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Abstract

The properties of geomaterials usually vary from one location to another within the same site, in both
the vertical and horizontal directions. The variability of soil properties is a complex phenomenon that
results from several sources of uncertainties, including inherited spatial variability, measurement
error, statistical error, and model bias error. This study aimed at investigating the different methods
and techniques used to evaluate the spatial variability of soil properties; the different sources of
geotechnical variability; quantifying the variability of soil properties for inclusion in analysis; and
design of different geotechnical engineering applications. This included conducting in-box tests and
field tests on constructed sections at the Accelerated Load Facility (ALF) site and under-construction
sections from different projects using different devices, such as Dynamic Cone Penetrometer (DCP),
Light Falling Weight Deflectometer (LFWD), and Geogauge. Typical laboratory tests, such as



Atterberg limits, unconsolidated undrained (UU) triaxial, small direct shear, consolidation, and
California bearing ratio (CBR) tests, were also conducted to evaluate the specimen and operator-
related variability of different soil properties. In addition, the specific site variability was also
evaluated using the results from soil borings with laboratory tests and/or the results of in-situ tests
such as cone penetration test (CPT) and standard penetration tests (SPT).

The spatial variability of soil properties can be expressed in terms of mean, coefficient of variation,
scale of fluctuation, and correlation length. Several statistical techniques such as X-Bar/R, ANOVA,
second moment (SM) analysis, semivariogram, Bayesian, probabilistic analysis can be used to
characterize and evaluate the soil variability. The results from laboratory, in-box, and field testing
programs were analyzed using the Gauge R&R, ANOVA, and SM analysis; and the variability of soil
properties were expressed in terms of standard deviations and coefficient of variations (COV).

The results of laboratory, in-box, and field tests showed that the COVs from SM analysis are smaller
than the COVs from ANOVA method. The operator-related variations showed lower values of COVs
than those generated from location/specimen-related variability. Additionally, analyses of variability
from in-box tests indicated lower COVs than the field tests. The COVs for the under-construction
sections were higher than the COVs for the constructed sections at ALF site. In the case of laboratory

tests, the specimen-related variability had higher COVs than the operator-related variability.

The semivariogram approach was used to evaluate the site variability of six sites from CPT tests and
four sites from soil boring data. The vertical and horizontal correlation ranges were determined for
each site and used to evaluate the reduction factor and the spatial COV for evaluating the resistance
factors for the load and resistance factor design (LRFD) of pile foundations.

A two-level Bayesian analyses were used to update the mean bias and standard deviation of the
measured/predicted pile capacity variables estimated using the Laboratoire Central des Ponts et
Chausees (LCPC) Pile-CPT method for three sites. In Level 1, the state variables were updated from
the national data; while in Level 2, the site variables were updated from state data. The updated mean
bias and standard deviation for each specific site were used to calibrate the resistance factors for
LRFD design of pile foundations.

The probabilistic method was used to analyze the CPT data obtained from LA 1 site with 13 CPT
tests using the Stanford Geostatistical Modeling Software (SGeMS) software, which provides
confidence intervals (0 to 100%) of the estimated data between the tested points. The probability that
the estimated CPT data fall between + standard deviation were calculated and further used to update
the spatial variability and the LRFD resistance factor of LCPC Pile-CPT method.

The effect of variability in soil properties in the slope stability analysis was investigated using the
Slide 2018 2D software. Different scenarios were modeled for drained and undrained conditions. The



results showed that the factor of safety decreases with increasing the COV of cohesion and friction
angle and with increasing the vertical and horizontal correlation lengths.

The effect of site variability on shallow and deep foundations was investigated for single and multiple
soil borings with different distances from the foundation using Fenton and Griffiths and Naghibi and
Fenton approaches. The results showed that the ultimate bearing capacity and the resistance factor
decreases with increasing the COV of soil properties and the distance between the foundation and soil
boring.
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Abstract

The properties of geomaterials usually vary from one location to another within the same
site—in both the vertical and horizontal directions. The variability of soil properties is a
complex phenomenon that results from several sources of uncertainties, including
inherited spatial variability, measurement error, statistical error, and model bias error.
This study aimed at investigating the different methods and techniques used to evaluate
the spatial variability of soil properties; the different sources of geotechnical variability;
quantifying the variability of soil properties for inclusion in analysis; and design of
different geotechnical engineering applications. This included conducting in-box tests
and field tests on constructed sections at the Accelerated Load Facility (ALF) site and
under-construction sections from different projects using different devices, such as
Dynamic Cone Penetrometer (DCP), Light Falling Weight Deflectometer (LFWD), and
Geogauge. Typical laboratory tests, such as Atterberg limits, unconsolidated undrained
(UU) triaxial, small direct shear, consolidation, and California bearing ratio (CBR) tests,
were also conducted to evaluate the specimen and operator-related variability of different
soil properties. In addition, the specific site variability was also evaluated using the
results from soil borings with laboratory tests and/or the results of in-situ tests such as
cone penetration test (CPT) and standard penetration tests (SPT).

The spatial variability of soil properties can be expressed in terms of mean, coefficient of
variation, scale of fluctuation, and correlation length. Several statistical techniques such
as X-Bar/R, ANOVA, second moment (SM) analysis, semivariogram, Bayesian,
probabilistic analysis can be used to characterize and evaluate the soil variability. The
results from laboratory, in-box, and field testing programs were analyzed using the Gauge
R&R, ANOVA, and SM analysis; and the variability of soil properties were expressed in
terms of standard deviations and coefficient of variations (COV).

The results of laboratory, in-box, and field tests showed that the COVs from SM analysis
are smaller than the COVs from ANOVA method. The operator-related variations showed
lower values of COVs than those generated from location/specimen-related variability.
Additionally, analyses of variability from in-box tests indicated lower COVs than the
field tests. The COVs for the under-construction sections were higher than the COVs for
the constructed sections at ALF site. In the case of laboratory tests, the specimen-related
variability had higher COVs than the operator-related variability.



The semivariogram approach was used to evaluate the site variability of six sites from
CPT tests and four sites from soil boring data. The vertical and horizontal correlation
ranges were determined for each site and used to evaluate the reduction factor and the
spatial COV for evaluating the resistance factors for the load and resistance factor design
(LRFD) of pile foundations.

A two-level Bayesian analyses were used to update the mean bias and standard deviation
of the measured/predicted pile capacity variables estimated using the Laboratoire Central
des Ponts et Chausees (LCPC) Pile CPT method for three sites. In Level 1, the state
variables were updated from the national data; while in Level 2, the site variables were
updated from state data. The updated mean bias and standard deviation for each specific
site were used to calibrate the resistance factors for LRFD design of pile foundations.

The probabilistic method was used to analyze the CPT data obtained from LA 1 site with
13 CPT tests using the Stanford Geostatistical Modeling Software (SGeMS) software,
which provides confidence intervals (0 to 100%) of the estimated data between the tested
points. The probability that the estimated CPT data fall between the standard deviation
were calculated and further used to update the spatial variability and the LRFD resistance
factor of LCPC Pile-CPT method.

The effect of variability in soil properties in the slope stability analysis was investigated
using the Slide 2018 2D software. Different scenarios were modeled for drained and
undrained conditions. The results showed that the factor of safety decreases with
increasing the COV of cohesion and friction angle and with increasing the vertical and
horizontal correlation lengths.

The effect of site variability on shallow and deep foundations was investigated for single
and multiple soil borings with different distances from the foundation using Fenton and
Griftiths and Naghibi and Fenton approaches. The results showed that the ultimate
bearing capacity and the resistance factor decreases with increasing the COV of soil
properties and the distance between the foundation and soil boring.
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Implementation Statement

This study aimed at evaluating the different sources of geotechnical variability that

include laboratory and field testing, variability of testing devices, and quantifying the

spatial variability of soil properties for incorporation into analysis and design of different

geotechnical engineering applications. The findings of this study can be implemented into

the design and analysis of deep foundations, shallow foundations, slope stability, and any

other geotechnical application as summarized below:

1.

The variability of different soil properties evaluated in terms of coefficient of
variation (COV) from the laboratory and the AASHTO Materials Reference
Laboratory (AMRL) test results can be implemented in reliability analysis and
design for different geotechnical engineering applications.

The variability and spatial distribution of in-situ testing measurements of field
sections, in terms of COV using the different devices, such as DCP, LFWD,
Geogauge, Nuclear Density Gauge (NDG), and E-Gauge, can be implemented in

forensic analysis and design of pavements, embankments, slopes, etc.

The semivariorgam analysis can be used to evaluate the spatial variability from
multiple CPT tests and/or multiple soil borings to determine the vertical and
horizontal correlation ranges of the site variability, which will be used to evaluate
the spatial COV for the specific site for use in many geotechnical engineering
applications. This includes specific site calibration of resistance factor for LRFD
design of shallow and deep foundations, settlement calculation, and slope stability
analysis.

The Bayesian analysis technique can be incorporated to update the mean bias and
standard deviation, and hence the COV of the measured/predicted pile capacity
variables as more pile load test data are available. This technique can be applied
to update state variables (level 1) or specific site variables (level 2) for use to
calibrate the resistance factors for LRFD design of pile foundations.

The application of the probabilistic analysis approach using the SGeMS software
can provide us with the confidence level of estimated data between the tested

points from kriging analysis, and hence the probability that the estimated data fall
between + standard deviation. The results of probabilistic analysis can be used to
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update the spatial variability of the specific site for calibrating the LRFD
resistance factor for different geotechnical engineering applications, such as
LRFD design of pile foundation.

The variations of soil properties can be implemented to evaluating the slope
stability analysis of slopes, embankments, and mechanically stabilized earth
(MSE) walls.

The method proposed by Fenton and Griftiths can be implemented to incorporate
the variability in soil properties and distance from soil boring(s) for analysis and
design of shallow foundations.

The method proposed by Naghibi and Fenton can be implemented to incorporate
the variability in soil properties and distance from soil boring(s) for analysis and
design of deep foundations.
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Introduction

The subsurface soil conditions of all natural deposits are usually subjected to significant
degree of variability in terms of soil type, layering, and their properties, which are rarely
homogeneous. Unlike structural engineers who deal with mostly homogeneous man-
made materials, such as concrete and steel, geotechnical engineers have to cope with
highly variable natural materials (soils and rocks). As a result, high variance is expected
in the resistance of geotechnical structures (e.g., foundations, slopes, earth-retaining
structures) due to the vertical and horizontal spatial variations of soil properties for the
site. Generally, the soil borings and in-situ tests are carried out at fixed-spaced locations
(e.g., every 100 feet), and the laboratory tests are conducted on samples retrieved from
discrete depths, which can result in special variations of soil properties for the specific
site. Due to variability problem, the accuracy and reliability of the measured data to be
used in the design geotechnical structure are somehow unknown. Therefore, geotechnical
engineering often deals with different kinds of uncertainties that can result in either
under-design, which can cause failure, or overdesign, which increases the construction

cost if these uncertainties are not considered properly in the design.

Site investigation and characterization of subsurface soil conditions are very crucial for
geotechnical engineering design and analysis. The scope of site exploration and
investigation is mainly controlled by how much the customer and project authorities are
willing to spend, rather than by what is needed to explain the subsurface soil condition.
To design foundations and other geotechnical structures, specialists are preferably
looking for exclusive soil properties at numerous locations. However, reaching this goal
can be unlikely and expensive, since it may consume huge amounts of finance, labor, and
material as well as time. Fortunately, some soil properties are spatially correlated with
each other and thus can be related to many environmental issues (e.g., [1], [2], [3]).

The soil properties inherently vary spatially from point to point within the same site (both
horizontally and vertically) due to several factors including depositional environment,
degree of weathering, and physical processes (e.g., [4], [5]). The inherent spatial
variability of soil renders inescapable uncertainty in geotechnical design [4]. Soil
variability is a complex phenomenon that arises from many different sources of
uncertainties. The four primary sources of geotechnical uncertainty are inherited spatial
variability (horizontally and vertically) of the soil deposit during deposition, random
measurement errot, statistical uncertainty, and model bias uncertainty. The first source of



uncertainties results from the natural geologic processes that continuously modify the in-
situ characteristics of the soil properties, which vary from location to location. Different
factors such as the random mixture of various soil types and composition, variation in
water content, variation in density, and variation of stress level over time contribute to the
in-site variation in the soil properties. The inherent soil variability is described as a
random field that can be described precisely by the mean (m), coefficient of variation
(COV), and scale of fluctuation. Measurement error is caused by equipment and/or
operator induced variation, which can take place from one test to another. Equipment
error arises from variations when tests are set up and loads are delivered. Operator
induced variation occurs when personal judgement is required to read scales and take
measurement, or during sample preparation and handling. Statistical uncertainty is
associated with choosing the best equation/correlation required to interpret collected data
from a range of equations. Statistical uncertainty is expected to be significant because the
volume of soil sampled can be a large fraction of the volume of interest. The bias model
uncertainties are due to variations between the model's predictions from the measured
values, which arise from transformation when the important property was not measured
directly but rather projected using a credible transformation/interpretation model or other
sufficiently reasonable (or measured) information (e.g., [6], [7], [8]). These sorts of
uncertainties can be lumped together and termed as total site variability (e.g., [7], [8]).

Several techniques have been proposed to evaluate the site variability. These techniques
involved Geographic Information Systems (GIS), geostatistical studies, multivariate
statistical analysis, and other methods. The GIS was initially developed as a tool for data
retrieval and displaying geographic information, and later enhanced for spatial analysis
[9]. GIS with various spatial interpolation methods, including inverse distance and
kriging, was used in several regional scales for soil quality survey studies (e.g., [10],
[11]). The traditional interpolation techniques including inverse distance and kriging are
inadequate for the uncertainty assessment with the soil variables. Kriging algorithm is apt
to smooth out a local spatial variation of the variable. Goovaerts et al. [12] indicated that
small values are typically overestimated and large values are underestimated, with the
local error variance being the minimum and the variance of kriging estimates being six
times smaller than the sample variance. However, the Sequential Gaussian Simulation
(SGS) can be used to generate variable maps and reproduce actual statistics, histograms,
and variograms of the spatial variability for the data without smoothing effect.

Defining the spatial variability from the measured data requires engineers to determine
the correlation between data pairs that are separated by different distances (vertically and
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horizontally) using different parameters. One of the main fundamental parameters used is
the covariance Cov(q;,qj) between data values q; and q; separated by a distance (h). The
other parameter that is used to measure site variability in terms of the extent of spatial
dependency between samples is known as the semi-variogram, y(h), which can be defined
as the distance range (a) that defines the end of correlation between the data pairs.
Researchers are also looking for new techniques to evaluate site variability parameters
using advanced statistical methods, such as the Bayesian analysis, probability analysis, or
distribution by adopting the sequential Gaussian simulation using the Stanford
Geostatistical Modeling Software (SGeMS).

Several researchers in literature studied the effect of site variability for different
geoterchnical engineering applications. Onyejekwe et al. [13] performed geostatistical
spatial analysis to evaluate the undrained shear strength profile at any specific location
within the site. Lacasse and Nadim [4] showed that the geotechnical parameters had
variability in both vertical and horizontal directions with a greater inclination for the
geotechnical properties. McVay et al. [14] conducted a study to evaluate the resistance
factors (¢pr) for the Load and Resistance Factor Design (LRFD) of piles that incorporates
the spatial variability of local rock and soil strength. Otero [15] performed a study to
improve the LRFD resistance factors (¢r) for non-redundant shaft design incorporating
the new design methods for larger single shaft design. Faraone [16] presented a
methodology that incorporates the framework of reliability-based design, while
accounting for the site-specific spatial variability, which is applicable to several deep
foundation design practices. Fenton and Griffiths [17] investigated the effect of variation
in soil parameters on the bearing capacity of shallow foundations. Naghibi and Fenton
[18] investigated the effect of site soil variability with varied distance from soil boring to
calculate resistance factor for deep foundation. Several studies are also available in
literature on the effect of spatial variability on the slope stability analysis (e.g., [19], [20],

[21]).

This study aimed at evaluating the operator-induced and equipment-induced variations,
evaluating the different sources of geotechnical variability from both soil
boring/laboratory and in-situ testing; and quantifying the special variability of soil
properties for incorporation into analysis and design of different geotechnical engineering
applications such as LRFD design of pile foundations, bearing capacity shallow
foundations, and slope stability analysis.



Literature Review

General

The subsurface soil deposits are usually heterogeneity in nature, which contribute to the
spatial variation in soil types, soil layering, and soil properties. Therefore, the soil
properties of all natural soil deposits have certain degrees of variability and vary
inherently from point to point within the same site, in both the vertical and horizontal
directions, due to many reasons including the depositional environment, the degree of
weathering, and the physical process [e.g., [4], [5]. Looking at the microscopic level, the
soils are associated with different types of phases that can include minerals, gasses, ions,
and other non-mixable fluids and micro organisms. Meanwhile, at the macroscale level,
the soil heterogeneity leads to geological processes of soil varying, which imparts soil
spatial formation such as physical, chemical and biological weathering, deposition,
consolidation, cementation, desiccation, leaching, and diagenesis.

Researchers have long recognized the necessity of assessing variability and uncertainty in
geotechnical engineering design, and reliability-based design (RBD) approaches have
been developed internationally over the last 30 years. For example, Terzaghi et al.
emphasized the importance of uncertainty and unpredictability in geotechnical
engineering design and practice [22]. Several studies have been done by various
researchers (e.g., [6], [8], [14], [23], [24]) to enhance the state of knowledge in
geotechnical engineering by assessing variability and uncertainty, and applying
reliability-based design methodologies.

The variability of subsurface soil condition and soil properties is a complex phenomenon
that results from many different sources of uncertainties. The inherent soil variability is
usually described as a random field with mean (m), coefficient of variation (COV), and
scale of fluctuation of data. Before examining the historical progress of the study of
spatial variability in the field of geotechnical engineering, it is necessary, by way of
background, to treat the various mathematical techniques used in this area of research.
This section will present the work available in literature on geotechnical engineering

variability and uncertainty analysis.



Variability and Uncertainty in Geotechnical Engineering

In geotechnical engineering analyses, variability is a primary source of uncertainty. Many
areas of geotechnical engineering, notably the characterization of soil properties, are
fraught with uncertainty. There are two types of uncertainty in geotechnical properties:
aleatory and epistemic uncertainty ( [4], [25], [26]). Aleatory uncertainty is a
consequence of the spatial variability of the soil characteristic and indicates the property's
intrinsic randomness. Lack of information and flaws in measurement and/or calculation
cause epistemic uncertainty. For example, systematic inaccuracy is caused by factors
such as property measurement methods, modeling errors, and the amount of available
data. Human error is the third source of uncertainty. However, because it is difficult to
separate and its effects on probability are frequently included in compilations of statistics
on aleatory uncertainty, it is not usually considered in uncertainty assessments [27].
Figure 1 presents the schematic of the sources of uncertainty in geotechnical soil
properties.

Figure 1. Sources of uncertainty in geotechnical soil properties (Adapted from [25])
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In the field of geotechnical engineering, traditional tools for dealing with soil
heterogeneity have relied on a high factor of safety and local experience. This creates
inconsistency in performance measurement, prompting widespread recognition of the
need for more reliable techniques to incorporate soil heterogeneity into a more
quantitative scheme suited to engineering design. Since the performance of geotechnical
structures depends on local extremes of characteristics within a subsurface profile, it is
critical to probabilistically characterize the soil profile [28]. The probabilistic
classification of soil profiles offers a format for evaluating geotechnical information
about subsurface soil conditions at a specific site; a foundation for performance



prediction of a geotechnical engineering structure and evaluating the probability of
failure; and allows a geotechnical engineer to better evaluate various site investigation
and testing programs [29].

Baecher originally described two key sources of variability in rock mass attributes, found
from site investigations, as inherent spatial variation and mistakes induced by sampling
and testing when conducting site characterization on rock masses [30]. Baecher and
Einstein and Baecher proposed a method for coping with large amounts of uncertainty in
rock mass joints based on statistical reasoning and formal inference [30], [31]. Baecher
concluded that the sources of uncertainties are due to geological uncertainty resulting
from site formations, geometry, and previous history; model uncertainty caused by
physical model offerings; parametric uncertainty arising from spatial variability,
measurement error, and estimation bias; and finally, uncertainty arising from omissions or
overlooking geological details [30], [32], [33], [34].

Geotechnical variability is a complex attribute that results from many disparate sources of
uncertainties. As shown in Figure 2, Christian et al. [35] classified the uncertainty in
soil/rock parameters into two groups: (1) data scatter, which includes spatial variation of
the soil deposit and random testing/measurement errors; and (2) systematic error, which
includes statistical error and measurement bias. The spatial variability usually results
from the natural geologic processes and deposits that produced and continuously modify
the in-situ characteristics of soil, which makes the soil properties to vary, horizontally and
vertically, from place to place. Different parameters (e.g. the mixture of various soil,
water content, density, stress level) contribute to the change of soil properties.

Measurement errors are caused by equipment or operator-induced variation, which can
take place from one test to another. Operator-induced variation occurs when personal
judgement is required to read scales, take measurements, or during sample preparation
and handling and possible soil disturbance. Equipment error arises from variations in the
way tests are set up, loads are delivered, or soil response is sensed. For example, in the
light falling weight deflectometer (LFWD) tests, the load plate of LEFWD may be situated
on the material to be tested differently in succeeding tests. Drop height and rod resistance
may vary slightly from one drop to another, and temperature changes can affect the
damping properties of the rubber buffer.

Statistical error is predominantly caused by the use of a small number of measurements;
whereas the model bias arises when a correlation model is selected to interpret specific
data.



Figure 2. Uncertainty in soil properties [35]
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Baecher and Christian [36] adopted Hacking's terminology [37] for two basic forms of
uncertainty: aleatory and epistemic uncertainty, which reflect natural variability and lack
of information, respectively. As illustrated in Figure 3, Baecher and Christian [36]
categorized the uncertainty in geotechnical engineering design into three broad groups:
natural variability (temporal, spatial), knowledge uncertainty (model, parameters), and
decision model uncertainty (objectives, values, and time preferences).

Figure 3. Categories of uncertainty in risk analysis [36]
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As defined by Baecher and Christian [36], the natural variability is the variability of soil
qualities across time and space, expressed as variability at a single place with changes in
time (temporal) and variability throughout space at a single time (spatial). Another name
for natural variability is the aleatory uncertainty. Since it has been introduced into the
design due to a lack of information, data, and understanding, Baecher and Christian's
knowledge uncertainty is known as subjective uncertainty. It is also known as epistemic
uncertainty. Figure 3 describes how the model and parameter uncertainties can be



subdivided from the knowledge uncertainty. In geotechnical design, Baecher and
Christian's decision model uncertainty, which comprises of objectives, values, and time
preferences, entails implementing designs that reflect both aleatory and epistemic
uncertainties.

Phoon and Kulhawy ( [6], [7], [38]) evaluated three key types of uncertainty in
geotechnical variability: (1) inherent variability, (2) model uncertainty, and (3)
measurement error. The generic depiction of uncertainty for soil parameters studied by
Kulhawy and his co-authors is shown in Figure 4. For a homogeneous random field
model, the inherent variability is represented using the coefficient of variation and scale
of fluctuation [38]. Unlike the model uncertainty, the transformation model uncertainty
considered by Kulhawy and Phoon reflects uncertainty originating from the application
of empirical models or correlation models to convert indirect measurements to required
design parameters [7]. The equipment, procedural/operator, and random testing effects all
contribute to measurement error during the measurement procedure [6].

Figure 4. Uncertainty in soil property estimates [38]
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Unlike most prior researchers, Griffiths and Fenton [19] concentrated on aleatory
uncertainty, soil fluctuation that occurs naturally. Their research focuses on the spatial
variability of soil parameters and the application of random field finite element models
for reliability-based design. Vanmarcke's random field theory, which uses the correlation
structure of one-dimensional random processes in terms of a variance function and a
scale of fluctuation, was adopted by Griffiths and Fenton [39]. The random field theory
aids in the construction of models for studying soil spatial variability and is the
foundation of Griffiths and Fenton's reliability analysis. Griffiths and Fenton use a
positive connection between soil parameters obtained at near distances to reflect the soil



information at a given place. Griffith et al. [24] also developed the random finite element
method (RFEM) in reliability-based design by combining random field theory and the
finite element approach with Monte Carlo simulation methodologies. Fenton researched
quantifying soil qualities in order to create spatial correlation structures that might be
used to make inferences about other locations with similar soil engineering properties
([40], [41]). Fenton used the fractal model to examine the tip resistance measurements
from cone penetration tests (CPT) and constructed a global correlation model to

characterize the spatial variability of tip resistance [23].

Onyejekwe et al. [13] conducted a research study with the goal of statistically describing
the variability of geotechnical factors in order to increase geotechnical engineers'
adoption of reliability-based design (RBD). The first and second statistical moments, as
well as the coefficient of variation (COV) were used to describe the geotechnical
characteristics. Their probability distributions and fluctuation scales, were also
calculated. The degree of fit of study data to known empirical correlations was studied.
Correlations between difficult-to-obtain parameters and more easily-obtain parameters
were generated. They revealed that the Semivariogram Function (SVF) is better suitable
for determining the scale of variation from widely dispersed, noncontinuous, irregular
data received from laboratory testing than the Autocorrelation Function (ACF). A
framework was suggested in his research that combines the spatial averaging impact of
parameters computed from widely dispersed, irregular, and non-continuous data using the
scale of fluctuation and variance reduction factor.

McVay et al. [14] noted that the Florida Department of Transportation (FDOT) and the
Federal Highway Administration (FHWA) use a constant load and resistance factored
design (LRFD) for deep foundation design, which depend on redundancy and
independent of pile or shaft dimension. They stated that the properties of soil differ from
one location to another and are often spatially associated. Since the skin friction (and end
bearing) need spatial averaging of the soil properties across the pile shaft, the resulting
total shaft resistance variability (CVR) will not be the same as the soil/rock field
measurement variability (CVg). The varying degree of spatial correlation, as expressed by
a covariance function, and the correlation length (a) will also affect the total shaft
resistance variability (CVR). They showed that while CVr is a function of pile/shaft
dimensions, CVq value and spatial correlation, the value of resistance factors (¢r) is not
constant for any given location. They provided four quadrant iterative design charts for
single and group pile/shaft layouts, which consider side and tip resistances as well as
layered systems, which were produced to assist the designer.



Faraone [16] debated that AASHTO specifies resistance factors (¢pr) for use in a variety
of design approaches, foundation types, and levels of field verification in current
reliability-based design practice for deep foundations (e.g., load testing). These values of
¢ are calibrated using databases of measured vs anticipated resistances and are based on
defined target reliabilities. This calibration has the drawback of not accounting for the
varying degrees of design parameter variability that can be seen across different sites
(i.e., homogeneous versus heterogeneous sites). He introduced a reliability-based design
methodology that he thinks accounts for site-specific spatial variability and may be
applied to a variety of deep foundation design practices. Through stochastic modeling,
geostatistical tools are employed to describe site heterogeneity and quantify uncertainty
of either foundation resistance or rock mass modulus.

Data Scatter

The first source of uncertainties results from the natural geologic processes that
continuously modify the in-situ characteristics of soil. The soil properties vary from place
to place. Different parameters (e.g. the mixture of various soil, water content, density,
stress level) contribute to the change of soil properties. Measurement error is caused by
equipment- or operator- induced variation, which can take place from one test location to
another. Operator-induced variation occurs when personal judgement is required to read
scales, take measurements, or during sample preparation and handling. Equipment error
arises from variations when tests are set up and loads are delivered. For example in the
case of the LFWD, drop height, rod resistance, and seating of the load plate can vary
from one drop to another, and the rubber buffer can be influenced by temperature change.
Collectively, these two sources can be described as data scatter ( [6], [7], [8]).

Various geologic, physical-chemical, and environmental processes contribute to the
development of soil deposit. Some of these processes continue for long periods of time
and can modify the soil characteristics. Due to the ongoing natural processes, soil
properties will vary in both the horizontal and vertical directions The spatial variability
can be depicted precisely by the central trend, the COV, and the scale of fluctuation.

Soil Profile

The spatial variation of soil properties can be classified into a deterministic trend
component "f"" and a random component "¢". The relationship can be formulated as
follows ( [7], [42], [43]):
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sp(2) = 1(z) +&(2) [1]

where sp is the soil property, z is the depth, and the vertical spatial soil variability is
represented by the random component. First, the random component is measured by all

geostatistical operations, and the deterministic component is added later.

While quantifying spatial variability, it is required to model sp(z) as a homogeneous
random function or field [44]. Two considerations are required to maintain when the
function sp(z) is considered statistically homogeneous: (1) there are no change in mean
trend and variation of "¢" along the depth; and (2) the correlation is a function only of the
deviations between two separation distances, rather than their absolute position. When
data is collected from a homogenous soil layer, fluctuations in the soil property profile
are probably considered to be uniform. Figure 5 presents the spatial soil variability with
depth along soil profile.

Coefficient of Variation

The standard deviation of inherent soil variability (ow) for a homogeneous variability
function sp(z) can be defined as follows [42]:

0= | Z0 )] 2]

where, n is the number of data points, and &(z;) is the fluctuation at depth z;.
Dimensionless representation of inherent soil variability known as the coefticient of
variation (COV,,) can be more useful by normalizing o, with respect to the mean soil
property trend (f) as follows:

()
COV,= TW [3]



Figure 5. Spatial soil variability ( [6], [7])
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Another statistical parameter that is required to describe site variability is the correlation
distance or scale of fluctuation, d,, as shown in Figure 6, which can provide a specific
indication of the property values that show a strong correlation.

5,=0.8d [4]

where, 8, is the vertical scale of fluctuation, and d is the average distance between the
intersections of the profile of fluctuating property and its trend function, as shown in

Figure 6.
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Figure 6. Estimation of vertical scale of fluctuation ( [6], [7])
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Measurement Error

The second source of uncertainties, which are measurement-related uncertainties, can be
divided into three categories: accuracy, repeatability (precision) and reproducibility [45].
The accuracy is referred to the average of individual measurements as compared with the
true value, which is influenced by the resolution, bias, stability (change in bias over
time), and linearity (change in bias over normal operating range) of the measurements
[45]. Figure 7 illustrates the accuracy, stability, and linearity of the measurements.
Repeatability is defined as the variation that occurs when the same operator repeatedly
measures the same sample using the same devise under the same conditions (see Figure
8a) [45]. Reproducibility is related to the variations that occur between two or more
operators or devises measuring the same sample using the same measurement method in

a stable environment (see Figure 8b) [45].

Repeatability and reproducibility (R&R) can be estimated using the Gauge R&R (GRR)
analysis method. The Gauge is any device that can be used to obtain measurement. The
R&R is defined as the coordination of the device variability (repeatability) and operator
variability (reproducibility). The concept of GRR is illustrated in Figure 8c. The results of
a Gauge R&R study are EV (repeatability or equipment variability), AV (reproducibility
or the operator variability), and SV (specimen variability) [43].
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Figure 7. lllustration of accuracy, stability, and linearity of measurements [45]
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Systematic Error

The third source of uncertainty in geotechnical measurements is the statistical errors that

result from the limited amount of information. When it is required to estimate the mean

trend of measurements, the use of limited number of tests can lead to possible statistical



error. This type of measurement uncertainty can be minimized by performing tests on

more soil samples [6], [8], [38].

The fourth source of uncertainty, known as the model bias, is introduced when empirical
or other correlation models are used for field or laboratory measurements, which are
consequently transformed into design soil properties. This bias uncertainty can be
estimated empirically by comparing the model predictions made from the measured
values against the observed values. Collectively, these two sources can be described as

the systematic error [8].
Figure 8. lllustration of repeatability, reproducibility, and GRR of measurements [45]
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Methods and Techniques for Evaluating Site Variability

As stated earlier, the in-situ properties of all soil deposits, by nature, are usually subjected
to certain degree of variability (spatially in both the vertical and horizontal directions)
within the same site, which was inherited with time since soil deposition. The variation of
soil properties can be statistically characterized by the mean, m, and standard deviation,
o. The dimensionless representation of inherent soil variability, known as the coefficient
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of variation, COV, can be useful by normalizing the standard deviation, &, with respect to
the mean of the soil property trend, m, as follows:

Cov= Z 5
=— [5)

Orchant et al. [46] combined all possible error sources in one term using the following
equation:
+ o2 + o2

2 — <2
Omeasure = cyequip op/proc random [6]

where: 02,,4sure= total variance of measurement, Ggquip= variance of equipment effects,

Gﬁp /proc = variance of operator / procedural effects, and 024ndom = variance of random
testing effects. If the operator has a good experience and the machine is well maintained
and calibrated, the associated errors are expected to be substantially reduced. Orchant et

al. [46] evaluated the variation of CPT data from different sites and found out that the
total measurement error of the CPT is normally within the range of 5% to 15%.

Different methods and techniques have been introduced in literature to evaluate the
spatial variability of soil properties of a specific site from either the soil borings with
laboratory testing or from in-situ testing. The following sub-sections will present several
evaluation methods and their potential application in many geotechnical engineering
analysis and design.

X-Bar/R and ANOVA Analyses

Several methods and techniques can be used to perform the Gauge R&R analysis, which
includes the average and range (X-Bar/R) method and the analysis of variance (ANOVA)
method. The X-Bar/R method allows repeatability, reproducibility and specimen-to-
specimen variability where device-operator interaction is not considered. On the other
hand, ANOVA method is more precise in considering the interaction between the operator
and the device [43].

The equations used in the X-Bar/R and ANOVA methods are presented in Table 1 and
Table 2, where m replicate measurements that are performed by p operators on n
specimens. The parameter yjjx, which refers to the measurement made using the device (i)
by operator (j) on specimen (k), can be expressed using the following equation [43]:

Yijk= Xituj + wij ijk [7]



where, X; is the actual value of the desired parameter; u; represents the operator variation;
wijj represents the interaction between the specimen and operator; and ¢ijx represents the
repeatability error. The Gauge R&R value can be obtained from the following expression
[43]:

GRR = VEV?+AV? [8]

where, EV represents the repeatability of equipment variation, and AV represents the
reproductively of the operator variation. The total variation (TV) of a measurement
system can be calculated by adding the Gauge R&R variations to the specimen variation
(SV) as follows [43]:

TV = VEVHAVZ+SV? [9]

Table 1. Equations used to calculate variability parameters - X-Bar/R Method according to AIAG
Guidelines (Measurement System Analysis Manual, 4th Edition)

'?Epi?tarzg:g Reproducibility - | Repeatability & Specimen Total
anrigtion Operator Reproducibility Variation Variation
Variation (AV) (GRR) (SV) (TV)
(EV)
K 2 2 RS 2 2
N VEV*+AV i VGRR*+SV
2

aAutomotive Industry Action Group (AIAG), R = average range of measurements, d. = bias correction factor
obtained from statistical Tables, R, = range of the operator averages, do" = correction factor for estimating
variances obtained from statistical Tables, n=number of specimens, r = number of measurement repetitions,
Rg = range of the specimen average.



Table 2. Equations used to calculate variability parameters - ANOVA Method (Measurement System
Analysis Manual, 4th Edition)

Expected
Mean Sum of | Estimate of
Source of | Degree of Sum of Value of
Squares, Variance
Variation| Freedom Squares, SS Variance
MSS Component
Estimate™
n
MSSO-MSSI
Specimens|  n-1 mpZ(yi 3 ) 550 —_ v2
d SSA | MSSA-MSSI
Operators p-1 an(y‘_y )2 N el bt 02
o p-1 mn
SSI MSSI-MSSE
Interaction| (n-1)(p-1) | SSI=SST-SSO-SSA-SSE | ——— | ————— o?
(n-1)(p-1) m
n P m
Error | np(m-1) ZZ( v. ) SSE MSSE 2
P L L L i np(m-1) °
=1 = =

var(yij)=v? + 02+ o+ 2, SSO = Sum of Squares of Objects, SSA = Sum of Squares of Operators, SSI =
Sum of Squares of Interactions, SSE = Sum of Squares of Errors, MSSO = Mean Sum of Squares of Objects,
MSSI = Mean Sum of Squares of Interactions, MSSA = Mean Sum of Squares of Operators, MSSE = Mean
Sum of Squares of Errors. ¥; represents the average of the measurements from the i object (the “dot” symbol
shows averaging over the second and third indices, j and k).

Second Moment Probabilistic Method

In the second moment probabilistic methods, the uncertainty in a random variable are
usually evauated through its first two moments, i.e. the mean (a central tendency
parameter) and the variance (a dispersion parameter). The second moment method and
their modeling of soil parameters are widely used in the geotechnical literature because of
their efficiency in transmitting important properties of datasets. Phoon and Kulhawy [6]
used the second moment probabilistic approach to statistically estimate the site soil
variability and measurement error in an extensive manner. They applied the second
moment approach (using the mean and coefficient of variation) to combine the inherent

soil variability, measurement error, and the transformation uncertainty.
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A summary of the COVs of inherent variability, scale of fluctuation, and measurement
error for various test measurements were presented in their study. They found out that the
vertical and horizontal scale of fluctuation of index parameter were the greatest. They
performed several laboratory tests (e.g. undrained shear strength, friction angle, liquid
and plastic limit, total and dry unit). In case of measurement error, they also reported that
the COVs of measurement error for most laboratory strength tests were estimated to be
between 5% and 15%. They also found out that the COVs of clay properties are greater
than sand soil.

A detailed analysis of the measurement error has been conducted by Kulhawy and
Trautmann [47] for the field test measurements. They performed regression analyses to
determine the amount of variation assignable to each test parameter. They applied the
second moment statistics (mean and coefficient of variation) to estimate the random

testing errors where replicate data were available.

In modeling uncertainty in the second moment probabilistic method, it is necessary to
assume that uncertainty propagation techniques (such as Monte Carlo simulation) are
compatible with the random variables [48]. The first-order second-moment (FOSM)
method has been effectively used in literature to investigate the propagation of second
moment uncertainties by calculating an approximate estimate of the central tendency
parameter (e.g., mean) and the dispersion parameter (e.g., standard deviation) of a
random variable that is a function of other random variables [48].

Spatial Correlation and Semivariogram

Geotechnical design engineers frequently fail to recognize the spatial variability of the
collected geotechnical data and its potential inverse impact on geotechnical engineering
applications, such as improper and/or unsafe design of shallow and deep foundations, and
slope stability analysis. The simple evaluation of mean values from soil borings or in-situ
testing within a zone or layer is a useful measure of the spatial variability of the intended
soil property/parameter. Differences in soil parameters are strongly related to the spatial
variability throughout a site, resulting in corresponding variations in the design value of
geo-structure, such as the axial capacities of deep foundation. Additionally, since spatial
variability has a degree of correlation that decreases with distance, the recommended
LRFD resistance factors for design of geo-structures (such as foundation) based on data
within the footprint versus data outside the footprint can be significantly different.
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Correlation in Soil Properties

In geotechnical engineering, using correlations and empirical relationships to predict the
value of one parameter based on the value of another (perhaps more easily obtained
parameter) can be considered a quick and cost-effective approach, provided that the
relevant correlations are used. The quantification of the correlation between two or more
soil qualities can provide a more accurate assessment of design parameter uncertainty and
an indicator of the degree of independence between the parameters in probabilistic
analysis (i.e., [48], [49], [50]).

The correlation between two or more soil attributes has been found to be influenced by
soil type, the testing method used to get the numerical value of the parameter, and the
homogeneity of the soil to variable degrees [48]. There have been a lot of correlations
between soil parameters that have been published. Over 50 of these connections are
presented in an article by Kulhawy and Mayne [51].

Histogram, Mean and Variance

The data for each soil layer or zone needs be plotted in a histogram once the site has been
divided into layers or zones and the data has been de-trended for stationarity criteria. An
engineer can see the frequency ranges of data as well as its distribution using the
histogram (e.g., mode and mean align, etc.). The presence of several peaks or modes in
the histogram can also be utilized to determine whether multiple distributions do exist

inside each zone or layer.

Both the mean (u) and variance (02) of the dataset (q;) should be first determined in
addition to the histogram. For example,

1
=13l [10)

0% =¥ (q — 1) [11]

n—-1

The coefficient of variation (COV) is a dimensionless measure of the inherent soil
variability that can be made more helpful by normalizing the standard deviation with
regard to the mean soil property trend, p, as follows:

cov=§ [12]
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where, p is the dataset's mean, n is the number of data points, q; are the data values, and ¢
is the dataset's standard deviation. The spread or dispersion of data around the mean is
represented by COV, a dimensionless number.

Engineers should select the best probability distribution function (PDF) that best
represents the observed data based on the shape of the histogram's distribution (e.g.,
uniform, triangular, normal, lognormal, etc.) as well as summary statistics (mean vs.
mode, etc.). Almost all soil parameters (e.g., strength, modulus, etc.) have no negative
values and a wide range of positive values, resulting in considerable disparities in mode

(most frequent) vs mean values and are best described by lognormal distribution.

Following the discussion of second moment statistics (mean, standard deviation,
coefficient of variation (COV), and probability distribution) and correlation in soil
properties, it can be concluded that second moment statistics are heavily dataset
dependent, with data distribution heavily influenced by soil type and in-situ state.
Published values, with their wide range of values, frequently fail to adequately represent
the local circumstances and, as a result, may fail to produce efficient, cost-effective

outcomes. As a result, site-specific second moment statistics must be developed.
Spatial Variability Analysis

The geographical variability of the parameters is not taken into consideration by the
second-moment-based methodologies for characterization the uncertainty in geotechnical
parameters. Geotechnical parameters are known to have lateral and depth-dependent
relationships. They vary spatially, with a larger tendency for close neighbors to have
similar values than distant neighbors. This is why the second moment statistics alone are
insufficient to characterize the geotechnical parameter uncertainty ( [4], [27], [48]).
Figure 9 shows why the second moment statistics alone are insufficient to quantify the
uncertainty of geotechnical parameter. The figure depicts the simulated spatial data with
identical distributions (top and bottom left) but distinct magnitudes of spatial correlation:
weak correlation (top right) and strong correlation (bottom right) [52].
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Figure 9. Spatial data with similar distributions (top and bottom left) but different magnitudes of

spatial correlation [52]
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Geostatistics is based on regionalized variables with properties that are partly random and
partly spatial, and that are consistent from one point to another point [53]. The
semivariogram, which is used to quantify the degree of spatial dependency between
samples along a certain orientation and to illustrate the degree of continuity of the
characteristic in question, is one of the most basic statistical measures in geostatistics.

The stationarity of data is required in order to undertake geostatistical analysis. If the
following conditions are met, data is said to be stationary: (a) there is no trend in the data;
(b) the variance is constant with distance (homoscedastic); (c) there are no seasonal
variations; and (d) there are no irregular fluctuations. In time series analysis, the need for
stationarity is more severe than in geostatistics. It is common practice, in both random
field theory and geostatistics, to convert a nonstationary dataset into a stationary one by
removing a low-order polynomial trend, usually no more than a quadratic, using the
Ordinary Least Squares (OLS) approach ( [29], [48]).
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In semivariogram analysis, engineers must first assess the correlation between data/sets
separated by different distances using different factors in order to define the spatial
variability from measured data. The covariance C(h) between data values q; and g
separated by a distance h is one of the most important fundamental parameters used. The
covariance C(h) is calculated as follows:

C(h) = ~3F-1(q: — W)(a; — 1) [13]

where, gi and q; are the data pairings separated by h, and n is the total number of data
pairs. The C(h) value equals the variance for completely correlated data (i.e., qi = q;).
C(h) = 0 if there is no correlation (i.e., the product of the terms is both plus and minus
and sums to zero). The correlation coefficient, p(h), is a dimensionless representation of
the data's correlation.

p(h) =2 [14]

The limits of zero and one (0 < p(h) < 1) represent no correlation and perfect correlation,
respectively. Another characterization of the spatial correlation in geostatistics is the
semivariogram, y(h), which is given by the following equation:

y(h) = —%(q;: — q)° [15]

The variogram y(h) can also be evaluated from the covariance C(h) and the variance of
data ” as follows:

y(h) = 0% —C(h) [16]

Figure 10 presents typical instances of C(h), p(h), and y(h) as a function of h with each
function indicating a decreasing correlation as h increases. The correlation function goes
to zero at a distance of h = a (called the range), or the data pairings become uncorrelated.
In the case of Equation 16, y(h=a) = 6> [C(h)=0], the variogram's top value, or sill, is
attained. The spatial covariance function can be predicted using a variety of theoretical
models. There are four types of models: spherical, exponential, Gaussian, and circular (
[6], [7]). The spherical model is the most extensively used of these models, and it is
defined as follows:

C(h;) = 1-1.5h;+0.5h} for h;<1
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C(h;)=0 for h> 1 [17]

Figure 10. Graphical examples of: (a) Spatial covariance function C(h); (b) Spatial correlation
function p(h); and (c) Variogram y(h) [14]
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Different Component of the Semivariogram

The semivariogram curve describes the measured sample points' spatial autocorrelation.
A model is fitted through each pair of locations once they have been mapped. There are
some properties that are frequently used to characterize these models. Figure 11presents
the three different components of the semivariogram, which include the range, sill, and

nugget.

Range: Examining the model of a semivariogram, we can see that it levels out at a given
distance, h, between sample/test locations. The range is defined as distance at which the
model begins to flatten out. Spatial autocorrelation exists between test/sample locations
separated by a distances less than the range, but not between test/sample locations farther
apart than the range. The range's physical meaning is that pairs of points that are this far
apart or more are not spatially connected.

Sill: The sill is the value that the semivariogram model achieves at the range (the y-axis
value). The partial sill is the same as the full sill, but without the nugget.

Nugget: The semivariogram value is 0 in theory for zero separation distance (lag = 0).
The semivariogram, on the other hand, frequently exhibits a nugget effect, which is a
value greater than 0 at an infinitesimally small separation distance. The nugget equals
0.10, for example, if the semivariogram model intercepts the y-axis at 0.10.
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Measurement mistakes; spatial sources of variation at distances smaller than the sampling
interval; or both, might be blamed for the nugget effect. The mistake inherent in
measuring apparatus causes measurement error. Natural events vary in spatial scale
across a wide variety of scales. The nugget effect will manifest as variation at microscales
smaller than the sample distances. Before you start collecting data, you need learn about
the different dimensions of geographic variation.

Figure 11. Different components of the semivariogram
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Evaluation of Scale of Fluctuation from Semivariogram

The statistics and probabilistic analysis of the geotechnical parameters are the main focus
of the deployment of reliability based design (RBD). The statistics elements needed for
RBD are the mean, variance, and scale of fluctuation, 0. These statistics are not only site-
specific but also dataset-specific. The mean and variance are easy to compute when data
is available. However, calculation of the scale of fluctuation is a bit complex, requiring
more data and a well-defined soil profile [54].

