or backscattered gamma radiation, the 3430 measure measures the 

thickness of materials by tallying the number of photons discharged by a cesium-137 

source. Geiger-Mueller (G-M) identifiers situated in the check base identify the gamma 

radiation and a microprocessor changes over the tallies into a density reading. Figure 135 

shows the working application of the Nuclear Density Gauge.  

Utilizing the standard of neutron thermalization, the model 3430 measures the moisture 

content for soils and soil-like materials. Hydrogen (water) in the material moderates 

neutrons transmitted from an americium-241: beryllium source (or californium-252 in the 

Model 3430-M). Helium-3 indicators situated in the measure base identify the moderated 

neutrons. 

The nuclear strategy for testing thickness and dampness has been affirmed by the 

American Society of Testing and Materials (ASTM). The Model 3430 meets or surpasses 

every one of the prerequisites of ASTM Standards C1040, D2922, D2950, and D3017 

[162]. 
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Figure 135. Direct transmission geometry of the nuclear density gauge [162]  

 

E-Gauge 

The Troxler E-Gauge, Nuclear Density Gauge uses a low movement gamma beam source 

to play out the thickness estimations. The Cesium 137 source and the delicate identifier 

cooperate to give solid thickness readings, which are in the same class as the nuclear 

gauge. Figure 136 show the schematic of the E-Gauge. 

Because of the plain low source action, it is important to nearly screen foundation 

radiation. Whenever the material estimated changes or when moving to another job site, it 

is important to play out a foundation tally at the estimation area over the readied gap. It is 

likewise important that any known wellsprings of radioactive material be kept no less 

than 30 ft. (10 m) away amid standard tallies, foundation checks and estimation tallies 

(for instance: other nuclear gauges). Thickness estimations can be performed between 2 

in. (5 cm) and 8 in. (20 cm) inside and out, that isn't a backscatter estimation position. 

The E-Gauge is as of now offered as an 8-in. skilled thickness measure for soil thickness 

estimation with a non-nuclear moisture test frill, which measures moisture at a profundity 

of 4-5 in. (Troxler E-Measure Manual). 
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Figure 136. Schematic of the E-Gauge [162] 
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Appendix B 

Profiles of Soil Boring Data, CPT Data and CPT Soil classification for 

the Different Sites 

Figure 137. Profiles of soil boring data, CPT data, and CPT soil classification at Bayou Laccassine 
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Figure 138. Profiles of CPT data, and CPT soil classification at ALF 
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Figure 139. Profiles of CPT data, and CPT soil classification at US 90 & LA 85 
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Figure 140. Profiles of CPT data, and CPT soil classification at Hammond 
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Figure 141. Profiles of CPT data, and CPT soil classification at LA 1 
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Figure 142. Profiles of soil type, soil layering and Su data at Red River 
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Figure 143. Profiles of soil type, soil layering and Su data at Williams Blvd. 
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Appendix C 

Typical Slope Stability Methods – Methods of Slices 

A number of solution techniques have been developed for slice methods. The equations 

of the considered statics, the incorporated interslice normal and shear forces, and the 

anticipated correlation between the inner slice forces are the key differences among all 

techniques [163]. Figure 144 shows a typical slice in a hypothetical sliding mass, along 

with the forces operating on the slice. The number of slices used is determined by the 

geometry and profile of the slope earthfill [164]. 

Figure 144. Slicing and forces acting in a sliding mass 

 

The assumption that the slip surface being a circular slip surface is utilized by some slices 

approaches to define a slope stability problem, whereas others accept a noncircular slip 

surface. The former considers the balance of moments around the circle's center, whereas 

the later does it in terms of individual slices [164]. 

Ordinary Method of Slices  

The Fellenius method [165], or Swedish method of slices, is another name for this 

method. This approach is a slicing operation that ignores the forces on the slices' sides 

(Figure 145). The failing surface is divided into a number of imaginary upright slices, as 

shown in Figure 145(a). 
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Figure 145. Ordinary method of slices (a) different slices (b) forces acting on a single slice [165] 

 

Bishop’s Simplified Method  

Professor Bishop of Imperial College in London devised a system in the 1950s that took 

into account interslice normal forces but overlooked interslice shear forces. By summing 

slice forces in the vertical direction, Bishop devised an equation for the normal at the 

slice base. As a result, the base normal is transformed into a function of the factor of 

safety. As a result, the factor of safety equation is nonlinear (FS appears on both sides of 

the equation), necessitating an iterative technique to determine the factor of safety. 

