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Abstract 

The Louisiana Department of Transportation and Development (DOTD) currently utilizes 

pavement performance prediction models in treatment selection and budget planning. 

These models are solely based on the non-linear curve-fitting regression of existing 

pavement condition data available in its pavement management system (PMS) database. 

The objective of the research was to develop short-term and long-term pavement 

performance prediction models to estimate future pavement condition and smoothness for 

flexible and rigid pavements using artificial neural network (ANN) modeling. To achieve 

the objective, two different pavement condition datasets were prepared– one each for 

short-term and long-term pavement performance prediction. The datasets were assembled 

based on DOTD’s PMS and other pavement project management data sources. A 

feedforward neural network technique was used in the training, validation, and testing of 

the ANN modeling. Specifically, this study developed three groups of ANN pavement 

performance prediction models: 17 individual neural network models for short-term 

federal-designated cracking percent prediction, 8 incremental ANN models for long-term 

asphalt overlay pavement performance prediction, and 5 ANN-based regression models 

for asphalt pavement family curve generation. The developed short-term models will be 

used to support DOTD’s prediction of 2 and 4 year performance target values for federal 

pavement condition assessment. On the other hand, the incremental long-term 

performance models can be utilized to forecast pavement condition even with limited 

historical performance records, which are insufficient for developing site-specific curves. 

The developed ANN-based family curves, which incorporate additional factors such as 

climate and traffic, may replace the current family curves used in DOTD’s PMS with 

improved accuracy and flexibility.  
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Implementation Statement 

The research methodology and findings provided in this study for ANN modeling and 

predicting short-term and long-term pavement performance can be implemented by 

DOTD in making a reliable and cost-effective project selection and budget allocation for 

pavement maintenance and rehabilitation. The developed short-term percent cracking 

models are recommended to implement directly into the FHWA-required pavement 

condition assessment analysis for DOTD’s Interstate and NHS pavements. The 

incremental long-term performance models can be applied to forecast pavement 

conditions when historical performance records are not sufficient for developing site-

specific curves. The developed ANN-based family curves can be used to replace current 

ones with better accuracy and flexibility, incorporating factors such as climate and traffic. 
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Introduction 

The accuracy of pavement performance models is crucial for local agencies in managing 

their transportation assets. Reliable models help determine the most cost-effective 

maintenance and rehabilitation (M&R) treatments based on specific traffic, climate and 

existing pavement conditions. The M&R project selection and priority can be determined 

and significantly improved for budget allocation and distribution with limited resources. 

An accurate pavement performance model can greatly enhance the selection and 

prioritization of M&R projects, leading to more effective budget allocation and 

distribution of limited resources. Louisiana has over 61,000 miles of roadways, with 

18,359 miles (30%) being state-owned and maintained by DOTD [1]. Louisiana receives 

approximately $677 million from FHWA along with the state matching funds, and the 

Governor raises nearly $700 million annually for transportation funding. Considering the 

significant investment in transportation asset maintenance and rehabilitation, even a 

slight improvement in pavement performance modeling could result in substantial 

savings for taxpayers.  

The Pavement Management System (PMS), supported and operated by the Pavement 

Management Unit (PMU) of Louisiana DOTD, monitors all state-maintained highway 

sections within the Louisiana roadway network. The PMU measures pavement conditions 

and optimizes repair strategies for pavement maintenance and rehabilitation based on 

pavement performance. The pavement condition data is collected through a consultant 

contract every two years and primarily consists of roughness, rutting, cracking, patching, 

and faulting. These pavement distresses are continuously measured and recorded by 

severity levels (high, medium, and low) and extents (number, length, or area). They are 

reported with average values for 0.1-mile sections. The extents and severities of a distress 

are combined as deduction points to obtain a single distress index, and a pavement 

condition index (PCI) is also calculated using multiple distress indices for overall 

evaluation, with a scale from 0 to 100. After processing and validation, these prepared 

PMS data can be accessed by all districts for their decision-making procedures to select 

treatment types and timing for specific pavement sections [2]. The iVision web-based 

application and dTIMS (Deighton Total Infrastructure Management System) are adopted 

for data visualization, analysis, and performance prediction. Based on the predicted 

overall condition of the entire roadway system, local agencies are able to determine the 

allocation of resources for maintenance and rehabilitation in the most cost-effective way.  
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To achieve this goal, the PMU predicts pavement performances with empirical models 

regressed from accumulated PMS data, which are presented as curves of distress index 

versus pavement age. These models have a similar format but different coefficients 

among pavement types (flexible, composite, jointed concrete, and continuously 

reinforced concrete) and functional classifications (interstate, principal and minor arterial, 

major and minor collector, local, and others), which are referred to as pavement family. 

The obtained pavement family and site-specific performance curves for each condition 

index are used for analysis with dTIMS, the pavement management software, to calculate 

condition indices and determine corresponding treatment for the coming years under the 

determined budget scenarios. The pavement performance models are core in this analysis, 

and their accuracy directly influences the distribution of the available resources, as well 

as the overall condition of the infrastructure system related to driving safety and comfort. 

The distress models adopted for this task are based on at least four data points with 2-year 

intervals in between [1]. These models are functions of pavement age, with recommended 

transformations. For example, polynomial functions are used for the roughness index and 

exponential functions for rutting index.      

Figure 1. Roughness index family curve for composite interstate pavements 

 

Figure 1 shows an example of the family curve for the roughness index of composite 

pavement on the interstate. The app in dTIMS offers various options, and the best-fit 

function can be selected based on correlation and judgement. The pavement family and 

site-specific performance curves provide relationships between pavement age and 

condition, which are directly obtained from data collected by Louisiana. The PMS team 

has full control over the input data. However, it is also evident that this model, based on 

pavement age, has significant variation and therefore cannot guarantee accuracy when 

used for predicting future performance. Considering the significant investment in the 
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maintenance and rehabilitation of the roadway system, a long-term performance model 

with better prediction power is necessary in preservation planning.  

In order to improve and preserve the condition of the National Highway System (NHS), 

the State Department of Transportation is required to develop and implement an asset 

management plan mandated by the Moving Ahead for Progress in the 21st Century Act 

(MAP-21) [3]. One of the national goals of MAP-21 is “to maintain the highway 

infrastructure asset system in a state of good repair” for the NHS. The Federal Highway 

Administration (FHWA) defines the state of good repair as “a condition in which the 

existing physical assets, both individually and as a system, (a) are functioning as 

designed within their useful service life, and (b) are sustained through regular 

maintenance and replacement programs.”    

This Transportation Asset Management Plan (TAMP) is a performance-based document 

[4] which focuses on replacing the historical “Worst First” practice of infrastructure 

improvement with a strategy of “Preservation First” of all interstate and NHS roadways 

and bridges. The traditional “Worst First” approach is not cost-effective. Instead of 

spending resources on replacing only a few of assets in very poor condition (“Worst 

First” Strategy), the “Preservation First” approach utilizes limited available funding on 

many more highway sections and bridges, reserving these structures in their current 

condition, and sustaining a desired “state of good repair” over the life cycle of the assets 

at minimum practicable cost.   

To achieve these objectives, MAP-21 requires a data-driven and strategic method to 

improve driving safety, with a focus on highway performance [5]. Under the legislation 

of Title 23, Code of Federal Regulations (23 CFR Part 490 - National Performance 

Management Measures), guided by FHWA, performance measurements were established 

for assessing pavement and bridge conditions, which are percentages of interstate and 

non-interstate pavements in good and poor condition. Effective on May 2017 and started 

by January 2018, State Departments of Transportation (DOT) must collect data for 

interstate pavements including International Roughness Index (IRI), rutting, cracking 

percentage, and faulting. Based on these measurements and the availability of resources, 

State DOTs shall report baseline performance, 4-year performance targets for interstate 

pavements, and 2-year and 4-year targets for non-interstate NHS pavements. FHWA also 

requires State DOTs and Metropolitan Planning Organizations (MPOs) to establish 

performance targets, which will be tracked using the same measurements.  
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The 2-year and 4-year condition targets are identified based on historical trends, the latest 

funding projects, and future deterioration modeling [6]. However, the previous distress 

measurement for PMS for most of the State DOTs were different from the methods 

demanded in 23 CFR Part 490. The new data collected is insufficient to plot historical 

trends, and the deterioration models are also usually too simple to ensure the accuracy of 

predicting pavement performance. For example, Texas DOT used the moving-average 

method to set up the targets for the 2018–2021 Performance Period [7]. The New 

Hampshire DOT utilized condition data for five prior years (2013-2017), along with 

subject matter expertise, as the basis for establishing the 4-year target for the interstates, 

as well as the 2- and 4-year targets for non-interstate NHS pavement condition [8]. Other 

states, such as North Dakota [9], Arizona [10], California [11], and Arkansas [12], used 

commercial software to complete this task based on regression models derived from 

pavement conditions and ages. Therefore, there is a need for a more consistent and 

reliable approach in predicting the distresses for determining condition targets.  
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Literature Review 

According to the needs for predicting long-term and short-term pavement conditions, the 

literature review of this research begins with a review of previous efforts in modeling 

pavement performance. 

Pavement Performance Models 

The primary goals of a network-level PMS include determining budget requirements for 

both short- and long-term periods and generating a list of possible projects based on 

budget limitations [13].  Performance models can be used to predict the need for 

maintenance, rehabilitation, or reconstruction of pavements. Pavements naturally degrade 

over time, but the pavement’s lifespan can be extended by addressing damages to 

improve their condition [14]. Pavement performance prediction models can forecast the 

remaining service lives of pavements if they are developed based on past pavement 

performance data. This helps optimize the scheduling of rehabilitation activities and 

determine the necessary funding levels to achieve a predetermined level of performance 

[15]. To evaluate the quality of pavement in terms of its functional and structural aspects, 

various metrics are employed, such as its ability to support weight, the level of damage, 

the load carrying capacity of the pavement, and the roughness of its surface [16]. 

Performance models can be developed at either the network level or project level. 

Network-level models assess and model an entire state, while project-level models focus 

on localized needs. Both types of models typically take into consideration factors such as 

age, traffic, surface type, climate, materials, and types of distress as contributing factors 

for pavement performance.  

Over the years, researchers have used mathematical tools to investigate and explore the 

impacts of these parameters on pavement conditions. With the rapid development of 

computer science in recent years, machine learning techniques have been applied to 

forecast pavement conditions. As a result, pavement performance models can be 

classified into two major groups: probabilistic reasoning and shallow machine learning 

models [17].  
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Figure 2. Family of pavement performance models [17] 

 

Figure 2 shows the categories of pavement performance models, in which the two main 

model categories could be further divided based on their inputs, model structures, and 

algorithms. 

 

Probabilistic Reasoning Models 

 

Empirical Models 

Empirical models are mainly developed based on experimental data and field 

observation. These models have a long history and are widely accepted by State DOTs 

and local agencies due to the availability of accumulated project records and their 

feasibility in application.  

