TECHNICAL REPORT STANDARD PAGE

1. Title and Subtitle

MASH TL-4 Engineering Analyses and Detailing of 36-in. and 42-in. High Median Barriers for LADOTD
2. Author(s)

William F. Williams and Jilong Cui
3. Performing Organization Name and Address

Texas A\&M Transportation Institute
The Texas A\&M University system
College Station, Texas 77843
4. Sponsoring Agency Name and Address

Louisiana Department of Transportation and Development
P.O. Box 94245

Baton Rouge, LA 70804-9245
10. Supplementary Notes

Conducted in Cooperation with the U.S. Department of Transportation, Federal Highway
Administration
11. Distribution Statement

Unrestricted. This document is available through the National Technical Information Service, Springfield, VA 21161.
12. Key Words

Median barrier; MASH; bridge rail; MASH TL-4; Test Level 4 barrier

13. Abstract

Single-slope median barriers are currently planned for several bridges in Louisiana. For these bridges, both $36-\mathrm{in}$. and $42-\mathrm{in}$. designs were developed and considered as part of this project. Both barrier designs can be used near a longitudinal joint that is approximately 1 in . wide. The $36-\mathrm{in}$. high barrier is similar to the single-slope traffic rail (SSTR) used by the Texas Department of Transportation (TxDOT), which was successfully crash tested according to the Manual for Assessing Safety Hardware (MASH) Test Level 4 (TL-4) in July 2010. The Louisiana Department of Transportation and Development has incorporated the TxDOT SSTR bridge rail height and profile for the median barriers planned for this project. The 42 -in. high barrier maintains the same slope as the $36-\mathrm{in}$. median barrier but has a smaller top thickness. This project aimed to evaluate the strength of the proposed median barrier designs according to the American Association of State Highways and

Transportation Officials Load and Resistance Factor Design (LRFD) Bridge Design Specifications for MASH TL-4 crash performance. The report presents the results of the strength analyses performed on these designs and offers recommendations for improving their strength and performance under MASH TL-4 impact conditions.

Project Review Committee

Each research project will have an advisory committee appointed by the LTRC Director. The Project Review Committee is responsible for assisting the LTRC Administrator or Manager in the development of acceptable research problem statements, requests for proposals, review of research proposals, oversight of approved research projects, and implementation of findings.

LTRC appreciates the dedication of the following Project Review Committee Members in guiding this research study to fruition.

LTRC Administrator/Manager
 Walid Alaywan, Ph.D.
 Senior Structures Research Engineer/Project Research Manager

Members

ZhengZheng Fu
Carl Gaudry
Chris Guidry

Directorate Implementation Sponsor

Christopher P. Knotts, P.E.
DOTD Chief Engineer

MASH TL-4 Engineering Analyses and Detailing of 36-in. and 42-in. High Median Barriers for DOTD

By
William Williams, P.E. Jilong Cui, Ph.D.
Texas A\&M Transportation Institute
3135 TAMU
College Station, Texas 77843-3135

LTRC Project No. 23-1ST
DOTLT No. 1000464
conducted for

Louisiana Department of Transportation and Development Louisiana Transportation Research Center

The contents of this report reflect the views of the author/principal investigator who is responsible for the facts and the accuracy of the data presented herein.

The contents do not necessarily reflect the views or policies of the Louisiana Department of Transportation and Development, the Federal Highway Administration or the Louisiana Transportation Research Center. This report does not constitute a standard, specification, or regulation.

July 2023

Abstract

Single-slope median barriers are currently planned for several bridges in Louisiana. For these bridges, both $36-\mathrm{in}$. and $42-\mathrm{in}$. high single-slope median barriers were developed and considered as part of this project. Both barrier designs can be used near a longitudinal joint that is approximately 1 in . wide. The 36 -in. high barrier is similar to the single-slope traffic rail (SSTR) used by the Texas Department of Transportation (TxDOT), which was successfully crash tested according to the Manual for Assessing Safety Hardware (MASH) Test Level 4 (TL-4) in July 2010 (Texas A\&M Transportation Institute Project 420020-9). The Louisiana Department of Transportation and Development has incorporated the TxDOT SSTR bridge rail height and profile for the median barrier planned for this project. The $42-\mathrm{in}$. high barrier maintains the same slope as the $36-\mathrm{in}$. median barrier design. The top thickness of the $42-\mathrm{in}$. barrier is smaller. The purpose of this project was to analyze the strength of the proposed designs with respect to the American Association of State Highways and Transportation Officials Load and Resistance Factor Design (LRFD) Bridge Design Specifications [1] for MASH TL-4 crash performance requirements [2]. This report presents the results of the strength analyses performed on the $32-\mathrm{in}$. and $42-\mathrm{in}$. median barriers analyzed for this project and provides recommendations on improving the strength and performance of these designs with respect to MASH TL-4 impact conditions.

Acknowledgments

The authors would like to thank Walid Alaywan, Ph.D., Senior Structures Research Engineer at the Louisiana Transportation Research Center; ZhengZheng Fu, Bridge Design Engineer Administrator at the Louisiana Department of Transportation and Development (DOTD); Chris Guidry, Assistant Bridge Design Administrator at DOTD; and Carl Gaudry, Bridge Design Manager at DOTD. These individuals contributed greatly to the success of this project. Their assistance and involvement in this project are highly appreciated.

Implementation Statement

The bridge rail designs analyzed and presented herein meet the strength and performance requirements for the Manual for Assessing Safety Hardware Test Level 4 specifications [2]. These bridge rail designs are recommended for implementation on the Louisiana bridges that meet the deck requirements as presented herein. For additional information, refer to the information, drawings, and calculations provided in this report.

Table of Contents

Technical Report Standard Page 1
Project Review Committee 3
LTRC Administrator/Manager 3
Members 3
Directorate Implementation Sponsor 3
MASH TL-4 Engineering Analyses and Detailing of 36-in. and 42-in. High Median
Barriers for DOTD 4
Abstract 5
Acknowledgments 6
Implementation Statement 7
Table of Contents 8
List of Tables 9
List of Figures 10
Introduction 11
Objective 14
Scope 15
Task 1 — Engineering Analysis and Details. 15
Task 2 - Reporting 16
Methodology 17
Engineering Analyses and Design of $36-\mathrm{in}$. and $42-\mathrm{in}$. Median Barriers for MASH TL-4 Loading Specifications 18
Discussion of Results 44
Conclusions 45
Recommendations 46
Acronyms, Abbreviations, and Symbols 47
References 48
Appendix A - Drawings and Details 49
Appendix B - Calculation Worksheets 70

List of Tables

Table 1. Design forces for traffic railings 17
Table 2. Plate model analysis results 40
Table 3. DOTD 36-in. median barrier with longitudinal joint right side (Opposite Joint Impact) 41
Table 4. DOTD 36-in. median barrier with longitudinal joint left side (Longitudinal Joint Side Impact) 41
Table 5. DOTD 36-in. median barrier without longitudinal joint 42
Table 6. DOTD 42-in. median barrier with longitudinal joint right side (Opposite Joint Impact) 42
Table 7. DOTD 42-in. median barrier with longitudinal joint left side (Longitudinal Joint Side Impact) 42
Table 8. DOTD 42-in. median barrier without longitudinal joint 43

List of Figures

Figure 1. Proposed 36-in. median barrier design 12
Figure 2. Dimensional details of 36-in. median barrier with longitudinal joint 19
Figure 3. Dimensional details of 36-in. median barrier with longitudinal joint 20
Figure 4. Dimensional details of $36-\mathrm{in}$. median barrier without longitudinal joint 22
Figure 5. Reinforcing details of $36-\mathrm{in}$. median barrier without longitudinal joint 23
Figure 6. Dimensional details of 42-in. median barrier with longitudinal joint 25
Figure 7. Reinforcing details of 42-in. median barrier with longitudinal joint. 26
Figure 8. Dimensional details of 42-in. median barrier without longitudinal joint 28
Figure 9. Reinforcing details of 42-in. median barrier without longitudinal joint 29
Figure 10. Overview of barrier FEA model 31
Figure 11. Schematic of barrier cross section 31
Figure 12. Schematic of barrier FEA model 32
Figure 13. Reaction of barrier FEA model (Typical) 33
Figure 14. Reaction of barrier FEA model - Load at end-section 34
Figure 15. Reaction of barrier FEA model - Load at mid-span 34
Figure 16. Exterior plate FEA model 35
Figure 17. Interior plate FEA model 36
Figure 18. Loadings on plate FEA models (Typical) 37
Figure 19. Plate model analysis results for 36-in. median barrier 38
Figure 20. Plate model analysis results for 42-in. median barrier 39

Introduction

Single-slope median barriers are currently planned for several bridges in Louisiana. For these bridges, both $36-\mathrm{in}$. and $42-\mathrm{in}$. high single-slope median barrier designs were developed and considered as part of this project. The $36-\mathrm{in}$. high single-slope design initially received for this project is shown in Figure 1. The proposed design shown in Figure 1 is similar in profile and height to the Texas Department of Transportation (TxDOT) single-slope traffic rail (SSTR), which was successfully crash tested according to the Manual for Assessing Safety Hardware (MASH) [2] Test Level 4 (TL-4) in July 2010 (Texas A\&M Transportation Institute [TTI] Project 420020-9). The Louisiana Department of Transportation and Development (DOTD) has incorporated the TxDOT SSTR bridge rail height and profile for the median barrier design shown in Figure 1. In addition to the $36-\mathrm{in}$. design, a similar 42-in. barrier with the same slope is needed for this project. The top width of the $42-\mathrm{in}$. barrier will be reduced to $75 / 8 \mathrm{in}$. The profile, geometry, and reinforcing steel will also be similar for the $42-\mathrm{in}$. barrier-only taller.

Figure 1. Proposed 36-in. median barrier design

For this project, TTI proposed performing engineering strength calculations to determine if the proposed designs meet the strength and performance requirements of MASH TL-4. MASH TL-4 strength analyses were performed on four different barrier cases (six total sets of analyses). These four cases are as follows:

1. A 36-in. single-slope median barrier without the longitudinal open joint (as shown in Figure 1 except no longitudinal open joint) with an $8 \frac{1}{2}$-in. thick deck supported by girders spaced 8 ft . O/C.
2. A 36-in. single-slope median barrier with the longitudinal open joint (as shown in Figure 1) with possible impacts on both sides of the barrier (two analyses).
3. A 42-in. single-slope median barrier without the longitudinal open joint (same as Figure 1 except 42 in. tall and $75 / 8$ in. wide at top) with an $81 / 2$-in. thick deck supported by girders spaced 8 ft . O / C.
4. A 42-in. single-slope median barrier with the longitudinal open joint (same as Figure 1 except 42 in. tall and $75 / 8 \mathrm{in}$. wide at top) with possible impacts on both sides of the barrier.

The strength analyses performed for this project followed the procedures in Section 13 of the American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design Specifications [1] for MASH TL-4 impact loading conditions [2]. Based on the analyses, review of the proposed details, and all available information, TTI made recommendations as necessary to improve the strength and performance of the barrier designs with respect to MASH TL-4 impact conditions. This technical report summarizes the engineering strength analyses and any recommended changes or details to improve the strength and performance of the barrier designs with respect to MASH TL-4 impact conditions. TTI will also provide a summary of its review of all available information for the barrier designs with respect to MASH TL-4 specifications in the report.

Objective

The objective of this research was to analyze the strengths of the four proposed median barrier designs considered for this project in accordance with AASHTO LRFD Section 13 specifications for MASH TL-4 impact conditions. These designs are briefly described below and shown in Figure 1 ($36-\mathrm{in}$. median barrier):

1. A 36 -in. single-slope median barrier without the longitudinal open joint (as shown in Figure 1 except no longitudinal open joint).
2. A 36 -in. single-slope median barrier with the longitudinal open joint (as shown in Figure 1).
3. A 42-in. single-slope median barrier without the longitudinal open joint (same as Figure 1 except 42 in. tall and $75 / 8$ in. wide at top).
4. A 42-in. single-slope median barrier with the longitudinal open joint (same as Figure 1 except 42 in . tall and $75 / 8 \mathrm{in}$. wide at top).

Recommendations and improvements are provided in this technical report as necessary based on the analyses performed for this project to improve the strength and performance of the barrier designs for MASH TL-4 impact conditions.

Scope

The scope of this project was to provide engineering analyses and details on the proposed median barrier designs and to prepare a technical report of the findings. A brief discussion of the tasks is presented in this section.

Task 1 - Engineering Analysis and Details

For this task, engineering strength analyses were performed on the four proposed designs considered for this project in accordance with AASHTO LRFD Section 13 specifications for MASH TL-4 impact conditions. These designs are briefly described below and shown in the figures that follow.

1. An engineering strength analysis was performed using a 36-in. single-slope median barrier without a longitudinal open joint in the deck. This analysis considered an $8.5-\mathrm{in}$. thick deck supported between two concrete girders spaced 8 ft . O/C. The barrier was anchored to the deck in the center between the two concrete girders. Appendix A provides additional details.
2. Two engineering strength analyses were performed using a 36-in. single-slope median barrier with a longitudinal open joint in the deck. These analyses considered an 11.0 -in. thick deck cantilever. The width of the deck cantilever was $4 \mathrm{ft} .11 / 2 \mathrm{in}$. wide from the centerline of the exterior girder to the edge of the deck. The barrier was anchored to the deck $1 \frac{1}{2}$ in. from the edge of the deck cantilever. Strength analyses were performed considering crash impact loading on each side of the barrier with the longitudinal joint in the deck. Appendix A provides additional details.
3. An engineering strength analysis was performed using a 42-in. single-slope median barrier without a longitudinal open joint in the deck. This analysis considered an $8.5-\mathrm{in}$. thick deck supported between two concrete girders spaced 8 $\mathrm{ft} . \mathrm{O} / \mathrm{C}$. The barrier was anchored to the deck in the center between the two concrete girders. Appendix A provides additional details.
4. Two engineering strength analyses were performed using a 42-in. single-slope median barrier with a longitudinal open joint in the deck. This analysis considered an $11.0-\mathrm{in}$. thick deck cantilever. The width of the deck cantilever was $4 \mathrm{ft} .11 / 2 \mathrm{in}$. wide from the centerline of the exterior girder to the edge of the deck. The barrier
was anchored to the deck $1 \frac{1}{2}$ in. from the edge of the deck cantilever. Strength analyses were performed considering crash impact loading on each side of the barrier with the longitudinal joint in the deck. Appendix A provides additional details, and Appendix B presents the calculations.

Engineering details were developed for each design, as necessary, to improve the strength and performance of the proposed designs with respect to MASH TL-4 impact conditions. The principal investigator worked closely with the DOTD and Louisiana Transportation Research Center (LTRC) project team to develop the details used for this project. All analyses generated for the proposed designs developed for this project were submitted to the DOTD and LTRC project team for their review and approval. These analyses are included in Appendix B.

Task 2 - Reporting

Generating a final report was part of the scope of this project. This report provides details and descriptions of the proposed median barrier designs developed for this project. This report contains all analyses done in Mathcad 8.0 format developed and generated for this project. All details developed to improve the strength and performance of the median barriers included in this project are provided in the drawings in Appendix A.

Methodology

The procedures outlined in Section 13 of the AASHTO Load and Resistance Factor Design (LRFD) Bridge Design Specifications [1] were used to perform the analyses on the median barrier designs for this project. The commercial software RISA-3D was used to perform finite element modeling of the median barrier designs and the concrete decks to determine the reactions from the barrier to the supporting concrete decks. The reactions from the barrier models were then used on separate finite element models for the supporting concrete deck structures. The bending moments in the deck from the barrier reactions were recorded and used as the demand bending moments. For the different barrier cases, the demand bending moments in the deck from the MASH TL-4 impact conditions on the barrier were then compared to the actual design bending moments that were calculated based on the deck design parameters and conditions.

Since the development of the crash testing specifications in MASH in 2009, the crash loads for TL-4 barriers have increased from those currently listed in Section 13 of the LRFD specifications [1]. In 2017, a separate research project determined the magnitude and location of the resultant force from MASH crash vehicles [3]. The design loads from this study were used in place of the LRFD Section 13 design load specifications. Table 1 provides the design loads used in the analyses for MASH TL-4 impact conditions.

Table 1. Design forces for traffic railings

Test Level	Rail Height (inch)	$\mathbf{F}_{\mathbf{t}}$ $(\mathbf{k i p})$	$\mathbf{F}_{\mathbf{L}}$ $(\mathbf{k i p})$	$\mathbf{F v}_{\mathbf{v}}$ $(\mathbf{k i p})$	$\mathbf{L}_{t} / \mathbf{L L}_{\mathbf{t}}$ $(\mathbf{f t})$	$\mathbf{L} \mathbf{v}$ $(\mathbf{f t})$	$\mathbf{H}_{\mathbf{e}}$ (inch)	$\mathbf{H}_{\text {min }}$ (inch)
TL-1	18 or above	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL-2	18 or above	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL-3	29 or above	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL-4 (a)	36	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL-4 (b)	$36-42$	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL-5 (a)	42	160.0	41.0	80.0	10.0	40.0	35.0	42.0
TL-5 (b)	Greater than 42	262.0	75.0	160.0	10.0	40.0	43.0	42.0

Engineering Analyses and Design of 36-in. and 42-in. Median Barriers for MASH TL-4 Loading Specifications

DOTD 36-in. Median Barrier with Longitudinal Joint

Details were developed for the proposed DOTD $36-\mathrm{in}$. median barrier with a $1.0-\mathrm{in}$. wide longitudinal joint. The proposed barrier will be anchored to a $4-\mathrm{ft} .1 \frac{1}{2}-\mathrm{in}$. wide deck cantilever. The thickness of the deck cantilever immediately adjacent to the $1.0-\mathrm{in}$. wide longitudinal joint is 11 in . The concrete compressive strength of the deck and barrier is 4000 psi. Details of the design are shown in Figure 2 and Figure 3. For additional information, refer to the drawings and details in Appendix A.

Figure 2. Dimensional details of 36-in. median barrier with longitudinal joint

Figure 3. Dimensional details of 36-in. median barrier with longitudinal joint

DOTD 36-in. Median Barrier without Longitudinal Joint

Details were developed for the proposed DOTD 36-in. median barrier without a $1.0-\mathrm{in}$. wide longitudinal joint adjacent to the barrier. For this case, the proposed barrier will be anchored between two girders spaced 8 ft . O/C. The thickness of the deck section between the two girders is 8.5 in . The concrete compressive strength of the deck and barrier is 4000 psi. Details of this design anchored between the girders are shown in Figure 4 and Figure 5. For additional information, refer to the drawings and details in Appendix A.

Figure 4. Dimensional details of 36-in. median barrier without longitudinal joint

Figure 5. Reinforcing details of 36-in. median barrier without longitudinal joint

DOTD 42-in. Median Barrier with Longitudinal Joint

Details were developed for the proposed DOTD $42-\mathrm{in}$. median barrier with a $1.0-\mathrm{in}$. wide longitudinal joint. The proposed barrier will be anchored to a $4-\mathrm{ft} .11 / 2-\mathrm{in}$. wide deck cantilever. The thickness of the deck cantilever immediately adjacent to the $1.0-\mathrm{in}$. wide longitudinal joint is 11 in . The concrete compressive strength of the deck and barrier is 4000 psi. Details of the design are shown in Figure 6 and Figure 7. For additional information, refer to the drawings and details in Appendix A.

Figure 6. Dimensional details of 42-in. median barrier with longitudinal joint

Figure 7. Reinforcing details of 42-in. median barrier with longitudinal joint

DOTD 42-in. Median Barrier without Longitudinal Joint

Details were developed for the proposed DOTD 42-in. median barrier without a $1.0-\mathrm{in}$. wide longitudinal joint adjacent to the barrier. For this case, the proposed barrier will be anchored between two girders spaced 8 ft . O/C. The thickness of the deck section between the two girders is 8.5 in . The concrete compressive strength of the deck and barrier is 4000 psi. Details of this design anchored between the girders are shown in Figure 8 and Figure 9. For additional information, refer to the drawings and details in Appendix A.

Figure 8. Dimensional details of 42-in. median barrier without longitudinal joint

Figure 9. Reinforcing details of 42-in. median barrier without longitudinal joint

Finite Element Modeling of Barriers Using RISA-3D

The barriers were separated from the deck and modeled independently using meshed solid elements with the commercial structural analysis program RISA-3D. Figure 10 shows the overview of the barrier finite element analysis (FEA) model of a typical barrier modeled with the loads applied at the end-section and mid-span areas of the barrier. The design loads provided in Table 1 for both the $36-\mathrm{in}$. and 42 -in. barriers were used in the FEA models.

The length of the model was set as 50 ft . to ensure the barriers have sufficient length to distribute the transverse impact load at the end-section and the mid-span, and the engaged areas do not interfere with each other. After the project meeting on November 22, 2022, 40 ft . long minimum median barrier sections were analyzed for both the end and midspan loading cases for the $42-\mathrm{in}$. barrier design. The reaction loads from the FEA analyses using the shorter $40-\mathrm{ft}$. long sections were the same as the $50-\mathrm{ft}$. long sections that were analyzed for this project. In summary, $40-\mathrm{ft}$. long minimum sections can be used for this project.

The width of the solid elements was 6 in. in the longitudinal direction to represent the spacing of the deck anchorage vertical reinforcement. The barrier models were supported at two locations to represent the vertical deck anchorage into the barriers. As depicted in Figure 11, the two legs of the anchorage reinforcement were set as the supporting points at the base of the barrier to achieve the transfer of the loadings from the barriers to the deck. Pinned supports were used to represent these anchoring locations.

Figure 12 shows the schematic of the barrier FEA models for both $36-\mathrm{in}$. and $42-\mathrm{in}$. barriers. In the transverse direction shown in Figure 12, the width of the element at the base layer was set as 3 in . and gradually decreased over the height of the barrier. The transverse MASH TL-4 impact loads were applied at the side of the barrier at the corresponding H_{e} heights provided in Table 1.

Figure 10. Overview of barrier FEA model

Figure 11. Schematic of barrier cross section

Figure 12. Schematic of barrier FEA model

(a) 36-in. barrier

(b) 42-in. barrier

Figure 13 presents the reactions from the barrier FEA model from the applied MASH TL-4 impact loads. The reactions at the two supporting points at every transverse plane
typically had identical magnitudes with opposite directions. The figure also presents how the transverse impact loads at the end-section and the mid-span disturbed over the length of the barrier. It was apparent from the modeling efforts that the engaged areas for the distribution of the reactions to the deck for both the end-section and the mid-span loading cases did not interfere with each other.

Figure 13. Reaction of barrier FEA model (Typical)

Figure 14 and Figure 15 plot the reactions from the barrier FEA models loaded at the end-section and the mid-span sections, respectively. The reactions were plotted over the
length of the barrier. The plots present the absolute magnitude of the reactions at a single supporting point.

Figure 14. Reaction of barrier FEA model - Load at end-section

Figure 15. Reaction of barrier FEA model - Load at mid-span

Finite Element Modeling of 36-in. and 42-in. Median Barriers on Deck Sections Using RISA-3D

The deck was modeled using meshed plate elements with RISA-3D. The reactions from the barrier solid models were applied to the deck plate models at the corresponding locations to achieve the deck bending moment demand.

Figure 16 shows an overview of the exterior deck plate model. The length of the plate models were set to 50 ft ., the same as the length of the barrier solid models. The width of the exterior plate models (designs incorporating the open longitudinal joints) was set as 4 ft . to represent the distance from the free end of the deck to the center of the adjacent girder. The joint sides of the deck, both longitudinal and transverse, were set as free (no supports). A $6-\mathrm{in} . \times 6$-in. element size was used for the plate model, while the plate elements at the barrier location were set as $6-\mathrm{in} . \times 3-\mathrm{in}$. elements to align with the barrier solid models.

Figure 16. Exterior plate FEA model

Figure 17 shows the overview of the interior plate model. The interior model is similar to the exterior model except the interior model uses fixed supports at three sides, as shown in Figure 17. The long sides were fixed to simulate the rigid connection to stiff concrete girders. The width of the interior plate model was set as 8 ft . to represent the center-tocenter spacing of the girders.

The reactions from the barrier solid models were then applied to the deck plate models, as shown in Figure 18. Three analysis cases were generated for each barrier model:
(a) exterior plate with impact load from right side, (b) exterior plate with impact load from left side, and (c) interior plate.

Figure 17. Interior plate FEA model

Fixed support

Figure 18. Loadings on plate FEA models (Typical)

Figure 19 and Figure 20 present the moment analysis results from the deck plate models for the $36-\mathrm{in}$. and $42-\mathrm{in}$. median barriers, respectively. Table 2 summarizes the maximum
plate moment demand for each analysis case. For all the analysis cases, the exterior barrier loaded from the right side was the critical case.

The moment demands achieved from the plate analyses were used to evaluate the sufficiency of the deck reinforcement designs.

Figure 19. Plate model analysis results for 36-in. median barrier

(a) Exterior plate moment load from inside barrier

(b) Exterior plate moment load from outside barrier

(c) Interior plate moment

Figure 20. Plate model analysis results for 42-in. median barrier

(a) Exterior plate moment load from inside barrier

(b) Exterior plate moment load from outside barrier

(c) Interior plate moment

Table 2. Plate model analysis results

Analysis No.	Description	Loading Location	Max. Plate Moment (kip-ft./ft.)
1	Exterior 36-in. barrier	End-Section	28.2
	Load from right side	Mid-Span	16.7
2	Exterior 36-in. barrier	End-Section	25.2
	Load from left side	Mid-Span	14.2
3	Interior 36-in. barrier	End-Section	12.2
		Mid-Span	7.9
4	Exterior 42-in. barrier	End-Section	35.3
	Load from right side	Mid-Span	21.8
5	Exterior 42-in. barrier	End-Section	31.2
	Load from left side	Mid-Span	19.1
6	Interior 42-in. barrier	End-Section	15.0
		Mid-Span	9.9

Summary of Analyses for the 36-in. and 42-in. Median Barriers (Six Analyses)

Engineering strength analyses were performed on the $36-\mathrm{in}$. and $42-\mathrm{in}$. median barriers for this project. The procedures outlined in Section 13 of the AASHTO Load and Resistance Factor Design (LRFD) Bridge Design Specifications [1] were used to perform the analyses on the median barrier designs for this project. The commercial software RISA-3D was used to perform finite element modeling of the median barrier designs and the concrete decks for this project. Finite element modeling was performed on the median barrier designs to determine the reactions from the barriers to the supporting concrete decks. The reactions from the median barrier models were then used on separate finite element models for the supporting concrete deck structures. The bending moments in the deck from the barrier reactions were recorded and used as the demand bending moments. For the different median barrier cases, these demand bending moments in the deck from the MASH TL-4 impact conditions on the barrier were then compared to the actual design bending moments that were calculated based on the concrete deck design parameters and conditions provided for this project.

Since the development of the crash testing specifications in MASH in 2009, the crash loads for TL-4 barriers have increased from those currently listed in the LRFD Section 13 specifications. In 2017, a separate research project determined the magnitude and location of the resultant force from the MASH crash vehicles [3]. The design loads from this study were used in place of the current design loads listed in the LRFD Section 13 specifications. The design loads used in the analyses for MASH TL-4 impact conditions
are provided in Table 1. The strength of the median barriers for this project were calculated at the effective load heights H_{e} listed in Table 1. These calculated strengths were then compared to the required strengths at H_{e} listed in Table 1. In all six cases, the calculated strengths of the barrier designs exceeded the required strengths listed in Table 1. The calculations presented in Appendix B provide more information.

The overall analysis results for both $36-\mathrm{in}$. and $42-\mathrm{in}$. median barriers are presented in this section. For each analysis case, barrier ultimate resistance, punching shear capacity, and deck moment capacity were evaluated at end-section and mid-span based on AASHTO LRFD Section 13 and Section 5. Table 3 through Table 5 present the analysis results for $36-\mathrm{in}$. median barriers, and Table 6 through Table 8 present the analysis results for 42 -in. median barriers. The detailed calculations for these barriers are provided in Appendix B.

Table 3. DOTD 36-in. median barrier with longitudinal joint right side (Opposite Joint Impact)

Component Strength	End-Section			Mid-Span		
	Capacity (C)	Demand (D)	C/D	Capacity (C)	Demand (D)	C/D
Barrier Ultimate Resistance (kip)	154	68	2.26	187	68	2.75
Barrier Punching Shear Capacity (kip)	201	68	2.96	268	68	3.94
Deck Moment Capacity (kip-ft/ft)	49	25	1.96	49	14	3.50

Table 4. DOTD 36-in. median barrier with longitudinal joint left side (Longitudinal Joint Side Impact)

Component Strength	End-Section			Mid-Span		
	Capacity (C)	Demand (D)	C/D	Capacity (C)	Demand (D)	C/D
Barrier Ultimate Resistance (kip)	154	68	2.26	187	68	2.75
Barrier Punching Shear Capacity (kip)	201	68	2.96	268	68	3.94
Deck Moment Capacity (kip-ft/ft)	43	28	1.54	43	17	2.53

Table 5. DOTD 36-in. median barrier without longitudinal joint

Component Strength	End-Section			Mid-Span		
	Capacity (C)	Demand (D)	C/D	Capacity (C)	Demand (D)	C/D
Barrier Ultimate Resistance (kip)	154	68	2.26	187	68	2.75
Barrier Punching Shear Capacity (kip)	201	68	2.96	268	68	3.94
Deck Moment Capacity (kip-ft/ft)	17	12	1.42	17	8	2.13

Table 6. DOTD 42-in. median barrier with longitudinal joint right side (Opposite Joint Impact)

Component Strength	End-Section			Mid-Span		
	Capacity (C)	Demand (D)	C/D	Capacity (C)	Demand (D)	C/D
Barrier Ultimate Resistance (kip)	144	80	1.80	172	80	2.15
Barrier Punching Shear Capacity (kip)	185	80	2.31	234	80	2.93
Deck Moment Capacity (kip-ft/ft)	49	32	1.53	49	19	2.58

Table 7. DOTD 42-in. median barrier with longitudinal joint left side (Longitudinal Joint Side Impact)

Component Strength	End-Section			Mid-Span		
	Capacity (C)	Demand (D)	C/D	Capacity (C)	Demand (D)	C/D
Barrier Ultimate Resistance (kip)	144	80	1.80	172	80	2.15
Barrier Punching Shear Capacity (kip)	185	80	2.31	234	80	2.93
Deck Moment Capacity (kip-ft/ft)	43	35	1.23	43	22	1.95

Table 8. DOTD 42-in. median barrier without longitudinal joint

Component Strength	End-Section			Mid-Span		
	Capacity (C)	Demand (D)	C/D	Capacity (C)	Demand (D)	C/D
Barrier Ultimate Resistance (kip)	144	80	1.80	172	80	2.15
Barrier Punching Shear Capacity (kip)	185	80	2.31	234	80	2.93
Deck Moment Capacity (kip-ft/ft)	18	15	1.20	18	10	1.80

Discussion of Results

Based on the results of the analyses performed for this project, the details shown for the $36-\mathrm{in}$. and $42-\mathrm{in}$. high median barriers presented herein are acceptable for MASH TL-4 impact conditions. The reinforcing steel shown on the drawings in this report for the decks are also acceptable for MASH TL-4 impact conditions. For both the 36-in. and 42in. median barrier designs:

1. Vertical No. 4 stirrup should be spaced 6 in. O / C from the end of the barrier sections for a minimum distance of 10 ft . After 10 ft . from the ends, these No. 4 stirrups should be spaced on 12 in . O/C.
2. For the 42 -in. median barriers, six equally spaced longitudinal No. 4 bars should be provided on each face and located within the No. 4 stirrups. A total of 12 longitudinal bars should be provided for the $42-\mathrm{in}$. high median barriers for this project.
3. For the 36 -in. median barriers, five equally spaced longitudinal No. 4 bars should be provided on each face and located within the No. 4 stirrups. Ten longitudinal bars should be provided for the $36-\mathrm{in}$. high median barriers for this project.
4. For this project, a minimum section length of 40 ft . is recommended for all designs.
5. The drawings and details in Appendix A provide additional information.
6. The designs of the barriers and decks, as shown in the drawings in Appendix A, are acceptable for MASH TL-4 impact conditions.
7. The calculations for the median barrier designs in Appendix B provide additional information.