In-situ field tests such as the cone penetration test (CPT) can provide sufficient data to
establish a well-defined profile but are not widespread used. The more used method is the
standard penetration test (SPT), which cannot provide ample data to establish a well-
defined profile, which is required for computing the scale of fluctuation. The continuous
Shelby tube sampling method is the alternate method and has the inherent capacity of
providing sufficient data to establish a well-defined profile that can be used to compute
the scale of fluctuation. Tests can be performed at a closer spacing (closer than SPT) and
direct and indirect measurements of geotechnical properties can be carried out ( [13],

[54]).
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The semivariogram is one of the best approaches to evacuate the scale of fluctuation. The
experimental variogram is first plotted and a best-fit model is obtained, and the
parameters of the model are determined. One of the model parameters, the range of
influence, a, is then used to evaluate the scale of fluctuation using the appropriate
equation for the semivariogram (Gaussian, exponential, spherical, and circular), as given
in Table 3 [55].

Table 3. Relationship between range of influence and scale of fluctuation [55]

Scale of
Model Mathematical Function Fluctuation
(0)
Gaussian m=C(1— e_hzfaz) +C, n%%a
Exponential w=C(l- e_h/n) +C, 2a
_ 3h _ h_’ .
Spherical w=C (Z 2-:3) * Gl h<a 3a/4
w=C+C, hza
. i 7 =C (1 = (2/m)(cos” (Wa) — Wa)(1 - (Wa)2)'*)) + C,: 0<h<a ;
Circulas W=C+Cy h>a Sa/n
Notes: a = range of influence: h = lag length

Several programs available in the market to model the semivariogram, such as VESPER
and ArcGIS. The VESPER 6 program was used in this study to determine the scale of
fluctuation.

Implementing site variability from semivariogram into LRFD design of piles

The ranges obtained from the semivariogram analyses are used to determine the reduction
factor, or [14], which will be applied to calculate the spatial coefficient of variation

COVR spatia1 as a function of COVq, of the field measurements (e.g., CPT-qt, SPT-N, Su)
using the following equation:

COVR spatial = Voo COoVy [18]

Here COVq = o/m is the coefficient of variation in the sample data q. For application to
pile foundation design, the generalized expression for COVr can be given as follows [14]:
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[19]

COVR,spatial =

where, D is the pile diameter; Lj are the known (deterministic) length intervals of the shaft;
my; are the expected values of fs.j (and hence q) in each layer; meg is the value (expected)
of end bearing resistance; a, ; is the a for each layer; oL is the variance in q for each layer;
and oes? is the variance in end bearing resistance. Equation 19 reduces to Equation 18 for
n. = 1 (single layer) and meg =oes® = 0 (no end bearing) [14].

. . . . L D
In the above equation, the reduction factor, o, is a function of (a—, a—), where ay and an are
v h

the correlation ranges in both the vertical and horizontal directions, respectively; and L and
D are the pile length and pile diameter, respectively. Since the horizontal correlation is too

large compared to the pile diameter, the value of aR is usually approaching to zero, 33 ~ 0,
h h

in many cases. Elkateb et al. [5] derived the following equation to determine a, for spherical
model:

L L3 L
r=1-—+— For0<—<1
2ay 20ay ay [20]
3ay a‘z, F L>1
ar:]_-—+— or—=>
4L 5L2 ay

In order to consider, both L and aﬂ, we have to use the figure 1.8 given by McVay et al.
h

dy
[14]. Results from McVay et al. [14] numerical integration in terms of oci/z as a function

of the dimensionless variables ai and aB are presented in Figure 12 (spherical).
v h

Once the value of spatial coefficient of variation, COVR, is defined, the resistance factor,
or, for pile design according to the load and resistance factor design (LRFD) method can
be calculated using the following modified first-order second moment method (MFOSM)
calibration equation proposed by McVay et al. [14]:

2
1+ COV}

Qp
AR\Ypp-t 7L 73
( QL ) 1+ COVy [21]

or =

(AQD g—lz + AQL) exp <ﬁT Jln(l +covh) (1+ covg))

where, Ar 1s the resistance bias factor; Qp is the dead load and Qv is the live load; Br is
the target reliability index; yp is the dead load factor and vy is the live load factor; Aqp is
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the dead load bias factor (measured divided by predicted) and Aqv is the live load bias
factor. COVqp is for the dead load and COVqL is for the live load. The Qp/QL is the ratio
of dead and live load (which is assumed to be 3 in this study).

/2

Figure 12. Integrating (x: as a function of L/av and D/an for piles for the spherical model [14]
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The value of the resistance bias factor, Az, depends on the method used to design the pile
foundations. In this study, we will use the Laboratoire Central des Ponts et Chausees
(LCPC) method [56] to design the piles from the CPT data. The LCPC is a direct pile-CPT
method that showed one of the best performance pile-CPT methods on estimating the
ultimate pile resistance in Louisiana [57]. The resistance bias factor, ir, and COVR method
for the LCPC method are 1.04 and 0.31, respectively. For design of piles using the soil
borings and laboratory tests, the static analysis method recommended by the Federal
Highway Administration (FHWA) will be considered. The FHWA recommends using the
Nordlund method for sand layers based on results of SPT data, and the a-Tomlinson
method for clay layers based on undrained shear strength, Su. The values of Ar and
COVR method for the Nordlund method are 1.02 and 0.48, respectively; and the values of Ar
and COVRmethod for the a-Tomlinson method are 0.87 and 0.48, respectively [58].

It should be noted here that the coefficients of variation of resistance, COVR, presented
above for the different design methods (i.e., COVr =0.31, 0.48 or 0.48) do not include the
effect of site variability, which treats the site with low variability the same as the site with
high variability. In this study, we will incorporate the effect of site variability in calibrating
the resistance factor, ¢r, for use in LRFD design of driven piles.

The value of resistance bias factor, AR, IS calculated as:



_ > Agi

T [22]

AR

where, Ar;j is the resistance bias factor for each site and N is the number of sites. The
coefficient of variation of the random loads, COVq, was introduced by McVay et al. [14]
using the following equation:

2
90 30p2COVZy + 19, *COVE,
cov, = |4 [23]

USRI SU
LZ QD QL QD*QL QL

where, COVgp and COVq. are the coefficient of variations (COV) for the dead load and
live load, respectively. According to the FHWA [59], the dimensionless parameters in the
above equations can be defined as the follows:

Bayesian Analysis

The Bayesian statistical analysis was introduced in 1763, and the Bayes' technique was
adopted by Laplace and other notable probabilists at that time. However, it was not
favorable during the nineteenth century due to the lack of understanding on how to
appropriately handle the prior probabilities. The development of an entirely different
theory, known as frequentist statistics, occurred in the first half of the twentieth century.
The modern Bayesian analysis method started in the second half of the twentieth century,
by Jimmy Savage in the United States and Dennis Lindley in the United Kingdom. But
the Bayesian inference remained extremely difficult to implement until the late 1980s and
early 1990s, when powerful computers became widely available and new computational
methods were developed. The surge of interest in Bayesian statistics has resulted in
considerable study in Bayesian methodology, as well as the application of Bayesian
methods to pressing challenges in a variety of fields, including astrophysics, weather
forecasting, health care policy, criminal justice and, engineering.

Bayesian analysis is a statistical paradigm that uses probability assertions to answer
research queries regarding unknown parameters. In Bayesian analysis, rather than one
fixed value, a parameter is described by a complete distribution of values, as in classical
frequentist analysis. The essence of Bayesian analysis is in estimating this distribution,
and the posterior distribution of a parameter of interest.



Prior Distribution

A prior probability distribution of an unknown quantity, also known as the prior in
Bayesian statistical inference, is the probability distribution that would describe one's
assumptions about the quantity before any evidence is taken into account. For example,
the prior could be a probability distribution indicating the relative proportions of voters
who will vote for a specific politician in a future election. Rather of being an observable

variable, the unknown quantity could be a model parameter or a latent variable.

The posterior probability distribution, which is the conditional distribution of the
unknown quantity given the data, is calculated using Bayes' theorem, which produces the
renormalized pointwise product of the prior and the likelihood function. Similarly, the
unconditional probability ascribed to a random event or an ambiguous claim before any
relevant data is taken into consideration is known as the prior probability.

A prior can be calculated using historical data, such as previous experiments. It can also
be derived from an experienced expert's completely subjective opinion. When no
information is available, an uninformative prior might be generated to indicate a balance

among outcomes.

Informative priors: A precise, definite information about a variable is expressed by an
informative prior. A prior distribution for the temperature at noon tomorrow is an
example. Making the prior a normal distribution with an expected value equal to today's
noontime temperature and a variance equal to the day-to-day volatility of atmospheric
temperature, or a temperature distribution for that day of the year, is a reasonable method.

This example, like many priors, has the property that the posterior from one problem
(today's temperature) becomes the prior for another problem (tomorrow's temperature);
pre-existing evidence that has already been taken into account is part of the prior, and as
more evidence accumulates, the posterior is largely determined by the evidence rather
than any original assumption, provided that the original assumption admitted the
possibility of what the evidence shows. The phrases "prior" and "posterior" refer to a
specific datum or observation in general.

Weakly informative priors: A variable's partial information is expressed by a weakly
informative prior. For example, if the prior distribution for the temperature in St. Louis at
noon tomorrow is a normal distribution with a mean of 50 degrees Fahrenheit and a

standard deviation of 40 degrees, the temperature is very loosely constrained to the range



(10 degrees, 90 degrees) with a small chance of being below 30 degrees or above 130
degrees. A weakly informative prior is used for regularization, or keeping inferences
within a tolerable range.

In this research, in level 1 analysis of Bayesian framework, the statistical data for Priorl
(i.e., weakly informative prior) are usually taken from previously nationwide (or

statewide) testing database when available.
Likelihood function

The joint probability of the observed data as a function of the parameters of the chosen
statistical model is described by the likelihood function (sometimes simply called the
likelihood).

The likelihood function p(y|0) assigns a probabilistic forecast to the observed data (y) for
each given parameter value (0) in the parameter space. The likelihood includes both the
data-generating process and the missing-data mechanism that created the observed
sample because it is effectively the product of sampling densities. The parameters'
likelihood is not a probability density function (PDF). Meanwhile, in Bayesian statistics,
the likelihood function acts as a conduit for sample information, p(6|y), to alter the
parameter's posterior probability. Fisher [60] was the first to advocate for the use of
likelihood, believing it to be a self-contained framework for statistical modeling and
inference. Later, Barnard and Birnbaum endorsed the likelihood principle, claiming that
the likelihood function contains all the important information for inference ( [61] [62]).
The likelihood function, however, is important in both frequentist and Bayesian statistics
[63].

Posterior probability

The conditional probability of a random occurrence or an uncertain claim is the posterior
probability given the relevant data or background in Bayesian statistics. In this usage,
"posterior" indicates taking into consideration all relevant evidence relating to the
particular matter under investigation. The posterior probability distribution is the
probability distribution of an unknown quantity that is handled as a random variable and

is based on data from an experiment or survey.

A posterior distribution is made up of a prior distribution for a parameter and a likelihood
model that provides parameter information based on observed data. The posterior
distribution can be calculated analytically or estimated using one of the Markov chain

53 —



Monte Carlo (MCMC) methods, depending on the prior distribution and likelihood model
used.

The posterior distribution is used in Bayesian inference to create various summaries for
model parameters, such as posterior means, medians, percentiles, and interval estimates
known as credible intervals. Furthermore, all model parameter statistical tests may be
stated as probability assertions based on the predicted posterior distribution. The ability
to incorporate prior information into the analysis; an intuitive interpretation of credible
intervals as fixed ranges to which a parameter is known to belong with a predetermined
probability; and the ability to assign an actual probability to any hypothesis of interest are

all unique features of Bayesian analysis.
Bayesian inference

In Bayesian, statistical conclusions regarding a parameter 6, or unobserved data y ,
probability assertions are used. These probability statements are represented in our
notation as p(6|y) or p(y | y) and are conditional on the observed value of y. Bayesian
inference differs from the approach to statistical inference described in many textbooks,
which is based on a retrospective evaluation of the procedure used to estimate 6 (or y )
over the distribution of possible y values conditional on the true unknown value of 0 at

the fundamental level of conditioning on observed data.

Using the basic feature of conditional probability known as Bayes' rule, simply
conditioning on the known value of the data y produces the posterior density:

_p0y) _p@®)p>»|6)
PO =55 1)) [24]

An equivalent form of the above equation omits the factor p(y), which does not depend
on 0, and with fixed y, it can be considered as a constant, resulting of the posterior
density which is the right side of the following equation:

p(@ly) < p(6) p(v16) [25]

where, p(0ly) is the posterior function, p(8) is the prior distribution, and p(y|0) is the
likelihood function.

There are many reasons to use Bayesian approaches, which can be used in a variety of
domains. Several foundational theorems demonstrated that the only way to make
consistent and sound decisions in the face of uncertainty is to employ the Bayesian
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approaches. The pragmatic advantages of the Bayesian approach have fueled its rapid
expansion over the last 20 years and are the cause for its adoption in an ever-widening
range of sectors. Bayesian approaches can solve vast and complex statistical issues with
relative ease due to powerful computational resources, whereas frequentist methods can
only approximate or fail completely.

Bayesian analysis in geotechnical analysis

The presumption that the bias factors for the various project sites in any specific area
have similar measurements and variabilities may not be generally valid. The variety in
components (e.g., soil properties and workmanship) from site to site can cause the
statistical analysis of the bias factor and standard deviation to be contrast in different sites
within the same area [64]. The significance of the site-specific variability in the design of
pile foundations based on load test database have been demonstrated in several research
studies (e.g., [64], [65], [66]). They found out that the variability of the bias factor for a
specific site, is usually lower than that in the regional area.

Most of the time, any interpretation model is just a guess or improvement of the present
reality, model vulnerability, or uncertainty that consistently exist ( [67], [68]). On the off
chance that the model’s uncertainties are not thought of, the model expectations, and
henceforth the choices dependent on the predictions could be one-sided or biased. Tang
and Gilbert [69] and Lacasse and Nadim [70] found out that the predicted failure
probabilities without considering the model uncertainties were not representing the real
failure probabilities of geotechnical frameworks. Inquiries have been completed to
consider the impacts of uncertainty associated with input parameters and perception
uncertainty on the assurance of model vulnerability. For example, Gilbert and Tang [71]
performed geotechnical reliability analysis and proposed a model to update and
incorporate the model’s uncertainty mean for the offshore applications. Juang et al. [72]
developed a methodology to isolate the uncertainties in the liquefaction assessment
model from the parameters’ uncertainties with the guide of a Bayesian mapping capacity.
Zhang [73] proposed a Bayesian technique for updating the associate model’s
uncertainties for slope stability analysis. The concept of likelihood was introduced by
Zhang [73] to develop a methodology to incorporate the uncertainties in the model’s
parameters. Ching et al. [74] utilized a Bayesian framework to develop a pile load
capacity model using the associated uncertainties to calibrate the resistance factors for
LRFD design of piles. The basic concept of all Bayesian statistics is based on Bayes'
theorem and that is posterior function depends on the prior and likelihood information.



The prior information is a key piece of Bayesian derivation that deals with the data about
an uncertain parameter that is joined with the likelihood of new information to yield the
posterior information (prediction), which is utilized for future deductions and choices that
include the uncertain parameter. Generally, the likelihood is anything but a probability,
which is relative to the probability function. The likelihood function of a defined
hypothesis (H) at the point, when given a few information or data (D), is the probability
of getting D given that H is multiplied by a positive constant, K. Then the likelihood of H
will be L(H) = K x P(D|H). As a rule, the hypothesis deals with the estimation of a
parameter in a factual model, such as the mean of a normal distribution. Since the
likelihood is different from a probability, most of the time it disregards the different rules
of probability; such as in the case of likelihood, the distribution area does not need to be
1. When the information from the prior is legitimately joined with the likelihood of the
data, it yields a satisfactory posterior information [75]. The distribution of the posterior
information, in the Bayesian analysis, is the overhauled or revised probability of an
occasion happening, when new information is considered. The updated knowledge (or
posterior) can be obtained from the prior information and likelihood using the Bayesian
theorem. Statistically, it can be inferred that the posterior distribution is mainly the
probability of any event X occurring (given that) when another event Y has already
occurred. The posterior distributions ought to be a superior impression of the basic truth
of an information producing process than the probability of prior, since the posterior
distribution included more data. The posterior distribution can afterward turn into a prior
distribution for an updated posterior distribution, in which this information can be
incorporated into the analysis.

Markov chain Monte Carlo Simulation (MCMC)

Many sophisticated approaches for building and sampling from arbitrary posterior
distributions have been proposed. Markov chain simulation (also known as Markov chain
Monte Carlo, or MCMC) is a general method that involves extracting values from
approximate distributions and then correcting those draws to better approximate the target
posterior distribution, p(0 | y). The draws create a Markov chain since the sampling is
done sequentially and the distribution of the sampled draws is determined by the previous
value drawn. The key to the method's effectiveness, however, is that the approximation
distributions improve at each step of the simulation, i.e., they converge to the target
distribution. The Markov property is useful in establishing the convergence.



Figure 13 presents a simple Markov chain simulation, which is a Metropolis algorithm in
this case, in which 0 is a two-component vector with a bivariate unit normal posterior
distribution 6 ~ N (0,I), and is a vector with only two components. Figure 13a depicts the
simulation's initial stages. Each of the five jagged lines in the figure presents the early
path of a random walk starting near the center or extremes of the target distribution and
leaping through the distribution according to a suitable sequence of random iterations.
Figure 13b shows the final step of the same Markov chain simulation, in which the
simulated random walks have all traced a path through the space of 6 with a shared
stationary distribution equal to the goal distribution.

Bayesian Framework used to update the Prior Information

The application of Bayesian framework to update data usually consist of two levels of
analyses. In level 1 of the Bayesian framework, Priorl (i.e., weakly informative prior)
statistical data is usually taken from previous nationwide (or statewide) testing database
when available. In the absence of such data, the authors can propose rationale values of A
and o based on their judgment of the region. The prior distribution is taken as the
probability density function (PDF) of the available prior information or data (e.g.,
previous database or engineering experience and judgment). It measures probabilistically
the earlier prior information in the deficiency or shortage of information. In the absence
of dominant prior information or data, a comparatively uninformative prior knowledge
can be functional ( [76], [77]) that composed with standard ranges of parameters ( [6],
[70], [78]). As the prior knowledge improves with time, in the future or in the next level
of data and analysis, an increasingly useful prior can be evaluated from earlier
information [77]. The definition of the prior distribution using prior data and knowledge
is thoroughly discussed in the literature (e.g., [79]).



Figure 13. A Markov chain simulation with five separate sequences (a) after 50 iterations, away from
the convergence (b) the sequences are closer to convergence after 1000 iterations
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In this study, the Bayesian method was used to update the statistical data (mean, A, and
standard deviation, o) of pile load test database in order to get the an updated
information (i.e., posterior distribution) for the new tested site. The statewide observation
data obtained from the pile load test database is expressed through a likelihood1
(likelihood function at level 1) function (logarithmic function). After deriving the prior
and likelihood distribution for the level 1 using the Bayesian analysis, the posteriorl
distribution (posterior function at level 1) that reflects the updated information (i.e.,
posterior knowledge) can be derived [80]. The posterior] distribution data includes the
combination of the prior information and the observation distribution (likelihood
distribution) data. The posterior information generated in the preceding level of the
Bayesian analysis can be considered as the prior information and utilized along with the
extra site observation data to additionally update the information/data [81]. The Bayesian
analysis deals with increasingly improving the existing information of the new project

site conditions as the site observation data are gathered.

In level 2 of the Bayesian analysis, the posterior]l function obtained in the level 1 analysis
can be taken as the prior2 knowledge or data. For example, data collected from pile load
tests in the new site can be considered as the likelihood2 knowledge. After the prior2 and
likelithood2 function are determined for the level 2 Bayesian analysis, posterior2 (updated
knowledge) can be evaluated, which is associated with the prior knowledge/data and new
observation data of the specific site.

The two levels of updating the mean bias (L) and standard deviation of the bias values (o)
of data for any specific site are usually consist of three key elements, the prior



distribution, the likelihood function, and posterior distribution within the Bayesian
framework. Figure 14 presents a flowchart of the Bayesian framework describing the two
levels of updating the A and o for any new specific site. The distribution of posterior is
proportional to the product of the prior and the likelihood, as will be described later in the
Methodology section.

Figure 14. Bayesian framework for two levels of updating the mean bias (1) and standard deviation
of bias (o) of data for any specific site
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Probabilistic Analysis

Spatial interpolation techniques not only include simple mathematical or empirical
methods such as inverse distance weighting and cubic spline interpolation but also
include geostatistical methods. Whereas the former methods have limitations in
processing all data in the target area owing to their irregular correlation, geostatistical-
related techniques are effective for spatial interpolation across a wide area when
considering the spatial tendency and influencing range of the raw data. The most



significant difference between them comes from considering or not considering the

spatial variation (uncertainty) based on distance and direction.

Whereas the values of the inverse distance are weighed the same at a specific distance,
those of an ordinary kriging, which is a representative method used in geostatistics, may
vary even at the same distance [82]. The conventional two point based geostatistical
methods adopt a variogram (semivariogram) or covariance to quantify the spatial
variability. Accordingly, the prediction accuracy of a spatial interpolation is known to be
equal to or higher than that of inverse distance weighing (e.g., [83], [84], [85]).

Since originating in the mining industry, geostatistics have been utilized in various fields
such as meteorology, geology, and petroleum engineering (e.g., [82], [83], [84]).
Recently, they have been used in geotechnical engineering and engineering geology for
creating 3D geotechnical models of soil or rock properties (e.g., [85], [86], [87]) and for
characterization of the subsurface strata (e.g., [88] , [89]). Recently, some studies have
attempted to analyze geotechnical datasets with different characteristics using geo-
statistics (e.g., [90]).

Kriging Method

It is believed that geostatistics have been derived from the research on the geology and
mining done by Krige [91]. However, it was introduced before in the field of agronomy
and meteorology [92]. Geostatistics includes various methods that use kriging formulas to

estimate missing data.

Semivariance and Variogram: The first step in the kriging interpolation method is the
computation of an experimental semivariogram. Generally, to examine the spatial
distribution structure of the soil properties, the basic tool of semivariograms were used.
The semivariance can be described by the following equation:

y(h) = =T (20x) — 2(x; + h))? [26]

2

where ‘n’ is the number of data points separated by distance ‘h,” and y(h) is the

semivariogram (commonly referred to as variogram) [92].

The semivariogram has some important key properties (Figure 15). The first one is the
‘nugget.” The nugget effect means when the variogram does not start from 0 and
estimates the error caused by measurement and spatial variability. The ‘range’ is the
distance value where ‘sill’ is reached. In general, if a nugget/sill ratio is less than 25%, it



indicates strong spatial dependency. When it is greater than 75%, it indicates weak spatial
dependency; otherwise, the spatial dependency is called moderate [93]. The size of a
search distance that will be used in the spatial interpolation methods is determined by the
range [94].

Figure 15. Semivariogram terminology and properties [95]
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There are some simple variogram models, including: exponential, spherical, Gaussian,
linear, and power model ( [92], [94]). Generally, all types of spatial interpolation
techniques can be represented as the weighted average of known data. They can be

estimated from the general spatial interpolation equation, as follows:
Z(xo) = Xiz1 liz(x) [27]

where, ‘Z’ 1s the expected value at an unsampled location ‘xo,” ‘z’ is the measured value
at sampled location ‘x;,” ‘A’ 1s the kriging weight, and ‘n’ is the number of sampled points
for the spatial interpolation [92]. However, all kind of kriging interpolation methods have
a basic equation, which is slightly modified version of the above equation, as follows:

Z(x0) = 1 = Liza AlZ (%) — u(xo)] [28]

where, ‘W’ is the stationary known mean, and ‘p(xo)’ is the mean of the sampled data. Step
by step procedure of kriging interpolation methods were done by Clark and Harper [96].

To define the spatial continuity, the kriging approach uses the semivariogram, which is
also used to measure the strength of statistical correlation as a function of distance.

The general formula of simple kriging (SK) depends on the above equation for its weight.
After a slight modification, we can derive the following equation:



Z(xg) =X  AZ () + [1 =X Al [29]

Ordinary Kriging (OK): Statistical properties of sampled data can be incorporated using
the ordinary kriging (OK) method, which is pretty similar to SK. The main difference is
that OK considers the attribute value by replacing p with a local mean p(xo) that is the
mean of samples within the search window. The equation for ordinary kriging will then

be given as follows:
Z(xo) = Xiza MZ(x) + [1 — Xiog 4] u(xo) [30]

For ordinary kriging, [1 — Y/, 4;] = 0, thatis >;'* ; A; = 1, which is achieved from
equation 26. Therefore, ordinary kriging uses equations 26 and 30 to make the estimation
and estimates local constant mean [96]. Figure 16 given by the Environmental Systems
Research Institute (ESRI) [97] presents an example of one spatial dimension of ordinary

kriging (where p is an unknown constant).

Figure 16. Example of ordinary kriging with one spatial dimension [97]
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Conditional Simulations

A conditional simulation is a type of variable generation method used as an alternative to
ordinary kriging, which has a smoothing effect. In addition to maintaining the distribution
characteristics of dataset, it is possible to simulate its heterogeneity [98]. Uncertainty can
also be assessed by generating the stochastic results multiple times [99]. As the principle
of a conditional simulation, the prediction value of uninvestigated locations has a random
function rather than a fixed value. Parametric or nonparametric methods are used to

construct a random function. In this study, a three-dimensional interpolation of the



geotechnical property is performed using a sequential Gaussian simulation (SGS) as a
parametric method and a sequential indicator simulation (SIS) as a non-parametric
method.

In an SGS, the distribution of a point or grid to be simulated is assumed to have a normal
distribution. Its mean and variance are the prediction value and error variance calculated
through simple kriging, respectively. It is suitable for predicting the given dataset
following a normal distribution. If the distribution of the experiment data is not normal,

preprocessing such as a normal score or a log normal transform is required.

An SIS is a non-parametric method used to obtain the local cumulative distribution
function of the predicted points or grids through indicator kriging, and can be applied to a
dataset with any form of distribution [100]. It can be also employed even if the dataset
has a highly skewed distribution or a large coefficient of variation without any specific
preprocessing [101]. It uses the indicator variables instead of the given data to draw the
local cumulative distribution function. The process of calculating the indicator variable is

called the indicator transform, which is conducted using the indicator thresholds.
Sequential Gaussian simulation (SGS)

The values obtained by the kriging or cokriging system are predicted with minimized
estimation variance and, therefore, show lower fluctuation than the actual, unknown
values [102]. Hence, conditional simulation models are used to reproduce the actual
statistics, maintain the texture of the variation, and take precedence over local accuracy.
Unconditional simulation is simply the application of the general Monte Carlo technique
whereby values are created with a particular covariance or semivariogram functions.
However, in conditional simulation, in addition to creating possible values of random

variables elsewhere, the generator must return the data values to known places.

The conditional simulation techniques can be categorized into indirect and direct
approaches. Indirect approaches are based on unconditional simulation, which is
transformed to the conditional ones [103]. These approaches are used when the mean and
variance are known and constant over the region of interest. However, direct approaches,
such as SGS, are used when the mean and variance are unknown or variable. In this
study, it was assumed that the mean does not stabilize and the variance always increases
over increasingly large domains, which opened up a wider field of application. Hence, the
SGS method was implemented to perform conditional simulations.



The sequential Gaussian simulation is a straightforward algorithm for generating a
realization of a multivariate Gaussian field. In this technique, each variable is simulated
sequentially according to its normal conditional cumulative distribution function (CCDF)
through a kriging or cokriging estimation system. The basic conditional sequential
simulation steps are mentioned as follows [104]:

1. Define a random path which meets all nodes of the grid in each realization,
2. Define a search ellipsoid for each grid node to find the adjacent known data,

3. Use kriging/cokriging with a semivariogram model to determine the mean and
variance of CCDF,

4. Draw a value from the CCDF of the random variable,
5. Add this new value to the initial conditioning dataset, and

6. Repeat until all nodes are simulated.

As is discussed by Dowd, the SGS method has several advantages including automatic
handling of anisotropies, data conditioning, and fast computer implementation since an
efficient kriging/cokriging algorithm with a moving neighborhood search capability is all
that is required [105].

Variograms of transformed data are calculated and modeled. It is necessary to define a
grid for simulation and a random path to asses’ grids nodes. According to the kriging
mean and variance, a Gaussian probability distribution is determined in each node. For
estimating at each node it’s necessary to choose a random path. A random value, which is
drawn from Gaussian probability distribution, is known as a simulated value in each
node. The basic steps in SGS algorithm are shown in Figure 17 [106].
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Figure 17. The basic steps of SGS algorithm [106]
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In many applications, the major objective has been to obtain the “best” estimate of the
variable studied. To achieve this objective, estimation methods have progressed from
geometric triangulation and polygonal approaches to a variety of kriging algorithms. All
of these estimation approaches produce a map of locally averaged values and in the case
of kriging, a map of the estimation variance at each estimated location. The result models
produced by these estimation methods have several limitations. These limitations include:

e The spatial variability and histogram of the estimates is “smoothed” compared to
that known from sample data,

e The assessment of uncertainty (by means of the kriging variance) is strongly
controlled by the sampling configuration without reference to the magnitude of the
sample grades that inform the estimated value.

e [tis very difficult to obtain a quantification of the uncertainty of a collection of
blocks because the uncertainty in each block is not independent of the uncertainty
in the adjoining block.



In contrast to the estimation methods, geostatistical simulation provides maps of the
variable that honor the sample data values, reproduce the histogram, and reproduce the
spatial variability of the variable of interest. In addition, simulation is a probabilistic
procedure that results in many different realizations of the same attribute. Each
realization honors sample values, geological interpretation, data statistics and spatial

continuity.

Unlike estimation, where a best map can be generated under some definition of quality
(for kriging it is the minimization of the mean square error), realizations are accepted or
rejected based on their capacity to honor the data, geology, histogram, variogram, and
any secondary information. Therefore, there is no single best realization, since they are
all considered equally likely to occur. The set of equally probable realizations allows us
to obtain a distribution of the possible grade at that location. Similar procedures exist for
categories such as the geological unit. This distribution of outcomes is interpreted as the
uncertainty in the variable. This allows to report an uncertainty value that is conditioned
by the surrounding sample values and geological attributes. The set of simulated values
on a point scale allows us to consider the uncertainty of a collection of related points or
joint uncertainty. This means a change of support can be performed, and simulations at
block support are obtained. The set of block support realizations represents the
uncertainty of the variable at that support.

In summary, the conditional simulation provides a quantification of the uncertainty
surrounding an estimate. These values may account for the support and information
effects, hence allowing quantification of uncertainty in any response variable. Response
variables that depend upon several input variables can be correctly assessed with
simulation and their uncertainty, quantified. This is the case of the response in mine
planning, in geometallurgical studies or in geotechnical classification. A complete
introduction to SGS method is available in [106] and [107]. The procedure of SGS
algorithm used in this study is described in Figure 18.

In general, the SGS algorithm relies on the multi-Gaussian approach [106]. Therefore,
prior to the application of SGS algorithm, the observations were checked by the
Kolmogorov-Smirnov (K-S) test to verify whether they were normally distributed. After
treating the outliers ( [108], [109]) and creating a lognormal transformation, a lognormal
distribution was obtained for the given soil layer. The semivariogram for the given soil
layer were then calculated with the transformed data. After 100 realizations in different
numbers of random seeds, the resulting data were back transformed into the original scale

(e.g., [110], [111).



Figure 18. Steps of SGS, based on Goovaerts [107]
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Application of Site Variability in Geotechnical Analysis

Application of Site Variability in Slope Stability Analysis

Slope stability analysis is a highly challenging task in geotechnical engineering as the
influence of uncertainty involved in geotechnical properties on failure behavior of slopes
is inevitable. Traditional slope stability methods, such as limit equilibrium method
(LEM), ordinary method of slices, Bishop’s simplified method, Janbu’s simplified
method and Spencer method, have been used for slope stability analysis. The traditional
deterministic slope stability approaches that are based on a single factor of safety (FS)
cannot explicitly encounter the uncertainties involved in geotechnical properties and
failure mechanism, leading to erroneous results of slope stability. Hence, slope stability
practice is highly persuadable to probabilistic treatment, which allows quantification of
the uncertainty and rationally integrating the same into the analysis. Many researchers
studied the effect of spatial variation of the soil properties on the probabilistic slope
analysis (e.g., [19], [112], [113], [114]). A more advanced approach of probabilistic
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analysis in geotechnical engineering for incorporating spatial variability of soil, referred
as the ‘random finite element method” (RFEM) (e.g., [112]), was developed in 1990s. The
RFEM is a completely different approach for evaluating failure probability. In RFEM, the
soil properties are considered random variables at any location within the soil domain. A
typical two-dimensional random field with low and high correlation lengths is shown in
Figure 19.

The random limit equilibrium method (RLEM), a random field that was first generated
using the local average subdivision (LAS) method developed by Fenton and Vanmarcke
[23] and then mapped into a grid of elements (mesh). Each mesh element in the random
field has different values of soil properties, and cells close to one another have values that
are closer in magnitude, based spatial correlation length. In each realization, a search is
carried out to find the mesh elements intersected by the slip surface. The random soil
property values are assigned to the slices whose base mid-point falls within that element.
A limit equilibrium approach is then used to calculate factor of safety (FS) for each trial
(simulation). The probability of failure is calculated as the ratio of the number of

simulations resulting in FS <1 to the total number of simulations.

Figure 19. Typical 2D random filed for slope with a) Small correlation length, and b) high correlation
length [20]

The spatial variability analysis using the random variable approach has been
implemented in many geotechnical software such as GeoStudio, Soil Vision, and
Rocscience Slide 2018. In this study, the Rocscience Slide 2018 software was used to
evaluate the effect of site variability in slope stability analysis. The spatial variability
analysis is a sub-option of the probabilistic analysis in Slide software, which allows the
user to simulate the variability of soil properties, such as strength and unit weight, with
location within the soil mass. A traditional probabilistic slope stability analysis does not



account for this type of variability. In a traditional probabilistic analysis, a statistical
distribution is defined for a parameter (e.g., cohesion c, friction angle, ¢), and for each
simulation, the entire soil mass is assigned a single random value as shown in Figure 20a.
With the spatial variability analysis, a statistical distribution will be defined for each
parameter (e.g., ¢, ¢). Correlation length between the parameters are defined in both x
and y direction, and for each simulation, a random field of values is generated for soil
mass as shown in Figure 20b. During the slope stability analysis, any slip surface that
passes through the spatially variable material, will encounter variability of properties
along the slip surface.

Since most of the geotechnical design parameters (e.g., ¢, ¢, and unit weight) have certain
degree of spatial variability, the slope stability analysis that incorporates the spatial
variability is considered more realistic to define the factor of safety and probability of
failure. The use of spatially variable analysis has been shown to affect the calculated
probability of failure of slopes. For example, slope stability models that account for
spatial variability of soil properties (e.g. ¢ and unit weight) results in a lower probability
of failure, as compared to the same analysis without including spatial variability [115]. A
probabilistic analysis that does not consider spatial variability has been shown to result in

unrealistic and overly conservative probabilities of failure [115].

Figure 20. (a) Single random sample value (cohesion) applied to entire soil region, (b) Random field
of spatially variable cohesion

cohesion sample value = 37.5 kPa




The conventional slope stability methods frequently fail to predict the progressive failure
phenomenon. The finite element method (FEM) was proposed to solve this constraint,
and two major applications for analyzing slope stability were created. The first
application involves applying the soil's body force to the slope system in order to perform
an elasto-plastic stress analysis. The stresses and the Mohr—Coulomb criterion can then
be used to calculate the local safety factors (FS) after the stresses have been determined.
The overall FS can also be defined using the actual driving force and the ultimate shear
force. It's worth noting that the FS and critical failure surface position from FEM analysis
are frequently close to those from a limit equilibrium analysis [116]. A number of
scholars have used the FEM, including Shamekhi and Tannant [117], who used it to
analyze slope stability, and Lu et al. [118], who used a numerical method based on the
FEM to evaluate slope stability during seismic loading.

The primary aim for developing probabilistic techniques for slope stability analysis is to

recognize the variations in soil properties. Although a sensitivity analysis can be used to

determine these variables, it cannot estimate the likelihood of a slope failure. The chance
or likelihood of a slope failure is computed using the stochastic character of the input

components, which is based on the fundamental notions of a probabilistic technique.

When the chances of failure are greater than the safety considered, a slope collapse is
more likely. This is a more realistic approach than categorizing a FS as stable or unstable.
A quantitative explanation of the failure probability can also be used in a risk or decision
analysis. Different researchers have used the probabilistic approaches for slope stability
analysis. Shou and Wang [119] analyzed the Chiufengershan landslide's failure and
proposed a Monte Carlo analysis to look into the residual slope. The probability analysis
suggested that the residual slope was more important than the static slope analysis.
Leynaud and Sultan [120] proposed a probabilistic approach to account for complicated
geometry using a modified version of 3D slope stability software. Stankovic et al. [121]
employed Monte Carlo simulation and the first order reliability method enforced with the
response surface method at an open pit mine "Potrlica" in Pljevlja, Monte Negro, to
conduct a probabilistic analysis of slope stability. Griffiths and Fenton [19] investigated
the probability of failure of a clayey slope using several probabilistic analysis methods.



Application of Site Variability in Shallow Foundation

Many researchers investigated the effect of site variability on the bearing capacity of the
sallow foundations (e.g., [17], [122]). Fenton and Griffiths [17] modeled shallow
foundation loaded over soils using random field theory and elasto-plastic finite element to
investigate the effect of site variability, and the cross correlation length on the bearing
capacity of shallow foundations.

In the load and resistance factor design (LRFD) for shallow foundations, the design
resistance factor can be affected by many factors including the distance between the
sampling borehole and the foundation, the correlation length, the probability of failure,
and the variation of soil parameters (e.g., cohesion c, and internal friction angle ¢). The
soil parameters can be interpreted from the in-situ field tests such as cone penetration
tests (CPT), standard penetration (SPT) tests, or from the laboratory tests. The variation
in the soil parameters depends on the inherited variability due to the original soil
formation, the operator and machine error, and the model bias. The effect of the variation
on soil parameters on the bearing capacity of shallow foundation was studied in detail by
Fenton et al. [123]. Both the variations in ¢ and ¢ were included in the analysis to define
the resistance factor for shallow foundations. The statistical relationship between the two
soil properties (¢ and ¢) is referred as cross-correlation.

Bearing Capacity of Shallow Foundation

Terzaghi [124] provide a complete approach for determining the ultimate bearing capacity
of shallow foundations. He proposed that the surface (failure) in soil at ultimate load for a
continuous, or strip, foundation be considered to be comparable to that shown in Figure
21.The ultimate bearing capacity, qu, of shallow foundations can be estimated using the
following relationship [124]:

1
qy = cN;+ gNg + EVBNV [31]

where, ¢ is the cohesion, q is the overburden stress, y is the unit soil weight, B is the footing
width, and N¢, Ng, and N, are the bearing capacity factors. Tarzaghi [124] used an
approximation method to determine qu; that is when y=0 (i.e., weightless soil) and q=0,
then gu = ¢.Nc, which will be used in this study for the analysis.



Figure 21. Tarzaghi bearing capacity analysis [124]
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Incorporating site variability into shallow foundation resistance factor

The bearing capacity of shallow foundation depends on the soil properties, foundation
dimensions and depth. Due to spatial variation in soil properties the failure surface under
the footing will follow the weakest path through the soil, constrained by the stress field.

The resistance factor based on the soil properties is:
bsfRy = 12 L [32]

where, R,= Resistance of the soil, ¢ 7= Geotechnical resistance factor for shallow
foundation, and ‘sf” = shallow foundation, I = importance factor, a; = load factor, and LAl =

characteristic load. The soil properties used to calculate the resistance, R are:

(9}

1
=[IZ,¢f = eXp(ZZﬁlln c) [33]
=~ 1
$ =31 ) [34]
For cohesion, the geometric average is used because of its lognormal distribution. The

friction angle is computed as an arithmetic average. To determine the characteristic



ultimate geotechnical resistance, R,,, it will first be assumed that the soil is weightless.
This simplifies the calculation of the ultimate bearing capacity, qu, to:

qu = cN, [35]

The assumption of weightlessness is conservative since the soil weight contributes to the
overall bearing capacity. This assumption also allows the analysis to explicitly focus on
the role of c¢N. on ultimate bearing capacity, since this is the only term that includes the

effects of spatial variability relating to both shear strength parameters ¢ and ¢.

Most of the bearing capacities theories assume that the failure slip surface takes on a
logarithmic spiral shape:

etand ¢an? (%+ g)—l
= 36)

The ultimate geotechnical resistance Ry as function in bearing capacity, §. and foundation
width, B, becomes as following:

ﬁu = Bq\u [37]
q\u = CANC [38]

The characteristic of N, factor is determined using the characteristic friction angle. For
strip footing the LRFD equation as following:

bsrBGy, = I[afLZL + aDED] [39]
The width of the footing could be calculated as:

la Ly +aplpl

B =
‘bszu

[40]

The random soil model

The cohesion, c, is assumed to be lognormally distributed with mean, i, standard
deviation, o, and some spatial correlation structure, 6}, .. The lognormal distribution is
selected because it is commonly used to represent nonnegative soil properties and has a
simple relationship with the normal. The lognormally distributed random field can be



obtained from a normally distributed random field, G, 0(35)’ having zero mean, unit

variance, and spatial correlation length, 6y, ., through the transformation
¢ (ff_) = exp[Uinc + TincGine (fg)] [41]

where, (32) is the spatial position at which c is desired, the mean and variance of Inc are

obtained from the specified mean, and variance of cohesion using the transformations are
1 . .

Uine = In(ue) — Eaﬁm and o, = In(1 + v?2), respectively; where v, = 0./u, is the

coefficient of variation of the cohesion.

The correlation coefficient between the log cohesion at some point x and a second point
X is specified by a correlation function, p. In this study, a simple exponentially decaying

(Markovian) correlation function will be assumed, having the form:

2t

p(t) = exp{——~ [42]
where, t = x —Xx is the distance between the two points.

It should be noted that the correlation function selected above acts between values of Inc
because Inc is normally distributed, and a normally distributed random field is simply
defined by its mean and covariance structure. In practice, the correlation length, 6, ., can
be estimated by evaluating the spatial statistics of the log cohesion data directly [125].

The spatial correlation function, p(t), has a corresponding variance reduction factor,
Yine(D), which specifies how the variance is reduced upon local averaging of Inc over
some domain D. In the two-dimensional analysis considered here, D = D; X D, is the
area. The two-dimensional variance reduction factor is defined as:

Dy (D
Yinc(D1, D7) = ﬁfo "o (D1 — ) (D2 — t)p(ty, tr)dtdt, [43]

which can be evaluated using Gaussian quadrature (see [17] and [126], for more details).

The soil friction angle, ¢, is assumed to be lognormally distributed with mean, o,
standard deviation, 64, and some spatial correlation structure. The lognormal distribution
is selected because it is commonly used to represent nonnegative soil properties and has a
simple relationship with the normal; a lognormally distributed random field can be

obtained from a normally distributed random field having zero mean, unit variance.
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It seems reasonable to assume that if the spatial correlation structure of a soil is caused by
changes in the constitutive nature of the soil over space, then both cohesion and friction
angle would have similar correlation lengths. Since both fields have the same correlation
function, p(t). They will also have the same variance reduction function, i.e., ¥j,,.(D) =
Y6 (D) = y(D). A detailed description on the random soil model was given by Fenton et
al. [123].

Analytical solution of the probability of failure

In this section, an analytical approximation to the probability of bearing capacity failure
of a strip footing is summarized. Equation 38 was developed assuming an ideal soil
whose shear strength is the same everywhere (i.e. a uniform soil). When soil properties
are spatially variable, as they are in reality, then the hypothesis made in this study is that

Equation 31 can be replaced by the following equation:
qy = CN, [44]

Where, ¢ and N, are the equivalent cohesion and equivalent N, factor, defined as those
uniform soil parameters which lead to the same bearing capacity as observed in the real,
spatially varying soil. In other words, it is proposed that equivalent soil properties, ¢ and
N,, exist such that a uniform soil having these properties will have the same bearing
capacity as the actual spatially variable soil. The value of N is obtained by using the

equivalent friction angle, ¢, in Equation 34,

tand rgn2 (24 2\
e’ tan (4+ 2) 1
$

M= —0, 145)
then the width of footing become

_ I[(XLZ,L+(ZDZ,D]
B= osriNe [46]

If the load L exceed the resistance load, qu B, bearing failure will happen. The probability
of failure could be calculated as:

pr = P[L > q,B] = P[L > ¢N.B] [47]

The probability of failure should be less than the acceptable failure probability p,. The
probability of failure can be calculated as:



pf — P |:Lé—1VC > (I[O_’LZL‘FQDZD])] [48]

cN. Psf
Letting
éN,
Y=L e [49]
means that
HayLi+aplp]
— 5D 50
pr=p |1 > () 50

and the task is to find the distribution of Y. Assuming that Y is lognormally distributed
(an assumption found to be reasonable by Fenton et al. [127], and which is also supported
to some extent by the central limit theorem), then:

InY = InL + InN, + Iné — InN, — In¢ [51]

The mean of [nY is:

Hiny = Hine t tini, + Bine = HinN, — Hine [52]

The variance of InY is:

Oty = Ofar, + O, + Oing + Oiny, + 0fae — 2Cov(Ing, Iné) — 2Cov(InN, InN;) [53]
where the load, L, and soil properties, ¢ and ¢ have been assumed mutually independent.

To find the parameters in the mean and variance of [nY equations, the following two
assumptions are made;

(1) The equivalent cohesion c, is the geometric average of cohesion field over the
influence zone D under the footing.

= exp {% fOD Inc (35) dacﬂ} [54]

(2) The equivalent friction angle, ¢, is the arithmetic average of the friction angle
over the zone of influence, D,

b=—f d(x)dx [55]



Probably the greatest source of uncertainty in this analysis involves the choice of the
domain, D, over which the equivalent soil properties are averaged under the footing. The
averaging domain was found by trial andanalysis solution of error to be best
approximated by D = W X W, centered directly under the footing (see Figure 22). In this
study, W is the influence depth taken as 80% of the average mean depth of the wedge
zone directly beneath the footing, as given by the classical Prandtl failure mechanism,

— 98~ A
W = > uBtan(4+ S ) [56]

The friction angle in radians. The estimated footing width is ug

—~ _ Nag Tp+ap Ip)

57
5 bsflic UN, [ ]

The footing shown on Figure 22 is just one possible realization since the footing width,
B, is actually a random variable. Fenton and Griffiths [17] study assumed that the footing
width was known, rather than designed, and recognized that the larger averaging region
did not well represent the mean bearing capacity, which of course is the most important
value in probability calculations. In the simulations performed to validate the theory
presented here, the soil depth is taken to be H = 4.8 m and Ax = 0.15 m, where Ax is the
width of the columns of finite elements used in the simulations (see Figure 22).