As mentioned above, DOTD utilizes empirical models that have been regressed from 

more than 6 years of data collected at 2-year intervals. These models are equations of 

pavement age with recommended transformation functions [2]: 

 Roughness index: polynomial function; 

 All indices for continuously reinforced concrete pavement (CRCP): power 

function; 

 Rutting index: exponential function; and 

 All other indices: linear function. 
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For example, the longitudinal distress index for CRCP can be written as: 

𝐿𝑜𝑛𝑔𝑖𝐶𝑟𝑎𝑐𝑘 𝐼𝑛𝑑𝑒𝑥𝐶𝑅𝐶𝑃 = 100 − 𝑎(𝑎𝑔𝑒)𝑏                                       (1) 

Where, a and b are model coefficients equal to 0.0173 and 2.6 correspondingly.  

For the newly constructed pavement, this index equals 100. The index equations for other 

pavement conditions also adopt this constant as the initial status of new pavement 

surfaces. The  𝑎(𝑎𝑔𝑒)𝑏 deduct point represents the degradation of pavement performance 

with increased pavement age, in which the coefficients are obtained from the same 

category of pavements for family curve or average values on homogenous sections for 

site-specific curves.  

To determine the appropriate maintenance strategy for existing pavements, other 

indicators such as PCI, Present Serviceability Rating (PSR), and roughness index have 

been widely utilized by other DOTs to prioritize maintenance and rehabilitation efforts 

[18]. The general form of the distress indices equation using deduct points, same as 

DOTD models in Equation 1, in which the distress index equals a constant of maximum 

pavement rating (e.g., 4, 5 or 100) minus the total deduct points. These deduct points are 

based on the type of distress, extent of the distress and severity level, and the policy of 

the transportation department [19]. The Washington State Department of Transportation 

(WSDOT) utilizes the pavement condition index based on this form to assess the 

condition of rigid pavements, reflecting the same trends observed in the field over time. 

The PCI is mainly related to pavement age: 

𝑃𝐶𝐼 = 100 − 𝑐 ∗ 𝐴𝑔𝑒𝑑                                                  (2) 

Where, c is the slope coefficient, Age is the time since the last maintenance or 

rehabilitation, and d is a constant that controls the degree of the performance curve (2). 

WSDOT also calculates pavement structural condition (PSC) in similar forms for both 

flexible and rigid pavements, where the deduct points are defined as equations of 

equivalent cracking (EC) numbers:  

𝑃𝑆𝐶𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒 = 100 − 15.8 ∗ (𝐸𝐶)0.50                              (3) 

𝑃𝑆𝐶𝑟𝑖𝑔𝑖𝑑 = 100 − 18.6 ∗ (𝐸𝐶)0.43                                  (4) 
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Where, PSCflexible and PSCrigid are pavement structural conditions for flexible and rigid 

pavements. EC represents equivalent cracking numbers, which is the sum of all types of 

distress with their seventies and extents. Equivalent cracking also has similar expression:  

𝐸𝐶 = ∑[𝑇 ∗ (𝐶 ∗  𝑑)𝑝]                                                     (5) 

Where, T is the coefficient of distress type, and C and P are the coefficients of distress 

severity level (high, medium and low). This PSC evaluates the current condition of 

pavements based on the combination of various distress types, severity levels, and 

extents, but without considering pavement age. PSC is calculated separately for flexible 

and rigid pavements and described by four broad pavement condition categories: 

excellent (75-100), good (50-75), fair (25-50), and poor (0-25). In practice, a threshold 

value of PSC = 50 triggers pavement maintenance/rehabilitation. 

The Arizona Department of Transportation (ADOT) uses a sigmoidal or S-shaped model 

to predict pavement performance, which allows for more flexibility in describing how a 

section deteriorates over time. The sigmoidal model used by Stantec's Highway Pavement 

Management Application (HPMA) for performance prediction modeling is showed 

below: 

𝑃𝑆𝑅 = 𝑂 − exp [𝐴 − 𝐵 ∗ 𝐶ln (1/𝑎𝑔𝑒)]                                (6) 

Where, the PSR and initial pavement condition (O) are used to predict pavement 

performance over time, measured in years since the last rehabilitation or construction 

activity. The model uses coefficients A, B, and C to shape the curve, which can be 

concave, convex, S-shaped, or almost linear, depending on the flexibility of the sigmoid. 

This flexibility helps the model fit the data and accurately describe performance trends 

[20]. 

The IRI has been utilized for evaluating road smoothness, estimating vehicle operating 

expenses, and assessing the environmental consequences of road conditions for network-

level pavement management systems [21]. The IRI measures the total vertical movement 

of the axle relative to a reference point on a quarter-car per distance traveled along the 

pavement profile at a constant speed of 80.5 km/h (50 mph). The World Bank was the 

first organization to create the IRI [22]. The general form of the IRI prediction model is 

presented by the increment in IRI, initial IRI, and the time lapsed (in years) since the year 

of the initial IRI [23]. 
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ln (
𝐼𝑅𝐼𝑖

𝐼𝑅𝐼𝑛−𝐼𝑅𝐼𝑖
) = 𝛽1 + 𝛽2𝑒𝑇𝑖𝑚𝑒𝛽3                                          (7) 

Where, IRIi = initial IRI; IRIn = IRI in year n; β1 and β3 = parameters controlling the IRI 

increment rate; β2 = parameter controlling the year in which IRI begins to increase; and 

time = number of years since initial IRI.  

Elhadidy et al. conducted research using the Long-Term Pavement Performance (LTPP) 

database to develop a simplified regression model that links PCI with IRI. They found 

that a sigmoid function best expresses the relationship between PCI and IRI, with a 

coefficient of determination (R2) of 0.995. Their predicted IRI values had very low bias, 

and they also validated the model using a different dataset, obtaining highly accurate 

predictions (R2 = 0.992). They proposed a pavement condition rating system based on 

IRI, which provides a rating equivalent to the widely used PCI rating method that is 

based on pavement condition [24].  

Mechanistic-Empirical Models 

While the introduced empirical models provide convenience in application for 

performance modeling, which usually consider pavement age or time span as the only or 

primary variable, they do not incorporate other factors that also have a significant 

influence on pavement deterioration. Researchers realized that considering parameters 

such as layer thickness, materials, traffic, and climate would provide more reliable 

prediction.     

As early as the 1980’s, George et al. [25] developed a mechanistic-empirical model based 

on PCI values collected from over 2000 miles in Mississippi, USA. Various parameters 

were studied, including traffic volume, pavement age, and structural number, to 

investigate their influences on maintenance strategies.  The pavement condition rating 

(PCR) was defined as:  

𝑃𝐶𝑅 = 𝑅𝑅0.6 ∗ 𝐷𝑅0.4                                                                  (8) 

Where, RR is roughness rating and DR is distress rating.  

The pavement condition rating at time t, PCR(t), for three pavement types (flexible 

pavement without overlay, with overlay, and the composite pavement), is obtained 

through Equation (9) to (11): 

𝑃𝐶𝑅(𝑡) = 90 − 𝑎[exp(𝐴𝑔𝑒𝑏) − 1]log [𝐸𝑆𝐴𝐿/(𝑆𝑁𝑐)]                         (9) 
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𝑃𝐶𝑅(𝑡) = 90 − 𝑎[exp(𝐴𝑔𝑒𝑏) − 1]log [𝐸𝑆𝐴𝐿/(𝑆𝑁𝑐 ∗ 𝑇)]                    (10) 

𝑃𝐶𝑅(𝑡) = 90 − 𝑎[exp(𝐴𝑔𝑒/𝑇)𝑏 − 1]log [𝐸𝑆𝐴𝐿]                                 (11) 

Where, a, b, and c are regressed coefficients, ESAL is the equivalent single axle loads, 

SN refer to the structural number, and T represents the overlay thickness.  

Sidess et al. [26] developed a model to predict IRI based on a combination of the 

empirical-mechanistic and regressive-empirical approach. The model coefficients 

consider the subgrade modulus, the pavement’s structural number, the thickness of the 

asphalt layer, and climate zones. Their IRI deterioration model for pavements with a 

traffic loading history may be expressed as follows: 

𝐼𝑅𝐼(𝑡 ≥ 𝑡𝑖𝑛𝑖) = 1.10 + 𝐾 ∗ (𝑊0 + 𝑊𝑡)𝑦                                                 (12) 

Where, K and y are regressed coefficients, W0 is the ESAL applied from IRI = 1.10 to IRI 

at time tini, and Wt is the ESAL accumulated until time t. This model demonstrates a 

strong correlation between prediction and measurement (R2>0.9). 

The most well-known application of mechanistic-empirical models is the Mechanistic-

Empirical Pavement Design Guide (MEPDG). The MEPDG software serves as an 

advanced tool for designing flexible pavements and predicting future pavement 

performance [27]. The accuracy of the MEPDG performance models has been 

statistically evaluated, and the verification testing shows promising results in terms of its 

performance prediction accuracy [28]. While MEPDG software is relatively conservative 

for highway pavements with low traffic levels, the nationally averaged default parameters 

in MEPDG were not sensitive enough to account for variations in climates, traffic, and 

materials in Tennessee when predicting PSI [29]. Several modern regression techniques, 

including the generalized linear model and the generalized additive model, along with the 

assumption of Poisson distribution and the quasi-likelihood estimation method, were 

adopted to develop improved fatigue cracking models using the LTPP database. The 

proposed model showed significant improvements over existing models, although further 

enhancements were possible and recommended [30]. Auto-regression models can 

outperform other models in terms of accuracy, and the use of auto-regression models in 

pavement management systems by highway agencies is recommended for pavement 

performance models [23].  

 



—  22  — 

 

Probabilistic and Deterministic Models 

Models used for predicting pavement performance can also be categorized into 

probabilistic and deterministic models. Probabilistic models use a probability function to 

estimate the likelihood of future pavement conditions with a certain degree of probability. 

The probability levels are determined by either expert opinion or an evaluation of past 

pavement performance [31]. An example of a probabilistic model is the Markov process, 

which is used to develop a probabilistic network-level PMS based on pavement 

performance prediction. The non-homogeneous Markov chains-based pavement 

performance prediction model can be successfully integrated into the MicroPAVER 

pavement deterioration process, effectively capturing the probabilistic search effort. By 

using the Markov process in conjunction with dynamic programming, the optimal budget 

requirements for the analysis period can be generated [32]. This approach has the 

potential to be utilized in pavement management to simulate the probabilistic nature of 

pavement deterioration and predict its serviceability level at different stages. This also 

helps to determine the appropriate time for rehabilitation and develop a priority program 

for pavement management at the network level [33]. However, Markov chain models are 

based on the assumption that the future state of the pavement depends only on its current 

state and not on its past states [34]. This is a major limitation of Markov chain model.  