The designs provided herein for the $36-\mathrm{in}$. and $42-\mathrm{in}$. median barriers meet the strength and performance criteria for MASH TL-4. In all cases provided in the previous tables, the capacities of the barriers and decks exceed the demand strengths for MASH TL-4 impact conditions.

Conclusions

Based on the results of the analyses performed for this project, the details shown for the $36-\mathrm{in}$. and $42-\mathrm{in}$. high median barriers presented herein are acceptable for MASH TL-4 impact conditions. The reinforcing steel shown on the drawings in this report for the concrete decks associated with the median barrier designs are also acceptable for MASH TL-4 impact conditions. The drawings and details in Appendix A and the calculations in Appendix B provide additional information.

Recommendations

Based on the results of the analyses performed for this project, the details shown for the $36-\mathrm{in}$. and 42 -in. high median barriers presented herein are acceptable for MASH TL-4 impact conditions. It is therefore recommended that these barriers, as detailed herein, be used for MASH TL-4 impact conditions. The reinforcing steel shown on the drawings in this report for the concrete decks are also acceptable for MASH TL-4 impact conditions. For both the $36-\mathrm{in}$. and the $42-\mathrm{in}$. barriers planned for this project, the drawings and details in Appendix A provide additional information. A minimum barrier length of 40 ft . is recommended for the barriers analyzed for this project.

Acronyms, Abbreviations, and Symbols

Term	Description
AASHTO	American Association of State Highway and Transportation Officials
FEA	Finite Element Analysis
ft.	foot (feet)
in.	inch(es)
DOTD	Louisiana Department of Transportation and Development
LRFD	Load and Resistance Factor Design
LTRC	Louisiana Transportation Research Center
lb.	Pound(s)
MASH	Manual for Assessing Safety Hardware
psi	Pound per square inch
SSTR	Single-Slope Traffic Rail
TL-4	Test Level 4
TTI	Texas A\&M Transportation Institute
TxDOT	Texas Department of Transportation

References

[1] AASHTO, Load and Resistance Factor Design (LRFD) Bridge Design Specifications, Washington, DC: AASHTO, 2020.
[2] AASHTO, Manual for Assessing Safety Hardware, Second Edition, Washington, DC: AASHTO, 2016.
[3] S. Silvestri-Dobrovolny, N. Schulz, S. Moran, T. Skinner, R. Bligh and W. Willliams, NCHRP Report 20-07, Task 395: MASH Equivalency of NCHRP Report 350 Approved Bridge Railings, College Station, TX: Texas A\&M Transportation Institute, 2017.

Appendix A - Drawings and Details

SECTION A-A SCALE 1 : 20

\#4 U-BAR DETAILS

Texas A\&M Transportation Transpor

Roadside Safety and Physical Security Division Project 617971 LADOTD 36" MED. BARRIER w/ LONG. JOINT Drawn By WILLIAMS Scale 1:10 Sheet 5 of 5 REBAR Approved: Approved:
WILLIAM Willams: Wílliam Wúllíams 2022-11-18

Texas A\&M Transportation Security Division
Project 617971 Institite LADOTD TL-4 36" MEDIAN BARPIER
Drawn By WILLIAMS Scale 1:40 Sheet 3 of 5 ELEV
Approved:
EL
william willams: William Williams 2022-11-18

Appendix B - Calculation Worksheets

SUBJECT: $\quad 36^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

Overview:

These calcualtions evaluate the strength of the given barrier design for MASH TL-4 impact load condtions.

- 36" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from the Barrier Left Side in the Section View below.

Design Details:

Section View (a)

SUBJECT: $\quad 36^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

Section View (b)

Elevation

2
SUBJECT: $\quad 36^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

Iso View

Texas A\&M Transportation Institute

SUBJECT: $\quad 36^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

(1) Define Inputs:

(1a) General Inputs:

$\mathrm{f}^{\prime}:=4000$ psi		Compressive strength cf concrete
$\mathrm{f}_{\mathrm{y}}:=60 k s i$		Yield strength reir forcing steel
$\mathrm{E}_{\mathrm{s}}:=29000 k s i$		Modulus cf elasticity cf steel
$\mathrm{H}_{\mathrm{w}}:=36 \mathrm{in}$		Height cf barrier
$\mathrm{T}_{\mathrm{w} . \text { top }}:=10 \mathrm{in}$		Top width of barrier
$\mathrm{T}_{\mathrm{w} \text {.bot }}:=24 \mathrm{in}$		Bottom width cf barrier
$\mathrm{t}_{\mathrm{s}}:=11 \mathrm{in}$		Depth ¢f deck
$\mathrm{d}_{\# 4}:=0.5 \mathrm{in}$; $\mathrm{A}_{\# 4}:=0.2 \mathrm{in}^{2}$	Diameter and section area cf \#4 bar
$\mathrm{d}_{\# 5}:=0.625$ in	; $\mathrm{A}_{\# 5}:=0.31 \mathrm{in}^{2}$	Diameter and section area cf \#5 bar

Figure 1. Sketch cf Concrete Wall/Parapet Showing Input Variable

SUBJECT: $36^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

(1b) Concrete Barrier Inputs:

$\mathrm{t}_{\mathrm{b} . \mathrm{cov}}:=1.5$ in \quad Concrete clear cover cf barrier

Barrier vertical reinforcement inputs (\#4 bars):
$\mathrm{A}_{\mathrm{vpl} . \mathrm{mid}}:=0.2 \mathrm{in}^{2} \quad$ Area cfone barrier vertical reir forcement leg at midspan
$\mathrm{S}_{\mathrm{vp} . \mathrm{mid}}:=12$ in \quad Spacing cfbarrier vertical reir forcement at midspan
$\mathrm{d}_{\mathrm{cp} . \mathrm{mid}}:=15.25$ in \quad Average extreme distance \subset f barrier vertical reir forcement at midspan
$\mathrm{A}_{\mathrm{vpl} . \mathrm{end}}:=0.2 \mathrm{in}^{2} \quad$ Area cfone barrier vertical reir forcement leg at joints/ends
$\mathrm{S}_{\mathrm{vp} . \mathrm{end}}:=6$ in Spacing cf barrier vertical reinforcement at joints/ends
$\mathrm{d}_{\mathrm{cp.end}}:=15.25$ in \quad Average extreme distance cf barrier vertical reir forcement at joints/ends

Deck anchorage reinforcement inputs (\#4 bars):

$\mathrm{A}_{\text {val.mid }}:=0.2 \mathrm{in}^{2}$	Area cfone deck anchorage vertical reir forcement leg at midspan
$\mathrm{S}_{\text {va.mid }}:=6 \mathrm{in}$	Spacing of deck anchorage vertical reir forcement at midspan
$\mathrm{d}_{\text {ca.mid }}:=22.25 \mathrm{in}$	Extreme distance cf tension deck anchorage reir forcement at midspan
$\mathrm{A}_{\text {val.end }}:=0.2 \mathrm{in}^{2}$	Area cfone deck anchorage vertical reir forcement leg at joints/ends
$\mathrm{S}_{\text {va.end }}:=6 \mathrm{in}$	Spacing cf deck anchorage vertical reir forcement at joints/ends
$\mathrm{d}_{\text {ca.end }}:=22.25 \mathrm{in}$	Extreme distance cf tension deck anchorage reirforcement at joints/ends

Barrier Longitudinal reinforcement inputs ($\# 4$ bars):
$\mathrm{A}_{\mathrm{w}}:=0.2 \cdot 5 \mathrm{in}^{2}=1 \mathrm{in}^{2}$
Area cflongitudinal reir forcement bars in tension
$\mathrm{d}_{\mathrm{w}}:=14.75 \mathrm{in}$
Average extreme distance cf tension longitudinal reir forcement

SUBJECT: $\quad 36^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

(1c) Concrete Deck Inputs:

$\mathrm{t}_{\text {s.cov.bot }}:=1.5 \mathrm{in}$	Concrete clear cover cf deck at bottom
$\mathrm{d}_{\text {s.bot }}:=9.1875$ in	Extreme distance cf deck flexural reir forcement at bottom
$\mathrm{A}_{\text {s.bot }}:=0.31 \mathrm{in}^{2}$	Section area cf deck flexural reinforcement at bottom (single bar)
$\mathrm{S}_{\text {s.bot }}:=3$ in	Spacing cf deck flexural reirforcement at bottom
$\mathrm{t}_{\text {s.cov.top }}:=2.5 \mathrm{in}$	Concrete clear cover cf deck at top
$\mathrm{d}_{\text {s.top }}:=8.1875$ in	Extreme distance cf deck flexural reir forcement at top
$\mathrm{A}_{\text {s.top }}:=0.31 \mathrm{in}^{2}$	Section area cfdeck flexural reir forcement at top (single bar)
$\mathrm{S}_{\text {s.top }}:=3$ in	Spacing of deck flexural reirforcement at top

(1d) Design Force Inputs:

Design Forces for Traffic Railings

Test Level	Rail Height (in.)	$\mathbf{F}_{\mathbf{t}}(\mathbf{k i p})$	$\mathbf{F}_{\mathbf{L}}(\mathbf{k i p})$	$\mathbf{F}_{\mathbf{r}}(\mathbf{k i p})$	$\mathbf{L}_{\mathbf{L}} \mathbf{L}_{\mathbf{L}}(\mathbf{f t})$	$\mathbf{L}_{\mathbf{r}}(\mathbf{f t})$	$\mathbf{H}_{\boldsymbol{e}}$ (in)	$\mathbf{H}_{\text {min }}$ (in)
TL-1	18 or above	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL-2	18 or above	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL-3	29 or above	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL-4 (a)	36	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL-4 (b)	between 36 and 42	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL-5 (a)	42	160.0	41.0	80.0	10.0	40.0	35.0	42.0
TL-5 (b)	greater than 42	262.0	75.0	160.0	10.0	40.0	43.0	42.0
TL 6		175.0	58.0	80.0	8.0	40.0	56.0	90.0

References:

- TL-1 and TL-2 Design Forces are from AASHTO LRFD Section 13 Table A13.2-1
- TL-3 Design Forces are from research conducted under NCHRP Project 20-07 Task 395
- TL-4 (a), TL-4 (b), TL-5 (a), and TL-5 (b) Design Forces are from research conducted under NCHRP Project 22-20(2)

TL: $=4$
$\mathrm{F}_{\mathrm{t}}:=68$ kip \quad Transverse impact force
$\mathrm{L}_{\mathrm{t}}:=4 f t$
$\mathrm{H}_{\mathrm{e}}:=25$ in

Test level

Longitudinal length cf distribution cf impact force
Height cf equivalent transverses load

SUBJECT: $36^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

$\mathrm{H}_{\min }:=36$ in	Minimum height cf a MASH TL-4 barrier
$\mathrm{H}_{\mathrm{w}}=36$ in	Height cf concrete barrier

(2) Stability Criteria:

$\mathrm{H}_{\mathrm{min}}=36$ in	Minimum height cfa MASH TL-4 barrier	
$\mathrm{H}_{\mathrm{w}}=36$ in	Height cf concrete barrier measured from the top cf the roadway surface/asphalt overlay	
Minimum_Height_of_Barrier_Check := if $\mathrm{H}_{\mathrm{w}} \geq \mathrm{H}_{\mathrm{min}}$		
	$\\|$ "OK"	
else		
	$\\|$ "Not OK"	

Minimum_Height_of_Barrier_Check = "OK"
(3) LRFD Strength Analysis of the Barrier per AASHTO Section 13 Specification:
(3a) Bending Capacity of the Barrier about the Longitudinal Axis at Midspan: Mcmid (k-ft/ft)

For parapet vertical reinforcement:

$\mathrm{b}_{\mathrm{c}}:=12$ in	Unit width cf wall (take as 1 ft per AASHTO Section 13 procedurt)
$\mathrm{A}_{\mathrm{vpl.mid}}=0.2 \mathrm{in}^{2}$	Area cfone parapet vertical reir forcement leg at midspan
$\mathrm{S}_{\mathrm{vp} . \mathrm{mid}}=12 \mathrm{in}$	Spacing cf parapet vertical reir forcement at midspan

$\mathrm{A}_{\mathrm{vp} . \text { mid }}:=\left(\frac{\mathrm{b}_{\mathrm{c}}}{\mathrm{S}_{\mathrm{vp} . \text { mid }}}\right) \cdot \mathrm{A}_{\text {vpl.mid }}=0.2 \mathrm{in}^{2}$
Total area cf parapet vertical reir forcement per unit length at midspan
$\mathrm{d}_{\mathrm{cp} . \mathrm{mid}}=15.25$ in \quad Average extreme distance cf parapet vertical reir.forcement at midspan
$\mathrm{a}_{\text {cp.mid }}:=\frac{\mathrm{A}_{\mathrm{vp} . \mathrm{mid}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.294$ in \quad Depth cf Whitney stress block

$$
\mathrm{M}_{\text {cp.mid }}:=\frac{\left(\mathrm{A}_{\mathrm{vp} . \mathrm{mid}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{~d}_{\text {cp.mid }}-\frac{\mathrm{a}_{\text {cp.mid }}}{2}\right)\right)}{\mathrm{b}_{\mathrm{c}}}=15.103 \frac{\mathrm{kip} \cdot \mathrm{ft}}{\mathrm{ft}}
$$

Flexural resistance cf the barrier about the longitudinal axis at midspan when considering only the parapet vertical reir forcement spec fied in Article A 13.3.1 (k-fifif)

For deck anchorage reinforcement:

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{c}}=12 \text { in Unit width (f wall (take as I ft per AASHTO Section } 13 \text { procedur) } \\
& \mathrm{A}_{\mathrm{val} . \mathrm{mid}}=0.2 \mathrm{in}^{2} \quad \text { Area cfone deck anchorage vertical reir.forcement leg at midspan } \\
& \mathrm{S}_{\text {va.mid }}=6 \text { in Spacing } \subset f \text { deck anchorage vertical reir forcement at midspan } \\
& \mathrm{A}_{\text {va.mid }}:=\left(\frac{\mathrm{b}_{\mathrm{c}}}{\mathrm{~S}_{\text {va. .mid }}}\right) \cdot \mathrm{A}_{\text {val.mid }}=0.4 \text { in }^{2} \\
& \text { Total area cf deck anchorage vertical reir forcement per unit length at } \\
& \text { midspan } \\
& \mathrm{d}_{\text {ca.mid }}=22.25 \text { in } \quad \text { Extreme distance cf tension deck anchorage vertical reir forcement at midspan } \\
& \mathrm{a}_{\text {ca.mid }}:=\frac{\mathrm{A}_{\text {va.mid }} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.588 \text { in } \quad \text { Depth cf Whitney stress block } \\
& \mathrm{M}_{\text {ca.mid }}:=\frac{\left(\mathrm{A}_{\text {va. } \mathrm{mid}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{~d}_{\text {ca.mid }}-\frac{\mathrm{a}_{\text {ca.mid }}}{2}\right)\right)}{\mathrm{b}_{\mathrm{c}}}=43.912 \frac{\mathrm{kip} \cdot \mathrm{ft}}{\mathrm{ft}} \\
& \text { Flexural resistance cf the barrier about the longitudinal axis at midspan } \\
& \text { when considering only the deck anchorage reirforcement spec:fied in } \\
& \text { Article A 13.3.1 (k-fifif) } \\
& \mathrm{M}_{\text {c.mid }}:=\min \left(\mathrm{M}_{\text {cp.mid }}, \mathrm{M}_{\text {ca.mid }}\right)=15.103 \frac{\mathrm{kip} \cdot f t}{f t} \\
& \text { Flexural resistance cf the barrier about the longitudinal axis at midspan } \\
& \text { when considering the critical reir forcement }
\end{aligned}
$$

SUBJECT: 36" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

(3b) Bending Capacity of the Barrier about the Longitudinal Axis at Joints/Ends: Mecnd (k-ft/ft)

For parapet vertical reinforcement:
$\mathrm{A}_{\mathrm{vpl} . \mathrm{end}}=0.2 \mathrm{in}^{2} \quad$ Area cfone parapet vertical reir forcement leg at joints/ends
$\mathrm{S}_{\mathrm{vp} . \mathrm{end}}=6$ in Spacing cfparapet vertical reirforcement at joints/ends
$\mathrm{A}_{\mathrm{vp}, \mathrm{end}}:=\left(\frac{\mathrm{b}_{\mathrm{c}}}{\mathrm{S}_{\mathrm{vp}, \mathrm{end}}}\right) \cdot \mathrm{A}_{\mathrm{vpl} . \mathrm{end}}=0.4$ in $^{2} \quad \begin{aligned} & \text { Total area cf deck anchorage vertical reir forcement } \\ & \text { per unit length at midspan }\end{aligned}$
$\mathrm{d}_{\mathrm{cp} . \mathrm{end}}=15.25$ in \quad Average extreme distance cf parapet vertical reir forcement at joints/ends
(at barrier mid-heigh)
$\mathrm{a}_{\text {cp.end }}:=\frac{\mathrm{A}_{\mathrm{vp} . \mathrm{end}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.588$ in \quad Depth of Whitney stress block
$\mathrm{M}_{\mathrm{cp} . \mathrm{end}}:=\frac{\left(\mathrm{A}_{\mathrm{vp} . \mathrm{end}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{d}_{\mathrm{cp} . \text { end }}-\frac{\mathrm{a}_{\text {cp.end }}}{2}\right)\right)}{\mathrm{b}_{\mathrm{c}}}=29.912 \frac{\mathrm{kip} \cdot \mathrm{ft}}{\mathrm{ft}}$

Flexural resistance of the barrier about the longitudinal axis at Joints/ Ends when considering only the deck anchorage reir forcement spec fied in Article A 13.3 .1 (k-ft fi)

For deck anchorage reinforcement:

$\mathrm{A}_{\text {val.end }}=0.2 \mathrm{in}^{2}$	Area cfone deck anchorage vertical reirforcement leg at joints/ends
$\mathrm{S}_{\text {va. } \mathrm{end}}=6 \mathrm{in}$	Spacing cf deck anchorage vertical reir forcement at joints/ends
$\mathrm{A}_{\text {va.end }}:=\left(\frac{\mathrm{b}_{\mathbf{c}}}{\mathrm{S}_{\text {va.end }}}\right) \cdot \hat{A}$	$\cdot \begin{array}{ll} -\mathrm{A}_{\text {val.end }}=0.4 \text { in }^{2} \quad \begin{array}{l} \text { Total area cf deck anchorage vertical reir forcement } \\ \text { per unit length at joints/ends } \end{array} \end{array}$
$\mathrm{d}_{\text {ca.end }}=22.25 \mathrm{in}$	Extreme distance cf tension deck anchorage vertical reir forcement at joints/ends

SUBJECT: 36" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)
$\mathrm{a}_{\text {ca.end }}:=\frac{\mathrm{A}_{\text {va.end }} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.588$ in \quad Depth cf Whitney stress block

Flexural resistance of the barrier about the longitudinal axis at Joints/
Ends when considering only the deck anchorage reirforcement spec fied in Article A 13.3.1 (k-ft.fi)
$\mathrm{M}_{\text {c.end }}:=\min \left(\mathrm{M}_{\text {cp.end }}, \mathrm{M}_{\text {ca.end }}\right)=29.912 \frac{\mathrm{kip} \cdot f t}{\mathrm{ft}}$

Flexural resistance of the barrier about the longitudinal axis at joints/ends when considering the critical reir forcement

(3c) Bending Capacity of the Barrier about the Vertical Axis: Mw

$\mathrm{d}_{\mathrm{w}}=14.75$ in $\quad E_{j}$ fective depth cflongitudinal reir forcement bars
$\mathrm{A}_{\mathrm{w}}=1 \mathrm{in}^{2} \quad$ Area cflongitudinal reir forcement bars in tension
$\mathrm{H}_{\mathrm{w}}=36$ in Extreme distance cf tension longitudinal rein forcement cf barrier
$\mathrm{a}_{\mathrm{w}}:=\frac{\mathrm{A}_{\mathrm{w}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{H}_{\mathrm{w}}}=0.49$ in \quad Depth cf Whitney stress block
$\mathrm{M}_{\mathrm{w}}:=\mathrm{A}_{\mathrm{w}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{d}_{\mathrm{w}}-\frac{\mathrm{a}_{\mathrm{w}}}{2}\right)=72.525 \mathrm{kip} \cdot f t \quad \begin{aligned} & \text { Flexural resistance of the barrier about the } \\ & \text { vertical axis spec. fied in Article A 13.3.1 }\end{aligned}$

SUBJECT: $\quad 36^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)
(3d) Ultimate Resistance of the Wall at Midspan: Rw.mid

$\mathrm{H}_{\mathrm{w}}=36$ in	Height cfbarrier
$\mathrm{M}_{\mathrm{B}}:=0$ kip $\cdot f t$	No additional beam strength
$\mathrm{M}_{\mathrm{c} . \mathrm{mid}}=15.103 \frac{\text { kip } \cdot f t}{f t}$	Flexural resistance about the long. axis at midspan

$\mathrm{M}_{\mathrm{w}}=72.525$ kip $\cdot \mathrm{ft} \quad$ Flexural resistance about the vert.
 axis
$\mathrm{L}_{\mathrm{t}}=4 \mathrm{ft} \quad$ Long. length cf distribution $c f$ impact force

Figure 2. Yield Line Analysis cf Concrete Parapet Walls for Impact within Wall Segment figure taken from AASHTC).

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{c} . \text { mid }}:=\frac{\mathrm{L}_{\mathrm{t}}}{2}+\sqrt{\left(\frac{\mathrm{L}_{\mathrm{t}}}{2}\right)^{2}+\frac{8 \cdot \mathrm{H}_{\mathrm{w}} \cdot\left\langle\mathrm{M}_{\mathrm{B}}+\mathrm{M}_{\mathrm{w}}\right)}{\mathrm{M}_{\mathrm{c} . \text { mid }}}}=12.92 \mathrm{ft} \quad \text { AASHTO Equation A13.3.I-2 } \\
& \mathrm{R}_{\mathrm{w} . \text { mid }}:=\left(\frac{2}{2 \cdot \mathrm{~L}_{\mathrm{c} . \text { mid }}-\mathrm{L}_{\mathrm{t}}}\right) \cdot\left(8 \cdot \mathrm{M}_{\mathrm{B}}+8 \cdot \mathrm{M}_{\mathrm{w}}+\frac{\mathrm{M}_{\mathrm{c} . \text { mid }} \cdot\left(\mathrm{L}_{\mathrm{c} . \text { mid }}\right)^{2}}{\mathrm{H}_{\mathrm{w}}}\right) \cdot \frac{\mathrm{H}_{\mathrm{w}}}{\mathrm{H}_{\mathrm{e}}}=187.326 \mathrm{kip} \\
& \text { AASHTO Equation Al3.3.I-I }
\end{aligned}
$$

(3e) Ultimate Resistance of the Wall at Joints/Ends: Rw.end

Figure 3. Yield Line Analysis of Concrete Parapet Walls for Impact near End cf Wall Segment (figure taken from AASHTC)

$\mathrm{H}_{\mathrm{w}}=36 \mathrm{in}$	Height cf barrier
$\mathrm{M}_{\mathrm{B}}:=0 \mathrm{kip} \cdot \mathrm{ft}$	No additional beam strength
$\mathrm{M}_{\mathrm{c} . \text { end }}=29.912 \frac{\mathrm{kip} \cdot \mathrm{ft}}{\mathrm{ft}}$	Flexural resistance about the long. axis at joints/ends
$\mathrm{M}_{\mathrm{w}}=72.525 \mathrm{kip} \cdot \mathrm{ft}$	Flexural resistance about the vert. axis
$\mathrm{L}_{\mathrm{t}}=4 \mathrm{ft}$	Long. length cf distribution cf impact force

SUBJECT: 36" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

$$
\begin{aligned}
& \mathrm{L}_{\text {c.end }}:=\frac{\mathrm{L}_{\mathrm{t}}}{2}+\sqrt{\left(\frac{\mathrm{L}_{\mathrm{t}}}{2}\right)^{2}+\frac{\mathrm{H}_{\mathrm{w}} \cdot\left(\mathrm{M}_{\mathrm{B}}+\mathrm{M}_{\mathrm{w}}\right)}{\mathrm{M}_{\mathrm{c} . \mathrm{end}}}}=5.358 \mathrm{ft} \\
& \mathrm{R}_{\mathrm{w} . \mathrm{end}}:=\left(\frac{2}{2 \cdot \mathrm{~L}_{\mathrm{c} . \mathrm{end}}-\mathrm{L}_{\mathrm{t}}}\right) \cdot\left(\mathrm{M}_{\mathrm{B}}+\mathrm{M}_{\mathrm{w}}+\frac{\mathrm{M}_{\mathrm{c} . \mathrm{end}} \cdot\left(\mathrm{~L}_{\mathrm{c} . \mathrm{end}}\right)^{2}}{\mathrm{H}_{\mathrm{w}}}\right) \cdot \frac{\mathrm{H}_{\mathrm{w}}}{\mathrm{H}_{\mathrm{e}}}=153.847 \mathrm{kip} \\
& \text { AASHTO Equation A13.3.1-4 }
\end{aligned}
$$

(3) LRFD Strength Analysis of the Barrier per AASHTO Section 13 Specification -

Summary of Results:

$\mathrm{H}_{\mathrm{w}}=36 \mathrm{in}$	Height cf the concrete barrier measured from the top cf the roadway sur face
$\mathrm{H}_{\mathrm{e}}=25 \mathrm{in}$	Height of the transverse impact force, Ft

Structural_Capacity_of_Barrier_at_Midspan_Check:= if $R_{w . m i d}>F_{t}$
$\|$ "OK"
else
$\|$ "Not OK"

Structural_Capacity_of_Barrier_at_Midspan_Check = "OK"

Structural_Capacity_of_Barrier_at_Ends_Check:= if $R_{w . e n d}>F_{t}$

$$
\begin{aligned}
& \| \text { "OK" } \\
& \text { else } \\
& \| \text { "Not OK" }
\end{aligned}
$$

Structural_Capacity_of_Barrier_at_Ends_Check="OK"

SUBJECT: $\quad 36^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)
(4) Punching Shear Capacity of the Barrier:

Punching_Shear_Capacity_of_Barrier_Check="OK"

SUBJECT: $\quad 36^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

(5) Deck Moment Capacity:

(5a) Deck Moment Demand:

- The moment demand on the deck due to the TL-4 impact loading was determined using RISA-3D structral analysis.
- A solid model of the $36^{\prime \prime}$ barrier, as shown in Figure 5, was developed to determine the barrier loads to the deck. This model was generated with $6^{\prime \prime}$ wide elements in the longitudinal direction to represent the spacing of the barrier vertical reinforcements.
- The deck was modeled using meshed plate elements ($4^{\prime} \times 50^{\prime}$ with $6^{\prime \prime} \times 6^{\prime \prime}$ plate elements). The reactions from the barrier to the deck were applied at the corresponding locations as shown in Figure 6.
* Detailed discussion will be provided in the final report.