In the absence of pore-water pressure, a basic form of Bishop's Simplified factor of safety 

equation is: 

𝐹𝑆 =  
1

∑ 𝑊𝑠𝑖𝑛𝛼
∑ [

𝑐𝛽+𝑊𝑡𝑎𝑛𝜙−
𝑐𝛽

𝐹𝑆
𝑠𝑖𝑛𝛼 𝑡𝑎𝑛𝜙

𝑚𝛼
]                               [C1] 

 

where, c = cohesion, β= slice base length, ϕ= friction angle, W= slice weight, and, α = 

slice base inclination. FS is on both sides of the equation as noted above. The equation is 
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not unlike the Ordinary factor of safety equation except for the m_α term, which is 

defined as: 

𝑚𝛼 = 𝑐𝑜𝑠𝛼 +
𝑠𝑖𝑛𝛼 𝑡𝑎𝑛𝜙 

𝐹𝑆
         [C2] 

To find the Bishop's Simplified factor of safety, you must first guess the value of FS. The 

first guess is used as the Ordinary factor of safety in Slide2d. To compute m, the initial 

guess for FS is used, and then a new FS is computed. The new FS is then used to 

compute m, followed by another new FS. The operation is continued until the most recent 

computed FS is within a specified tolerance of the most recent computed FS. Fortunately, 

reaching a convergent solution usually only takes a few iterations. 

 

When we look at the slice free body diagrams and forces polygons for the same slices as 

the Ordinary approach, we can detect a significant difference (Figure 146). The typical 

free body diagram and force polygon for the Bishop’s simplified method is presented in 

Figure 147. With the addition of the interslice normal forces, the force polygon closure is 

now fairly good. The interslice shear forces are not there, as Bishop assumed, but the 

interslice normal forces are. 

 Figure 146. Case for hand calculation in Bishop’s simplified method 
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Figure 147. Typical free body diagram and force polygon for the Bishop’s simplified method 

 

In summary, the Bishop's Simplified technique (1) takes normal interslice forces into 

account but overlooks interslice shear forces, and (2) achieves over all moment 

equilibrium but not overall horizontal force equilibrium. 

Janbu’s Simplified Method  

The Janbu's Simplified approach is a noncircular method. It is similar to the Bishop's 

Simplified method, except that it only achieves overall horizontal force equilibrium rather 

than overall moment equilibrium. 

The Janbu's Simplified method's free body diagrams and force polygons are shown in 

Figure 148. The Bishop's Simplified technique is actually better than the slice force 

polygon closure. However, using Bishop's Simplified approach, the factor of safety is 

1.16 instead of 1.36. This is a substantial difference. Even though the slices are in force 

equilibrium, Janbu's Simplified factor of safety is actually too low. 
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Figure 148. Typical free body diagram and force polygon for the Janbu’s simplified method 

 

In summary, the Janbu's Simplified technique (1) takes into account normal interslice 

forces but ignores interslice shear forces, and (2) satisfies over all horizontal force 

equilibrium but not over all moment equilibrium. 

Spencer Method  

Spencer [166] is another noncircular method. It creates two factor-of-safety equations, 

one for moment equilibrium and the other for horizontal force equilibrium. He used a 

constant relationship between the interslice shear and normal forces and changed the 

interslice shear to normal ratio using an iterative approach until the two safety factors 

were equal. Finding the shear/normal ratio that equalizes the two safety factors indicates 

that both moment and force equilibrium have been achieved. This approach can also be 

used to simulate noncircular surfaces, with the assumption that all forces on the slice's 

sides are parallel. The slice forces provide more evidence of the link between the 

interslice shear and normal forces. A typical slice is shown in Figure 149. 