The other type of model used for predicting pavement performance is deterministic. The 

deterministic approach of the pavement performance prediction model is based on an 

incremental analysis of the American Association of State Highway and Transportation 

Officials (AASHTO) basic design equation developed for flexible pavement design. The 

AASHTO basic design equation is based on empirical data from the AASHTO Road Test 

and is derived using regression techniques. The model creates a specific performance 

curve for a particular pavement structure. It involves using a mathematical function to 

estimate the exact future condition of the pavement. The function is created based on 

observations or measurements of pavement deterioration using mechanistic, regression, 

or mechanistic-empirical methods [35]. Pavement deterioration prediction models play a 

crucial role in the pavement management systems at the network level. They are utilized 

to predict upcoming pavement conditions, create plans for maintenance and rehabilitation 

projects, and determine the financial requirements for the future [36]. To create 

performance prediction models for asphalt pavements on state highways and interstates, 

simple and multiple regression analysis methods were used. Regression techniques for 

predicting pavement performance are only applicable under specific circumstances such 

as certain climatic conditions, materials used, construction techniques employed, and 
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other relevant factors [31]. Implementing a multiple linear regression analysis-based 

model for predicting pavement performance in the Pavement Management System can 

significantly impact the decision-making process for managing asphalt pavements [37]. 

Johnson et al. categorized various pavement types and analyzed the data for any 

necessary adjustments. They initially attempted to use a linear regression model but 

found that the performance index would increase and then decrease due to road 

rehabilitation. To solve this problem, they removed records from the analytical pavement 

section database that were affected by rehabilitation. When they determined that the 

linear regression model was not providing satisfactory results, they used a non-linear 

regression modeling technique to create performance prediction models [37]. 

Shallow Machine Learning Models 

Researchers have explained artificial intelligence (AI) as a system that either thinks or 

acts like a human or a system that thinks rationally or acts rationally [38]. IBM defines 

Machine Learning (ML) as a branch of AI and computer science that focuses on the use 

of data and algorithms to imitate the way that humans learn, gradually improving its 

accuracy. Deep learning, a more advanced and sophisticated branch of machine learning, 

requires more training data and greatly depends on the network's structure for 

performance [39]. Compared to traditional machine learning, deep learning involves 

more complex models that can solve more complex problems with greater accuracy and 

efficiency [40, 41]. On the other hand, shallow learning includes most ML models 

proposed before 2006, such as shallow neural networks with just one hidden layer of 

nodes. Despite its advantages, such as easy interpretation and computational efficiency, 

shallow learning models like logistic regression, decision trees, and support vector 

machines (SVM) have limitations like underfitting, overfitting, and struggling with large 

samples and missing data [39]. 

There are several types of machine learning. Supervised learning is a type of ML where 

the algorithms aim to predict and classify the predetermined attribute, and their 

performance measures such as accuracy and misclassification are determined by the 

correct prediction or classification of that attribute [42]. Conversely, unsupervised 

learning involves pattern recognition without the involvement of a target attribute [43]. 

Semi-supervised, as the name suggests, is when small amounts of labeled data are 

available. Reinforcement learning is a type of ML that involves using a scalar reward 

parameter to evaluate the input-output relationship in a trial-and-error manner. The 
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system, or "agent," uses information from its environment to determine the best way to 

optimize itself and adapt to its surroundings [44].  

Pavement performance prediction using ML is not a new thing. As advancements in ML 

grow every year, they have been applied to make more accurate and comprehensive 

predictions by researchers. 

 

ML has progressed dramatically over the past two decades, from laboratory curiosity to 

practical technology in widespread commercial use [45]. Researchers in the 1990’s 

realized the advantages of ML, such as generalization, massive parallelism, and real-time 

solutions, over traditional methods [46]. ML algorithms are organized into a taxonomy 

based on the desired outcome of the algorithm [47]. There are several ML algorithms in 

use, including Artificial Neural Network (ANN), Recurrent Neural Network (RNN), 

Support Vector Regression (SVR), Convolutional Neural Network (CNN), Random 

Forest (RF), and Long Short-Term Memory (LSTM). The ML process follows a path, as 

shown in the figure below. It starts with gathering input data like ESAL, climate data, 

initial IRI, etc. Even before selecting the required data, one needs to make sure of the 

data they want to use. After data mining, the raw data needs to be cleaned using various 

techniques. The processed data is then used in the selected model, which is continuously 

refined based on the feedback. At the end, visual results are obtained, providing insight 

into the prediction. Before starting the steps of creating the model, knowledge of the 

platform on which the ML model is developed is necessary. A deep learning framework is 

a software tool that provides an infrastructure for building and training deep neural 

networks. Given the various machine learning algorithms discussed in the previous 

paragraph, it is essential to have the appropriate software tools to create and optimize 

models. In this context, deep learning frameworks Pytorch [47], NumPy, Keras [48], and 

Scikit-learn [49] of Python are commonly used. Researchers have also used R in 

determining calibration coefficients [50]. Software like Python, MATLAB, R, and 

NeuroSolutions 5 [51] can all be used to create models.  

While most papers seem to use LTPP [51, 52-59], as their source of data, some papers 

have also used PMS [50, 60] for data collection. In some cases, data had to be generated 

so that the model could be trained for a full range of possibilities [61]. These data can be 

used in pavement performance prediction at both the network [50] and project level. After 

data collection, the next objective is to improve the quality of the data by detecting and 

removing errors and inconsistencies through data cleaning. These issues can stem from 

various sources, such as data entry errors, and the most effective approach to resolve 
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them depends on the specific context. In the case of pavement performance problems, 

performing sanity checks based on engineering judgment is a logical approach [54]. 

When using real data for modeling, one common challenge is the presence of "noise," 

which refers to random errors in the data. This term comes from the field of information 

theory and engineering, which was instrumental in early work on ANNs. While noise can 

be intentionally added to the training set to help the network learn a more general 

solution to the problem, it can also negatively impact model accuracy [62].  

Most papers use traffic [49, 50, 54, 58, 63], climate [49, 50, 54], initial IRI [49], other 

distresses, material properties [49], age [53], rut depth [53], subgrade [50], layer 

thickness [58], structural number [63], and cracking as input parameters for models. 

Hossain et al. only used traffic and climate data in their model [64]. Kargah-Ostadi et al. 

used MATLAB stepwise regression and found that factors like age, traffic, annual 

average precipitation, subgrade moisture, and total post-overlay HMA thickness were not 

statistically significant [56]. The inclusion of too many parameters can cause overfitting, 

but excluding important predictors which influence pavement performance may limit the 

accuracy of the prediction [52]. Marcelino et al. used MissForest, which is a non-

parametric imputation technique, when there were missing input data [54]. Hossain et al. 

developed and used synthetic data based on the statistical characteristics of the existing 

data when data were not available [64]. Damirchilo et al. employed XGBoost, which uses 

a sparsity-aware split finding approach to handle missing data [49]. 

Artificial Neural Networks 

ANNs are computational models that process information through interconnected units 

with activation functions and weight optimization during training to learn and generalize 

from input data [47]. A key technique used in ANNs is backpropagation, which involves 

adjusting the weights between nodes based on the difference between the predicted and 

actual output during training. This process enables the network to continuously improve 

its performance over time, making ANNs a powerful tool in many applications. The use 

of ANNs [48, 53, 56] in building models is a widely used practice. ANNs can represent 

any non-linear function without the constraints of linearity. They can generalize 

relationships from limited data, remain robust in the presence of noise, and adapt to 

changing environments [62]. ANNs are generally good for fixed-length data. They are 

feedforward network algorithms, while RNNs have loops and are suitable for sequential 

data of variable length. 
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The feedforward neural network is a typical shallow artificial neural network, consisting 

of an input layer, one or more hidden layers, and an output layer. As one of the simplest 

forms of neural network, the data is processed only in one direction within a feedforward 

model. Figure 5 gives an example of ANN [42], consisting of an input layer, a hidden 

layer, and an output layer with 3, 4, and 2 neurons in each layer. The input layer contains 

neurons that receive input values and deliver these inputs to the following hidden layers. 

The number of an input layer’s neurons is equal to the number of features in the dataset. 

There are also neurons in hidden layers, where the inputs are transformed when passing 

through them. The weights and bias are updated during the training procedure to provide 

an optimized value with prediction power. Weights refers to the connection between two 

neurons from adjacent layers. After being processed by hidden layer(s), the values will be 

passed to the output layer and generate predicted values.  

As is shown in Figure 3, when the weights and bias values of this ANN are determined 

and the values are defined as input neurons, these values will pass through hidden layers 

with a certain algorithm and eventually generate output values. ANNs may have more 

than one hidden layer, but the data always moves in one direction, from input layer to 

output layer.  

The predicted value of ANN is compared to the given output, and then an error is 

calculated and propagated back within the ANN. The weights are updated during this 

process based on their influence on the error. The algorithm applied in this procedure is 

called backpropagation. 
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Figure 3. Sample of a 3-4-2 feed-forward neural network [42] 

 

RNN is another type of ANN that is specifically designed to analyze sequences of data, 

such as time-series data, speech, and text. Unlike traditional feedforward neural 

networks, RNNs can process input data of any length, and they use loops to retain 

information about the previous computations, making them well-suited for handling time-

series data [48]. With the ability to classify, cluster, and make predictions about such data, 

RNNs are powerful tools for pattern recognition and analysis. When working with long 

sequences in an RNN, the gradients, which are essential for tuning the weight and bias, 

can become a problem during backpropagation. They can either vanish (due to 

multiplication of many small values less than 1) or explode (due to multiplication of 

many large values more than 1), leading to slow training of the model [65]. This is not the 

case in an ANN.  An RNN is essentially a multi-layer perceptron (MLP) with added loops 

in its architecture, making it especially suitable for analyzing sequences of data like time-

series data, speech, and text [65].  

On the other hand, MLP neural networks consist of nodes organized into layers, with 

each layer consisting of nodes that connect to all nodes in the following layers. These 

networks are widely used for supervised learning tasks like image recognition and 

classification [66].  

LSTMs are a unique form of RNNs that possess the ability to acquire long-term 

dependencies and retain information for extended periods [67]. RNNs typically use 

feedback loops to retain information over time, but they struggle to learn long-term 

temporal dependencies due to the vanishing gradient problem. LSTMs address this by 

introducing a memory cell that can hold information for extended periods. They use gates 
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to control when information enters and exits the memory cell, solving the vanishing or 

exploding gradient problem. 

CNNs are a type of deep learning model designed for image and video processing. They 

extract and learn features from input data using specialized layers, which are then 

classified into different categories. Compared to traditional machine learning methods, 

which often rely on shallow learning techniques, CNNs use multilayer neural networks 

that can automatically learn increasingly complex features from the data [68].  