Figure 7. Barrier Solid Model

Figure 8. Deck Plate Model with Barrier Reactions

SUBJECT: $\quad 36^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

Deck moment demand from RISA 3-D analysis:

(5b) Deck Nominal Moment Capacity:

$\mathrm{b}_{\text {c.unit }}:=12 \mathrm{in}$	Unit width cf deck
$\mathrm{t}_{\mathrm{s}}=11 \mathrm{in}$	Depth cf deck
$\mathrm{d}_{\mathrm{s} . \mathrm{bot}}=9.188 \mathrm{in}$	Extreme distance cf deck flexural reir forcement at top
$\mathrm{A}_{\mathrm{s} . \mathrm{bot}}=0.31 \mathrm{in}^{2}$	Section area cf deck flexural reir forcement at top
$\mathrm{S}_{\mathrm{s} . \mathrm{bot}}=3 \mathrm{in}$	Spacing cf deck flexural reir forcement at top

SUBJECT: $36^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{s} . \mathrm{unit}}:=\frac{\mathrm{A}_{\mathrm{s} . \mathrm{bot}}}{\mathrm{~S}_{\mathrm{s} . \mathrm{bot}}} \cdot \mathrm{~b}_{\mathrm{c} . \mathrm{unit}}=1.24 \mathrm{in}^{2} \quad \text { Unit area } \text { cf deck flexural reir forcement at end section } \\
& \mathrm{a}_{\mathrm{s}}:=\frac{\mathrm{A}_{\mathrm{s} . \mathrm{unit}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c} . \mathrm{unit}}}=1.824 \mathrm{in} \quad \text { Dєpth } \text { cf Whitney stress block at end section } \\
& \mathrm{M}_{\mathrm{n} . \mathrm{s}}:=\mathrm{A}_{\mathrm{s} . \mathrm{unit}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{~d}_{\mathrm{s} . \mathrm{bot}}-0.5 \cdot \mathrm{a}_{\mathrm{s}}\right)=51.31 \mathrm{kip} \cdot \mathrm{ft} \quad \text { Nominal moment capacity cf deck }
\end{aligned}
$$

(5c) Deck Moment Capacity with Coincident Tensile Forces (AASHTO A 13.4.2):

- Check at critical location: end-section
$\mathrm{L}_{\text {c.end }}=5.358 \mathrm{ft}$
$\mathrm{R}_{\mathrm{w} . \mathrm{end}}=153.847 \mathrm{kip}$
$\mathrm{H}_{\mathrm{w}}=36 i n$
$\mathrm{T}:=\frac{\mathrm{R}_{\mathrm{w} . \text { end }}}{\mathrm{L}_{\mathrm{c} . \text { end }}+2 \cdot \mathrm{H}_{\mathrm{w}}}=13.546 \frac{\mathrm{kip}}{\mathrm{ft}}$
Coincident tensile force from vehicle impact (AASHTO Eq. A 13.4.2.-1)
$\mathrm{T}_{\mathrm{a}}:=\mathrm{A}_{\mathrm{s} . \text { unit }} \cdot \mathrm{f}_{\mathrm{y}}=74.4$ kip \quad Tensile load provided by deck flexural reir forcement
$\mathrm{C}:=\mathrm{T}_{\mathrm{a}}-\mathrm{T} \cdot f t=60.854$ kip \quad Resultant compression force in deck section
$\mathrm{a}_{\mathrm{c}}:=\frac{\mathrm{C}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=1.492$ in \quad Depth cf Whitney stress block for compression force $\mathrm{M}_{\mathrm{n} . \mathrm{t}}:=\mathrm{T}_{\mathrm{a}} \cdot\left(\mathrm{d}_{\mathrm{s} . \mathrm{bot}}-\frac{\mathrm{a}_{\mathrm{c}}}{2}\right)-\mathrm{T} \cdot f t \cdot\left(\frac{\mathrm{~d}_{\mathrm{s} . \mathrm{bot}}}{2}-\frac{\mathrm{a}_{\mathrm{c}}}{2}\right)=47.995$ kip $\cdot f t$

Moment capacity of deck with coincident tensile force
$\mathrm{M}_{\mathrm{u} . \text { deck }}:=\max \left(\mathrm{M}_{\mathrm{u} . \text { end }}, \mathrm{M}_{\mathrm{u} . \mathrm{mid}}\right)=25.16 \mathrm{kip} \cdot \mathrm{ft}$
Maximum moment demand

SUBJECT: 36" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

Moment_Capacity_of_Deck_Check:= if $\mathrm{M}_{\mathrm{n} . \mathrm{t}}>\mathrm{M}_{\mathrm{u} . \mathrm{deck}}$
$\|$ "OK"
else
$\|$ "Not OK"

Moment_Capacity_of_Deck_Check="OK"

(6) Reinforcement Development Length:

$\mathrm{d}_{\mathrm{b} . \# 4}:=0.5 \mathrm{in} \quad ; \quad \mathrm{d}_{\mathrm{b} . \neq 5}:=0.625 \mathrm{in} \quad$ Bar diameter
$\mathrm{l}_{\mathrm{db} . \# 4}:=2.4 \cdot \mathrm{~d}_{\mathrm{b} . \# 4} \cdot \frac{\mathrm{f}_{\mathrm{y}}}{\sqrt{\mathrm{f}_{\mathrm{c}}^{\prime} \cdot \frac{1}{1000 p s i}} \cdot k s i}=3 f t$
Basic development length (AASHTO Eq. 5.10.8.2.1a-2)
$\lambda:=1.0$
$\lambda_{\mathrm{rl}}:=1.0$
Reirforcement location factor (AASHTO 5.10.8.2.1b)
$\lambda_{c f}:=1.0$
Coating factor (AASHTO 5.10.8.2.1b)
$\lambda_{\mathrm{er}}:=1.0 \quad$ Excess reir forcement factor (AASHTO 5.10.8.2.1c)
$\mathrm{k}_{\mathrm{tr}}:=0$
Transverse reir forcement index (conservatively taken as 0 as per AASHTO C5.10.8.2.1c)
$c_{\mathrm{b} . \# 4}:=1.75$ in $\quad ; \quad c_{\mathrm{b} . \# 5}:=1.8125$ in \quad Smaller cf reir forcement edge distance and onehaff cfspacing
$\lambda_{\text {rc. } \# 4}:=\max \left(\frac{\mathrm{d}_{\mathrm{b} . \# 4}}{\mathrm{c}_{\mathrm{b} . \# 4}+\mathrm{k}_{\mathrm{tr}}}, 0.4\right)=0.4 \quad ; \quad \lambda_{\mathrm{rc} . \# 5}:=\max \left(\frac{\mathrm{d}_{\mathrm{b} . \not{ }^{\# 5}}}{\mathrm{c}_{\mathrm{b} . \not{ }^{\# 5}}+\mathrm{k}_{\mathrm{tr}}}, 0.4\right)=0.4$

Reir forcement cor finement factor, $0.4<\lambda_{c c}<1.0$ (AASHTO 5.10.8.2.1c)

SUBJECT: 36" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)
$l_{\text {d. \#4 }}:=l_{\text {db. \#4 }} \cdot\left(\frac{\lambda_{\mathrm{rl}} \cdot \lambda_{\mathrm{cf}} \cdot \lambda_{\mathrm{rc} . \# 4} \cdot \lambda_{\mathrm{er}}}{\lambda}\right)=14.4 \mathrm{in}$
$\mathrm{l}_{\mathrm{d} . \neq 5}:=\mathrm{l}_{\mathrm{db} . \# 5} \cdot\left(\frac{\lambda_{\mathrm{rl}} \cdot \lambda_{\mathrm{cf}} \cdot \lambda_{\mathrm{rc.} . \# 5} \cdot \lambda_{\mathrm{er}}}{\lambda}\right)=18 \mathrm{in}$
Develcpment lengths needed (mod fied tension development length, AASHTO Eq. 5.10.8.2.1a-1)
$\mathrm{l}_{\mathrm{anc}}:=18.375$ in \quad Anchorage reir forcement development lengths provided (\#4 bar, green)
$l_{\text {s.top }}:=48 \mathrm{in}$
Deck flexural reir forcement development lengths provided (\#5 bar; purple)

Figure 9. Reir forcement
Development Length

Deck_Reinforcement_Development_Length_Check:=if $l_{\text {anc }}>l_{\text {d.\#4 }}\left\|l_{\text {s.top }}>l_{\text {d.\#5 }}\right\|$

$$
\begin{aligned}
& \| \text { "OK" } \\
& \text { else } \\
& \| \text { "Not OK" }
\end{aligned}
$$

Deck_Reinforcement_Development_Length_Check ="OK"

(7) Analysis Results Overview:

Minimum_Height_of_Barrier_Check="OK"
Structural_Capacity_of_Barrier_at_Midspan_Check= "OK"

Structural_Capacity_of_Barrier_at_Ends_Check ="OK"

Punching_Shear_Capacity_of_Barrier_Check = "OK"
Moment_Capacity_of_Deck_Check="OK"
Deck_Reinforcement_Development_Length_Check="OK"

SUBJECT: $\quad 36^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

(8) Summary of Barrier Design:

1. Use Vertical Barrier Stirrup \#4 @ $6^{\prime \prime}$ O.C. for $10^{\prime}-0^{\prime \prime}$ at Barrier End Section
2. Use Vertical Barrier Stirrup \#4 @ $12^{\prime \prime}$ O.C. out at Mid-Section (greater than $10^{\prime}-0^{\prime \prime}$ from End Sections)
3. All other details as shown on Section and Elevation Views as provided herein for the $36^{\prime \prime}$ Barrier as analyzed herein are acceptable for MASH TL-4 Impact conditions.

SUBJECT: $\quad 36^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)

Overview:
These calcualtions evaluate the strength of the given barrier design for MASH TL-4 impact load condtions.

- 36" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from the Barrier Right Side in the Section View below.

Design Details:

Section View (a)

SUBJECT: $\quad 36^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)

Section View (b)

Elevation

2

SUBJECT: $\quad 36^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)

Texas A\&M Transportation Institute

SUBJECT: $\quad 36^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)

(1) Define Inputs:

(1a) General Inputs:

$\mathrm{f}_{\mathrm{c}}^{\prime}:=4000$ psi		Compressive strength cf concrete
$\mathrm{f}_{\mathrm{y}}:=60 \mathrm{ksi}$		Yield strength reinforcing steel
$\mathrm{E}_{\mathrm{s}}:=29000 \mathrm{ksi}$		Modulus cf elasticity cf steel
$\mathrm{H}_{\mathrm{w}}:=36 \mathrm{in}$		Height cf barrier
$\mathrm{T}_{\mathrm{w} \text {.top }}:=10 \mathrm{in}$		Top width cf barrier
$\mathrm{T}_{\text {w.bot }}:=24 \mathrm{in}$		Bottom width cf barrier
$\mathrm{t}_{\mathrm{s}}:=11 \mathrm{in}$		Depth ¢f deck
$\mathrm{d}_{\# 4}:=0.5 \mathrm{in}$; $\mathrm{A}_{\# 4}:=0.2 \mathrm{in}^{2}$	Diameter and section area cf \#4 bar
$\mathrm{d}_{\# 5}:=0.625$ in	; $\mathrm{A}_{\# 5}:=0.31 \mathrm{in}^{2}$	Diameter and section area cf \#5 bar

Figure 1. Sketch cf Concrete Wall/Parapet Showing Input Variable

SUBJECT: 36" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)

(1b) Concrete Barrier Inputs:

$\mathrm{t}_{\mathrm{b} . \mathrm{cov}}:=1.5 \mathrm{in} \quad$ Concrete clear cover cf barrier

Barrier vertical reinforcement inputs (\#4 bars):
$\mathrm{A}_{\mathrm{vpl} . \mathrm{mid}}:=0.2 \mathrm{in}^{2} \quad$ Area cfone barrier vertical reir forcement leg at midspan
$\mathrm{S}_{\mathrm{vp} . \mathrm{mid}}:=12$ in \quad Spacing cfbarrier vertical reir forcement at midspan
$\mathrm{d}_{\mathrm{cp} . \mathrm{mid}}:=15.25$ in \quad Average extreme distance \subset f barrier vertical reir forcement at midspan
$\mathrm{A}_{\mathrm{vpl} . \mathrm{end}}:=0.2 \mathrm{in}^{2} \quad$ Area cfone barrier vertical reir forcement leg at joints/ends
$\mathrm{S}_{\mathrm{vp} . \mathrm{end}}:=6$ in \quad Spacing cf barrier vertical reirforcement at joints/ends
$\mathrm{d}_{\mathrm{cp.end}}:=15.25$ in \quad Average extreme distance cf barrier vertical reir forcement at joints/ends

Deck anchorage reinforcement inputs (\#4 bars):

$\mathrm{A}_{\text {val.mid }}:=0.2 \mathrm{in}^{2}$	Area cfone deck anchorage vertical reir forcement leg at midspan
$\mathrm{S}_{\text {va.mid }}:=6 \mathrm{in}$	Spacing cf deck anchorage vertical reir forcement at midspan
$\mathrm{d}_{\text {ca.mid }}:=22.25 \mathrm{in}$	Extreme distance cf tension deck anchorage reir forcement at midspan
$\mathrm{A}_{\text {val.end }}:=0.2 \mathrm{in}^{2}$	Area cfone deck anchorage vertical reir forcement leg at joints/ends
$\mathrm{S}_{\text {va.end }}:=6 \mathrm{in}$	Spacing cf deck anchorage vertical reir forcement at joints/ends
$\mathrm{d}_{\text {ca.end }}:=22.25$ in	Extreme distance cf tension deck anchorage reirforcement at joints/ends

Barrier Longitudinal reinforcement inputs (\#4 bars):
$\mathrm{A}_{\mathrm{w}}:=0.2 \cdot 5 \mathrm{in}^{2}=1 i n^{2}$
Area cflongitudinal reir forcement bars in tension
$\mathrm{d}_{\mathrm{w}}:=14.75 \mathrm{in}$
Average extreme distance cf tension longitudinal reir forcement

SUBJECT: $\quad 36^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)

(1c) Concrete Deck Inputs:

$\mathrm{t}_{\text {s.cov.bot }}:=1.5 \mathrm{in}$	Concrete clear cover cf deck at bottom
$\mathrm{d}_{\text {s.bot }}:=9.1875$ in	Extreme distance cf deck flexural reir forcement at bottom
$\mathrm{A}_{\text {s.bot }}:=0.31 \mathrm{in}^{2}$	Section area cf deck flexural reinforcement at bottom (single bar)
$\mathrm{S}_{\text {s.bot }}:=3$ in	Spacing cf deck flexural reirforcement at bottom
$\mathrm{t}_{\text {s.cov.top }}:=2.5 \mathrm{in}$	Concrete clear cover cf deck at top
$\mathrm{d}_{\text {s.top }}:=8.1875$ in	Extreme distance cf deck flexural reir forcement at top
$\mathrm{A}_{\text {s.top }}:=0.31 \mathrm{in}^{2}$	Section area cfdeck flexural reir forcement at top (single bar)
$\mathrm{S}_{\text {s.top }}:=3$ in	Spacing of deck flexural reirforcement at top

(1d) Design Force Inputs:

Design Forces for Traffic Railings

Test Level	Rail Height (in.)	$\mathrm{F}_{\mathrm{t}}(\mathrm{k}$ (ip)	F_{L} (kip)	F_{r} (kip)	$\mathrm{L}_{\mathrm{L}} / \mathrm{L}_{\mathrm{L}}$ (ft)	$\mathrm{L}_{\mathrm{r}}(\mathrm{ff})$	$\mathrm{H}_{\text {e }}$ (in)	$\mathrm{H}_{\text {min }}$ (in)
TL-1	18 or above	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL-2	18 or above	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL-3	29 or above	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL-4 (a)	36	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL-4 (b)	between 36 and 42	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL-5 (a)	42	160.0	41.0	80.0	10.0	40.0	35.0	42.0
TL-5 (b)	greater than 42	262.0	75.0	160.0	10.0	40.0	43.0	42.0
TL 6		175.0	58.0	80.0	8.0	40.0	56.0	90.0

References:

- TL-1 and TL-2 Design Forces are from AASHTO LRFD Section 13 Table A13.2-1
- TL-3 Design Forces are from research conducted under NCHRP Project 20-07 Task 395
- TL-4 (a), TL-4 (b), TL-5 (a), and TL-5 (b) Design Forces are from research conducted under NCHRP Project 22-20(2)

TL: $=4$
$\mathrm{F}_{\mathrm{t}}:=68$ kip \quad Transverse impact force
$\mathrm{L}_{\mathrm{t}}:=4 f t$
$\mathrm{H}_{\mathrm{e}}:=25$ in

Test level

Longitudinal length cf distribution cf impact force
Height cf equivalent transverses load

SUBJECT: $36^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)

$\mathrm{H}_{\min }:=36$ in	Minimum height cf a MASH TL-4 barrier
$\mathrm{H}_{\mathrm{w}}=36$ in	Height cf concrete barrier

(2) Stability Criteria:

$\mathrm{H}_{\mathrm{min}}=36$ in	Minimum height cfa MASH TL-4 barrier	
$\mathrm{H}_{\mathrm{w}}=36$ in	Height cf concrete barrier measured from the top cf the roadway surface/asphalt overlay	
Minimum_Height_of_Barrier_Check := if $\mathrm{H}_{\mathrm{w}} \geq \mathrm{H}_{\mathrm{min}}$		
	$\\|$ "OK"	
else		
	$\\|$ "Not OK"	

Minimum_Height_of_Barrier_Check = "OK"
(3) LRFD Strength Analysis of the Barrier per AASHTO Section 13 Specification:
(3a) Bending Capacity of the Barrier about the Longitudinal Axis at Midspan: Mcmid (k-ft/ft)

For parapet vertical reinforcement:

$\mathrm{b}_{\mathrm{c}}:=12$ in	Unit width cf wall (take as 1 ft per AASHTO Section 13 procedurt)
$\mathrm{A}_{\mathrm{vpl.mid}}=0.2 \mathrm{in}^{2}$	Area cfone parapet vertical reir forcement leg at midspan
$\mathrm{S}_{\mathrm{vp} . \mathrm{mid}}=12 \mathrm{in}$	Spacing cf parapet vertical reir forcement at midspan

$\mathrm{A}_{\mathrm{vp}, \text { mid }}:=\left(\frac{\mathrm{b}_{\mathrm{c}}}{\mathrm{S}_{\mathrm{vp}, \text { mid }}}\right) \cdot \mathrm{A}_{\mathrm{vpl} . \text { mid }}=0.2 \mathrm{in}^{2}$
Total area cf parapet vertical reir forcement per unit length at midspan
$\mathrm{d}_{\mathrm{cp} . \mathrm{mid}}=15.25$ in \quad Average extreme distance cf parapet vertical reir.forcement at midspan
$\mathrm{a}_{\text {cp.mid }}:=\frac{\mathrm{A}_{\mathrm{vp} . \mathrm{mid}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.294$ in \quad Depth cf Whitney stress block

$$
\mathrm{M}_{\text {cp.mid }}:=\frac{\left(\mathrm{A}_{\mathrm{vp} . \mathrm{mid}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{~d}_{\text {cp.mid }}-\frac{\mathrm{a}_{\text {cp.mid }}}{2}\right)\right)}{\mathrm{b}_{\mathrm{c}}}=15.103 \frac{\mathrm{kip} \cdot \mathrm{ft}}{\mathrm{ft}}
$$

Flexural resistance cf the barrier about the longitudinal axis at midspan when considering only the parapet vertical reir forcement spec fied in Article A 13.3.1 (k-fifif)

For deck anchorage reinforcement:

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{c}}=12 \text { in Unit width (f wall (take as I ft per AASHTO Section } 13 \text { procedur) } \\
& \mathrm{A}_{\mathrm{val} . \mathrm{mid}}=0.2 \mathrm{in}^{2} \quad \text { Area cfone deck anchorage vertical reir.forcement leg at midspan } \\
& \mathrm{S}_{\text {va.mid }}=6 \text { in Spacing } \subset f \text { deck anchorage vertical reir forcement at midspan } \\
& \mathrm{A}_{\text {va.mid }}:=\left(\frac{\mathrm{b}_{\mathrm{c}}}{\mathrm{~S}_{\text {va. .mid }}}\right) \cdot \mathrm{A}_{\text {val.mid }}=0.4 \text { in }^{2} \\
& \text { Total area cf deck anchorage vertical reir forcement per unit length at } \\
& \text { midspan } \\
& \mathrm{d}_{\text {ca.mid }}=22.25 \text { in } \quad \text { Extreme distance cf tension deck anchorage vertical reir forcement at midspan } \\
& \mathrm{a}_{\text {ca.mid }}:=\frac{\mathrm{A}_{\text {va.mid }} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.588 \text { in } \quad \text { Depth cf Whitney stress block } \\
& \mathrm{M}_{\text {ca.mid }}:=\frac{\left(\mathrm{A}_{\text {va. } \mathrm{mid}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{~d}_{\text {ca.mid }}-\frac{\mathrm{a}_{\text {ca.mid }}}{2}\right)\right)}{\mathrm{b}_{\mathrm{c}}}=43.912 \frac{\mathrm{kip} \cdot \mathrm{ft}}{\mathrm{ft}} \\
& \text { Flexural resistance cf the barrier about the longitudinal axis at midspan } \\
& \text { when considering only the deck anchorage reirforcement spec:fied in } \\
& \text { Article A 13.3.1 (k-fifif) } \\
& \mathrm{M}_{\text {c.mid }}:=\min \left(\mathrm{M}_{\text {cp.mid }}, \mathrm{M}_{\text {ca.mid }}\right)=15.103 \frac{k i p \cdot f t}{f t} \\
& \text { Flexural resistance cf the barrier about the longitudinal axis at midspan } \\
& \text { when considering the critical reir, forcement }
\end{aligned}
$$

SUBJECT: 36" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)

(3b) Bending Capacity of the Barrier about the Longitudinal Axis at Joints/Ends: Mecnd (k-ft/ft)

For parapet vertical reinforcement:
$\mathrm{A}_{\mathrm{vpl} . \mathrm{end}}=0.2 \mathrm{in}^{2} \quad$ Area cfone parapet vertical reir forcement leg at joints/ends
$\mathrm{S}_{\mathrm{vp} . \mathrm{end}}=6$ in Spacing cfparapet vertical reirforcement at joints/ends
$\mathrm{A}_{\mathrm{vp}, \mathrm{end}}:=\left(\frac{\mathrm{b}_{\mathrm{c}}}{\mathrm{S}_{\mathrm{vp}, \mathrm{end}}}\right) \cdot \mathrm{A}_{\mathrm{vpl} . \mathrm{end}}=0.4 \mathrm{in}^{2} \quad \begin{aligned} & \text { Total area cf deck anchorage vertical reir forcement } \\ & \text { per unit length at midspan }\end{aligned}$
$\mathrm{d}_{\mathrm{cp} . \mathrm{end}}=15.25$ in \quad Average extreme distance cfparapet vertical reirfforcement at joints/ends
(at barrier mid-heigh)
$\mathrm{a}_{\text {cp.end }}:=\frac{\mathrm{A}_{\mathrm{vp} . \mathrm{end}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.588$ in \quad Depth of Whitney stress block
$\mathrm{M}_{\mathrm{cp} . \mathrm{end}}:=\frac{\left(\mathrm{A}_{\mathrm{vp} . \mathrm{end}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{d}_{\mathrm{cp} . \text { end }}-\frac{\mathrm{a}_{\text {cp.end }}}{2}\right)\right)}{\mathrm{b}_{\mathrm{c}}}=29.912 \frac{\mathrm{kip} \cdot \mathrm{ft}}{\mathrm{ft}}$

Flexural resistance of the barrier about the longitudinal axis at Joints/ Ends when considering only the deck anchorage reir forcement spec fied in Article A 13.3 .1 (k-ft fi)

For deck anchorage reinforcement:

$\mathrm{A}_{\text {val.end }}=0.2 \mathrm{in}^{2}$	Area cfone deck anchorage vertical reirforcement leg at joints/ends
$\mathrm{S}_{\text {va. } \mathrm{end}}=6 \mathrm{in}$	Spacing cf deck anchorage vertical reir forcement at joints/ends
$\mathrm{A}_{\text {va.end }}:=\left(\frac{\mathrm{b}_{\mathbf{c}}}{\mathrm{S}_{\text {va.end }}}\right) \cdot \hat{A}$	$\cdot \begin{array}{ll} -\mathrm{A}_{\text {val.end }}=0.4 \text { in }^{2} \quad \begin{array}{l} \text { Total area cf deck anchorage vertical reir forcement } \\ \text { per unit length at joints/ends } \end{array} \end{array}$
$\mathrm{d}_{\text {ca.end }}=22.25 \mathrm{in}$	Extreme distance cf tension deck anchorage vertical reir forcement at joints/ends

SUBJECT: 36" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)
$\mathrm{a}_{\text {ca.end }}:=\frac{\mathrm{A}_{\text {va.end }} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.588$ in \quad Depth cf Whitney stress block

Flexural resistance of the barrier about the longitudinal axis at Joints/
Ends when considering only the deck anchorage reir forcement spec.fied in Article A 13.3.1 (k-ft.fi)
$\mathrm{M}_{\text {c.end }}:=\min \left(\mathrm{M}_{\text {cp.end }}, \mathrm{M}_{\text {ca.end }}\right)=29.912 \frac{\mathrm{kip} \cdot f t}{\mathrm{ft}}$

Flexural resistance of the barrier about the longitudinal axis at joints/ends when considering the critical reir forcement

(3c) Bending Capacity of the Barrier about the Vertical Axis: Mw

$\mathrm{d}_{\mathrm{w}}=14.75$ in $\quad E_{j}$ fective depth cflongitudinal reir forcement bars
$\mathrm{A}_{\mathrm{w}}=1 \mathrm{in}^{2} \quad$ Area cflongitudinal reir forcement bars in tension
$\mathrm{H}_{\mathrm{w}}=36$ in Extreme distance cf tension longitudinal rein forcement cf barrier
$\mathrm{a}_{\mathrm{w}}:=\frac{\mathrm{A}_{\mathrm{w}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{H}_{\mathrm{w}}}=0.49$ in \quad Depth cf Whitney stress block
$\mathrm{M}_{\mathrm{w}}:=\mathrm{A}_{\mathrm{w}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{d}_{\mathrm{w}}-\frac{\mathrm{a}_{\mathrm{w}}}{2}\right)=72.525 \mathrm{kip} \cdot f t \quad \begin{aligned} & \text { Flexural resistance of the barrier about the } \\ & \text { vertical axis spec. fied in Article A 13.3.1 }\end{aligned}$

SUBJECT: $\quad 36^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)

(3d) Ultimate Resistance of the Wall at Midspan: Rw.mid

$\mathrm{H}_{\mathrm{w}}=36 \mathrm{in}$	Height cf barrier
$\mathrm{M}_{\mathrm{B}}:=0 \mathrm{kip} \cdot \mathrm{ft}$	No additional beam strength

$\mathrm{M}_{\text {c.mid }}=15.103 \frac{\text { kip } \cdot f t}{f t} \quad \begin{aligned} & \text { Flexural resistance about the long. } \\ & \text { axis at midspan }\end{aligned}$
$\mathrm{M}_{\mathrm{w}}=72.525 \mathrm{kip} \cdot f t \quad$ Flexural resistance about the vert. axis

$\mathrm{L}_{\mathrm{t}}=4 \mathrm{ft}$
Long. length (f distribution $c f$ impact force

Figure 2. Yield Line Analysis cf Concrete Parapet Walls for Impact within Wall Segment figure taken from $A A S H T C$)

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{c} . \text { mid }}:=\frac{\mathrm{L}_{\mathrm{t}}}{2}+\sqrt{\left(\frac{\mathrm{L}_{\mathrm{t}}}{2}\right)^{2}+\frac{8 \cdot \mathrm{H}_{\mathrm{w}} \cdot\left(\mathrm{M}_{\mathrm{B}}+\mathrm{M}_{\mathrm{w}}\right)}{\mathrm{M}_{\mathrm{c} . \text { mid }}}}=12.92 \mathrm{ft} \quad \text { AASHTO Equation A13.3.1-2 } \\
& \mathrm{R}_{\mathrm{w} . \operatorname{mid}}:=\left(\frac{2}{2 \cdot \mathrm{~L}_{\mathrm{c} . \text { mid }}-\mathrm{L}_{\mathrm{t}}}\right) \cdot\left(8 \cdot \mathrm{M}_{\mathrm{B}}+8 \cdot \mathrm{M}_{\mathrm{w}}+\frac{\mathrm{M}_{\mathrm{c} . \mathrm{mid}} \cdot\left(\mathrm{~L}_{\mathrm{c} . \mathrm{mid}}\right)^{2}}{\mathrm{H}_{\mathrm{w}}}\right) \cdot \frac{\mathrm{H}_{\mathrm{w}}}{\mathrm{H}_{\mathrm{e}}}=187.326 \mathrm{kip} \\
& \text { AASHTO Equation Al3.3.I-I }
\end{aligned}
$$

(3e) Ultimate Resistance of the Wall at Joints/Ends: Rw.end

Figure 3. Yield Line Analysis of Concrete Parapet Walls for Impact near End cf Wall Segment (figure taken from AASHTC)
$\mathrm{H}_{\mathrm{w}}=36$ in
$\mathrm{M}_{\mathrm{B}}:=0 \mathrm{kip} \cdot f t$
$\mathrm{M}_{\text {c.end }}=29.912 \frac{\mathrm{kip} \cdot \mathrm{ft}}{\mathrm{ft}} \begin{aligned} & \text { Flexural resistance about the long. } \\ & \text { axis at joints/ends }\end{aligned}$.
$\mathrm{M}_{\mathrm{w}}=72.525$ kip $\cdot f t \quad$ Flexural resistance about the vert. axis

Long. length cf distribution cf impact force

SUBJECT: 36" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{c} . \mathrm{end}}:=\frac{\mathrm{L}_{\mathrm{t}}}{2}+\sqrt{\left(\frac{\mathrm{L}_{\mathrm{t}}}{2}\right)^{2}+\frac{\mathrm{H}_{\mathrm{w}} \cdot\left(\mathrm{M}_{\mathrm{B}}+\mathrm{M}_{\mathrm{w}}\right)}{\mathrm{M}_{\mathrm{c} . \mathrm{end}}}}=5.358 \mathrm{ft} \\
& \mathrm{R}_{\mathrm{w} . \mathrm{end}}:=\left(\frac{2}{2 \cdot \mathrm{~L}_{\mathrm{c} . \mathrm{end}}-\mathrm{L}_{\mathrm{t}}}\right) \cdot\left(\mathrm{M}_{\mathrm{B}}+\mathrm{M}_{\mathrm{w}}+\frac{\mathrm{M}_{\mathrm{c} . \mathrm{end}} \cdot\left(\mathrm{~L}_{\mathrm{c} . \mathrm{end}}\right)^{2}}{\mathrm{H}_{\mathrm{w}}}\right) \cdot \frac{\mathrm{H}_{\mathrm{w}}}{\mathrm{H}_{\mathrm{e}}}=153.847 \text { kip } \\
& \text { AASHTO Equation A13.3.1-4 }
\end{aligned}
$$

(3) LRFD Strength Analvsis of the Barrier per AASHTO Section 13 Specification -

Summary of Results:
\(\left.$$
\begin{array}{ll}\mathrm{H}_{\mathrm{w}}=36 \mathrm{in} & \begin{array}{l}\text { Height cf the concrete barrier measured from the top } \\
\text { cf the roadway sur face }\end{array}
$$

\mathrm{H}_{\mathrm{e}}=25 \mathrm{in} \& Height cf the transverse impact force, \mathrm{Ft}\end{array}\right\}\)| Transverses impact force located at He |
| :--- |

Structural_Capacity_of_Barrier_at_Midspan_Check:= if $\mathrm{R}_{\mathrm{w} . \operatorname{mid}}>\mathrm{F}_{\mathrm{t}}$
$\|$ "OK"
else
$\|$ "Not OK"

Structural_Capacity_of_Barrier_at_Midspan_Check = "OK"

Structural_Capacity_of_Barrier_at_Ends_Check:= if $R_{w . e n d}>F_{t}$

$$
\begin{aligned}
& \| \text { "OK" } \\
& \text { else } \\
& \| \text { "Not OK" }
\end{aligned}
$$

Structural_Capacity_of_Barrier_at_Ends_Check="OK"

SUBJECT: $\quad 36^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)
(4) Punching Shear Capacity of the Barrier:

Punching_Shear_Capacity_of_Barrier_Check="OK"

SUBJECT: $\quad 36^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)
(5) Deck Moment Capacity:

(5a) Deck Moment Demand:

- The moment demand on the deck due to the TL-4 impact loading was determined using RISA-3D structral analysis.
- A solid model of the $36^{\prime \prime}$ barrier, as shown in Figure 5, was developed to determine the barrier loads to the deck. This model was generated with $6^{\prime \prime}$ wide elements in the longitudinal direction to represent the spacing of the barrier vertical reinforcements.
- The deck was modeled using meshed plate elements ($4^{\prime} \times 50^{\prime}$ with $6^{\prime \prime} \times 6^{\prime \prime}$ plate elements). The reactions from the barrier to the deck were applied at the corresponding locations as shown in Figure 6.
* Detailed discussion will be provided in the final report.