It's worth mentioning that the force polygon closure is excellent when both interslice 

shear and normal forces are considered. The Spencer technique, in summary, takes into 

account both shear and normal interslice forces, achieves moment and force equilibrium, 

and assumes a constant interslice force function. 
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Figure 149. Typical free body diagram and force polygon for the Spencer method 
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Appendix D 

Data Transfer to Stationary and Semivariogram Models 

Figure 150. Transferring the data from non-stationary to stationary data for Hammond site: (a) non-

stationary data with trend line; (b) stationary data 
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Figure 151. Transferring the data from non-stationary to stationary data for LA 1 site: (a) non-

stationary data with trend line; (b) stationary data 

 

Figure 152. Transferring the data from non-stationary to stationary data for US90 & LA85 site: (a) 

non-stationary data with trend line; (b) stationary data
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Figure 153. Transferring the data from non-stationary to stationary data for Bayou Laccassine site: 

(a) non-stationary data with trend line; (b) stationary data 
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Figure 154. Experimental and spherical semivariogram models for the CPT-qt data of soil layers at 

Hammond site
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Figure 155. Experimental and spherical semivariogram models for the CPT-qt data of soil layers at 

ALF site 
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Figure 156. Experimental and spherical semivariogram models for the CPT-qt data of soil layers at 

US 90 & LA 85 site 
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Figure 157. Experimental and spherical semivariogram models for the CPT-qt data of soil layers at 

Bayou Laccassine site 
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Figure 158. Experimental and spherical semivariogram models for the Su data of the four soil layers 

at Williams Blvd site 
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Figure 159. Experimental and spherical semivariogram models for the Su data of the four soil layers 

at Bayou Laccassine site 
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Appendix E 

Results for Slope Stability Analysis for Drained and Undrained 

Conditions 

Table 85. Factor of safety vs COV of  at different vertical variability levels for drained 

condition 

 

  

Scenario 

No. 

Coefficient of variation Correlation length Factor of Safety 

Unit 

weight 

Friction 

Angle 
Cohesion Vertical Horizontal 

Bishop 

simplified 

Janbu 

simplified 
Spencer 

1 5 5 20 2 20 1.523 1.478 1.519 

2 5 10 20 2 20 1.479 1.432 1.477 

3 5 15 20 2 20 1.432 1.381 1.43 

4 5 20 20 2 20 1.38 1.327 1.381 

5 5 25 20 2 20 1.331 1.274 1.331 

6 5 5 20 0.3 20 1.516 1.472 1.512 

7 5 10 20 0.3 20 1.464 1.414 1.462 

8 5 15 20 0.3 20 1.408 1.35 1.405 

9 5 20 20 0.3 20 1.346 1.281 1.343 

10 5 25 20 0.3 20 1.282 1.213 1.278 

11 5 5 20 5 20 1.53 1.484 1.526 

12 5 10 20 5 20 1.494 1.45 1.492 

13 5 15 20 5 20 1.456 1.412 1.455 

14 5 20 20 5 20 1.418 1.373 1.419 

15 5 25 20 5 20 1.38 1.335 1.384 
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Table 86. Factor of safety vs COV of unit weight at different vertical correlations levels for drained 

condition 

 

  

Scenario 

No. 

Coefficient of variation Correlation length Factor of Safety 

Unit 

weight 

Friction 

Angle 
Cohesion Vertical Horizontal 

Bishop 

simplified 

Janbu 

simplified 
Spencer 

16 2 10 20 2 20 1.48 1.433 1.477 

17 4 10 20 2 20 1.4795 1.433 1.477 

18 5 10 20 2 20 1.479 1.432 1.477 

19 8 10 20 2 20 1.478 1.43 1.476 

20 10 10 20 2 20 1.477 1.428 1.474 

21 2 10 20 0.3 20 1.466 1.415 1.462 

22 4 10 20 0.3 20 1.464 1.414 1.463 

23 5 10 20 0.3 20 1.4649 1.415 1.462 

24 8 10 20 0.3 20 1.463 1.41 1.462 

25 10 10 20 0.3 20 1.462 1.406 1.459 

26 2 10 20 5 20 1.494 1.451 1.492 

27 4 10 20 5 20 1.494 1.45 1.491 

28 5 10 20 5 20 1.4941 1.451 1.492 

29 8 10 20 5 20 1.493 1.45 1.49 

30 10 10 20 5 20 1.492 1.45 1.489 
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Table 87. Factor of safety vs COV of cohesion at different vertical variability levels for drained 

condition 

 

  

Scenario 

No. 