Artificial Neural Networks has been applied to developing short-term pavement 

performance model. They can incorporate more factors and overcome the shortcomings 

of traditional regression methods by considering time series or identifying categories 

within the database. Even with the same input and output, the ANN models showed 

significantly better predicting performance than multiple linear regressions [69] on PMS 

database.  

One application of the ANN in short-term pavement performance modeling is to predict 

or evaluate the effectiveness of preventive maintenance treatments in the coming years. 

Previous researchers have accumulated many outcomes with this topic based on ANN 

and pavement performance database. Luo et al. [70] evaluate the effectiveness of PM 

treatments in short-term asphalt pavement performance using the Specific Pavement 

Studies (SPS-3) data of the LTPP Program, including chip seal, crack seal, slurry seal, 

and thin overlay. The mixed-effects logistic regression was conducted to find the 

significant influential factors, and the influence of temperature, precipitation, cloud 

cover, subgrade material, truck traffic, and asphalt concrete layer thickness on the 

improvements of pavement performance was quantified. It was concluded that chip seal 

and thin overlay have the most significant effects on short-term cracking improvements, 

and thin overlay also showed the best effect on short-term roughness and rutting 

improvements. Amarasiri and Muhunthan [71] evaluated performance jump of thin 

asphalt overlay, slurry seal, crack seal, and chip seal under wet freeze climates based on 

LTPP database. The research concluded that thin overlay and chip seal were most 

effective in eliminating non-wheel-path longitudinal cracking, whereas the slurry seal and 

the crack seal were the least effective. Jia, Y. et al. [72] used LTPP SPS-3 database to 

evaluate the effectiveness of PM treatments on five typical pavement performances, 

including roughness, rutting, transverse cracking, longitudinal cracking, and alligator 

cracking. Similarly, thin overlay and chip seal provided the most effectiveness on most of 

these performance indicators. Researches were also conducted to investigate the short-
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term performance on rutting, IRI reduction after treatment, and the deterioration rate of 

cracking [73-75].   

ANN was also adopted to build short-term pavement performance models to support 

decision-making procedures in PMS. Ziari et al. [76] selected the group method of data 

handling (GMDH) and ANN to construct IRI prediction models based on the LTPP 

database. The models considered pavement structure information, climates, traffic, and 

pavement age. Kargah-Ostadi et al. [56] also used performance data after rehabilitation 

(LTPP SPS-5) to build IRI prediction models, in which the precious IRI was used as 

input, and overlay thickness, milling depth, and percentage of fine aggregate in the 

subgrade were included. The trained model was applied for recommending pavement 

rehabilitation treatments.  Kaya et al. [77] used 35 flexible pavement projects and 60 

composite pavement projects to build network-level resilient service life models with 

ANN. The performance data was extracted from the Iowa DOT pavement management 

information system (PMIS) database. These short-term models adopted previous 

pavement distresses, traffic (accumulated ESALs), age, and AC thickness to predict the 

distresses of the next year [77]. 

These research projects provided valuable reference and guidance in constructing ANN 

structures and selecting input parameters for model training. However, most of these 

models are based on LTPP data and IRI prediction only. Other distresses, such as faulting 

and cracking, were not involved, and some of the inputs (e.g. asphalt binder properties, 

pavement layer thickness, and subgrade soil information) are not available for most of the 

PMS, which is necessary for accomplishing the prediction of pavement condition targets 

required by TAMP.  

Adaptive Neuro-Fuzzy Inference System (ANFIS) 

The Adaptive Neuro Fuzzy Inference System (ANFIS) is a combination of ANN and 

fuzzy inference system (FIS). It is well-known for its capacity to reduce noise and has 

many applications from identifying voice signals [78] [79] to diagnosing medical images 

[80] [81].  

ANFIS is a data learning technique in which given input values are transformed with 

Fuzzy Logics into output by a highly interconnected neural network with weights and 

biases [82]. This structure adopts ANN to update the parameters of FIS and therefore 

benefits from both ANN and FIS techniques. ANFIS refines IF-THEN fuzzy rules to 

describe the behavior of a complex system, without requiring prior human expertise and 
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with simple implementation. ANFIS also provides various options of membership 

functions (MF) for explaining fuzzy rules, enabling learning efficiency and accuracy. 

Figure 4 shows a typical example of ANFIS structure with two inputs (x and y) and one 

output (f). Assume that there are two IF-THEN rules based on the first order of the 

Sugeno model as shown: 

Figure 4. Typical structure of ANFIS [82] 

 

          Rule 1: IF x is A1 AND y is B1, THEN   f1= p1x+q1y+r1 

          Rule 2: IF x is A2 AND y is B2, THEN  f2= p2x+q2y+r2 

Where A1 and B1 are fuzzy sets, f1 are the fuzzy region outputs obtained from fuzzy rules, 

and p1, q1 and r1 are design parameters determined by the training process. 

The layer structure of ANFIS model in Figure 4 are explained as follows: 

Layer 1: all the nodes in this layer are adaptive nodes with a fuzzy membership function: 

O1,i=µAi(x),  i=1,2          (13) 

O1,j=µBj(y),  j=1,2         (14) 

Where, x and y are input values to nodes i or j, and A1 and B1 are the linguistic labels 

(such as high, low or medium, etc.) for membership functions of the nodes. These 

membership functions specify the degree to which the inputs are marched to the 
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quantifiers (fuzzy sets) A1 or B1. An example of a bell-shaped function, denoted as µAi(x) 

with a maximum value of 1 and a minimum value of 0 can be written as: 

 

           (15) 

Similarly, a Gaussian membership function can be expressed as:  

           (16) 

                                                                                  

Where, ai, bi, and ci are parameters of the membership functions. The shape of the 

membership function varies as these parameters change.   

Layer 2: The nodes in this layer are fixed and labeled as π, in which the outputs from the 

previous layer are multiplied as: 

O2,i=wi=µAi(x)* µBj(y),  i, j=1,2       (17) 

The output O2,i of this layer is also called as firing strength. 

Layer 3: The nodes in this layer are also fixed as well and labeled as N, in which the sum 

of all rules’ firing strength is calculated as: 

𝑂3,𝑖 = �̅�𝑖 =
𝑤𝑖

𝑤1+𝑤2
         (18) 

The outputs of this layer are called normalized firing strength. 

Layer 4: The nodes in this layer are adaptive ones, with node function that is multiplied 

by normalized firing strength from the previous layer and first-order Sugeno model (IF-

THEN Rules). The outputs of this layer are written as: 

𝑂4,𝑖 = �̅�𝑖𝑓𝑖 = �̅�𝑖(𝑝𝑖𝑥𝑖 + 𝑞𝑖𝑦𝑖 + 𝑟𝑖)       (19) 

Where, pi, qi, and ri are called as consequent parameters. 

Layer 5: There is only one node in this layer that computes the overall output, which is 

the summation of all incoming signals: 

𝑂5,𝑖 = ∑ �̅�𝑖𝑓𝑖𝑖 =
∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖𝑖
        (20) 
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The above five layers are the basic components of ANFIS structure. 

ANFIS is famous for its capacity of noise reduction and has many applications from 

identifying voice signals [78][79] to medical image diagnosing [80][81]. ANFIS has also 

been utilized in predicting pavement roughness [83][84] and PCI [85], especially for 

short-term pavement roughness prediction [86].  This advantage would be very useful in 

dealing with the noise of the network-level database, such as error and variation due to 

device and operators.  

Regression Models 

Random Forest is another popular algorithm that creates an ensemble of decision trees 

using a modified bagging technique to improve predictive accuracy. Each tree in the 

ensemble is constructed using a randomly selected training subset, which is replaced as 

many times as the number of trees. The bootstrap aggregation technique is typically used 

in the construction of the trees, where scenarios from the training subset are replaced by 

the constructed populations during analysis [87-89]. The Random Forest algorithm builds 

multiple decision trees and combines them to make more accurate predictions. The 

underlying idea is that several independent models (the individual decision trees) perform 

better as a team than they do individually. 

Other Machine Learning Techniques  

Support Vector Regression (SVR) is a technique used to develop a regression function 

that can map input predictor variables to observed output response values. One of the key 

benefits of SVR is its ability to strike a balance between the complexity of the model and 

the prediction error, making it a useful tool for analyzing high-dimensional data [90]. 

SVR was chosen for pavement performance modeling due to its flexibility in finding the 

best hyperplane to fit the data in higher dimensions and customize control errors within 

an acceptable range [60]. 

Review of Pavement Condition Datasets 

DOTD’s Pavement Management System (PMS) 

DOTD has been collecting pavement data on various distress types using Automatic Road 

Analyzer (ARAN) vehicles for over 20 years. Louisiana has been a national leader in 

Quality Assurance and Quality Control (QA/QC) for pavement distress data collection. In 
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the “Practical Guide for Quality Management of Pavement Condition Data Collection” 

issued by the FHWA in 2013, DOTD was one of the three agencies provided as a “Case 

Study” example of proper Quality Management.  

DOTD has continually signed contracts with Fugro Roadware to collect roadway data, 

including the state-maintained highways (State Highway System, SHS), interstate 

highways (Interstate Highway System, IHS), regional roadways (Regional Highway 

System, RHS), and other off-system NHS routes. Currently, the entire pavement network 

of Louisiana is surveyed once every two years. The full spectrum of pavement 

information is collected in a single pass at highway speeds. This includes data on 

alligator, longitudinal, transverse cracking, rutting, faulting, patching, sealed cracks, 

horizontal and vertical curves and degrees, right-of-way records, and pavement images. 

Other data, such as surface texture, ground penetration radar (GPR), pavement types, 

number of lanes, functional classifications, date of data collection, and coordinates of 

global positioning system (GPS), are also added to describe the properties of the roadway 

sections. The measured data is utilized to build up Louisiana’s PMS to monitor current 

and future pavement conditions. Each pavement condition data point is analyzed and 

summarized for every 0.1 miles, and the performance data is rated with low, medium and 

high severity levels. Various distress data collected from each 0.1-mile segment are then 

transferred as pavement distress indices scaled from 0 to 100. For any given 0.1-mile 

flexible pavement section, the alligator index is obtained by reducing the deduction 

points for all three severity levels from 100.   

DOTD adopts these distress indices as a reference for evaluating pavement conditions, 

including alligator cracking index (ALCR), random cracking index (RNDM), rutting 

index (RUT), patching index (PTCH) and roughness index (RUFF) for flexible 

pavements [91]. The pavement performance index for flexible pavement is calculated 

based on these indices using the following equation: 

Pavement Performance Index =

MAX(MIN(RNDM, ALCR, PTCH, RUFF, RUT ), [AVG(RNDM, ALCR, PTCH, RUFF, RUT )  −

 0.85 STD(RNDM, ALCR, PTCH, RUFF, RUT)] )                                      (21) 

Where, RNDM, ALCR, PTCH, RUFF, and RUT are distress indices. 