Figure 7. Barrier Solid Model

Figure 8. Deck Plate Model with Barrier Reactions

SUBJECT: $\quad 36^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)

Deck moment demand from RISA 3-D analysis:

Max. moment demand at mid-span: $\mathrm{M}_{\mathrm{u} \cdot \mathrm{mid}}:=16.7 \mathrm{kip} \cdot \mathrm{ft}$

(5b) Deck Nominal Moment Capacity:

$\mathrm{b}_{\mathrm{c} . \text { unit }}:=12 \mathrm{in}$	Unit width cf deck
$\mathrm{t}_{\mathrm{s}}=11 \mathrm{in}$	Depth cf deck
$\mathrm{d}_{\mathrm{s.top}}=8.188$ in	Extreme distance cf deck flexural reir forcement at top
$\mathrm{A}_{\mathrm{s} . \mathrm{top}}=0.31 \mathrm{in}^{2}$	Section area cf deck flexural reir forcement at top
$\mathrm{S}_{\mathrm{s} . \mathrm{top}}=3$ in	Spacing cf deck flexural reir forcement at tcp

SUBJECT: 36" LADOTD Barrier with a Longitudinal

 Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)$$
\begin{array}{ll}
\mathrm{A}_{\mathrm{s} . \mathrm{unit}}:=\frac{\mathrm{A}_{\mathrm{s} . \mathrm{top}}}{\mathrm{~S}_{\mathrm{s} . \text { top }}} \cdot \mathrm{b}_{\mathrm{c} . \mathrm{unit}}=1.24 \mathrm{in}^{2} & \text { Unit area } \text { cf deck flexural reirf forcement at end section } \\
\mathrm{a}_{\mathrm{s}}:=\frac{\mathrm{A}_{\mathrm{s} . \mathrm{unit}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c} . \text { unit }}}=1.824 \mathrm{in} \quad \text { Depth } \mathrm{ff} \text { Whitney stress block at end section } \\
\mathrm{M}_{\mathrm{n} . \mathrm{s}}:=\mathrm{A}_{\mathrm{s} . \mathrm{unit}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{~d}_{\mathrm{s} . \text { top }}-0.5 \cdot \mathrm{a}_{\mathrm{s}}\right)=45.11 \mathrm{kip} \cdot \mathrm{ft} \quad \text { Nominal moment capacity cf deck }
\end{array}
$$

(5c) Deck Moment Capacity with Coincident Tensile Forces (AASHTO A 13.4.2):

- Check at critical location: end-section
$\mathrm{L}_{\text {c.end }}=5.358 \mathrm{ft}$
$\mathrm{R}_{\mathrm{w} . \mathrm{end}}=153.847 \mathrm{kip}$
$\mathrm{H}_{\mathrm{w}}=36 i n$
$\mathrm{T}:=\frac{\mathrm{R}_{\mathrm{w} . \text { end }}}{\mathrm{L}_{\mathrm{c} . \text { end }}+2 \cdot \mathrm{H}_{\mathrm{w}}}=13.546 \frac{\mathrm{kip}}{\mathrm{ft}}$
$\mathrm{T}_{\mathrm{a}}:=\mathrm{A}_{\mathrm{s} . \text { unit }} \cdot \mathrm{f}_{\mathrm{y}}=74.4$ kip \quad Tensile load provided by deck flexural reir forcement
$\mathrm{C}:=\mathrm{T}_{\mathrm{a}}-\mathrm{T} \cdot f t=60.854 k i p$
Resultant compression force in deck section
$\mathrm{a}_{\mathrm{c}}:=\frac{\mathrm{C}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=1.492$ in \quad Depth cf Whitney stress block for compression force $\mathrm{M}_{\mathrm{n} . \mathrm{t}}:=\mathrm{T}_{\mathrm{a}} \cdot\left(\mathrm{d}_{\mathrm{s} . \text { top }}-\frac{\mathrm{a}_{\mathrm{c}}}{2}\right)-\mathrm{T} \cdot f t \cdot\left(\frac{\mathrm{~d}_{\text {s.top }}}{2}-\frac{\mathrm{a}_{\mathrm{c}}}{2}\right)=42.36 \mathrm{kip} \cdot f t$

Moment capacity of deck with coincident tensile force
$\mathrm{M}_{\mathrm{u} . \text { deck }}:=\max \left(\mathrm{M}_{\mathrm{u}, \text { end }}, \mathrm{M}_{\mathrm{u} . \mathrm{mid}}\right)=28.2 \mathrm{kip} \cdot f t$
Maximum moment demand

SUBJECT: 36" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)

Moment_Capacity_of_Deck_Check := if $\mathrm{M}_{\mathrm{n} . \mathrm{t}}>\mathrm{M}_{\mathrm{u} . \mathrm{deck}}$
$\|$ "OK"
else
$\|$ "Not OK"

Moment_Capacity_of_Deck_Check="OK"

(6) Reinforcement Development Length:

$\mathrm{d}_{\mathrm{b} . \neq 4}:=0.5 \mathrm{in} \quad ; \quad \mathrm{d}_{\mathrm{b} . \neq 5}:=0.625 \mathrm{in} \quad$ Bar diameter
$\mathrm{l}_{\mathrm{db} . \# 4}:=2.4 \cdot \mathrm{~d}_{\mathrm{b} . \# 4} \cdot \frac{\mathrm{f}_{\mathrm{y}}}{\sqrt{\mathrm{f}_{\mathrm{c}}^{\prime} \cdot \frac{1}{1000 p s i}} \cdot k s i}=3 f t$
Basic develcpment length (AASHTO Eq. 5.10.8.2.1a-2)
$\lambda:=1.0$
$\lambda_{\mathrm{rl}}:=1.0$
Reirforcement location factor (AASHTO 5.10.8.2.1b)
$\lambda_{c f}:=1.0$
Coating factor (AASHTO 5.10.8.2.1b)
$\lambda_{\mathrm{er}}:=1.0 \quad$ Excess reir forcement factor (AASHTO 5.10.8.2.1c)
$\mathrm{k}_{\mathrm{tr}}:=0$
Transverse reir forcement index (conservatively taken as 0 as per AASHTO C5.10.8.2.1c)
$c_{\mathrm{b} . \# 4}:=1.75$ in $\quad ; \quad c_{\mathrm{b} . \# 5}:=1.8125$ in \quad Smaller cf reir forcement edge distance and onehaff cfspacing
$\lambda_{\text {rc. } . \# 4}:=\max \left(\frac{d_{\mathrm{b} . \# 4}}{\mathrm{c}_{\mathrm{b} . \not{ }^{\#} 4}+\mathrm{k}_{\mathrm{tr}}}, 0.4\right)=0.4 \quad ; \quad \lambda_{\text {rc. } \# 5}:=\max \left(\frac{\mathrm{d}_{\mathrm{b} . \# 5}}{\mathrm{c}_{\mathrm{b} . \not{ }^{\# 5}}+\mathrm{k}_{\mathrm{tr}}}, 0.4\right)=0.4$

Reir forcement cor finement factor, $0.4<\lambda_{c c}<1.0$ (AASHTO 5.10.8.2.1c)

SUBJECT: 36" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)
$l_{\text {d. \#4 }}:=l_{\text {db. \#4 }} \cdot\left(\frac{\lambda_{\mathrm{rl}} \cdot \lambda_{\mathrm{cf}} \cdot \lambda_{\mathrm{rc} . \# 4} \cdot \lambda_{\mathrm{er}}}{\lambda}\right)=14.4 \mathrm{in}$
$\mathrm{l}_{\mathrm{d} . \neq 5}:=\mathrm{l}_{\mathrm{db} . \# 5} \cdot\left(\frac{\lambda_{\mathrm{rl}} \cdot \lambda_{\mathrm{cf}} \cdot \lambda_{\mathrm{rc.} . \# 5} \cdot \lambda_{\mathrm{er}}}{\lambda}\right)=18 \mathrm{in}$
$\mathrm{l}_{\mathrm{anc}}:=22 \mathrm{in}$
Anchorage reir forcement development lengths provided (\#4 bar, green)
$\mathrm{l}_{\mathrm{s} . \mathrm{top}}:=48 \mathrm{in}$
Deck flexural reir forcement development lengths provided (\#5 bar, purple)

Development lengths needed (mod fied tension development length, AASHTO Eq. 5.10.8.2.1a-1)

Figure 9. Reir forcement
Development Length

Deck_Reinforcement_Development_Length_Check:=if $l_{\text {anc }}>l_{\text {d.\#4 }}\left\|l_{\text {s.top }}>l_{\text {d.\#5 }}\right\|$

$$
\begin{aligned}
& \| \text { "OK" } \\
& \text { else } \\
& \| \text { "Not OK" }
\end{aligned}
$$

Deck_Reinforcement_Development_Length_Check="OK"

(7) Analysis Results Overview:

Minimum_Height_of_Barrier_Check="OK"

Structural_Capacity_of_Barrier_at_Midspan_Check = "OK"

Structural_Capacity_of_Barrier_at_Ends_Check ="OK"

Punching_Shear_Capacity_of_Barrier_Check = "OK"
Moment_Capacity_of_Deck_Check="OK"
Deck_Reinforcement_Development_Length_Check ="OK"

SUBJECT: $\quad 36^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)

(8) Summary of Barrier Design:

1. Use Vertical Barrier Stirrup \#4 @ $6^{\prime \prime}$ O.C. for $10^{\prime}-0^{\prime \prime}$ at Barrier End Section
2. Use Vertical Barrier Stirrup \#4 @ $12^{\prime \prime}$ O.C. out at Mid-Section (greater than 10'-0" from End Sections)
3. All other details as shown on Section and Elevation Views as provided herein for the $36^{\prime \prime}$ Barrier as analyzed herein are acceptable for MASH TL-4 Impact conditions.

Overview:

These calcualtions evaluate the strength of the given barrier design for MASH TL-4 impact load condtions.

- 36" LADOTD Median Barrier

Desion Details:

Section View (b)

Elevation

(1) Define Inputs:

(1a) General Inputs:

$\mathrm{f}_{\mathrm{c}}^{\prime}:=4000$ psi		Compressive strength cf concrete
$\mathrm{f}_{\mathrm{y}}:=60 k s i$		Yield strength reinforcing steel
$\mathrm{E}_{\mathrm{s}}:=29000 k s i$		Modulus cf elasticity cf steel
$\mathrm{H}_{\mathrm{w}}:=36 \mathrm{in}$		Height cf barrier
$\mathrm{T}_{\text {w.top }}:=10 \mathrm{in}$		Top width cf barrier
$\mathrm{T}_{\text {w.bot }}:=24 \mathrm{in}$		Bottom width cf barrier
$\mathrm{t}_{\mathrm{s}}:=8.5 \mathrm{in}$		Depth ¢f deck
$\mathrm{d}_{\# 4}:=0.5 \mathrm{in}$; $\mathrm{A}_{\# 4}:=0.2 \mathrm{in}^{2}$	Diameter and section area cf \#4 bar
$\mathrm{d}_{\# 5}:=0.625 \mathrm{in}$; $\mathrm{A}_{\# 5}:=0.31 \mathrm{in}^{2}$	Diameter and section area cf \#5 bar

Figure 1. Sketch cf Concrete Wall/Parapet Showing Input Variable

(1b) Concrete Barrier Inputs:

$\mathrm{t}_{\mathrm{b} . \mathrm{cov}}:=1.5 \mathrm{in} \quad$ Concrete clear cover cf barrier

Barrier vertical reinforcement inputs (\#4 bars):
$\mathrm{A}_{\mathrm{vpl} . \mathrm{mid}}:=0.2 \mathrm{in}^{2} \quad$ Area cfone barrier vertical reirforcement leg at midspan
$\mathrm{S}_{\mathrm{vp} . \mathrm{mid}}:=12$ in \quad Spacing cfbarrier vertical reirforcement at midspan
$\mathrm{d}_{\mathrm{cp} . \mathrm{mid}}:=15.25$ in \quad Average extreme distance \subset f barrier vertical reir forcement at midspan
$\mathrm{A}_{\mathrm{vpl} . \mathrm{end}}:=0.2 \mathrm{in}^{2} \quad$ Area cfone barrier vertical reirforcement leg at joints/ends
$\mathrm{S}_{\mathrm{vp} . \mathrm{end}}:=6$ in Spacing cf farrier vertical reir forcement at joints/ends
$\mathrm{d}_{\mathrm{cp.end}}:=15.25$ in \quad Average extreme distance cf barrier vertical reir forcement at joints/ends

Deck anchorage reinforcement inputs (\#4 bars):

$\mathrm{A}_{\text {val.mid }}:=0.2 \mathrm{in}^{2}$	Area cfone deck anchorage vertical reir forcement leg at midspan
$\mathrm{S}_{\text {va.mid }}:=6 \mathrm{in}$	Spacing cf deck anchorage vertical reir forcement at midspan
$\mathrm{d}_{\text {ca.mid }}:=22.25 \mathrm{in}$	Extreme distance cf tension deck anchorage reirforcement at midspan
$\mathrm{A}_{\text {val.end }}:=0.2 \mathrm{in}^{2}$	Area cfone deck anchorage vertical reir forcement leg at joints/ends
$\mathrm{S}_{\text {va.end }}:=6 \mathrm{in}$	Spacing cf deck anchorage vertical reir forcement at joints/ends
$\mathrm{d}_{\text {ca.end }}:=22.25$ in	Extreme distance cf tension deck anchorage reir forcement at joints/ends

Barrier Longitudinal reinforcement inputs (\#4 bars):
$\mathrm{A}_{\mathrm{w}}:=0.2 \cdot 5 i n^{2}=1 i n^{2}$
Area cflongitudinal reit forcement bars in tension
$\mathrm{d}_{\mathrm{w}}:=14.75 \mathrm{in}$
Average extreme distance cf tension longitudinal reir forcement

(1c) Concrete Deck Inputs:

$\mathrm{t}_{\text {s.cov.bot }}:=1.5 \mathrm{in}$	Concrete clear cover cf deck at bottom
$\mathrm{d}_{\text {s.bot }}:=6.6875 \mathrm{in}$	Extreme distance cf deck flexural reir forcement at bottom
$\mathrm{A}_{\text {s.bot }}:=0.31 \mathrm{in}^{2}$	Section area cf deck flexural reinforcement at bottom (single bar)
$\mathrm{S}_{\text {s.bot }}:=6$ in	Spacing cf deck flexural reirforcement at bottom
$\mathrm{t}_{\text {s.cov.top }}:=2.5 \mathrm{in}$	Concrete clear cover cf deck at top
$\mathrm{d}_{\text {S. top }}:=5.875$ in	Extreme distance cf deck flexural reir forcement at top
$\mathrm{A}_{\text {s.top }}:=0.31 \mathrm{in}^{2}$	Section area cf deck flexural reir forcement at top (single bar)
$\mathrm{S}_{\text {s.top }}:=6 \mathrm{in}$	Spacing of deck flexural reir forcement at top

(1d) Design Force Inputs:

Design Forces for Traffic Railings

Test Lev el	Rail \mathbf{H} eight (in.)	$\mathbf{F}_{\mathbf{t}}(\mathbf{k i p})$	$\mathbf{F}_{\mathbf{L}}(\mathbf{k i p})$	$\mathbf{F}_{\mathbf{r}}(\mathbf{k i p})$	$\mathbf{L}_{\mathbf{f}} / \mathbf{L}_{\mathbf{L}}(\mathbf{f t})$	$\mathbf{L}_{\mathbf{r}}(\mathbf{f t})$	$\mathbf{H}_{\mathbf{e}}(\mathbf{i n})$	$\mathbf{H}_{\text {min }}$ (in)
TL-1	18 or above	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL-2	18 or above	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL-3	29 or above	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL-4 (a)	36	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL-4 (b)	between 36 and 42	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL-5 (a)	42	160.0	41.0	80.0	10.0	40.0	35.0	42.0
TL-5(b)	greater than 42	262.0	75.0	160.0	10.0	40.0	43.0	42.0
TL 6		175.0	58.0	80.0	8.0	40.0	56.0	90.0

References:

- TL-1 and TL-2 Design Forces are from AASHTO LRFD Section 13 Table A13.2-1
- TL-3 Design Forces are from research conducted under NCHRP Project 20-07 Task 395
- TL-4 (a), TL-4 (b), TL-5 (a), and TL-5 (b) Design Forces are from research conducted under NCHRP Project 22-20(2)

TL: $=4$
$\mathrm{F}_{\mathrm{t}}:=68$ kip \quad Transverse impact force
$\mathrm{L}_{\mathrm{t}}:=4 \mathrm{ft}$
$\mathrm{H}_{\mathrm{e}}:=25$ in

Test level

Longitudinal length cf distribution cf impact force
Height cf equivalent transverses load

$\mathrm{H}_{\min }:=36$ in	Minimum height cf a MASH TL-4 barrier
$\mathrm{H}_{\mathrm{w}}=36$ in	Height cf concrete barrier

(2) Stability Criteria:

$\mathrm{H}_{\mathrm{min}}=36$ in	Minimum height cfa MASH TL-4 barrier	
$\mathrm{H}_{\mathrm{w}}=36$ in	Height cf concrete barrier measured from the top of the roadway surface/asphalt overlay	
Minimum_Height_of_Barrier_Check := if $\mathrm{H}_{\mathrm{w}} \geq \mathrm{H}_{\mathrm{min}}$		
	$\\|$ "OK"	
else		

Minimum_Height_of_Barrier_Check = "OK"
(3) LRFD Strength Analysis of the Barrier per AASHTO Section 13 Specification:
(3a) Bending Capacity of the Barrier about the Longitudinal Axis at Midspan: Mcmid (k-ft/ft)

For parapet vertical reinforcement:
$\mathrm{b}_{\mathrm{c}}:=12$ in Unit width (f wall (take as 1 ft per AASHTO Section 13 procedure)
$\mathrm{A}_{\mathrm{vpl.mid}}=0.2 \mathrm{in}^{2} \quad$ Area cfone parapet vertical reir forcement leg at midspan
$\mathrm{S}_{\mathrm{vp} . \operatorname{mid}}=12$ in Spacing cf parapet vertical reir forcement at midspan
$\mathrm{A}_{\text {vp.mid }}:=\left(\frac{\mathrm{b}_{\mathrm{c}}}{\mathrm{S}_{\mathrm{vp}, \text { mid }}}\right) \cdot \mathrm{A}_{\text {vpl.mid }}=0.2 \mathrm{in}^{2}$
Total area cf parapet vertical reir forcement per unit length at midspan
$\mathrm{d}_{\mathrm{cp.mid}}=15.25$ in \quad Average extreme distance cf parapet vertical reir forcement at midspan
$\mathrm{a}_{\text {cp.mid }}:=\frac{\mathrm{A}_{\mathrm{vp} . \mathrm{mid}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.294$ in \quad Depth cf Whitney stress block

$$
\mathrm{M}_{\text {cp.mid }}:=\frac{\left(\mathrm{A}_{\mathrm{vp} . \mathrm{mid}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{~d}_{\text {cp.mid }}-\frac{\mathrm{a}_{\text {cp.mid }}}{2}\right)\right)}{\mathrm{b}_{\mathrm{c}}}=15.103 \frac{\mathrm{kip} \cdot \mathrm{ft}}{\mathrm{ft}}
$$

Flexural resistance cf the barrier about the longitudinal axis at midspan when considering only the parapet vertical reir forcement spec fied in Article A 13.3.1 (k-fifif)

For deck anchorage reinforcement:

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{c}}=12 \text { in } \quad \text { Unit width (f wall (take as } 1 \text { ft per AASHTO Section } 13 \text { procedure) } \\
& \mathrm{A}_{\text {val.mid }}=0.2 \mathrm{in}^{2} \quad \text { Area cfone deck anchorage vertical reir.forcement leg at midspan } \\
& \mathrm{S}_{\text {va.mid }}=6 \text { in Spacing } \subset f \text { deck anchorage vertical reir forcement at midspan } \\
& \mathrm{A}_{\text {va.mid }}:=\left(\frac{\mathrm{b}_{\mathrm{c}}}{\mathrm{~S}_{\text {va. .mid }}}\right) \cdot \mathrm{A}_{\text {val.mid }}=0.4 \text { in }^{2} \\
& \text { Total area cf deck anchorage vertical reir forcement per unit length at } \\
& \text { midspan } \\
& \mathrm{d}_{\text {ca.mid }}=22.25 \text { in } \quad \text { Extreme distance cf tension deck anchorage vertical reir forcement at midspan } \\
& \mathrm{a}_{\text {ca.mid }}:=\frac{\mathrm{A}_{\text {va.mid }} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.588 \text { in } \quad \text { Depth cf Whitney stress block } \\
& \mathrm{M}_{\text {ca.mid }}:=\frac{\left(\mathrm{A}_{\text {va. } \mathrm{mid}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{~d}_{\text {ca.mid }}-\frac{\mathrm{a}_{\text {ca.mid }}}{2}\right)\right)}{\mathrm{b}_{\mathrm{c}}}=43.912 \frac{\mathrm{kip} \cdot \mathrm{ft}}{\mathrm{ft}} \\
& \text { Flexural resistance cf the barrier about the longitudinal axis at midspan } \\
& \text { when considering only the deck anchorage reir. forcement spec.fied in } \\
& \text { Article A 13.3.1 (k-fifif) } \\
& \mathrm{M}_{\text {c.mid }}:=\min \left(\mathrm{M}_{\text {cp.mid }}, \mathrm{M}_{\text {ca.mid }}\right)=15.103 \frac{\mathrm{kip} \cdot f t}{f t} \\
& \text { Flexural resistance cf the barrier about the longitudinal axis at midspan } \\
& \text { when considering the critical reir, forcement }
\end{aligned}
$$

(3b) Bending Capacity of the Barrier about the Longitudinal Axis at Joints/Ends: Mcend (k-ft/ft)

For parapet vertical reinforcement:
$\mathrm{A}_{\mathrm{vpl} . \mathrm{end}}=0.2 \mathrm{in}^{2} \quad$ Area cfone parapet vertical reir forcement leg at joints/ends
$\mathrm{S}_{\mathrm{vp} . \mathrm{end}}=6$ in Spacing cfparapet vertical reirforcement at joints/ends
$\mathrm{A}_{\mathrm{vp}, \mathrm{end}}:=\left(\frac{\mathrm{b}_{\mathrm{c}}}{\mathrm{S}_{\mathrm{vp}, \mathrm{end}}}\right) \cdot \mathrm{A}_{\mathrm{vpl} . \mathrm{end}}=0.4 \mathrm{in}^{2} \quad \begin{aligned} & \text { Total area cf deck anchorage vertical reir forcement } \\ & \text { per unit length at midspan }\end{aligned}$
$\mathrm{d}_{\mathrm{cp} . \mathrm{end}}=15.25$ in \quad Average extreme distance cfparapet vertical reirfforcement at joints/ends
(at barrier mid-heigh)
$\mathrm{a}_{\text {cp.end }}:=\frac{\mathrm{A}_{\mathrm{vp} . \mathrm{end}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.588$ in \quad Depth of Whitney stress block
$\mathrm{M}_{\mathrm{cp} . \mathrm{end}}:=\frac{\left(\mathrm{A}_{\mathrm{vp} . \mathrm{end}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{d}_{\mathrm{cp} . \text { end }}-\frac{\mathrm{a}_{\text {cp.end }}}{2}\right)\right)}{\mathrm{b}_{\mathrm{c}}}=29.912 \frac{\mathrm{kip} \cdot \mathrm{ft}}{\mathrm{ft}}$

Flexural resistance of the barrier about the longitudinal axis at Joints/ Ends when considering only the deck anchorage reir forcement spec fied in Article A 13.3 .1 (k-ft fi)

For deck anchorage reinforcement:

$\mathrm{A}_{\text {val.end }}=0.2 \mathrm{in}^{2}$	Area cfone deck anchorage vertical reirforcement leg at joints/ends
$\mathrm{S}_{\text {va. } \mathrm{end}}=6 \mathrm{in}$	Spacing cf deck anchorage vertical reir forcement at joints/ends
$\mathrm{A}_{\text {va.end }}:=\left(\frac{\mathrm{b}_{\mathbf{c}}}{\mathrm{S}_{\text {va.end }}}\right) \cdot \hat{A}$	$\cdot \begin{array}{ll} -\mathrm{A}_{\text {val.end }}=0.4 \text { in }^{2} \quad \begin{array}{l} \text { Total area cf deck anchorage vertical reir forcement } \\ \text { per unit length at joints/ends } \end{array} \end{array}$
$\mathrm{d}_{\text {ca.end }}=22.25 \mathrm{in}$	Extreme distance cf tension deck anchorage vertical reir forcement at joints/ends

$\mathrm{a}_{\text {ca.end }}:=\frac{\mathrm{A}_{\text {va.end }} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.588$ in \quad Depth cf Whitney stress block

Flexural resistance of the barrier about the longitudinal axis at Joints/
Ends when considering only the deck anchorage reir forcement spec fied in Article A 13.3.1 (k-ft.fi)
$\mathrm{M}_{\text {c.end }}:=\min \left(\mathrm{M}_{\text {cp.end }}, \mathrm{M}_{\text {ca.end }}\right)=29.912 \frac{\mathrm{kip} \cdot f t}{\mathrm{ft}}$

Flexural resistance of the barrier about the longitudinal axis at joints/ends when considering the critical reir forcement

(3c) Bending Capacity of the Barrier about the Vertical Axis: $\mathbf{M w}_{w}$

$\mathrm{d}_{\mathrm{w}}=14.75$ in $\quad E_{j}$ fective depth cflongitudinal reir forcement bars
$\mathrm{A}_{\mathrm{w}}=1 \mathrm{in}^{2} \quad$ Area cflongitudinal reir forcement bars in tension
$\mathrm{H}_{\mathrm{w}}=36$ in \quad Extreme distance of tension longitudinal reir forcement cf barrier
$\mathrm{a}_{\mathrm{w}}:=\frac{\mathrm{A}_{\mathrm{w}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{H}_{\mathrm{w}}}=0.49$ in \quad Depth cf Whitney stress block
$\mathrm{M}_{\mathrm{w}}:=\mathrm{A}_{\mathrm{w}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{d}_{\mathrm{w}}-\frac{\mathrm{a}_{\mathrm{w}}}{2}\right)=72.525 \mathrm{kip} \cdot f t \quad \begin{aligned} & \text { Flexural resistance cf the barrier about the } \\ & \text { vertical axis spec fied in Article A 13.3.1 }\end{aligned}$

10

(3d) Ultimate Resistance of the Wall at Midspan: Rw.mid

$\mathrm{H}_{\mathrm{w}}=36$ in	Height cf barrier
$\mathrm{M}_{\mathrm{B}}:=0$ kip $\cdot f t$	No additional beam strength
$\mathrm{M}_{\mathrm{c} . \mathrm{mid}}=15.103 \frac{\mathrm{kip} \cdot f t}{f t}$	Flexural resistance about the long. axis at midspan

$\mathrm{M}_{\mathrm{w}}=72.525$ kip $\cdot f t \quad \quad$ Flexural resistance about the vert. axis

$\mathrm{L}_{\mathrm{t}}=4 \mathrm{ft}$
Long. length cf distribution $c f$ impact force

Figure 2. Yield Line Analysis cf Concrete Parapet Walls for Impact within Wall Segment figure taken from $A A S H T C$)

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{c} . \text { mid }}:=\frac{\mathrm{L}_{\mathrm{t}}}{2}+\sqrt{\left(\frac{\mathrm{L}_{\mathrm{t}}}{2}\right)^{2}+\frac{8 \cdot \mathrm{H}_{\mathrm{w}} \cdot\left(\mathrm{M}_{\mathrm{B}}+\mathrm{M}_{\mathrm{w}}\right)}{\mathrm{M}_{\mathrm{c} . \text { mid }}}}=12.92 \mathrm{ft} \quad \text { AASHTO Equation A13.3.1-2 } \\
& \mathrm{R}_{\mathrm{w} . \text { mid }}:=\left(\frac{2}{2 \cdot \mathrm{~L}_{\mathrm{c} . \text { mid }}-\mathrm{L}_{\mathrm{t}}}\right) \cdot\left(8 \cdot \mathrm{M}_{\mathrm{B}}+8 \cdot \mathrm{M}_{\mathrm{w}}+\frac{\mathrm{M}_{\mathrm{c} . \text { mid }} \cdot\left(\mathrm{L}_{\mathrm{c} . \mathrm{mid}}\right)^{2}}{\mathrm{H}_{\mathrm{w}}}\right) \cdot \frac{\mathrm{H}_{\mathrm{w}}}{\mathrm{H}_{\mathrm{e}}}=187.326 \mathrm{kip} \\
& \text { AASHTO Equation Al3.3.I-I }
\end{aligned}
$$

(3e) Ultimate Resistance of the Wall at Joints/Ends: Rw.end

Figure 3. Yield Line Analysis of Concrete Parapet Walls for Impact near End cf Wall Segment (figure taken from AASHTC)
$\mathrm{H}_{\mathrm{w}}=36$ in
$\mathrm{M}_{\mathrm{B}}:=0 \mathrm{kip} \cdot f t$
$\mathrm{M}_{\text {c.end }}=29.912 \frac{\text { kip } \cdot f t}{f t} \begin{aligned} & \text { Flexural resistance about the long. } \\ & \text { axis at joints/ends }\end{aligned}$.
$\mathrm{M}_{\mathrm{w}}=72.525$ kip $\cdot f t \quad$ Flexural resistance about the vert. axis

Long. length $\subset f$ distribution $c f$ impact force

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{c} . \text { end }}:=\frac{\mathrm{L}_{\mathrm{t}}}{2}+\sqrt{\left(\frac{\mathrm{L}_{\mathrm{t}}}{2}\right)^{2}+\frac{\mathrm{H}_{\mathrm{w}} \cdot\left(\mathrm{M}_{\mathrm{B}}+\mathrm{M}_{\mathrm{w}}\right)}{\mathrm{M}_{\mathrm{c} . \text { end }}}}=5.358 \mathrm{ft} \\
& \mathrm{R}_{\mathrm{w} . \text { end }}:=\left(\frac{2}{2 \cdot \mathrm{~L}_{\mathrm{c} . \text { end }}-\mathrm{L}_{\mathrm{t}}}\right) \cdot\left(\mathrm{M}_{\mathrm{B}}+\mathrm{M}_{\mathrm{w}}+\frac{\mathrm{M}_{\mathrm{c} . \text { end }} \cdot\left(\mathrm{L}_{\mathrm{c} . \text { end }}\right)^{2}}{\mathrm{H}_{\mathrm{w}}}\right) \cdot \frac{\mathrm{H}_{\mathrm{w}}}{\mathrm{H}_{\mathrm{e}}}=153.847 \text { kip } \\
& \text { AASHTO Equation A13.3. I-4 } \\
& \text { AASuation A13.3. 1-3 }
\end{aligned}
$$

(3) LRFD Strength Analvsis of the Barrier per AASHTO Section 13 Specification -

 Summary of Results:\(\left.$$
\begin{array}{ll}\mathrm{H}_{\mathrm{w}}=36 \mathrm{in} & \begin{array}{l}\text { Height cf the concrete barrier measured from the top } \\
\text { cf the roadway sur face }\end{array}
$$

\mathrm{H}_{\mathrm{e}}=25 \mathrm{in} \& Height cf the transverse impact force, \mathrm{Ft}\end{array}\right\}\)| Transverses impact force located at He |
| :--- |

Structural_Capacity_of_Barrier_at_Midspan_Check:= if $\mathrm{R}_{\mathrm{w} . \text { mid }}>\mathrm{F}_{\mathrm{t}}$

Structural_Capacity_of_Barrier_at_Midspan_Check = "OK"

Structural_Capacity_of_Barrier_at_Ends_Check:= if $R_{w . e n d}>F_{t}$

$$
\begin{aligned}
& \| \text { "OK" } \\
& \text { else } \\
& \| \text { "Not OK" }
\end{aligned}
$$

Structural_Capacity_of_Barrier_at_Ends_Check ="OK"
(4) Punching Shear Capacity of the Barrier:

Punching_Shear_Capacity_of_Barrier_Check="OK"

(5) Deck Moment Capacity:

(5a) Deck Moment Demand:

- The moment demand on the deck due to the TL-4 impact loading was determined using RISA-3D structral analysis.
- A solid model of the $36^{\prime \prime}$ barrier, as shown in Figure 5, was developed to determine the barrier loads to the deck. This model was generated with $6^{\prime \prime}$ wide elements in the longitudinal direction to represent the spacing of the barrier vertical reinforcements.
- The deck was modeled using meshed plate elements ($8^{\prime} \times 50^{\prime}$ with $6^{\prime \prime} \times 6^{\prime \prime}$ plate elements). The reactions from the barrier to the deck were applied at the corresponding locations as shown in Figure 6.
* Detailed discussion will be provided in the final report.