To first order, the mean of N, is:

u
e MY tan2 (£+ ch)—l

iy, = e [58]

Using the above information and assumptions, the components of mean and variance of
InY equations can be computed as follows (given the basic statistical parameters of the

loads, ¢, ¢, number and locations of the soil samples, and the averaging domain size D);

(1) Assuming that the total load L is equal to the sum of the maximum live load, L,
acting over the lifetime of the structure and the static dead load, Lp (i.e. L= Lt +
Lp), both of which are random, then the specified mean and variance of total load

using the transformations are py,,;, = In(uy,) — %ln (1+ v?) and o2 = In(1 + vP),

respectively. where v, = o1/, is the coefficient of variation of total load.

(2) Calculating the mean and variance of In¢:
Hineg = Hinc [59]



Figure 22. Typical sketch used to determine the shallow foundation bearing capacity failure
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Assuming that In¢ actually represents a local average of In ¢ over a domain of size Ax x
H; where Ax is the horizontal dimension of the soil sample, which can be thought of as
the horizontal zone of influence of a CPT or SPT sounding; and H is the depth over

which the samples are taken, then g}, is probably more accurately computed as:
m?2

2
Oine = o Zita L p(x) = £7) = Oney (A, H) [60]

(3) Calculating the mean and variance of Inc:

Hine = Hinc [61a]
2 _ 2

Ofne = Oinc¥ (D) [61D]

where y(D) = y(W, W), as discussed above.

(4) Calculating the mean and variance of [nN,:

m
e tqn? (%+ TQ))—l

tan ug

Wi, = Hinn, = 0 [62a]

2

2
Oy, = T4 [bdbzd_l [1(1+a*)d+1+d*] - ”T“] [62b]

where, a = tan (44 ), b = €%, d = tan (% + HT(]’). The variance of ¢ can be obtained by



0_2
of = LN I P(Qﬂ? B 35;)) = oy (Ax, H) [62c]

(5) Calculating the mean and variance of InN,:

Hini, = Hinf, = Minn, [63a]

2

oty = 02 [L (1 +a¥)d+1+d?] - [63b]

1+a2]
bd?z -1

where, a = tan (ug ), b = €%, d = tan (% + MT‘b). The variance of ¢ can be obtained by

gg = agy(W, W) [63c]
(6) The covariance between the observed cohesion values and the equivalent cohesion

beneath the footing is obtained as follows for D = W X W and Q = Ax X H,

2
Oinc

— A D (Q
Cov(Inc,Iné) = Digs Jo Iy p(ggl - agz) dggl dggz = O{nc¥po [64]

where yp is the average correlation coefficient between the two areas D and Q [123].
The area D denotes the averaging region below the footing over which equivalent
properties are defined and the area Q denotes the region over which soil samples are
gathered. These areas are illustrated in Figure 22.

(7) Calculating the Cov (InN,, InN,.)

Cov (InN,, InN;) = oy, Vo [65]

Substituting these results into mean and variance equation of [nY gives

Uiny = UinL [66a]
Ol = Ofar, + [0t + 0w, [y (Bx, H) + y (W, W) = 2yp] [66b]
Letting

q= I[aLEL + aDZD] [67]

Allows the probability of failure to be expressed as:



In| — |-Uiny
pf:P[Y>¢isf]:P[lnY>ln(¢i)]=1—CD iy [68]

sf Oiny
where @ is the standard normal cumulative distribution function. The resistance factor
could be calculated as:

(1) — I(a;, Tp+ap Lp)
S/ exp(umy+omyB)

[69]

Incorporating variability into reliability analysis

The reliability index is used to offer a reliability-based study of a shallow foundation with
a vertical load (central). The limit state function used in this research is g(x) = C — D;
where, C is the foundation capacity and D is the demand. g(x)>0 represents safe
condition while g(x)<0 represents unsafe condition. The Hasofer-Lind reliability index
(Bur) is widely used method, and the equation of this method is given as follows [128]:

By = min(y/ (X —W)TC1(X — 1)) [70]

Where, the vector of random parameters (n) is denoted as X, p is the mean values (in
vector format) and their covariance matrix is denoted as C. Figure 23 shows the Hasofer-
Lind reliability index and the corresponding design point.

Figure 23. Hasofer- Lind reliability index and the design point [129]
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Application of Site Variability in Deep Foundation

A punching shear failure occurs when the force applied to the pile (deep foundation)
surpasses the shear strength of the surrounding ground [130]. The pile is supported by the
soil through friction, end bearing, and cohesion between the pile sides and the soil.
Naghibi [131] and Naghibi and Fenton [18] proposed a methodology to implement site
variability for deep foundations where only cohesive resistance was addressed, as it
would be in a soil under the total stress condition (entirely cohesive), i.e., ignoring the
end-bearing. They also applied similar analysis to examine the effective stress resistance
of piles for cohesionless soil when the end bearing was ignored. The method proposed by
Naghibi [125] and Naghibi and Fenton [18] will be described below for cohesive and
cohesionless soils.

For Cohesive Soil Condition

The ultimate pile resistance due to soil cohesion (c¢) between the surrounding soil and the
pile foundation surface is given by:

Ry = [, pr(2)dz [71]

where, p is the perimeter of the pile, 1(z) is the pile’s ultimate shear stress (at depth z),
and the length of the pile is H.

a-Tomlinson Method

Several approaches can be used to determine the ultimate shear stress occurring between
the soil and the pile under total stress circumstances. The most widely method used for
cohesive soils is the a-Tomlinson method. Total stress analysis is a critical component of
the o method. For any specific soil with friction angle, ¢ = 0, based on the a method, the
following equation can be used to represent the surface shear resistance (unit) in soils
under the total stress conditions:

7(2) = ac(z) [72]

where, c(z) is the cohesion of the soil (average) around the pile (at depth z), and a is the
empirical adhesion factor, as suggested by the Federal Highway Administration (FHWA).

Figure 24 shows the o factors for driven piles in clay according to FHWA.



Figure 24. o factors for driven piles in clay according to FHWA [132]
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Substituting Equation 72 into Equation 71, the ultimate cohesive resistance becomes
H
Ry = [, pac(z)dz [73]

It is assumed in analysis that the type of the pile is chosen, so the perimeter (p) is known
and the design entails determining H. The p seems to have no impact on the resistance
factors (required), as will be proven later. Because these data are typically acquired
through an investigation aimed at describing the site, the term characteristic is preferred
in this study. Just the ultimate limit state is taken into account in this design, and the
factored load must not exceed the factored resistance,

basRy = X LaiF; [74]

where, daf is the ultimate geotechnical resistance factor for deep foundation, R,,is the
geotechnical resistance (ultimate) based on the nominal soil properties (characteristic), I;

is the importance factor, a;F;is the load factor.
In this study, the combination of dead load plus live load will be studied,
Fv == O(LF'L + aDﬁD [75]

where F; is the live load (characteristic), F; is the dead load (characteristic), ar and ap
are the live load factors and dead load factors, respectively, ar is the total load factor
(equivalent). The FHWA-specified load factors will be employed in this study (where ar
= 1.75 and ap =1.25). However, the idea described here can simply be applied to different

load combinations and circumstances.



In some circumstances, the means of the load (characteristic) values utilized in any

design are defined, however, they can be defined more broadly as means as
F,=ku [76a]
FD = kpip [76b]

where, i is the means of the live load, pp is the means of the dead loads, ky. is the live
load bias factors, and kp is the dead load bias factors [133]. The values of ki and kp were
estimated to be 1.41 and 1.18, respectively.

The soil cohesion (characteristic) ¢, is the weighted average of the ¢; (sampled

observations),
A 1 ~
c=2 i=1Gi [77]

The ultimate geotechnical resistance, R,,, can be derived from the Equation 73 by

assuming c(z) = ¢,
R, = pHa¢ [78]

According to The Federal Highway Administration (FHWA) two reliability indexes, 2.33
and 3.0, were considered in this study.

Random soil model

In this study, we assumed cohesion of soil (c) is distributed lognormally with p. (mean),
o. (standard deviation), and 6, . (spatial correlation structure). Because it is often used to
illustrate nonnegative soil attributes and has a relationship with the normal distribution, the
lognormal distribution was chosen; Out of a normally distributed (random field) function
[Ginc(2), with mean (=0), unit variance, and 6,,. (spatial correlation length)], a
lognormally distributed (random field) function can be created, by following
transformation:

c(z) = exp [Ulnc + 01ncGine (Z)] [79]
where,

1
Uine = ln(.uc) - Eo_l%w [80a]



oke = In(1 +vd) [80b]

The coefficient of variation of the cohesion, v. = a./u. and (z) is the spatial position. A
Markovian correlation (simple exponentially decaying) function is assumed in this study,

where, p is the correlation function, in the form of

2t

p() = exp{——-} [81]
where t = z;- z, is the inter point distance.

In the above equation, 6 (spatial correlation length) is generally described as the separation
distance between two Inc values that are significantly associated. The p(t) (spatial
correlation function) has a variance reduction function, y(H), which is defined by:

y(H) = %foH fOHP(Z1 — 23)dz,dz, [82]

Both u. and a will cancel out of the probability (failure) prediction equations, as will be
shown later, so their values are completely arbitrary and have no impact on the geotechnical
resistance factor utilized in the design process.

Random load model

The dead loads (mostly static) and live loads (mostly dynamic) make up the load acting on
a foundation. The dead load can be calculated, and therefore, the mean and the variance of
dead loads are quite well understood. The live loads, on the other hand, are more
challenging to probabilistically characterize. The total load, F will be:

F=F,+F, [83]
The mean and the variance of the load, F, are given by:

HUF = U T Up [84a]
02 = of + o3 [84Db]

The dead loads and the live loads are considered to be distributed lognormally. So, the total
load is also distributed lognormally, which is also supported by Fenton et al. [123]. So,

1
Hinr = In(ug) — Eo-l%’lF [85a]

84 —



2
ofr = In(1+ Z—g) [85b]

Theoretical approach to estimate probability of failure of cohesive soil

The soil is first represented as a spatially variable random field to assess the probability of
a pile failure. In general, cohesion varies in all the three dimensions, however, considering
the third dimension has minimal effect since piles are one dimensional, a 2D random field
analysis is used, where the pile is positioned vertically about the soil samples, as the soil
boring, CPT test or SPT sounding, are performed vertically in a distinct, perhaps different
locations, as depicted in Figure 25. The following is a hypothetical estimate to the pile
failure probability in soils at total stress circumstances. When soil parameters are spatially
varied, as they are in practice, the value of Ry becomes:

R, = pHac [86]

where ¢ is the cohesion (equivalent). The average of the spatially variable cohesion (¢)
across the pile length H is hypothesized given as:

c==fc@dz = -3, [87]

Figure 25. Location of pile and soil sample
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By replacing Equation 87 into Equation 74 yields the requisite design pile length, H as:

LlLﬁL+LZDﬁD [88]

Haé¢ = a,F Fy—>H=
baspHal = ayFy, + apkp - aspac



By further replacing Equation 88 into Equation 86, the ultimate resistance, Ry, can be
estimated as:

R, = (M) (S) [89]

bar ¢
The probability of failure, ps, will be given as:
pr = P[F > R,] [90]

and a successful design methodology will have p; < p,,. Substituting Equation 89 into
Equation 90 leads to

= rle> (22) )

bar ¢

— P |:F__(f > (aLFL+aDFD)]
¢ bar

It is noteworthy that the a (adhesion factor) and p (perimeter length) have both been
cancelled out of the failure probability calculations. This indicates that these parameters
have no effect on the resistance factors needed for this investigation. Rearranging the above
equation leads to

F 1 c
v =Pl > 1 O] %2

Returning to Equation 91 for p, calculation, the next two components are defined as

follows:
W = % [93a]
Q = aLﬁL + aDﬁD [93b]

So that Equation 92 can be written as:

pf=P[W>¢% [94]

W (distribution) must be determined in order to solve Equation 94. If all of the F (random
load), and ¢ and ¢ (cohesion values) are considered to be lognormally distributed [123], W



will therefore be lognormally distributed as well, and its values can be found by looking at
the individual F, In¢, and Inc distributions. If W is distributed in a lognormal way,

InW = InF + In¢ — InC [95]

ps can be derived from the following:

0 ) 1n<£>_ﬂlnw
prP[W>—] =P[an>ln<—)] =1-@ |2
bar bar

Jinw

[96]

where, @ is the cumulative distribution function (standard normal).

To find ps, we have to determine InWW’s mean and the variance. [nl/’s mean and the
variance as:

Hinw = Hink T Hine — Hine [974]
O-lleW = O-lan + O-l?n(lf + o—l%’lf - ZCOU(Zné, lnE) [97b]

The components of 97 were given by Naghibi [131]:

Hine = Elln€] = E [in (=21, &)] = In(ue) [98a]
O =2y Y p(2) - 2) [98b]
Oine = 0¥ (D) [98c]

where, y (D) is the variance reduction function, given by Equation 82.
1 fH
tune = E |In (3 J;' e(2)dz)| = Inuo) [992]

Ulznc‘ = Ulznc)/(H ) [99b]

where, y(H) is defined by Equation 82.

Cov(Inc,Inc) = %Zﬁl fOHp IJrZ + (z — zio)zl dz = 62, Yup [100]

87 —



where, yyp is the correlation coefficient (average) between cohesion across domain D and
cohesion along H. yyp can be defined as:

Yup = L1.1 i=1 foHP l\/rz +(z—- le)zl dz [101]

m

As indicated in Figure 25, r is the distance (horizontal) between the centerline of the pile
and the soil sample (centerline).

Substituting Equation 98 into Equation 101 leads to

Hinw = HinF [1023]
Oinw = Ofr + e[y (D) +y(H) = 2yyp] [102b]

The reliability index, £ will be given as:

5 = g o 05

Oinw

The geotechnical resistance factor (¢4f) can then be calculated as:

def = exp(Inq — timw — Boaw) [104]
Cohesionless soil

The friction angle of sand (¢) is assumed to be lognormally distributed with p4, (Mean), o,
(standard deviation), and 6, ¢ (spatial correlation structure). Out of a normally distributed
(random field) function [Gin4(2), with mean (=0), unit variance, and 6,4 (spatial
correlation length)], a lognormally distributed (random field) function can be created, by
following transformation:

¢(z) = exp [Mlnd) + Uln¢Gln¢ (2)] [105]
where,



1
Hing = ln(,uq)) - Eo-l%u]) [106b]

The coefficient of variation of ¢, v4 = g4/ug and (z) is the spatial position. A Markovian

correlation (simple exponentially decaying) function is assumed in this study, where, p is
the correlation function, in the form of

2t

p(t) = exp{— =} [107]
where, t = 212> is the inter point distance.

In the above Equation, the 6 (spatial correlation length) is generally described as the
separation distance between two Inc values that are significantly associated. The p(t)
(spatial correlation function) has a variance reduction function, y (H), which is defined by:

1 (H (H
y(H) = ﬁfo fo p(z1 — 2z;)dz,dz, [108]
In this study, the random load model was considered similar as the cohesive soil.
Theoretical approach to estimating probability of failure of cohesionless soil

The soil is first represented as a spatially variable random field to assess the probability of
a pile failing. This research investigates a 2D random field where the pile is positioned
vertically about the soil samples, as the soil boring, CPT test or SPT sounding, are
performed vertically in a distinct, perhaps different locations. When soil parameters are
spatially varied, as they are in practice, the ultimate resistance, Ry, can then be estimated
using the following equations:

R, = %pasz(l — sin ¢) tan (b¢) [109]

where ¢ is the cohesion (equivalent). The average of the spatially variable cohesion (¢)
across the pile length H is hypothesized here,

¢ =20 b@dz = 131, P, [110]

The required minimum design pile length, H, can be obtained by

2(a FL+apFp)
daspay(1-sin @) tan (bp)

ar GpayHZ(l —sin ¢3) tan (bcf))) = aq,F, +apF, > H= \/



[111]

The ultimate geotechnical resistance, Ry, can be written as,

__ (aLEL+apFp\ ((1—sin ¢) tan (bp)
R = (2 (E Hees) [112]

The probability of failure, ps, will be:
ps = P[F > R,] [113]

and a successful design methodology will have ps < p,,. Substituting Equation 89 into
Equation 113 leads to:

ps = p [F > (aLﬁL+aDFD) ((1—sin @) tan (b@) )]

daf (1-sin @) tan (bd)

_ F(1-sin @) tan (bd) ) (aLﬁL+aDﬁD)]
=P = — | > | —— 114
[( (1-sin @) tan (be) dar [114]

Assuming that,

X=(1-sind)tan (bd), X = (1 —sin @) tan (b}), q = a F, + apFy then, Y = FT_X
So that Equation 114 can be written as
ps =P [Y > (bidf [115]
If Y is lognormally distributed, then:
InY = InF + InX — InX [116]
The probability of failure, ps, can be derived from the following:

In{ L —Hiny
py =P [y > cbidf] —p [lnY > In (q%f)] —1-0 —<‘1"Z> [117]

ny

where, @ is the cumulative distribution function (standard normal).
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The probability of failure (py) in the above equation can be determined by u;,y = pinr +

Uing — bing aNd 0y = 0fp + 0L5 + 01z — 2Cov(InX, InX) and solving the equations
[131].

The reliability index, 8, can be expressed as,

5 = i) s

Olny

The geotechnical resistance factor, ¢4, can then be calculated as:

bar = exp(Ing — Wiy — Boiny) [119]



Research Objectives

The main objective of this research was to evaluate the different sources of geotechnical

variability and quantify the special variability of soil properties for incorporation into

analysis and design of different geotechnical engineering applications. This included:

a)

b)
c)

d)

Evaluating the operator-induced and equipment-induced variations on the design
soil properties

Evaluating site spatial variations of design soil properties

Evaluating the best spatial interpolation method to generate synthetic CPT
profiles and soil boring data (Standard Penetration Test, SPT, values and
undrained shear strength, Su) from the existing CPT and soil boring data of the
specific site

Incorporating the special site variability into LRFD design of pile foundations,
Incorporating the special site variability into different geotechnical engineering

applications



Scope

This objective of this research study were achieved through conducting extensive in-box,
laboratory and field tests to evaluate variability of the measured strength/stiffness
parameters from different devices and the variability of the different soil properties; in
addition to evaluating the spatial site variability from soil borings and/or in-situ tests for
many geotechnical engineering analysis and design.

The in-box tests included constructing several geomaterial sections (5 ft. long x 3 ft.
wide) of different types of soils and aggregate stones that were compacted and tested
using different devices including DCP, LFWD, Geogauge, plate load, Dirt Seismic
Properties Analyzer (D-SPA), Nuclear Density Gauge (NDG) and E-Gauge. The tests
were conducted by different operators, in which each operator tested each section several
times at different locations. The field tests were conducted using Geogauge, LFWD and
DCP on 14 constructed sections at ALF site and 3 under-construction sections from
different projects. In each field test, measurements were taken by several operators at
different locations. The operator-related and location-related variabilities in terms of
COV was evaluated for each device measurement using the X/Bar-R, ANOVA, and

second moment methods.

Typical laboratory tests that included Atterberg limits tests, unconsolidated undrained
(UU) triaxial tests, small direct shear tests, consolidation tests, and California bearing
ratio (CBR) tests were conducted on different specimens of various soil types using
different operators to evaluate specimen-related and operator-related variability of the
different soil properties in terms of COV. The tests were performed by several operators
on three specimen of the same soil type.

Several geostatistical methods and techniques, such as semivariogram and probabilistic
approach, were used to evaluate the spatial site variability from soil borings with
laboratory data and/or in-situ CPT data for incorporating the effect of specific site
variability into many geotechniocal engineering applications such shallow foundation,
deep foundations settlement and slope stability analysis.

The Bayesian analysis technique was used to update the mean bias, standard deviation,
and COV, of the measured/predicted pile capacity of specific site from national and state
variables and using the pile load test data of the new site. The updated variables were



used to calibrate the resistance factors for LRFD design of pile foundations of the specific

site.

The method proposed by Fenton and Griffiths [17] was used to incorporate the variability
in soil properties and the distance from soil boring(s) for analysis and design of shallow

foundations.

The method proposed by Naghibi and Fenton [18] was used to incorporate the variability
in soil properties and distance from soil boring(s) for analysis and design of deep

foundations.
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Methodology

This section will present the different approaches used to evaluate the variability of soil
properties and the different sources of geotechnical variability, and quantify the
variability of soil properties for inclusion in analysis and design of different geotechnical
engineering applications. This includes conducting: (1) in-box laboratory tests using
different devices such as Geogauge, Light Falling Weight Deflectometer (LFWD), and
Dynamic Cone Penetrometer (DCP); (2) field tests using Geogauge, LFWD, and DCP on
constructed sections at ALF sites and under-construction sections from different projects;
(3) typical laboratory tests such as unconsolidated undrained (UU), direct shear tests, and
consolidation tests; and (4) evaluations of site variability from soil borings and in-situ
Cone Penetration Test (CPT). This section will also include different geostatistic methods
and techniques used for incorporating site variability in different geotechnical
engineering applications, such as bearing capacity of shallow foundations, ultimate
capacity of pile foundations, and slope stability analysis. The incorporated techniques
include spatial correlation and semivariogram modeling, Bayesian technique,

probabilistic approach Fenton and Griffiths method, and Naghibi and Fenton method.

In-box Laboratory Tests

This study included conducting extensive in-box laboratory tests on several geomaterials
including different types of soils and aggregate stone sections that were compacted and
tested in the geotechnical lab at the Louisiana Transportation Research Center (LTRC).
Twelve test sections were prepared, compacted and tested inside a box with dimensions
of 5 ft. L x 3 ft. W x 4 ft. D. The sections were tested using different devices including
Geogauge, Light Falling Weight Deflectometer (LFWD), Dynamic Cone Penetrometer
(DCP), Plate Load, Dirt Seismic Properties Analyzer (D-SPA), Nuclear Density Gauge
(NDG) and E-Gauge. Detailed descriptions of these devices, their measurements and
corresponding equations are presented in Appendix A. Summary of these devices and

their measurements are presented in Table 4.

The Geogauge, LFWD and D-SPA devices were conducted with five operators and each
operator tested three times in the front, middle and back locations of the blue box,
respectively. The DCP test was run by three operators and each operator conducted the
test one time in the front, middle, and back location of the box. The plate load test (PLT)



was performed in the middle location of the box, in which only one operator did the test.
The NDG and E-Gauge tests were performed in the front, middle and back locations and
one operator performed the test.

Table 4. Devices used to measure soil variability

Different Devices to Measure Variability

SL Device Measure Units
1 Geogauge Stiffness Modulus MPa
2 Light Falling Weight Deflectometer :

(LFWD) Deformation Modulus MPa

3 Dvnamic Cone Penetrometer Dynamic Cone Penetration Index mm/

Y (DCPI) blow

4 Dirt Seismic Properties Analyzer .
(D-SPA) Shear Modulus ksi

5 . Dry Density pcf
Nuclear Density Gauge (NDG) Moisture Content %

6 Low Nuclear Density Gauge (E- Dry Density pcf
Gauge) Moisture Content %

7 Plate Load Deformation Modulus MPa

The reason for taking measurements in the same section with different operators is to
evaluate variability of soil properties among the operators. Besides, the location-related
variability can also be evaluated by taking measurements in different locations. The
collected testing data were used to perform statistical analyses using the X-Bar/R and
ANOVA method to assess the mean value and the coefficient of variation of testing
devices’ measurements.

Materials Used in the In-Box Tests

Twelve different geomaterials were used for conducting the in-box laboratory tests. These
materials are: low PI (PI=11) clay soil, medium PI 1 (PI=21) clay soil, medium PI 2
(PI=31) clay soil, medium PI 3 (PI=38) clay soil, high PI (PI=53) clay soil, sand,
Kentucky limestone, and Mexican limestone. In addition, three stabilized sections were
also tested including medium PI 3 (PI=38) mixed with 5% lime and 4% cement by
volume; high PI (PI=53) mixed with 5% lime and 4% cement by volume and low PI
(PI=11) mixed with 3% cement by volume.



Layout of the In-Box Tests

The experimental testing program in this study was conducted inside a box with
dimensions of 5 ft. L x 3 ft. W x 4 ft. D to evaluate the variability of compacted soil
layers using different devices and different operators. For each test, four layers were
compacted with the same type of geomaterial up to 24 in. thickness maintaining the 95%
of the maximum dry density and optimum moisture content. Each layer was compacted
inside the box to 6 in. thickness, as is illustrated in Figure 26. The in-box constructed
sections were tested using different devices (i.e., Geogauge, LFWD, DCP, Plate Load, D-
SPA, NDG and E-Gauge) using different operators as shown in Figure 27.

Figure 26. Cross-section layout of compacted layers inside the box
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After compacting the layers, five operators ran the tests using the same device to check
the variability of the measurements with respect to Geogauge, LFWD and D-SPA. Each
operator took three measurements in different locations of the box for the same
compacted geomaterial layers. The same procedure was applied for the different geo
materials. Three operators ran the DCP tests in different locations of the box, following
the same procedure for all geomaterials. The PLT was conducted by one operator in the
middle location of the box. Tests were conducted by NDG and E-Gauge maintaining one
operator in three different locations of the box. Figure 28a presents the layout for the
Geogauge, D-SPA and plate load tests. Figure 28b presents the layout for the LFWD
tests. Figure 28c presents the layout for DCP tests. The layout for the NDG and E-Gauge
tests are similar to Figure 28a.



Figure 27. In-box testing: (a) Geogauge test, (b) LFWD test, (c) DCP test, (d) Plate load test, (e) D-
SPA test, (f) NDG, and (g) E-Gauge test

(c) DCP Test

(e): D-SPA test

(g) E-Gauge Test



Figure 28. Layout of test setup in different location of the box
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Field Tests on Constructed Sections

This study included conducting field tests on several constructed and under-constructed
sections in different projects within Louisiana. In addition, 14 test sections were tested at
the accelerated load facility (ALF) site of DOTD. Three under-constructed test sections
were also tested at the LA 98 and LA 417. In each field test, the Geogauge, LFWD and
DCP measurements were taken to evaluate the soil’s site variability among locations and
operators. In addition, the dry unit weight and moisture content were obtained using the
Nuclear Density Gauge and E-Gauge devices.

Constructed Sections at ALF site

Eight sections were constructed at the ALF site. Among these, four sections were
constructed with 5 ft. x 5 ft. dimensions at the lower level location of ALF site, and the
another four sections were constructed with 4 ft. x 4 ft. dimensions at the upper level
location of ALF site. Each section was constructed with 12-in. thickness. All sections
were constructed with cementitious materials including either low PI (PI=11) or high PI
(PI=53) soils. Figure 29 presents the layout of the lower level sections constructed at
ALF; while Figure 30 illustrates the test setup layout for all the lower level test sections
at ALF. The layout of the upper level sections constructed at ALF is presented in Figure
31, and the layout of test setup for all the upper lever sections is illustrated in Figure 32.



Figure 29. Layout of the lower level constructed sections at ALF
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Figure 30. Layout of test setup for the lower level sections at ALF
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Measurements were taken using Geogauge and LFWD at each point (A, B, C, and D, or
1, 2, 3, and 4) including the center in every section. Five operators took the
measurements using Geogauge and LFWD devices at every section. DCP, NDG and E-
Gauge measurements were taken at every point except the center. The DCP was
conducted by three operators in each section whereas NDG and E-Gauge were operated
by one operator.

In addition, six sections (I to VI) with dimensions of 70 ft. x 13 ft. that were constructed
at the upper location of ALF under another research project to study micro cracks of
cement stabilized sections were also tested. The cement soil sections were designed with
a minimum 7-day UCS of 150 and 300. Section I was the control section. The stabilized
sections II, III, and IV were constructed using 8% cement, and maintaining an 8.5-in.
thickness for each section. The stabilized sections V and VI were constructed using 6%
cement, and maintaining a 12-in. thickness each. The A-2-7 (AASHTO) geomaterials was
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used in the construction of all the six sections. Figure 33 depicts the layout of the
constructed soil cement sections with no micro-cracking (MC), low MC, medium MC
and high MC. Figure 34 illustrates the five points where tests were performed.

Figure 31. Layout of the upper level sections constructed at ALF
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Figure 32. Layout of test setup for the upper level sections at ALF
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Figure 33. Layout of soil cement sections at ALF
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All the constructed sections at ALF site were tested using the Geogauge, LFWD and DCP
devices taken at each point. The Geogauge and LFWD tests were run by five operators;
whereas, the DCP tests were conducted with three operators. The NDG and E-Gauge tests
were performed by one operator at each point.

Under-Constructed Sections at LA 98 and LA 417

The field testing program also included testing three under-constructed sections at LA 98
and LA 417 highway sites. The sections were tested with different devices to determine
compacted soil site variability among operator and locations. Five testing devices (i.e.,
Geogauge, LFWD, DCP, NDG and E-Gauge) were engaged and run by different
operators for evaluating the site variability. The Geogauge and LFWD tests were
performed by five operators; whereas, one operator was involved in taking measurements
for the DCP, NDG and E-Gauge tests.
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Tests were conducted on the cement stabilized base layer at two different stations
(266+00 and 267+00) within the LA 98 site, which are located in Lafayette, LA. The base
section was constructed using 10 in. thick stabilized with 7% cement. Tests were also
performed on a another cement stabilized base layer at station (101+25) of the LA 417,
which is located near False River of Louisiana. The thickness of the base layer was 24 in.,
which was stabilized with 10% cement. The layout of the test sections and test setup
layout of the devices were the same for all sections. Figure 35 presents the layout and
testing setup for the under-constructed field base sections.

Figure 35. Layout and testing setup of the under-constructed field base sections
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Laboratory Testing Program

The laboratory testing program involved conducting several laboratory tests on various
types of soil in order to evaluate the laboratory variation of soil properties. The laboratory
tests included the unconsolidated undrained (UU) test, Atterberg Limit test, small direct
shear test, one dimensional consolidation test, and the California Bearing Ratio (CBR)
test. All the laboratory tests were performed in accordance with the ASTM procedure
methods.

The soils used in the laboratory tests were collected from the ALF site. The soil samples
were put inside the oven to dry out for three days at a 60° C temperature. The soil
samples were then remolded at the optimum moisture contents for all the lab tests.
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Unconsolidated Undrained (UU) Test

The UU tests were conducted using the triaxial machine in the soil lab at LTRC. The soil
samples used for the UU tests are: Low PI (PI=11), Medium PI 1 (PI=21), Medium PI 2
(PI=31), Medium PI 3 (PI=38) and High PI (PI=53) clay soils. The tests are performed
according to ASTM D2850 - 15 for all soil samples. In order to determine the laboratory
variability of soil properties, the UU tests were run by five operators for each soil type.
Each operator prepared 3 samples of the same soil type maintaining optimum moisture
content. Figure 36 shows the soil samples prepared for the UU test of one operator. The
soil samples in UU tests were loaded up to 15% strain for all soil types. Figure 37
presents an example of the stress-strain curve obtained of Low PI (PI=11) soil that was
performed by one operator, and Figure 38 shows the Mohr’s circle for the same tests.

The strength of this test is performed under undrained conditions and is applicable to
field conditions where soils are subjected to a change in stress without time for
consolidation to take place. Also, the field stress conditions are applied to those in the
tests. The shear strength measured from the UU tests expressed in terms of total stresses
is commonly used in the short-term embankment stability analyses, earth pressure
calculations, and foundation design.

Figure 36. Samples prepared for UU test.
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Figure 37. Stress-strain curve of Low PI (P1=11) soil
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Figure 38. Mohr’s circles for the UU tests
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Atterberg Limit Tests

The Atterberg limits are critical water contents of fine-grained soils that define the
transitional boundaries between the different consistency states of the soil (solid, semi-
solid, plastic and liquid) to another consistency state. They are also known as consistency
limits. These Atterberg limits are: shrinkage limit (SL), plastic limit (PL), and liquid limit
(LL), which are outlined in ASTM D4943 testing procedure. The behavior and
consistency of the soil, as well as engineering properties, are different at varying degrees
of moisture content. Thus, the boundary between each state can be established based on
the change in water content and hence the soil's behavior. The Atterberg limits are usually
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used for classification of cohesive soils, distinguish between silt and clay soils, and to
distinguish between different compositions of silts and clays. Several correlations have
been developed to relate the indices obtained from Atterberg limits (e.g., plasticity index,
PI=LL - PL) to different soil properties and behavior.

For the laboratory tests, remolded soils were used to determine the liquid limit and plastic
limit of the different soil samples. Samples were prepared using different moisture
contents by five different operators. Each operator prepared 3 samples with similar
moisture content for the same soil type and the process was followed for all other soil
types. Figure 39 shows some soil samples prepared to determine the liquid limit and
plastic limit of one soil.

Figure 39. Samples prepared for the Atterberg limit tests
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Small Direct Shear Test

The small direct shear test was performed in this study to measure the laboratory
variation in the consolidated-drained shear strength of sandy and clayey soils. The shear
strength is one of the most significant engineering parameter of geotechnical engineering
analysis and design since it is necessary whenever a structure relies on the soil’s shearing
resistance. The shear strength is required for engineering situations such as evaluating the
stability of slopes or cuts, determining the bearing capacity for foundations, and
measuring the pressure exerted by a soil on a retaining wall. The direct shear test was
performed following the ASTM D3080-72 procedure. Figure 40 presents a soil sample
ready to undergo shear test.
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Dry sandy soil and clay soils with different consistencies were tested in the direct shear
test devise to measure the corresponding shear strength parameters (i.e., friction angle, o,
and cohesion, c). The clay soils included in the tests are: Low PI (PI=11), Medium PI 1
(PI=21), Medium PI 2 (PI=31), Medium PI 3 (PI=38) and High PI (PI=53) soils. The
direct shear tests were conducted by five operators, in which every operator prepared nine
samples for each type of soil material. For all the tests, shearing was maintained up to
10% strain.

Figure 40. Small direct shear test

One Dimensional Consolidation Test

This one dimensional consolidation test is usually performed on fine-grained soils, which
are undisturbed and naturally sediment in water, in order to evaluate the consolidation
parameters. In this study, the consolidation tests were performed to evaluate the variation
in laboratory measured consolidation parameters (i.e., compression index, Ce, and
coefficient of consolidation, cv). The testing procedure and the evaluation techniques are
specified in the ASTM D2435-04 reference. The basic test procedure is applicable to
specimens of compacted soils and undisturbed samples of soils formed by other processes
such as chemical alteration, weathering, and stress distribution.

The consolidation parameters of the soil determined from the consolidation test are used
to calculate the magnitude and time rate of both primary and secondary consolidation
settlements of a structure or an earth fill. The properties determined from this test are of
key significance in the evaluation and design of structural performance. Figure 41 shows
the one-dimensional consolidation test devises.
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The one dimensional consolidation tests were conducted on clays soils with the following
different consistencies: Low PI (PI=11), Medium PI 1 (PI=21), Medium PI 2 (PI=31),
Medium PI 3 (PI=38) and High PI (PI=53) soils. To evaluate the laboratory variability of
consolidation parameters, the consolidation tests were performed by three operators, in
which each prepared and tested three specimens of the same soil prepared at the optimum

moisture content.

Figure 41.0ne-dimensional consolidation test

The results of consolidation tests can be used to evaluate the pre-consolidation pressure
(P¢), compression index (Cc), and recompression index (C;) from the measured void ratio
vs log (pressure) curve. The coefficient of consolidation, cy, can be evaluated from the
settlement versus time curve for each load increment using either Casagrande or Taylor
methods. The following equation can be used to calculate ¢y using:

C,= %()Hir (Casagrande) or c,~= %()ka (Taylor) [120]
where, Tso = dimensionless time factor for 50% consolidation, equals 0.197; T =
dimensionless time factor for 90% consolidation, equals 0.848; tso = time corresponding
to 50% degree of consolidation; too = time corresponding to 90% degree of consolidation;
and Hy, = length of the drainage path at 50% consolidation. For double-sided drainage,
Hy, = half the specimen height at the specific load increment; and for one-sided drainage,
Hg, = full-specimen height at the specific load increment.
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California Bearing Ratio (CBR) Test

The California Bearing Ratio (CBR) test is a comparative test that is usually designed as
an indicator of the strength of subbase and base course materials in highways and airfield
pavement systems. The testing procedure is explained in ASTM D1883-99. The CBR test
is generally performed on remolded (compacted) specimens, although it can be conducted
on undisturbed soils. Remolded specimens can be compacted to their maximum unit
weights at their optimum moisture contents if the CBR 1is desired these values. However,
the CBR tests can also be performed at the desired unit weights and moisture contents.
Soil samples are tested after being placed in water for 96 hours in order to simulate the
very poor soil conditions. Figure 42 shows the CBR test in the universal testing machine.

Figure 42. California bearing ration (CBR) test

The CBR is defined as the ratio of the bearing load that penetrates a geomaterial to a
specific depth as compared with the load that penetrates a well-graded crushed stone to
the same depth. It is expressed as a percentage. A load is applied by a piston with a
diameter of 1.95 in. to penetrate it into the soil. The penetrations versus load values are
plotted on a graph and corrected following the procedure specified in the test standard.
The corrected stress values corresponding to penetration depths of 0.10 in. and 0.20 in.
are divided by the standard stresses of 1,000 psi and 1,500 psi, and then multiplied by
100. The CBR can be expressed as follows:

penetration stress (psi) required to penetrate 0.10 in.or 0.20 in.
standard stresses (1,000 psi and 1,500 psi)

CBR = [121]
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If the bearing ratio based on a penetration stress required to penetrate 0.20 in. with a
corresponding standard penetration stress of 1,500 psi is greater than the one fora 0.10
in., the test should be repeated, and if the result is still similar, the ratio based on the 0.20
in. penetration should be reported as the CBR value.

The materials used for the CBR tests are: sand, recycled asphalt pavement (RAP),
Kentucky limestone and Mexican limestone. In order to evaluate the laboratory variations
of CBR values, five operators were involved in performing the CBR tests for all

materials, and each operator prepared and tested three specimens for the same material.

Evaluation of Site Variability using Semivariogram

In this study, the site variability from different project sites were evaluated using the
semivariobram approach, and the results were implemented into LRFD design of pile
foundations. Field data from six project sites with multi CPT tests performed at different
locations within each site, and four project sites with multi soil borings conducted at
different locations within each site were collected. These include: Metairie, ALF, Bayou
Lacassine, US 90, LA 85, Hammond, and LA 1 CPT project sites; and Metairie, Bayou
Lacassine, Red River, and Williams Boulevard soil boring sites. The spatial variability of
CPT data (corrected tip resistance, q;) and the spatial variability from soil boring data
(either SPT-N or undrained shear strength, Sy) for each site were evaluated using the
semivariogram approach. The coefficient of variation due to spatial variability
(COVRGspatial) was determined for each site for use to calibrate the specific site resistance
factor.

Description of CPT Sites

Six different project sites in Louisiana with several CPT tests performed at each site were
used to evaluate the effect of site variability on the LRFD design of driven piles. The
profiles of the different CPT data with depth were obtained for each site. The first project
site is in Metairie, which covers 5,382,000 ft* (500,000 m?), located at 29°59'52"N and
90°10'39"W, and is situated at 3 ft. above the mean sea level. The project consists of
constructing five dedicated ramps at the Interstate 10/Causeway Boulevard interchange
located in Metairie in Jefferson Parish of Louisiana. Fourteen CPT tests were performed
at different locations to a depth of 120 ft. as shown in Figure 43a. The second site is the
Accelerated Loading Facility (ALF) site of the Louisiana Transportation Research Center
(LTRC), which covers an area about 21,528 ft* (2000 m?), which is located at
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30°26'12.37"N and 91°14'39"W. Ten CPT tests were performed at different locations
down to 50 ft. depth as shown in Figure 43b. For the third site at Bayou Lacassine, the

area is about 107,640 ft> (10000 m?), located at 30°04'13"”N and 92°52'52"W, in which 10

CPT tests were performed at different locations down to 75 ft. as shown in Figure 43c.
For the fourth site at US 90 and LA 85, the area is about 1,345,500 ft> (125,000 m?), and
is located at 29°55’17"N and 91°43'34"W. Twenty-two CPT tests were performed at
different locations to a depth of 90 ft. as shown in Figure 43d. The area of the fifth site at
Hammond is about 5,812,500 ft*> (540,000 m?), located at 30°28'50"N and 90°2929"W,
in which seven CPT tests were performed at different locations as shown in Figure 43e.

For the sixth LA 1 site, the area is about 21,530 ft* (2,000 m?), located at 30°26'00"N and
91°12'37.45"W, in which 13 CPT tests (75 ft. deep) were performed at different locations

as shown in Figure 43f.

Figure 43. Plan view of the CPT locations for the different sites
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Description of Soil Boring Sites

Four different project sites in Louisiana with several soil borings performed in each site
were considered in this study to evaluate the effect of site variability on LRFD design of
driven piles. The profiles of soil boring data (undrained shear strength, Su, and SPT-N)
with depth were obtained for each site. Two of the project sites (Metairie and Bayou
Lacassine) are the same sites used for CPT test data. Fifteen soil borings were performed
at different locations in Metairie site down to 105 ft. depth as shown in Figure 44a. For
the Bayou Lacassine site, 12 soil borings (75 ft. deep) were performed in this project as
described in Figure 44. The third site is the Red River project site at Alexandria,
Louisiana. The area in this site is about 6,460 ft> (600 m?), located at 31°19'36"N and
92°26'55"W, in which eight soil borings were performed to 105 ft. depth at different
locations as shown in Figure 44c. The fourth site is the Williams Boulevard project site
with an area of about 1,722,200 ft* (160,000 m?), which is located at 30°0"34"N and
90°14'17"W. In this site, eight soil borings (120 ft. deep) were performed at different

locations as shown in Figure 44d.

Subsurface Soil Characterization

The subsurface soil conditions for the different project sites were characterized using the
results of CPT tests and/or the soil borings and the associated laboratory test results. In
this study, the site variability of six project sites with CPT data and four sites with soil
borings and laboratory tests were evaluated, in which the Metairie and Bayou Lacassine
sites have both data. The profile soil type, profile of corrected tip resistance (q¢=qc + (1 -
a) X uz) from CPT data and/or profiles of SPT-N values and undrained shear strength, S,
from soil borings were determined for all sites. Here, (a) is the ratio of the effective area
of the cone (a = An/Ac), where A, and A, are the area of cross-section and the projected
area of the load cell and the cone, respectively. Additionally, (u2) is the pore water
pressure measured behind cone base. For example, the profile of soil type for Metairie
site, the results of SPT tests, Sy values, and the profiles of average q; values per ft. for all
the CPTs obtained from the site are presented in Figure 45. The site consists of silty clay
soils down to about 30 ft. deep, followed by a sandy soil layer to about 45 ft. deep, then
clay soils to about 85 ft. deep. Below that lie another sandy layer down to 120 ft. The
profile of CPT tests was used to classify the subsurface soil using the probabilistic region
“soil behavior” estimation method introduced by Zhamg and Tumay [134], in addition to
the CPT soil classification proposed by Robertson [110] as shown in the Figure 45 for
Metairie site. The profiles of CPT data and CPT soil classifications, and the profiles of
SPT-N values and S, for the other CPT and soil boring sites are presented in Appendix B.
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Figure 44. Plan view of the Soil Boring locations for the different sites
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For the CPT sites, the coefficient of variation (COV) of the corrected cone tip resistance
(q¢) data were calculated for each site. For Metairie site, the maximum, minimum and
average COV of q; values are 2.46, 0.00 and 0.74 tsf, respectively. The maximum,
minimum, and average COV of q; values for the Bayou Lacassine site are 2.63, 0.09, and
0.46 tsf, respectively. For ALF site, the maximum, minimum, and average COV of q;
values are 1.48, 0.09, and 0.39 tsf, respectively. The maximum, minimum, and average
COV of q;values for US 90 and LA 85 site, are 3.26, 0.07, and 0.48 tsf, respectively. For
Hammond site, the maximum, minimum and average COV of q; values are 2.01, 0.25 and
0.98 tsf, respectively. Finally, for LA 1 site, the maximum, minimum, and average COV
of q: values are 1.67, 0.15, and 0.55 tsf, respectively.

For the soil boring sites, the COV of Sy and SPT-N values were calculated for each site.
The maximum, minimum, and average COV of Sy from soil borings for the Metairie site
are 0.67, 0.17, and 0.27, respectively. The maximum, minimum, and average COV of
SPT-N from soil borings are 0.70, 0.13, and 0.31, respectively. For Bayou Lacassine, the
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maximum, minimum, and average COV of S, from soil borings are 0.80, 0.29, and 0.51,
respectively. The maximum, minimum, and average COV of S, for the Red River site are
0.91, 0.11, and 0.35, respectively. For the Williams Boulevard site, the maximum,
minimum, and average COV of S, are 0.39, 0.13, and 0.26, respectively.

Figure 45. Profiles of soil boring data, CPT Data, and CPT soil classification at Metairie site
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For the purpose of evaluating spatial site variability using the semivariogram analysis, the
soil profile for each of the CPT and soil boring sites were divided into soil layers. In
Metairie site, six soil layers were identified for analysis: 0-28 ft., 28-40 ft., 40-50 ft., 50-
78 ft., 78-111 ft. and 111-120 ft. The subsurface condition for ALF site reveals four soil
layers: 0-4 ft., 4-24 ft., 24-38 ft. and 38-50 ft. For Bayou Lacassine site, there were five
soil layers identified for analysis: 0-5 ft., 5-20 ft., 20-30 ft., 30-52 ft. and 52-75 ft. Six
soil layers were identified for the US 90 and LA 85 site: 0-10 ft., 10-25 ft., 25-38 ft., 38-
49 ft., 49-64 ft. and 64-90 ft. For Hammond site, there have been three soil layers
identified for analysis: 0-9 ft., 9-19 ft. and 19-24t. The subsurface condition for LA 1 site
shows four soil layers: 0-10 ft., 10-34 ft., 34-46 ft. and 46-75 ft. For the Red River site,
there have been four soil layers identified for analysis: 0-20 ft., and 20-50 ft., 50-70 ft.,
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and 70-115 ft. Finally, the subsurface soil condition for Williams Boulevard site reveals
four soil layers: 0-30 ft., 30-60 ft., 60 t.-90 ft., and 90-120 ft.

Evaluation of Site Variability using Bayesian Analysis

In this study, the Bayesian updating technique that follows the Baye's rule was used to
probabilistically analyze and update the results of pile load tests that were collected in a
previous study by Amirmojahedi and Abu-Farsakh [57] in order to get an updated data
information (i.e., posterior distribution). The Bayesian technique was coded using
MATLAB. Herein, the Bayesian technique is used to model the mean bias (A = measured/
predicted ultimate pile capacity) and standard deviation of the bias (o) obtained from the
pile load test database collected from different previous project sites (34 sites) in order to
update A and o for the new specific site. The updated values of A and ¢ can be used in the
design of pile foundation for the new site, taking into consideration the specific site
variability.