For composite pavement, the performance index equation is similar but without ALCR. 

For jointed plain concrete pavement (JPCP), longitudinal and transverse cracking indices 
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are considered separately, while CRCP only considers the longitudinal cracking index, 

PTCH, and RUFF. 

The overall condition is analyzed on homogenous sections to determine optimum 

pavement treatment based on all these pavement condition indices. DOTD also uses the 

trigger value system to recommend maintenance and rehabilitation treatments based on 

the combination of the distress indices. The trigger values vary for different pavement 

types and functional classifications. 

The PMS database available for this study ranges from 2003 to 2021. The pavement 

performance data is stored in 10 sub datasets, with each sub dataset containing PMS data 

collected from a 2-year cycle. Typically, each PMS dataset contains 191,000 to 197,000 

rows, collected from more than 18,000 miles of state owned highways.  

DOTD’s Highway Performance Monitoring System (HPMS) 

Federal legislation (23 CFR Part 490 - National Performance Management Measures) 

requires each state DOT to develop a risk‐based TAMP to improve and preserve the 

condition of assets on the federal NHS. As part of TAMP structure, the asset condition 

measurements and collected data are used to build the HPMS database. This database 

serves as the foundation for setting performance targets required by the FHWA and for 

conducting life cycle planning and risk management analysis within TAMP. 

Although PMS and HPMS use similar equipment for data collection, there is a key 

difference between the two. PMS is collected from all state-maintained roadways, 

whereas HPMS is only surveyed from interstate highways and non-interstate national 

highway systems. HPMS does not cover roadways within SHS or RHS. The mileage 

distribution of PMS and HPMS for these asset classes is listed in Table 1. 
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Table 1. State pavement asset inventory [91] 

 

The survey for PMS is conducted every two years, while HMPS collects data annually. 

There are also several differences between PMS and HPMS, which are listed as follows: 

 Purpose of database: As mentioned above, the major tasks of PMS are to 

supervise and forecast pavement conditions as well as select the optimal treatment 

and timing. HPMS monitors the network-level conditions of interstate and other 

NHS pavements, and accesses the overall performance of pavements for these 

asset classes.  

 Data measurement: The IRI and rutting measurements are same for both DOTD 

PMS and federal data. However, there are differences in cracking and faulting 

measurements between these two datasets. 

Cracking: DOTD determines treatment selection using PMS; therefore, cracking 

width is added to support this procedure. PMS also evaluates cracks in both the 

inside and outside wheel path area, while HPMS only focused on cracks within 

the wheel path area. In addition, there is also a difference in the definitions of 

“wheel path,” in which HPMS uses 39-inch wide wheel path while DOTD PMS 

uses a 36-inch path. Although it is possible to convert the historical 2D PMS data 

into new 3D federal measures, it would be very complicated and costly to transfer 

the previous cracking measures on the 36-inch wheel path into the 39-inch results 

required by the FHWA. Additionally, with the new federal asphalt protocols, the 

results of composite pavement needs to be reanalyzed. Furthermore, the current 

condition of the interstate pavement is much better than the 5% poor threshold. 

Therefore, the previous PMS data was not adjusted to be consistent with the 

federal assessment.  
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Faulting: The current PMS only records faulting over 0.20 inches, and the 

average faulting values for 0.1-mile sections are calculated only from all faulting 

values over 0.20 inches because the criteria for joint repair treatment projects is 

0.40 inches. The measured faulting values below 0.20 inches were not kept. 

However, the range of faulting from 0 to 0.20 inches covers all three rating levels 

in the federal assessment: good, fair and poor. 

Because the HPMS and DOTD PMS use the same IRI and rutting measurements, these 

data have been available since 2003, and the PMU is satisfied with the prediction using 

this previous data. However, for cracking percent and faulting, when the PMU was 

preparing the TAMP report, only 2017 to 2020 datasets were available. This was due to 

the different new measurements required by FHWA.   

Figure 5. Pavement condition criteria regulated by FHWA [91] 

 

With the measured IRI, rutting, cracking percent, and faulting, the conditions of these 

distress types can be rated. The criteria of the goodness rating is listed in Figure 5. In this 

figure, IRI and rutting have same criteria for all pavement types: asphalt pavement 

(ASP), composite pavement (COM), and jointed concrete pavement (JCP). However, the 

cracking percent rating depends on pavement type. The overall condition of a 0.1-mile 

section is rated by considering the combination of all these metrics’ rating: 

 If all the distress ratings are GOOD, then the overall rating is GOOD. 

 If one or more distress ratings are POOR, then the overall rating is POOR. 
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 Any other conditions are rated as FAIR.    

Currently, the analysis of interstate pavements is based on 521 homogeneous sections. 

The overall condition of the interstate highway system is therefore calculated by 

summing the average conditions and section lengths.   

The Modern Era Retrospective-Analysis for Research and Applications (MERRA) 

The Modern Era Retrospective-Analysis for Research and Applications (MERRA) was 

undertaken by NASA’s Global Modeling and Assimilation Office and was released in 

2009. It is based on a version of the GEOS-5 atmospheric data assimilation system and 

collected data from 1979 through 2016. The data after 2016 was measured by an 

upgraded MERRA-2 system. MERRA is also incorporated in pavement research and 

design, such as LTPP database and pavement ME. Therefore, this database is selected as 

the source of climate input in this study. 

Five climate parameters were provided in the Pavement ME system for Louisiana, 

including average annual air temperature, average annual precipitation, average annual 

freeze index, average annual wet days, and annual freeze/thaw cycles. These five 

parameters are widely accepted as factors influencing pavement performance.  

Figure 6. MERRA data in Pavement ME 
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These datasets are stored as weather stations within Louisiana, with hourly climate data 

available from 1985 to 2017 (Figure 6). Such a large dataset would be difficult to apply 

for analysis. Therefore, the average values of these five climate inputs were calculated for 

each district.  

Project/Highway Information and Highway Needs Files 

The DOTD Construction Project database provides a query tool for users to search all 

types of highway project records from DOTD TOPS (old projects, mainframe), LaGov 

PS (Project Systems), AASHTO Projects, and SiteManager Applications. The obtained 

project information includes project number, control section information (control section 

number and start/end point of log miles), final inspection dates, and work types (i.e., 

asphalt new pavement, asphalt widen and overlay, etc.). The main application of this 

database is to determine the pavement age using the final inspection date and the start-

end log mile of the control section. To achieve this goal, all maintenance and 

rehabilitation project records are extracted, along with their control section and final 

inspection information. For every 0.1-mile section in HPMS or PMS, the project history 

can be obtained by comparing the control section information and final inspection date. A 

program in Matlab is compiled to assign the latest three project records on every 0.1-mile 

sections. This allows the pavement age in each year to be obtained. 

The Highway Needs files provide additional network-level information, such as 

homogenous section data, including pavement type, average daily traffic (ADT), number 

of lanes, and functional classification. 

In addition to the network-level information obtained from the DOTD Construction 

Project database, more detailed project-level data such as treatment type (thin-overlay, 

medium overlay, chip seal, etc.), design traffic information (ADT and truck percent), 

pavement structural information (overlay thickness and milling depth) can be obtained by 

verifying them with their design documents in FileNet and Plans Room. 
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Objective 

The main objective of the research project was to develop both short-term and long-term 

pavement performance prediction models that can be used to estimate future pavement 

condition and smoothness for Louisiana’s flexible and rigid pavements based on DOTD’s 

PMS and other related pavement data using the soft computing technique– ANN 

modeling.  

 

Specifically, the following objectives were accomplished in this study: 

 

1. Develop an accurate short-term pavement cracking forecasting model (ANN 

modeling) to predict the 2- and 4-year future cracking percentage for all asphalt 

surfaced pavement (ASP and COM) and jointed concrete pavement (JCP) 

segments currently included in Louisiana’s interstate and NHS pavement network, 

based on DOTD’s 2017-2020 pavement performance condition database.  

 

2. First, establish a historical pavement condition database for all asphalt overlay 

projects constructed after 2009, including various thicknesses and pavement types 

of ultra-thin, thin, medium, and structure overlays. The developed overlay 

pavement database was then used to develop the long-term pavement performance 

models (ANN modeling) using two different approaches: 

 

a. Incremental performance models: Use two previous cycles’ PMS 

pavement condition data, mill/overlay thickness, and accumulative traffic 

information to predict the future pavement performance (up to 15 years) 

for three flexible pavement performance indicators (IRI, rutting, and 

percent cracking) and five distress indices (ALCR, RNDM, PTCH, RUT, 

and RUFF).  

 

b. Family-curve prediction models: Use project-based information of 

pavement age, functional class, thickness, and five weather-related project 

data to develop IRI and distress indices’ family-curve performance models 

for different functional class ASP pavements in Louisiana. 
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Scope 

To achieve the objectives, pavement condition data was collected from the PMS database 

and from the DOTD and HPMS databases for federal analysis. Other parameters such as 

pavement age, traffic, structural information, and climate were also extracted from the 

DOTD system and combined with pavement condition data. Short-term pavement 

performance models for various pavement types and functional classes were developed 

based on the HPMS database. ANN and ANFIS were applied for model training, and 

different algorithms and model structures were examined to obtain optimal short-term 

performance models to forecast 2-year and 4-year cracking conditions. Similarly, the 

long-term models were built with PMS data extracted for 255 ASP overlay projects to 

predict network-level pavement performance for IRI, rutting, percent cracking, and five 

distress indices (ALCR, RNDM, PTCH, RUT, and RUFF). Based on long-term 

prediction, a set of family curves was also generated for various functional classes.     



—  41  — 

 

Methodology 

The methodology of this research was divided into two parts. First, the procedures for 

short-term and long-term pavement performance modeling are presented. The objective 

of these performance models was to support network-level decision-making procedures 

within maintenance strategy and supervise the overall condition of the roadway system. 

The data used for the modeling was collected from Louisiana PMS and HPMS databases. 

Considering the differences in purposes and applications between long-term and short-

term models, the methods for their project selections were also different, as presented in 

this chapter. Other factors influencing pavement performance, such as treatment types, 

layer thicknesses, pavement age, traffic, and climate, were also incorporated within the 

models developed in this study. Therefore, the procedures for collecting these parameters 

from PMS and HPMS data were developed in this section correspondingly. The first part 

of this methodology chapter aims to provide a comprehensive procedure for project 

selection and data preparation, which can be immediately extracted from the current 

DOTD system and conveniently updated with newly surveyed data in the future, without 

major revision. To achieve this goal, the following databases were investigated: 

 Louisiana PMS and HPMS 

 Louisiana Highway Needs File 

 DOTD Construction Projects and FileNet 

 MERRA dataset 

Second, based on a literature review, several shallow machine learning techniques were 

selected for training long-term and short-term performance models. The collected data is 

organized according to the structure design of the models, serving the purpose of 

performance modeling. The following artificial neural networks were investigated to 

explore optimal methods for forecasting pavement conditions.    