Figure 7. Barrier Solid Model

Figure 8. Deck Plate Model with Barrier Reactions

Deck moment demand from RISA 3-D analysis:

Max. moment demand at mid-span: $\mathrm{M}_{\mathrm{u} \cdot \mathrm{mid}}:=7.93 \mathrm{kip} \cdot \mathrm{ft}$

(5b) Deck Nominal Moment Capacity:

$\mathrm{b}_{\mathrm{c} . \text { unit }}:=12 \mathrm{in}$	Unit width cf deck
$\mathrm{t}_{\mathrm{s}}=8.5 \mathrm{in}$	Depth cf deck
$\mathrm{d}_{\mathrm{s} . \mathrm{bot}}=6.688$ in	Extreme distance cf deck flexural reir forcement at top
$\mathrm{A}_{\mathrm{s} . \mathrm{bot}}=0.31 \mathrm{in}^{2}$	Section area cfdeck flexural reir forcement at top
$\mathrm{S}_{\mathrm{s} . \mathrm{bot}}=6 \mathrm{in}$	Spacing cf deck flexural reir forcement at top

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{s} . \text { unit }}:=\frac{\mathrm{A}_{\mathrm{s} . \mathrm{bot}}}{\mathrm{~S}_{\mathrm{s} . \mathrm{bot}}} \cdot \mathrm{~b}_{\mathrm{c} . \mathrm{unit}}=0.62 \mathrm{in}^{2} \quad \text { Unit area cf deck flexural reir forcement at end section } \\
& \mathrm{a}_{\mathrm{s}}:=\frac{\mathrm{A}_{\mathrm{s} . \text { unit }} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c} . \text { unit }}}=0.912 \mathrm{in} \quad \text { Depth cf Whitney stress block at end section } \\
& \mathrm{M}_{\mathrm{n} . \mathrm{s}}:=\mathrm{A}_{\mathrm{s} . \mathrm{unit}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{~d}_{\mathrm{s} . \mathrm{bot}}-0.5 \cdot \mathrm{a}_{\mathrm{s}}\right)=19.318 \mathrm{kip} \cdot \mathrm{ft} \quad \text { Nominal moment capacity cf deck }
\end{aligned}
$$

(5c) Deck Moment Capacity with Coincident Tensile Forces (AASHTO A 13.4.2):

- Check at critical location: end-section
$\mathrm{L}_{\text {c.end }}=5.358 \mathrm{ft} \quad$ Distribution length cf yield line mechanism
$\mathrm{R}_{\mathrm{w} . \mathrm{end}}=153.847$ kip \quad Nominal resistance cf barrier to transverse load
$\mathrm{H}_{\mathrm{w}}=36 i n$
Height cf barrier
$\mathrm{T}:=\frac{\mathrm{R}_{\mathrm{w} . \text { end }}}{\mathrm{L}_{\text {c.end }}+2 \cdot \mathrm{H}_{\mathrm{w}}}=13.546 \frac{\mathrm{kip}}{f t}$
Coincident tensile force from vehicle impact (AASHTO Eq. A 13.4.2.-1)
$\mathrm{T}_{\mathrm{a}}:=\mathrm{A}_{\mathrm{s} \text {.unit }} \cdot \mathrm{f}_{\mathrm{y}}=37.2$ kip \quad Tensile load provided by deck flexural reir forcement
$\mathrm{C}:=\mathrm{T}_{\mathrm{a}}-\mathrm{T} \cdot f t=23.654 \mathrm{kip} \quad$ Resultant compression force in deck section
$\mathrm{a}_{\mathrm{c}}:=\frac{\mathrm{C}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.58$ in \quad Depth cf Whitney stress block for compression force $\mathrm{M}_{\mathrm{n} . \mathrm{t}}:=\mathrm{T}_{\mathrm{a}} \cdot\left(\mathrm{d}_{\mathrm{s} . \mathrm{bot}}-\frac{\mathrm{a}_{\mathrm{c}}}{2}\right)-\mathrm{T} \cdot f t \cdot\left(\frac{\mathrm{~d}_{\mathrm{s} . \mathrm{bot}}}{2}-\frac{\mathrm{a}_{\mathrm{c}}}{2}\right)=16.385 \mathrm{kip} \cdot f t$

Moment capacity of deck with coincident tensile force
$\mathrm{M}_{\mathrm{u} . \text { deck }}:=\max \left(\mathrm{M}_{\mathrm{u} . \text { end }}, \mathrm{M}_{\mathrm{u} . \text { mid }}\right)=12.2 \mathrm{kip} \cdot \mathrm{ft}$

Moment_Capacity_of_Deck_Check := if $\mathrm{M}_{\mathrm{n} . \mathrm{t}}>\mathrm{M}_{\mathrm{u} . \mathrm{deck}}$
$\|$ "OK"
else
$\|$ "Not OK"

Moment_Capacity_of_Deck_Check="OK"

(6) Reinforcement Development Length:

Reir.forcement cor finement factor, $0.4<\lambda_{r c}<1.0$ (AASHTO 5.10.8.2.1c)

$$
\begin{aligned}
& \mathrm{l}_{\mathrm{d} . \# 4}:=\mathrm{l}_{\mathrm{db} . \# 4} \cdot\left(\frac{\lambda_{\mathrm{r} 1} \cdot \lambda_{\mathrm{cf}} \cdot \lambda_{\mathrm{rc} . \# 4} \cdot \lambda_{\mathrm{er}}}{\lambda}\right)=14.4 \mathrm{in} \\
& \mathrm{l}_{\mathrm{d} . \# 5}:=\mathrm{l}_{\mathrm{db} . \# 5} \cdot\left(\frac{\lambda_{\mathrm{r} 1} \cdot \lambda_{\mathrm{cf}} \cdot \lambda_{\mathrm{rc} . \# 5} \cdot \lambda_{\mathrm{er}}}{\lambda}\right)=18 \mathrm{in}
\end{aligned}
$$

$$
\mathrm{l}_{\mathrm{anc}}:=16.4 \mathrm{in}
$$

Anchorage reir forcement development lengths provided (\#4 bar, green)
$\mathrm{l}_{\text {s.top }}:=60 \mathrm{in}$
Deck flexural reir forcement development lengths provided (\#5 bar)

Development lengths needed (mod. fied tension development length AASHTO Eq. 5.10.8.2.1a-1)

Figure 9. Reir forcement Development Length

Deck_Reinforcement_Development_Length_Check $:=$ if $l_{\text {anc }}>l_{\text {d.\#4 }} \| l_{\text {s.top }}>l_{\text {d.\#5 }} \mid$

else
$\|$ "Not OK"

Deck_Reinforcement_Development_Length_Check="OK"

(7) Analysis Results Overview:

Minimum_Height_of_Barrier_Check = "OK"

Structural_Capacity_of_Barrier_at_Midspan_Check="OK"

Structural_Capacity_of_Barrier_at_Ends_Check="OK"

Punching_Shear_Capacity_of_Barrier_Check="OK"
Moment_Capacity_of_Deck_Check="OK"
Deck_Reinforcement_Development_Length_Check="OK"

(8) Summary of Barrier Desion:

1. Use Vertical Barrier Stirrup \#4 @ $6^{\prime \prime}$ O.C. for $10^{\prime}-0^{\prime \prime}$ at Barrier End Section
2. Use Vertical Barrier Stirrup \#4 @1 $12^{\prime \prime}$ O.C. out at Mid-Section (greater than $10^{\prime}-0^{\prime \prime}$ from End Sections)
3. All other details as shown on Section and Elevation Views as provided herein for the $36^{\prime \prime}$ Barrier as analyzed herein are acceptable for MASH TL-4 Impact conditions.

42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

Overview:

These calcualtions evaluate the strength of the given barrier design for MASH TL-4 impact load condtions.

- 42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from the Barrier Left Side in the Section View below.

Design Details:

Section View (a)

Texas A\&M Iransportation Institute

SUBJECT: 42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

Section View (b)

Elevation

SUBJECT: $42^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

Iso View

Texas A\&M Transportation Institute

SUBJECT: 42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

(1) Define Inputs:

(1a) General Inputs:

Figure 1. Sketch cf Concrete Wall/Parapet Showing Input Variable

SUBJECT:
42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

(1b) Concrete Barrier Inputs:

$\mathrm{t}_{\mathrm{b} . \mathrm{cov}}:=1.5 \mathrm{in} \quad$ Concrete clear cover cf barrier

Barrier vertical reinforcement inputs (\#4 bars):
$\mathrm{A}_{\mathrm{vpl} . \mathrm{mid}}:=0.2 \mathrm{in}^{2} \quad$ Area cfone barrier vertical reir forcement leg at midspan
$\mathrm{S}_{\mathrm{vp} . \mathrm{mid}}:=12$ in \quad Spacing cf barrier vertical reirforcement at midspan
$\mathrm{d}_{\mathrm{cp} . \mathrm{mid}}:=14.0625$ in \quad Average extreme distance $\subset f$ barrier vertical reir forcement at midspan
$\mathrm{A}_{\mathrm{vpl} . \mathrm{end}}:=0.2 \mathrm{in}^{2} \quad$ Area cfone barrier vertical reir forcement leg at joints/ends
$\mathrm{S}_{\mathrm{vp} . \mathrm{end}}:=6$ in \quad Spacing cf barrier vertical reirfforcement at joints/ends
$\mathrm{d}_{\mathrm{cp.end}}:=14.0625$ in \quad Average extreme distance cf barrier vertical reir forcement at joints/ends

Deck anchorage reinforcement inputs (\#4 bars):

$\mathrm{A}_{\text {val.mid }}:=0.2 \mathrm{in}^{2}$	Area cfone deck anchorage vertical reir forcement leg at midspan
$\mathrm{S}_{\text {va.mid }}:=6 \mathrm{in}$	Spacing cf deck anchorage vertical reir forcement at midspan
$\mathrm{d}_{\text {ca.mid }}:=22.25 \mathrm{in}$	Extreme distance cf tension deck anchorage reir forcement at midspan
$\mathrm{A}_{\text {val.end }}:=0.2 \mathrm{in}^{2}$	Area cfone deck anchorage vertical reir forcement leg at joints/ends
$\mathrm{S}_{\text {va.end }}:=6 \mathrm{in}$	Spacing cf deck anchorage vertical reir forcement at joints/ends
$\mathrm{d}_{\text {ca.end }}:=22.25$ in	Extreme distance cf tension deck anchorage reirforcement at joints/ends

Barrier Longitudinal reinforcement inputs (\#4 bars):
$\mathrm{A}_{\mathrm{w}}:=0.2 \cdot 6 \mathrm{in}^{2}=1.2 \mathrm{in}^{2}$ Area cflongitudinal reivforcement bars in tension
$\mathrm{d}_{\mathrm{w}}:=13.5625$ in
Average extreme distance cf tension longitudinal reir forcement

SUBJECT: 42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

(1c) Concrete Deck Inputs:

$\mathrm{t}_{\text {s.cov.bot }}:=1.5 \mathrm{in}$	Concrete clear cover cf deck at bottom
$\mathrm{d}_{\text {s.bot }}:=9.1875$ in	Extreme distance cf deck flexural reir forcement at bottom
$\mathrm{A}_{\text {s.bot }}:=0.31 \mathrm{in}^{2}$	Section area cf deck flexural reinforcement at bottom (single bar)
$\mathrm{S}_{\text {s.bot }}:=3$ in	Spacing cf deck flexural reirforcement at bottom
$\mathrm{t}_{\text {s.cov.top }}:=2.5 \mathrm{in}$	Concrete clear cover cf deck at top
$\mathrm{d}_{\text {s.top }}:=8.1875$ in	Extreme distance cf deck flexural reir forcement at top
$\mathrm{A}_{\text {s.top }}:=0.31 \mathrm{in}^{2}$	Section area cfdeck flexural reir forcement at top (single bar)
$\mathrm{S}_{\text {s.top }}:=3$ in	Spacing of deck flexural reirforcement at top

(1d) Design Force Inputs:

Design Forces for Traffic Railings

Test Level	Rail Height (in.)	$\mathbf{F}_{\mathbf{t}}(\mathbf{k i p})$	$\mathbf{F}_{\mathbf{L}}(\mathbf{k i p})$	$\mathbf{F}_{\mathbf{r}}(\mathbf{k i p})$	$\mathbf{L}_{\mathbf{L}} \mathbf{L}_{\mathbf{L}}(\mathbf{f t})$	$\mathbf{L}_{\mathbf{r}}(\mathbf{f t})$	$\mathbf{H}_{\boldsymbol{e}}$ (in)	$\mathbf{H}_{\text {min }}$ (in)
TL-1	18 or above	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL-2	18 or above	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL-3	29 or above	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL-4 (a)	36	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL-4 (b)	between 36 and 42	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL-5 (a)	42	160.0	41.0	80.0	10.0	40.0	35.0	42.0
TL-5 (b)	greater than 42	262.0	75.0	160.0	10.0	40.0	43.0	42.0
TL 6		175.0	58.0	80.0	8.0	40.0	56.0	90.0

References:

- TL-1 and TL-2 Design Forces are from AASHTO LRFD Section 13 Table A13.2-1
- TL-3 Design Forces are from research conducted under NCHRP Project 20-07 Task 395
- TL-4 (a), TL-4 (b), TL-5 (a), and TL-5 (b) Design Forces are from research conducted under NCHRP Project 22-20(2)

TL: $=4$
$\mathrm{F}_{\mathrm{t}}:=80$ kip \quad Transverse impact force
$\mathrm{L}_{\mathrm{t}}:=5 \mathrm{ft}$
$\mathrm{H}_{\mathrm{e}}:=30$ in

Test level

Longitudinal length cf distribution cf impact force
Height cf equivalent transverses load

Texas A\&M Iransportation Institute

SUBJECT: 42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

$$
\begin{array}{ll}
\mathrm{H}_{\min }:=36 \text { in } & \text { Minimum height cf a MASH TL-4 barrier } \\
\mathrm{H}_{\mathrm{w}}=42 \text { in } & \text { Height cf concrete barrier }
\end{array}
$$

(2) Stability Criteria:

$\mathrm{H}_{\mathrm{min}}=36$ in	Minimum height cfa MASH TL-4 barrier	
$\mathrm{H}_{\mathrm{w}}=42$ in	Height cf concrete barrier measured from the top cf the roadway surface/asphalt overlay	
Minimum_Height_of_Barrier_Check := if $\mathrm{H}_{\mathrm{w}} \geq \mathrm{H}_{\mathrm{min}}$		
	$\\|$ "OK"	
else		
	$\\|$ "Not OK"	

Minimum_Height_of_Barrier_Check = "OK"
(3) LRFD Strength Analysis of the Barrier per AASHTO Section 13 Specification:
(3a) Bending Capacity of the Barrier about the Longitudinal Axis at Midspan: Mcmid (k-ft/ft)

For parapet vertical reinforcement:

$\mathrm{b}_{\mathrm{c}}:=12$ in	Unit width cf wall (take as 1 ft per AASHTO Section 13 procedurt)
$\mathrm{A}_{\mathrm{vpl.mid}}=0.2 \mathrm{in}^{2}$	Area cfone parapet vertical reir forcement leg at midspan
$\mathrm{S}_{\mathrm{vp} . \mathrm{mid}}=12 \mathrm{in}$	Spacing cf parapet vertical reir forcement at midspan

$\mathrm{A}_{\mathrm{vp}, \text { mid }}:=\left(\frac{\mathrm{b}_{\mathrm{c}}}{\mathrm{S}_{\mathrm{vp}, \text { mid }}}\right) \cdot \mathrm{A}_{\mathrm{vpl} . \text { mid }}=0.2 \mathrm{in}^{2}$
Total area cf parapet vertical reir forcement per unit length at midspan
$\mathrm{d}_{\mathrm{cp} . \mathrm{mid}}=14.063$ in \quad Average extreme distance cf parapet vertical reir.forcement at midspan
$\mathrm{a}_{\text {cp.mid }}:=\frac{\mathrm{A}_{\mathrm{vp} . \mathrm{mid}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.294$ in \quad Depth cf Whitney stress block

$$
\mathrm{M}_{\text {cp.mid }}:=\frac{\left(\mathrm{A}_{\mathrm{vp} . \mathrm{mid}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{~d}_{\text {cp.mid }}-\frac{\mathrm{a}_{\text {cp.mid }}}{2}\right)\right)}{\mathrm{b}_{\mathrm{c}}}=13.915 \frac{\mathrm{kip} \cdot \mathrm{ft}}{\mathrm{ft}}
$$

Flexural resistance cf the barrier about the longitudinal axis at midspan when considering only the parapet vertical reir forcement spec fied in Article A 13.3.1 (k-fifif)

For deck anchorage reinforcement:

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{c}}=12 \text { in Unit width (f wall (take as I ft per AASHTO Section } 13 \text { procedur) } \\
& \mathrm{A}_{\mathrm{val} . \mathrm{mid}}=0.2 \mathrm{in}^{2} \quad \text { Area cfone deck anchorage vertical reir.forcement leg at midspan } \\
& \mathrm{S}_{\text {va.mid }}=6 \text { in Spacing } \subset f \text { deck anchorage vertical reir forcement at midspan } \\
& \mathrm{A}_{\text {va.mid }}:=\left(\frac{\mathrm{b}_{\mathrm{c}}}{\mathrm{~S}_{\text {va. .mid }}}\right) \cdot \mathrm{A}_{\text {val.mid }}=0.4 \text { in }^{2} \\
& \text { Total area cf deck anchorage vertical reir forcement per unit length at } \\
& \text { midspan } \\
& \mathrm{d}_{\text {ca.mid }}=22.25 \text { in } \quad \text { Extreme distance cf tension deck anchorage vertical reir forcement at midspan } \\
& \mathrm{a}_{\text {ca.mid }}:=\frac{\mathrm{A}_{\text {va.mid }} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.588 \text { in } \quad \text { Depth cf Whitney stress block } \\
& \mathrm{M}_{\text {ca.mid }}:=\frac{\left(\mathrm{A}_{\text {va. } \mathrm{mid}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{~d}_{\text {ca.mid }}-\frac{\mathrm{a}_{\text {ca.mid }}}{2}\right)\right)}{\mathrm{b}_{\mathrm{c}}}=43.912 \frac{\mathrm{kip} \cdot \mathrm{ft}}{\mathrm{ft}} \\
& \text { Flexural resistance cf the barrier about the longitudinal axis at midspan } \\
& \text { when considering only the deck anchorage reirforcement spec:fied in } \\
& \text { Article A 13.3.1 (k-fifi) } \\
& \mathrm{M}_{\text {c.mid }}:=\min \left(\mathrm{M}_{\text {cp.mid }}, \mathrm{M}_{\text {ca.mid }}\right)=13.915 \frac{k i p \cdot f t}{f t} \\
& \text { Flexural resistance cf the barrier about the longitudinal axis at midspan } \\
& \text { when considering the critical reir, forcement }
\end{aligned}
$$

SUBJECT: 42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

(3b) Bending Capacity of the Barrier about the Longitudinal Axis at Joints/Ends: Mecnd (k-ft/ft)

For parapet vertical reinforcement:
$\mathrm{A}_{\mathrm{vpl} . \mathrm{end}}=0.2 \mathrm{in}^{2} \quad$ Area cfone parapet vertical reir. forcement leg at joints/ends
$\mathrm{S}_{\mathrm{vp} . \mathrm{end}}=6$ in Spacing cfparapet vertical reirforcement at joints/ends
$\mathrm{A}_{\mathrm{vp}, \mathrm{end}}:=\left(\frac{\mathrm{b}_{\mathrm{c}}}{\mathrm{S}_{\mathrm{vp}, \mathrm{end}}}\right) \cdot \mathrm{A}_{\mathrm{vpl} . \mathrm{end}}=0.4 \mathrm{in}^{2} \quad \begin{aligned} & \text { Total area cf deck anchorage vertical reir forcement } \\ & \text { per unit length at midspan }\end{aligned}$
$\mathrm{d}_{\mathrm{cp} . \mathrm{end}}=14.063 \mathrm{in} \quad$ Average extreme distance cfparapet vertical reir forcement at joints/ends
(at barrier mid-heigh)
$\mathrm{a}_{\text {cp.end }}:=\frac{\mathrm{A}_{\mathrm{vp} . \mathrm{end}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.588$ in \quad Depth of Whitney stress block
$\mathrm{M}_{\mathrm{cp} . \mathrm{end}}:=\frac{\left(\mathrm{A}_{\mathrm{vp}, \mathrm{end}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{d}_{\text {cp.end }}-\frac{\mathrm{a}_{\text {cp.end }}}{2}\right)\right)}{\mathrm{b}_{\mathrm{c}}}=27.537 \frac{\mathrm{kip} \cdot \mathrm{ft}}{\mathrm{ft}}$
Flexural resistance of the barrier about the longitudinal axis at Joints/
Ends when considering only the deck anchorage reir forcement spec fied
in Article A 13.3.1 (k-ft fi)

For deck anchorage reinforcement:

$\mathrm{A}_{\text {val.end }}=0.2 \mathrm{in}^{2}$	Area cfone deck anchorage vertical reirforcement leg at joints/ends
$\mathrm{S}_{\text {va. } \mathrm{end}}=6 \mathrm{in}$	Spacing cf deck anchorage vertical reir forcement at joints/ends
$\mathrm{A}_{\text {va.end }}:=\left(\frac{\mathrm{b}_{\mathbf{c}}}{\mathrm{S}_{\text {va.end }}}\right) \cdot \hat{A}$	$\cdot \begin{array}{ll} -\mathrm{A}_{\text {val.end }}=0.4 \text { in }^{2} \quad \begin{array}{l} \text { Total area cf deck anchorage vertical reir forcement } \\ \text { per unit length at joints/ends } \end{array} \end{array}$
$\mathrm{d}_{\text {ca.end }}=22.25 \mathrm{in}$	Extreme distance cf tension deck anchorage vertical reir forcement at joints/ends

SUBJECT: $42^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)
$\mathrm{a}_{\text {ca.end }}:=\frac{\mathrm{A}_{\text {va.end }} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.588$ in \quad Depth cf Whitney stress block

Flexural resistance of the barrier about the longitudinal axis at Joints/
Ends when considering only the deck anchorage reirforcement spec fied in Article A 13.3.1 (k.ft.fi)
$\mathrm{M}_{\text {c.end }}:=\min \left(\mathrm{M}_{\text {cp.end }}, \mathrm{M}_{\text {ca.end }}\right)=27.537 \frac{\mathrm{kip} \cdot f t}{f t}$

Flexural resistance of the barrier about the longitudinal axis at joints/ends when considering the critical reir forcement

(3c) Bending Capacity of the Barrier about the Vertical Axis: $\mathrm{Mw}_{\mathbf{w}}$

$\mathrm{d}_{\mathrm{w}}=13.563$ in $\quad E_{j}$ fective depth cflongitudinal reir forcement bars
$\mathrm{A}_{\mathrm{w}}=1.2 \mathrm{in}^{2} \quad$ Area cflongitudinal reir forcement bars in tension
$\mathrm{H}_{\mathrm{w}}=42$ in Extreme distance of tension longitudinal reir forcement cf barrier
$\mathrm{a}_{\mathrm{w}}:=\frac{\mathrm{A}_{\mathrm{w}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{H}_{\mathrm{w}}}=0.504$ in \quad Depth cf Whitney stress block
$\mathrm{M}_{\mathrm{w}}:=\mathrm{A}_{\mathrm{w}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{d}_{\mathrm{w}}-\frac{\mathrm{a}_{\mathrm{w}}}{2}\right)=79.862$ kip $\cdot f t \quad \begin{aligned} & \text { Flexural resistance of the barrier about the } \\ & \text { vertical axis spec. fied in Article A 13.3.1 }\end{aligned}$

10

42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)
(3d) Ultimate Resistance of the Wall at Midspan: Rw.mid

$\mathrm{H}_{\mathrm{w}}=42 \mathrm{in}$	Height cf barrier
$\mathrm{M}_{\mathrm{B}}:=0 \mathrm{kip} \cdot \mathrm{ft}$	No additional beam strength

$\mathrm{M}_{\text {c.mid }}=13.915 \frac{\text { kip } \cdot f t}{f t} \quad \begin{aligned} & \text { Flexural resistance about the long. } \\ & \text { axis at midspan }\end{aligned}$
$\mathrm{M}_{\mathrm{w}}=79.862 \mathrm{kip} \cdot f t$
Flexural resistance about the vert. axis

$\mathrm{L}_{\mathrm{t}}=5 \mathrm{ft}$
Long. length cf distribution $c f$ impact force

Figure 2. Yield Line Analysis cf Concrete Parapet Walls for Impact within Wall Segment figure taken from $A A S H T C$)

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{c} . \text { mid }}:=\frac{\mathrm{L}_{\mathrm{t}}}{2}+\sqrt{\left(\frac{\mathrm{L}_{\mathrm{t}}}{2}\right)^{2}+\frac{8 \cdot \mathrm{H}_{\mathrm{w}} \cdot\left(\mathrm{M}_{\mathrm{B}}+\mathrm{M}_{\mathrm{w}}\right)}{\mathrm{M}_{\mathrm{c} . \text { mid }}}}=15.421 \mathrm{ft} \quad \text { AASHTO Equation A13.3.1-2 } \\
& \mathrm{R}_{\mathrm{w} . \operatorname{mid}}:=\left(\frac{2}{2 \cdot \mathrm{~L}_{\mathrm{c} . \text { mid }}-\mathrm{L}_{\mathrm{t}}}\right) \cdot\left(8 \cdot \mathrm{M}_{\mathrm{B}}+8 \cdot \mathrm{M}_{\mathrm{w}}+\frac{\mathrm{M}_{\mathrm{c} . \mathrm{mid}} \cdot\left(\mathrm{~L}_{\mathrm{c} . \mathrm{mid}}\right)^{2}}{\mathrm{H}_{\mathrm{w}}}\right) \cdot \frac{\mathrm{H}_{\mathrm{w}}}{\mathrm{H}_{\mathrm{e}}}=171.669 \mathrm{kip} \\
& \text { AASHTO Equation Al3.3.I-I }
\end{aligned}
$$

(3e) Ultimate Resistance of the Wall at Joints/Ends: Rw.end

Figure 3. Yield Line Analysis of Concrete Parapet Walls for Impact near End cf Wall Segment (figure taken from AASHTC)

$\mathrm{H}_{\mathrm{w}}=42 \mathrm{in}$	Height cf barrier
$\mathrm{M}_{\mathrm{B}}:=0 \mathrm{kip} \cdot \mathrm{ft}$	No additional beam strength
$\mathrm{M}_{\mathrm{c} . \text { end }}=27.537 \frac{\mathrm{kip} \cdot \mathrm{ft}}{\mathrm{ft}}$	Flexural resistance about the long. axis at joints/ends
$\mathrm{M}_{\mathrm{w}}=79.862 \mathrm{kip} \cdot \mathrm{ft}$	Flexural resistance about the vert. axis
$\mathrm{L}_{\mathrm{t}}=5 \mathrm{ft}$	Long. length cf distribution cf impact force