Pile Load Test Database

The database used in this study consists of 80 precast prestressed concrete (PPC) test
piles of different sizes and lengths that were collected from 34 different project sites
across Louisiana. Figure 46 depicts the locations of the collected PPC test piles. All the
piles in the database were square precast prestressed concrete (PPC) piles that were
loaded to failure under static load tests. The pile lengths range from 36 ft. (11 m) to 200
ft. (61 m), and the pile widths range from 14 in. (356 mm) to 36 on. (914 mm). In each
site, several CPT tests and soil borings were conducted, which were used for soil
classification and evaluation of soil properties for different soil layers along the piles'
lengths.

The pile load tests were performed based on quick load test as described by ASTM
D1143 testing procedure [136]. The tests were performed 14 days after pile driving,
partially accounted for pile setup. The load was increased from 10% to 15% of the design
load up to 3 times the design load (or unless a failure occurs first), and settlement was
measured for each load increment. In this study, only the piles that failed before reaching
the maximum load were considered. The load-settlement curve for each pile load test was
interpreted to evaluate the measured ultimate pile capacity, Qm, using the Davisson
interpretation method [113]. This method is defined as the load causes the pile top
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deflection to be equal to the elastic compression of the pile plus 0.15 in. (3.81 mm) plus
1/120 of the pile's width/diameter. In this study, the CPT data for the tests conducted
close to piles were used to estimate the ultimate pile capacity, Qp, using the LCPC Pile
design method [56]. The model bias factor, A = Qm/Qp, and the corresponding standard
deviation, o, were calculated for the collected database.

Figure 46. Locations of PPC test piles [57]

Geotechnical Characterization of Database Sites

As stated earlier, the pile load test database was collected from 34 different project sites
in Louisiana obtained from a previous study ( [57], [138]). CPT tests and soil borings
were conducted close to each pile load test. Soil data consist of information on the CPT
or soil boring locations; soil type and stratigraphy; profiles of CPT data; and results of
SPT-N values and laboratory testing (shear strength, physical properties, etc.), which
were collected for each pile load test location. Detailed information on the subsurface soil
conditions of the 80 pile load test locations can be found in Amirmojahedi [138]. Piles
were driven into different sandy, clayey, and layered soils. However, the predominant soil
type in most piles is silty clay soil. Figure 47 presents an example of the soil type and
layering, soil properties (e.g., Su), profile of corrected cone tip resistance (q¢), and the
CPT classification using probabilistic region estimation method [134] for a test pile
located at Houma Intracoastal Waterway (I.C.W.W.) Bridges project site.
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The evaluation of pile capacities using the static analysis methods and CPT methods
reveals that more than 70% of the pile capacity for 69 piles out of 80 piles comes from
the side resistance. This means that most of the piles in this study can be considered as
friction piles.

Figure 47 Subsurface soil condition at Houma 1.C.W.W. Bridges project site [138]
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Updating Data Information

The Bayesian technique was used in this study to update the mean bias (L) and standard
deviation of the bias (o) values obtained from previous pile load test database for the new
specific site. The updated values of A (or o) are collectively represented as b in the vector
form; and the bias values of pile load test data (previous) is represented by D. For a given
a dataset, D, the posterior probability density of the parameters b, p(b | D) can be
evaluated as follows:

p(bID) = PEEEE o p(DIb)p(b) [122]

In the above equation, p(b) is the unconditional joint probability distribution of the
parameters in b (A or ). p(b) is typically referred to as the prior distribution, which is

updated when new data, D, becomes available. p(D | b) is the likelihood (for level 1 of the
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analysis, using 33 sites) of the data for given parameters b. p(D) is the probability of the
observed data D. Since p(D) does not vary for a given dataset, the posterior distribution
of b is proportional to the product of the prior and the likelihood, as described in the
above equation.

Initially, when the first dataset D is used (in level 1), the prior p(b) can be based on
existing data/knowledge and engineering judgement. In order to obtain the likelihood,
p(D | b), a probability distribution for the bias values, such as lognormal, needs to be
assumed. For example, assuming that the data points in D follow a lognormal

distribution, the value of p(D | b) can be evaluated the following equation:
p(D|b) = IT;** LN (D;, b) [123]

where, n is the number of data points in the dataset D, D; is an individual data point,
and LN(Dj,b) represents the probability density value of the lognormal distribution with
parameters b at a value of Di. The above equation treats each data point, D;, equally.
However, data points can also be given a weight to indicate higher confidence or
importance to the data point (i.e., confidence bias site parameter for level 2). For this
purpose, the non-negative weights for each data point, wi, can be used as followed:

p(D|b) = [T (LN(D;, b))"" [124]

With the prior distribution and the likelihood values, the posterior distribution of b, which
is proportional to p(D | b)p(b) can be sampled using the Markov Chain Monte Carlo
(MCMC) methods, which is based on the principle of random walks. The MCMC
simulation is the technique to draw samples from the target PDF (in case of this research
it is posterior PDF) with a Markov Chain, which converges with the target distribution.
When the Markov Chain reaches convergence, the samples drawn from the Markov
Chain are the same as those in the target distribution, so the samples in the Markov Chain
can be used to study the properties of the target distribution. The validity of this method
does not rely on the large sample assumption. Herein, an affine invariant MCMC
algorithm by Goodman and Weare [139] that was implemented by Grinsted [140] is used.

For the next dataset (i.e., level 2 of the analysis), the above mentioned updating process
can be used to determine the posterior2 by using the previous posteriorl distribution as
the new prior2 distribution. Herein, the posterior distribution of b is modeled as a non-
parametric joint multivariate density function using a multivariate kernel smoothing
function that was implemented in MATLAB.
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Evaluation of Site Variability using Probabilistic Analysis

Probabilistic analysis were used in this study to analyze the CPT data obtained from LA 1
site in Louisiana. Thirteen CPT tests were performed at LA 1 site. Analysis was
performed through employing the program SGeMS. A characteristic of geostatistics and
other stochastic methods is the ability to assign confidence intervals to the estimates. The
confidence intervals are derived from cumulative distributions of random functions. Once
a cumulative distribution is known, the options in terms of what confidence limits to
employ are up to the user and can be any number in the domain extending from 0 to
100%.

Description and Subsurface Condition at LA 1 Site

In this study, the LA 1 site in Louisiana with several performed CPT was used to evaluate
the probabilistic analysis. For the LA 1 site, the area is about 21,530 ft (2,000 m?),
located at 30°26'00"N and 91°12'37.45"W, in which 13 CPT tests (75 ft. deep) were
performed at different locations as shown in Figure 48.

Figure 48. Locations of the CPT points at LA 1 site
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The subsurface soil conditions for the LA 1 site was characterized using the results of
CPT tests, as well as, the associated laboratory test results. The profiles of 13 CPT tests,
the corresponding CPT soil classifications using the probabilistic region estimation
method [134], and the CPT soil classification proposed by Robertson [135] are presented
in Figure 141 of Appendix B. The maximum, minimum, and average COV of corrected
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tip resistance (q) values for LA 1 site, are 1.67, 0.15, and 0.55 tsf, respectively. The site
consists of alternating clayey and sandy layers. For the purpose of analysis, the
subsurface soil condition at LA 1 site was divided into four soil layers: 0-10 ft., 10-34 ft.,
34-46 ft. and 46-75 ft.

SGeMS Probabilistic Analysis

The SGeMS can read data from files in its own format and can also read files in GSLIB
format, which is pretty much the standard format for geostatistical data. We have 13 CPT
points in the LA 1 site. For each soil layer, the average for each CPT was calculated and
then incorporated into the SGeMS data format. We have to give three inputs in the data,
like X, Y, and Z (data). Here, in our analysis, X, Y, and Z are latitude, longitude and data
(average CPT) for each CPT location. Then we plotted the data in the SGeMs platform.

After plotting the data, the variogram analysis was conducted. From the variogram
analysis results, kriging can be done. In this study, we followed the ordinary kriging. To
do the kriging in SGeMs, we need to expand the estimation entry on the algorithms panel
and select the entry kriging. The middle part of the algorithms panel should then display
two tabs, (General and Data and Variogram) for specifying the parameter controlling the
kriging process. Next, 50 realizations of CPT using sequential Gaussian simulation were

generated so that we can do the probabilistic analysis.

What the SGS algorithm really needs is the variogram of the normal-score transformed
data, which was not computed. We can take a short-cut by assuming that the variogram of
the normal score transformed data would look very much like the variogram of the raw
data scaled to a unit sill. This is the case for these data, since the shape of the univariate

porosity distribution is in fact reasonably normal.

If the probability distribution for the true value is N [z1Xo), 6° (Xo)], then its cumulative

distribution is given as follows:

5 2
| 2e)?

Prob [z < tly, = F(t)y, = [ —=e 2% [125]

—00 /2T

The probability estimate and its estimation variance completely determine the distribution
of the variate (here CPT data) from which one can calculate the probability associated to
any threshold or interval.
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Suppose, we need to get the probability values when the data is between qavg) - St.dev
and qavg) t st.dev. Then, the corresponding equation will be:

Prob [qiavg — St-dev < q; < Qi apg + St.dev |, = Prob [z < qiqpg + St.dev |y, —
Prob [z < Q¢ avg — St.dev |y, [126]

Application of Site Variability in the Slope Stability Analysis

In order to study the effect of the spatial variability on the slope stability analysis, model
of two soil layer and embankment was modeled and run for different scenarios. The
model represents a typical subsurface soil condition. The clay soil layer on top and sand
layer under it. The model details are shown in Figure 49. The soil properties used in the
model for slope stability analysis (for drained and undrained conditions) are shown in
Table 5.

Different scenarios were modeled to study the effect of variability of the soil layers and
embankment properties variability on the embankment stability at drained condition.
Bishop simplified, Janbu simplified and Spencer slice methods were used in the analyses.
Brief description of the typical slice methods can be found in Appendix C. In this study
126 scenarios were run to investigate the effect of site variability (by increasing COV of
friction angle, ¢, cohesion, ¢, unit weight, y, and changing the vertical and horizontal
correlation lengths) on the coefficient variation of the factor of safety.

Figure 49. Case study model for slope stability analysis
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Table 5. Geotechnical Properties of soil layers for drained and undrained conditions

Layer Properties Symbol Drained Values | Undrained Values
Cohesion C 1 kPa 1 kPa
Filling | Friction Angle ) 35° 35°
Unit Weight y 20 kN/m? 20 kN/m?
Cohesion c (or Sy) 20 kPa 40 kPa
clay Friction Angle ) 25° 0
Unit Weight y 20 kN/m?® 20 kN/m?
Cohesion C 1 kPa 1 kPa
sand Friction Angle ) 35° 35°
Unit Weight y 18 kN/m? 18 kN/m?

In this study, we considered the range of different soil parameters according to the
variations reported in literature, as summarized in Table 6. For example, for the friction
angle, ¢, for sandy/clayey soil, we considered the range of COV of ¢ as 0-25% . In case
of cohesion, c, we considered the range of COV of ¢ to be 0-50%. When we are
considering unit weight, y, we considered the range of COV of y as 0-10%. For the
horizontal correlation length, we assumed low, mid and high horizontal correlation
lengths as 65.6 ft. (20 m), 131.2 ft. (40 m), and 196.8 ft. (60 m), respectively according to
the literature. However, for the vertical correlation length, we assumed low, mid and high
vertical correlation length as 16.4 ft. (5 m), 6.6 ft. (2 m), and 0.98 ft. (0.3 m),
respectively, according to the literature.

Table 6. Summary of variability of different soil parameters

Soil Type Parameter Parameter Range

Sandy and Clayey Friction angle ([7], [78]) COV ranges from 0-25%

Cohesion ([7], [141], COV ranges from 0-50%

Clayey (Shahin & Cheung, 2011)

Sandy and Clayey Unit weight ([7], [55]) COV ranges from 0-10%

Horizontal - 20, 40, 60m

Sandy and Clayey Correlation length ([7])

Vertical — 0.3, 2, 5m
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In the case of the spatial variability analyses, the statistics tool in the Slide 2018 2D
software was activated. The coefficient variation of the material properties was put as
value of the standard deviation for each single soil property. Latin-Hypercube
probabilistic analysis sampling method was used to accomplish probabilistic analysis. A
total of 1000 samples were generated and used in the analyses for each scenario. Log
normal sample distribution was used.

For each iteration, the software used random properties as shown in Figure 50, and Figure

51 shows the different random generation of the friction angle at iterations numbers 2 and
1, respectively.

Figure 52, Figure 53, and Figure 54 show the factor of safety (FS) after the completion of
slope stability analysis for scenario 11, 13 and 4, respectively. In case of the undrained

condition, for clayey layers friction angle, ¢ = 0, was considered.

Figure 50. Property contour value of friction angle of sample 2 of scenario 6
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Figure 51. Property contour value of friction angle of sample 1 of scenario 34

(® Shom Variable and Constant
O Show Varabie Orly.
O ik Materisls 1o Show

Spatl Optens

swcetumbes [T |2 ) @
‘Showeg 1000/3000 samples

D)stom soasal G

[Jtormaize Spatal Contours to StdDev

A 0ran Giobal M surfnce For Samgie

= ~ Display Options

Safery Factor
0.000
0.500
1.000
1.500
2.000
2.500
3.000
3.500
4.000
4.500
5.000
5.500
£.000+

Overall Slope Results
1.530

= 25,656
RI (lognormal) = 3€.452

Propesty Consour Viewver
i (degrees)
17,000

7.667 100002 1um2

Figure 52. Factor of safety and critical slip circle of scenario 11
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Figure 53. Factor of safety and critical slip circle of scenario 13
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Figure 54. Factor of safety and critical slip circle of scenario 4
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Application of Site Variability in Shallow Foundation Analysis

Effect of Site Variability on Bearing Capacity

Many researchers investigated the effect of site variability on the bearing capacity of the
sallow foundations. In this study, different approaches will be used to study the effect of
site variability on the bearing capacity of shallow foundation. These methods include the
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second moment statistical analysis using the semivariogram ( [54], [55]), and the Fenton
and Griffiths [17] method.

To implement the spatial variability in shallow foundation design using the second
moment statistical analysis using Vesper 6 software, a 6’ x 6’ foundation example is
planned for design with a factor of safety (FS) of 3. In this analysis, lab data from
unconsolidated undrained (UU) tests are considered as input parameter. The geotechnical
design parameter that includes the undrained shear strength (S,) is presented in Table 7;
while the schematic diagram of the foundation example is described in Figure 55.

The first step in implementing spatial variability using the second moment statistical
analysis is to plot the semivariogram for the S, data and evaluate the range of influence
(a) and the scale of fluctuation (0), as will be described in the Results and Analysis
section.

Table 7. Sy (psf) data assumed for analysis

Depth (ft.) | Su (psf)
5 2475
6 2616
7 2518
8 2664
9 2359
10 2541
11 2706
12 3100
13 3072
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Figure 55. Schematic diagram of shallow foundation for analysis
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The Fenton and Griffiths [17] model is also used in this study to implement the spatial
variability in evaluating the bearing capacity of shallow foundations. An open source
software Rbear2D (http://random.engmath.dal.ca/rfem/) developed by Grifftith was used
to compute the bearing capacity of shallow foundation considering site variability. The
main software panel is presented in Figure 56. The software was used to analyze a 2D
shallow foundation of 6 ft. width and element size of 0.5 ft. x 0.2 ft. Total of 1000
simulations were performed in this study.
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Figure 56. User interface of Rbear2D software
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The vertical and horizontal correlation length were assumed to be 1 ft. (high vertical
variability) and 60 ft. (high horizontal variability), respectively. The number of elements
is 25 in the x-direction and 10 in the y-direction. The random distribution of soil
properties is shown in Figure 57. In the case of soil without variation, the deformed soil
mesh and the stress vectors under the foundation are similar to Therzaghi's theory as
shown in Figure 58 and Figure 59, respectively. The effect of the soil variability is
investigated for different COV of cohesion and friction angle. The stress vector and mesh
deformation are not symmetrical as shown in Figure 60. The deformed mesh usually
follows the weakest soil path. At the end of every run, the bearing capacity and

— 128 —



corresponding standard deviation values were defined. As the soil variation increases, the
bearing capacity decreases.

Figure 57. Random distribution soil properties
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Figure 58. Typical deformed mesh at failure for soil without variation
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Figure 59. Typical soil stress vectors for soil without variation
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Figure 60. Typical distorted mesh deformation for soil with COV =50%

Variation of Soil Parameters

In this study, sandy soils with friction angles of 42°, 38°, 32°, respectively represent
dense, medium dense, and loose sands (within range in literature) were selected to
investigate the effect of soil variability on the bearing capacity of shallow foundations. In
addition, clayey soils with cohesion and friction angle of 33°, 7 kPa; 30°, 4 kPa; and 20°,
2 kPa were selected to represent stiff, medium stiff, and soft clays, respectively, for the
drained analysis condition. However, for the undrained condition, clay soils with
undrained cohesion of 72, 36, 14.5 kPa were selected to represent stiff, medium stiff, and
soft clays, respectively.

In this study, the range of COV for friction angle we considered to be from 0 to 25%
(within range in literature), with an increase of 5% to investigate the effect of site
variability. For cohesion, we considered the range of COV of cohesion from 0 to 50%
(within range in literature), in which we increased COV by 10% to study the effect of site
variability. For the horizontal variation, we assumed high horizontal correlation length of
60 ft.; while for the vertical variation, we also assumed high vertical correlation length of
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1 ft., according to the literature. Table 8, Table 9, and Table 10 present the summary of

variation of soil parameters for sand, drained condition clay and undrained condition clay,

respectively.
Table 8. Parameters for different types of sandy soil
. Cohesion, ¢ Friction angle, ¢ 0
Soil Type (kPa) (Degrees) COVo (%)
Dense Sand 0 42
Sand Medium dense sand 0 38 0-25%
Loose sand 0 32
Table 9. Parameters for different clayey soils for drained condition
Cohesion, ¢ Friction
Soil Type (kPa) ’ angle, ¢ COVc (%) COVo (%)
(Degrees)
Stiff clay 7 33
Clay Medium stiff clay 4 30 0-50% 0-25%
Soft clay 2 20

Table 10. Parameters for different clayey soils for undrained condition

Soil Type Cohesion, ¢ Friction angle,
(kPa) (Degrees) | covem)
Stiff clay 72 0
Clay Medium stiff clay 36 0 0-50%
Soft clay 14.5 0

Reliability Analysis

Meyerhof gave the following equation to calculate the ultimate bearing capacity (qu) for
shallow foundation with footing width (B) and depth of footing (Dy):
Gy = cN¢scd. +yDgNysqdg + 0.5vBN, s, d, [127]

where, N¢, Ng, and N,, are the bearing capacity factors; sc, sq, and sy are the shape factors;
and d., dq , and d, are the depth factors. The following is how the performance function is
calculated in relation to the soil's ultimate bearing capacity:

g =qu—Ps [128]
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where Ps is the vertical load. In this study, B and Dr were selected as 6 ft. and 3 ft.,
respectively. Three vertical loads of 27.4, 34.2, and 41.1 kips/ft. (400, 500 and 600 kN/m)
were considered. The unit weight, cohesion and friction angle were selected as 127.5 pcf
(20 kN/m?), 209 psf (10 kPa) and 30°, respectively. A Matlab code was developed for this
part of analysis.

Application of Site Variability in Deep Foundation Analysis

In this study, we adopted the Naghibi [131] and Naghibi and Fenton [18] methodology
for both the cohesive and cohesionless soils to evaluate the effect of soil variability on
deep foundation design. We also expanded the applicability of Naghibi’s [131] approach
for the analysis of mixed soils. For the analysis of clayey (cohesive) soil, we did our
analysis on the Red River site, which is located at Alexandria, Louisiana. Eight soil
borings were performed to 95 ft. depth at different locations of the Red River site (Figure
142). For the analysis of mixed soil, we did our analysis on the Metairie site in which 15
soil borings were performed at different locations down to 105 ft. depth (Figure 45). A
detailed discussion on the cohesive and cohesionless soil sites will be given later. An
analysis was first performed for the cohesionless soil (using friction angle of 30°) without
considering the end bearing. Soil friction angle, ¢, was considered with different COV¢
values of 0%, 10%, 20%, 30%, 40% and 50%. Different sampling location distances of
16.4 ft. (5 m), 32.8 ft. (10 m), 49.2 ft. (15 m), 65.6 ft. (20 m), and 82 ft. (25 m) were
considered in this part of analysis.

In this study, we also updated the Naghibi’s method (for both cohesive, cohesionless and
mixed soils) in order to incorporate the end-bearing capacity in the design of deep
foundations.

Incorporating End Bearing into Cohesive Soils

The unit end bearing capacity of piles tip on clay is given as follows [142]:
Rgp = NcSy [129]

where, R = unitend bearing of the pile, and N_.=bearing capacity factor =9.0. According
to Skempton [137], S,, = average undrained shear strength of clay for 1D below the tip.

Recalling the ultimate side resistance of a pile due to cohesion (c) is given as follows:

R, = pHat [130]
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Adding the above two equations, the ultimate resistance of a pile becomes:
R, = pHat + Rgg [131]

Including Rz = 9c, the above equation becomes:

Ry = (¢—f) (©) + Ry [132]
then, R,, = (W) @ [133]

Assuming py = P[F > R, ], the above equation becomes:

ps =P [F > (—“LF L*‘g D+REB) (g)] [134]
then, p; = P [% > (W)] [135]

Refereeing to the above equation for the failure probability calculation, the next two
components are defined as follows:

w="= [136a]
q=a,F, +apF, + Rgg [136Db]
By solving these equations, we will get:

a
psz[W>¢Ldf]=P[an>ln<¢idf)]=1—CDW [137]
then the geotechnical resistance factor, ¢qf, can be determined as:
def = exp(Inq — timw — Boaw) [138]

Incorporating End Bearing into Cohesionless Soil

The toe resistance of piles tip on cohesionless soil is calculated using the Nordlund method
as follows:

Rgp = atN,thqt [139]
where, a: is the dimensionless factor (dependent on friction angle) (see Figure 61); N, is

the bearing capacity factor (see Figure 62); g is the effective overburden pressure (at the
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pile toe); and At is the cross-sectional area of the pile (at the pile toe). The average ¢ value
within the toe influence zone [from 3D (diameter of the pile) above the toe to 3D below
the toe], is selected as the ¢ value.

Figure 61. Relationship between at coefficient and friction angle for cohesionless soils

D = Embedded Pile Length b = Pile Diameter or Width

| | |
"L’!—__I’l_
-— Db Ratio ==
. 05 =
5 T
8 207"~
g
3 N
o3 /
45
0.1
15 20 25 30 35 40 45

¢ (Degrees)

Figure 62. Relationship between N'q and friction angle for cohesionless soils
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The characteristic ultimate geotechnical resistance, R,,, is obtained as:

R, = %payHZ(l —sin (ﬁ) tan (b(ﬁ) + Rgp; where, Rgg = a:N';A.q; [140]
The failure probability (actual), ps, will be given as:

pr = P[F > R,] [141]
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And a successful design methodology will have ps < pm. By including the end bearing Res,
the pr becomes:

ps = p [F > (aLﬁL+aDFD+REB) ((1—sin @) tan (bo) >]:P [(F(l—sin @) tan (b&))) >

dar (1-sin @) tan (bd) (1-sin @) tan (b)
)
letting,
X=(1-sind)tan (bp); X =(1—sin) tan (bd); q = a,F, + apFp + Rgp; and

So the above equation can be written as:

- a
pr =P [Y >0 [143]

The p; can be derived from the following:

pr=1-0 M [144]

The geotechnical resistance factor (¢g4) is then calculated as follows:

def = exp(Inq — Ly — Boiny) [146]

In case of mixed soil layers, according to FHWA, for the piles terminated into a cohesive
layer, use the Reg (unit end bearing) for cohesive soil. For piles terminated into a
cohesionless layer, use the Reg (unit end bearing) for cohesionless soil.
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Studied Case Sites

Cohesive Soil Site

The Red River site was selected here to analyze the effect of site variability on deep
foundations for cohesive soil condition. Eight soil borings were performed in this site
down to 105 ft. depth. The locations of soil borings for the Red River site were presented
earlier in Figure 44c, and the subsurface soil profile with soil classification and undrained
shear strength are presented in Figure 142 of Appendix B. For the Red River site, four
soil layers were identified for analysis: 0-20 ft., and 20-50 ft., 50-70 ft., and 70-115 ft.

For the analysis purpose, we assumed our pile is located at the black (round) point. The
corresponding distances of soil borings R1, R2, ..., and R8 from the pile location are 40.5
ft. (12.33 m), 46.8 ft. (14.27 m), ..., and 120.0 ft. (36.57 m), respectively as described in
Figure 63(a-c). The weighted average of undrained shear strength (Su), coefficient of
variation of Sy (COVs,), and standard deviation of Sy (osu) for R1 are 2201 psf (105.39
kPa), 0.31 and 44, respectively. The weighted average of Sy, COVs,, and osy for R2 are
1773.6 psf (84.92 kPa), 0.25 and 47, respectively. Finally, the weighted average of Sy,
COVs,, and osy for R8 are 1957.8 psf (93.74 kPa), 0.47 and 44, respectively.

Cohensionless Soil Site

Since we do not have any site in this study with only cohesionless soil, we considered a
site with an average value of friction angle, ¢ = 30°, and different coefficients of
variations, COV, that ranged from 0% to 50%. In addition, we considered different
boreholes with different sampling distances that ranged between 16.4 ft. (5 m) and 82 ft.
(25 m).

Mixed Soil Site

The Metairie site was selected for analyzing the effect of soil variability on deep
foundations for mixed soil condition. Fifteen soil borings were performed at different
locations in Metairie site down to 105 ft. depth. The locations of these soil borings were
presented earlier in Figure 44a. The subsurface soil profile with soil classification and
undrained shear strength for Metairie site are presented in Figure 45. Four different soil
layers were identified in Metairie site for use in analysis: two clayey layers (I: 0 to 29 ft.
and III: 48 to 78 ft.), with total of 59 ft.; and two sandy layers (II: 29 to 48 ft. and IV: 78
to 105 ft.), with total of 46 ft.
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Figure 63. Distance from the pile and soil classification of different point at Red River site
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The mean of Sy, COVsuy, and csy for the layer I are 229.8 psf (11.00 kPa), 0.31 and 3.4,
respectively. For layer 111, the mean of Sy, COVsy, and osy are 647.5 psf (31.00 kPa), 0.24
and 8.3, respectively. For layer II, the mean of friction angle, ¢, COV,, and G4 are 42°,
0.36 and 15.12, respectively. For layer IV, the mean of ¢, COV,, and o, are 36°, 0.32 and
11.73, respectively. Therefore, the overall weighted averages for the two clay layers (I: 0
to 29 ft. and III: 48 to 78 ft.) are the mean of Sy, COVs,, and osy are 480.4 psf (23.00
kPa, 0.27. and 5.85, respectively. The overall weighted averages for the sandy soil layers
(IT: 29 to 48 ft. and IV: 78 to 105 ft.) are the mean of ¢, COV,, and c¢ are 39°, 0.35, and
13.06, respectively.

For the analysis purpose, we assumed our pile is located at the black (round) point. The
corresponding distances of soil borings M1, M2, and M11 from the pile location are 188

— 137 —



ft. (57.31 m), 190.5 ft. (5§8.07 m), and 129.2 ft. (39.37 m), respectively, as shown in

Figure 64(a-c). Meanwhile, Figure 64 (d-f) shows the values of undrained shear strength
and friction angle for the soil borings M1, M2, and M11.

Figure 64. Distance from the pile and soil classification of different point at Metairie site
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Analysis and Results

Laboratory and Field Tests

This section includes the results and analysis of all experimental data, which include in-
box, field and laboratory tests. Analyses are performed based on the Gauge R & R
method, which includes the X-Bar/R method and the ANOVA (Analysis of Variance).
Besides, the second moment (SM) statistics is also used where Gauge R & R method
could not apply. The X-Bar/R and the ANOVA methods are followed from Measurement
System Analysis (MSA) manual (4th Edition) (page 118-121, 195-198).

Results and Analysis of In-Box Tests
Tests were performed in the front, middle, and the back locations of the box. In order to
apply the X-Bar/R and the ANOVA methods, the front, middle, and back locations are

considered as specimen 1, 2, and 3, respectively. Data are then corrected with typical
Poison’s ratio if necessary. Figure 65 illustrates the specimen determination for analysis.

Figure 65. Specimen determination for analysis
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The Gauge R & R method can be applied for the Geogauge, Light Falling Weight
Deflectometer (LFWD) and Dirt Portable Seismic Analyzer (D-SPA) whereas only the
FOSM can be applied for the DCP, NDG, and the E-Gauge. The Gauge R & R method
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can’t be applied for the DCP as repeatability can’t be measured, and for the NDG and the
E-Gauge, reproducibility can’t be determined.

Analysis of Geogauge, LFWD and D-SPA Data according to X-Bar/R Method

To assess the variability within the device, operator and specimen; the repeatability and
reproducibility; and specimen variability have to be considered. The Geogauge, LFWD,
and D-SPA data can be evaluated using the X-Bar/R method as this method allows
repeatability (repetition), reproducibility (operator variation), and specimen variability.
Table 11 illustrates the calculation of averages, total averages, ranges, and average ranges
of data for different operators according to the X-Bar/R method for the five different
operators for sand soil and Geoguge device.

Table 11. Analysis of data according to X-Bar/R method for sand soil using Geogauge

Material Location Operator 1
Total Average
Data | Average Average Range Range
MPa MPa MPa MPa MPa
Front 59.16
ront or
Specimen 1 59.77 60.03 2.00
61.16
Middl 60.55
iddle or
Sand Specimen 2 60.98 60.84 58.78 0.43 1.82
60.98
Back 56.65
ack or
Specimen 3 53.61 55.46 3.04
56.13
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Material Location Operator 2
Total Average
Data | Average Average Range Range
MPa MPa MPa MPa MPa
Front or °4.04
Specimen 1 | 47.54 50.49 6.51
49.88
Middle or 50.05 49.24 147
Sand Specimen 2 48.58 . 49.73 . 2.86
49.10
Back 49.36
ack or
Specimen 3 49.79 49.45 0.61
49.19
Material Location Operator 3
Total Average
Data | Average Average Range Range
MPa MPa MPa MPa MPa
Front 59.34
ront or
Specimen 1 58.55 58.53 1.65
57.69
Middl 55.78
iddle or
Sand Specimen 2 53.52 55.43 57.75 3.47 2.46
56.99
Back 58.29
ack or
Specimen 3 59.08 59.31 2.26
60.55
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Material Location Operator 4
Total Average
Data | Average Average Range Range
MPa MPa MPa MPa MPa
Front 56.04
ront or
Specimen 1 55.52 55.61 0.78
55.26
Middl 50.75
iddle or
Sand Specimen 2 50.83 51.99 54.81 3.64 2.05
54.39
Back 55.87
ack or
Specimen 3 57.60 56.82 1.73
56.99
Material Location Operator 5
Total Average
Data | Average Average Range Range
MPa MPa MPa MPa MPa
Front or 49.79
Specimen 1 50.05 51.12 3.73
53.52
Middle or 01.61
Sand Specimen 2 50.49 51.76 51.02 2.69 2.89
53.18
50.92
Sgg;r%rens 50.92 | 50.17 2.26
48.67

At first, the total average and average range need to be calculated for each operator to
determine the repeatability and reproducibility. The bias correction factors can be
determined from Table 3. After calculating the specimen variability, the total variability
can be evaluated. Using the total variability and data average, the coefficient of variations
can be determined. All equations required to calculate total variability are described
earlier in Table 1. Table 12, Table 13, Table 14, and Table 15 show calculations of
repeatability, reproducibility, specimen variability and the coefficient of total variability,
respectively.
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Table 12. Repeatability analysis according to X-Bar/R method

Analysis - Repeatability (EV)

Average Range Bias Correction Factor Repeatability or Equipment
(R-Bar) (d2) Variation, ¢ repeatability (R-bar/d2)
MPa MPa
2.89 1.693 1.7

Table 13. Reproducibility analysis according to X-Bar/R method

Analysis - Reproducibility (AV)

Range of : )
average Blas_ Number of Number of E.V -
of Correction specimens. | measurements (Equipment Reproducibility ¢
operators Factor P ) ’ repetition, (r) Variation, ¢ reproducibility
p(RO) (d2%) P ’ repeatability)
MPa MPa
9.05 1.74 3.00 3.00 1.43 5.18
Table 14. Specimen variability analysis according to X-Bar/R method
Material | Specimen 1 | Specimen 2 | Specimen 3 Specimen Variability (SV)
Range of the Bias Specimen
Data Av Data Av Data Avi specimen Correction | Variability,
g g g average Factor G specimen
(Rs) (d2%) (Rs/d2*)
MPa MPa MPa MPa MPa
Sand 55.15 53.85 54.24 1.3 35 0.37

Table 15. The coefficient of variation (COV) analysis according to X-Bar/R method

Combined Specimen Average of
Device Variability | Total Variability (TV) Modulus C\(?;ig{)i':'ict)tal
Variability (SV) Measurements y
Specimen
GRR (GAUGE Variability, Total Variability, The
R&R), . ) AP Total Average coefficient of
V(EVHAV?) ospev et VEVHAVHSV?) variations
(Rs/d2*)
MPa MPa MPa MPa %
5.4 0.4 5.5 54.4 10.0
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Analysis of Geogauge, LFWD and D-SPA data according to ANOVA Method

Another statistical technique to evaluate the total variability is analysis of variance
(ANOVA). This technique is superior to the X-Bar/R method as it incorporates operator —
specimen interaction. Equations required to calculate the total variability are taken from
Table 2. ANOVA analysis is performed via the Statistical Analysis System (SAS)
program where the probability is taken for the 95 percent confidence interval. Table 16

describes the process to calculate the total variability.

Table 16. The coefficient of variation (COV) analysis of Geogauge according to ANOVA method

Geogauge - ANOVA
Material | Avg. | EV?2 AV?2= 0>+ a2 Gauge R & | TV (Total | COV
Type SV? R Variability)
MSSE| 02 | @] 02+ | v | V(EV2+
o2 AV?)
MPa MPa MPa %
Sand 544 | 22 |145|37|182 |04 4.5 4.6 8.4

Here, EV = Equipment Variability, AV = Appraiser (Operator) Variability, SV = Specimen Variability,
MSSE = Mean Sum of Square Error.

Summary of the COV for the Geogauge, LFWD, and D-SPA is presented in Table 17. The
table shows that the COV for Geogauge ranges from 5.1% to 15.3% for the X-Bar/R
method; while it varies from 7.4% to 18.1% for the ANOVA method. For LFWD, the
COV ranges from 7.4% to 14.3% and 8.2% to 24.4% for the X-Bar/R method and the
ANOVA method, respectively. For D-SPA, the COV ranges from 4.2% to 9.6% for the X-
Bar/R method; while it varies from 6.7% to 15.4% for the ANOVA method. In addition,
the COV was also calculated using the second moment statistics and is also presented in
Table 17. The ranges of COV of Geogauge, LFWD, and D-SPA data ranges from 6.7% to
15.6%, 10.9% to 20.8% and 5.9% to 13.4%, respectively. Moreover, the COV for the
high PI (PI=53) with 5% lime and 4% cement, medium PI 2 (PI=31) and high PI (PI=53)
are the greatest for Geogauge, LFWD and D-SPA, respectively.

While comparing the variability among the materials tested in the box with the Geogauge
and LFWD devices, the medium PI 2 (PI=31) soil shows the higher COV. Among all
statistical techniques, the maximum COVs were obtained from ANOVA and second
moment methods for LFWD, which are 24.4% and 20.8%, respectively. In the case of the
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D-SPA, the maximum COV was evaluated using the ANOVA method for medium PI 3

(PI=35) soil.

Table 17. Summary of COVs of Geogauge, LFWD, and D-SPA data according to the X-Bar/R and

ANOVA methods
Geogauge LFWD DSPA
Second | X- X- Second | X-
. Momen | Bar/ |ANOvA| Second [ g, | ANOV 1 en | Bar/ ANOVA
Material Moment A
t R R t R
Ccov C\? Ccov Ccov C\? Ccov Ccov C\? Cov
% % % % % % % % %
Sand 7.6 9.9 8.3 10.9 7.4 13.1 6.5 55 6.7
RAP 7.1 7.2 7.4 11.4 12.9 12.4 5.9 4.2 6.8
Low PI
(PI=11) 11.4 8.8 12.2 14.2 11.6 19.1 - - -
High Pl
(PI1=53) 7.2 5.1 8.3 11.3 10.6 11.8 10.0 54 | 10.2
High PI
(P1=53)
+5% lime 14.9 125 16.5 15.9 10.3 18.4 - - -
+ 4%
Cement
Medium
Pl 3
(PI1=35) + . . R
5% lime + 11.0 10.8 11.8 15.6 12.4 18.7
4%
Cement
Kentucky | 417 | g7 | 137 | 110 |131| 134 . . -
Limestone
Mexican
Limestone 8.2 8.4 8.6 7.8 8.8 8.2 - - -
Medium
Pl 1 6.7 7.2 6.9 16.3 11.7 19.4 - - -
(PI=21)
Medium
Pl 2 15.6 13 18.1 20.8 14.3 24.4 9.2 7.8 | 10.2
(P1=31)
Medium
P13 14 10.1 15.8 16.8 11.3 18.3 13.4 9.6 154
(PI1=35)
Low PI
(PI=11) } . R
with 3% 15.2 15.3 17 16.9 95 20.4
Cement
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Analysis of Dynamic Cone Penetrometer (DCP) Data

The DCP tests were conducted on 12 different geomaterials inside the box. The profile of
DCP index (DCPI) in (mm/blow) was calculated for each test. The DCPI is an indication
of the strength of material with depth. The lower the DCPI, the higher the strength of
geomaterial. For the compacted materials with high maximum dry density and optimum
moisture content, the DCPI values were low. Figure 66 presents examples of DCPI
profile for sand, which shows the DCPI values decrease along the depths.

Figure 66. Examples of DCPI profiles for sand
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As the DCP tests were performed by three operators, the operator-related variabilities are
grouped into three segments. Therefore, the COV can be found for operator 1, operator 2,
and operator 3, which is shown in Table 18. From the summary of the operator-related
variability, the COV range from 1.6% to 16.4%. The value of COV was the lowest for
Kentucky limestone and the highest for High PI (PI=53) soil.

Summary of the location-related variability of the DCPI average (mm/blow) is presented
in Table 19, in which the COV range from 0.4% to 18.1%.
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Table 18. Summary of operator-related variability of DCPI avg. (mm/blow)

Material Operator 1 Operator 2 Operator 3
DCPI | SD | COV |DCPI| SD | COV | DCPI| SD | COV
Avg. Avg. Avg.
mm/ | mm/ | % mm/ | mm/ | % mm/ | mm/ | %
blow | blow blow | blow blow | blow
Low PI (PI=11) 158 | 15 | 95 | 159 | 0.7 | 45 | 153 | 05 | 3.0
Mexican Limestone 2.7 0.1 2.1 3.1 0.3 | 10.0 | 23 0.1 2.5
High PI (P1=53) 525 | 86 | 16.4 | 485 | 5.0 | 104 | 50.7 | 55 | 10.8
Medium PI 1 (PI=21) 279 | 1.0 | 35 | 271 ] 09 | 32 | 317 | 38 | 120
Medium PI 2 (P1=31) 283 | 08 | 27 | 314 | 20 | 63 | 346 | 1.8 | 52
Medium PI 3 (P1=38) 368 | 47 | 128 | 353 | 54 | 152 | 370 | 59 | 16.0
Sand 247 | 1.3 | 53 | 269 | 0.7 | 24 | 277 | 34 | 123
RAP 90 | 04 | 4.0 8.0 03 | 38 6.8 04 | 53
Kentucky Limestone 3.3 01 | 138 3.6 01 ] 16 3.0 0.1 | 39
Medium PI 3 (PI1=38)
with 5% Lime & 4% 178 | 08 | 47 | 179 | 20 | 110 | 178 | 0.7 | 4.2
Cement
LowPI (PIELLywith 3% | 47 | 11 | 74 | 131 | 09 | 70 | 150 | 07 | 44
Cement
High P1 (P1=53) with 5%
Lime & 4% Cement 202 | 21 | 102 | 202 | 20 | 9.7 | 207 | 1.3 | 6.3

Table 19. Summary of location-related variability of DCPI avg. (mm/blow)

Material Location 1 Location 2 Location 3
DCPI| SD |COV |DCPI| SD |COV |DCPI| SD | COV
Avg. Avg. Avg.
mm/ | mm/ | % mm/ | mm/ | % mm/ | mm/ | %
blow | blow blow | blow blow | blow
Low PI (PI=11) 150 | 0.1 04 | 166 | 09 | 52 | 154 | 0.8 | 5.3
Mexican Limestone 2.7 04 | 132 | 2.8 05 | 181 | 2.6 03 | 11.0
High PI (P1=53) 582 | 58 | 100|501 | 29 | 57 | 440 | 29 | 6.6
Medium PI 1 (P1=21) 316 | 40 | 12.7 | 329 | 44 | 133|295 | 46 | 15.7
Medium PI 2 (P1=31) 328 | 3.7 | 113|314 | 35 | 11.1 | 30.0 | 25 | 84
Medium P1 3 (P1=38) 383 1.1 |29 {404 | 10 | 25 | 303 | 1.2 | 3.8
Sand 271 1 1.0 | 35 | 247 | 15 | 60 | 275 | 3.3 | 12.0
RAP 7.9 1.3 | 16,6 | 7.8 09 | 11.6 | 8.2 1.2 | 14.1
Kentucky Limestone 33 04 | 10.8 | 33 03 | 9.6 33 04 | 10.8
Medium PI 3 (P1=38) 184 | 1.6 | 89 | 181 | 0.8 | 43 | 17.0 | 0.6 | 3.8
with 5% Lime & 4%
Cement
Low PI (PI=11) with3% | 144 | 0.6 | 39 | 148 | 1.3 | 9.0 | 136 | 1.6 | 114
Cement
High PI (PI=53) with 5% | 20.2 | 2.1 | 10.2 [ 202 | 2.0 | 9.7 | 207 | 1.3 | 6.3
Lime & 4% Cement
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Analysis of Nuclear Density Gauge (NDG) Data

The NDG tests were performed in three different locations of the box by one operator.
Therefore, only the location-related variability analysis was performed for the NDG. The
location-related variability can be analyzed for dry density and moisture content. Table 20
and Table 21 present the location-related variabilities for dry density and moisture
content of the materials, respectively.

It can be seen from the tables that the COVs range from 0.5% to 6.1% for dry density and
from 2.4% to 25.1% for moisture content. For dry density, the High PI (PI=53) with 5%
lime, 4% cement, and Mexican limestone show the maximum and minimum COVs,
respectively. For the moisture content, maximum and minimum COV were observed for
the high PI (PI=53) with 5% lime & 4% cement and the low PI (PI=11) with 3% cement,
respectively.

Table 20. Summary of location-related variability of COV of NDG (dry density)

Material Front Location Middle Location Back Location

Data SD | COV | Data SD | COV | Data SD | CoVv

Avg. Avg. Avg.

pcf pcf % pcf pcf % pcf pcf %
Low PI (P1=11) 1046 | 1.3 1.3 105.7 1.7 1.6 104.6 18 1.7
Mexican 1254 | 08 | 06 | 1242 | 06 | 05 | 1253 | 1.8 | 15
Limestone
High P1 (P1=53) 777 | 24 ] 31 | 780 | 13 | 16 | 769 | 21 | 27
Medium PI 1
(P1=21) 103.1 | 2.9 2.8 102.1 0.7 0.7 101.2 1.0 0.9
Medium PI1 2
(P1=31) 93.6 2.7 2.8 95.4 2.9 3.1 94.7 18 1.9
Medium PI1 3
(P1=38) 91.5 2.4 2.6 90.8 1.9 2.1 88.6 2.1 2.3
Sand 101.3 1.7 1.7 101.0 1.9 1.9 100.4 1.1 1.1
RAP 122.4 5.1 4.2 123.5 51 4.1 122.7 5.2 4.2
Kentucky 1393 | 1.6 | 1.1 | 1384 | 21 | 15 | 1385 | 12 | 09
Limestone
Medium PI1 3
(P1=38) with 5%
Lime & 4% 934 1.3 1.4 91.6 0.8 0.8 92.3 0.7 0.7
Cement
Low PI (PI=11)
with 3% Cement 1003 | 3.1 3.1 97.3 0.6 0.6 99.6 0.9 0.9
High PI (PI1=53)
with 5% Lime & 100.7 | 6.2 6.1 88.5 1.7 2.0 93.7 1.6 1.7
4% Cement
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Table 21. Summary of location-related variability of COV of NDG (moisture content)

Summary of NDG (Moisture Content) Based on Locations

Material Front Location Middle Location Back Location
Data | SD | COV | Data | SD | COV | Data | SD | COV
Avg. Avg. Avg.
% % % % % % % % %
Low PI (PI=11) 16.8 | 0.7 4.1 16.6 | 0.8 45 16.4 | 0.7 45

Mexican Limestone

10.1 | 1.0 | 10.2

101 | 1.2 | 12.2

9.6 14 | 146

High PI (P1=53) 369 | 1.7 4.7 37.0 | 15 4.1 36.1 15 4.2

Medium PI 1

(P1=21) 189 | 0.7 | 3.6 193 | 08 | 44 | 193 | 0.8 3.9

Medium PI 2

(PI=31) 223 |11 | 50 | 211 |09 | 40 | 208 | 0.7 3.3

Medium PI 3

(PI=38) 235|107 | 29 | 235 |14 | 59 | 239 | 15 6.4

Sand 9.3 1 10.7 | 9.1 11 | 123 | 94 0.9 9.9

RAP 54 |11 |198 | 54 |11 | 195 | 56 1 18.5

Low PI (PI=11) 16.8 | 0.7 4.1 166 | 0.8 4.5 16.4 0.7 4.5

E.e”t“Cky 66 | 05| 73 | 66 | 05| 69 | 67 | 04 | 65
imestone

Medium PI 3

(P1=38) with 5%

Lime & 4% 234 | 1.1 | 48 | 244 1 4 24 0.6 2.6

Cement

Low PI (PI=11)

with 3% Cement 163 | 1.1 | 6.8 17 0.7 | 4.2 169 | 04 2.4

High PI (PI=53)

with 5% Lime & 177 | 34 | 251 20 0.6 2.8 17.3 1.6 9.1

4% Cement

Analysis of E-Gauge Data

Like the Nuclear Density Gauge, the E-Gauge test was also performed in three different

locations inside the box. The E-Gauge test was also performed by a single operator. This

test can measure both the dry density and moisture content. While performing the test, the

moisture probe sometimes did not work due to internal problems with the device. In that

case, only the wet density of the tested material could be measured. Table 22 and Table

23 summarize the COVs induced by dry/wet density and moisture content, respectively.