Project Selection and Data Collection 

Louisiana DOTD has been working on collecting and maintaining various of databases of 

pavement performance and treatment history records for decades. These databases 

provide a wealth of valuable information for modeling pavement performance and 

supporting decision-making procedures.  
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According to the previous research focused on pavement performance modeling, the 

model inputs can be generally categorized as (1) pavement performance data, (2) traffic 

data, (3) climate data, and (4) treatment and structural information. Considering the 

availability of these categories of databases in Louisiana DOTD, pavement performance 

datasets were obtained from PMS and HPMS. The traffic data was extracted from the 

Highway Needs Database. The climate data used in this project was provided by the 

MERRA, and the detailed records of pavement maintenance and rehabilitation were 

collected from the Highway Project Information database and FileNet. The details of 

these databases are as follows. 

Dataset for Short-term Performance Modeling 

The database for short-term pavement performance modeling is prepared based on the 

purpose of this research, the availability of datasets from DOTD, and the future 

implementation for local agencies.  

The HPMS database used in this study contains 0.1-mile record of pavement condition 

for the entire NHS system of Louisiana roadways collected from 2017 to 2020. The 

database includes measures such as roughness, rutting, cracking (alligator, transverse, and 

longitudinal cracks), faulting, patching, roadway geometry (number of lanes, route, 

district, direction and GPS coordinates), and operating information (date, driving speed of 

data collection). Due to the treatment projects applied during this period, the pavement 

conditions of the roadways under construction could not be measured. Thus, the records 

of some specific sections were not consecutive.  

The first step in processing the HPMS database was to filter the data by ElementID to 

obtain the sections with all 4 years’ performance. ElementID is the description of each 

0.1-mile section of HPMS data, consisting of pavement control section, the starting log-

mile, and traffic direction of the section, which is unique for each 0.1-mile section. It was 

found that 35,913 0.1-mile sections, equaling 3,591 miles of NHS pavements, have 

integrated records for further analysis. 

The HPMS database only contains pavement performance conditions. In order to 

incorporate other factors recommended by previous research, such as climate, traffic, and 

age information, the following databases were utilized to combine with the filtered 

HPMS data: 



—  43  — 

 

Climate: The MERRA dataset was adopted, considering its wide application in pavement 

analysis such as MEPDG. The average climate factors, including annual air temperature, 

annual precipitation, freezing index, annual number of freeze-thaw cycles, and annual 

number of wet days for all districts in Louisiana, were extracted. The average climate 

inputs by district were calculated and listed in Table 2: 

Table 2. Average climate inputs by district 

District 

Mean 

annual air 

temp (F) 

Mean 

annual 

precipitation 

(in) 

Freezing 

Index 

(deg F - 

days) 

Average 

annual 

number of 

freeze/thaw 

cycles 

Number 

of wet 

days 

2 69.7 49.3 1.2 3.3 305.2 

3 67.9 48.7 4.0 11.3 307.2 

4 65.5 52.0 13.3 28.9 293.2 

5 65.3 53.0 18.3 31.2 287.6 

7 67.7 50.9 3.5 12.9 308.7 

8 66.2 52.2 8.1 23.4 302.0 

58 66.0 51.8 13.0 26.2 297.0 

61 67.6 50.7 4.2 14.0 308.6 

62 67.7 52.5 3.4 12.9 308.4 

Traffic: The most recent 2019 Highway Needs file available contains homogenous 

section performance and traffic information, including annual average daily traffic 

(AADT) and truck percent. Matlab code was compiled to extract ADT and truck percent 

for each 0.1-mile HPMS section. 

Pavement age: The pavement construction and preservation projects recorded in the 

DOTD Construction Projects database was used for calculating pavement ages. A total of 

7,751 projects records from 1990 to 2021 were obtained from this system, including new 

construction, structural overlay, maintenance overlay, or surface treatment projects on all 

state-maintained roadways. The information in these records consisted of project number, 

control section, project cost, final inspection date, begin and end log mile, and work 

types. For each HPMS section, its beginning and ending log mile were examined with the 

1990-2021 project records to obtain all construction and preservation history on this 0.1-

mile section. This information was used to determine the pavement ages for 2017-2020. 
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With this information combined, the updated HPMS database included traffic data, 

existing pavement condition, age, and climate. For each year’s data, the accumulated 

truck numbers on 0.1-mile sections were calculated based on its pavement age, ADT, and 

truck percent. The data was cleaned by removing records such as no construction and 

preservation records (pavement age larger than 32) or changes in pavement types.  

The data collection device for faulting of JCP surfaces was updated from 2D to 3D in 

2020. Therefore, it is not appropriate to train an ANN model with 2018 and 2020 

performance as input and output. Although the faulting data from 2017 to 2019 was 

consistent, the trained models based on these 2D collected specimens would not be 

suitable for predicting the 2022 performance prediction, since the 2020 data was 

measured with different methods. Therefore, the faulting model in this study was not 

determined by machine learning methods.   

Each year, HPMS has a varying number of rows due to the interference caused by project 

construction on roadway surface condition survey. The rows in Louisiana HPMS during 

2017 to 2020 were 41,679, 38,464, 42,731, and 42,651, respectively. 

The inputs for training this model included the initial pavement condition (cracking 

percent), ADT, accumulated trucks, and climate. The output of the model was the 

pavement condition after a 2-year time interval. The updated HMPS database was then 

reformatted based on this proposal by using the pavement conditions of 2017 and 2018 to 

predict the conditions of 2019 and 2020, respectively. For each 0.1-mile section, the 4-

year record was transferred as two specimen for model training. If there was a significant 

distress reduction (e.g., cracking percent reduction > 5%) without any project information 

in between, these samples were also removed. 

FHWA requires State DOTs to separately report the conditions of interstate highways. 

The traffic conditions of interstate highways vary from rural to urban areas, and the 

traffic conditions also vary among interstate, arterial, collectors, and local roadways. 

Therefore, multiple models wee for these functional classifications. For the other non-

interstate NHS roadway sections, there were five functional classifications. Note that not 

all non-interstate NHS functional classifications had enough samples for training ANN 

models. The CRCP data has less than 20 miles for each group, which is also not sufficient 

for ANN training and was therefore removed from this study.  

Table 3 presents a final list of short-term performance modeling datasets prepared using 

the 4 years of pavement condition data (2017-2020) available in HPMS. As shown in 
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Table 3, those datasets were categorized based on three pavement types (i.e., ASP, COM 

and JCP) and six functional classifications. In addition, the numbers in the table represent 

the quantity of 0.1-mile sections of each considered modeling dataset in this study. 

Table 3. Prepared HPMS data for modeling short-term performance 

UN 
Roadway Functional 

Classification 
ASP COM JCP 

01 Interstate Rural 3879 4317 4641 

02 Principal Arterial Rural 9469 9825 4566 

06 Minor Arterial Rural 2 4 - 

11 Interstate Urban 1728 1840 2738 

12 Freeway Urban 469 183 561 

14 Principal Arterial Urban 1840 4982 3656 

16 Minor Arterial Urban 486 104 17 

Dataset for Long-term Performance Modeling 

Long-term performance models play a vital role in the decision-making procedure, 

serving as the foundation for comparing and analyzing optimal pavement treatment 

scenarios. In order to build the long-term performance models, the first step was to locate 

and verify the records of these treatments. PMS treatment history records were adopted 

since they contain the information of both treatment types and project numbers on 0.1-

mile sections distributed across all functional classifications of state maintained roads in 

Louisiana. Additionally, after the verification of these projects, their ElementIDs would 

be very convenient for extracting and combining information from other databases from 

DOTD. 

The ElementIDs of these 0.1-mile sections with various maintenance and rehabilitation 

types were extracted from PMS treatment history records. An ElementID is a nine-digit 

unique identifier describing the control section, lane direction, and starting log mile of the 

0.1-mile section, which is unique within every PMS sub datasets (collected within one 

cycle). For each treatment type, its ElementID list and project name was obtained, and 

the final inspection dates of these projects are verified with Highway Project Information 

database to determine the ages for each PMS record of every specific 0.1-mile section. 

For example, for a 0.1-mile section with previous project final inspection data of 

September 2010, the age of the pavement performance collected on this section on 

December 2013 was 3.25 years (36 months).  
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The design files for these projects were searched in the FileNet system and DOTD’s 

Plans and Proposals system to investigate the project-level information of the involved 

pavement structures. Details of the roadway sections, such as design AADT, truck 

percentage, overlay thicknesses, and milling depth, were recorded to confirm the 

maintenance or rehabilitation information from the PMS treatment history. The number, 

beginning, and end of the control section were checked with the range of the selected 

project’s ElementIDs, and the design ADT and truck percent were extracted from the 

project plan. The structural information, including layer thickness, cold plane thickness, 

number of lanes, and width of lanes, was checked on the page of the typical section.      

For every ElementID, their related project information was verified based on the 

procedure above, and a table summarizing the project number and the information (final 

inspection date, ADT, and structure) was generated. Then, for each pavement treatment 

type, their 0.1-mile sections with ElementID lists and corresponding project information, 

age, and climate was obtained.   

The next step was to obtain and organize the pavement performance data of these 

pavement treatment types on their 0.1-mile sections. The obtained ElementID was used to 

extract 10 records of this 0.1-mile section from all sub datasets from 2003 to 2021. 

Access database was applied for this record extraction by importing and combining both 

ElementID lists and PMS sub dataset, and the ElementID was used as the key for record 

searching and exporting. For each pavement treatment type, every individual of its 0.1-

mile sections has 10 rows of performance records (some of them have less than 10 rows 

of records due to the construction activities on related roadway segments). Climate 

parameters in Louisiana obtained from MERRA (the average climate factors including 

annual air temperature, annual precipitation, freezing index, annual number of freeze-

thaw cycles, and annual number of wet days) were added by district in this step, same as 

the procedure in short-term performance modeling. The pavement age values 

corresponding to the surface condition data were calculated with the final inspection date 

of the project and the date of data collection in PMS.   

The contents of these data rows are listed in Table 4.  
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Table 4. PMS data extracted for long-term performance modeling 

Categories Items 

Description Control section, Roadway name, Direction, ElementID, 

District, Parish, Log mile from, Log mile to, Functional 

Class, Pavement type, Date of data collection 

Pavement 

Performance 

ALCR, RNDM, PTCH, RUT, RUFF, Average IRI, Average 

rut depth, Alligator cracking extents (High, Low, and 

Medium), Longitudinal cracking extents (High, Low, and 

Medium), Transverse cracking extents (High, Low, and 

Medium) 

Project Info Project name,  Design ADT, Truck %, Final inspection 

date, Overlay thickness, Milling depth 

Climate Annual air temperature, Annual precipitation, Freezing 

index, Annual number of freeze-thaw cycles, Annual 

number of wet days 

Due to the variations of in these 0.1-mile section pavement performance data, it is usually 

difficult to obtain a smooth performance curve with a clear trend, and thus not 

immediately adopted for long-term pavement performance modeling. In addition, local 

agencies do not determine maintenance strategies or select pavement treatments based on 

a 0.1-mile section. Therefore, the average value of pavement performance was obtained 

for modeling long-term pavement condition.   