SUBJECT: 42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

$$
\begin{aligned}
& \mathrm{L}_{\text {c.end }}:=\frac{\mathrm{L}_{\mathrm{t}}}{2}+\sqrt{\left(\frac{\mathrm{L}_{\mathrm{t}}}{2}\right)^{2}+\frac{\mathrm{H}_{\mathrm{w}} \cdot\left(\mathrm{M}_{\mathrm{B}}+\mathrm{M}_{\mathrm{w}}\right)}{\mathrm{M}_{\mathrm{c} . \mathrm{end}}}}=6.55 \mathrm{ft} \\
& \mathrm{R}_{\mathrm{w} . \text { end }}:=\left(\frac{2}{2 \cdot \mathrm{~L}_{\mathrm{c} . \text { end }}-\mathrm{L}_{\mathrm{t}}}\right) \cdot\left(\mathrm{M}_{\mathrm{B}}+\mathrm{M}_{\mathrm{w}}+\frac{\mathrm{M}_{\mathrm{c} . \text { end }} \cdot\left(\mathrm{L}_{\mathrm{c} . e n d}\right)^{2}}{\mathrm{H}_{\mathrm{w}}}\right) \cdot \frac{\mathrm{H}_{\mathrm{w}}}{\mathrm{H}_{\mathrm{e}}}=144.288 \mathrm{kip} \\
& \text { AASHTO Equation A13.3.1-4 }
\end{aligned}
$$

(3) LRFD Strength Analysis of the Barrier per AASHTO Section 13 Specification -

Summary of Results:

$\mathrm{H}_{\mathrm{w}}=42 \mathrm{in}$	Height cf the concrete barrier measured from the top of the roadway sur face
$\mathrm{H}_{\mathrm{e}}=30 \mathrm{in}$	Height cf the transverse impact force, Ft
$\mathrm{F}_{\mathrm{t}}=80 \mathrm{kip}$	Transverses impact force located at He

Structural_Capacity_of_Barrier_at_Midspan_Check:= if $R_{w . m i d}>F_{t}$
$\|$ "OK"
else
$\|$ "Not OK"

Structural_Capacity_of_Barrier_at_Midspan_Check = "OK"

Structural_Capacity_of_Barrier_at_Ends_Check:= if $R_{w . e n d}>F_{t}$

$$
\begin{aligned}
& \| \text { "OK" } \\
& \text { else } \\
& \| \text { "Not OK" }
\end{aligned}
$$

Structural_Capacity_of_Barrier_at_Ends_Check="OK"

SUBJECT:
$42^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)
(4) Punching Shear Capacity of the Barrier:

$\lambda:=1.0 \quad$ Concrete weight modification factor	$h_{c},{ }^{1}{ }^{d_{c}}{ }^{\circ}, \quad F_{t}$	
$\mathrm{d}_{\mathrm{c}}:=10.55$ in Depth cf shear zone at height cfequivalent transvers	e load .	
$\mathrm{T}_{\mathrm{w} . \text { top }}:=7.625$ in Top width cfbarrier	. $\mathrm{H}_{\text {e }}$	
$\mathrm{h}_{\mathrm{c}}:=11$ in \quad Width cfshear zone		
$\mathrm{L}_{\mathrm{t}}=5 \mathrm{ft}$ Distribution width cf transverse impact force	Figure 4. Punching Shear Variables	
$\mathrm{f}_{\mathrm{c}}^{\prime}=4 \mathrm{ksi} \quad$ Concrete barrier compressive strength		
$\mathrm{d}_{\mathrm{f}}:=\frac{\mathrm{T}_{\mathrm{w} . \operatorname{top}}+\mathrm{d}_{\mathrm{c}}}{}=9.088$ in \quad Median depth cf shear zone		
$\mathrm{d}_{\mathrm{f}}:=\frac{2}{2}=9.088$ in Median depth cf shear zone	unan	
$\mathrm{b}_{\text {o.int }}:=\left(\mathrm{L}_{\mathrm{t}}+\mathrm{d}_{\mathrm{c}}\right)+2 \cdot\left(\mathrm{~h}_{\mathrm{c}}+\frac{\mathrm{d}_{\mathrm{c}}}{2}\right)=103.1$ in	$\begin{array}{lllll}\text { d/2 } & L_{1} & d / 2 & \mathrm{H}_{0}\end{array}$	
Median perimeter of interior critical section (AASHTO 5.8.4.3.4)	Figure 5. Punching Shear at Interior Segment	
$\mathrm{V}_{\text {c.int }}:=0.125 \cdot \lambda \cdot\left(\sqrt{\frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{1000}} \cdot k s i\right) \cdot \mathrm{b}_{\mathrm{o} . \mathrm{int}} \cdot \mathrm{~d}_{\mathrm{f}}=234.23 \mathrm{kip}$		
(AASHTO Eq. 5.8.4.3.4-3)	$4 \quad \mathrm{~d} / 2 \mathrm{H}$	
$\mathrm{b}_{\text {o.end }}:=\left(\mathrm{L}_{\mathrm{t}}+\frac{\mathrm{d}_{\mathrm{c}}}{2}\right)+\left(\mathrm{h}_{\mathrm{c}}+\frac{\mathrm{d}_{\mathrm{c}}}{2}\right)=81.55$ in $\quad \begin{aligned} & \text { Figure 6. Punching Shear } \\ & \text { Exterior Segment }\end{aligned}$		
Median perimeter (f exterior critical section (AASHTO 5.8.4.3.4)		
$\mathrm{V}_{\text {c.end }}:=0.125 \cdot \lambda \cdot\left(\sqrt{\frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{1000 p s i}} \cdot k s i\right) \cdot \mathrm{b}_{\text {o.end }} \cdot \mathrm{d}_{\mathrm{f}}=185.271 \mathrm{kip}$	Exterior punching shear capacity (AASHTO Eq.5.8.4.3.4-3)	
$\mathrm{V}_{\mathrm{c}}:=\min \left(\mathrm{V}_{\mathrm{c} . \text { int }}, \mathrm{V}_{\text {c.end }}\right)=185.271 \mathrm{kip}$	Critical punching shear capacity	
$\mathrm{F}_{\mathrm{t}}=80 k i p$	Transverse impact force	
Punching_Shear_Capacity_of_Barrier_Check:= if $\mathrm{V}_{\mathrm{c}}>\mathrm{F}_{\mathrm{t}}$		
"OK"		
\|	${ }^{\text {Not OK" }}$	

Punching_Shear_Capacity_of_Barrier_Check="OK"

SUBJECT: $42^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

(5) Deck Moment Capacity:

(5a) Deck Moment Demand:

- The moment demand on the deck due to the TL-4 impact loading was determined using RISA-3D structral analysis.
- A solid model of the $42^{\prime \prime}$ barrier, as shown in Figure 5, was developed to determine the barrier loads to the deck. This model was generated with $6^{\prime \prime}$ wide elements in the longitudinal direction to represent the spacing of the barrier vertical reinforcements.
- The deck was modeled using meshed plate elements ($4^{\prime} \times 50^{\prime}$ with $6^{\prime \prime} \times 6^{\prime \prime}$ plate elements). The reactions from the barrier to the deck were applied at the corresponding locations as shown in Figure 6.
* Detailed discussion will be provided in the final report.

Figure 7. Barrier Solid Model

Figure 8. Deck Plate Model with Barrier Reactions

SUBJECT: 42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

Deck moment demand from RISA 3-D analysis:

Max. moment demand at mid-span: $\mathrm{M}_{\mathrm{u} . \text { mid }}:=19.07$ kip $\cdot f t$

(5b) Deck Nominal Moment Capacity:

$\mathrm{b}_{\mathrm{c} . \mathrm{unit}}:=12 \mathrm{in}$	Unit width cf deck
$\mathrm{t}_{\mathrm{s}}=11 \mathrm{in}$	Depth cf deck
$\mathrm{d}_{\mathrm{s} . \mathrm{bot}}=9.188 \mathrm{in}$	Extreme distance cf deck flexural reir forcement at top
$\mathrm{A}_{\mathrm{s} . \mathrm{bot}}=0.31 \mathrm{in}^{2}$	Section area cf deck flexural reir forcement at top
$\mathrm{S}_{\mathrm{s} . \mathrm{bot}}=3 \mathrm{in}$	Spacing cf deck flexural reir forcement at top

Texas A\&M Iransportation
Institute

SUBJECT: 42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{s} . \mathrm{unit}}:=\frac{\mathrm{A}_{\mathrm{s} . \mathrm{bot}}}{\mathrm{~S}_{\mathrm{s} . \mathrm{bot}}} \cdot \mathrm{~b}_{\mathrm{c} . \mathrm{unit}}=1.24 \mathrm{in}^{2} \quad \text { Unit area cf deck flexural reir forcement at end section } \\
& \mathrm{a}_{\mathrm{s}}:=\frac{\mathrm{A}_{\mathrm{s} . \text { unit }} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c} . \text { unit }}}=1.824 \mathrm{in} \quad \text { Depth cf Whitney stress block at end section } \\
& \mathrm{M}_{\mathrm{n} . \mathrm{s}}:=\mathrm{A}_{\mathrm{s} . \mathrm{unit}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{~d}_{\mathrm{s} . \mathrm{bot}}-0.5 \cdot \mathrm{a}_{\mathrm{s}}\right)=51.31 \mathrm{kip} \cdot \mathrm{ft} \quad \text { Nominal moment capacity cf deck }
\end{aligned}
$$

(5c) Deck Moment Capacity with Coincident Tensile Forces (AASHTO A 13.4.2):

- Check at critical location: end-section
$\mathrm{L}_{\mathrm{c} . \text { end }}=6.55 \mathrm{ft} \quad$ Distribution length cfyield line mechanism
$\mathrm{R}_{\mathrm{w} . \mathrm{end}}=144.288$ kip \quad Nominal resistance cf barrier to transverse load
$\mathrm{H}_{\mathrm{w}}=42 i n$
Height cf barrier
$\mathrm{T}:=\frac{\mathrm{R}_{\mathrm{w} . \mathrm{end}}}{\mathrm{L}_{\mathrm{c} . \mathrm{end}}+2 \cdot \mathrm{H}_{\mathrm{w}}}=10.649 \frac{\mathrm{kip}}{f t} \quad \begin{aligned} & \text { Coincident tensile force from vehicle impact } \\ & \text { (AASHTO Eq. A 13.4.2.-1) }\end{aligned}$
$\mathrm{T}_{\mathrm{a}}:=\mathrm{A}_{\mathrm{s} . \mathrm{unit}} \cdot \mathrm{f}_{\mathrm{y}}=74.4$ kip \quad Tensile load provided by deck flexural reir forcement
$\mathrm{C}:=\mathrm{T}_{\mathrm{a}}-\mathrm{T} \cdot f t=63.751 \mathrm{kip} \quad$ Resultant compression force in deck section
$\mathrm{a}_{\mathrm{c}}:=\frac{\mathrm{C}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=1.563$ in \quad Depth cf Whitney stress block for compression force $\mathrm{M}_{\mathrm{n} . \mathrm{t}}:=\mathrm{T}_{\mathrm{a}} \cdot\left(\mathrm{d}_{\mathrm{s} . \mathrm{bot}}-\frac{\mathrm{a}_{\mathrm{c}}}{2}\right)-\mathrm{T} \cdot f t \cdot\left(\frac{\mathrm{~d}_{\mathrm{s} . \mathrm{bot}}}{2}-\frac{\mathrm{a}_{\mathrm{c}}}{2}\right)=48.735 \mathrm{kip} \cdot f t$

Moment capacity of deck with coincident tensile force
$\mathrm{M}_{\mathrm{u} . \text { deck }}:=\max \left(\mathrm{M}_{\mathrm{u}, \text { end }}, \mathrm{M}_{\mathrm{u} . \text { mid }}\right)=31.97$ kip $\cdot f t \quad \quad$ Maximum moment demand

SUBJECT: 42" LADOTD Barrier with a Longitudinal

 Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)Moment_Capacity_of_Deck_Check := if $\mathrm{M}_{\mathrm{n} . \mathrm{t}}>\mathrm{M}_{\mathrm{u} . \mathrm{deck}}$
$\|$ "OK"
else
$\|$ "Not OK"

Moment_Capacity_of_Deck_Check="OK"

(6) Reinforcement Development Length:

$\mathrm{d}_{\mathrm{b} . \neq 4}:=0.5 \mathrm{in} \quad ; \quad \mathrm{d}_{\mathrm{b} . \neq 5}:=0.625 \mathrm{in} \quad$ Bar diameter
$\mathrm{l}_{\mathrm{db} . \# 4}:=2.4 \cdot \mathrm{~d}_{\mathrm{b} . \# 4} \cdot \frac{\mathrm{f}_{\mathrm{y}}}{\sqrt{\mathrm{f}_{\mathrm{c}}^{\prime} \cdot \frac{1}{1000 p s i}} \cdot k s i}=3 f t$
Basic development length (AASHTO Eq. 5.10.8.2.1a-2)
$\lambda:=1.0$
$\lambda_{\mathrm{rl}}:=1.0$
Reirforcement location factor (AASHTO 5.10.8.2.1b)
$\lambda_{c f}:=1.0$
Coating factor (AASHTO 5.10.8.2.1b)
$\lambda_{\mathrm{er}}:=1.0 \quad$ Excess reir forcement factor (AASHTO 5.10.8.2.1c)
$\mathrm{k}_{\mathrm{tr}}:=0$
Transverse reir forcement index (conservatively taken as 0 as per AASHTO C5.10.8.2.1c)
$c_{\mathrm{b} . \# 4}:=1.75$ in $\quad ; \quad c_{\mathrm{b} . \# 5}:=1.8125$ in \quad Smaller cf reir forcement edge distance and onehaff cfspacing
$\lambda_{\text {rc. } . \# 4}:=\max \left(\frac{d_{\mathrm{b} . \# 4}}{\mathrm{c}_{\mathrm{b} . \not{ }^{\#} 4}+\mathrm{k}_{\mathrm{tr}}}, 0.4\right)=0.4 \quad ; \quad \lambda_{\text {rc. } \# 5}:=\max \left(\frac{\mathrm{d}_{\mathrm{b} . \# 5}}{\mathrm{c}_{\mathrm{b} . \not{ }^{\# 5}}+\mathrm{k}_{\mathrm{tr}}}, 0.4\right)=0.4$

Reir forcement cor finement factor, $0.4<\lambda_{c c}<1.0$ (AASHTO 5.10.8.2.1c)

SUBJECT: 42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)
$l_{\text {d. \#4 }}:=l_{\text {db. \#4 }} \cdot\left(\frac{\lambda_{\mathrm{rl}} \cdot \lambda_{\mathrm{cf}} \cdot \lambda_{\mathrm{rc} . \# 4} \cdot \lambda_{\mathrm{er}}}{\lambda}\right)=14.4 \mathrm{in}$
$\mathrm{l}_{\mathrm{d} . \neq 5}:=\mathrm{l}_{\mathrm{db} . \# 5} \cdot\left(\frac{\lambda_{\mathrm{rl}} \cdot \lambda_{\mathrm{cf}} \cdot \lambda_{\mathrm{rc.} . \# 5} \cdot \lambda_{\mathrm{er}}}{\lambda}\right)=18 \mathrm{in}$
Develcpment lengths needed (mod fied tension development length, AASHTO Eq. 5.10.8.2.1a-1)
$\mathrm{l}_{\mathrm{anc}}:=18.375$ in \quad Anchorage reir forcement development lengths provided (\#4 bar, green)
$l_{\text {s.top }}:=48 \mathrm{in}$
Deck flexural reir forcement development lengths provided (\#5 bar; purple)

Figure 9. Reir forcement
Development Length

Deck_Reinforcement_Development_Length_Check:=if $l_{\text {anc }}>l_{\text {d.\#4 }}\left\|l_{\text {s.top }}>l_{\text {d.\#5 }}\right\|$

$$
\begin{aligned}
& \| \text { "OK" } \\
& \text { else } \\
& \| \text { "Not OK" }
\end{aligned}
$$

Deck_Reinforcement_Development_Length_Check ="OK"

(7) Analysis Results Overview:

Minimum_Height_of_Barrier_Check="OK"
Structural_Capacity_of_Barrier_at_Midspan_Check="OK"

Structural_Capacity_of_Barrier_at_Ends_Check ="OK"

Punching_Shear_Capacity_of_Barrier_Check = "OK"
Moment_Capacity_of_Deck_Check="OK"
Deck_Reinforcement_Development_Length_Check="OK"

SUBJECT: 42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Outside Barrier (left side)

(8) Summary of Barrier Design:

1. Use Vertical Barrier Stirrup \#4 @ $6^{\prime \prime}$ O.C. for $10^{\prime}-0^{\prime \prime}$ at Barrier End Section
2. Use Vertical Barrier Stirrup \#4 @1 $12^{\prime \prime}$ O.C. out at Mid-Section (greater than $10^{\prime}-0^{\prime \prime}$ from End Sections)
3. All other details as shown on Section and Elevation Views as provided herein for the $42^{\prime \prime}$ Barrier as analyzed herein are acceptable for MASH TL-4 Impact conditions.

42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)

Overview:

These calcualtions evaluate the strength of the given barrier design for MASH TL-4 impact load condtions.

- 42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from the Barrier Right Side in the Section View below.

Design Details:

Section View (a)

Texas A\&M Iransportation Institute

SUBJECT: 42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)

Section View (b)

Elevation

2

SUBJECT: $\quad 42^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)

Texas A\&M Transportation Institute

SUBJECT: 42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)

(1) Define Inputs:

(1a) General Inputs:

$\mathrm{f}_{\mathrm{c}}^{\prime}:=4000$ psi	Compressive strength of concrete
$\mathrm{f}_{\mathrm{y}}:=60 \mathrm{ksi}$	Yield strength reinforcing steel
$\mathrm{E}_{\mathrm{s}}:=29000 k s i$	Modulus cf elasticity cf steel
$\mathrm{H}_{\mathrm{w}}:=42 \mathrm{in}$	Height cf barrier
$\mathrm{T}_{\text {w.top }}:=7.625$ in	Top width cf barrier
$\mathrm{T}_{\mathrm{w} \text {.bot }}:=24 \mathrm{in}$	Bottom width cf barrier
$\mathrm{t}_{\mathrm{s}}:=11 \mathrm{in}$	Depth cf deck
$\mathrm{d}_{\# 4}:=0.5 \mathrm{in} \quad ; \quad \mathrm{A}_{\# 4}:=0.2 \mathrm{in}^{2}$	Diameter and section area cf \#4 bar
$\mathrm{d}_{\# 5}:=0.625$ in $\quad ; \quad \mathrm{A}_{\# 5}:=0.31 \mathrm{in}^{2}$	Diameter and section area cf \#5 bar

Figure 1. Sketch cf Concrete Wall/Parapet Showing Input Variable

SUBJECT:
$42^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)

(1b) Concrete Barrier Inputs:

$\mathrm{t}_{\mathrm{b} . \mathrm{cov}}:=1.5 \mathrm{in} \quad$ Concrete clear cover cf barrier

Barrier vertical reinforcement inputs (\#4 bars):
$\mathrm{A}_{\mathrm{vpl} . \mathrm{mid}}:=0.2 \mathrm{in}^{2} \quad$ Area cfone barrier vertical reir forcement leg at midspan
$\mathrm{S}_{\mathrm{vp} . \mathrm{mid}}:=12$ in \quad Spacing cfbarrier vertical reir forcement at midspan
$\mathrm{d}_{\mathrm{cp} . \mathrm{mid}}:=14.0625$ in \quad Average extreme distance $\subset f$ barrier vertical reir forcement at midspan
$\mathrm{A}_{\mathrm{vpl} . \mathrm{end}}:=0.2 \mathrm{in}^{2} \quad$ Area cfone barrier vertical reir forcement leg at joints/ends
$\mathrm{S}_{\mathrm{vp} . \mathrm{end}}:=6$ in Spacing cf barrier vertical reinforcement at joints/ends
$\mathrm{d}_{\mathrm{cp.end}}:=14.0625$ in \quad Average extreme distance cf barrier vertical reir forcement at joints/ends

Deck anchorage reinforcement inputs (\#4 bars):

$\mathrm{A}_{\text {val.mid }}:=0.2 \mathrm{in}^{2}$	Area cfone deck anchorage vertical reir forcement leg at midspan
$\mathrm{S}_{\text {va.mid }}:=6 \mathrm{in}$	Spacing cf deck anchorage vertical reir forcement at midspan
$\mathrm{d}_{\text {ca.mid }}:=22.25 \mathrm{in}$	Extreme distance cf tension deck anchorage reir forcement at midspan
$\mathrm{A}_{\text {val.end }}:=0.2 \mathrm{in}^{2}$	Area cfone deck anchorage vertical reir forcement leg at joints/ends
$\mathrm{S}_{\text {va.end }}:=6 \mathrm{in}$	Spacing cf deck anchorage vertical reir forcement at joints/ends
$\mathrm{d}_{\text {ca.end }}:=22.25$ in	Extreme distance cf tension deck anchorage reirforcement at joints/ends

Barrier Longitudinal reinforcement inputs (\#4 bars):
$\mathrm{A}_{\mathrm{w}}:=0.2 \cdot 6 \mathrm{in}^{2}=1.2 \mathrm{in}^{2}$ Area cflongitudinal reivforcement bars in tension
$\mathrm{d}_{\mathrm{w}}:=13.5625 \mathrm{in}$
Average extreme distance cf tension longitudinal reirforcement

SUBJECT: 42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)

(1c) Concrete Deck Inputs:

$\mathrm{t}_{\text {s.cov.bot }}:=1.5 \mathrm{in}$	Concrete clear cover cf deck at bottom
$\mathrm{d}_{\text {s.bot }}:=9.1875$ in	Extreme distance cf deck flexural reir forcement at bottom
$\mathrm{A}_{\text {s.bot }}:=0.31 \mathrm{in}^{2}$	Section area cf deck flexural reinforcement at bottom (single bar)
$\mathrm{S}_{\text {s.bot }}:=3$ in	Spacing cf deck flexural reirforcement at bottom
$\mathrm{t}_{\text {s.cov.top }}:=2.5 \mathrm{in}$	Concrete clear cover cf deck at top
$\mathrm{d}_{\text {s.top }}:=8.1875$ in	Extreme distance cf deck flexural reir forcement at top
$\mathrm{A}_{\text {s.top }}:=0.31 \mathrm{in}^{2}$	Section area cfdeck flexural reir forcement at top (single bar)
$\mathrm{S}_{\text {s.top }}:=3$ in	Spacing of deck flexural reirforcement at top

(1d) Design Force Inputs:

Design Forces for Traffic Railings

Test Level	Rail Height (in.)	$\mathrm{F}_{\mathrm{t}}(\mathrm{k}$ (ip)	F_{L} (kip)	F_{r} (kip)	$\mathrm{L}_{\mathrm{L}} / \mathrm{L}_{\mathrm{L}}$ (ft)	$\mathrm{L}_{\mathrm{r}}(\mathrm{ff})$	$\mathrm{H}_{\text {e }}$ (in)	$\mathrm{H}_{\text {min }}$ (in)
TL-1	18 or above	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL-2	18 or above	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL-3	29 or above	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL-4 (a)	36	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL-4 (b)	between 36 and 42	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL-5 (a)	42	160.0	41.0	80.0	10.0	40.0	35.0	42.0
TL-5 (b)	greater than 42	262.0	75.0	160.0	10.0	40.0	43.0	42.0
TL 6		175.0	58.0	80.0	8.0	40.0	56.0	90.0

References:

- TL-1 and TL-2 Design Forces are from AASHTO LRFD Section 13 Table A13.2-1
- TL-3 Design Forces are from research conducted under NCHRP Project 20-07 Task 395
- TL-4 (a), TL-4 (b), TL-5 (a), and TL-5 (b) Design Forces are from research conducted under NCHRP Project 22-20(2)

TL: $=4$
$\mathrm{F}_{\mathrm{t}}:=80$ kip \quad Transverse impact force
$\mathrm{L}_{\mathrm{t}}:=5 \mathrm{ft}$
$\mathrm{H}_{\mathrm{e}}:=30$ in

Test level

Longitudinal length cf distribution cf impact force
Height cf equivalent transverses load

Texas A\&M Iransportation Institute

SUBJECT: 42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)

$$
\begin{array}{ll}
\mathrm{H}_{\min }:=36 \text { in } & \text { Minimum height cf a MASH TL-4 barrier } \\
\mathrm{H}_{\mathrm{w}}=42 \text { in } & \text { Height cf concrete barrier }
\end{array}
$$

(2) Stability Criteria:

$\mathrm{H}_{\mathrm{min}}=36$ in	Minimum height cfa MASH TL-4 barrier	
$\mathrm{H}_{\mathrm{w}}=42$ in	Height cf concrete barrier measured from the top cf the roadway surface/asphalt overlay	
Minimum_Height_of_Barrier_Check := if $\mathrm{H}_{\mathrm{w}} \geq \mathrm{H}_{\mathrm{min}}$		
	$\\|$ "OK"	
else		
	$\\|$ "Not OK"	

Minimum_Height_of_Barrier_Check = "OK"
(3) LRFD Strength Analysis of the Barrier per AASHTO Section 13 Specification:
(3a) Bending Capacity of the Barrier about the Longitudinal Axis at Midspan: Mcmid (k-ft/ft)

For parapet vertical reinforcement:

$\mathrm{b}_{\mathrm{c}}:=12$ in	Unit width cf wall (take as 1 ft per AASHTO Section 13 procedurt)
$\mathrm{A}_{\mathrm{vpl.mid}}=0.2 \mathrm{in}^{2}$	Area cfone parapet vertical reir forcement leg at midspan
$\mathrm{S}_{\mathrm{vp} . \mathrm{mid}}=12 \mathrm{in}$	Spacing cf parapet vertical reir forcement at midspan

$\mathrm{A}_{\mathrm{vp}, \text { mid }}:=\left(\frac{\mathrm{b}_{\mathrm{c}}}{\mathrm{S}_{\mathrm{vp}, \text { mid }}}\right) \cdot \mathrm{A}_{\mathrm{vpl} . \text { mid }}=0.2 \mathrm{in}^{2}$
Total area cf parapet vertical reir forcement per unit length at midspan
$\mathrm{d}_{\mathrm{cp} . \mathrm{mid}}=14.063$ in \quad Average extreme distance cf parapet vertical reir.forcement at midspan
$\mathrm{a}_{\text {cp.mid }}:=\frac{\mathrm{A}_{\mathrm{vp} . \mathrm{mid}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.294$ in \quad Depth cf Whitney stress block

$$
\mathrm{M}_{\text {cp.mid }}:=\frac{\left(\mathrm{A}_{\mathrm{vp} . \mathrm{mid}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{~d}_{\text {cp.mid }}-\frac{\mathrm{a}_{\text {cp.mid }}}{2}\right)\right)}{\mathrm{b}_{\mathrm{c}}}=13.915 \frac{\mathrm{kip} \cdot \mathrm{ft}}{\mathrm{ft}}
$$

Flexural resistance cf the barrier about the longitudinal axis at midspan when considering only the parapet vertical reir forcement spec fied in Article A 13.3.1 (k-fifif)

For deck anchorage reinforcement:

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{c}}=12 \text { in Unit width (f wall (take as I ft per AASHTO Section } 13 \text { procedur) } \\
& \mathrm{A}_{\mathrm{val} . \mathrm{mid}}=0.2 \mathrm{in}^{2} \quad \text { Area cfone deck anchorage vertical reir.forcement leg at midspan } \\
& \mathrm{S}_{\text {va.mid }}=6 \text { in Spacing } \subset f \text { deck anchorage vertical reir forcement at midspan } \\
& \mathrm{A}_{\text {va.mid }}:=\left(\frac{\mathrm{b}_{\mathrm{c}}}{\mathrm{~S}_{\text {va. .mid }}}\right) \cdot \mathrm{A}_{\text {val.mid }}=0.4 \text { in }^{2} \\
& \text { Total area cf deck anchorage vertical reir forcement per unit length at } \\
& \text { midspan } \\
& \mathrm{d}_{\text {ca.mid }}=22.25 \text { in } \quad \text { Extreme distance cf tension deck anchorage vertical reir forcement at midspan } \\
& \mathrm{a}_{\text {ca.mid }}:=\frac{\mathrm{A}_{\text {va.mid }} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.588 \text { in } \quad \text { Depth cf Whitney stress block } \\
& \mathrm{M}_{\text {ca.mid }}:=\frac{\left(\mathrm{A}_{\text {va. } \mathrm{mid}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{~d}_{\text {ca.mid }}-\frac{\mathrm{a}_{\text {ca.mid }}}{2}\right)\right)}{\mathrm{b}_{\mathrm{c}}}=43.912 \frac{\mathrm{kip} \cdot \mathrm{ft}}{\mathrm{ft}} \\
& \text { Flexural resistance cf the barrier about the longitudinal axis at midspan } \\
& \text { when considering only the deck anchorage reirforcement spec:fied in } \\
& \text { Article A 13.3.1 (k-fifi) } \\
& \mathrm{M}_{\text {c.mid }}:=\min \left(\mathrm{M}_{\text {cp.mid }}, \mathrm{M}_{\text {ca.mid }}\right)=13.915 \frac{k i p \cdot f t}{f t} \\
& \text { Flexural resistance cf the barrier about the longitudinal axis at midspan } \\
& \text { when considering the critical reir, forcement }
\end{aligned}
$$

SUBJECT: 42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)

(3b) Bending Capacity of the Barrier about the Longitudinal Axis at Joints/Ends: Mcend (k-ft/ft)

For parapet vertical reinforcement:
$\mathrm{A}_{\mathrm{vpl} . \mathrm{end}}=0.2 \mathrm{in}^{2} \quad$ Area cfone parapet vertical reir forcement leg at joints/ends
$\mathrm{S}_{\mathrm{vp} . \mathrm{end}}=6$ in Spacing cfparapet vertical reirforcement at joints/ends
$\mathrm{A}_{\mathrm{vp}, \mathrm{end}}:=\left(\frac{\mathrm{b}_{\mathrm{c}}}{\mathrm{S}_{\mathrm{vp}, \mathrm{end}}}\right) \cdot \mathrm{A}_{\mathrm{vpl} . \mathrm{end}}=0.4 \mathrm{in}^{2} \quad \begin{aligned} & \text { Total area cf deck anchorage vertical reir forcement } \\ & \text { per unit length at midspan }\end{aligned}$
$\mathrm{d}_{\mathrm{cp} . \mathrm{end}}=14.063 \mathrm{in} \quad$ Average extreme distance cfparapet vertical reir forcement at joints/ends
(at barrier mid-heigh)
$\mathrm{a}_{\text {cp.end }}:=\frac{\mathrm{A}_{\mathrm{vp} . \mathrm{end}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.588$ in \quad Depth of Whitney stress block
$\mathrm{M}_{\mathrm{cp} . \mathrm{end}}:=\frac{\left(\mathrm{A}_{\mathrm{vp}, \mathrm{end}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{d}_{\text {cp.end }}-\frac{\mathrm{a}_{\text {cp.end }}}{2}\right)\right)}{\mathrm{b}_{\mathrm{c}}}=27.537 \frac{\mathrm{kip} \cdot \mathrm{ft}}{\mathrm{ft}}$