Table 22 shows that the COVs range from 0.37% to 8.19% and from 0.41% to 4.02% for
dry density and wet density, respectively. The COV of moisture content varies from
1.76% to 18.8% (Table 23). The maximum and minimum COV for dry density were
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noticed for high PI (PI=53) and high PI (PI=53) with 5% lime and 4% cement,
respectively. For the case of moisture content, the maximum and minimum COV were
observed for high PI and high PI with 5% lime and 4% cement, respectively.

Table 22. Summary of location-related variability of COV of E-Gauge (dry/wet density)

Material Front Location Middle Location Back Location
Data | SD |COV | Data | SD |COV | Data | SD | COV
Avg. Avg. Avg.

pcf pcf % pcf pcf % pcf pcf %

High PI (P1=53) (Dry 88.65 [6.92 | 7.81 | 88.06 | 6.94 | 7.88 | 87.07 | 7.13 | 8.19
Density)

Medium PI 1 (PI1=21) 11485 | 1.05| 092 | 11597 | 2.71 | 2.33 | 116.11 | 2.68 | 2.31
(Wet Density)

Medium PI 3 (PI1=38) 116.74 | 0.60 | 0.52 | 116.24 | 0.93 | 0.80 | 115.91 | 0.96 | 0.83
(Wet Density)

Sand (Wet Density) 106.36 | 3.46 | 3.25 | 106.93 | 3.74 | 3.49 | 106.41 | 4.28 | 4.02

RAP (Wet Density) 120.94 | 2.88 | 2.38 | 120.94 [ 3.25 | 2.69 | 121.40 | 2.92 | 2.41

Kentucky Limestone 158.01 | 0.64 | 0.41 | 157.82 | 0.82 | 0.52 | 158.23 | 0.84 | 0.53
(Wet Density)

Medium PI 3 (PI1=38) 95.98 | 0.53| 0.55 | 96.77 | 0.50 | 0.52 | 97.40 | 0.42 | 0.43
with 5% Lime & 4%
Cement (Dry Density)

Low PI (PI=11) with 105.27 | 0.55 | 0.52 | 106.33 | 0.81 | 0.77 | 107.30 | 0.50 | 0.47
3% Cement (Dry
Density)

High PI (P1=53) with 9293 | 1.16 | 1.25 | 87.00 | 0.70 | 0.80 | 81.70 | 0.30 | 0.37
5% Lime & 4%
Cement (Dry Density)

Table 23. Summary of location-related variability of COV of E-Gauge (moisture content)

Material Front Location Middle Location Back Location
Data SD | COV | Data SD | COV | Data SD | Cov
Avg. Avg. Avg.
% % % % % % % % %

High PI (P1=53) | 25.11 | 454 | 18.10 | 24.26 | 419 | 17.26 | 25.44 | 478 | 18.80

Medium PI1 3
(P1=38) with 5%
Lime & 4%
Cement

2107 | 042 | 198 | 20.20 | 0.36 | 1.78 | 20.50 | 0.60 | 2.93

Low PI (PI=11)

With 3% Cement 1420 | 0.46 | 3.23 | 1387 | 0.60 | 4.35 | 13.87 | 0.35 | 2.53

High PI (P1=53)
with5% Lime & | 24.17 | 0.72 | 2.99 2497 | 205 | 8.21 26.23 | 0.46 1.76
4% Cement
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Analysis of Plate Load Test Data

In plate load tests (PLT), the determination of amounts of plastic and elastic deformations
are desirable. Besides, the initial modulus and reloading modulus are evaluated with the
help of normal stress vs settlement plot. The initial modulus [EPLT(i)] and the reloading
modului can be evaluated from the test results (Figure 67) using the following equation:

1.18 P.R
Epir = S [147]

where: P = applied load on plate, 5 = deflection of the plate, and R = radius of plate.

The PLTs were performed in the middle location of the box. The tests may not be
included to analyze for variability as this test was performed by a single operator with
one repetition. The PLTs were conducted on 12 geomaterials to determine the initial
modulus [EPLT(1)] and the first reloading modulus [EPLT(R1)].

Figure 67. Plate load test of low PI (P1=11) soil
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Referring to Figure 67, the initial modulus can be evaluated from the initial portion of the
stress-settlement curve, where the slope of the initial modulus extends to the increase of
the initial loading; and, the first reloading modulus can be evaluated from the reloading
part of the curve. The first reloading modulus is the average value between the unloading
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curve of the first cycle and reloading curve of the second cycle. The calculated initial and

reloading moduli are presented in Table 24.

Table 24. Calculation of initial and reloading modulus of low PI (P1=11) soil

Type Stress | Load | Poison's | Radius | Deflection | Modulus | Modulus
Ratio of Value Value
Plate
psi Ib inch inch psi MPa
Initial Modulus
(EPLT(i)) 65 | 2872 0.4 3.75 0.035 11700 80.7
Reloading
Modulus 65 | 2872 0.4 3.75 0.067 6112 42.1
(EPLT(R1))

Summary of initial and reloading modules of all materials is shown in Table 25. The

maximum EPLT(i) was observed for Kentucky limestone (344.9 MPa) and the minimum

was obtained for high PI (PI=53) soil (23.5 MPa). However, the maximum and minimum
EPLT(R1) was obtained for Kentucky limestone (222.5 MPa) and high PI (PI=53) (11.7
MPa), respectively.

Table 25. Summary of plate load test of all materials

Summary of Plate Load Test
Material Initial | Reloading
Modulus | Modulus
MPa MPa
Low PI (PI=11) 80.7 42.1
Mexican Limestone 311.2 163.5
High PI1 (P1=53) 23.5 11.7
Medium P11 (PI1=21) 44.5 24.3
Medium PI 2 (PI1=31) 38.9 194
Medium PI1 3 (P1=38) 32.0 12.4
Sand 23.6 42.1
RAP 68.1 54.5
Kentucky Limestone 344.9 222.5
Medium PI1 3 (P1=38) with 5% Lime
& 4% Cement 114.6 43.5
Low PI1 (PI=11) with 3% Cement 150.8 41.8
High P1 (P1=53) with 5% Lime & 4% 110.3 332
Cement
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Results and Analysis of Constructed Field Tests

Analyses of the constructed field test data were performed the same way as the in-box
test data. The X-Bar/R and ANOVA methods can also be applied to Geogauge and LFWD
tests in the field. There were 14 sections constructed at the Accelerated Loading Facility
(ALF). Four sections were construed on embankment location and another four sections
were constructed at lower level over natural soil. There were also six more sections that
were constructed on embankment location as part of micro-cracking research project. In
the case of dynamic cone penetrometer, the operator and location-related variability were
analyzed using the second moment statistics. In the case of the Nuclear Density Gauge
(NDG) and E-Gauge, only the location-related variability can be evaluated since these
devices were conducted by a single operator. Table 26 shows the properties of the 14
constructed sections that will be analyzed for the variability assessment.

Table 26. Properties of the 14 constructed sections at ALF

Section Type Properties of the sections

Section 1 Low PI (Pl = 11) with 7% Lime + 15% Fly Ash
Section 2 Heavy Clay (P1 = 38) with 7% Lime + 6% Cement
Section 3 Low PI (Pl = 11) with 8% Cement

Section 4 Heavy Clay (Pl = 38) with 3%Lime + 2% Cement
Section A Low PI (Pl = 11) with 5% Lime + 11% Fly Ash
Section B Heavy Clay (P1 = 38) with 2.5% Lime + 2% Cement
Section C Heavy Clay (Pl = 38) with 6.0% Lime + 4% Cement
Section D Low PI (Pl = 11), 5% Cement

Soil Cement Section 1 8% Soil Cement, No Micro-Cracking

Soil Cement Section 2 8% Soil Cement, Low Micro-Cracking

Soil Cement Section 3 8% Soil Cement, Medium Micro-Cracking

Soil Cement Section 4 8% Soil Cement, High Micro-Cracking

Soil Cement Section 5 6% Soil Cement, No Micro-Cracking

Soil Cement Section 6 6% Soil Cement, Medium Micro-Cracking

Analysis of Geogauge and LFWD Test Data

Analyses of the Geogauge and the LFWD include the X/Bar-R, ANOVA, and second
moment methods. The results of analyses are presented in terms of the coefficient of
variations (COV). The COV for both the Geogauge and the LFWD data were determined
for total variability, where the total variability is grouped into repeatability,
reproducibility and specimen variability. Table 27 shows a summary of the COVs of the
Geogauge and the LFWD according to the X-Bar/R, ANOVA, and second moment
methods. The table shows that the COV for the Geogauge ranges from 7.7% to 21.0%;

— 153 —



the X-Bar/R method, from 11.4% to 23.6%; the ANOVA method from 11.1% to 20.2%;
and for the second moment method. Meanwhile, for LFWD, the COV ranges from 7.3%
to 20.3% for the X-Bar/R method, 7.9% to 18.9% for the ANOVA method, and 7.0% to
16.7% for the second moment method.

Table 27. Summary of COV of Geogauge and LFWD according to X-Bar/R and ANOVA method

Geogauge LFWD
. Second | X-Bar | ANOVA | Second | X-Bar | ANOVA
Soil Type Moment Moment
Cov | cov Cov Cov | cov Ccov
% % % % % %
Section 1 13.2 175 14.3 7.1 9.1 7.9
Section 2 155 1.7 16.3 10.9 13.9 8.2
Section 3 12.5 15.7 15.3 9.3 19.8 10.0
Section 4 14.4 10.3 16.1 14.2 18.0 13.2
Section A 20.2 164 23.6 7.0 7.3 8.1
Section B 11.1 12.3 11.8 7.5 7.4 13.0
Section C 18.6 14.7 21.6 13.9 9.4 14.9
Section D 11.6 18.9 114 12.5 13.6 14.3
Soil Cement Section 1 12.1 17.0 14.0 8.5 8.0 9.8
Soil Cement Section 2 13.2 21.0 16.3 14.7 15.1 15.8
Soil Cement Section 3 12.9 18.1 14.9 16.5 18.3 18.9
Soil Cement Section 4 11.6 9.2 13.6 16.7 20.3 18.6
Soil Cement Section 5 11.9 10.2 14.2 12.1 10.3 13.1
Soil Cement Section 6 11.6 17.2 13.9 8.9 9.0 9.2

Analysis of Dynamic Cone Penetrometer (DCP) Data

The DCP tests were conducted in each of the constructed sections at ALF. The thickness
of each section is 12 in. or 30.5 cm. Figure 68 shows the DCP test results for two
sections—Section 4 and Section C. The DCP tests were conducted by three operators,
and as there were four locations of each constructed section, every operator conducted
DCP tests four times. From the summary of DCPI (mm/blow), the COV for operator-
related variability ranges from 3.2% to 20.3%; while the COV for location-related
variability varies from 2.6% to 29.4%, which are presented in Table 28 and Table 29,
respectively. For the micro-cracking sections, the COV of DCPI fluctuates from 14.90%
to 20.1%, which is presented in Table 30.
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Figure 68. DCPI profiles of section 4 and section C at ALF site
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Table 28. Summary of operator-related variability of COV of DCPI

Material Operator 1 Operator 2 Operator 3
%g_' sD | cov i%gl' sb | cov DASS_' sD | cov
piow | siow | * | blow | blow | % | low | blow | *
Section | 264 | 15 | 56 | 272 | 09 | 32 | 277 | 10 | 37
Secztion 129 | 23 | 177 | 190 | 33 | 17.1 | 178 | 19 | 104
Sec;ion 68 | 04 | 63 | 68 | 04 | 66 | 93 | 10 | 108
Secfon 152 | 1.3 | 84 | 186 | 28 | 149 | 160 | 08 | 51
SeCA”O” 263 | 17 | 63 | 263 | 23 | 86 | 269 | 1.8 | 6.9
Secéion 332 | 56 | 167 | 323 | 65 | 201 | 322 | 44 | 136
Section | 133 | 21 | 158 | 116 | 17 | 150 | 112 | 09 | 82
Secgon 113 | 23 | 203 | 129 | 21 | 165 | 11.2 | 09 | 82
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Table 29. Summary of location-related variability of COV of DCPI

Material | Location1 | Location2 | Location 3 Location 4
DA?/gP.I cov '/DAS;' cov i?/;' cov 'XS;.' cov
vou | * | iow | * | | ** | sow | *®

Secltion 270 | 49 | 266 | 26 | 270 | 7.6 27.8 2.7

SeCZ“O” 181 | 20.1 | 16.2 | 294 | 144 | 218 | 175 | 205

Sec,;ion 74 | 136 | 74 | 163 | 7.6 | 199 | 76 | 192

Secfon 171 | 184 | 165 | 39 | 156 | 84 | 171 | 212

SeCA“O” 247 | 78 | 265 | 7.2 | 270 | 48 | 278 | 29

Secéion 312 | 50 | 327 | 36 | 267 | 7.8 | 397 | 29

Secéion 113 | 168 | 108 | 51 | 134 | 88 | 126 | 19.0

Se‘g“’” 106 | 43 | 123 | 208 | 134 | 86 | 108 | 17.2

Table 30. Summary of whole section variability of COV of micro-cracking sections

. DCPI SD cov

Materials
Avg.
mm/blow | mm/blow %

Soil Cement Section 1 10.7 1.9 17.5
Soil Cement Section 2 12.3 2.5 20.1
Soil Cement Section 3 10.3 1.6 15.5
Soil Cement Section 4 11.2 2.1 18.8
Soil Cement Section 5 9.4 1.4 14.9
Soil Cement Section 6 9.8 1.7 16.9

From Table 28 and Table 29, it can be seen that section D (low PI (PI=11), with 5%
cement) showed the maximum COV for operator-related variability; whereas, Section 2
(Heavy Clay (PI = 38) with 7% lime and 6% cement) showed the maximum COV for
location-related variability. The minimum COVs are found for Section 1 (low PI (PI =
11) with 7% lime and 15% Fly Ash). From Table 30, the maximum and minimum COVs
are observed for Soil Cement Section 2 (8% soil cement, low MC) and Soil Cement
Section 5 (6% soil cement, no MC), respectively.
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Analysis of Nuclear Density Gauge (NDG) Data

The Nuclear Density Gauge (NDG) tests were conducted on four (or five) different

locations of each section, and it was run by a single operator. The NDG tests were

performed on four locations at the eight constructed sections (Sections 1-4 and Sections

A-D). However for micro-cracking cement sections (Soil Cement Section 1 to Soil

Cement Section 6), the NDG tests were performed on five locations at three sections

(Sections 1, 4 and 6); while the tests couldn’t be run on Section 2, 3 and 5 as the device

didn’t work at that time. Table 31 and Table 32 present the location-related variabilities

for dry density of the eight sections and three micro-cracking sections, respectively.

Table 31. Summary of location-related variability of NDG (dry density) at the eight sections

Location 1 Location 2 Location 3 Location 4
Material Avg. Avg. Avg. Avg.

Dry cov Dry cov Dry cov Dry cov

Density Density Density Density

pcf % pcf % pcf % pcf %
Section 1 83.9 0.8 80.2 3.9 76.6 1.7 78.7 0.9
Section 2 97.3 0.6 99.9 3.2 99.3 1.1 84.5 2.1
Section 3 97.5 0.6 96.3 1.0 100.6 0.6 98.9 0.9
Section 4 72.7 2.1 75.5 0.7 70.7 1.4 71.2 2.0
Section A 76.6 1.5 76.8 1.2 75.1 0.2 78.2 2.0
Section B 74.2 1.3 72.8 2.9 70.9 1.3 71.0 1.9
Section C 95.4 0.7 96.2 0.2 92.9 1.2 89.4 0.4
Section D 93.1 2.6 92.2 4.2 96.8 1.7 90.9 2.0

Table 32. Summary of location-related variability of NDG (dry density) at the three micro-cracking

sections

Location 1 Location 2 Location 3 Location 4 Location 5
Material Avg. Avg. Avg. Avg. Avg.

Dry Cov Dry Cov Dry Cov Dry cov Dry Ccov

Density Density Density Density Density

pcf % pcf % pcf % pcf % pcf %
Soil Cement |y /66 | 59 | 1465 | 11 | 1404 | 18 | 1267 | 24 | 1386 | 1.4
Section 1
Soil Cement | 4504 | 53 | 1466 | 1.6 | 1405 | 1.8 | 1274 | 20 | 1279 | 20
Section 4
Soil Cement | 1577 | 50 | 1372 | 1.9 | 1370 | 15 | 1197 | 1.4 | 1317 | 14
Section 6
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It can be seen from Table 31 that the location-related COV of the dry density for the eight
sections range from 0.2% to 4.2%. It is also noticed from Table 32 that the location-

related COV of the dry density for the Micro-cracking cement sections range from 1.4%
to 2.9%.

The calculations of location-related variabilities for moisture content is similar to the dry
density calculation, which are presented in Table 33 and Table 34 for the eight sections
and the three micro-cracking cement sections, respectively.

Table 33. Summary of location-related variability of NDG (moisture content) for the eight sections

Location 1 Location 2 Location 3 Location 4

Material Moisture COV | Awvg. COV | Avg. | COV | Avg. | CoV
Content, m.c. m.c. m.c. m.c.

% % % % % % % %
Section 1 28.0 4.0 24.2 3.8 30.3 2.2 30.6 4.1
Section 2 20.2 2.3 19.0 5.3 15.8 1.7 24.7 6.9
Section 3 17.8 4.4 18.4 3.7 17.7 2.0 19.3 3.2
Section 4 38.2 1.4 34.7 2.0 39.4 0.7 39.0 3.9
Section A 30.9 4.4 31.7 2.4 32.0 3.8 28.8 2.6
Section B 38.0 4.6 345 13.3 374 5.4 33.1 1.8
Section C 19.8 1.3 18.2 2.2 17.9 15 19.2 1.9
Section D 25.4 5.6 19.4 9.8 214 | 175 23.1 9.6

Table 34. Summary of location-related variability of NDG (moisture content) of the micro-cracking
three sections

Material Location 1 Location 2 Location 3 Location 4 Location 5
Avg. | COV | Avg. | COV | Avg. | COV | Avg. | COV | Avg. | COV
m.cC. m.cC. m.cC. m.cC. m.cC.

% % % % |% |% |% |% |% |%

Soil Cement | oo | 95 | 136 | 70 | 151 | 54 | 139 | 58 | 137 | 14

Section 1

Soil Cement | 15 0 | g7 | 132 | 90 | 161 | 7.2 | 145 | 7.8 | 148 | 88

Section 4

Soil Cement | 152 | 99 | 122 | 99 | 128 | 99 | 109 | 99 | 99 | 99

Section 6

The results in Table 33 show that the location-related COV of moisture content for the
eight sections vary from 0.7% to 17.5%; while the location-related COV of moisture
content vary from 1.4% to 9.9% for the micro-cracking sections (Table 34).
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Analysis of E-Gauge Data

Like the NDG, the E-Gauge tests were also conducted on the constructed sections at ALF
site. The dry density and moisture content are analyzed only for the location-related
variability. The results for dry density are presented in Table 35 and Table 36, for the
eight constructed sections and the three micro-cracking sections, respectively. The tables
show that the location-related COV range from 0.1% to 9.3% for the eight constructed
sections and from 1.1% to 2.9% for the three micro-cracking sections.

The location-related variability for the moisture content are presented in Table 37 and
Table 38 for the eight constructed sections and the three micro-cracking sections,
respectively. The tables show that the COVs range from 0.2% to 19.5% for the eight
constructed sections and from 1.4% to 10.9% for the three micro-cracking sections.

Table 35. Summary of location-related variability of E-Gauge (dry density) for the eight constructed

sections
Material Location 1 Location 2 Location 3 Location 4
Avg. COV | Awvg. cov Avg. COV | Awvg. cov
Dry Dry Dry Dry
Density Density Density Density
pcf % pcf % pcf % pcf %
Section 1 92.0 1.9 95.7 0.9 93.5 1.2 95.4 14
Section 2 94.4 3.1 100.5 0.9 103.0 1.2 100.2 14
Section 3 94.9 0.8 94.5 1.1 94.2 1.1 95.1 0.7
Section 4 67.7 0.3 75.2 9.3 69.7 8.9 61.0 4.6
Section A 76.4 0.1 68.5 1.3 75.9 4.2 74.4 0.3
Section B 77.8 0.7 77.2 0.5 72.9 4.7 77.5 2.9
Section C 97.3 1.2 105.5 1.6 132.9 1.5 102.2 2.1
Section D 98.2 4.3 93.0 0.5 94.2 45 92.0 0.2

Table 36. Summary of location-related variability of E-Gauge (dry density) for the three micro-
cracking sections

Material Location 1 Location 2 Location 3 Location 4 Location 5

Avg. |COV | Avg. |COV | Avg. |COV | Avg. |[COV | Avg | COV

Dry Dry Dry Dry Dry

Density Density Density Density Density
pcf % pcf % pcf % pcf % pcf %

Soil Cement | /o> | 99 | 1478 | 11 | 1415 | 18 | 1248 | 25 | 1386 | 18
Section 1
Soil Cement | 1404 | 95 | 1526 | 1.5 | 1432 | 17 | 1286 | 28 | 1289 | 20
Section 4
Soil Cement | ya04 | 14 | 1393 | 14 | 1330 | 14 | 1197 | 14 | 1317 | 14
Section 6
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Table 37. Summary of location-related variability of E-Gauge (moisture content) for the eight
constructed sections

Material Location 1 Location 2 Location 3 Location 4

Moisture | COV Dry cov Dry cov Dry cov

Content Density Density Density

% % % % % % % %

Section 1 20.8 19.5 19.5 0.8 21.7 4.0 20.6 4.4
Section 2 21.8 19.2 20.5 0.8 22.8 4.0 21.7 4.4
Section 3 19.5 2.8 20.1 1.3 19.6 1.6 20.4 1.2
Section 4 47.3 0.2 43.0 8.9 46.7 8.8 53.1 4.6
Section A 33.3 1.2 48.0 0.7 37.5 4.4 36.9 0.3
Section B 27.6 0.8 30.7 0.3 33.1 4.4 30.0 3.0
Section C 21.8 1.6 12.7 7.8 14.8 6.7 20.5 5.2
Section D 21.8 4.2 21.3 0.7 24.3 4.5 27.0 0.6

Table 38. Summary of location-related variability of COV of E-Gauge (moisture content) for the
three micro-cracking sections

Material Location 1 Location 2 Location 3 Location 4 Location 5
Avg. | COV | Avg. | COV | Avg. | COV | Avg. | COV | Avg. | COV
m.cC. m.cC. m.cC. m.cC. m.cC.

% % |% |% |% |% |% |% |% %

Soil Cement 113 99 | 118 | 99 | 135] 99 |115] 99 | 99 | 99

Section 1

Soil Cement 159 | 82 | 137|109 | 151 | 72 |145| 78 | 159 | 82

Section 4

Soil Cement 135 | 14 |136| 14 |169| 54 |138| 14 | 137 | 14

Section 6

Analysis of Under-Constructed Field Tests

Analysis of the under-constructed field tests was performed using the second moment
statistics, which is applied for Geogauge, LFWD, DCP, NDG and E-Gauge. There were
two under-constructed sections at LA 98 and one under-constructed section at LA 417 on

which the tests were performed. Table 39 presents the description of the three under-
constructed sections at LA 98 and LA 417.
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Table 39. Properties of the three under-constructed sections at LA 98 and LA 417

Section Description of the sections

LA 98 Station 1 Cement stabilized base course material with 7%

LA 98 Station 2 cement by volume

LA 417 Cement stabilized subgrade material with 10%
cement by volume

Analysis of Geogauge and LFWD Data

In order to assess the variability, the Geogauge and the LFWD tests were performed on
different locations of the under-constructed sections. In this analysis, the operator and
location-related variabilities were determined using the X-Bar/R and the ANOVA. The
results of operator- and location-related variabilities for the Geogauge data are presented
in Table 40 and Table 41, respectively. The tables indicate that the COVs of the operator
and the location-related variabilities range from 20.3% to 32.5% and from 20.3% to 31.9,
respectively. The maximum COV value is seen for operator 3 of LA 98 Station 2
(32.5%); while the lowest value of COV is noticed for location 5 of LA 417 (20.3%).

In the case of LFWD, the results of operator- and location-related variabilities are
presented in Table 42 and Table 43, respectively. The tables show that the COVs for the
operator-related variability range from 11.7% to 37.5%, whereas the COVs for the
location-related variability range from 18.6% to 31.8%.

Table 40. Summary of operator-related variability of Geogauge

Operator 1 Operator 2 Operator 3 Operator 4 Operator 5

Material | Data Data Data Data Data
avg. | SV | avg | €OV | avg | OV | avg. | OOV | Avg. | SOV

MPa % MPa % MPa % MPa % MPa %

LA | 355 | 204 | 2607 | 271 | 2466 | 315 | 209.0 | 25.8 | 278.4 | 203
Station 1
LA 1 5023 | 293 | 2812 | 306 | 255.8 | 325 | 3341 | 265 | 285.7 | 225
Station 2

LA417 | 2675 | 244 | 2720 | 28.2 | 2466 | 315 | 299.0 | 258 | 273.3 | 204
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Table 41. Summary of location-related variability of Geogauge

Location 1 Location 2 Location 3 Location 4 Location 5
Material | Data Data Data Data Data
Avg. cov Avg. cov Avg. cov Avg. Ccov Avg. Ccov
MPa % MPa % MPa % MPa % MPa %
LA 98
Station1 | 282.4 | 29.1 | 251.6 | 25.9 | 238.4 | 255 |284.2| 31.7 | 258.0 | 20.5
LA 98
Station 2 | 313.2 | 29.9 | 2448 | 255 | 272.7 | 31.0 |3126| 319 | 2451 | 204
LA417 3024 | 25.2 | 2451 | 28.4 |2415| 21.6 | 298.1| 26.4 | 259.9 | 20.3
Table 42. Summary of operator-related variability of LFWD
Operator 1 Operator 2 Operator 3 Operator 4 Operator 5
Material | Data Data Data Data Data
Ava. cov Ava. cov Avg. Ccov Avg. Cov Avg. Cov
MPa % MPa % MPa % MPa % MPa %
LA 98
Station1 | 1829 | 21.3 | 208.9 | 174 | 1888 | 21.3 | 202.2 | 23.8 | 1430 | 117
LA 98
Station 2 | 192.7 | 242 | 2194 | 189 | 1983 | 23.1 | 212.6 | 248 | 150.2 | 133
LA 417 2146 | 312 | 2235 | 350 | 1848 | 228 | 2270 | 375 | 2243 | 340
Table 43. Summary of location-related variability of LFWD
Location 1 Location 2 Location 3 Location 4 Location 5
Material | Data Data Data Data Data
Avg. cov Avg. cov Avg. Ccov Avg. Cov Avg. Cov
MPa % MPa % MPa % MPa % MPa %
LA 98
Station 1 | 188.0 | 23.2 | 183.9 | 22.7 | 2058 | 24.7 | 152.4 | 20.0 | 180.6 | 23.8
LA 98
Station 2 | 197.7 | 275 | 1925 | 22.7 | 2173 | 259 | 164.7 | 25.2 | 186.7 | 26.8
LA 417 2200 | 318 | 1788 | 316 | 2726 | 269 | 2305 | 186 | 1723 | 21.9

Analysis of Dynamic Cone Penetrometer (DCP) data

The DCP tests were performed at the center of each point of a location of station, and the
COVs were determined for the whole station. Analysis of the DCP was performed using
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the first-order second moment (FOSM) analysis. Figure 69 depicts the DCPI (mm/blow)
profile for LA 98 Station 1, which was tested on five points. The base layer LA 98 Station
1 is about 10 in.. The average values of the DCPI (mm/blow) for each point are presented
in the figure, in which the DCPI (mm/blow) varies from 4.1 mm/blow to 5.8 mm/blow
for LA 98 Station 2 and LA 98 Station 1, respectively.

Figure 69. DCPI (mm/blow) profile of LA 98 station 1
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Summary of the COVs for all stations is shown in Table 44, where the maximum and the
minimum values of COV are 29.8% and 15.4%, respectively. The maximum value of
COV is seen for LA 98 Station 1; whereas, the minimum value of COV is observed for
LA 98 Station 2.

Table 44. Summary of the DCPI variability for the under-constructed sections

Stations DCPI Avg. SD Cov
mm/blow | mm/blow %
LA 98 Station 1 5.8 0.9 15.4
LA 98 Station 2 4.1 1.2 29.8
LA 417 4.8 1.1 23.6
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Analysis of Nuclear Density Gauge (NDG) Data

Although the Nuclear Density Gauge (NDG) was tested at the center of each point of a
location of station, the location-related variability can be applied as measurements were
taken three times. Table 45 and Table 46 show the location-related variability of the dry
density and the moisture content, respectively. The tables show that the COVs for NDG
range from 0.2% to 2.3% and from 0.8% to 10.2%, for the dry density and moisture

content, respectively

Table 45. Summary of location-related variability of NDG (dry density) for the under-constructed

sections
Point A Point B Point C Point D Point E
Material | Dry Dry Dry Dry Dry
Density vV Density cv Density vV Density v Density v

pcf % pcf % pcf % pcf % pcf %

LA 98

Station 1 995 | 23| 993 |08| 1051 |08 | 991 |14 | 991 |14
LA 98

Station 2 101.7 |14 | 101.2 |06 | 1023 | 0.6 | 1065 | 0.4 | 1157 |17

LA 417 9%6 |02 9.7 |[02] 1019 |10] 1017 |08 ] 957 |17

Table 46. Summary of location-related variability of NDG (moisture content) for the under-
constructed sections

Point A Point B Point C Point D Point E
Material | Avg. cov | A9 | cov | AVG | cov | AVS: | cov | AVS: | cov
m.c. m.c. m.c. m.c. m.c.

% % % % % % % % % %

LA 98

Station 1 176 | 35 | 178 | 39 | 132 | 08 | 171 | 34 | 171 | 34
LA 98
Station 2 170 | 30 | 189 | 11 | 172 | 15 | 138 | 33 | 174 | 49

LA417 | 143 | 27 | 143 | 54 | 154 | 102 | 147 | 93 | 153 | 87

Analysis of E-Gauge Data

The tests and analyses performed using the E-Gauge were similar to the NDG, in which
tests were performed at the center of each point of a location of station. Table 47 and
Table 48 present the summary of the COVs for the dry density and moisture content,
respectively. As shown in the tables, the COVs range from 0.10% to 3.7% and from 0.8%
to 12.0% for dry density and moisture content, respectively. The maximum COV values
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for both the dry density and moisture content are observed for LA 417; while the
minimum COV values for both the dry density and the moisture content are found for LA

417 and LA 98 Station 2, respectively.

Table 47. Summary of location-related variability of E-Gauge (dry density)

Point A Point B Point C Point D Point E

Material Dry Dry Dry Dry Dry

Density cov Density cov Density cov Density cov Density cov

pcf % pcf % pcf % pcf % pcf %

LA 398 105.9 0.3 102.4 0.9 99.3 1.1 105.5 2.1 104.8 1.5
Station 1
LA 98 1075 | 11 | 1074 | 02 | 1076 | 07 | 1100 | 10 | 95 | 21
Station 2
LA 417 116.0 0.3 109.3 35 110.7 0.1 101.9 0.3 109.9 3.7

Table 48. Summary of location-related variability of E-Gauge (moisture content)

Point A Point B Point C Point D Point E
Material | Avg. cov Avg. cov Avg. cov Avg. covV Avg. covV

m.c. m.c. m.c. m.c. m.c.

% % % % % % % % % %
LA 98
Station 1 15.3 1.4 16.2 0.9 16.6 1.3 15.3 3.0 16.3 | 3.2
LA 98
Station 2 18.8 1.3 20.7 0.8 20.1 1.0 15.1 1.4 215 2.1
LA 417 35 8.2 5.5 4.2 3.6 3.2 34 12.0 3.8 15

Analysis of Lab Test Data

Analyses of lab tests have been performed based on the operator and specimen-related
variability. The lab tests include the unconsolidated undrained (UU) triaxial, Atterberg
limits, small direct shear, one-dimensional consolidation and California bearing ratio

(CBR) tests.
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Analysis of Unconsolidated Undrained (UU) Triaxial Test data

UU triaxial tests were performed by five different operators, in which each operator

tested three specimens of the same soil type (low PI, high PI, and medium PI 1, 2 and 3

soils). The operator- and specimen-related variabilities were evaluated for the UU tests
Bar/R and ANOVA, and the results are presented in Table 49 and Table 50, respectively.
The tables show that the COVs of UU test results vary from 1.0% to 10.9% and from

3.8% to 17.1% for the operator and specimen-related variabilities, respectively.

Table 49. Summary of operator-related variability for UU tests

Material Operator 1 Operator 2 Operator 3 Operator 4 Operator 5

Su, COV | Su, COV | Su, COV | Su, COV | Su, cov

Avg. Avg. Avg. Avg. Avg.

psf % psf % psf % psf % psf %
|(_|PI|935§)I 6217 | 1.2 | 8143 | 55 | 8453 | 69 | 6725 | 9.2 | 8624 | 83
Low PI
(PI=11) 3799.8 | 105 | 39848 | 6.4 | 32487 | 9.6 |32093| 10 |3113.8| 2.8
Medium
PI1 2536.3 | 2.8 | 25212 | 6.1 |2959.6 | 7.4 |2659.1| 7.1 |25249| 3.9
(PI1=21)
Medium
P12 2087.8 | 8.4 | 21953 | 1.4 | 23411 | 4.4 |2257.2| 10.9 | 22722 | 6.2
(PI1=31)
me:f'“m 1888.6 | 5.8 | 14400 | 86 |17369 | 45 | 16783 | 6.9 |1675.2| 4.3

Table 50. Summary of specimen-related variability of UU tests
Material Specimen 1 Specimen 2 Specimen 3
Su, cov Su, Avg. cov Su, Avg. cov
Avg.
psf % psf % psf %

High PI (P1=53) 748.9 17.1 804.8 14.5 736.0 13.1
Low PI (P1=11) 3421.8 9.1 3488.5 15.6 3503.5 13.7
Medium P1 1 (P1=21) | 2632.9 3.8 2689.0 10.4 2598.8 10.4
Medium P1 2 (P1=31) | 2244.1 3.8 2228.5 6.5 2219.6 11.0
Medium P1 3 (P1=38) | 1651.9 11.2 1666.0 10.6 1733.6 10.6
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Analysis of Atterberg Limits Data

The Atterberg limit tests were performed by five operators to evaluate the operator-
related variability in which each operator prepared three specimens to evaluate the
specimen-related variability. Table 51 shows the summary of operator-related variability,
and Table 52 presents the summary of specimen-related variability. The results show that
the COVs of the liquid limit vary from 0.9% to 7.8%, and the COVs of the plastic limit
range from 1.9% to 18.2%. Additionally, the COV of the plasticity index range from
1.1% to 26.4%.

Table 51. Summary of operator-related variability for the Atterberg limits

Material | Type | Operator 1 Operator 2 Operator 3 Operator 4 Operator 5

Avg. | COV | Avg. | COV | Avg. | COV | Avg. | COV | Avg. | COV

% % % % % % % % % %

LL 32 1.8 31 3.2 31 3.7 35 1.7 34 7.8
Low PI

PL 21 4.8 20 2.8 18 8.6 18 | 114 | 20 2.9

PIEW) 511 [108 | 11 | 143 | 13 | 44 | 16 | 141 | 14 | 169

Medium | LL 42 5.5 41 14 43 4.0 41 2.4 39 6.8

PI1 PL 26 5.9 26 7.7 21 2.8 25 | 18.2 19 6.0

(P1=21) Pl 16 9.8 15 | 136 | 22 6.8 19 119 | 20 | 10.6

High PI LL 88 4.5 92 25 | 100 | 4.7 94 1.8 99 4.8

(PI=53) PL 35 4.4 38 7.6 50 7.1 41 5.0 48 8.6
Pl 53 6.0 54 11 50 4.0 53 4.4 51 4.1

Medium | LL 55 2.1 48 1.2 50 3.0 52 3.0 49 6.3

P12 PL 19 3.1 19 7.9 22 5.2 24 2.4 20 8.7

(P1=31) Pl 36 4.8 29 5.3 28 6.2 28 7.1 29 15.7

Medium | LL 62 0.9 61 1.9 64 3.6 58 4.6 62 0.9

P13 PL 30 9.7 30 1.9 30 2.0 28 5.4 31 1.9

(P1=38) Pl 32 8.3 31 4.9 34 6.7 30 | 103 | 31 1.9

Note: LL = Liquid Limit, PL = Plastic Limit and PI = Plasticity Index

Analysis of Small Direct Shear Test Data

Small direct shear tests were conducted on both sand and clay soil types to evaluate the
operator and specimen-related variability. In order to do so, five different operators
conducted the tests on three specimens.

Figure 70 presents an example of direct shear test results on sand soil, and Figure 71
presents an example of direct shear test results on the low PI (PI=11) clay soil. The
friction angle, ¢, was determined for each test from the shear stress-normal stress plot.
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The cohesion, c, for clay soils was determined for each test from the intercept of shear

stress - normal stress line with the y-axis

Table 52. Summary of specimen-related variability for the Atterberg limits

Specimen-related Variability

Material | Type Specimen 1 Specimen 2 Specimen 3
Average | SD | COV | Average | SD | COV | Average | SD | COV
% % % % % % % % %
Low Pl LL 33 22| 6.6 33 22| 6.6 32 19| 5.8
(PI=11) PL 19 18| 9.3 20 11| 58 20 2.3 | 11.7
Pl 14 15| 11.2 13 2.6 | 19.6 12 2.8 | 22.5
Medium | LL 42 15| 3.6 41 29| 7.0 41 15| 3.7
Pl1 PL 22 34| 15.6 24 34| 141 25 42 | 17.2
(P1=21) Pl 20 26| 13.1 17 441 264 16 3.9 | 24.6
High PI LL 08 73| 74 93 58| 6.3 94 23| 2.5
(P1=53) PL 45 75| 16.7 41 6.7 | 16.5 42 54| 129
Pl 53 09| 1.7 52 25| 49 52 34| 6.5
Medium | LL 52 23| 44 50 25| 50 50 38| 76
Pl 2 PL 21 2.2 | 10.6 21 2.7 13.1 21 2.2 | 10.2
(P1=31) Pl 31 27| 8.6 29 3.7 | 12.7 29 5.3 | 18.0
Medium | LL 62 16| 2.7 60 31| 52 62 28| 45
PI3 PL 30 11| 3.7 29 13| 4.6 30 22| 1.2
(P1=38) Pl 32 20| 6.3 31 241 79 32 3.3 ] 10.3
Figure 70. Example of direct shear test results on sand soil
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Figure 71. Example of direct shear test results on clay soil

——Series 1:36pst —B—Series 27 3psed ——Senies 3145 pe :: | [ |
12 - ¥ = 0.41Tx + 6,060 -
11
10 -~
- = B =
& A g -
g 8 § 1 [Z Clhesion.cd 60pn
%600 “ 5
] g 4
2 400 =
w w3
200 2
0.00 § : : - . . :
0.0 20 4.0 6.0 20 10.0 0 5 10 15 0
Horizontal Strain (%) Mormal Stress, psi

Table 53 presents the operator-related variability of small direct shear test on clay soil,
which shows that the COVs of cohesion, c, range from 3.5% to 19.5%. Whereas Table 54
presents the specimen-related variability of small direct shear test on clay, which shows
that the COVs of ¢ range from 5.7% to 20.0%.

The operator-related and specimen-related variability of small direct shear test on sand
soil are presented in Table 55 and Table 56, respectively. The tables show that the
operator-related COVs of ¢ range from 0.4% to 1.8%, and the specimen-related COVs of

¢ range from 7.8% to 8.8%.

Table 53. Summary of operator-related variability of small direct shear test on clay

Material Operator 1 Operator 2 Operator 3 Operator 4 Operator 5
A(‘:’g' cov A(‘:’g' cov A(‘:’g' cov A(‘:’g' cov A(‘:’g' cov
psf % psf % psf % psf % psf %

L'F?I"zvli') 816.0 | 134 | 8688 | 9.1 | 8688 | 141 | 897.6 | 158 |859.2 | 14.6

Medium

Pl1 633.6 | 11.8 | 576.0 | 50 | 648.0 | 10.2 | 5616 | 11.8 | 6288 | 3.5

(PI1=21)

Medium

Pl 2 436.8 5.0 446.4 | 14.1 | 4224 | 12.0 | 484.8 7.5 436.8 8.3

(PI1=31)

Medium

P13 3216 | 6.8 | 3216 | 113 | 369.6 | 125 | 3312 | 75 | 379.2 | 195

(P1=38)

High PI 5

(PI1=53) 59.2 | 147 | 220.8 | 16.4 | 288.0 | 10.0 | 2976 | 7.4 | 254.4 | 14.2
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Table 54. Summary of specimen-related variability of small direct shear test for clay
Material Specimen 1 Specimen 2 Specimen 3
Coﬁ(\e/sgi.on cov Coﬁggbn cov Coﬁ(\e/sgi;)n cov
psf % psf % psf %
1) 933.1 5.7 7517 8.8 901.4 8.9
roon 1| 5990 108 607.7 10.1 622.1 100
rsn 2| as08 9.4 463.7 7.7 4118 8.4
mffé‘g)“ PI3 1 3744 15.4 334.1 11.6 325.4 8.6
?;;3352; 256.3 20.0 267.8 135 267.8 14.0

Table 55. Summary of operator-related variability of small direct shear test on sand

Material Operator 1 Operator 2 Operator 3 Operator 4 Operator 5
Avg. ¢ cov Avg. ¢ Cov Avg. ¢ Cov Avg. ¢ cov Avg. ¢ Ccov
Degree | % | Degree| % | Degree| % | Degree | % | Degree | %

Sand 31.1 1.8 36.4 0.5 30.3 0.5 35.4 0.9 35.3 0.4

Table 56. Summary of specimen-related variability of small direct shear test for sand

Material Specimen 1 Specimen 2 Specimen 3
Avg. ¢ | COV | Avg 9 | COV | Avg ¢ | COV
Degree % Degree % Degree %

Sand 33.9 8.2 33.7 8.8 33.6 7.8

Analysis of One Dimensional Consolidation Test Data

One dimensional consolidation tests were conducted on clay specimens ranging from low
PI (PI=11) to high PI (PI=53). This test was operated by three different operators to
evaluate the operator-related variability; while every operator conducted this test three

times to determine specimen-related variability. For geotechnical engineering, the

significance of this test is to determine the consolidation parameters (coefficient of

consolidation, Cy, compression index, Ce, recompression (or swelling) index, C;, and

preconsolidation pressure, P.) that are needed to assess the magnitude and time rate of

consolidation settlement of clay soils.
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The coefficient of consolidation, Cy, can be evaluated for each load increment using log
time (t) versus displacement, d; curve and evaluate the dso and tso (Terzaghi method) from
\t versus d; and evaluate dso and Vto, (Tylor method). In this method, Taylor method was
used to evaluate the coefficient of consolidation, Cy, using the following equation:

2
_ Too Hp

[148]

A%
tog

where: Tgo = time factor for 90 percent consolidation; t = time corresponding to the
particular degree of consolidation; Hp = length of drainage path.

Table 57 and Table 58 present the operator and the specimen-related variability for the
preconsolidation pressure (P¢). The tables show that the COVs of Pc range from 5.0% to
19.5%, and from 3.3% to 20.4% for the operator and specimen variations, respectively.
From Table 57, the maximum and the minimum values of operator-related COV are seen
for medium PI 2 (P1=31) and medium P1 3 (P1=38), respectively. However, from Table
58, the maximum and the minimum values of specimen-related COV are observed for
high PI (P1=53) and low PI (P1=11) and medium PI 1 (PI=21), respectively.

The operator-related COVs for the compression index (Cc) are presented in Table 59,
which vary from 1.4% to 16.8%; whereas the specimen-related COVs for C. range from
0.8% to 18.4%, as shown in Table 60.

Table 57. Summary of operator-related variability of preconsolidation pressure (Pc)

Material Operator 1 Operator 2 Operator 3

Pe sp | cov | Pe so |cov | ¢ sD | cov

(Avg.) (Avg.) (Avg.)

tsf tsf % tsf tsf % tsf tsf %
Low Pl 157 |021| 133 | 178 |010| 58 160 | 010! 6.3
(Ploi1) . . . . . . . . .
?g,fg'zul’;" PITT 135 |o022| 161 | 148 |o020| 136 | 142 |o010| 73
xfféulr)“ PI21 113 |o015| 135 | 107 |o021| 195 | 113 |012] 102
MediumPI3 | 55 1018 | 137 | 152 |008| 50 | 143 |015] 107
(P1=38)
High P
(PIo53) 065 |005| 7.7 | 068 |012| 169 | 048 |003| 60

— 171 —



Table 58. Summary of specimen-related variability of preconsolidation pressure (Pc)

Material Specimen 1 Specimen 2 Specimen 3

Pc Pc Pc

SD | CoV SD | CoV SD Cov
(Avg.) (Avg.) (Avg.)

tsf tsf % tsf tsf % tsf tsf %
Low PI
(Plv:vll) 158 | 0.18 | 11.1 1.73 0.06 | 3.3 1.63 0.23 14.1
Medium PI 1
(PI=21) 1.62 | 0.13 7.8 1.77 0.06 | 3.3 1.60 0.26 16.5
Medium PI1 2
(PI=31) 1.13 | 0.21 | 184 1.07 0.12 | 10.8 1.13 0.15 13.5
Medium PI1 3
(PI=38) 152 | 0.08 5.0 1.37 0.25 | 184 1.35 0.09 6.4
High PI
(P|g:53) 0.65 | 013 | 204 0.55 0.10 | 18.2 0.62 0.13 20.4

Table 59. Summary of operator-related variability of compression index (Cc)

Material Operator 1 Operator 2 Operator 3
Cc Cc Cc
SD | Cov SD | CoV SD | CoVv
(Avg.) (Avg.) (Avg.)
% % %
Low PI 0.158 | 0.007 | 4.4 0.141 | 0.024 | 16.8 | 0.139 | 0.015 | 10.6
(PI=11)
Medium PI 0.189 | 0.015 | 8.1 0.199 | 0016 | 7.9 0.208 | 0.016 | 7.7
1 (PI1=21)
Medium PI 0.236 | 0.004 | 1.9 0.261 | 0.024 | 9.3 0.227 | 0.003 | 14
2 (P1=31)
Medium PI 0.289 | 0.031 | 105 | 0.263 | 0.015| 5.7 0.284 | 0.029 | 10.2
3 (P1=38)
High Pl 0.448 | 0.023 | 5.1 0.414 | 0.021 | 5.0 0.377 | 0.006 | 15
(P1=53)
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Table 60. Summary of specimen-related variability of compression index (Ce)

Material Specimen 1 Specimen 2 Specimen 3

Cc Cc Cc

(Avg.) SD | CoV (Avg.) SD | CoVv (Avg) sSD | CoVv

% % %

Low PI 0.128 | 0.024 | 18.4 | 0.138 | 0.015 | 10.7 | 0.138 | 0.015 | 10.9
(PI=11)
Medium Pl 0.184 | 0.014 | 75 0.200 | 0.006 | 2.8 0.212 | 0.013 | 6.1
1 (PI=21)
Medium PI 0.233 | 0.002 | 0.8 0.244 | 0.021 | 8.7 0.247 | 0.030 | 12.2
2 (P1=31)
Medium Pl 0.262 | 0.021 | 8.1 0.277 | 0.027 | 9.6 0.298 | 0.021 | 7.1
3 (P1=38)
High PI 0.416 | 0.033 | 7.9 0.408 | 0.029 | 7.1 0.415 | 0.053 | 12.8
(P1=53)

The operator and specimen-related variability for the recompression index (Cy) are
presented in Table 61 and Table 62, respectively. The results show that the operator-
related COVs for C; range from 5.6% to 18.2%., while the specimen-related COVs for C;
range from 3.6% to 17.1%. The maximum operator and specimen COV values are seen
for Low PI (P1=11) and Medium PI 1 (PI1=21), respectively; and the minimum operator
and specimen COV values are noticed for Medium P1 3 (PI=38) and Low PI (PI=11),

respectively.