There were a total 112,487 PMS records collected for thin overlay (TO), ultra-thin 

overlay (UTO), medium overlay (MO), and structural overlay (SO) projects. Out of these 

records, 46,895 records have a negative value of age, indicating that these pavement 

conditions were measured before the construction of these overlay projects and were 

therefore removed from the database. The remaining 65,592 records belong to 1,348.5 

lane-miles of roadways on 12 functional classifications. There are a total of 363 overlay 

projects verified with design documents, and they are located in all the districts within 

Louisiana (Figure 7). These projects cover all four major overlay treatment types on all 

highway functional classifications, with the ADT ranging from low volume local routes 

(less than 300) to high volume interstate highways (larger than 60,000). 
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Figure 7. The locations of selected overlay projects in Louisiana 

 

The distribution of collected PMS records in various ADT ranges is plotted in Figure 8. 

36% of the data samples of the selected projects have an ADT of less than 3000. Another 

30% of the samples have a medium traffic volume (ADT 5000~15000). The data 

distribution in various functional classifications is shown in Figure 9. 
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Figure 8. Distribution of PMS records of selected projects among ADT ranges 

 

 Figure 9. Distribution of PMS records among functional classifications 

 

Figure 7 through Figure 9 show that the investigated PMS data represents most of the 

conditions in Louisiana. However, the noises and errors present in these single 0.1-mile 

PMS performance data were introduced due to variations of field measurements, changes 

in equipment for data collection, and the shifting of the start and end point of the sections. 

Additionally, the decision-making procedures performed by local agencies for selecting 

maintenance and rehabilitation treatments are not determined by a single 0.1-mile 

section. Therefore, the condition data of these 0.1-mile sections were processed to obtain 

the average performance values of the roadway sections of the overlay projects.   
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The averaged performance data showed a more consistent trend, and therefore has more 

reliability in performance modeling, especially for long-term performance. The 0.1-mile 

PMS condition data was averaged by overlay project and roadway directions (some of the 

roadway projects are constructed on both directions), and these 1,794 average data are 

summarized in Table 7.  

The description of this overlay PMS database is listed in Table 5.  

Table 5. Summary of overlay PMS database 

Type Projects mileage Age ADT range Truck% Milling 

depth 

Overlay 

thickness 

Number 

of data 

UTO 37 171.2 0-12.6 400-37,300 5-34 0-2 0.75-1.0 147 

TO 230 746.6 0-14.8 75-66,700 3-34 0-4 1.5-2 1,236 

MO 79 374.3 0-15.1 100-28,600 7-25 0-4 2.5-4 340 

SO 17 56.4 0.4-11.1 650-23,600 5-40 0-2 2-8 71 

Total 363 1348.5  75-66,700 3-40   1,794 

Difference in Long-term and Short-term datasets 

The differences between the datasets prepared for long-term and short-term pavement 

performance models are summarized here: 

 Pavement surface condition data: the surface condition data for long-term 

performance was extracted from the PMS and represents the average values of a 

series of connected 0.1-mile sections of a treatment project or a homogenous 

section/control section within a project. These data were collected from pavement 

treatment projects spread all over the Louisiana area from 2003 to 2021. These 

data were collected every two years for most of the roadway functional 

classifications. On the other hand, the data used for short-term performance was 

obtained from the HPMS database, specifically from the interstate highways and 

NHS within Louisiana for the years 2017, 2018, 2019, and 2020. More details 

about the difference between roadway condition survey methods of PMS and 

HPMS can be found in previous sections.  

 Pavement structural information: The structural information for long-term 

performance condition data was collected and verified from design files. 

However, no structural data was available for short-term performance prediction. 

 Traffic data: The traffic information for long-term performance models, 

including ADT and truck percentage, was extracted from design documents, 
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which represent the traffic condition at the year of design. For short-term data, 

these parameters were obtained by matching the log mile and control section with 

Highway Needs files, in which the ADT and truck percent of 2009 are used.  

Pavement Performance Prediction Using Machine Learning 

Artificial Neural Network (ANN) 

In this research, the Matlab Deep Learning Toolbox was adopted for the training 

procedure of ANN models for predicting pavement performance [92]. The ANN can be 

built using both Deep Learning Applications and coding.  

The dataset was randomly divided into training, validation, and testing sub datasets 

before training with designed ratios. During the training procedure, the training samples 

were presented to the ANN and used for computing the gradient, updating the network 

weights and biases. Additionally, the ANN was adjusted according to its error. Validation 

samples were used to measure the network’s generalization and to halt the training 

procedure when generalization stops improving [92]. The error on the validation set was 

monitored during the training process, which typically decreases during the initial phase 

of training, similar to the training set error. However, when the network began to over-fit 

the data, the error on the validation set typically began to rise. The network weights and 

biases were saved at the minimum of the validation set error. 

The testing dataset did not have an effect on training; instead, it provided an independent 

measure of network performance during and after the training procedure. If the error on 

the test set reached a minimum at a significantly different iteration number than the 

validation set error, this might indicate a poor division of the dataset. The default ratio 

among these three datasets was 70%, 15%, and 15%.  

The number of hidden layers and the numbers of neurons in each layer were designed. 

The numbers of neurons in hidden layers directly affected the model performance. 

Having too many or too few neurons resulted in overcomplicated or oversimplified 

models. Therefore, it was necessary to determine the optimized numbers of neurons 

through a trial-and-error process. Figure 10 shows an example of designed ANN structure 

with 5 input neurons, a hidden layer with 5 neurons, and 1 output neuron in Matlab. 
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Figure 10. Designed ANN structure in Matlab 

 

The training algorithm should be defined before training the designed ANN. The Neural 

Net Fitting (nftool) Application of the Matlab Deep Learning Toolbox offers three of the 

most commonly used training algorithms: Levenberg-Marquardt, Bayesian 

Regularization, and Scaled Conjugate Gradient: 

Levenberg-Marquardt Algorithm typically requires more memory but less time. 

With this algorithm, the training procedure stops when generalization is not 

improving anymore. This can be dragonized by increasing the mean square error 

(MSE) of the validation sample dataset.  

Bayesian Regularization Algorithm requires more computing time, but its 

algorithm is suitable for datasets with a smaller sample population and noise. 

With this algorithm, the training procedure stops according to adaptive weight 

minimization (regularization). 

Scaled Conjugate Gradient Algorithm has the benefit of requiring less memory. 

Similar to the Levenberg-Marquardt Algorithm, the training procedure using this 

algorithm stops when generalization is not improving. 

The prediction power of trained ANN models was evaluated by the mean squared error 

(MSE) and regression R values. Figure 11 shows an example of ANN training based on 

data of the cracking percentage of JCP pavement collected on functional class 14 (Minor 

Arterial Urban). The training used the Levenberg-Marquardt algorithm and stopped at 

epoch 28, where the validation dataset had the best performance with an MSE of 9.2. The 

R values for all 3 datasets and the overall dataset were all above 0.96 (R2 >0.92), 

indicating a strong correlation between the outputs (predicted cracking percentage with 

trained ANN) and the targets (measured cracking percentage).   
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Figure 11. Model performance and regression of trained ANN (JCP, Functional Class 14) 

  

In this study, the ANN was applied to obtain short-term performance models based on the 

PMS and HPMS databases. For each dataset from a specific pavement category 

(pavement distress, pavement type, and functional class), various combinations of input 

values were tested to examine the most suitable parameters for predicting future 

pavement performance. Trail-and-error procedures were also applied to obtain the 

optimized ANN structures (number of neurons) and training functions. Due to the fact 

that various MSE and R values were generated from random training, validation and 

testing dataset sample selection within the same database, the same model was trained for 

multiple times, and the average MSE and R were used for model evaluation.  

Neuro-Fuzzy Designer 

The Matlab Fuzzy Logic Toolbox software provides a command-line function and an 

interactive app (Neuro-Fuzzy Designer) for Sugeno fuzzy inference systems using neuro-

adaptive learning techniques, similar to the techniques used for training ANN models. 

The panel of the Neuro-Fuzzy Designer is shown in Figure 12. 
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Figure 12. Neuro-Fuzzy Designer panel in Matlab 

  

Figure 12 presents the main panel of ANFIS Panel in Matlab, where the training, testing, 

and checking datasets were loaded using this graphical user interface (GUI) either 

through a file or workspace. The FIS was created using either the grid partition method or 

the subtractive clustering method. The grid partition is the default method of the FIS 

generation in Matlab. It generates rules by enumerating all possible combinations of 

membership functions for all inputs. However, this resulted in a large number of rules 

when more than 4 or 5 inputs are defined for the FIS, with 3 to 5 MFs for each input. 

Having too many inputs or MFs significantly increased computing time. To reduce the 

performance deterioration due to large number of rules, Matlab also provided an 

alternative by generating rules through the subtractive clustering method. The subtractive 

clustering method categorized the input data into clusters and generated an FIS with the 

minimum number of rules required to distinguish the fuzzy qualities associated with each 

cluster. However, this simplification may have resulted in a loss of accuracy in the built 

prediction models.   

Neuro-Fuzzy Designer also provided various options for membership functions to build 

FIS models. In addition to the bell-shaped and Gaussian membership functions 

introduced above, MFs with other shapes and equations were also available for users to 

perform trial-and-error to locate suitable MFs and determine their corresponding 
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parameters through training procedures. The MFs and their details available in Neuro-

Fuzzy Designer are listed in Table 6. 

Table 6. Membership functions in Matlab’s Neuro-Fuzzy Designer 

MF Name Plot MF Name Plot 

trimf triangular 

 

psigmf product 

sigmoidal 

 

trapmf trapezoidal 

 

gbellmf generalized 

bell-shaped 

 

pimf π shaped 

 

gaussmf Gaussian 

 

dsigmf difference 

sigmoidal 

 

gauss2mf two-sided 

composite of 

different 

Gaussian 
 

The parameters of these MFs are also shown in the panels, and the main task of the 

training procedure was to update and obtain these MF parameters to fit the given input 

data.  

With the designed structure of membership function numbers and types, the ANFIS can 

be trained with a given error tolerance and number of epochs. The training was stopped 

when either of these two criteria is achieved. The training procedure was monitored, as 

shown in Figure 10, where the error values (RMSE) of both the training and checking 

datasets for each completed epochs are plotted in the window.  