Coefficient of variation Correlation length Factor of Safety 

Unit 

weight 

Friction 

Angle 
Cohesion Vertical Horizontal 

Bishop 

simplified 

Janbu 

simplified 
Spencer 

31 5 10 10 2 20 1.48 1.433 1.477 

32 5 10 20 2 20 1.479 1.432 1.477 

33 5 10 30 2 20 1.478 1.431 1.475 

34 5 10 40 2 20 1.477 1.429 1.474 

35 5 10 50 2 20 1.475 1.427 1.472 

36 5 10 10 0.3 20 1.467 1.418 1.464 

37 5 10 20 0.3 20 1.464 1.414 1.462 

38 5 10 30 0.3 20 1.463 1.412 1.46 

39 5 10 40 0.3 20 1.462 1.408 1.459 

40 5 10 50 0.3 20 1.46 1.404 1.457 

41 5 10 10 5 20 1.493 1.448 1.49 

42 5 10 20 5 20 1.494 1.45 1.492 

43 5 10 30 5 20 1.493 1.45 1.49 

44 5 10 40 5 20 1.492 1.45 1.489 

45 5 10 50 5 20 1.49 1.45 1.487 
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Table 88. Factor of safety vs COV of undrained cohesion at high vertical variability levels for 

undrained condition 

 

  

Scenario 

No. 

Coefficient of variation Correlation length Factor of Safety 

Unit 

weight 

Friction 

Angle 
Cohesion Vertical Horizontal 

Bishop 

simplified 

Janbu 

simplified 
Spencer 

46 5 10 10 0.3 20 1.498 1.454 1.494 

47 5 10 20 0.3 20 1.495 1.451 1.490 

48 5 10 30 0.3 20 1.490 1.446 1.486 

49 5 10 40 0.3 20 1.480 1.433 1.472 

50 5 10 50 0.3 20 1.470 1.426 1.462 

51 5 10 10 0.3 40 1.496 1.452 1.492 

52 5 10 20 0.3 40 1.491 1.447 1.487 

53 5 10 30 0.3 40 1.481 1.437 1.477 

54 5 10 40 0.3 40 1.471 1.427 1.465 

55 5 10 50 0.3 40 1.500 1.456 1.496 

56 5 10 10 0.3 60 1.497 1.453 1.493 

56 5 10 20 0.3 60 1.492 1.450 1.488 

58 5 10 30 0.3 60 1.482 1.438 1.478 

59 5 10 40 0.3 60 1.472 1.428 1.468 

60 5 10 50 0.3 60 1.498 1.454 1.494 
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Table 89. Factor of safety vs COV of cohesion at medium vertical variability levels at drained 

condition 

  

Scenario 

No. 

Coefficient of variation Correlation length Factor of Safety 

Unit 

weight 

Friction 

Angle 
Cohesion Vertical Horizontal 

Bishop 

simplified 

Janbu 

simplified 
Spencer 

61 5 10 10 2 20 1.390 1.315 1.385 

62 5 10 20 2 20 1.387 1.312 1.376 

63 5 10 30 2 20 1.382 1.307 1.372 

64 5 10 40 2 20 1.372 1.297 1.360 

65 5 10 50 2 20 1.358 1.283 1.349 

66 5 10 10 2 40 1.355 1.290 1.348 

67 5 10 20 2 40 1.352 1.287 1.342 

68 5 10 30 2 40 1.349 1.284 1.339 

69 5 10 40 2 40 1.337 1.272 1.325 

70 5 10 50 2 40 1.323 1.258 1.313 

71 5 10 10 2 60 1.340 1.277 1.330 

72 5 10 20 2 60 1.337 1.274 1.327 

73 5 10 30 2 60 1.330 1.267 1.320 

74 5 10 40 2 60 1.320 1.257 1.310 

75 5 10 50 2 60 1.308 1.245 1.298 
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Table 90. Factor of safety vs COV of cohesion at low vertical variability levels at undrained condition 

 
Table 91. Factor of safety vs COV of cohesion at different horizontal variability levels (with high 

vertical variability) 

 
 

Scenario 

No. 

Coefficient of variation Correlation length Factor of Safety 

Unit 

weight 

Friction 

Angle 
Cohesion Vertical Horizontal 

Bishop 

simplified 

Janbu 

simplified 
Spencer 

76 5 10 10 5 20 1.310 1.240 1.304 

77 5 10 20 5 20 1.305 1.235 1.301 

78 5 10 30 5 20 1.297 1.227 1.293 

89 5 10 40 5 20 1.290 1.220 1.286 

80 5 10 50 5 20 1.280 1.210 1.272 

81 5 10 10 5 40 1.254 1.184 1.248 

82 5 10 20 5 40 1.247 1.177 1.243 

83 5 10 30 5 40 1.239 1.169 1.235 

84 5 10 40 5 40 1.232 1.162 1.228 

85 5 10 50 5 40 1.222 1.152 1.218 

86 5 10 10 5 60 1.230 1.160 1.226 

87 5 10 20 5 60 1.223 1.153 1.219 

88 5 10 30 5 60 1.215 1.145 1.211 

89 5 10 40 5 60 1.208 1.138 1.204 

90 5 10 50 5 60 1.198 1.128 1.194 

Scenario 

No. 