Table 61. Summary of operator-related variability of recompression index (Cr)

Material Operator 1 Operator 2 Operator 3

€ | s |cov| s |cov| ©f sD | cov

(Avg.) (Avg.) (Avg.)

% % %

Low PI 0.021 | 0.003 | 11.8 0.022 | 0.004 | 18.2 | 0.016 | 0.003 | 16.8
(P1=11)
Medium Pl 1| 0.032 | 0.003 | 9.5 0.030 | 0.002| 7.0 | 0.035 | 0.003 | 9.9
(P1=21)
Medium P12 | 0.041 | 0.007 | 16.8 0.038 | 0.002 | 5.7 0.042 | 0.003 7.5
(P1=31)
Medium P13 | 0.058 | 0.003 | 5.6 0.064 | 0.004 | 6.5 | 0.068 | 0.008 | 12.3
(P1=38)
High PI 0.107 | 0.013 | 124 0.117 | 0.009 | 7.4 0.108 | 0.008 7.0
(P1=53)
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Table 62. Summary of specimen-related variability of recompression index (Cr)

Material Specimen 1 Specimen 2 Specimen 3

Cr 1splcov| B | sp|cov|,* .| s |cov

(Avg.) (Avg.) (Avg.)

% % %

Low PI 0.014 | 0.001| 3.6 | 0.017 |0.002| 13.8 | 0.022 | 0.001| 6.6
(PI=11)
Medium PI | 0.034 | 0.006 | 17.1 | 0.031 [0.001| 3.9 0.032 | 0.002 | 6.7
1 (P1=21)
Medium PI | 0.039 [ 0.003| 7.9 | 0.038 |[0.002| 5.7 0.044 | 0.005 | 10.7
2 (PI1=31)
Medium Pl | 0.064 | 0.009 | 14.1 | 0.065 |0.006 | 9.3 0.061 | 0.007 | 11.0
3 (PI1=38)
High PI 0.110 | 0.010| 9.4 | 0.112 |0.013| 12.0 | 0.110 |0.010| 9.2
(P1=53)

The operator and specimen-related variability for the coefficient of consolidation (Cy) are

presented in Table 63 and Table 64, respectively. The tables show that the operator-
related COVs of C, range from 2.3% to 20.9%; while the specimen-related COVs for Cy
range from 5.5% to 30.6%.

Table 63. Summary of operator-related variability of the coefficient of consolidation (Cv)

Material Operator 1 Operator 2 Operator 3
Cv Cv Cv
(Avg.) SD Ccov (Avg) SD cov (Avg) SD Ccov
in?/min | in3min % inZmin | in?/min % inZmin | in3/min %
Low PI 0.101 0.016 | 154 | 0.127 0.024 | 19.2 | 0.147 0.011 7.2
(PI=11)
Medium | 0.161 0.017 | 105 | 0.197 0.038 | 19.1 | 0.168 0.014 8.1
Pl1
(P1=21)
Medium | 0.118 0.003 2.3 0.108 0.014 | 13.0 | 0.120 0.025 | 20.9
P12
(PI1=31)
Medium | 0.116 0.010 8.9 0.194 0.017 8.8 0.166 0.012 7.3
PI3
(P1=38)
High PI 0.140 0.017 | 12.0 | 0.102 0.020 | 19.2 | 0.099 0.008 8.6
(P1=53)
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Table 64. Summary of specimen-related variability of the coefficient of consolidation (Cv)

Material Specimen 1 Specimen 2 Specimen 3

(Ac\l‘é) sD | cov (A(f/‘é) sD | cov (A?/‘é) sD | cov

in2/min | in%min % in?/min | inZmin % in2/min | inZmin %

LowPl | 0.126 | 0.030 | 235 | 0.122 | 0.029 | 239 | 0.127 | 0.028 | 22.0
(PI=11)

Medium | 0.167 | 0.017 | 10.0 | 0.176 | 0.010 | 55 | 0.183 | 0.049 | 27.0
PI 1
(P1=21)

Medium | 0.092 | 0.028 | 30.6 | 0.117 | 0.013 | 10.9 | 0.127 | 0.010 | 8.2
PI 2
(P1=31)

Medium | 0.161 | 0.041 | 255 | 0.145 | 0.036 | 249 | 0.170 | 0.042 | 245
PI3
(P1=38)

HighPl | 0.127 | 0027 | 21.0 | 0115 | 0.027 | 23.3 | 0.100 | 0.019 | 18.7
(PI1=53)

Analysis of California Bearing Ratio (CBR) Test Data

The California Bearing Ratio (CBR) test was conducted by five operators to evaluate the
operator-related variability and on three specimens to evaluate the specimen-related
variability. The tests were conducted in four different materials: Kentucky limestone,
Mexican limestone, RAP, and sand soil. In order to analyze data, it was first required to
correct the stresses if necessary. As shown in Figure 72, the adjusted origins have been
formed from the slope of the curve and then the corrected stresses are found from the y-
axis for 0.1-in. and 0.2-in. penetrations. The figure shows the plot of CBR test, which
indicates the adjusted origins along with the corrected stresses for 0.1-in. and 0.2-in.

penetration.
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Figure 72. Resistance to penetration (psi) vesrus penetration plot for Kentucky limestone
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results are summarized in Table 65 and Table 66, respectively. The results show that the
operator-related COVs for CBR range from 4.2% to 15.6%, and the specimen-related
COVs for CBR range from 5.7% to 16.0%. Furthermore, from Table 65, the maximum

and minimum values of operator-related COVs are observed for sand and Mexican

limestone, respectively. However, from Table 66, the maximum and the minimum values

of specimen-related COVs are seen for Mexican Limestone and RAP, respectively.

Table 65. Summary of operator-related variability of CBR

Operator 1 Operator 2 Operator 3 Operator 4 Operator 5
Material CBR CBR CBR CBR CBR
(Avg)) cov (Avg)) cov (Avg)) cov (Avg) cov (Avg)) cov
% % % % % % % % % %
Kentucky | 43.3 8.1 56.7 6.2 42.0 6.3 493 | 122 | 50.3 5.0
Limestone
Mexican 40.0 6.6 50.3 6.1 39.3 5.3 36.7 4.2 39.3 6.4
Limestone
RAP 25.7 | 119 | 24.0 8.3 23.7 | 106 | 23.7 | 106 | 24.3 8.6
Sand 13.7 | 11.2 | 127 | 121 | 117 4.9 12.3 4.7 13.3 | 15.6
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Table 66. Summary of specimen-related variability of CBR

Specimen 1 Specimen 2 Specimen 3
Material CBR CBR CBR
Ccov cov cov
(Avg.) (Avg.) (Avg.)
% % % % % %
Kentucky 46.4 13.9 48.2 117 50.4 151
Limestone
Mexican 40.8 10.2 40.6 14.6 42.0 16.0
Limestone
RAP 23.6 8.8 22.8 5.7 26.4 5.7
Sand 12.4 9.2 12.6 14.4 13.2 9.9

Analysis of Combined Variability from AMRL and Lab Data

Analyses of combined variability from both the AASHTO Materials Reference

Laboratory (AMRL) and lab test data can be determined using different statistical
techniques. It is simple to calculate the coefficient of variations (COVs) when the average
values and standard deviations are given for different dataset. The combined mean (or
average), L, of different combinations of datasets (i1 to pwa) can be estimated statistically
using the following equation:

By *nptp, *mtpy *ngtoop *n
1 2 3 n n [149]
np+np+tnz+...n,

Average, la =

In order to estimate the combined standard deviation (or combined pooled variance) of

different population sets, samples taken from each population are first used to measure

2

p» can then be evaluated

the variance, o2, for each set. The combined pooled variance, ¢

using the following equation:

012) _ E]i(:l (ni'l)Giz _ (nl-l)G%‘F (n2-1)65+...+(nk-1)6§ [150]

K (i-1) ny+ ny+.. . +ng-k

The collected data from AMRL and lab tests were analyzed to evaluate the combined
variability for different tests. To estimate the combined variability, there are three group
of datasets indicating set 1, set 2 and set 3. The AMRL data are composed of set 1 and set
2; whereas lab test data is incorporated with set 3. The collected AMRL data range from
2009-2010 to 2016-2017. Here, the Atterberg Limits and CBR tests are analyzed to
evaluate the combined lab variability.
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For each test, the mean (average) for each dataset is first calculated, and the combined
mean, ., of the three sets is evaluated using Equation 149. The standard deviation (or
variance) is then calculated for each dataset. Finally, the combined variability is
calculated and expressed in terms of standard deviation, o, and the coefficient of
variations, COV. Table 67 presents the calculation of combined variability of Atterberg
limits of low PI soils for the combined AMRL 2016-2017 and lab test data. The combined
COV for the liquid limit (LL) is 4.3%, and the combined COV for the plastic index (PI) is
6.7%. Table 68 summarizes the calculated COVs of Atterberg limits for different PI soils
(Low, medium, and high PI) using the different AMRL datasets (2009-2010 to 2016-
2017).

It can seen from Table 68 that the COVs vary from 4.3% to 8.4% for the LL, where the
lowest and the highest COVs are for the 2016-17 and 2009-10 datasets, respectively.
However, the COVs of the PL range from 6.7% to 9.4%, with the minimum and
maximum of COVs for 2016-17 and 2013-14, respectively.

Table 67. Combined variability analysis of Atterberg limits for combined AMRL and lab data

AMRL Data 2016-2017 Lab Test Data Combined
Low PI Sample 1 Sample 2 Sample 3 Variability
(P1=11)
Soil No. No. No.
of Avg. | SD of Avg. | SD of | Avg. | SD | Avg. | SD | COV
Data Data Data
Ny M1 o1 ny M2 G2 N3 M3 03 ¥} c %
LL 1588 | 33.1 | 1.4 | 1588 | 32.7 | 14 | 15 325 | 20| 329 |14 | 43
Pl 1588 | 188 | 1.3 | 1588 | 188 | 1.3 | 15 195 | 1.7 | 188 | 1.3 | 6.7

*LL = Liquid Limit, PL = Plastic Limit and PI = Plasticity Index
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Table 68. Summary of the COVs of Atterberg limit test for AMRL data

Low PI Medium PI 1 Medium PI 2 Medium P1 3 High PI
(P1=11) (P1=21) (P1=31) (P1=38) (P1=53)

Year
LL PL LL PL LL PL LL PL LL PL

COv | COV | COV | CoVv | Cov | Cov | Cov | cov | cov | cov

% % % % % % % % % %

2009-10 8.3 8.0 8.3 8.2 8.3 8.0 8.3 8.0 8.4 8.6

2010-11 7.7 7.4 7.7 7.5 7.7 7.4 7.7 7.4 7.7 7.9

2011-12 6.6 7.5 6.6 7.6 6.6 7.5 6.6 7.5 6.7 8.0

2012-13 5.9 7.8 5.9 8.0 5.9 7.9 5.9 7.8 6.0 8.2

2013-14 6.6 9.2 6.6 9.2 6.6 9.2 6.6 9.1 6.6 9.4

2014-15 7.4 8.5 7.4 8.6 7.4 8.5 7.4 8.4 7.4 8.9

2015-16 5.2 7.0 5.2 7.2 5.2 7.1 5.2 7.0 5.3 7.5

2016-17 4.3 6.7 4.3 6.8 4.3 6.8 4.3 6.7 44 7.0

The summary of COVs of CBR test from AMRL data for the different geomaterials
(sand, RAP, Kentucky limestone, and Mexican limestone) are summarized in Table 69.
The results show that the COVs range from 16.5% (for Mexican limestone and 2009-
2010 AMR data) to 34.9% (for sand and 2012-2013 AMR data).
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Table 69. Summary of COVs of CBR test for AMRL data

sand RAP Kpntucky Mexican
Limestone Limestone
Year CBR at CBRat | CBR at | CBR at CBR at CBRat | CBR at | CBR at
0.1inch .0'2 .0'1 .0'2 0.1inch .0'2 .O'l .0'2
) inch inch inch ) inch inch inch
COV | COv | COV | COV | COV | cov | cov | cov
% % % % % % % %
igog- 168 | 247 | 168 | 245 | 168 | 243 | 165 | 243
f(l)lo' 318 | 305 | 317 | 303 | 315 | 246 | 316 | 247
fg“' 273 | 262 | 272 | 260 | 270 | 257 | 269 | 258
ig12- 349 | 3290 | 348 | 324 | 344 | 320 | 337 | 313
5213- 315 | 300 | 314 | 299 | 311 | 206 | 312 | 297
ig“’ 331 | 243 | 319 | 285 | 304 | 281 | 304 | 282
igﬁ' 33.9 | 242 | 338 | 241 | 336 | 240 | 337 | 240
5316' 333 | 229 | 332 | 229 | 330 | 227 | 331 | 228

Evaluation of Site Variability using Semivariogram

Site Variability from CPT data and LCPC- Pile CPT Method

To investigate site variability from the CPT data and its effect on the LRFD design of
piles using the LCPC Pile-CPT design method, the corrected tip resistance, qt, were
collected from six different project sites (Metairie, ALF, US 90, and LA 85, Hammond,
Bayou Lacassine, and LA 1) for evaluation per site. The CPT location points for each site
are presented earlier in Figure 43. The soil profile, soil properties, CPT data and CPT soil
classification for Metairie site with depth were presented earlier in Figure 45. The soil
profiles, soil properties, CPT data, and CPT soil classifications for the other sites are
presented in Appendix B. In order to investigate the effect of site variability for each site
using the geo-statistics tools, all the collected data for each site need to be first transferred
to stationary data without any trend prior to performing the semivariogram analyses. The
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CPT data collected for Metairie site and ALF site (as examples) were transformed from
nonstationary data (with trend) to stationary data for each layer by removing the trend
values using the equations presented on Figure 73a and Figure 744, respectively. The
corresponding transformed CPT data from Metairie site and ALF site are shown in Figure
73b and Figure 74b, respectively. Data transformation from nonstationary data (with
trend) to stationary data were also performed for the other four CPT sites in this study,
following the same procedure done for Metairie and ALF sites, and are presented in
Appendix D. All the data used to evaluate site variability from CPT data for the six sites
are stationary data without any trend.

Figure 73. Transferring the data from non-stationary to stationary data for Matierie site: (a) non-
stationary data with trend line; (b) stationary data
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Semivariogram analyses were performed on the CPR-q; data using the JeoStat software
for each soil layer of the six CPT sites. The resulted experimental semivariograms for the
six soil layers at Metairie site for vertical and horizontal directions are presented in
Figure 75 and Figure 76, respectively. The spherical model presented in Equation 20 was
adopted here to fit the model’s semivariogram with the experimental data to define the
vertical and horizontal correlation ranges, ay and an, for each soil layer. The results values
of av and an for the six soil layers at Metairie site were determined as shown in the
figures. The values of ay for the Matierie site are 5.90 ft., 8.80 ft., 8.08 ft., 12.20 ft.,

— 181 —



12.40, and 8.0 ft. for the soil layers 1st, 2nd, 3rd, 4th, 5th and 6th layers, respectively.

However, the values of a, for the Matairie site are 100 ft., 150 ft., 110 ft., 100 ft., 117.5 ft.
and 100 ft. for 1st, 2nd, 3rd, 4th, 5th and 6th layers, respectively. Apparently, the range of
an values (100 to 150 ft.) is much higher than the range of ay values (5.9 to 12.4 ft.) due to

large spacing between the CPT test locations (>24 ft.), which will result on minimal
effect of the horizontal variability.

Figure 74. Transferring the data from non-stationary to stationary data for ALF Site: (a) non-
stationary data with trend line; (b) stationary data
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Semivariogram analyses were also conducted on LA 1 site to fit the experimental CPT-q;
data into spherical semivariograms, and to determine the ranges of vertical and horizontal
correlation, ay and ap, for each soil layer. The resulted experimental vertical and
horizontal semivariograms for the four soil layers at LA 1 site are presented in Figure 77
and Figure 78, respectively. The ranges of ay for the LA 1 site are 5 ft., 11.5 ft., 10.4 ft.,
and 11.9 ft. for the 1st, 2nd, 3rd, and 4th layers, respectively; while the range of an are
12.5 ft., 13 ft., 14 ft., and 17.5 ft. for the 1st, 2nd, 3rd, and 4th layers, respectively. The
horizontal correlation factors, an, for LA 1 are also higher than ay. Similar semivariogram
analyses were conducted on the other four CPT sites in this study, following the same
procedure done for Metairie and LA 1 sites, and the results are presented in Appendix D.
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Figure 75. Experimental and spherical vertical semivariogram models for the CPT-q: data of soil
layers at Metairie site
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Figure 76. Experimental and spherical horizontal semivariogram models for the CPT-qt data of soil
layers at Metairie site
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Figure 77. Experimental and spherical vertical semivariogram models for the CPT-q: data of soil
layers at LA 1 site
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The variance reduction factor, o, depends on both the spatial correlation of variable
(CPT-qy) and the pile or shaft geometry. It can be calculated using C(h;) from Equation 17

and a set of relevant parameters L, D, ay, and an. Figure 12 presents the relationship

/2 and the dimensionless ratios L/ay and D/ap [14]. The figure shows that o

between oci
decreases with increasing of either L/ay or D/an. When either L/ay or D/ay is very large
(i.e., a variogram with very short range), or becomes very small (approaches zero).
However, in situations were both L/ay and D/an equal zero, there will be no effective

averaging or variance reduction, resulting in or = 1.

When considering the effect of horizontal site variability, generally, there will be two
scenarios: (a) the horizontal range, an, is unknown (i.e., the horizontal distances between
test points are large), and (b) the horizontal range, an, is determined.
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Figure 78. Experimental and spherical horizontal semivariogram models for the CPT-qt data of soil
layers at LA 1 site
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When the CPT tests and soil borings are located far away from each other, the resulting
horizontal range, an, will be much larger than the vertical range, av (i.e., has negligible
effect). For these conditions, the authors are recommending to assume an = (2-4) ay (i.e.,
the horizontal range is two to four times of the vertical range) depending on the

importance of the project. However, a conservative approach of D/an =0 can also be

/

adopted. Then the value oci ?can be extracted by using the dimensionless variables L/ay

and D/ay from Figure 12.

When the horizontal range, an, can be determined, such as the case for Metairie and LA 1
sites, both values of ay and an will be used to evaluate or using Figure 12. To investigate
site variability (including horizontal range) of the CPT-q; data and its effect on the LRFD
design of piles using the LCPC Pile-CPT design method, the q; data collected from the
two sites (Metairie and LA 1) will be evaluated separately. The CPT location points for
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the two sites are presented earlier in Figure 43; and the soil profile, soil properties CPT
data are presented in Figure 45 and Appendix B for the Metairie and LA 1 sites,
respectively. The first step to investigate the effect of site variability for each site using
the geo-statistics tools is to transfer the collected data to stationary data without any
trend. Then develop the experimental vertical and horizontal semivariograms to evaluate
the correlation factors ay and an for each soil layer per site.

Once the values of ay and aj are evaluated for each site, the reduction factor, o can be
determined using the dimensionless variables L/ay and D/ay and using Figure 12. The
spatial coefficient of variation, COVR spatial, can be evaluated using Equation 19, and the
load coefficient of variation, COVgq, can be evaluated using Equation 23. Here, the layer
wise, o, and the mean, m, were calculated from the q; data (using the JeoStat software).
The resistance factor considering spatial variability, dspatial, for each site was then
evaluated using Equation 21.

The values of COVR spatiat for the Metairie site (from q: data) using the generated an,
an=2ay, and D/an=~0 were calculated to be 0.2167, 0.2149, and 0.20, respectively. The
corresponding LRFD resistance factors based on spatial variability, Gspatial, are 0.7342,
0.7293, and 0.76, for the generated an, an=2ay, and D/an =0, respectively.

The values of COVR spatiat for the LA 1 site (from q; data) using the generated an, an=2ay,
and D/an=0 were calculated to be 0.1044, 0.1058 and 0.10, respectively. The
corresponding LRFD resistance factors based on spatial variability, ¢spatial, are 0.9229,
0.9206 and 0.93, for the generated an, an=2av, and D/an =0, respectively.

These resistance factors were calculated using the COVR spatia only. The LRFD resistance
factors were also calculated using the design method resistance coefficient of variation,
COVR,method, Which is equal to 0.31 for LCPC pile CPT design method [57]. The
corresponding method’s resistance factor, ¢pmetnod, for LCPC design method equals 0.61,
which is the same for all scenarios. In this study, the authors recommended earlier to
incorporate both the site variability, COVR spatia, and the method variability, COVR method,
in the LRFD calibration of resistance factor, drworal, using the following proposed equation
[143]:

cl. COVR,spatial + c2. COVR,method

149
cl+c2 [ ]

COVR,total =

The calculated COVs and the corresponding calibrated resistance factors (¢) for the
different scenarios are summarized in Table 70. It is clear that when the site has lower
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variability than the design method variability (i.e., COVR spatiat < COVR method), the value
of the COVR ot Will be decreased and the corresponding resistance factor will be

increased, and vice versa.

The table shows that the COVR spatial, COVRtotal, and  drotal for Metairie site using the
generated ap are 0.2167, 0.2633, and 0.66, respectively. Using ay=2ay, the COVR spatial =
0.2149, COVR,ta1 =0.2624, and ¢rota1 = 0.6582. However for the D/an =0 case, the
COVR spatial, COVR tota1, and droral are 0.20, 0.255, and 0.67, respectively.

For LA 1, the table shows that the values of COVR gpatial, COVR total, and dotal using the
generated an are 0.1044, 0.2072, and 0.7498, respectively. When assuming ay=2ay, the
COVR spatial = 0.1058, COVR tota1 =0.2079, and the droral = 0.7486. Finally, the values of
COVR spatial, COVR tota1, and droral for the case of D/an =0 are 0.10, 0.205, and 0.75,
respectively. It can be seen from Table 70 that the effect of considering the horizontal
range in analysis is not significant. Therefore, for simplification of the analysis, we can

assume D/ap =0.

Table 70. Calibrated resistance factors, ¢r, for LCPC design method for Metairie and LA 1 sites

Parameters Metairie LA1
D D
Generated an an=2av —=~0 Generated an an=2ay —=0
ap ap
COVR spatial 0.2167 0.2149 0.20 0.1044 0.1058 0.10
cov
R, method 0.31
(LCPC)
COVRotal 0.2633 \ 0.2624 \ 0.255 \ 0.2072 \ 0.2079 \ 0.205
COV? 0.0111
Dspatial 0.7342 \ 0.7293 \ 0.76 \ 0.9229 \ 0.9206 \ 0.93
¢method (LCPC) 0.61
drotal 0.660 \ 0.6582 \ 0.67 \ 0.7498 \ 0.7486 \ 0.75

The variability analyses for the other four sites were done using the vertical range only
(i.e., assuming D/ah =0), since the effect horizontal range is not significant. Additionally,
the minimum spacing between the CPT test locations are considered large compared to

the pile width used in these project.

The vertical ranges, ay, for the ALF site are 3 ft., 12.7 ft., 3 ft., and 4 ft. for 1st, 2nd, 3rd,
and 4th layers, respectively. In case of Bayou Laccassine, the vertical ranges, av, for the
Ist, 2nd, 3rd, 4th and 5th layers are 4.35 ft., 10.50 ft., 6.7 ft., 11 ft. and 8.30 ft.,
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respectively. The vertical ranges, a’, for the US 90 and LA 85 site are 4.9 ft., 8.5 ft., 2.6
ft., 6.8 ft., 4.9 ft., and 4.8 ft. for Ist, 2nd, 3rd, 4th, 5th, and 6th layers, respectively. For
Hammond site, the vertical ranges, av, for the 1st, 2nd and 3rd layers are 2.08 ft., 5.50 ft.,
and 1.5 ft., respectively.

The calculated coefficients of variabilities (COV) and the corresponding calibrated
resistance factors (¢r) for the four sites (ALF, Bayou Laccassine, US 90 and LA 85, and
Hammond sites) are summarized in Table 71. It is clear that when the site has lower
variability than the design method variability (i.e., COVR spatial < COVR method), the value

of COVR,wtal decreases and the corresponding resistance factor increases, and vice versa.

Table 71. Calibrated resistance factors, ¢r, for LCPC design method for the other four sites

Parameters ALF BL UsS 90 Hammond
COVR,spatiaI 0.11 0.08 0.09 0.16
COVRmethod (LCPC) 0.31
COVR ot 021 | 0195 | 020 [ 0.235
COV¢? 0.0111
spatial 091 | 09 | 094 [ 083
¢method (LCPC) 0.61
rotal 074 | 077 | 076 [ 070

The results in Table 71 show that the COVR spatial, COVR otal, and ¢rotal for ALF site are
0.11, 0.21, and 0.74, respectively. For Bayou Lacassine site, the COVR spatial, COVR total,
and ¢total are 0.08, 0195 and 0.77, respectively. The values of COVR spatial, COVR tota1, and
drotal for the US 90 and LA 85 site are 0.09, 0.20, and 0.76, respectively. Finally, for the
Hammond site, the COVR spatiai = 0.16, COVR tota1 =0.235, and the ¢rotat = 0.70. It can seen
from Table 70and Table 71 that the values of ¢rwral are different for the different sites,
basically due to variability on the COVR spatial Of the sites. The relatively high site
variability of Metairie resulted on lower resistance factor, ¢l = 0.67, as compared to
other sites; while the low site variability of Bayou Lacassine resulted on higher resistance
factor, ¢l = 0.77, than the other sites.

Site Variability and FHWA Static Pile Design Method

The FHWA pile design method adopted the Nordlund (effective stress) method for the
sand layers and the a-Tomlinson (total stress) method for clay layers along the pile
length. Usually, the SPT data are used to evaluate the friction angle in Nordlund method,;
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while the a-Tomlinson method is based on the undrained shear strength, Sy. For sites
consist of sandy soils, the Nordlund design method is usually used for pile design; while
for sites with cohesive clayey soils, the a-Tomlinson design method is usually used for
pile design. However, for mixed soil conditions, both design methods are used.

Amongst the four sites evaluated in this study for soil borings, the subsurface soil
conditions in three sites (i.e., Bayou Lacassine, Red River and Williams Boulevard) are
clayey soils, and therefore the a-Tomlinson design method based on Sy will be used in
these sites. However, the subsurface soil condition at Metairie sites consists of mixed soil
layers, therefore, both the Nordlund and a-Tomlinson design methods will be analyzed.

Site Variability from Undrained Shear Strength and a-Tomlinson Method

To investigate site variability from undrained shear strength, Sy, data for the a-Tomlinson
method, soil boring data were collected from three sites (i.e., Bayou Lacassine, Red River
and Williams Boulevard). The distribution of soil borings for the three sites are shown in
Figure 44. For Bayou Lacassine, the maximum, minimum, and average COV of S,
(COVsy) from soil borings are 0.80, 0.29 and 0.51, respectively. For the Red River site,
the maximum, minimum, and average of COVs, are 0.91, 0.11, and 0.35, respectively.
For the Williams Boulevard site, the maximum, minimum, and average of COVs, are
0.39, 0.13, and 0.26, respectively. All the Sy data used in the study are stationary data
without any trend. The profile of soil type/layers and Sy data for the Red River site (as an
example) are shown in Figure 79. Experimental semivariogram analyses were performed
using the JeoStat software to evaluate the vertical correlation range, ay, for the soil layers
of each site (as shown in Figure 80 for the Red River site). Analyses were done in the
vertical direction only since the horizontal distance between the soil borings were very
large. The spherical model, as described in Equation 20, was used to fit the spherical
semivariogram model with the experimental Sy data, and to evaluate the vertical
correlation range, ay, for each soil layer. Figure 80 presents the semivariogram and
corresponding ay values for the four soil layers at the Red River site. The value of ay are
7.0 ft., 10.7 ft., 5.5 ft., and 6.0 ft. for the 1st, 2nd, 3rd, and 4th soil layers, respectively.

Similar analyses were performed for the other two soil boring sites to fit the experimental
data of S, into spherical semivariograms, and to evaluate the vertical ranges, av, for each

soil layer. For the Bayou Laccassine site, the vertical ranges, a", for the 1st, 2nd, 3rd, 4th

and 5th layer are 3.20 ft., 5.90 ft., 6.10 ft., 9.50 ft., and 14.50 ft., respectively. The
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vertical range, av, for the Williams Boulevard site are 19.50 ft., 24.0 ft., 24.0 ft., and
10.80 ft. for the 1st, 2nd, 3rd, and 4th layer, respectively.

Figure 79. Profile of soil layers and Sy data for the Red River site
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The values of ay evaluated from the semivariograms analysis were used to calibrate the
LRFD resistance factor, ¢r, as shown in Table 72. As described earlier, the value of
reduction factor, a, for each soil layer was calculated using Equation 20. The spatial
coefficient of variation, COVR spatial, for each site was evaluated using Equation 19, and
the load coefficient of variation, COVq, was evaluated from Equation 23. Finally, the
resistance factor considering spatial variability, ¢spatial, for each site was calculated using
Equation 21. The values of COVR spatial for Bayou Laccasine, Red River and Williams
Boulevard sites were calculated as 0.22, 0.19, and 0.14, respectively, as shown in Table
72. The corresponding LRFD resistance factors based on site variability only, ®spatial, are
0.61, 0.65, and 0.72 for Bayou Laccasine, Red River, and Williams Boulevard sites,
respectively. The LRFD resistance factors for the a-Tomlinson method, Gmethod,
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corresponding to the bias Ar = 0.87 and COVRr method = 0.48 1s equal 0.34 [58]. To
incorporate both the site variability, COVR spatial, and the method variability, COVR method,

in the LRFD calibration of resistance factor, drwtal, Equation 21 was used to calculate

COVRotal, and to calibrate the corresponding droral. Table 72 summarizes the coefficients

of variations (COV) and the corresponding calibrated resistance factors (¢r) for the three

project sites. Again, for sites with lower site variability than the design method variability
(i.e., COVRspatial < COVR method), the value of the COVR total decreased and the
corresponding resistance factor, ¢rotal, increased, and vice versa. For the three investigated
sites here, COVR spatial < COVR method, and therefore both the ¢spasial (0.61 to 0.72) and the
Orotal (0.45 to 0.49) are higher than the dmethod (0.34).

Figure 80. Experimental and spherical semivariogram models for Su data of the Red River site
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Site Variability of Mixed Soil at Metairie Site and Combined Static Method

The subsurface soil condition at Metairie site consists of four layers, two clayey layers (I:
0 to 29 ft. and III: 48 to 78 ft.), and two sandy layers (II: 29 to 48 ft. and IV: 78 to 105
ft.). For Layer I and III, the maximum, minimum, and average COV of Sy (COVs,) from
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soil borings are 0.67, 0.17 and 0.27, respectively. For Layer II and IV, the maximum,
minimum, and average COV of SPT-N (COVspr.N) from soil borings are 0.70, 0.13, and
0.31, respectively. Therefore, the collected Sy data will be used to evaluate the site
variability for Layers I and III for incorporation into the a-Tomlinson pile design method,
and the collected SPT-N data will be used to evaluate the site variability for Layers II and
IV for integration into the Nordlund pile design method, separately. This means we will
calibrate two methods’ resistance factors; one for a-Tomlinson method (Gr, Tomlinson
method) and one for Nordlund method (¢r Nordiund method). In addition, the combined site
variability from both the S, and SPT-N collected data was used to calibrate the resistance
factor for the combined static analysis method (¢r-static method). A recent study by [57]
calibrated the FHWA static method for piles driven in mixed soil conditions in Louisiana,
and the values of Ar and COVR static were calculated to be 0.91 and 0.42, respectively.

Table 72. Calibrated resistance factors, ¢r, for a-Tomlinson static design method

Parameters Bayou Lacassine Red River Williams Blvd
COVR, spatial 0.22 0.19 0.14
COVR, method (00 method) 0.48
COVr, totl 0.35 | 0.33 | 031
COVg? 0.0111
Pspatia 0.61 | 0.65 | 0.72
Omethod (a0 method) 0.34
Protal 0.45 | 0.47 | 0.49

The measured S, data and SPT-N data collected from the different boreholes at Metairie
site are plotted versus depth for the four layers as shown in Figure 81a and Figure 81b,
respectively. All the Sy and SPT-N data used in Metairie site are stationary data without
any trend. Experimental semivariogram analyses were performed using the JeoStat
software for the four soil layers at Metairie site as shown in Figure 82. The analyses were
done in the vertical direction only due to large horizontal distances between the soil
borings. Spherical model (Equation 17) was used to fit the semivariogram model with the
experimental S, or SPT-N data, and to determine the vertical correlation range, av, for
each soil layer. Figure 82a and Figure 82b present the semivariograms and the
corresponding ay values for the clay layers I and II1, respectively. Figure 82¢ and Figure
82d present the semivariograms and the corresponding ay values for the sand layers II and
IV, respectively. The values of vertical range, ay, for the soil layers I, II, III, and IV are
8.8 ft., 14.4 ft., 12.2 ft., and 24.0 ft., respectively.
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Figure 81. Measured undrained shear strength, Sy, and SPT-N data for Metairie site
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Figure 82. Experimental and spherical semivariogram models for Su data of the Metairie site
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The correlation vertical range, av, determined from the semivariogram were used to
evaluate the reduction factor, o, for each soil layer and the spatial coefficient of
variation, COVR;spatial, (for both Sy and SPT-N) using Equation 20 and Equation 19,
respectively. As shown in Table 73, the COVR spatiat fOr layers | and 111, layers Il and 1V,
and for Metairie site are 0.10, 0.17, and 0.166, respectively. The load coefficient of
variation, COVq, was evaluated from Equation 23. The resistance factor considering to
spatial variability, ¢spatial, for a-Tomlinson method (layers I and 111), Nordlund method
(layers Il and 1V), and combined static method (all layers) were calculated using
Equation 21. The corresponding resistance factors based on ¢spatia Only are 0.82, 0.74,
and 0.70 for the a-Tomlinson method, Nordlund method, and combined static method,
respectively. The resistance factors for the methods, ¢method, are 0.34, 0.41, and 0.40, for
the a-Tomlinson method Nordlund method, and combined static method, respectively.
Equation 149 was then used to calculate the COVR, total t0 incorporate both site
variabilities, COVR;spatial, and COVRr method, iNto the LRFD calibration of resistance factor,
dtotal, aSSUMING €1 = C2 = 0.5. Table 73 summarizes the coefficients of variations (COV)
and the corresponding calibrated resistance factors (¢r) for the a-Tomlinson method,
Nordlund method, and combined static method. It is clear that the site variability for the
Metairie site is lower than the design method variability (i.e., COVRr spatial < COVR-method ),
and therefore a credit will be given to the site by increasing the resistance factors, dspatial
and ototal, used for designing of pile foundations using a-Tomlinson method, Nordlund
method, or combined static method. Both the ¢spatiai (0.74 to 0.82) and the ¢rotar (0.58 to
0.62) are higher than the ¢method (0.34 to 0.41).

Table 73. Calibrated resistance factors, ¢r, for Metairie site

a-Tomlinson Method Nordlund Method Combined Static
Parameters (Layers I and 111) (Layers Il and IV) Method
(All Layers)

COVR, spatial 0.10 0.17 0.166
COVR, method 0.48 0.48 0.42
COVR, total 0.29 0.32 0.29
COVg? 0.0111 0.0111 0.0111
d)spatial 0.82 0.74 0.70
(I)method 0.34 0.41 0.40
Orotal 0.62 0.58 0.53
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Discussion of Semivariogram Analysis

The value of resistance factor, ¢r, in LRFD design of pile foundations is directly related
to the resistance coefficient of variation (COVR) due to uncertainty in subsurface soil
resulting from spatial variability, statistical error, measurement error, and model bias. In
this section, the CPT data (qt) and soil borings data (Sy and SPT-N) were used to evaluate
the site variability of different soil layers in combination with the variation reduction
factor, or. The main sources of measurement errors in CPT are the soil formation and
equipment error (i.e., cone type, calibration), with less effect of the operator on test
results. However, the main measurement errors sources in Sy data are soil formation, soil
sampling, specimen handling and transportation, and operator/equipment. In the case of
SPT measurement, the soil formation and equipment error are the main sources of the
measurement’s errors. It is expected that the SPT equipment source of errors (discrete
number of blows) are higher than the CPT equipment errors (continuous electrical
measurement).

The results of site variability using semivariogram analysis showed there is little effect of
the horizontal range, an, on evaluating the reduction factor, ar, and the resistance factos
(9), since the distance between the CPT tests and soil borings are usually very large
compared the pile diameter and the ratio D/an = 0. Therefore, for the simplification of the
analysis, we can assume D/an = 0. Exploring the results presented for the ten sites, the
reader can realize that the spatial resistance coefficient of variation, COVR spatiai, from
CPT-q: data ranges from 0.08 to 0.20; the COVR spatia from Sy data ranges from 0.14 to
0.22; and the COVR spatial from SPT-N data for Metairie site is 0.17. Interestingly, the
values of COVRr spatial fOr all ten sites (either from CPT or soil boring) are lower than the
COVR,method, Which are evaluated from data collected from many sites at different
locations nationwide [58] or statewide [57]. In COVR method, NO CONSideration is given to
the specific site variability, although variability between different sites in Louisiana were
indirectly included in the LCPC pile-CPT method and the combined static method. Some
researchers, like McVay et al. [14], used the COVR spatiar to calibrate the resistance factor,
dspatiat, fOr use in LRFD design of piles for the specific site. The authors recommend using
Equation 149 to evaluate the COVR;tota, Which incorporates both the the COVR,spatial and
the COVRr,method, and to calibrate the total resistance factor, dtwotar, for use in LRFD design
of pile foundations.

It is clear that for the sites with lower site variability than the design method variability
(i.e., COVRspatial < COVR-method), the value of the COVR total decreased and the
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corresponding resistance factor, ¢total, increased (as well as ¢spatiar), and vice versa. This
means a credit will be given to low variability sites as compared to high variability sites
in terms of increasing the resistance factors, either using ¢spatial OF dtotal, fOr use in the
design of pile foundations. Since the site variability from using CPT-q; data is lower than
soil boring data (Suy and SPT-N), the corresponding dspatial, Gtotal, for LCPC pile-CPT
design method are higher than the static a-Tomlinson and the Nordlund design methods.

Evaluation of Site Variability using Bayesian Analysis

Geotechnical Characterization

In order to utilize the CPT data for estimating the ultimate pile capacity using any pile-
CPT method, it is important to classify the soils and evaluate soil layering and type so
that the proper correlation factors can be selected to evaluate the unit end bearing
capacity and unit side resistance of the soil layers along the pile shaft, which are based on
soil type, pile type, and installation method. In this study, the probabilistic region
estimation CPT classification method introduced by Zhang and Tumay [134] was
adopted in this study to classify the soil layers along piles’ lengths. The probabilistic
estimation method determines the probability of soil behavior (clay, sand, and silt).
Figure 83 depicts an example of the soil description, moisture content, liquid limit, plastic
limit, undrained shear strength, cone tip resistance, and the probability of soil behavior
for a test pile located at the Houma I.C.W.W. Bridges project.

Bayesian Update on the New Sites
Houma I.C.W.W. Bridges Project in Terrebonne Parish

In this study, 33 sites out of the 34 total sites were considered as old sites that will be
used as likelihood in level 1 of the Bayesian analysis, and the site at Houma I.C.W.W.
Bridges project in Terrebonne Parish in Louisiana is considered and used as the
likelihood in level 2 of the Bayesian analysis. In Houma bridge site, six pile load tests
were performed. The Davisson’s measured ultimate pile capacities, Qm, for the 6 pile
load tests were 110, 60, 117, 115, 107, and 170 tons, respectively. However, the estimate
ultimate pile capacities, Qp, using the LCPC methods for those piles were 115.5, 81, 95.9,
108.6, 77.3, and 117.9 tons, respectively. Therefore, the biases (A = Qm/Qp) for 6 pile load
tests are 0.95, 0.74, 1.22, 1.05, 1.38, and 1.44, and the corresponding mean bias (A) and
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standard deviation (o) are 1.04 and 0.30, respectively, assuming lognormal distribution of
data.

Figure 83. Subsurface soil condition at Houma I.C.W.W. Bridges project site
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In level 1 of the Bayesian analysis, the previous data (33 sites out of 34 sites) is
considered as the likelihood, with mean bias, A= 1.03 (average A = Qu/Qp) for pile load
tests in 33 sites, and the corresponding standard deviation, ¢ = 0.32, assuming lognormal
distribution of data. The prior parameter for this part of analysis is assumed to be A= 0.8
and ¢ = 0.40 (conservative values) with lognormal distribution. It should be noted here
that we could use other reliable data (say based on engineering judgement) as prior data
for level 1 analysis. However, an accurate selection of the prior data in level 1 Bayesian
analysis has insignificant impact on the posterior data of level 2 analysis [144]. After
executing the level 1 analysis, we will generate the posterior data, which is in this case A
=1.07 and ¢ = 0.38 with normal distribution, which will be considered as prior data in
level 2 Bayesian analysis.

In level 2 Bayesian analysis, due to the framework of the code, the level 1 posterior data
and parameters will be considered as prior data in this level. As stated earlier, the Houma
bridges site in Louisiana will be considered as the likelihood for level 2 of the Bayesian
analysis, with A = 1.04 and ¢ = 0.30.
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After level 2 analysis, we will generate the posterior data and parameter (A = 1.035 and ¢
= 0.31) for the normal distribution. These updated posterior parameters (A and ) will be
used for calibrating the LRFD resistance factor (¢r) for use in the design of PPC based on
LCPC pile-CPT design method. Figure 84a and Figure 84b present the distributions of
the prior, likelihood and posterior data for level 1 and level 2, respectively, of the

Bayesian analysis for the Houma bridge site.

Figure 84a shows that the prior data (A=0.8 and 6=0.40) in level 1 Bayesian analysis has
little impact on the posterior data (A=1.07 and 6=0.38), when likelihood1 is given (A=1.03
and 6=0.32). However, Figure 84b shows that in level 2, the posterior (A=1.035 and
0=0.31) or the updated parameters for the Houma bridge site lie between the prior2
parameters (A=1.07 and 6=0.38) and the likelihood2 parameters (A=1.04 and 6=0.30)
distribution, taking into consideration the specific site variability.

Gibson Highway at St. Mary Parish Project

To demonstrate the effectiveness of Bayesian analysis, another site in Gibson Highway
(Morgan City) in St. Mary Parish in Louisiana is considered and used as the likelihood in
level 2 of Bayesian analysis. In this site, 6 pile load tests were performed whose values of
Qm were 102.5, 518, 482, 568, 565, and 111 tons for piles TP1 to TP6, respectively.
Meanwhile, the values of Q, for those test piles estimated based on LCPC method were
121.4,594.6,615.4, 652.2,771.9, and 115.6 tons. The corresponding biases (A = Qm/Qp)
for those piles are 0.84, 0.87, 0.78, 0.87, 0.73, and 0.96. Accordingly, the mean bias (A)
and standard deviation (o) are 0.84 and 0.08, respectively, for lognormal distribution.

In level 1 of the Bayesian analysis, the data for the other 33 sites (out of 34 sites) is
considered as the likelihood with mean bias, A= 1.05, and corresponding standard
deviation, ¢ = 0.33, and assuming lognormal distribution of data. The prior parameters
for this part of analysis is assumed to be A= 0.8 and ¢ = 0.40 with lognormal distribution.
After executing the level 1 analysis, we will generate the posterior data, which is in this
case A =1.09 and ¢ = 0.38 with normal distribution, which will be considered as prior
data in level 2 Bayesian analysis.

In level 2 Bayesian analysis, the level 1 posterior data and parameters will be considered
as prior data in this level. As stated earlier, the Gibson Highway in St. Mary Parish will
be considered as the likelihood for level 2 of the Bayesian analysis, with A =0.84 and ¢ =
0.08 for Gibson Highway site, and lognormal distribution.
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Figure 84. Prior, likelihood, and posterior distribution with mean at different Bayesian levels
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After the level 2 analysis, we will generate the posterior data and parameter (A = 1.03 and
o =0.31) for the normal distribution. These updated posterior parameters (A and c) will
be used for calibrating the LRFD resistance factor (¢) of LCPC design method. The prior,
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likelihood and posterior distributions for level 1 and level 2 are presented in Figure 84c¢
and Figure 84d, respectively. As shown in Figure 84c, the values of prior data (A=0.8 and
0=0.40) in level 1 of Bayesian analysis has little impact on the posterior parameters
(A=1.09, 6=0.38) when likelihood1 is given (A=1.05, 6=0.33). The results of Figure 84d
shows that, the values of the updated posterior parameters Gibson Highway site in level 2
(A=1.03, 6=0.31) lie between the prior2 parameters (A=1.09, 6=0.38) and likelihood2
parameters (A=0.84, 6=0.08) distribution that considers the specific site variability.