Flexural resistance cf the barrier about the longitudinal axis at Joints/ Ends when considering only the deck anchorage reir forcement spec fied in Article A 13.3.1 (k-ft fi)

For deck anchorage reinforcement:

$\mathrm{A}_{\text {val.end }}=0.2 \mathrm{in}^{2}$	Area cfone deck anchorage vertical reirforcement leg at joints/ends
$\mathrm{S}_{\text {va. } \mathrm{end}}=6 \mathrm{in}$	Spacing cf deck anchorage vertical reir forcement at joints/ends
$\mathrm{A}_{\text {va.end }}:=\left(\frac{\mathrm{b}_{\mathbf{c}}}{\mathrm{S}_{\text {va.end }}}\right) \cdot \hat{A}$	$\cdot \begin{array}{ll} -\mathrm{A}_{\text {val.end }}=0.4 \text { in }^{2} \quad \begin{array}{l} \text { Total area cf deck anchorage vertical reir forcement } \\ \text { per unit length at joints/ends } \end{array} \end{array}$
$\mathrm{d}_{\text {ca.end }}=22.25 \mathrm{in}$	Extreme distance cf tension deck anchorage vertical reir forcement at joints/ends

SUBJECT: $42^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)
$\mathrm{a}_{\text {ca.end }}:=\frac{\mathrm{A}_{\text {va.end }} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.588$ in \quad Depth cf Whitney stress block

Flexural resistance of the barrier about the longitudinal axis at Joints/
Ends when considering only the deck anchorage reirforcement spec fied in Article A 13.3.1 (k-ft.fi)
$\mathrm{M}_{\text {c.end }}:=\min \left(\mathrm{M}_{\text {cp.end }}, \mathrm{M}_{\text {ca.end }}\right)=27.537 \frac{\mathrm{kip} \cdot f t}{f t}$

Flexural resistance of the barrier about the longitudinal axis at joints/ends when considering the critical reir forcement

(3c) Bending Capacity of the Barrier about the Vertical Axis: $\mathbf{M w}_{w}$

$\mathrm{d}_{\mathrm{w}}=13.563$ in $\quad E_{j}$ fective depth cflongitudinal reir forcement bars
$\mathrm{A}_{\mathrm{w}}=1.2 \mathrm{in}^{2} \quad$ Area cflongitudinal reir forcement bars in tension
$\mathrm{H}_{\mathrm{w}}=42$ in Extreme distance of tension longitudinal reir forcement cf barrier
$\mathrm{a}_{\mathrm{w}}:=\frac{\mathrm{A}_{\mathrm{w}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{H}_{\mathrm{w}}}=0.504$ in \quad Depth cf Whitney stress block
$\mathrm{M}_{\mathrm{w}}:=\mathrm{A}_{\mathrm{w}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{d}_{\mathrm{w}}-\frac{\mathrm{a}_{\mathrm{w}}}{2}\right)=79.862$ kip $\cdot f t \quad \begin{aligned} & \text { Flexural resistance of the barrier about the } \\ & \text { vertical axis spec. fied in Article A 13.3.1 }\end{aligned}$

10

42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)
(3d) Ultimate Resistance of the Wall at Midspan: Rw.mid

$\mathrm{H}_{\mathrm{w}}=42 \mathrm{in}$	Height cf barrier
$\mathrm{M}_{\mathrm{B}}:=0 \mathrm{kip} \cdot \mathrm{ft}$	No additional beam strength

$\mathrm{M}_{\text {c.mid }}=13.915 \frac{\text { kip } \cdot f t}{f t} \quad \begin{aligned} & \text { Flexural resistance about the long. } \\ & \text { axis at midspan }\end{aligned}$
$\mathrm{M}_{\mathrm{w}}=79.862 \mathrm{kip} \cdot f t$
Flexural resistance about the vert. axis

$\mathrm{L}_{\mathrm{t}}=5 \mathrm{ft}$
Long. length cf distribution $c f$ impact force

Figure 2. Yield Line Analysis cf Concrete Parapet Walls for Impact within Wall Segment figure taken from $A A S H T C$)

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{c} . \text { mid }}:=\frac{\mathrm{L}_{\mathrm{t}}}{2}+\sqrt{\left(\frac{\mathrm{L}_{\mathrm{t}}}{2}\right)^{2}+\frac{8 \cdot \mathrm{H}_{\mathrm{w}} \cdot\left(\mathrm{M}_{\mathrm{B}}+\mathrm{M}_{\mathrm{w}}\right)}{\mathrm{M}_{\mathrm{c} . \text { mid }}}}=15.421 \mathrm{ft} \quad \text { AASHTO Equation A13.3.1-2 } \\
& \mathrm{R}_{\mathrm{w} . \text { mid }}:=\left(\frac{2}{2 \cdot \mathrm{~L}_{\mathrm{c} . \mathrm{mid}}-\mathrm{L}_{\mathrm{t}}}\right) \cdot\left(8 \cdot \mathrm{M}_{\mathrm{B}}+8 \cdot \mathrm{M}_{\mathrm{w}}+\frac{\mathrm{M}_{\mathrm{c} . \text { mid }} \cdot\left(\mathrm{L}_{\mathrm{c} . \mathrm{mid}}\right)^{2}}{\mathrm{H}_{\mathrm{w}}}\right) \cdot \frac{\mathrm{H}_{\mathrm{w}}}{\mathrm{H}_{\mathrm{e}}}=171.669 \mathrm{kip} \\
& \text { AASHTO Equation Al3.3.I-I }
\end{aligned}
$$

(3e) Ultimate Resistance of the Wall at Joints/Ends: Rw.end

Figure 3. Yield Line Analysis of Concrete Parapet Walls for Impact near End cf Wall Segment (figure taken from AASHTC)

$\mathrm{H}_{\mathrm{w}}=42 \mathrm{in}$	Height cf barrier
$\mathrm{M}_{\mathrm{B}}:=0 \mathrm{kip} \cdot \mathrm{ft}$	No additional beam strength
$\mathrm{M}_{\mathrm{c} . \text { end }}=27.537 \frac{\mathrm{kip} \cdot \mathrm{ft}}{\mathrm{ft}}$	Flexural resistance about the long. axis at joints/ends
$\mathrm{M}_{\mathrm{w}}=79.862 \mathrm{kip} \cdot \mathrm{ft}$	Flexural resistance about the vert. axis
$\mathrm{L}_{\mathrm{t}}=5 \mathrm{ft}$	Long. length cf distribution cf impact force

SUBJECT: 42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)

$$
\begin{aligned}
& \mathrm{L}_{\text {c.end }}:=\frac{\mathrm{L}_{\mathrm{t}}}{2}+\sqrt{\left(\frac{\mathrm{L}_{\mathrm{t}}}{2}\right)^{2}+\frac{\mathrm{H}_{\mathrm{w}} \cdot\left(\mathrm{M}_{\mathrm{B}}+\mathrm{M}_{\mathrm{w}}\right)}{\mathrm{M}_{\mathrm{c} . \mathrm{end}}}}=6.55 \mathrm{ft} \\
& \mathrm{R}_{\mathrm{w} . \mathrm{end}}:=\left(\frac{2}{2 \cdot \mathrm{~L}_{\mathrm{c} . \mathrm{end}}-\mathrm{L}_{\mathrm{t}}}\right) \cdot\left(\mathrm{M}_{\mathrm{B}}+\mathrm{M}_{\mathrm{w}}+\frac{\mathrm{M}_{\mathrm{c} . \text { end }} \cdot\left(\mathrm{L}_{\mathrm{c} . \mathrm{end}}\right)^{2}}{\mathrm{H}_{\mathrm{w}}}\right) \cdot \frac{\mathrm{H}_{\mathrm{w}}}{\mathrm{H}_{\mathrm{e}}}=144.288 \mathrm{kip} \\
& \text { AASHTO Equation A13.3.1-4 }
\end{aligned}
$$

(3) LRFD Strength Analysis of the Barrier per AASHTO Section 13 Specification -

Summary of Results:

$\mathrm{H}_{\mathrm{w}}=42 \mathrm{in}$	Height cf the concrete barrier measured from the top of the roadway sur face
$\mathrm{H}_{\mathrm{e}}=30 \mathrm{in}$	Height cf the transverse impact force, Ft
$\mathrm{F}_{\mathrm{t}}=80 \mathrm{kip}$	Transverses impact force located at He

Structural_Capacity_of_Barrier_at_Midspan_Check:= if $R_{w . m i d}>F_{t}$
$\|$ "OK"
else
$\|$ "Not OK"

Structural_Capacity_of_Barrier_at_Midspan_Check = "OK"

Structural_Capacity_of_Barrier_at_Ends_Check:= if $R_{w . e n d}>F_{t}$

$$
\begin{aligned}
& \| \text { "OK" } \\
& \text { else } \\
& \| \text { "Not OK" }
\end{aligned}
$$

Structural_Capacity_of_Barrier_at_Ends_Check="OK"

SUBJECT:
$42^{\prime \prime}$ LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)
(4) Punching Shear Capacity of the Barrier:

$\lambda:=1.0 \quad$ Concrete weight modification factor	$h_{c},{ }^{1}{ }^{d_{c}}{ }^{\circ}, \quad F_{t}$	
$\mathrm{d}_{\mathrm{c}}:=10.55$ in Depth cf shear zone at height cfequivalent transvers	e load .	
$\mathrm{T}_{\mathrm{w} . \text { top }}:=7.625$ in Top width cfbarrier	. $\mathrm{H}_{\text {e }}$	
$\mathrm{h}_{\mathrm{c}}:=11$ in \quad Width cfshear zone		
$\mathrm{L}_{\mathrm{t}}=5 \mathrm{ft}$ Distribution width cf transverse impact force	Figure 4. Punching Shear Variables	
$\mathrm{f}_{\mathrm{c}}^{\prime}=4 \mathrm{ksi} \quad$ Concrete barrier compressive strength		
$\mathrm{d}_{\mathrm{f}}:=\frac{\mathrm{T}_{\mathrm{w} . \operatorname{top}}+\mathrm{d}_{\mathrm{c}}}{}=9.088$ in \quad Median depth cf shear zone		
$\mathrm{d}_{\mathrm{f}}:=\frac{2}{2}=9.088$ in Median depth cf shear zone	unan	
$\mathrm{b}_{\text {o.int }}:=\left(\mathrm{L}_{\mathrm{t}}+\mathrm{d}_{\mathrm{c}}\right)+2 \cdot\left(\mathrm{~h}_{\mathrm{c}}+\frac{\mathrm{d}_{\mathrm{c}}}{2}\right)=103.1$ in	$\begin{array}{lllll}\text { d/2 } & L_{1} & d / 2 & \mathrm{H}_{0}\end{array}$	
Median perimeter of interior critical section (AASHTO 5.8.4.3.4)	Figure 5. Punching Shear at Interior Segment	
$\mathrm{V}_{\text {c.int }}:=0.125 \cdot \lambda \cdot\left(\sqrt{\frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{1000}} \cdot k s i\right) \cdot \mathrm{b}_{\mathrm{o} . \mathrm{int}} \cdot \mathrm{~d}_{\mathrm{f}}=234.23 \mathrm{kip}$		
(AASHTO Eq. 5.8.4.3.4-3)	$4 \quad \mathrm{~d} / 2 \mathrm{H}$	
$\mathrm{b}_{\text {o.end }}:=\left(\mathrm{L}_{\mathrm{t}}+\frac{\mathrm{d}_{\mathrm{c}}}{2}\right)+\left(\mathrm{h}_{\mathrm{c}}+\frac{\mathrm{d}_{\mathrm{c}}}{2}\right)=81.55$ in $\quad \begin{aligned} & \text { Figure 6. Punching Shear } \\ & \text { Exterior Segment }\end{aligned}$		
Median perimeter (f exterior critical section (AASHTO 5.8.4.3.4)		
$\mathrm{V}_{\text {c.end }}:=0.125 \cdot \lambda \cdot\left(\sqrt{\frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{1000 p s i}} \cdot k s i\right) \cdot \mathrm{b}_{\text {o.end }} \cdot \mathrm{d}_{\mathrm{f}}=185.271 \mathrm{kip}$	Exterior punching shear capacity (AASHTO Eq.5.8.4.3.4-3)	
$\mathrm{V}_{\mathrm{c}}:=\min \left(\mathrm{V}_{\mathrm{c} . \text { int }}, \mathrm{V}_{\text {c.end }}\right)=185.271 \mathrm{kip}$	Critical punching shear capacity	
$\mathrm{F}_{\mathrm{t}}=80 k i p$	Transverse impact force	
Punching_Shear_Capacity_of_Barrier_Check:= if $\mathrm{V}_{\mathrm{c}}>\mathrm{F}_{\mathrm{t}}$		
"OK"		
\|	${ }^{\text {Not OK" }}$	

Punching_Shear_Capacity_of_Barrier_Check="OK"

SUBJECT: 42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)
(5) Deck Moment Capacity:

(5a) Deck Moment Demand:

- The moment demand on the deck due to the TL-4 impact loading was determined using RISA-3D structral analysis.
- A solid model of the $42^{\prime \prime}$ barrier, as shown in Figure 5, was developed to determine the barrier loads to the deck. This model was generated with $6^{\prime \prime}$ wide elements in the longitudinal direction to represent the spacing of the barrier vertical reinforcements.
- The deck was modeled using meshed plate elements ($4^{\prime} \times 50^{\prime}$ with $6^{\prime \prime} \times 6^{\prime \prime}$ plate elements). The reactions from the barrier to the deck were applied at the corresponding locations as shown in Figure 6.
* Detailed discussion will be provided in the final report.

Figure 7. Barrier Solid Model

Figure 8. Deck Plate Model with Barrier Reactions

SUBJECT: 42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)

Deck moment demand from RISA 3-D analysis:

Max. moment demand at mid-span: $\mathrm{M}_{\mathrm{u} \cdot \operatorname{mid}}:=21.8$ kip $\cdot f t$

(5b) Deck Nominal Moment Capacity:

$\mathrm{b}_{\mathrm{c} . \text { unit }}:=12$ in	Unit width cf deck
$\mathrm{t}_{\mathrm{s}}=11 \mathrm{in}$	Depth cf deck
$\mathrm{d}_{\mathrm{s} . \mathrm{top}}=8.188$ in	Extreme distance cf deck flexural reir forcement at top
$\mathrm{A}_{\mathrm{s} . \mathrm{top}}=0.31 \mathrm{in}^{2}$	Section area cf deck flexural reir forcement at top
$\mathrm{S}_{\mathrm{s} . \mathrm{top}}=3$ in	Spacing cf deck flexural reir forcement at top

SUBJECT: 42" LADOTD Barrier with a Longitudinal

 Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)$$
\begin{aligned}
& \mathrm{A}_{\mathrm{s} . \text { unit }}:=\frac{\mathrm{A}_{\mathrm{s} . \mathrm{top}}}{\mathrm{~S}_{\mathrm{s} . \text { top }}} \cdot \mathrm{b}_{\mathrm{c} . \mathrm{unit}}=1.24 \mathrm{in}^{2} \quad \text { Unit area cf deck flexural reir forcement at end section } \\
& \mathrm{a}_{\mathrm{s}}:=\frac{\mathrm{A}_{\mathrm{s} . \mathrm{unit}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c} . \text { unit }}}=1.824 \mathrm{in} \quad \text { Depth cfWhitney stress block at end section } \\
& \mathrm{M}_{\mathrm{n} . \mathrm{s}}:=\mathrm{A}_{\mathrm{s} . \mathrm{unit}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{~d}_{\mathrm{s} . \mathrm{top}}-0.5 \cdot \mathrm{a}_{\mathrm{s}}\right)=45.11 \mathrm{kip} \cdot \mathrm{ft} \quad \text { Nominal moment capacity cf deck }
\end{aligned}
$$

(5c) Deck Moment Capacity with Coincident Tensile Forces (AASHTO A 13.4.2):

- Check at critical location: end-section
$\mathrm{L}_{\text {c.end }}=6.55 \mathrm{ft} \quad$ Distribution length cfyield line mechanism
$\mathrm{R}_{\mathrm{w} . \mathrm{end}}=144.288$ kip
Nominal resistance cf barrier to transverse load
$\mathrm{H}_{\mathrm{w}}=42 i n$
Height cf barrier
$\mathrm{T}:=\frac{\mathrm{R}_{\mathrm{w} . \text { end }}}{\mathrm{L}_{\mathrm{c} . \text { end }}+2 \cdot \mathrm{H}_{\mathrm{w}}}=10.649 \frac{\mathrm{kip}}{\mathrm{ft}}$
Coincident tensile force from vehicle impact (AASHTO Eq. A 13.4.2.-1)
$\mathrm{T}_{\mathrm{a}}:=\mathrm{A}_{\mathrm{s} . \mathrm{unit}} \cdot \mathrm{f}_{\mathrm{y}}=74.4$ kip \quad Tensile load provided by deck flexural reir forcement
$\mathrm{C}:=\mathrm{T}_{\mathrm{a}}-\mathrm{T} \cdot f t=63.751$ kip \quad Resultant compression force in deck section
$\mathrm{a}_{\mathrm{c}}:=\frac{\mathrm{C}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=1.563$ in \quad Depth cf Whitney stress block for compression force $\mathrm{M}_{\mathrm{n} . \mathrm{t}}:=\mathrm{T}_{\mathrm{a}} \cdot\left(\mathrm{d}_{\mathrm{s} . \text { top }}-\frac{\mathrm{a}_{\mathrm{c}}}{2}\right)-\mathrm{T} \cdot f t \cdot\left(\frac{\mathrm{~d}_{\mathrm{s} . \text { top }}}{2}-\frac{\mathrm{a}_{\mathrm{c}}}{2}\right)=42.979 \mathrm{kip} \cdot f t$

Moment capacity of deck with coincident tensile force
$\mathrm{M}_{\mathrm{u} . \text { deck }}:=\max \left(\mathrm{M}_{\mathrm{u} . \text { end }}, \mathrm{M}_{\mathrm{u} . \text { mid }}\right)=35.3 \mathrm{kip} \cdot \mathrm{ft}$
Maximum moment demand

SUBJECT: 42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)

Moment_Capacity_of_Deck_Check := if $\mathrm{M}_{\mathrm{n} . \mathrm{t}}>\mathrm{M}_{\mathrm{u} . \mathrm{deck}}$
$\|$ "OK"
else
$\|$ "Not OK"

Moment_Capacity_of_Deck_Check="OK"

(6) Reinforcement Development Length:

$\mathrm{d}_{\mathrm{b} . \neq 4}:=0.5 \mathrm{in} \quad ; \quad \mathrm{d}_{\mathrm{b} . \neq 5}:=0.625 \mathrm{in} \quad$ Bar diameter
$\mathrm{l}_{\mathrm{db} . \# 4}:=2.4 \cdot \mathrm{~d}_{\mathrm{b} . \# 4} \cdot \frac{\mathrm{f}_{\mathrm{y}}}{\sqrt{\mathrm{f}_{\mathrm{c}}^{\prime} \cdot \frac{1}{1000 p s i}} \cdot k s i}=3 f t$
Basic develcpment length (AASHTO Eq. 5.10.8.2.1a-2)
$\lambda:=1.0$
$\lambda_{\mathrm{rl}}:=1.0$
Reirforcement location factor (AASHTO 5.10.8.2.1b)
$\lambda_{c f}:=1.0$
Coating factor (AASHTO 5.10.8.2.1b)
$\lambda_{\mathrm{er}}:=1.0 \quad$ Excess reir forcement factor (AASHTO 5.10.8.2.1c)
$\mathrm{k}_{\mathrm{tr}}:=0$
Transverse reir forcement index (conservatively taken as 0 as per AASHTO C5.10.8.2.1c)
$c_{\mathrm{b} . \# 4}:=1.75$ in $\quad ; \quad c_{\mathrm{b} . \# 5}:=1.8125$ in \quad Smaller cf reir forcement edge distance and onehaif cfspacing
$\lambda_{\text {rc. } . \# 4}:=\max \left(\frac{d_{\mathrm{b} . \# 4}}{\mathrm{c}_{\mathrm{b} . \not{ }^{\#} 4}+\mathrm{k}_{\mathrm{tr}}}, 0.4\right)=0.4 \quad ; \quad \lambda_{\text {rc. } \# 5}:=\max \left(\frac{\mathrm{d}_{\mathrm{b} . \# 5}}{\mathrm{c}_{\mathrm{b} . \not{ }^{\# 5}}+\mathrm{k}_{\mathrm{tr}}}, 0.4\right)=0.4$

Reir forcement cor finement factor, $0.4<\lambda_{c c}<1.0$ (AASHTO 5.10.8.2.1c)

SUBJECT: 42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)
$l_{\text {d. \#4 }}:=l_{\text {db. \#4 }} \cdot\left(\frac{\lambda_{\mathrm{rl}} \cdot \lambda_{\mathrm{cf}} \cdot \lambda_{\mathrm{rc} . \# 4} \cdot \lambda_{\mathrm{er}}}{\lambda}\right)=14.4 \mathrm{in}$
$\mathrm{l}_{\mathrm{d} . \neq 5}:=\mathrm{l}_{\mathrm{db} . \# 5} \cdot\left(\frac{\lambda_{\mathrm{rl}} \cdot \lambda_{\mathrm{cf}} \cdot \lambda_{\mathrm{rc.} . \# 5} \cdot \lambda_{\mathrm{er}}}{\lambda}\right)=18 \mathrm{in}$
$\mathrm{l}_{\mathrm{anc}}:=22 \mathrm{in}$
Anchorage reir forcement development lengths provided (\#4 bar, green)
$\mathrm{l}_{\mathrm{s} . \mathrm{top}}:=48 \mathrm{in}$
Deck flexural reir forcement development lengths provided (\#5 bar, purple)

Development lengths needed (mod fied tension development length, AASHTO Eq. 5.10.8.2.1a-1)

Figure 9. Reir forcement
Development Length

Deck_Reinforcement_Development_Length_Check:=if $l_{\text {anc }}>l_{\text {d.\#4 }} \| l_{\text {s.top }}>l_{\text {d.\#5 }}$

$$
\begin{aligned}
& \| \text { "OK" } \\
& \text { else } \\
& \| \text { "Not OK" }
\end{aligned}
$$

Deck_Reinforcement_Development_Length_Check="OK"

(7) Analysis Results Overview:

Minimum_Height_of_Barrier_Check="OK"

Structural_Capacity_of_Barrier_at_Midspan_Check = "OK"

Structural_Capacity_of_Barrier_at_Ends_Check ="OK"

Punching_Shear_Capacity_of_Barrier_Check = "OK"
Moment_Capacity_of_Deck_Check="OK"
Deck_Reinforcement_Development_Length_Check ="OK"

SUBJECT: 42" LADOTD Barrier with a Longitudinal Open Joint on Cantilever Deck with Impact Load from Inside Barrier (right side)

(8) Summary of Barrier Design:

1. Use Vertical Barrier Stirrup \#4 @ $6^{\prime \prime}$ O.C. for $10^{\prime}-0^{\prime \prime}$ at Barrier End Section
2. Use Vertical Barrier Stirrup \#4 @ $12^{\prime \prime}$ O.C. out at Mid-Section (greater than 10'-0" from End Sections)
3. All other details as shown on Section and Elevation Views as provided herein for the $42^{\prime \prime}$ Barrier as analyzed herein are acceptable for MASH TL-4 Impact conditions.

Overview:

These calcualtions evaluate the strength of the given barrier design for MASH TL-4 impact load condtions.

- 42" LADOTD Median Barrier

Design Details:

Section View (b)

Elevation

SUBJECT: $42^{\prime \prime}$ LADOTD Median Barrier

(1) Define Inputs:

(1a) General Inputs:

$\mathrm{f}_{\mathrm{c}}^{\prime}:=4000$ psi	Compressive strength cf concrete
$\mathrm{f}_{\mathrm{y}}:=60 k s i$	Yield strength reinforcing steel
$\mathrm{E}_{\mathrm{s}}:=29000 k s i$	Modulus cf elasticity cf steel
$\mathrm{H}_{\mathrm{w}}:=42 \mathrm{in}$	Height cf barrier
$\mathrm{T}_{\text {w.top }}:=7.625$ in	Top width of barrier
$\mathrm{T}_{\text {w.bot }}:=24 \mathrm{in}$	Bottom width cf barrier
$\mathrm{t}_{\mathrm{s}}:=8.5 \mathrm{in}$	Depth ¢f deck
$\mathrm{d}_{\# 4}:=0.5 \mathrm{in} \quad ; \mathrm{A}_{\# 4}:=0.2 \mathrm{in}{ }^{2}$	Diameter and section area cf \#4 bar
$\mathrm{d}_{\# 5}:=0.625$ in $\quad ; \quad \mathrm{A}_{\# 5}:=0.31 \mathrm{in}^{2}$	Diameter and section area cf \#5 bar

Figure 1. Sketch cf Concrete Wall/Parapet Showing Input Variable

(1b) Concrete Barrier Inputs:

$\mathrm{t}_{\mathrm{b} . \mathrm{cov}}:=1.5 \mathrm{in} \quad$ Concrete clear cover cf barrier

Barrier vertical reinforcement inputs (\#4 bars):
$\mathrm{A}_{\mathrm{vpl} . \mathrm{mid}}:=0.2 \mathrm{in}^{2} \quad$ Area cfone barrier vertical reirforcement leg at midspan
$\mathrm{S}_{\mathrm{vp} . \mathrm{mid}}:=12$ in \quad Spacing cfbarrier vertical reirforcement at midspan
$\mathrm{d}_{\mathrm{cp} . \mathrm{mid}}:=14.0625$ in \quad Average extreme distance \subset f barrier vertical reir forcement at midspan
$\mathrm{A}_{\mathrm{vpl} . \mathrm{end}}:=0.2 \mathrm{in}^{2} \quad$ Area cfone barrier vertical reir forcement leg at joints/ends
$\mathrm{S}_{\mathrm{vp} . \mathrm{end}}:=6$ in \quad Spacing cf barrier vertical reirforcement at joints/ends
$\mathrm{d}_{\mathrm{cp.end}}:=14.0625$ in \quad Average extreme distance cf barrier vertical reir forcement at joints/ends

Deck anchorage reinforcement inputs (\#4 bars):

$\mathrm{A}_{\text {val.mid }}:=0.2 \mathrm{in}^{2}$	Area cfone deck anchorage vertical reir forcement leg at midspan
$\mathrm{S}_{\text {va.mid }}:=6 \mathrm{in}$	Spacing cf deck anchorage vertical reir forcement at midspan
$\mathrm{d}_{\text {ca.mid }}:=22.25 \mathrm{in}$	Extreme distance cf tension deck anchorage reirforcement at midspan
$\mathrm{A}_{\text {val.end }}:=0.2 \mathrm{in}^{2}$	Area cfone deck anchorage vertical reir forcement leg at joints/ends
$\mathrm{S}_{\text {va.end }}:=6 \mathrm{in}$	Spacing cf deck anchorage vertical reir forcement at joints/ends
$\mathrm{d}_{\text {ca.end }}:=22.25$ in	Extreme distance cf tension deck anchorage reir forcement at joints/ends

Barrier Longitudinal reinforcement inputs (\#4 bars):
$\mathrm{A}_{\mathrm{w}}:=0.2 \cdot 6 \mathrm{in}^{2}=1.2 \mathrm{in}^{2}$ Area cflongitudinal reivforcement bars in tension
$\mathrm{d}_{\mathrm{w}}:=13.5625 \mathrm{in}$
Average extreme distance cf tension longitudinal reir:forcement

(1c) Concrete Deck Inputs:

$\mathrm{t}_{\text {s.cov.bot }}:=1.5 \mathrm{in}$	Concrete clear cover cf deck at bottom
$\mathrm{d}_{\text {s.bot }}:=6.6875 \mathrm{in}$	Extreme distance cf deck flexural reir forcement at bottom
$\mathrm{A}_{\text {s.bot }}:=0.31 \mathrm{in}^{2}$	Section area cf deck flexural reinforcement at bottom (single bar)
$\mathrm{S}_{\text {s.bot }}:=6$ in	Spacing cf deck flexural reirforcement at bottom
$\mathrm{t}_{\text {s.cov.top }}:=2.5 \mathrm{in}$	Concrete clear cover cf deck at top
$\mathrm{d}_{\text {S. top }}:=5.875$ in	Extreme distance cf deck flexural reir forcement at top
$\mathrm{A}_{\text {s.top }}:=0.31 \mathrm{in}^{2}$	Section area cf deck flexural reir forcement at top (single bar)
$\mathrm{S}_{\text {s.top }}:=6 \mathrm{in}$	Spacing of deck flexural reir forcement at top

(1d) Design Force Inputs:

Design Forces for Traffic Railings

Test Lev el	Rail \mathbf{H} eight (in.)	$\mathbf{F}_{\mathbf{t}}(\mathbf{k i p})$	$\mathbf{F}_{\mathbf{L}}(\mathbf{k i p})$	$\mathbf{F}_{\mathbf{r}}(\mathbf{k i p})$	$\mathbf{L}_{\mathbf{f}} / \mathbf{L}_{\mathbf{L}}(\mathbf{f t})$	$\mathbf{L}_{\mathbf{r}}(\mathbf{f t})$	$\mathbf{H}_{\mathbf{e}}(\mathbf{i n})$	$\mathbf{H}_{\text {min }}$ (in)
TL-1	18 or above	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL-2	18 or above	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL-3	29 or above	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL-4 (a)	36	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL-4 (b)	between 36 and 42	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL-5 (a)	42	160.0	41.0	80.0	10.0	40.0	35.0	42.0
TL-5(b)	greater than 42	262.0	75.0	160.0	10.0	40.0	43.0	42.0
TL 6		175.0	58.0	80.0	8.0	40.0	56.0	90.0

References:

- TL-1 and TL-2 Design Forces are from AASHTO LRFD Section 13 Table A13.2-1
- TL-3 Design Forces are from research conducted under NCHRP Project 20-07 Task 395
- TL-4 (a), TL-4 (b), TL-5 (a), and TL-5 (b) Design Forces are from research conducted under NCHRP Project 22-20(2)

TL: $=4$
$\mathrm{F}_{\mathrm{t}}:=80$ kip \quad Transverse impact force
$\mathrm{L}_{\mathrm{t}}:=5 \mathrm{ft}$
$\mathrm{H}_{\mathrm{e}}:=30$ in

Test level

Longitudinal length cf distribution cf impact force
Height cf equivalent transverses load

$\mathrm{H}_{\min }:=36$ in	Minimum height cf a MASH TL-4 barrier
$\mathrm{H}_{\mathrm{w}}=42$ in	Height cf concrete barrier

(2) Stability Criteria:

$\mathrm{H}_{\text {min }}=36 \mathrm{in}$	Minimum height cfa MASH TL-4 b
$\mathrm{H}_{\mathrm{w}}=42$ in	Height cf concrete barrier measured sufface/asphalt overlay
Minimum_	

Minimum_Height_of_Barrier_Check = "OK"
(3) LRFD Strength Analysis of the Barrier per AASHTO Section 13 Specification:
(3a) Bending Capacity of the Barrier about the Longitudinal Axis at Midspan: Mcmid (k-ft/ft)

For parapet vertical reinforcement:
$\mathrm{b}_{\mathrm{c}}:=12$ in Unit width (f wall (take as 1 ft per AASHTO Section 13 procedure)
$\mathrm{A}_{\mathrm{vpl.mid}}=0.2 \mathrm{in}^{2} \quad$ Area cfone parapet vertical reir forcement leg at midspan
$\mathrm{S}_{\mathrm{vp} . \operatorname{mid}}=12$ in Spacing cf parapet vertical reir forcement at midspan
$\mathrm{A}_{\text {vp.mid }}:=\left(\frac{\mathrm{b}_{\mathrm{c}}}{\mathrm{S}_{\mathrm{vp}, \text { mid }}}\right) \cdot \mathrm{A}_{\text {vpl.mid }}=0.2 \mathrm{in}^{2}$
Total area cf parapet vertical reir forcement per unit length at midspan
$\mathrm{d}_{\mathrm{cp} . \mathrm{mid}}=14.063$ in \quad Average extreme distance cf parapet vertical reir.forcement at midspan
$\mathrm{a}_{\text {cp.mid }}:=\frac{\mathrm{A}_{\mathrm{vp} . \mathrm{mid}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.294$ in \quad Depth cf Whitney stress block
$\mathrm{M}_{\text {cp.mid }}:=\frac{\left(\mathrm{A}_{\text {vp.mid }} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{d}_{\text {cp.mid }}-\frac{\mathrm{a}_{\text {cp.mid }}}{2}\right)\right)}{\mathrm{b}_{\mathrm{c}}}=13.915 \frac{\mathrm{kip} \cdot \mathrm{ft}}{\mathrm{ft}}$
Flexural resistance cf the barrier about the longitudinal axis at midspan when considering on'y the parapet vertical reirforcement spec fied in Article A 13.3 .1 (k-fifi)

For deck anchorage reinforcement:

$\mathrm{b}_{\mathrm{c}}=12 \mathrm{in}$	Unit width (f wall (take as I ft per AASHTO Section 13 procedure)
$\mathrm{A}_{\text {val.mid }}=0.2 \mathrm{in}^{2}$	Area cfone deck anchorage vertical reir forcement leg at midspan
$\mathrm{S}_{\text {va.mid }}=6 i n$	Spacing cf deck anchorage vertical reir forcement at midspan
$\mathrm{A}_{\text {va.mid }}:=\left(\frac{\mathrm{b}_{\mathrm{c}}}{\mathrm{~S}_{\text {va. } \mathrm{mid}}}\right)$	mid $=0.4 \mathrm{in}^{2}$

Total area cf deck anchorage vertical reir forcement per unit length at midspan
$\mathrm{d}_{\text {ca.mid }}=22.25 \mathrm{in} \quad$ Extreme distance cf tension deck anchorage vertical reir forcement at midspan
$\mathrm{a}_{\text {ca.mid }}:=\frac{\mathrm{A}_{\text {va.mid }} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.588$ in \quad Depth cf Whitney stress block
$\mathrm{M}_{\text {ca.mid }}:=\frac{\left(\mathrm{A}_{\text {va.mid }} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{d}_{\text {ca.mid }}-\frac{\mathrm{a}_{\text {ca.mid }}}{2}\right)\right)}{\mathrm{b}_{\mathrm{c}}}=43.912 \frac{\mathrm{kip} \cdot \mathrm{ft}}{\mathrm{ft}}$
Flexural resistance cf the barrier about the longitudinal axis at midspan when considering only the deck anchorage reir forcement spec.fied in Article A 13.3 .1 (k-fifi)
$\mathrm{M}_{\text {c.mid }}:=\min \left(\mathrm{M}_{\text {cp. } . \text { mid }}, \mathrm{M}_{\text {ca. } . \text { mid }}\right)=13.915 \frac{k i p \cdot f t}{f t}$
Flexural resistance cf the barrier about the longitudinal axis at midspan when considering the critical reir forcement

(3b) Bending Capacity of the Barrier about the Longitudinal Axis at Joints/Ends: Mcend (k-ft/ft)

For parapet vertical reinforcement:
$\mathrm{A}_{\mathrm{vpl} . \mathrm{end}}=0.2 \mathrm{in}^{2} \quad$ Area cfone parapet vertical reir forcement leg at joints/ends
$\mathrm{S}_{\mathrm{vp} . \mathrm{end}}=6$ in Spacing cfparapet vertical reirforcement at joints/ends
$\mathrm{A}_{\mathrm{vp}, \mathrm{end}}:=\left(\frac{\mathrm{b}_{\mathrm{c}}}{\mathrm{S}_{\mathrm{vp}, \mathrm{end}}}\right) \cdot \mathrm{A}_{\mathrm{vpl} . \mathrm{end}}=0.4 \mathrm{in}^{2} \quad \begin{aligned} & \text { Total area cf deck anchorage vertical reir forcement } \\ & \text { per unit length at midspan }\end{aligned}$
$\mathrm{d}_{\mathrm{cp} . \mathrm{end}}=14.063 \mathrm{in} \quad$ Average extreme distance cfparapet vertical reir forcement at joints/ends
(at barrier mid-heigh)
$\mathrm{a}_{\text {cp.end }}:=\frac{\mathrm{A}_{\mathrm{vp} \text {.end }} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.588$ in \quad Depth cf Whitney stress block
$\mathrm{M}_{\mathrm{cp} . \mathrm{end}}:=\frac{\left(\mathrm{A}_{\mathrm{vp}, \mathrm{end}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{d}_{\text {cp.end }}-\frac{\mathrm{a}_{\text {cp.end }}}{2}\right)\right)}{\mathrm{b}_{\mathrm{c}}}=27.537 \frac{\mathrm{kip} \cdot \mathrm{ft}}{\mathrm{ft}}$

Flexural resistance of the barrier about the longitudinal axis at Joints/ Ends when considering only the deck anchorage reir forcement spec fied in Article A 13.3.1 (k-ft fi)

For deck anchorage reinforcement:

$\mathrm{A}_{\text {val.end }}=0.2 \mathrm{in}^{2}$	Area cfone deck anchorage vertical reirforcement leg at joints/ends
$\mathrm{S}_{\text {va. } \mathrm{end}}=6 \mathrm{in}$	Spacing cf deck anchorage vertical reir forcement at joints/ends
$\mathrm{A}_{\text {va.end }}:=\left(\frac{\mathrm{b}_{\mathbf{c}}}{\mathrm{S}_{\text {va.end }}}\right) \cdot \hat{A}$	$\cdot \begin{array}{ll} -\mathrm{A}_{\text {val.end }}=0.4 \text { in }^{2} \quad \begin{array}{l} \text { Total area cf deck anchorage vertical reir forcement } \\ \text { per unit length at joints/ends } \end{array} \end{array}$
$\mathrm{d}_{\text {ca.end }}=22.25 \mathrm{in}$	Extreme distance cf tension deck anchorage vertical reir forcement at joints/ends

$\mathrm{a}_{\text {ca.end }}:=\frac{\mathrm{A}_{\text {va.end }} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.588$ in \quad Depth cf Whitney stress block

Flexural resistance of the barrier about the longitudinal axis at Joints/
Ends when considering only the deck anchorage reir forcement spec fied in Article A 13.3.1 (k-ft.fi)
$\mathrm{M}_{\text {c.end }}:=\min \left(\mathrm{M}_{\text {cp.end }}, \mathrm{M}_{\text {ca.end }}\right)=27.537 \frac{\mathrm{kip} \cdot f t}{f t}$

Flexural resistance of the barrier about the longitudinal axis at joints/ends when considering the critical reir forcement

(3c) Bending Capacity of the Barrier about the Vertical Axis: M_{w}

$\mathrm{d}_{\mathrm{w}}=13.563$ in $\quad \mathrm{E}_{\mathrm{j}}$ fective depth cflongitudinal reir forcement bars
$\mathrm{A}_{\mathrm{w}}=1.2 \mathrm{in}^{2} \quad$ Area cf longitudinal reir forcement bars in tension
$\mathrm{H}_{\mathrm{w}}=42$ in Extreme distance of tension longitudinal reir forcement cf barrier
$\mathrm{a}_{\mathrm{w}}:=\frac{\mathrm{A}_{\mathrm{w}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{H}_{\mathrm{w}}}=0.504$ in \quad Depth cf Whitney stress block
$\mathrm{M}_{\mathrm{w}}:=\mathrm{A}_{\mathrm{w}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{d}_{\mathrm{w}}-\frac{\mathrm{a}_{\mathrm{w}}}{2}\right)=79.862$ kip $\cdot f t \quad \begin{aligned} & \text { Flexural resistance of the barrier about the } \\ & \text { vertical axis spec. fied in Article A 13.3.1 }\end{aligned}$

10

(3d) Ultimate Resistance of the Wall at Midspan: Rw.mid

$\mathrm{H}_{\mathrm{w}}=42 \mathrm{in}$	Height cf barrier
$\mathrm{M}_{\mathrm{B}}:=0 \mathrm{kip} \cdot \mathrm{ft}$	No additional beam strength

$\mathrm{M}_{\mathrm{c} . \mathrm{mid}}=13.915 \frac{\text { kip } \cdot f t}{f t} \quad \begin{aligned} & \text { Flexural resistance about the long. } \\ & \text { axis at midspan }\end{aligned}$
$\mathrm{M}_{\mathrm{w}}=79.862$ kip $\cdot f t \quad$ Flexural resistance about the vert. axis

$$
\mathrm{L}_{\mathrm{t}}=5 \mathrm{ft}
$$

Long. length cf distribution $c f$ impact force

Figure 2. Yield Line Analysis cf Concrete Parapet Walls for Impact within Wall Segment figure taken from $A A S H T C$)

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{c} . \text { mid }}:=\frac{\mathrm{L}_{\mathrm{t}}}{2}+\sqrt{\left(\frac{\mathrm{L}_{\mathrm{t}}}{2}\right)^{2}+\frac{8 \cdot \mathrm{H}_{\mathrm{w}} \cdot\left(\mathrm{M}_{\mathrm{B}}+\mathrm{M}_{\mathrm{w}}\right)}{\mathrm{M}_{\mathrm{c} . \text { mid }}}}=15.421 \mathrm{ft} \quad \text { AASHTO Equation A13.3.I-2 } \\
& \mathrm{R}_{\mathrm{w} . \text { mid }}:=\left(\frac{2}{2 \cdot \mathrm{~L}_{\mathrm{c} . \mathrm{mid}}-\mathrm{L}_{\mathrm{t}}}\right) \cdot\left(8 \cdot \mathrm{M}_{\mathrm{B}}+8 \cdot \mathrm{M}_{\mathrm{w}}+\frac{\mathrm{M}_{\mathrm{c} . \mathrm{mid}} \cdot\left(\mathrm{~L}_{\mathrm{c} . \mathrm{mid}}\right)^{2}}{\mathrm{H}_{\mathrm{w}}}\right) \cdot \frac{\mathrm{H}_{\mathrm{w}}}{\mathrm{H}_{\mathrm{e}}}=171.669 \mathrm{kip} \\
& \text { AASHTO Equation Al3.3.I-I }
\end{aligned}
$$

(3e) Ultimate Resistance of the Wall at Joints/Ends: Rw.end

Figure 3. Yield Line Analysis of Concrete Parapet Walls for Impact near End (f Wall Segment (figure taken from AASHTC)

$\mathrm{H}_{\mathrm{w}}=42 \mathrm{in}$	Height cf barrier
$\mathrm{M}_{\mathrm{B}}:=0 \mathrm{kip} \cdot \mathrm{ft}$	No additional beam strength
$\mathrm{M}_{\mathrm{c} . \text { end }}=27.537 \frac{\mathrm{kip} \cdot \mathrm{ft}}{\mathrm{ft}}$	Flexural resistance about the long. axis at joints/ends
$\mathrm{M}_{\mathrm{w}}=79.862 \mathrm{kip} \cdot \mathrm{ft}$	Flexural resistance about the vert. axis
$\mathrm{L}_{\mathrm{t}}=5 \mathrm{ft}$	Long. length cf distribution cf impact force

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{c} . \text { end }}:=\frac{\mathrm{L}_{\mathrm{t}}}{2}+\sqrt{\left(\frac{\mathrm{L}_{\mathrm{t}}}{2}\right)^{2}+\frac{\mathrm{H}_{\mathrm{w}} \cdot\left(\mathrm{M}_{\mathrm{B}}+\mathrm{M}_{\mathrm{w}}\right)}{\mathrm{M}_{\mathrm{c} . \text { end }}}}=6.55 \mathrm{ft} \\
& \mathrm{R}_{\mathrm{w} . \text { end }}:=\left(\frac{2}{2 \cdot \mathrm{~L}_{\mathrm{c} . \text { end }}-\mathrm{L}_{\mathrm{t}}}\right) \cdot\left(\mathrm{M}_{\mathrm{B}}+\mathrm{M}_{\mathrm{w}}+\frac{\mathrm{M}_{\mathrm{c} . \text { end }} \cdot\left(\mathrm{L}_{\mathrm{c} . \text { end }}\right)^{2}}{\mathrm{H}_{\mathrm{w}}}\right) \cdot \frac{\mathrm{H}_{\mathrm{w}}}{\mathrm{H}_{\mathrm{e}}}=144.288 \text { kip } \\
& \text { AASHTO Equation A13.3. 1-4 } \\
& \text { ASquation A13.3. 1-3 }
\end{aligned}
$$

(3) LRFD Strength Analvsis of the Barrier per AASHTO Section 13 Specification -

 Summary of Results:| $\mathrm{H}_{\mathrm{w}}=42 \mathrm{in}$ | Height cf the concrete barrier measured from the top
 cf the roadway sur face |
| :--- | :--- |
| $\mathrm{H}_{\mathrm{e}}=30 \mathrm{in}$ | Height cf the transverse impact force, Ft | $\mathrm{F}_{\mathrm{t}}=80 \mathrm{kip} \quad$ Transverses impact force located at He.

Structural_Capacity_of_Barrier_at_Midspan_Check:= if $\mathrm{R}_{\mathrm{w} . \text { mid }}>\mathrm{F}_{\mathrm{t}}$
$\|$ "OK"
else
$\|$ "Not OK"

Structural_Capacity_of_Barrier_at_Midspan_Check = "OK"

Structural_Capacity_of_Barrier_at_Ends_Check:= if $R_{w . e n d}>F_{t}$

$$
\begin{aligned}
& \| \text { "OK" } \\
& \text { else } \\
& \| \text { "Not OK" }
\end{aligned}
$$

Structural_Capacity_of_Barrier_at_Ends_Check ="OK"

(4) Punching Shear Capacity of the Barrier:

$\lambda:=1.0 \quad$ Concrete weight modification factor		
$\mathrm{d}_{\mathrm{c}}:=10.55$ in Depth cfshear zone at height cfequivalent transverse		
$\mathrm{T}_{\mathrm{w} . \text { top }}:=7.625$ in Top width cf barrier	- $\mathrm{He}^{\text {a }}$	
$\mathrm{h}_{\mathrm{c}}:=11$ in \quad Width cf shear zone		
$\mathrm{L}_{\mathrm{t}}=5 \mathrm{ft}$ Distribution width cf transverse impact force	Figure 4. Punching Shear Variables	
Concrete barrier compressive strength		
$\mathrm{d}_{\mathrm{f}}:=\frac{\mathrm{T}_{\mathrm{w} . \operatorname{top}}+\mathrm{d}_{\mathrm{c}}}{}=9.088 \text { in } \quad \text { Median depth cf shear zone }$		
$\mathrm{d}_{\mathrm{f}}:=\frac{\mathrm{l}}{2}=9.088 \mathrm{in} \quad$ Median depth cf shear zone		
$\mathrm{b}_{\text {o.int }}:=\left(\mathrm{L}_{\mathrm{t}}+\mathrm{d}_{\mathrm{c}}\right)+2 \cdot\left(\mathrm{~h}_{\mathrm{c}}+\frac{\mathrm{d}_{\mathrm{c}}}{2}\right)=103.1$ in	$\begin{array}{lllll}\text { d/2 } & & 4 & d / 2 & \mathrm{H}_{0}\end{array}$	
Median perimeter of interior critical section (AASHTO 5.8.4.3.4)	Figure 5. Punching Shear at Interior Segment	
$\mathrm{V}_{\text {c.int }}:=0.125 \cdot \lambda \cdot\left(\sqrt{\frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{1000}} \cdot k s i\right) \cdot \mathrm{b}_{\text {o.int }} \cdot \mathrm{d}_{\mathrm{f}}=234.23 \mathrm{kip}$		
$V_{\text {c.int }}:=0.125 \cdot \lambda \cdot(\sqrt{1000 p s i} \cdot k s i) \cdot b_{\text {o.int }} \cdot \mathrm{d}_{\mathrm{f}}=234.23 \mathrm{k} \mathrm{\imath p}$	(1)	
Interior punching shear capacity (AASHTO Eq.5.8.4.3.4-3)	$4 \quad \mathrm{~d} / 2 \mathrm{H}$	
$\mathrm{b}_{\text {o.end }}:=\left(\mathrm{L}_{\mathrm{t}}+\frac{\mathrm{d}_{\mathrm{c}}}{2}\right)+\left(\mathrm{h}_{\mathrm{c}}+\frac{\mathrm{d}_{\mathrm{c}}}{2}\right)=81.55 \mathrm{in}$ Figure 6. Punching Shear Exterior Segment		
Median perimeter (f exterior critical section (AASHTO 5.8.4.3.4)		
$\mathrm{V}_{\text {c.end }}:=0.125 \cdot \lambda \cdot\left(\sqrt{\frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{1000 p s i}} \cdot k s i\right) \cdot \mathrm{b}_{\text {o.end }} \cdot \mathrm{d}_{\mathrm{f}}=185.271 \mathrm{kip}$	Exterior punching shear capacity (AASHTO Eq.5.8.4.3.4-3)	
$\mathrm{V}_{\mathrm{c}}:=\min \left(\mathrm{V}_{\mathrm{c} . \text { int }}, \mathrm{V}_{\text {c.end }}\right)=185.271 \mathrm{kip}$	Critical punching shear capacity	
$\mathrm{F}_{\mathrm{t}}=80 \mathrm{kip}$	Transverse impact force	
Punching_Shear_Capacity_of_Barrier_Check:= if $\mathrm{V}_{\mathrm{c}}>\mathrm{F}_{\mathrm{t}}$		
$\\|$ "OK"		
else		
$\\|$ "Not OK"		

(5) Deck Moment Capacity:

(5a) Deck Moment Demand:

- The moment demand on the deck due to the TL-4 impact loading was determined using RISA-3D structral analysis.
- A solid model of the $42^{\prime \prime}$ barrier, as shown in Figure 5, was developed to determine the barrier loads to the deck. This model was generated with $6^{\prime \prime}$ wide elements in the longitudinal direction to represent the spacing of the barrier vertical reinforcements.
- The deck was modeled using meshed plate elements ($8^{\prime} \times 50^{\prime}$ with $6^{\prime \prime} \times 6^{\prime \prime}$ plate elements). The reactions from the barrier to the deck were applied at the corresponding locations as shown in Figure 6.
* Detailed discussion will be provided in the final report.

Figure 7. Barrier Solid Model

Figure 8. Deck Plate Model with Barrier Reactions

Deck moment demand from RISA 3-D analysis:

Max. moment demand at mid-span: $\mathrm{M}_{\mathrm{u} \cdot \mathrm{mid}}:=9.91$ kip $\cdot f t$

(5b) Deck Nominal Moment Capacity:

$\mathrm{b}_{\mathrm{c} . \mathrm{unit}}:=12 \mathrm{in}$	Unit width cf deck
$\mathrm{t}_{\mathrm{s}}=8.5 \mathrm{in}$	Depth cf deck
$\mathrm{d}_{\mathrm{s} . \mathrm{bot}}=6.688$ in	Extreme distance cf deck flexural reir forcement at top
$\mathrm{A}_{\mathrm{s} . \mathrm{bot}}=0.31 \mathrm{in}^{2}$	Section area cf deck flexural reir forcement at top
$\mathrm{S}_{\mathrm{s} . \mathrm{bot}}=6 \mathrm{in}$	Spacing cf deck flexural reir forcement at top

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{s} . \text { unit }}:=\frac{\mathrm{A}_{\mathrm{s} . \mathrm{bot}}}{\mathrm{~S}_{\mathrm{s} . \mathrm{bot}}} \cdot \mathrm{~b}_{\mathrm{c} . \mathrm{unit}}=0.62 \mathrm{in}^{2} \quad \text { Unit area cf deck flexural reir forcement at end section } \\
& \mathrm{a}_{\mathrm{s}}:=\frac{\mathrm{A}_{\mathrm{s} . \text { unit }} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c} . \text { unit }}}=0.912 \mathrm{in} \quad \text { Depth cf Whitney stress block at end section } \\
& \mathrm{M}_{\mathrm{n} . \mathrm{s}}:=\mathrm{A}_{\mathrm{s} . \mathrm{unit}} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{~d}_{\mathrm{s} . \mathrm{bot}}-0.5 \cdot \mathrm{a}_{\mathrm{s}}\right)=19.318 \mathrm{kip} \cdot \mathrm{ft} \quad \text { Nominal moment capacity cf deck }
\end{aligned}
$$

(5c) Deck Moment Capacity with Coincident Tensile Forces (AASHTO A 13.4.2):

- Check at critical location: end-section
$\mathrm{L}_{\text {c.end }}=6.55 \mathrm{ft} \quad$ Distribution length cf yield line mechanism
$\mathrm{R}_{\mathrm{w} . \text { end }}=144.288$ kip \quad Nominal resistance cf barrier to transverse load
$\mathrm{H}_{\mathrm{w}}=42 i n$
Height cf barrier
$\mathrm{T}:=\frac{\mathrm{R}_{\mathrm{w} . \text { end }}}{\mathrm{L}_{\text {c.end }}+2 \cdot \mathrm{H}_{\mathrm{w}}}=10.649 \frac{\mathrm{kip}}{f t}$
Coincident tensile force from vehicle impact (AASHTO Eq. A 13.4.2.-1)
$\mathrm{T}_{\mathrm{a}}:=\mathrm{A}_{\mathrm{s} . \mathrm{unit}} \cdot \mathrm{f}_{\mathrm{y}}=37.2 \mathrm{kip} \quad$ Tensile load provided by deck flexural reir forcement
$\mathrm{C}:=\mathrm{T}_{\mathrm{a}}-\mathrm{T} \cdot f t=26.551 \mathrm{kip} \quad$ Resultant compression force in deck section
$\mathrm{a}_{\mathrm{c}}:=\frac{\mathrm{C}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{b}_{\mathrm{c}}}=0.651$ in \quad Depth cf Whitney stress block for compression force $\mathrm{M}_{\mathrm{n} . \mathrm{t}}:=\mathrm{T}_{\mathrm{a}} \cdot\left(\mathrm{d}_{\mathrm{s} . \mathrm{bot}}-\frac{\mathrm{a}_{\mathrm{c}}}{2}\right)-\mathrm{T} \cdot f t \cdot\left(\frac{\mathrm{~d}_{\mathrm{s} . \mathrm{bot}}}{2}-\frac{\mathrm{a}_{\mathrm{c}}}{2}\right)=17.044 k i p \cdot f t$

Moment capacity of deck with coincident tensile force
$\mathrm{M}_{\mathrm{u} \cdot \mathrm{deck}}:=\max \left(\mathrm{M}_{\mathrm{u} \cdot \mathrm{end}}, \mathrm{M}_{\mathrm{u} \cdot \mathrm{mid}}\right)=15 \mathrm{kip} \cdot f t \quad \quad$ Maximum moment demand

Moment_Capacity_of_Deck_Check := if $\mathrm{M}_{\mathrm{n} . \mathrm{t}}>\mathrm{M}_{\mathrm{u} . \mathrm{deck}}$
$\|$ "OK"
else
$\|$ "Not OK"

Moment_Capacity_of_Deck_Check="OK"

(6) Reinforcement Development Length:

$\mathrm{d}_{\mathrm{b} . \neq 4}:=0.5 \mathrm{in} \quad ; \quad \mathrm{d}_{\mathrm{b} . \# 5}:=0.625 \mathrm{in} \quad$ Bar diameter
$\mathrm{l}_{\mathrm{db} . \# 4}:=2.4 \cdot \mathrm{~d}_{\mathrm{b} . \# 4} \cdot \frac{\mathrm{f}_{\mathrm{y}}}{\sqrt{\mathrm{f}_{\mathrm{c}}^{\prime} \cdot \frac{1}{1000 p s i}} \cdot k s i}=3 f t$
Basic development length (AASHTO Eq. 5.10.8.2.1a-2)
$\mathrm{l}_{\mathrm{db} . \# 5}:=2.4 \cdot \mathrm{~d}_{\mathrm{b} . \# 5} \cdot \frac{\mathrm{f}_{\mathrm{y}}}{\sqrt{\mathrm{f}_{\mathrm{c}}^{\prime} \cdot \frac{1}{1000 p s i}} \cdot k s i}=3.75 \mathrm{ft}$
$\lambda:=1.0 \quad$ Concrete weight modification factor
$\lambda_{\mathrm{rl}}:=1.0 \quad$ Reirforcement location factor (AASHTO 5.10.8.2.1b)
$\lambda_{\mathrm{cf}}:=1.0 \quad$ Coating factor (AASHTO 5.10.8.2.1b)
$\lambda_{\mathrm{er}}:=1.0 \quad$ Excess reir forcement factor (AASHTO 5.10.8.2.1c)
$\mathrm{k}_{\mathrm{tr}}:=0 \quad$ Transverse reirforcement index (conservatively taken as 0 as per AASHTO C5.10.8.2.1c)
$c_{b . \# 4}:=1.75$ in $\quad ; \quad c_{b . \# 5}:=1.8125$ in \quad Smaller cf reir forcement edge distance and onehaf ff spacing
$\lambda_{\mathrm{rc} . \# 4}:=\max \left(\frac{\mathrm{d}_{\mathrm{b} . \# 4}}{\mathrm{c}_{\mathrm{b} . \not{ }^{\# 4}}+\mathrm{k}_{\mathrm{tr}}}, 0.4\right)=0.4 \quad ; \quad \lambda_{\mathrm{rc} . \# 5}:=\max \left(\frac{\mathrm{d}_{\mathrm{b} . \not{ }^{\# 5}}}{\mathrm{c}_{\mathrm{b} . \not \mathrm{F}_{5}}+\mathrm{k}_{\mathrm{tr}}}, 0.4\right)=0.4$
Reir forcement cor finement factor, $0.4<\lambda_{r c}<1.0$ (AASHTO 5.10.8.2.1c)

$$
\begin{aligned}
& \mathrm{l}_{\mathrm{d} . \# 4}:=\mathrm{l}_{\mathrm{db} . \# 4} \cdot\left(\frac{\lambda_{\mathrm{rl}} \cdot \lambda_{\mathrm{cf}} \cdot \lambda_{\mathrm{rc} . \# 4} \cdot \lambda_{\mathrm{er}}}{\lambda}\right)=14.4 \mathrm{in} \\
& \mathrm{l}_{\mathrm{d} . \# 5}:=\mathrm{l}_{\mathrm{db} . \# 5} \cdot\left(\frac{\lambda_{\mathrm{rl} 1} \cdot \lambda_{\mathrm{cf}} \cdot \lambda_{\mathrm{rc} . \# 5} \cdot \lambda_{\mathrm{er}}}{\lambda}\right)=18 \mathrm{in}
\end{aligned}
$$

$$
\mathrm{l}_{\mathrm{anc}}:=16.4 \mathrm{in}
$$

Anchorage reir forcement development lengths provided (\#4 bar, green)
$\mathrm{l}_{\text {s.top }}:=60 \mathrm{in}$
Deck flexural reir forcement development lengths provided (\#5 bar)

Development lengths needed (mod. fied tension development length AASHTO Eq. 5.10.8.2.1a-1)

Figure 9. Reir forcement Development Length

Deck_Reinforcement_Development_Length_Check $:=$ if $1_{\text {anc }}>l_{\text {d.\#4 }} \| 1_{\text {s.top }}>l_{\text {d.\#5 }} \mid$

else
$\|$ "Not OK"
Deck_Reinforcement_Development_Length_Check="OK"

(7) Analysis Results Overview:

Minimum_Height_of_Barrier_Check = "OK"
Structural_Capacity_of_Barrier_at_Midspan_Check="OK"

Structural_Capacity_of_Barrier_at_Ends_Check ="OK"

Punching_Shear_Capacity_of_Barrier_Check="OK"
Moment_Capacity_of_Deck_Check="OK"
Deck_Reinforcement_Development_Length_Check="OK"

(8) Summary of Barrier Design:

1. Use Vertical Barrier Stirrup \#4 @ $6^{\prime \prime}$ O.C. for $10^{\prime}-0^{\prime \prime}$ at Barrier End Section
2. Use Vertical Barrier Stirrup \#4 @ $12^{\prime \prime}$ O.C. out at Mid-Section (greater than $10^{\prime}-0^{\prime \prime}$ from End Sections)
3. All other details as shown on Section and Elevation Views as provided herein for the $42^{\prime \prime}$ Barrier as analyzed herein are acceptable for MASH TL-4 Impact conditions.