(Increment 

No.) 

Coefficient of variation Correlation length Factor of Safety 

Unit 

weigh

t 

Friction 

Angle 

Cohesi

on 
Vertical Horizontal 

Bishop 

simplified 

Janbu 

simplified 
Spencer 

91 (1) 2 5 20 0.3 20 1.531 1.485 1.527 

92 (2) 4 15 30 0.3 20 1.455 1.411 1.454 

93 (3) 8 20 40 0.3 20 1.415 1.371 1.417 

94 (4) 10 25 50 0.3 20 1.376 1.331 1.38 

95 (1) 2 5 20 0.3 40 1.53 1.485 1.526 

96 (2) 4 15 30 0.3 40 1.455 1.411 1.454 

97 (3) 8 20 40 0.3 40 1.416 1.372 1.417 

98 (4) 10 25 50 0.3 40 1.377 1.333 1.38 

99 (1) 2 5 20 0.3 60 1.53 1.48 1.526 

100 (2) 4 15 30 0.3 60 1.456 1.41 1.455 

101 (3) 8 20 40 0.3 60 1.418 1.374 1.419 

102 (4) 10 25 50 0.3 60 1.38 1.337 1.384 
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Table 92. Factor of safety vs COV of cohesion at different horizontal variability levels (with medium 

vertical variability) 

 

 
Table 93. Factor of safety vs COV of cohesion at different horizontal variability levels (with low 

vertical variability) 

 

 

Scenario 

No. 

(Increment 

No.) 

Coefficient of variation Correlation length Factor of Safety 

Unit 

weigh

t 

Friction 

Angle 

Cohesi

on 
Vertical Horizontal 

Bishop 

simplified 

Janbu 

simplified 
Spencer 

103 (1) 2 5 20 2 20 1.524 1.48 1.52 

104 (2) 4 15 30 2 20 1.431 1.38 1.43 

105 (3) 8 20 40 2 20 1.379 1.322 1.378 

106 (4) 10 25 50 2 20 1.325 1.266 1.325 

107 (1) 2 5 20 2 40 1.523 1.479 1.52 

108 (2) 4 15 30 2 40 1.431 1.38 1.429 

109 (3) 8 20 40 2 40 1.379 1.324 1.377 

110 (4) 10 25 50 2 40 1.325 1.267 1.325 

111 (1) 2 5 20 2 60 1.523 1.48 1.519 

112 (2) 4 15 30 2 60 1.431 1.381 1.429 

113 (3) 8 20 40 2 60 1.379 1.325 1.377 

114 (4) 10 25 50 2 60 1.326 1.269 1.326 

Scenario 

No. 

(Increment 

No.) 

Coefficient of variation Correlation length Factor of Safety 

Unit 

weigh

t 

Friction 

Angle 

Cohesi

on 
Vertical Horizontal 

Bishop 

simplified 

Janbu 

simplified 
Spencer 

115 (1) 2 5 20 5 20 1.519 1.475 1.515 

116 (2) 4 15 30 5 20 1.417 1.363 1.415 

117 (3) 8 20 40 5 20 1.36 1.3 1.359 

118 (4) 10 25 50 5 20 1.3 1.23 1.3 

119 (1) 2 5 20 5 40 1.518 1.475 1.515 

120 (2) 4 15 30 5 40 1.418 1.364 1.415 

121 (3) 8 20 40 5 40 1.36 1.3 1.35 

122 (4) 10 25 50 5 40 1.3 1.24 1.3 

123 (1) 2 5 20 5 60 1.518 1.475 1.515 

124 (2) 4 15 30 5 60 1.419 1.366 1.416 

125 (3) 8 20 40 5 60 1.36 1.3 1.36 

126 (4) 10 25 50 5 60 1.3 1.24 1.3 
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