Causeway Boulevard at Jefferson Project

Another site is Causeway Boulevard in Jefferson Parish in Louisiana was also considered
to demonstrate the effectiveness of Bayesian analysis. This site has 7 pile load tests with
the measured capacities, Qm, as 126, 97.5, 159, 134, 143, 149.5, and 110.5 tons, for test
piles TP1 to TP7, respectively. The values of estimated pile capacities, Q,, based on
LCPC design method were 254.2, 148.2, 234.6, 172.5, 177.2, 165.6, and 139.4 tons.
Therefore, the corresponding values of bias, A, for these piles are 0.49, 0.66, 0.68, 0.78,
0.81, 0.90, and 0.79. The calculated mean bias (A) and standard deviation (o) for the

Causeway Boulevard site are 0.73 and 0.13, with lognormal distribution.

In level 1 of the Bayesian analysis, the data from the other 33 sites (out of 34) is
considered as the likelihood in the Bayesian analysis (with A= 1.06 and ¢ = 0.32), and
assuming lognormal distribution. The prior parameter for this analysis is assumed to be
A= 0.8 and o = 0.40 with lognormal distribution. A fter executing the level 1 analysis, the
posterior data will be generated, with values of A = 1.08 and ¢ = 0.37 and normal
distribution. These values will be considered as prior data in level 2 Bayesian analysis.

In level 2 Bayesian analysis, the level 1 posterior data and parameters will be considered
as prior data in this level. As stated earlier, the Causeway Boulevard in Jefferson Parish
will be considered as the likelihood for level 2 of the Bayesian analysis (with A = 0.73
and ¢ = 0.13) with lognormal distribution.

After level 2 analysis, we will generate the posterior parameters as A = 0.95 and ¢ = 0.30,
for the normal distribution. These updated posterior parameters (A and o) will be used for
calibrating the LRFD resistance factor (¢r) for the LCPC pile-CPT design method. The
prior, likelihood, and posterior distributions for level 1 and level 2 are presented in Figure
84e and Figure 84f, respectively. Again, Figure 84e demonstrated that the prior data
(A=0.8 and 6=0.40) in level 1 Bayesian analysis has insignificant impact on the posterior
data (A=1.08, 0=0.37), when likelihood1 is given (A=1.06 and 6=0.32). However, Figure
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84f shows that the values of updated posterior parameters in level 2 (A=0.95, 6=0.30) are
between the prior2 parameters (A=1.08, 6=0.37) and likelihood2 parameters (A=0.73,
0=0.13), which means the specific site variability was considered.

Effect of Confidence Bias Site Parameter

Generally, designers and researchers have more confidence on the test results for the new
specific site (or data) than the previous test (or data) of other sites; therefore, it is rational
to put more weight on the new test results for updating data within the Bayesian
framework. In this study, the authors introduced a new term called confidence bias site
parameter (wp) to put more weight on the test results/data for the new specific site during
the Bayesian updating process. In this study, the effect of weight parameter or confidence
bias site parameter was checked for different scenarios with different site variabilities
(i.e., low site variability, high site variability). Herein, the low site variability refers to site
variability with mean bias, A= 1.02, and standard deviation, ¢ = 0.20; while the high site
variability represents site variability with A= 1.10 and ¢ = 0.40. In this analysis, we
divided the 80 pile load test database into two different sets: (i) we randomly selected 75
test piles as old database and 5 test piles for a new site; and (i1) we randomly selected 70

test piles as old database and 10 test piles for a new site.

In this part, the Bayesian analysis was also performed in two levels. The old database
data are considered as likelihood at level 1, while the prior parameters for level 1 is taken
as mean bias, A= 0.8 and standard deviation, ¢ = 0.40. After level 1 analysis, we will get
the posterior parameters (A and ); which will be considered as prior parameters in level 2
Bayesian analysis. Therefore, the new sites values will be used as likelihood data in level
2 analysis. After completing the level 2 Bayesian analysis, an updated posterior
parameters (final A and o) will be delivered. Three different confidence bias site

parameter, wp, were considered in this analysis, i.e., wp, = 1.0, 1.5, and 2.0.

The results for the confidence bias site parameter, w, = 1 is presented in Figure 85a. The
figure shows that for the case of high site variability of old database and low site
variability at new site; and when using 75 piles as old database and 5 piles for the new
site, the resulted updated posterior parameters were mean bias, A= 1.08, and standard
deviation, o = 0.36. Figure 85b presents the case for low site variability at old database,
high site variability at new site with wy = 1, and same split of pile load tests (75 for old
database and 5 for new site). The results yield the updated posterior parameters values of
A=1.05 and ¢ = 0.365. It can be concluded that without imposing any weight to new site
data (i.e., wp = 1), the updated posterior parameters will stay closer to the higher number
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of pile, which is in this case, the old database. Figure 85c shows the result for the case
when using 70 pile load tests with high site variability for the old database and 10 pile
load tests with low site variability at the new site, and using wy, = 1.0. The resulted
updated posterior parameters were A = 1.07 and ¢ = 0.34. However, when using 70 piles
with low site variability for old database and 10 piles with high site variability at the new
site (Figure 85d), the results for w, = 1.0 yield A = 1.04 and o = 0.34 as updated posterior
parameters. Again, the results show that without considering any weight (i.e., w, = 1), the
updated posterior parameters will stay closer to the higher number of piles, which is the
old database in this case. However, when the number of piles for the new site increases,
the updated posterior parameters tend to shift toward the new site parameters, as

expected.

Figure 85. Probability density function at different site variability when confidence bias site
parameter, wp =1
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As discussed earlier, it is logic to apply weight (i.e., wy > 1.0) on the test results of the
new site, giving it more importance than the old database. In this study, three values of
confidence bias site parameter, wy, are considered on the test results of new site, i.e., wp =
1, 1.5 and 2. The effect of w, on the updated posterior parameters were evaluated for two
sets of data: 75 piles for old database versus 5 piles for new site, and 70 piles for old
database versus 10 piles for new site (selected randomly). Two site variabilities were
considered for each case, low and high site variabilities. The updated posterior
parameters obtained at different wy, values and different site variabilities for the two sets
of data are summarized in Table 74. As shown in the table, the updated values of the
posterior parameters when using wy = 1.0 are A= 1.08 and ¢ = 0.36 for the case of 75 pile
tests of high site variability for old database and 5 pile tests of low site variability at the
new site; while for the same dataset case but using wy, = 1.5, the values of updated
posterior parameters are A = 1.062 and 6 = 0.31. However, when using wy = 2 for the
same dataset, the values of updated posterior parameters reduce to A= 1.05 and ¢ = 0.28.

The values of updated posterior parameters (A and o) for the same set of data (i.e., 75
piles for old database and 5 piles for the new site), but with low site variability of old site
and high site variability at the new site are also presented in Table 74, which shows an
increase of updated A and ¢ from (1.05, 0.365) to (1.07, 0.36) with increasing wy, from 1
to 2. The results for the second set of data (i.e., 70 piles for old database and 10 piles for
the new site) for different site variabilities and different wb values are also presented in
Table 74, which gave the same trend of results. For the case of high site variability of old
site and low site variability at new site, the values of updated A and o reduced from (1.07,
0.34) to (1.04, 0.27) with increasing wy from 1 to 2. However, for the case of low site
variability of old site and high site variability at new site, the updated values of increased
from (1.04, 0.34) to (1.075, 0.37) with increasing wy, from 1 to 2.

It can be concluded that when applying the confidence bias site parameter, wy, to the new
site data, the updated A and o parameters shift toward the new site values, which is
rationale and will result on updating the LRFD resistance factors (that are calibrated
nationwide or statewide) taking into consideration the specific site variability. The use of
wp = 1.0 means that the pile load tests at the new specific site are treated at the same level
of confidence as the prior pile load test values from nationwide or statewide database.
Since the variability of the model bias factor within a specific site is often smaller than
that of a region, most of the time uncertainties will be lower in the new site. Therefore,
when the new site’s pile load test (likelihood?2) is completed, more consideration should
be given to the new test data in the Bayesian analysis. Unfortunately, there is no
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guidelines in literature on the proper selection of wb value. Any value between 1 and 2
can be adopted for wy, depending on the specific site condition and the extent of testing.
The authors recommend using a confidence bias site parameter, wy = 1.5, as a starting
point.

Effect of A and o Parameters on LRFD Design of Piles

The resistance factor, ¢r, for pile design according to the load and resistance factor
design (LRFD) method can be calculated using the following modified first order second
moment method (MFOSM) calibration equation proposed by McVay et al. [14]:

Qo ;1 + COVQZ

(200 %—lz + gL ) exp (ﬁT\/ln(l +covd) (1+ COVQZ)>

Op =

Ar Is the resistance bias factor; Qp is the dead load and Qv is the live load; Pt is the target
reliability index; yp is the dead load factor and vy is the live load factor; Aqp is the dead
load bias factor (measured divided by predicted) and AqL is the live load bias factor. COVqp
is for the dead load and COVq. is for the live load. The Qp/Q. is the ratio of dead and live
load (which is assumed to be 3 in this study). The coefficient of variation of the random
loads, COVq, was introduced by McVay et al. [14] using the following equation:

2
9o_ 30p?COVZ, + Ag,2COVE,
Cov, = L [151]

Q1002 + 22 2pagr + dgy?
L2 QD Q. QD7 QL QL

where, COVqp is for the dead load and COVqL is for the live load. According to the FHWA
[59], the dimensionless parameters in the above equations can be defined as the follows:

In this study, we will consider the LCPC method [56] to design piles from CPT data. The
LCPC is a direct Pile-CPT method that showed one of the best performance Pile-CPT
methods on estimating the ultimate resistance for piles driven in Louisiana soils [57]. The
mean resistance bias, Ar, and COVR for the LCPC method are 1.04 and 0.31,
respectively.
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Table 74. Updated parameters at different site variability for different wp parameter levels

Confidence Bias site Parameter, w, =1

. Updated
Database New site Parameters Resistance | Efficiency
No. No. Mean | Standard | COVr Factor Factor
of | Parameters | of | Parameters | Bias | Deviation (br) (dr/A)
piles piles M) (o)
When new site has lower number of piles; Low site variability
A | 1.10 A | 1.02
75 - 0.0 5 5 17020 1.08 0.36 0.33 0.56 0.52
When new site has lower number of piles; High site variability
A 1.02 A | 110
75 s 1020 5 s 040 1.05 0.365 0.35 0.54 0.52
When new site has higher number of piles; Low site variability
A | 1.10 A | 1.02
70 5 0.0 10 s 020 1.07 0.34 0.32 0.58 0.54
When new site has higher number of piles; High site variability
A 1.02 A | 110
70 - 17020 10 < 17040 1.04 0.34 0.33 0.57 0.55
Confidence Bias site Parameter, wy = 1.5
When new site has lower number of piles; Low site variability
A | 1.10 A | 1.02
75 5 0.0 5 s 020 1.062 0.31 0.29 0.62 0.58
When new site has lower number of piles; High site variability
A 1.02 A | 110
75 5 1020 5 s 040 1.056 0.35 0.33 0.56 0.54
When new site has higher number of piles; Low site variability
A | 1.10 A | 1.02
70 - 1 0.40 10 5 17020 1.06 0.30 0.28 0.63 0.60
When new site has higher number of piles; High site variability
A 1.02 A | 110
70 - 1020 10 s 040 1.05 0.32 0.30 0.60 0.57
Confidence Bias site Parameter, wp = 2
When new site has lower number of piles; Low site variability
A | 1.10 A | 1.02
75 5 1040 5 s 020 1.05 0.28 0.27 0.65 0.62
When new site has lower number of piles; High site variability
A 1.02 A | 110
75 - 17020 5 < 17040 1.07 0.36 0.34 0.56 0.52
When new site has higher number of piles; Low site variability
A | 1.10 A | 1.02
70 s 1040 10 s 020 1.04 0.27 0.26 0.67 0.64
When new site has higher number of piles; High site variability
A | 1.02 A | 1.10
70 - 040 10 5 1020 1.075 0.37 0.34 0.55 0.51

— 206 —




However, when using the Bayesian analysis, the values of Ar and corresponding standard
deviation, or (and COVRr = or/Ar), Will be updated to A and ¢ based on number of pile
load tests and variability of the specific new site. In this case, the COVr will be also
updated from o/A. So the updated A and updated COVr will be used to recalibrate the
resistance factor (¢r) for the specific new site. For example, the updated posterior, values
of (A, COVR) for Houma bridge site are (1.035, 0.31); the updated posterior2 values of (A,
COVR) for Gibson Highway site are (1.03, 0.31); and the updated posterior2 values of (A,
COVR) for Causeway Boulevard site are (0.95, 0.30).

Table 74 presents the summary of the variable parameters (A, o, COVR) for the different
scenarios (number of old piles versus number of piles at new site, different site
variability, and different confidence bias site parameter) and the corresponding LRFD
calibration resistance factors (¢r) and efficiency factors (¢r/A). It can been seen from the
table that the resistance factor increases with decreasing variability of the new specific
site, which is also affected by the ratio of old piles versus new piles and the value of
confidence bias site parameter, wp. More credit will be given to sites (in terms of ¢r) for
low variability sites with lager number of piles and using wy > 1.

Evaluation of Site Variability using Probabilistic Analysis

Probabilistic analysis were performed on LA 1 CPT site using the SGeMS software. The
software provides confidence intervals (CI) to the estimated data in between the test
points. When a cumulative distribution has been determined, the operator can choose
from a range of confidence limits ranging from 0 to 100 percent. At LA 1 site, 13 CPT
tests (75 ft. deep) were performed at different locations as described in Figure 48. The
subsurface soil for each CPT test location was divided into four soil layers (0-10 ft., 10-
34 ft., 34-46 ft. and 46-75 ft.), based on CPT soil classification. For each soil layer of the
CPT test, the average CPT-q; value was calculated and then incorporated into the SGeMS
data format as input in X, Y, and Z, in which X is the latitude, Y is the longitude, and Z is
the data (here the average CPT-q;). Then the data will be plotted in the SGeMs. After
plotting the data, variogram analysis will be performed. From the results of variogram
analysis, kriging analysis can be performed on the data space. In this study, we followed
the ordinary kriging. Next step, we generated fifty realizations of CPT-q; data distribution
using the sequential Gaussian simulation (SGS), so that we can do the probabilistic
analysis.
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SGS Simulations

The SGeMs software was used to simulate the CPT test data from the 13 test locations at
LA 1 site. The simulated values of CPT generated 2176 (64x34) cells. Given our
knowledge of the site, every image is a plausible depiction of the real parameter
distribution. Fifty realizations were generated using the SGS algorithm. Figure 86
depicts five images of these realizations for the 1st layer at LA 1 site.

Figure 86. Five realizations (out of 50 realizations) at the 1st layer of LA 1 site

Estimation/Mean vs Ordinary Kriging

One of the goals of simulation was to obtain the estimation/mean map from the 50
realizations. The estimation/mean map is a map that resulted from averaging the 50
realizations. Since the estimation/mean map is the average of all realizations, the results
is expected to be similar to the kriging map [106]. Figure 87 compares the kriged plan
versus the estimation/mean map for each soil layer of the LA 1 site. As shown in the
figure, the results of estimation through simulation and kriging are very close (almost
same).
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Figure 87. Estimation/mean of the 50 realizations versus ordinary kriging
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Figure 88 presents the data points, estimation/mean map of 50 simulations and the
Varance of the 50 simulations for the CPT-q; data for the 1st soil layer at LA 1 site,
respectively. The figure shows that when we have q; data available on some points (area),
or even in the surrounding location (red to yellow areas), the realization gives low
variance. However, when we do not have q; data available close to some points (blue
areas), the resulted variance will be high.

Figure 88. (a) Data points, (b) Estimation/mean map of 50 simulations, and (c) Variance of 50
simulations for the CPT data of LA 1 site
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Probability Analysis

For the probability analysis, we need to find the probability that the value of corrected
cone tip resistance, qs, fall between qtavg - © < qt < qravg + G, On a given location (i.e.,
black circled), where o is the standard deviation of q; values. For this analysis we have to
develop two realizations using the previous 50 realizations. The first one is the
probability of the CPT-q: lower than qt.avg - ¢, and another one is the probability of CPT-
qt data lower than qeavg + ©. Figure 89 presents the data points, probability of q¢ < qt-avg -
o, and probability of q; < qravg + © for each of the four soil layers at LA 1 site. Table 75
presents the values of the different parameters for each layer.

For the CPT points of layer 1 of LA 1 site, the values of qtave, G, Qravg - O, and qeavg + ©
are 6.66, 1.24, 5.41, and 7.90, respectively. Using the values of qeavg - G, and qeave + G
data into Equation 126, we got the probability that q; will fall within the range qavg - © <
qt < qravg T © 1S 78%. For the the CPT points of layer 2, the values of qtave, G, Qrave - C,
and qeavg + o are 12.64, 3.42, 9.22, and 16.06, respectively. Using the values of qgave - O,
and qgave + o data into Equation 126, we will obtain the probability that q; will fall within
the range qiave - 0 < 0t < qravg + © IS 70%. For the CPT points of layer 3, the values of
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qtave, Oy Quave - O, and Qeave + o are 15.04, 3.46, 11.58, and 18.51, respectively. Using the
values of qtavg - 6 and Qeavg + o data into Equation 126, we will got the probability of q;
fall between qiavg - 6 and qrave + © 1S 87%. For the CPT points of layer 4, the values of
Qtaves O, Qravg- O, and qeavg + o are 24.17, 3.18, 21.00, and 27.35, respectively. Using
(tave - © and Qeavg + o data into Equation 126, we got the probability that q; lies within the
range of Qrave - 6 < Qi < qravg T © 1S 73%. After complete analysis, we can say that the
prediction probability of [qravg - 6 < qt < qravg T G ]xo for each layer of LA 1 site ranges
from 70% to 87%.

Table 75. Layer-wise data analysis and the probability

Parameters 1%t Layer | 2" Layer | 3" Layer | 4" Layer
Qt.avg (tsf) 6.66 12.64 15.04 24.17
st. dev (tsf) 1.24 3.42 3.46 3.18
Qt.avg — St.dev 541 9.22 11.58 21.00
Qtavg + St.dev 7.90 16.06 18.51 27.35
Prob [z < q¢qpg — St.dev ], 5% 28% 8% 2%
Prob [z < qiapg + St.dev ]y, 83% 98% 95% 5%
Prob [qtavg — St.-dev < q; < qpapg + St.dev |, 78% 70% 87% 73%

Incorporating SGS Simulations into LRFD (Resistance Factor)

From the results in Table 75, we can see that the prediction probabilities of [qtavg - 0 < qt
< Qtavg T O]xo for LA 1 site are 78%, 70%, 87% and 73% for the 1st, 2nd, 3rd and 4th
layer, respectively. The thickness of the 1st, 2nd, 3rd and 4th layer is 10ft., 24ft., 12ft. and
291t., respectively. So, the weighted average prediction probability for LA 1 site is 75%.

In order to calibrate the resistance factor for the LCPC Pile-CPT design method taking
into consideration the probabilistic SGS simulation of site variability at LA 1 site, the
value of special COV of resistance (COVR spatial) and the COVR otat Were updated for LA 1
to be 0.13 and 0.22, respectively, using the prediction probability of 75%. The
corresponding resistance factors dspatial and rorat Were calibrated to be 0.87 and 0.73,
respectively. These values are higher than the LCPC resistance factor of ¢method (LCPC) =
0.61. Table 76 depicts the calibrated resistance factors, ¢spatial and drotal, after modifying
the COVR spatial, as compared to the dmethod (LCPC).
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Figure 89. (a) Data points, (b) Probability of g: below qt-avg-o, and (c) Probability of gt below gtavgto

Data Points for 1% Layer

Data Points for 22 Layer

Data Points for 3™ Layer

Data Points for 4% Layer

Probability below q¢ q,, +
st.dev for 1*t Layer

Probability below q; 4,5 —
st.dev for li Layer

Probability below g, 4., +
st. dev for 224 Layer

Probability below g, 4,5 —
st. dev for 224 Layer

g ¥,
Probability below q,,4,,, +
st.dev for 3" Layer

Probability below Qtavg —
st.dev for 3™ Layer

Probability below q¢q,, +
st.dev for 42 Layer

Probability below g 4,5 —
st. dev for 4% Layer

— 212 —



Table 76. Calculated resistance factors, ¢r, after modifying COVR spatial

Parameters LA 1 Ipcluding SGS
(Modlfylng COVR,spatial)
COVR,spatial 0.13
COVR method (LCPC) 031
COVR,total 0.22
COV¢? 0.0111

d)spatial 0.87
(I)method (LCPC) 061
¢total 0.73

Application of Site Variability in Slope Stability Analysis

Drained Condition
Variation of Friction Angle

Different scenarios were modeled in this section to study the effect of variability in
friction angle of the soil layers on the slope stability of embankment. Here, the COV of
unit weight and cohesion were kept constant as 5% and 20%, respectively. In the first
part of analysis, the vertical correlation length was changed from 15 ft. (5 m) (low
vertical variability) to 1 ft. (0.3 m) (high vertical variability). The correlation length in the
horizontal direction was selected to be 60 ft. (20 m). The Bishop simplified, Janbu
simplified, and Spencer method were used in this analyses. In this study, 15 scenarios
were ran to investigate the effect of site variability (by increasing the COV of friction
angle and changing the vertical correlation length) on the factor of safety for slope
stability. Table 5 summarizes the material properties considered in the analyses of
drained condition. In the case of the spatial variability analyses, the statistics tool in the
Slide 2018 2D software was activated. The COVs of the material properties were put as
value of the standard deviation for each single soil property. Latin-Hypercube
probabilistic analysis sampling method was used to accomplish the probabilistic analysis.
A 1000 samples were generated and used in the analyses for each scenario. The log
normal sample distribution was used. Figure 90 presents the factor of safety versus COV
of friction angle at different vertical variability levels of the drained condition.

For the scenarios 1, 2, 3, 4, and 5, the COVs for friction angle were 5%, 10%, 15%, 20%,
and 25%, respectively; while the COVs for unit weight and cohesion were kept constant
as 5% and 20%, respectively. In these cases, the vertical and horizontal correlation
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lengths of 6 ft. (2 m) (medium vertical variability) and 60 ft. (20 m), respectively, were
assumed. For the scenarios 6, 7, 8, 9, and 10, the values COV for the friction angle were
5%, 10%, 15%, 20%, and 25%, respectively, and the COVs for unit weight and cohesion
were kept constant as 5% and 20%, respectively. In these cases, the vertical and
horizontal correlation lengths were assumed as 1 ft. (0.3 m) (high vertical variability) and
60 ft. (20 m), respectively. For the scenarios 11, 12, 13, 14, and 15, the COVs for friction
angle were 5%, 10%, 15%, 20%, and 25%, respectively; while the COVs for unit weight
and cohesion were kept constant as 5% and 20%, respectively. In these cases, the vertical
and horizontal correlation lengths were assumed to be 15 ft. (5 m) (low vertical
variability) and 60 ft. (20 m), respectively. In these scenarios, the main objective was to
investigate the effect of variation in the COV of friction angle and vertical correlation
length on the mean factor of safety for slope stability of drained condition. The slope
stability results for scenarios 1 to 15 are shown in Figure 90. The figure clearly shows
that the factor of safety for all methods decreases with increasing the COV of friction
angle. For the same COV, the figure shows that the factor of safety increasing with
increasing the vertical correlation length. Out of the three analysis methods, Janbu
simplified method gives lower factor of safety than other two methods (Bishop simplified
and Spencer), which can be seen in the Figure 90. Table 85 of Appendix E shows the
factor of safety versus COV of friction angle, ¢, at different vertical variability levels for
the drained condition.

Variation of Unit Weight

Different scenarios were model to study the effect of variability in unit weight of the soil
layers on the embankment slope stability. Here, the COV of friction angle and cohesion
were kept constant as 10% and 20 %, respectively. In this part of the analysis, the vertical
correlation length was changed from 15 ft. (5 m) (low vertical variability) to 1 ft. (0.3 m)
(high vertical variability). The Bishop simplified, Janbu simplified, and Spencer method
were used in the analyses. A total of 15 scenarios were run to investigate the effect of site
variability in terms of increasing the COV of unit weight for different vertical correlation
lengths on the factor of safety for slope stability. Table 86 presents the summary of all the
scenarios considered in this analyses. The spatial variability analyses were performed
using the Slide 2018 2D software. A 1000 samples were generated and used in the
analyses for each scenario. The resulted factor of safety versus COV of unit weight at
different vertical variability levels are presented in Figure 91.
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Figure 90. Factor of safety vs COV of ¢ at different vertical variability levels of drained condition
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For the scenarios 16, 17, 18, 19, and 20, the values of COV of unit weight were 2%, 4%,
5%, 8%, and 10%, respectively; while the COV of friction angle and cohesion were kept
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constant as 10% and 20%, respectively. In these cases, the vertical and horizontal
correlation lengths were assumed as 6 ft. (2m) (medium vertical variability) and 60 ft. (20
m), respectively. For the scenarios 21, 22, 23, 24, and 25, the values of COV for unit
weight were 2%, 4%, 5%, 8%, and 10%, respectively; while the COVs of variation for
friction angle and cohesion were kept constant as 10% and 20%, respectively. In these
cases, the vertical and horizontal correlation lengths were assumed as 1 ft. (0.3 m) (high
vertical variability) and 60 ft. (20 m), respectively. For the scenarios 26, 27, 28, 29, and
30, the values of COVs of the unit weight were 2%, 4%, 5%, 8%, and 10%, respectively;
while the COVs for friction angle and cohesion were kept constant as 10% and 20%,
respectively. In these cases, the vertical and horizontal correlation lengths were assumed
to be 15 ft. (5 m) (low vertical variability) and 60 ft. (20 m), respectively. The results of
slope stability analysis for scenario 16 to 30 are shown in Figure 91. The figure shows
that the factor of safety for all scenarios did not change significantly when COV of unit
weight was increased from 2% to 10%. The figure also show that the factor of safety
increases with increasing the vertical correlation length (i.e., vertical variability changes
from high to low). Again, out of three methods, Janbu simplified method gave lower
factor of safety than the other two methods. Table 86 of Appendix E presents the factor of
safety versus COV of unit weight at different vertical variability levels of the drained

condition.
Variation of Cohesion

Different scenarios were model to study the effect of variability in cohesion of soil layers
on the slope stability of embankment. Here, the COV of friction angle and unit weight
were kept constant as 10% and 5%, respectively. In this analysis, the vertical correlation
length was changed from 15 ft. (5 m) (low vertical variability) to 1 ft. (0.3 m) (high
vertical variability). A total of 15 scenarios were run to investigate the effect of COV of
cohesion and the vertical correlation length on factor of safety for slope stability using the
Slide 2018 2D software. A total of 1000 samples were generated and used in the analyses
for each scenario. The resulted factor of safety versus COV of cohesion at different
vertical correlation lengths are presented in Figure 92.

For the scenarios 31, 32, 33, 34, and 35, the COVs for cohesion were 10%, 20%, 30%,
40%, and 50%, respectively; while the COVs for friction angle and unit weight were kept
constant as 10% and 5%, respectively. In these cases, the vertical and horizontal
correlation lengths were taken as 6 ft. (2 m) (medium vertical variability) and 60 ft. (20
m), respectively. For the scenarios 36, 37, 38, 39, and 40, the COVs for cohesion were
assumed as 10%, 20%, 30%, 40%, and 50%, respectively, and the COVs for friction
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angle and unit weight were kept constant as 10% and 5%, respectively. In these cases, the
vertical and horizontal correlation lengths were assumed as 1 ft. (0.3 m) (high vertical
variability) and 60 ft. (20 m), respectively. For the scenarios 41, 42, 43, 44, and 45, the
COV values for cohesion were assumed as 10%, 20%, 30%, 40%, and 50%, respectively;
and the COVs for friction angle and unit weight were kept constant at 10% and 5%,
respectively. In these cases, vertical and horizontal correlation lengths were assumed as
15 ft. (5 m) (low vertical variability) and 60 ft. (20 m), respectively. The results of slope
stability analysis for scenario 31 to 45 are presented in Figure 92. The figure shows that
the factor of safety for all scenarios did not change significantly when the COV of
cohesion were increased from 10% to 50%. Meanwhile, the factor of safety increased
with increasing the vertical correlation length (i.e., decreasing vertical variability). Again,
the Janbu simplified method has lower factor of safety than the other two methods. Table
87 of Appendix E presents the factor of safety versus COV of cohesion at different
vertical variability levels for the drained condition.

Figure 92. Factor of safety vs COV of cohesion at different vertical variability levels of drained

condition
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Different scenarios were modeled to study the effect of variability in the undrained
cohesion (C or Sy) of the clay soil layer on the slope stability of embankment. Here, the
COV of undrained cohesion was ranged from 10% to 50%, while the COV of ¢ (for sand
and embankment fill) and unit weight were kept constant as 10% and 5%, respectively. In
this analysis, the vertical correlation length was assumed to be 1 ft. (0.3) (for high vertical
variability) and the horizontal correlation length was changed from 60 ft. (20 m) to 180
ft. (60 m). The Bishop simplified, Janbu simplified, and Spencer method were used in the
analyses. In this study 15 scenarios were run to investigate to the effect of site variability
(by increasing COV of cohesion and changing the horizontal correlation length) on the
factor of safety for slope stability. The spatial variability analyses were performed using
the Slide 2018 2D software. A total of 1000 samples were generated and used in the
analyses for each scenario.

For the scenarios 46, 47, 48, 49, and 50, the vertical and horizontal correlation lengths
were assumed to be 1 ft. and 60 ft., respectively. For the scenarios 51, 52, 53, 54, and 55,
the values of vertical and horizontal correlations were taken as 1 ft. and 120 ft.,
respectively. For the scenarios 56, 57, 58, 59, and 60, the vertical and horizontal
correlation lengths were assumed to be 1 ft. and 180 ft., respectively. The results of slope
stability for scenario 46 to 60 are shown in Figure 93. The figure shows that the factor of
safety decreases with increasing the COV of undrained cohesion and increases with
increasing the horizontal correlation length. However, the degree in the effect of
variability in undrained cohesion depends on the length of failure surface within the clay
layer. Out of three methods, Janbu simplified method has lower factor of safety than the
other two methods. Table 88 of Appendix E shows the factor of safety versus the COV of
undrained cohesion for the high vertical variability of undrained condition.

Medium Vertical Variability of Undrained Cohesion

In this part, the COV of undrained cohesion was ranged from 10% to 50%; while the
COV of ¢ (for sand and embankment fill) and unit weight were kept constant at 10% and
5%, respectively. Here, the vertical correlation length was assumed to be 6 ft. (2 m) (for
medium vertical variability) and the horizontal correlation length was changed from 60 ft.
(20 m) to 180 ft. (60 m). 15 different scenarios were run to investigate the effect of COV
of undrained cohesion and the horizontal correlation length on the factor of safety for
slope stability. A total of 1000 samples were generated and used in the analyses for each
scenario.
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Figure 93. Factor of safety vs COV of undrained cohesion for high vertical variability and different
horizontal correlation lengths of the undrained condition
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For the scenarios 61, 62, 63, 64, and 65, the vertical and horizontal correlation lengths
were assumed to be 6 ft. and 60 ft., respectively. For the scenarios 66, 67, 68, 69, and 70,
the vertical and horizontal correlation lengths were assumed to be 6 ft. and 120 ft.,
respectively. For the scenarios 71, 72, 73, 74, and 75, the vertical and horizontal
correlation lengths were assumed to be 6 ft. and 180 ft., respectively. The results of slope
stability analysis on these scenarios are presented in Figure 94, which shows that the
factor of safety for all cases decreases with increasing the COV of undrained cohesion
and increases with increasing the horizontal correlation length. Again the degree of
variability effect depends on the length of failure surface within the clay layer. Again, the
Janbu simplified method has lower factor of safety than the other two methods. Table 89
of Appendix E presents the factor of safety versus the COV of undrained cohesion for the
medium vertical variability of undrained condition.
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Figure 94. Factor of safety vs COV of undrained cohesion for medium vertical variability and
different horizontal correlation lengths of the undrained condition
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Low Vertical Variability of Undrained Cohesion

Here the COV of undrained cohesion was ranged from 10% to 50%; while the COV of ¢
(for sand and embankment fill) and unit weight were kept constant at 10% and 5%,
respectively. The vertical correlation length was assumed to be 15 ft. (5 m) (for low
vertical variability) and the horizontal correlation length was changed from 60 ft. (20 m)
to 180 ft. (60 m). 15 different scenarios were run to investigate the effect of COV of the
undrained cohesion and the horizontal correlation length on the factor of safety for slope
stability. A total of 1000 samples were generated and used in the analyses for each

scenario.

For the scenarios 76 to 80, the values of vertical and horizontal correlations were taken as
15 ft. and 60 ft., respectively. For the scenarios 81 to 85, the values of vertical and
horizontal correlations were taken as 15 ft. and 120 ft., respectively. And for scenarios 86
through 90, the vertical and horizontal correlation lengths were assumed to be 15 ft. and
180 ft., respectively. The results of slope stability for the scenario 76 to 90 are presented
in Figure 95. The figure demonstrated that the factor of safety decreases with increasing
the COV of undrained cohesion and increases with increasing the horizontal correlation
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length. The effect of variability in undrained cohesion depends on the length of failure
surface within the clay layer. As for the other cases, the Janbu simplified method has
lower factor of safety than the other two methods. Table 90 of Appendix E shows the
factor of safety versus the COV of cohesion for the low vertical variability of undrained

condition.

Proportional COV
High Vertical Variability

In this part of analysis, different scenarios were modeled to study the effect of soil
variability (in terms of cohesion, unit weight and friction angle) of the soil layers on the
slope stability of embankments. Here, increment no. 1 means the COV of cohesion, unit
weight and friction angle are 20%, 2%, and 5%, respectively. Increment no. 2 means the
COV of cohesion, unit weight and friction angle are 30%, 4%, and 15%, respectively.
Then, increment no. 3 means the COV of cohesion, unit weight and friction angle are
40%, 8%, and 20%, respectively. Finally, increment no. 4 means the COV of cohesion,
unit weight and friction angle are 50%, 10%, and 25%, respectively. This means we
increased the COV values of cohesion, unit weight and friction angle in each increment.
Here, the vertical correlation length was assumed to be 1 ft. (0.3 m) (for high vertical
variability) and the horizontal correlation length was changed from 60 ft. (20 m) to 180
ft. (60 m). Bishop simplified, Janbu simplified, and Spencer methods were used in the
analyses. A total of 12 scenarios were run to investigate the effect of site variability (by
increasing COV of cohesion, unit weight, and friction angle and changing the horizontal
correlation length) on the factor of safety for slope stability. The Slide 2018 2D software
was used for the spatial variability analyses. A total of 1000 samples were generated and

used in the analyses for each scenario, assuming log normal sample distribution.

For the scenarios 91 through 94, the vertical correlation length was assumed to be 1 ft.
(0.3) (for high vertical variability) and the horizontal correlation length was assumed to
be 60 ft. (20 m). For the scenarios 95 to 98, the vertical correlation length was assumed to
be 1 ft. (0.3) (for high vertical variability) and the horizontal correlation length was
assumed to be 120 ft. (40 m). For the scenarios 99 through 102, the vertical correlation
length was assumed to be 1 ft. (0.3) (for high vertical variability) and the horizontal
correlation length was assumed to be 180 ft. (60 m). The results of slope stability analysis
for the scenarios 91 to 102 are shown in Figure 96. As shown in the figure, the factor of
safety for all cases were decreased with the increase in the COV from increment 1 to 4.
However, the figure also shows that the change in horizontal correlation length from 60
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ft. to 180 ft. is not significant. Again, the Janbu simplified method gave lower factor of
safety than the other two methods (Bishop simplified and Spencer). Table 91 of Appendix
E shows the factor of safety versus the COV of increment for the high vertical variability.

Figure 95. Factor of safety vs COV of undrained cohesion for low vertical variability and different
horizontal correlation lengths of the undrained condition
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Figure 96. Factor of safety vs COV of cohesion, unit weight and friction angle at different horizontal
variability levels (for high vertical variability)
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Medium Vertical Variability

Different scenarios were modeled here to study the effect of soil variability (cohesion,
unit weight and friction angle) of the soil layers on the slope stability of embankments.
The COVs for the different increments in this analysis are the same as for the high
vertical variability, in which the COVs of cohesion, unit weight and friction angle were
increased in each increment. The vertical correlation length was assumed to be 6 ft. (0.3
m) (for medium vertical variability) and the horizontal correlation length was changed
from 60 ft. (20 m) to 180 ft. (60 m). Bishop simplified, Janbu simplified and Spencer
methods were used in the analyses. A total of 12 scenarios were run to investigate the
effect of site variability on the factor of safety for slope stability through increasing
COVs of soil properties and changing the horizontal correlation length. The Slide 2018
2D software was used for the spatial variability analyses.

For the scenarios 103 to 106, the vertical correlation length was assumed to be 6 ft. (2 m)
(for medium vertical variability); while the horizontal correlation length was assumed to
be 60 ft. (20 m). For the scenarios 107 to 110, the values of vertical and horizontal
correlation lengths were assumed to be 6 ft. (2 m) and 120 ft. (40 m), respectively. For
the scenarios 111 to 114, the vertical correlation length was assumed to be 6 ft. (2 m) and
the horizontal correlation length was assumed to be 180 ft. (60 m). Figure 97 presents the
results of slope stability analysis for scenarios 103 to 114. The figure demonstrates that
the factor of safety decreases with increasing the COV of soil properties from increment
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1 to 4, and that the effect of changing the horizontal correlation length from 60 ft. to 180
ft. is not significant. Again, the factor of safety of Janbu simplified method is lower than
the other two methods (Bishop simplified and Spencer).

Table 92 of Appendix E depicts the factor of safety versus COV of increments for the
medium vertical variability.

Low Vertical Variability

In this part of analysis, the effect of the low vertical variability of the soil layers on the
slope stability of embankments was investigated using a vertical correlation length of 15
ft. (5 m) (for low vertical variability) and changing the horizontal correlation length from
60 ft. (20 m) to 180 ft. (60 m). Bishop simplified, Janbu simplified, and Spencer methods
were used in the analyses. A total of 12 scenarios were run using the Slide 2018 2D
software to investigate the effect of site variability on the factor of safety for slope
stability through increasing COVs of soil properties and changing the horizontal
correlation length. A total of 1000 samples were generated and used in the analyses for
each scenario, assuming log normal sample distribution.

Figure 97. Factor of safety vs COV of cohesion, unit weight and friction angle at different horizontal
variability levels (for medium vertical variability)
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For the scenarios 115 to 118, the vertical and horizontal correlation lengths were assumed
to be 15 ft. (5 m) (for low vertical variability) and 60 ft. (20 m), respectively. For the
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scenarios 119 through 122, the vertical correlation length was assumed to be 15 ft. (5 m)
and the horizontal correlation length was assumed to be 120 ft. (40 m). For the scenarios
123 to 126, the vertical and horizontal correlation lengths were assumed to be 15 ft. (5 m)
and 180 ft. (60 m), respectively. The results of slope stability analysis are presented in
Figure 98 which shows that the factor of safety were decreased with the increase in the
COV from increment 1 to 4, and also demonstrates that changing in horizontal correlation
length from 60 ft. to 180 ft. is not significant. Again, the Janbu simplified method gave
the lowest factor of safety of slope stability. Table 93 of Appendix E presents the factor of
safety versus the COV of increment for the low vertical variability.

Figure 98. Factor of safety vs COV of cohesion, unit weight and friction angle at different horizontal
variability levels (for low vertical variability)
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Application of Site Variability in Shallow Foundation

Effect of Site Variability on the Bearing Capacity (Second Moment Analysis)

The effect of site variability on the bearing capacity of shallow foundations was first
investigated here using the second moment statistical analysis and Vesper 6 software on a
6’ x 6’ foundation with a FS = 3. The undrained shear strength (S,) presented in Table 7
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was used for the soil profile (here medium PI 1 soil), and the schematic diagram of the

foundation example is described in Figure 55.

The plot of the semivariogram for the S, data below the footing is presented in Figure 99.
The range of influence (ay) and the scale of fluctuation (0) for the spherical model are 4.2
feet and 3.2 feet, respectively. Scale of fluctuation is determined from Table 3. Once the
scale of fluctuation is known, the plot of variance reduction factor, I', against influence
depth below footing for the Sy profile can be developed by assuming hypothetical lengths
below footing and substituting the 6 value of Sy into the following equation:

r’w=|2(1- %)]; for L/6 > 1/2 [152a]

r’(L)=1 for L/0 < 1/2 [152b]

Figure 99. Plot of semivariogram from Sy data
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The plots of variance reduction factor, I'*, against averaging length, L, for S, is presented
in Figure 100. The variance reduction factor of Sy for 9 feet length below footing is ~
58%.

The ultimate bearing capacities of square can be calculated using the following equation:
q,=1.3 ¢ N+qN+0.4yN, [153]

where ¢’ = cohesion, q = effective stress at the level of the bottom of the foundation, y =
unit weight of soil and N, Ng, Ny = bearing capacity factors.
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For undrained condition, ¢’ = zero, N. =5.14, Nq =1 and Ny=0. The mean value, mean + 1
standard deviation (o), and mean value -1 o of g, were analyzed to calculate a new
(updated) standard deviation as presented in Table 77. The mean, mean + ¢, mean - ¢ of
qu are presented in Table 78 for the second moment and the spatially averaged values.

Figure 100. Variance reduction factor versus influence depth below footing
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Table 77. New standard deviation from variance reduction factor

Material Standard Variance New New
Qu (quljan) Deviation Variance | Reduction vVariance Standard
Factor Deviation
psf psf psf
18761.3
19800.0
19073.7
Medium | 20159.2
Pl 17895.3 | 20220.3 | 1899.7 | 3608783.0 0.58 2093094 1447
1(P1=21) | 19246.7
20472.1
23389.2
23184.7
Table 78. Probability of failure calculation
# | Property | Mean +c -G Mean | +c | -o
Su - Second Moment Su - Spatially-Averaged
1 Qu (psf) | 20220.3 | 22119.9 18320.6 | 20220.3 | 21667.0 18773.5
2 Qant (psf) 6740.1 7373.3 6106.9 6740.1 7222.3 6257.8
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# Property Mean +c -0 Mean +0 -c

3 Qu(Ibs) | 727929.4 | 796317.9 | 659540.9 | 727929.4 | 780012.5 | 675846.3
4 Qan (Ibs) | 242643.1 | 265439.3 | 219847.0 | 242643.1 | 260004.2 | 225282.1
5 FS 3.0 3.0 3.0 3.0 3.0 3.0

6 Ars 0.8 0.6

7 OFs 0.3986 0.3076

8 COVss 0.1329 13.3% P¢+=0 0.1025 10.3% Pr=0

For the determination of the reliability assessment, the allowable bearing capacity for the

mean, Q. 1s assumed as the applied stress, Qapp. The values in the above table were

computed using the following formulas: #1 - 4: computed from the generalized bearing
capacity equation; #5: FS = Quit / Qupp; #6: AFS = FSmax — rsmin; #7: ors = [(AFS / 2)*1%3,
the standard deviation of FS; #8: COVFs = coefficient of variation of FS; and Ps:

probability of failure obtained from the standard lognormal Table 79 using mean FS and

COVps.
Table 79. Probability of failure chart for bearing capacity analysis [55]
Coefficient of Variation of Factor of Safety (V;)

Fuv | 2% | 4% | 6% | 8% | 10% | 12% | 14% | 16% | 20% | 25% | 30% | 40% | 50% | 60% | 80%
1.05 0.8% 12% 22% 28% 33% 36% 39% 41% % 47% 49% 53% 55% 58% 61%
110 [ 000% | 09% | 6% |12% [18% [23% |27% |30% |35% [40% |43% |48% 51% | 54% | 59%
1.15 0.00%% 0.03%| 1.1% 4% 9% 13% 18% 21% 27% 33% 37% 43% 48% 51% 56%
116 | 000% | 0.01%| 07% | 3% | 8% |12% |16% |20% |26% [32% |36% |42% 47% | s50% | 56%
1.18 0.00% 0.00% | 0.3% 2% 5% 9% 13% 17% 23% 29% 34% 41% 45% 49% 55%
1.20 0.00% 0.00% | 0.13% | 1.2% 4% 7% 11% 14% 21% 27% 32% 39% 44% 48% 54%
125 | 0.00% | 0.00%| 001%| 03% | 1.4% | 4% | 6% | 9% [15% [22% |27% [35% 41% | 45% | 51%
130 | 0.00% | 0.00%| 0.00%| 0.06% | 0.5% | 16% | 3% | 6% [11% [17% |23% [31% 37% | 42% | 49%
135 | 0.00% | 0.00%| 0.00%| 0.01% | 02% | 0.7% | 1.9% | 4% | 8% [14% |19% [28% 34% | 40% | 47%
1.40 0.00%% 0.00% | 0.00% | 0.00% | 0.04%| 0.3% 1.0% 2% 5% 11% 16% 25% 32% 37% 45%
150 | 0.00% | 0.00%| 0.00% | 0.00% | 0.00%| 0.04%| 02% | 0.7% | 3% | 6% [11% [19% 27% | 32% | 41%
1.60 0.00% 0.00% | 0.00% | 000% | 0.00% | 0.01%| 005%| 0.2% 1.1% 4% 7% 15% 22% 28% 38%
170 | 0.00% | 0.00%| 0.00% | 0.00% | 0.00%| 0.00%| 0.01% | 0.06%| 0.5% | 2% | 5% [12% 19% | 25% | 34%
1.80 0.00% | 0.00% | 000% | 000% | 0.00%| 0.00%)| 000% | 0.01% | 0.2% 1.2% 3% 9% 16% 22% 31%
190 | 0.00% | 0.00%| 0.00% | 0.00% | 0.00%| 0.00%| 0.00% | 0.00%| 0.08% | 0.65%| 2% | 7% 13% | 19% | 29%
200 | 0.00% | 0.00%| 0.00% | 0.00% | 0.00%| 0.00%| 0.00% | 0.00%| 0.03% | 036%| 1.3% | 5% 1% | 17% | 26%
2.20 0.00% 0.00% | 0.00% | 0.00% | 0.00% | 0.00%| 0.00% | 0.00% | 0.01% | 0.10%| 0.56%| 1.3% 8% 13% 22%
240 | 0.00% | 0.00%| 0.00% | 0.00% | 0.00%| 0.00%| 0.00%| 0.00% | 0.00% | 0.03%| 0.23%| 1.9% | 5% | 10% [ 19%
2.60 0.00% 0.00% | 0.00% | 0.00% | 000% | 0.00%| 000% | 0.00% | 000% | 001%| 009%| 1.1% 4% 7% 16%
280 | 0.00% | 0.00%| 0.00% | 0.00%| 0.00%| 0.00%| 0.00%| 0.00% | 0.00%| 0.00%| 0.04%| 0.66%| 3% | 6% | 13%
3.00 0.00% 0.00% | 0.00% | 0.00% | 0.00% | 0.00%| 000% | 0.00% | 0.00% | 0.00%| 002%| 0.39%| 1.8% 4% 11%

Note: Fyqs = factor of safety computed using most likely values of parameters.

It can be seen from Table 78 that including variability into bearing capacity analysis

reduces the COV. Here, the calculated probability of failure is zero. From the lognormal

probability Table 79, the reader can realize that when the COV decreases, the probability

of failure also decreases. Hence, it can be concluded from Table 78 that incorporating

variability into bearing capacity of shallow foundations can reduce both COV and

probability of failure.
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Effect of Site Variability on the Bearing Capacity (Fenton and Griffiths Method)

Different scenarios were considered in this part of study to investigate the effect of
variation in cohesion and friction angle of foundation soil, for both drained and undrained
conditions, on the resistance factors of shallow foundations using a 6 ft. wide and 3 ft.
depth strip footing.

Sandy Soil

In this analysis, researchers studied the effect of the coefficient of variation of friction
angle, COVy, on the bearing capacity of shallow foundation. Here the COV was
increased from 0 to 25% with 5% increase increment. The ultimate bearing capacity was
normalized by dividing the respective bearing capacity to the initial (with zero site
variability) bearing capacity (qrer) (in percent). For example, for the dense sand, to get the
normalized bearing capacity for COV¢=25, the bearing capacity for COV4=25 (which is
1374 psf) was divided by the bearing capacity of COV¢=0 (which is 1664 psf), eventually
resulting in 82.6%. The COV of the bearing capacity can be extracted from the Rbear2D
software using the mean and standard deviation of soil properties.

Figure 101 presents the ultimate bearing capacity versus COV,, for three different sandy
soils (loose, medium and dense). The figure shows that the bearing capacity for the three
sandy soils decreases with increasing the COVy. As expected, the magnitude of bearing
capacity for dense soil gives higher capacity than the medium dense and loose sands. The
normalized bearing capacity versus COV, for different sandy soils is presented in Figure
102. The figure shows that, for all sandy soils, the normalized bearing capacity decreases
with increasing the COVy. However, for the dense and medium dense sand the
normalized bearing capacity decreases more with increasing the COV4 as compared to
loose sand.
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Figure 101. Ultimate bearing capacity versus COV, for different sands
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Figure 102. Normalized ultimate bearing capacity versus COV, for different sands
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The relationship between the COV of the bearing capacity and COV for the different
sandy soils is presented in Figure 103. The figure demonstrated that the COV of the

bearing capacity increases with increasing the COVj.
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Figure 103. COV of bearing capacity versus COVy for different sands
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Clayey Soil (Drained Condition)

In this part, researchers studied the effect of changing the COV of cohesion, COV,, and
COV of friction angle, COVy, on the bearing capacity of our footing model for different
clay (soft, medium and stiff) soils for drained condition. The COV. was ranged from 0 to
50% with an increment increase of 10%, and the COV was ranged from 0 to 20%, with
an increment increase of 10%. Here, the COV was fixed with varying the COV..

Figure 104 presents the ultimate bearing capacity versus COV. for different clay soils,
which shows that the bearing capacity for the three clay soils decreases with increasing
the COV.. The magnitude of ultimate bearing capacity depends on the soil type. For
example, stiff clay gives higher capacity than the medium stiff and soft clays. The
normalized bearing capacity versus COV_. for the three clay soils is presented in Figure
105, which demonstrates a decrease in the normalized bearing capacity with the increase
in COV. for all clay soils for the drained condition.
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Figure 106 presents the COV of the bearing capacity versus the coefficient of variation of
cohesion, COV¢, for different clay soils. The figure clearly shows that the COV of
bearing capacity increases with the increasing the COV. for the three clay soils. In the
three figures, the bearing capacity and the normalized bearing capacity decrease with
increasing the COVy, and that the COV of bearing capacity increases with increasing
COV.

Figure 104. Ultimate bearing capacity versus COV; for different clay soils (drained condition)
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Figure 105. Normalized bearing capacity versus COV, for different clay soils (drained condition)
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Figure 106. COV of bearing capacity versus COV; for different clay soils (drained condition)
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Clayey Soil (Undrained Condition)

In this section, we studied the effect of varying the COV of undrained cohesion (or
undrained shear strength for ¢ = 0) on the ultimate bearing capacity of our footing model
for different clay soils (soft, medium and stiff) at the undrained condition. The selected
range of COV of undrained cohesion was selected to be from 0 to 50%, with 10%

increase increment.

The ultimate bearing capacity versus the COV of undrained cohesion for the three clay
soils under undrained condition is presented in Figure 107. The figure show that the
bearing capacity decreases with increasing the COV of undrained cohesion, and that the
magnitude of bearing capacity changes with the clay soil type. For example, stiff clay
gives higher capacity than the medium stiff clay and soft clay. Figure 108 presents the
normalized bearing capacity versus the COV of undrained cohesion for the three clay
soils, which clearly demonstrates that the normalized bearing capacity decreases with
increasing COV of undrained cohesion. The relationship between the COV of the bearing
capacity and the COV of undrained cohesion is presented in Figure 109. It is clear that
the COV of bearing capacity increases with increasing the COV of undrained cohesion.

Figure 107. Ultimate bearing capacity versus COV. for different clay soils (undrained condition)
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Figure 108. Normalized bearing capacity versus COV. for different clay soils (undrained condition)
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Figure 109. COV of bearing capacity versus COV. for different clay soils (undrained condition)
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Effect of Site Variability on Resistance Factor (Fenton and Griffiths Method)

Different scenarios were considered in this study to investigate the effect of variation in
cohesion and friction angle of foundation soil on the resistance factors of shallow
foundations. The values of resistance factors, ¢sg, were calculated at different sampling
borehole location radii 16.4 ft. (5 m), 32.8 ft. (10 m), 49.2 ft. (15 m), 65.6 ft. (20 m) and
82 ft. (25 m) from the center of foundation, at different correlation lengths (0 m to 40 m),
and for different values of soil cohesion, c, with different COV. (0%, 10%, 20%, 30%,
40% and 50%), and for different values of soil friction angle, ¢, with different, COV,
(0%, 5%, 10%, 15%, 20% and 25%).

Sandy Soil

In this part, analysis was performed for the medium sand (¢= 38°) and the properties
shown in Table 8. The soil friction angle, ¢, was considered for different COV, (0%, 5%,
10%, 15%, 20% and 25%).

As shown in Figure 110, the resistance factor, ¢sr, decreased dramatically as the
correlation length increased from 0 about 6-16 ft. (2-5 m), then started to increase beyond
this correlation range. For all sampling radius, the shape of the resistance factor versus
the correlation length curves are similar, but the values of minimum resistance factors
decreased as the location of sampling borehole was far from the foundation. Figure 111
presents the effect of the distance of borehole on the resistance factor for the different
COV, levels, which demonstrates a decrease in resistance factor of shallow foundations
with the increase in COV¢ and the distance from the borehole.
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Figure 110. Resistance factor versus correlation length of medium sand for single boring
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Figure 111. Resistance factor versus distance from borehole for medium sand at different COV,
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Clayey Soil (Drained Condition)

The analysis here was performed for the medium stiff clay [¢ = 30° and ¢ = 83.5 psf (4
kPa)] and using the properties shown in Table 9. The soil friction angle, ¢, was
considered with different COVy (0%, 5%, 10%, 15%, 20% and 25%) and the cohesion, c,
was considered with different COVc (0%, 10%, 20%, 30%, 40% and 50%).

Analysis shows that the resistance factor decreased dramatically as the correlation length
increased from 0 to about 6-26 ft. (2-8 m), which started to increase after that as shown in
Figure 112. The shape of the resistance factor versus the correlation length curves is the
same for all sampling radii. However, the values of resistance factors decrease with the
increase of the location of sampling borehole from the foundation. Figure 113 presents
the effect of the distance of borehole on the resistance factor for different COVj, levels,
which shoes a decrease in resistance factor of shallow foundations with the increase in
COV, as well as the distance from the borehole. Figure 114 presents the effect of the
distance of borehole on the resistance factor for different COV. levels, which also
demonstrates a significant decrease in the resistance factor of shallow foundations with
the increase in COV. and the distance from the borehole.

Clayey Soil (Undrained Condition)

Analysis was performed here for medium stiff clay (cohesion = 36 kPa) and the using the
properties in Table 10. Cohesion, ¢, was considered with different coefficients of
variation, COV. (0%, 10%, 20%, 30%, 40% and 50%). The results of resistance factor,
dsf, versus correlation length of medium stiff clay for single boring of drained condition
are shown in Figure 115, which clearly show that the ¢sf dramatically decreases with
increasing the correlation length up to about 6-16 ft. (2-5 m), then after that it starts to
increase with increasing the correlation range. For all sampling radii, the shape of the
resistance factor versus correlation length curves are similar, but the values of ¢sf
decreases as the distance of sampling borehole was far increases from the foundation.
The effect of the distance of borehole on the resistance factor for different COVc levels
are presented in Figure 116, which clearly shows a significant decrease in the resistance
factor of shallow foundations with the increase in distance of the borehole and COV..
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Figure 112. Resistance factor versus correlation length of medium stiff clay for single boring (drained
condition)
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Figure 113. Resistance factor versus distance from borehole for medium stiff clay at different COV,
levels (drained condition)
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Figure 114. Resistance factor versus distance from borehole for medium stiff clay at different COVc
levels (drained condition)
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Figure 115. Resistance factor versus correlation length for medium stiff clay at different COV, levels
(undrained condition)

st
e A =R~ =
NV T N R

Resistance Factor, ¢

o
w

0.2
Distance to soil sample, r (m):
0.1 0 2 5 10
0
0 10 20 30 40

Correlation Length, 6 (m)

— 240 —



Figure 116. Resistance factor versus distance from borehole for medium stiff clay at different COV.
levels (undrained condition)
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Effect of Site Variability on Reliability Index and Probability of Failure

Different scenarios were analyzed here to study the effect of variability of the soil
properties (in terms of cohesion, friction angle, unit weight and friction angle) on the
reliability index and probability of failure of the foundation. Here, variability increment
no. 1 represents the case when the COVs of cohesion, unit weight and friction angle are
10%, 2% and 5%, respectively. In variability increment no. 2, the COVs of cohesion, unit
weight and friction angle were taken as 20%, 4% and 10%, respectively. The variability
increment no. 3 represents the case for the COVs of cohesion, unit weight and friction
angle are 30%, 6% and 15%, respectively. The COVs for cohesion, unit weight and
friction angle in variability increment no. 4 are 40%, 8% and 20%, respectively. Finally,
in variability increment no. 5, the COVs of cohesion, unit weight and friction angle were
selected as 50%, 10% and 25%, respectively. This means that we increased the COV
values for cohesion, unit weight and friction angle simultaneously in each variability
increment. In this analysis, for each vertical load of 27.4 kips/ft. (400 kN/m), 34.3 kips/ft.
(500 kN/m), and 41.1 kips/ft. (600 kN/m), we calculated the reliability index for each
variability increment and the corresponding probability of failure. In this study 15
different scenarios were run to investigate the effect of site variability (by increasing
COVs of cohesion, unit weight and friction angle and changing the vertical load) on the
Hasofer-Lind reliability index. A matlab code was developed for use in this analysis.
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The relationship between the reliability index/probability of failure and the variability
increment for the 15 different scenarios are shown in Figure 117. The results show that
the reliability indexes were decreased and the probability of failure were increased when
the values of COV were increased from variability increment 1 to variability increment 5,

and also with increasing vertical load.

Application of Site Variability in Deep Foundation

The method proposed by Naghibi [131] and Naghibi and Fenton [18] were used here to
analyze and evaluate the effect of site variability on the design of deep foundation for
both the cohesive and cohesionless soils. Additionally, we used our expanded approach of

Naghibi’s [131] method for analyzing the mixed soils.
Analysis without End Bearing

Cohesive Soil Condition

In this part of analysis, the Red River site was used to study the effect of site variability
on deep foundations for cohesive soil condition without considering the end bearing
capacity. As stated earlier, eight soil borings were performed at different locations down

to 105 ft. depth.

Figure 117. Reliability index vs probability of failure at different COV (at different loading levels)
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For analysis purpose, we assumed the pile is located at the black (round) point, and
calculating the distances of soil borings to the pile as R1, R2, ... and R8 shown earlier in
Figure 63 (a-c). As shown in Table 80, the distances of the pile from the soil boring
locations, Ri, R2, R3, R4, Rs, Re, R7, and Rg are 40.5 ft. (12.33 m), 46.8 ft. (14.27 m),
14.23 ft. (4.34 m), 25.4 ft. (7.74 m), 51.0 ft.(15.55 m), 84.4 ft. (25.72 m), 82.1 ft. (25.02
m), and 120.0 ft. (36.57 m), respectively. The average value of S, and COVs, was
determined for each soil boring. Moreover, the inverse distance weighted (IWD) values
of Sy (IDW) and COVs, (IDW) were determined for the whole site. The resistance
factors, ¢ar for each soil boring was calculated using Equation 73 and the corresponding
distance from the pile location for a reliability index, p = 2.33. The average of ¢qr for all
soil borings was calculated as 0.79. The resistance factor, ¢qr, for the entire site, was also
calculated using the Sy (IDW) and COVsy (IDW) values as 0.77. As shown in Table 80,
the calculated resistance factor, ¢qr, for each soil boring depends on the distance between
the pile and the location of the soil boring and the COVs,.

Table 80. Calculation of resistance factor for the Red River site

Average IDW
i Resistance -
Soil f?c:itwanicli Average | Su | cou | cow, | R bas Resistance
Boring (ﬁ';’ S, (IDW) su | (IDW) ol af | (allborings) | Factor, s
' (p=2.33) (=2.33)
R1 40.5 105.39 0.31 0.78
R2 46.8 84.92 0.25 0.86
R3 14.23 54.89 0.48 0.71
R4 25.4 98.97 0.19 0.89
R5 51.0 88.14 80.90 0.21 0.32 0.87 0.79 0.77
R 6 84.4 64.72 0.07 0.93
R7 82.1 124.65 0.19 0.84
R 8 120.0 92.08 0.47 0.47

Cohesionless Soil Condition

Site variability analysis was performed here on a cohesionless soil site with an average
value of friction angle of $=30° without considering the end bearing. Different
coefficients of variation of ¢, COV, (i.e., 0%, 10%, 20%, 30%, 40% and 50%), was
considered in this analysis. In addition, soil borings with different locations and sampling
distances [i.e., 16.4 ft. (5 m), 32.8 ft. (10 m), 49.2 (15 m), 65.6 ft. (20 m), and 82.0 ft. (25
m) from the pile location were considered. The resistance factors, ¢ar, for the pile in
cohesionless soil (without end bearing) for the different COVy scenarios and distance of
boring from pile were calculated using Equation 88, and the results are presented in
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Figure 118. The figure clearly demonstrates a significant decrease in the resistance factor
of pile in cohesionless soil with the increase in COVy and the distance from the boring
location.

Mixed Soil Condition

In this part of analysis, we considered the Metairie site for the mixed soil condition
without considering the end bearing capacity. Fifteen soil borings were performed at
different locations in Metairie site down to 105 ft. depth as shown in Figure 44a. As
described earlier, the Metairie site consists of two clay layers and two sand layers. The
soil layering and properties are presented in Figure 45.

Figure 118. Resistance factor of pile in cohesionless soil for different COV, scenarios
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For analysis purpose, we assumed the pile is located at the black (round) point, and
calculating the distances of soil borings to the pile as M1, M2, ... and M15 shown earlier
in Figure 64(a-c). The distances of the pile from the soil boring locations are presented in
Table 81. The average value of Sy, COVsy, ¢ and COV,, were determined for each soil
boring location. In addition, the inverse distance weighted (IWD) values of S, (IDW),
COVsy(IDW), ¢ (IDW) and COV(IDW) were calculated for the entire site. The
resistance factor, ¢df, corresponding to f=2.33 was calculated for each soil boring
location based on the distance of soil boring from the pile location using Equations 73
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and 88. The average of ¢qr for all soil borings was calculated to be 0.65. Meanwhile, the
resistance factor, ¢gf, for the entire site, was calculated using the Sy (IDW), COVs (IDW),
¢ (IDW) and COV(IDW) as 0.71. The table shows that the resistance factor, ¢qf, for each

soil boring depends on the distance of the pile from the soil boring and the COVs, and

COV.

Table 81. Calculation of resistance factor for the Metairie site (without end bearing)

Soil Distange Unsdr::;r;ed Friction Resistance | Average II_DW
Boring from Pile Strength, COVg, | Angle, COVy, Fa(ior, Par ¢df_ (all Resistance
(ft.) S, (kPa) ¢ (deg.) (B=2.33) borings) | factor, ¢ar
M1 188.0 32.98 0.35 37.50 0.23 0.55
M 2 190.5 37.45 0.42 36.07 0.21 0.52
M3 158.0 33.86 0.31 32.31 0.27 0.55
M 4 113.8 28.13 0.29 33.38 0.18 0.66
M5 72.3 25.56 0.44 40.42 0.11 0.64
M6 91.4 34.74 0.29 40.82 0.09 0.74 0.65
M7 24.6 30.48 0.25 41.93 0.09 0.78
M8 49.8 30.72 0.34 38.86 0.12 0.71
M9 179.0 28.25 0.36 45.79 0.07 0.66 01
M 10 153.1 27.41 0.38 41.50 0.10 0.64
M 11 129.2 24.30 0.37 36.82 0.13 0.66
M 12 148.6 27.77 0.45 40.33 0.10 0.61
M 13 121.8 28.25 0.37 42.50 0.14 0.666
M 14 77.8 30.32 0.48 41.33 0.11 0.608
M 15 110.5 31.00 0.34 45.00 0.17 0.622
IDW 30.17 0.31 40.92 0.11

Another analysis was conducted for the Metairie site using the average Sy and ¢ values
for the four soil layers (two clay and two sand layers). The weighted average of S,
COVsuy, and osy for the clay layers are 480.4 pst (23.0 kPa), 0.27 and 5.85, respectively;
and for the sandy layers, the weighted average of ¢, COVy, and o are 39°, 0.35 and
13.06, respectively. Different sampling location distances [16.4 ft. (5 m), 32.8 ft. (10 m),
49.2 ft. (15 m), 65.6 ft. (20 m), and 82.0 ft. (25 m)] were considered. The calculated
resistance factors for the mixed soil (without considering end bearing) at different COV,
(i.e., 0%, 10%, 20%, 30%, 40% and 50%) and COVsu (i.e., 0%, 10%, 20%, 30%, 40%
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and 50%) scenarios are presented in Figure 119. The figure presents the effect of the
distance of borehole on the resistance factor for different COV¢ and COVs, levels, which
clearly demonstrates a significant decrease in the resistance factor of mixed soil with the
increase in either the COV, or COVsy levels and the increase of distance between the pile
and soil boring.
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Figure 119. Calculated resistance factor for the mixed soil at different COVy and COVsu scenarios
(without end bearing)
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Analysis Including End Bearing
Cohesive Soil Condition

In this part of analysis, the Red River site was used again to study the effect of site
variability on deep foundations for cohesive soil condition, but with including the end
bearing capacity. We followed the same procedure we did before by assuming the pile to
be located at the black point, and calculating the distances of soil borings to the pile (R1
to R8), as described earlier in Figure 63 (a-c). The distances of soil borings were
calculated as R1 =40.5 ft. (12.33 m), .., and R8 = 120.0 ft. (36.57 m), as shown in Table
82. The average value of Sy and COVsy were calculated for each soil boring. The values
of Su (IDW) and COVs, (IDW) were also determined for the whole site using the inverse
distance weighted method. The resistance factor, ¢ar (for f=2.33) was calculated for each
boring location considering the end bearing capacity using Equation 138. The average ¢dr
for all soil layers was estimated to be 0.8. Additionally, the value of ¢qr for the whole site
was determined using the Sy (IDW) and COVs, (IDW), and the results are presented in
Figure 120, which shows that the ¢qrvalue for each boring location depends on the
distance between the pile and soil boring and the COVsu. The resistance factor, ¢qr, was

increased from 0.77 to 0.78 for the Red River site, when the end bearing was considered.

Table 82. Calculation of resistance factor for the Red River site (considering end bearing)

Distance S Resistance | Average
Soill | tompile | S So | S| (Tip) | covy, | COVsu | Facton ot | oy
Boring () v (IDW) | (Tip) (IDW) Su | (IDW) dar @all soil | (1IDW)
: (B=2.33) | borings)
R1 40.5 105.39 60.0 0.31 0.81
R 2 46.8 84.92 25.0 0.25 0.88
R3 14.23 54.89 30.0 0.48 0.73
R4 254 98.97 35.0 0.19 0.89
R5 51.0 88.14 80.90 40.0 3535 0.21 0.32 0.88 0.80 0.78
R6 84.4 64.72 35.0 0.07 0.94
R7 82.1 124.65 45.0 0.19 0.84
R 8 120.0 92.08 15.0 0.47 0.47

Cohesionless Soil Condition

A cohesionless soil site with an average friction angle of ¢=30° was selected here to study
the effect of site variability on deep foundation with considering the end bearing capacity.
To do so, different values of COV of ¢ were selected (i.e., COVo = 0%, 10%, 20%, 30%,

40% and 50%) in this analysis. Additionally, different locations and sampling distances
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soil borings from the pile location [i.e., 16.4 ft. (5 m), 32.8 ft. (10 m), 49.2 (15 m), 65.6
ft. (20 m), and 82.0 ft. (25 m) were considered. The resistance factors, ¢as, for pile in
cohesionless soil were calculated again for the different COV ¢ scenarios, but with
considering the end bearing capacity, using Equation 146. The resulted values of ¢qr are
presented in Figure 120, which shows that the resistance factor, ¢qr, decreases with the
increasing the COV,, and the distance from the soil boring location.

Figure 121 presents the effect of the distance between the soil boring and the pile on the
resistance factor, ¢ar, for different side and tip COVy levels. Here the COV, for both the
side and the tip were selected as 0%, 20%, and 40%. The figure clearly shows significant
decrease in ¢ar with the increase in the COVy (side), COVy (tip), and the distance of

borehole location from the pile.

Figure 120. Resistance factor of pile in cohesionless soil for different COV scenarios (considering
end bearing)
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Figure 121. Resistance factor of pile in cohesionless soil for different COV, scenarios (considering
end bearing)
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Mixed Soil Condition

The Metairie site was considered again for the mixed soil condition, but with considering
the end bearing capacity this time. Analysis was performed for the pile located at the
black (round) point described earlier in Figure 64(a-c), and calculating the distances of
soil borings from the pile as M1, M2, ... and M15 (as presented in Table 83). The values
of Su, COVsy, ¢ and COV,, were determined for each soil boring. Also, The values of Sy
(IDW), COVsy(IDW), ¢ (IDW) and COV(IDW) were also determined for the entire site
using the inverse distance weighted method. The resistance factor, ¢ar, for each soil boring
locations were calculated at f=2.33 using equations 73 and 88 and the corresponding
distance from pile. The average ¢qr for all soil borings was calculated to be 0.66. The
resistance factor, ¢gf, for the entire site was calculated using the Sy (IDW), COVsu(IDW),
¢ (IDW) and COV4(IDW) as 0.74. The results are presented in Figure 122, which shows
that ¢qr for each soil boring is depend on the distance between the pile and soil boring and
the COVsu and COVy. The value of ¢qr for the entire site (based on IDW) increased from
0.71 to 0.74 when the end bearing is considered.
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Table 83. Calculation of resistance factor for the Metairie site (including end bearing)

Average
i icti . df
Bf)(r)iirllg f?t;?:]aggli (kSPu 2) COVg, lz\l:éllgn COV,, ( _iile I?eSIStance (al(ll)_soil Qo
(m) 6 (deg.) p) actor, ¢ar | porings | (IDW)
M1 57.31 3298 | 0.35 37.50 0.23 42.0 0.58
M 2 58.07 3745 | 042 36.07 0.21 38.0 0.552
M3 48.15 33.86 | 0.31 3231 0.27 37.0 0.578
M 4 34.70 28.13 | 0.29 33.38 0.18 32.0 0.692
M5 22.03 2556 | 0.44 40.42 0.11 40.0 0.636
M 6 27.85 34.74 | 0.29 40.82 0.09 36.0 0.744
M7 7.49 30.48 | 0.25 41.93 0.09 46.0 0.8
M 8 15.18 30.72 | 0.34 38.86 0.12 35.0 0.722
0.66 0.74
M9 54.55 28.25 | 0.36 45.79 0.07 50.0 0.656
M 10 46.66 2741 | 0.38 41.50 0.10 44.0 0.644
M 11 39.37 2430 | 0.37 36.82 0.13 32.0 0.66
M 12 45.30 27.77 | 0.45 40.33 0.10 38.0 0.61
M 13 37.12 28.25 | 0.37 42.50 0.14 36.0 0.666
M 14 23.70 30.32 | 0.48 41.33 0.11 35.0 0.608
M 15 33.70 31.00 | 0.34 45.00 0.17 40 0.666
IDW 30.17 0.31 40.92 0.11 41.82

The Metairie site was analyzed again with considering end bearing using the average Su
and ¢ values for the four soil layers (two clay and two sand layers). The weighted
average of Sy, and COVyg, for the clay layers are 480.4 psf (23.0 kPa) and 0.27,
respectively; and the weighted average of ¢ and COV¢ for the sandy layers are 39° and
0.35, respectively. Different sampling location distances were considered [from 16.4 ft. (5
m) to 82.0 ft. (25 m)]. The resistance factors, ¢df, for the mixed soil (including the end
bearing) were calculated at different COV¢ (0%, to 50%) and different COVsy, (0% to
50%) scenarios using Equations 138 and 146, and are presented in Figure 122. The figure
shows that the resistance factor, ¢qf, for the mixed soil decreases with increasing either
the COV, or the COVsy levels and with increasing the distance between the soil boring
and the pile.
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Figure 122. Calculated resistance factor for the mixed soil at different COVy and COVsu scenarios
(including the end bearing)
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Conclusions

Different approaches and techniques were examined to evaluate the spatial variability of
soil properties and the different sources of geotechnical variability, and to quantify the
soil variabilities for incorporation in analysis and design of different geotechnical
engineering applications. This includes conducting in-box laboratory tests on different
soil types using different devices such as Geogauge, LFWD, D-SPA and DCP;
conducting field tests using Geogauge, LFWD and DCP on constructed sections at ALF
site and under-construction sections from different projects; and conducting typical
laboratory tests, such as unconsolidated undrained (UU), direct shear and tests, and
consolidation tests were conducted, on different soil types. Different geostatistic methods
and techniques were used to incorporating the effect of site variability from soil borings
and in-situ CPT tests into different geotechnical engineering applications, such as
ultimate capacity of pile foundations, ultimate bearing capacity of shallow foundations,
and slope stability analysis. The incorporated geostatistic techniques include X-Bar/R,
ANOVA, second moment statistical analysis, spatial correlation and semivariogram
modeling, Bayesian technique, probabilistic approach, and Fenton and Griffiths [133]

modeling. Based on the findings of this study, the following conclusions can be made:

e  When comparing variabilities among the different devices, the in-box and field tests
showed range values of coefficient of variation (COV). For the in-box test, the COV
of Geogauge varied from 5.1% to 15.3% using the X-Bar/R method, whereas it
ranged from 7.4% to 18.1% using the ANOVA method. For the LFWD, the COV
ranged from 7.4% to 14.3% and 8.2% to 24.4% for the X-Bar/R and ANOVA
methods, respectively. In the case of the Dirt Seismic Portable Analyzer (D-SPA), the
COV differed from 4.2% to 9.6% for the X-Bar/R method; while the COVs varied
from 6.7% to 15.4% for the ANOVA method. However, the ranges of the COVs of
Geogauge, LFWD, and D-SPA devices evaluated using the second moment statistics
were 6.7% to 15.6%, 10.9% to 20.8% and 5.9% to 13.4%, respectively. For the case
DCP test, it was found that the COV of DCPI range from 1.6% to 16.4%, and 0.4%
to 18.1%, for the operator and the location-related variability, respectively. For the
case of the Nuclear Density Gauge (NDG), the COV ranged from 0.5% to 6.1% and
from 2.4% to 25.1% for the dry density and the moisture content, respectively. When
analyzing data using the E-Gauge device, the COVs ranged from 0.41% to 4.02%
and from 1.76% to 18.8% for the dry density and for the moisture content,
respectively.
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The field tests performed by different devices were grouped into the constructed and
under-construction sections. In the case of constructed sections at ALF site, the COV
of Geogauge varied from 7.7% to 21.0% using the X-Bar/R method, whereas the
COV ranged from 11.4% to 23.6% using the ANOVA method. For the LFWD, the
COVs ranged from 7.3% to 20.3% and from 7.9% to 18.9% for the X-Bar/R method
and the ANOVA method, respectively. However, when analyzing data using the
second moment statistical analysis, the ranges of COVs for the Geogauge and LFWD
were 11.1% to 20.2% and 7.0% to 16.7%, respectively. When comparing the
operator and the location-related variabilities of the DCPI, it was found that the
COVs ranged from 3.2% to 20.3%, and 2.6% to 29.4%, respectively. The COVs for
the dry density and moisture content evaluated using the Nuclear Density Gauge
(NDG) ranged from 0.2% to 4.2% and from 0.7% to 17.5%, respectively. In the case
of the E-Gauge device, the COVs differed from 0.1% to 9.3% and from 0.2% to

19.5% for the dry density and the moisture content, respectively.

The result of field tests conducted in three under-construction sections at LA
highway showed that the COVs of Geogauge varied from 20.3% to 32.5% and from
20.3% to 31.9% for the operator and the location-related variabilities, respectively.
When assessing data for the LFWD, the COVs ranged from 11.7% to 37.5% and
from 18.6% to 31.8%, for the operator and the location-related variabilities,
respectively. Analysis of DCP tests showed that the COV of DCPI for the whole
section ranged from 15.4% to 29.8%. The COVs for the dry density and moisture
content measured using the Nuclear Density Gauge (NDG) ranged from 0.2% to
2.3% and from 0.8% to 10.2%, respectively. In the case of the E-Gauge, the COVs
ranged from 0.10% to 3.7% and from 0.8% to 12.0% for the dry density and the

moisture content, respectively.

Analysis of laboratory test results showed that the COVs of the UU tests varied from
1.0% to 10.9% and from 3.8% to 17.1% for the operator and specimen-related
variabilities, respectively. The results of Atterberg Limits data showed that the COV's
of liquid limit varied from 0.9% to 7.8%; the COVs of plastic limit ranged from
1.9% to 18.2%, and the COVs of plasticity index ranged from 1.1% to 26.4%. For
the small direct shear tests, the results showed that the operator-related and
specimen-related variabilities COVs of friction angle, ¢, ranged from 0.4% to 1.8%,
and from 7.8% to 8.8%, respectively. Meanwhile, the COVs of the cohesion, c,
ranged from 3.5% to 19.5%, and 5.7% to 20.0% for the operator and specimen-
related variabilities, respectively. For the one-dimensional consolidation test, the
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operator and specimen-related COVs for the compression index (C.) varied from
1.4% to 16.8%, and 0.8% to 18.4%, respectively. The operator and specimen-related
COVs for C; ranged from 5.6% to 18.2%., and 3.6% to 17.1%, respectively.
Meanwhile the COVs for the coefficient of consolidation (Cy) varied from 2.3% to
20.9% and 5.5% to 30.6% for the operator and specimen-related variabilities,
respectively. Analysis of CBR test data showed that the COVs varied from 4.2% to
15.6%, and 5.7% to 16.0% for the operator and specimen-related variabilities,
respectively.

Analysis of different AMRL test datasets (2009-2010 to 2016-2017) showed that the
COV for the liquid limit, LL, varied from 4.3% to 8.4%; while the COV for the
plastic limit, PL, varied from 6.7% to 9.4%. However, analysis of combined AMRL
and lab test data showed that the combined COV for the LL is 4.3%, and the
combined COV for the 6.7%. Analysis of the AMRL CBR test data showed that the
COVs range from 16.5 % for Mexican limestone using the 2009-2010 AMRL data to
34.9% for the RAB material using the 2012-2013 AMRL data.

The results of this study demonstrated that the spatial site variability can be
evaluated from site exploration program involved multi CPT tests and/or multi soil

borings with laboratory tests performed at different locations within the specific site.

The effect of site variability of soil properties can be implemented into LRFD design
of pile foundations through evaluating the spatial and/or the total coefficients of
variation (COVR spatial, COVR total) Of the site using the semivariogram approach,
which can be used as input parameters in Equation 21 to calibrate the resistance
factor (spatial OT Protal) for the specific site.

For sites that have site variability lower than the design method variability
(i.e.,COVR spatiat < COVR method), the total coefficient of variation (COVR otal)
decreases and the corresponding resistance factor (dspatial OF drotal) increases, and vice
versa. Hence, giving a credit to low variability sites as compared to high variability
sites in terms of increasing either Qspatial OT Protal, fOr use in the design of pile
foundations.

The CPT equipment source of errors are expected to be lower than the SPT
equipment source of errors. Furthermore, the site variability from using CPT-q; data
are usually lower than the site variability from using soil boring data (SPT-N or Su).
Therefore, the corresponding resistance factors (Qspatial, Grotal) for LCPC pile-CPT
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design method are higher than the resistance factors for the static a-Tomlinson and
Nordlund static design methods.

The results show that the selection of prior data in level 1 of Bayesian analysis has
little effect on the updated posterior data of the new specific site, and hence the
updated bias mean (A) and COV of the measured/predicted pile capacity, and the
updated resistance factor for the specific site. In general, the updated posterior
parameters for the new specific site in Bayesian analysis lie between the priorz
parameters and the likelihood> parameters, taking into consideration the specific site
variability.

The authors introduced a new term called confidence bias site parameter (W) to put
more weight on the test data for the new specific site during the Bayesian updating
process high as compared to database collected from previous sites.

When the soil variability of the new specific site increases from low to high as
compared to previous sites data, the corresponding updated resistance factor (¢r)
decreases and vice versa. Meanwhile, when the number of tested piles in the new site
increases, the value of ¢r increases for low specific site variability, while decreases
for high specific site variability. As an example, for wy, = 1.5, and lower number of
piles in the new site, if we change the variability of new site from low to high, the
values of ¢r reduced from 0.62 to 0.56. However, if we increase the number of piles
in the new site (at low site variability) the value of ¢r increases from 0.62 to 0.63.
Meanwhile, for the case of high site variability of old site and low site variability and
lower number of piles at new site, the values of ¢r increased from 0.56 to 0.65 with

increasing wy, from 1 to 2.

The probabilistic analysis method can used to develop the estimation/mean map by
taking the average of all realizations simulation the sequential Gaussian simulation.
The results of sequential Gaussian simulation were compared with kriging mapping,
which shows that the simulation and kriging estimation are nearly identical.

The prediction probability of corrected cone tip resistance [qtavg -stdev < qt
<Qrave)tstdev Jxo for LA 1 site for 1%, 27, 37 and 4™ soil layers are 78%, 70%, 87%
and 73%, respectively. The weighted average prediction probability for LA 1 site is
75%, and the corresponding resistance factors (spatial, Protal) for LCPC pile-CPT
design method are 0.87 and 0.73, respectively.
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This effect of site variability on the slope stability analysis was investigated. In case
of drained condition, the factor of safety for the three slope stability analysis
methods decreased when the COV of friction angle, ¢, was increased from 5% to
25%. For the same COV, the factor of safety increased with increasing the vertical
correlation length (i.e., decrease in vertical variability). However, in case of unit
weight and cohesion, the factor of safety did not change significantly when the COV
of unit weight was increased from 2% to 10%, and when the COV of cohesion was
increased from 10% to 50%. Out of three slope stability analysis methods, the Janbu
simplified’s factor of safety was less than the other two methods (Bishop simplified
and Spencer).

In case of undrained condition, the factor of safety for the three slope stability
analysis methods decreased with increasing the COV of undrained cohesion,
increased with increasing the vertical correlation length (i.e., decrease in vertical
variability), and slightly increased with increasing the horizontal correlation length
(i.e., decrease in horizontal variability). The effect of variability in undrained

cohesion depends on the length of failure surface within the clay layer.

For the cases of proportion COVs of friction angle, cohesion, and weight, the results
showed that the factor of safety for the three slope stability methods was decreased
when the COV values were increased from the low variability increment 1 to the
high variability increment 4. In addition, the factor of safety did not change
significantly when the horizontal correlation length was changed from low to high
variability.

The results of bearing capacity analysis of shallow foundations on medium dense
sand (¢=38°) clearly demonstrates a significant decrease in the resistance factor, ¢sf,
of the shallow foundation with the increase in either the COV, or the distance of
foundation from the soil boring.

For all sandy soils, the results showed that the normalized ultimate bearing capacity
decreases with the increasing the COV,. However, for the dense and medium dense
sands, the rate of decrease in normalized ultimate bearing capacity with the increase
in COV, was higher than the loose sand. For all sandy soils, the coefficient of

variation of bearing capacity was increased with increasing the COVj.
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Analysis of bearing capacity of shallow foundations using Fenton and Griffiths [133]
method on medium stiff clay for drained condition [¢ = 30° and cohesion = 83.5 psf
(4 kPa)] showed that the ultimate bearing capacity and the resistance factor, ¢sf, of
the shallow foundation decreases with increasing either the COV, or the distance of
foundation from soil boring.

For all clayey soils under drained condition, analysis showed that the normalized
ultimate bearing capacity decreases with increasing the COVy and/or COV..
Additionally, the COV of bearing capacity was increased with increasing either the
COV¢ or the COV..

Analysis of bearing capacity of shallow foundations on medium stiff clay for
undrained condition [cohesion = 752 psf (36 kPa)] also demonstrated significant
decrease in the ultimate bearing capacity and the resistance factor, ¢sf, of the shallow
foundation with increasing of either the COV, or the distance of foundation from soil
boring.

For all clayey soils under undrained condition, the normalized ultimate bearing
capacity decreased with increasing the COV.. Moreover, the COV of the bearing

capacity was increased with the increasing the COV. for all clayey soils.

For all soil types/conditions, the results showed that the resistance factor, dst,
decreased dramatically as the correlation length increased from 0 to about 6-16 ft. (2-
5 m), then started to increase beyond this correlation range. For all sampling radii,
the shape of the resistance factor ¢sf, versus the correlation length curves are similar
in the shape.

The results of reliability analysis for the different scenarios of proportion COVs of
friction angle, cohesion, and weight, considered in this study, showed that the
reliability index was decreased and the probability of failure was increased when the
proportional COVs were increased from increment 1 (low variability) to 5 (high
variability), and with increasing the vertical load.

Analysis of bearing capacity of deep foundations in cohesive soils based on
Naghibi’s [131] and Naghibi and Fenton [18] approach showed that the ultimate
bearing capacity and the resistance factor, ¢qf, decrease with increasing the COV of
undrained shear strength, Sy, and with increasing the distance between the pile and

soil boring. For the case of multi soil borings. The value of ¢df, can be calculated for
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each soil boring based on the distance of pile from soil borings and calculate the
average of all soil borings. Another approach is to calculate the inverse distance
weighted values of Sy(IDW) and COVs,(IDW) for the site, and use these values to
calculate the resistance factors, ¢dr. For the cohesive soil site at river, the ¢qr

corresponding to f=2.33 was calculated to be 0.78.

For cohesionless soils, the results clearly demonstrates that both the ultimate bearing
capacity and the resistance factor, ¢af, decreased significantly with the increase in

COV, and/or the distance between pile and the soil boring.

For the case of mixed soil condition, the results also showed significant decrease in
the ultimate bearing capacity and the resistance factor, ¢qdf, with the increase in the
COVy, COVs,, and the distance between the pile and soil boring. The ¢gr for multi
soil borings in Metairie site was first calculated for each soil boring based the
distance between the pile and each soil boring, and then the average of all soil
borings was calculated. The ¢qr value for Metairie site was also calculated through
evaluating the inverse distance weighted values of Sy(IDW), COVsy(IDW), ¢(IDW)
and COVy(IDW) for the site, which gave a resistance factor, ¢df, that corresponds to
B=2.33 as 0.74.
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Recommendations

Based on the results of this research study, the following recommendations are offered to
DOTD engineers:

e [t is recommended that the DOTD engineers to start assessing and using the
variability of soil properties evaluated in the laboratory tests and AMRL for
geotechnical engineering analysis and design for different applications.

¢ Since remolded soil specimens were used in this study, it is recommended in future
research to include Shelby-tube specimens to evaluate the variability of soil

properties for different laboratory tests.

e It is recommended that the DOTD engineers to start considering the variability of
measurements by the different devices (DCP, Geogauge, LFWD, NDG, E-Gauge) in
different geotechnical engineering applications.

¢ Since only three under-construction sections were tested in this study to evaluate the
variability of compacted soil. It is recommended to consider testing more under-
construction sections in a future study to better evaluate the quality control variability
of compacted soil properties and variability of measurements from different in situ
testing devices.

e [t is highly recommended to implement the semivariorgam analysis to evaluate the
site variability from multi CPT tests and/or multi soil borings for use in different
geotechnical engineering applications, especially to evaluate the site’s resistance
factor for designing of deep foundations.

e [tis recommended to evaluate and apply the Bayesian analysis method to incorporate
site variability for updating the State’s resistance factor, as more data are available,
and to update the resistance factor for the new specific site.

e It is recommended to explore the applicability of the probabilistic analysis approach
to evaluate the specific site variability and its application in geotechnical engineering
analysis and design.

e It is highly recommended to consider variability in soil properties in evaluating the
slope stability analysis of slopes, embankments and MSE walls.
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It is recommended to evaluate variability in the soil properties of fill materials for
better analyzing the slope stability analysis of slopes and MSE walls.

It is recommend to explore using Fenton and Griffiths [133] method to incorporate
the variability in soil properties and distance from soil boring(s) for analysis and
design of shallow foundations.

It is recommend to explore using Naghibi [131] and Naghibi and Fenton [18] method
to incorporate the variability in soil properties and distance from soil boring(s) for

analysis and design of deep foundations.

— 261 —



Acronyms, Abbreviations, and Symbols

Term Description

a Correlation length

AASHTO American Association of State Highway and Transportation Officials
Ac Area of cross-section of the cone

ACF Autocorrelation Function

an and ay Correlation ranges in horizontal and vertical directions
ALF Accelerated load facility

AMRL AASHTO Materials Reference Laboratory

An Area of cross-section and the projected area of the load cell
ANOVA Analysis of variance

AV Reproducibility or the operator variability

B Footing width

C Cohesion

¢ Weighted average of cohesion

CBR California bearing ratio

C(h) Spatial covariance function

Ce Compression index

CCDF Conditional cumulative distribution function

cm Centimeter

Cov Covariance

CoVv Coefticient of variation

COV, Coefticient of variation of cohesion

COVR spatial Spatial coefficient of variation

COVy Coefficient of variation of friction angle

CPT Cone penetration test

Cr Recompression index

Cv Coefficient of consolidation

CVq Measurement variability

CVr Resistance variability
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Term Description
D Pile diameter

d Average distance

dc, dq and dy Depth factors

DCP Dynamic cone penetrometer

DCPI Dynamic cone penetrometer index
D¢ Depth of footing

DOTD Department of Transportation and Development
D-SPA Dirt seismic portable analyzer

d> Bias Correction Factor

E Modulus of elasticity

Errwp Surface modulus from LFWD

Eprr Plate load test modulus

Eyow Young modulus from USW

EV Repeatability or equipment variability
f Trend component

fr Frequency

Fp Dead load (characteristic)

F, Live load (characteristic)

ft. foot (feet)

FDOT Florida Department of Transportation
Far Force applied by shaker

FEM Finite element method

FHWA Federal Highway Administration
FOSM First-order second-moment

FS Factor of safety

G Shear modulus

g Performance function

GIS Geographic Information Systems
GRR Gauge R&R

H Height
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kPa
ksi
Ksoil
LFWD

LAS

)

&~

LL

Lpn
LRFD
LTRC
m

mm
MC
m.c.
MCMC
MPa
MSA
MSE
Nc, Ng and Ny
NDG

Description

Thickness

Length of the drainage path
Inverse distance weighted
Geogauge stiffness

Modulus of subgrade reaction
Dead load bias factor
Stiffness of the flexible plate
Live load bias factor

Kilo newton

Kilo pascal

Kip per square inch

Stiffness of soil

Light falling weight deflectometer
Length

Local average subdivision
Characteristic load

Liquid Limit

Wavelength

Load and resistance factor design

Louisiana Transportation Research Center

meter

Millimeter

micro cracking

Moisture content

Markov chain Monte Carlo
Mega Pascal

Measurement System Analysis
Mechanically stabilized earth
Bearing capacity factors

Nuclear density gauge
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Term
OLS

Py
p(0)
p(ylo)

p(Oly)
PI

P
pcf
PDF
PLT
PR
Prob
Ps
psi

Sc, Sq and sy

Description

Ordinary Least Squares
Applied load on plate
Probability of failure

Prior distribution

Likelihood function

Posterior function

Plasticity index
Preconsolidation pressure
Pound per cubic foot
Probability density function
Plate load tests

Penetration rate

Cumulative probability distribution
Vertical load

Pound per square inch

Pound per square foot
Overburden stress

Cone tip resistance

Dead load

Live load

Corrected tip resistance
Ultimate bearing capacity
Radius

Unit end bearing capacity
Random finite element method
Random limit equilibrium method
Reliability-based design
Ultimate resistance

Resistance of the soil

Shape factors
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Term Description

SD Standard deviation

SGeMS Stanford Geostatistical Modeling Software
SGS Sequential Gaussian Simulation
SM Second moment

SPT Standard penetration test

Su Undrained shear strength

SV Specimen variability

SVF Semivariogram function

t Time

TV Total variation

tst Ton per square foot

w Porewater pressure

uu Unconsolidated undrained
USW Ultrasonic Surface Wave

Vi Velocity at rigid plate

\% Velocity at flexible plate

Vp Compression wave velocity
Vph Average phase velocity

Vr Surface wave velocity

Vs Shear wave velocity

z Depth

Y Influence depth

Wb Confidence bias site parameter
in. inch(es)

2D Two dimensional

o Empirical correction factor

Qi Load factor

Ol Reduction factor

B Reliability index

BrL Hasofer-Lind reliability index
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Term Description

dc Center deflection

Oy Vertical scale of fluctuation

v(h) Variogram

A Mean bias

AR Resistance bias factor

\% Poison’s ratio

€ Random component

) Friction angle

) Equivalent friction angle

Par Resistance factor for deep foundation
Omethod Resistance factor for the design method
OrR Resistance factors

sr Resistance factor for shallow foundation
u Mean

[T15) Mean of the dead load

UL Mean of the live load

r’ Variance reduction factor

Y Unit soil weight

Yine(D) Variance reduction factor

\} Phase difference

p Mass density

p(h) Spatial correlation function

c Standard deviation

Gapp Applied stress

Ow Inherent soil variability

0 Scale of fluctuation
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