K-Fold Cross Validation in Machine Learning 

During the developing of ANN models, the training, validation, and testing datasets were 

usually randomly selected from original database. To evaluate the performance of the 

trained models, R2 values and root mean square errors (RMSE) of both the training and 

testing datasets were observed, and the optimal model structures were determined. 

However, the RMSE values could greatly vary due to the bias of the randomly divided 

datasets, which introduced difficulty in model optimization. The R2 and RMSE were 

calculated as follows: 



—  56  — 

 

𝑅2 = 1 − ∑(𝑦𝑖 − 𝑦𝑖𝑝)
2

/ ∑(𝑦𝑖 − 𝑦𝑎𝑣𝑒)2                              (22) 

𝑅𝑀𝑆𝐸 = [(
1

𝑁
) ∑(𝑦𝑖 − 𝑦𝑖𝑝)

2
]1/2                                           (23) 

Where, yi is the i-th measurement, yip is its corresponding prediction, N is the number of 

data points, and yave is the average value of all yi. 

One method for avoiding this drawback was to train the model (with the same model 

configuration) multiple times, with different training and testing sets each time (these sets 

came from same dataset), then evaluate the average RMSE and R2. K-Fold cross 

validation provided a standard procedure for this methodology.  

 The first step was to divide the original dataset into K equally-sized folds.  

 Then the No. K fold of data was assigned as the testing dataset, the No.1 through 

K-1 sets were applied as training set, and the R2 and RMSE were recorded after 

model development.  

 Next, use No. (K-1) fold as the testing set and all the remaining folds as training 

set, and record R2 and RMSE.  

 Repeat this procedure until every individual fold has been used as the testing sets, 

then take the average R2 and RMSE as a reference for model evaluation. 

In order to further optimize this method, the original dataset was shuffled before dividing 

it into K folds. This K-fold cross-validation was implemented as a loop for ANN 

modeling to detect the optimal model structures.  

Development of Short-Term Prediction Models 

For every individual model, a correlation matrix was constructed to determine the 

optimal climate factor out of the five MREEA parameters for model training. Using the 

selected climate factor, existing cracking percent, ADT per lane, and accumulated trucks 

as input, and cracking percent after two years as output, the dataset for each model was 

loaded into an ANN for model training.  

The performance of various ANN structures (hidden layer size) and training algorithms 

were examined based on correlation coefficients and RMSE. K-Fold validation was 

applied within this procedure to minimize the variation introduced by random selection of 

datasets (training, testing, and validation) and provide a stable trend for RMSE values.  
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For each algorithm, the optimal model considering R2 and the least RMSE was obtained. 

These candidate models were further validated with a newly measured dataset in HPMS 

(i.e., pavement condition data collected in 2021). Since the pavement age is missing in 

the dataset of the HPMS 2021, the 0.1-mile sections with a significant decrease in 

cracking percent from 2019 to 2021 were considered as sections where treatments were 

applied during this period, and therefore removed. The remaining 2021 measured data 

was used to test the prediction power of the candidate models, and the final optimal 

model was determined for future implementation. Two machines learnings techniques, 

ANN and ANFIS, were selected in this short-term performance modeling, and their 

prediction power was compared. The procedure is shown in the flow chart in Figure 13.  

Figure 13. Flow chart of building short-term ANN pavement performance models 
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Development of Long-term Prediction Models 

Different machine learning and neural network methods, such as including the SVM 

model, tree-shaped models, and artificial neural network (ANN) models, have been 

successfully used to forecast short-term pavement conditions at either the project level or 

network level [56, 92]. However, existing models still face challenges in accurately 

predicting long-term pavement conditions under real-world conditions. These conditions 

include different types of sequential and non-sequential variables that affect the 

development of pavement performance, and the variables have varying levels of values. 

One of the purposes of this study was to develop long-term pavement condition 

prediction models at the network level for DOTD’s asset management implementation. 

To achieve this, the following neural network modeling approaches were considered 

(Figure 14). 

Figure 14. ANN model structure for IRI family curve 

 

Similar to the optimizing procedure for short-term performance models, the model 

structures of both hidden layer sizes and number of layers was investigated. Their R2 and 

RMSE values were used as references for model evaluation. In addition, the predicted 

long-term performance curves was also considered when selecting models with better 
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prediction power. For example, performance curves with significant variation after 13 

years were not rated as desired models, even though they may have had excellent R2 and 

RMSE during training.   
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Discussion of Results 

Short-Term Cracking Percent Prediction 

Based on the methodology mentioned above, in order to predict 2- and 4-year future 

cracking percentages for all interstate and NHS pavement segments in Louisiana, a group 

of short-term performance modeling datasets were assembled, as shown in Table 3. The 

modeling datasets were prepared through data mining from all 2017-2020 HPMS 0.1-

mile sections together with associated traffic loading and site-specific climate data.  Two 

machine learning techniques, ANN and ANFIS, were considered to build each individual 

short-term cracking percent prediction model. Specifically, all prediction models were 

developed using the MATLAB® computer programming platform. Each individual 

prediction model was specifically coded, trained, validated, and tested. The model 

development and results are presented in the following sections. 

ANN Model Training and Performance 

Selection of Neuron Numbers and Backpropagation Algorithms 

In this study, a single layer feedforward ANN model structure was adopted for training 

short-term pavement cracking percent prediction datasets. However, due to the variation 

in the quality and quantity of data samples among different pavement categories, it was 

difficult to obtain a single model suitable for all pavement types and functional 

classifications. In addition, each backpropagation algorithm also had pros and cons when 

working with different types of datasets. Therefore, for every individual pavement family, 

various single hidden layer ANN models were built with different neuron numbers and 

training algorithms. The training and testing RMSE values were compared to evaluate 

model performance and determine the optimal ANN.  

This procedure is explained here based on an example of selecting neuron numbers and 

training algorithms for asphalt pavement sections on Interstate Rural (ASP, Functional 

Classification 01). There were total 3,869 rows of data prepared in this category, with five 

inputs, including current cracking percent, freezing index, pavement age, and ADT per 

lane. Freezing index was selected as the climate feature because this parameter has the 

most relevance to the output, future cracking percent (measured two years later than the 

input cracking percent), out of the five MERRA climate data. These 3,869 samples were 

shuffled with randomly generated series numbers and were evenly divided into five data 
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folds for a five-fold cross validation. The benefits of the K-fold cross validation can be 

seen in Figure 15, where the noise in both training and testing RMSE curves was too 

significant to determine the extremum points for capturing the optimal hidden layer size 

(Figure 15 (a)). However, when a five-fold cross validation was applied, it became 

obvious that when the number of neurons was larger than 20, the ANN model lost the 

stability in performance and showed significant oscillation in RMSEs. This indicates that 

the model is overfitting the data (Figure 15 (b)). Therefore, the ANNs with a number of 

neurons over 20 were not investigated in the following steps.   

Figure 15. Relationships of RMSE values with neuron numbers (a) without cross validation (b) with 

five-fold cross validation 
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Three training algorithms commonly adopted by other researchers were also examined: 

Levenberg-Marquardt (trainlm), Bayesian Regularization (trainbr), and Scaled Conjugate 

Gradient (trainscg). For each training algorithm and a specific number of neurons, K-fold 

validation was added to obtain the average RMSE for both training and validation as well 

as testing datasets. The relationships between RMSE and the number of neurons for the 

three algorithms are plotted in Figure 16. 

Figure 16. Neuron numbers vs. training/testing RMSE values with (a) Levenberg-Marquardt 

Algorithm, (b) Bayesian Regularization Algorithm and (c) Scaled Conjugate Gradient Algorithm      
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The curves in Figure 16 were used to evaluate the performance of models and algorithm 

for the dataset of the selected pavement category. The optimal ANN model, including 

model structure (hidden layer size) and suitable algorithm, could be determined as well.  

(1) The ANN models using Levenberg-Marquardt Algorithm (trainlm) with a hidden 

layer size from 1 to 6 showed consistently decreasing trends in both training and testing 

RMSEs. The RMSE curves began to fluctuate starting from 7. Therefore, neuron number 

6 was selected as optimal structure for the ASP Interstate Rural ANN with trainlm. (2) 

The Bayesian Regularization Algorithm (trainbr) was similar to trainlm and also showed 

6 as the optimal number of neurons. However, this algorithm showed a smoother curve, 

indicating a better stability than trainlm. (3) Scaled Conjugate Gradient Algorithm took 

more neurons to reach the optimal RMSEs at 8. The fluctuations after this point were 

better than trainlm, but not as good as trainbr. The summary of the optimal ANN models 

with three algorithms is listed in Table 7.  

Table 7. Summary of optimal ANN models (ASP FUNCLAS=01) 

Training 

Algorithm 

Optimal 

Neurons 
R2 

RMSE 

Training Testing 

‘trainlm’ 6 0.875 2.71 2.80 

‘trainbr’ 6 0.883 2.68 2.82 

‘trainscg’ 8 0.851 2.75 2.85 
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From the comparison in Table 7, it can be seen that trainlm and trainbr have better R2 in 

prediction, however the RMSEs of all three models were at the same level; therefore, 

more evaluation is needed to determine the best model for this pavement group.  

The developed ANN models in Table 7 were then applied to predict the future pavement 

performance. Although the HPMS data for year 2021 was delivered, its project records 

during 2020-2021 were not yet prepared. Therefore, this year’s performance was not used 

for model training. However, it would still be valuable for testing the model’s 

performance and evaluating its capability in assisting DOTs in determining their 

condition targets. 

The cracking percent of 2019 and its corresponding age were used as input, while 

ADT/lane, climate (freezing index in this model), and truck percent were the same. The 

output was 2021’s cracking percent. The difference in the cracking percent values 

between 2019 and 2021 was reviewed. If the reduction in the cracking percent from 2019 

to 2021 was larger than 5%, it was assumed that a project constructed on this pavement 

section, and this row of data was therefore deleted. There were a total 3,553 rows of 

2019-2021 data remaining for testing the models. 

The five inputs of these datasets were fed into the trained ANN models, and the outputs, 

which were the predicted 2021 cracking percent values, were compared with the field-

measured HPMS data. The comparisons are plotted in Figure 17.  
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Figure 17. Comparison between measured and predicted cracking percent with (a) trainlm,  

(b) trainbr and (c) trainscg 

 

   (a)      (b) 

 

It is observed that there was a group of data points that could not be predicted well with 

the model developed using training function trainbr (Figure 17b), which significantly 

reduced the overall prediction power of this model. On the other hand, the other two 

models showed a sound correlation with an R2 value greater than 0.85 (Figure 17a & 

17c).  
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Instead of using cracking percent values, FHWA has regulations for rating pavement 

cracking condition goodness as good, fair and poor. The goodness of the predicted 

cracking percent and measured cracking percent were rated according to FHWA criteria 

and summarized in Table 8. 

Table 8. Federal goodness rating of predicted and measured cracking percent 

Models Rating Crack% 
Number of 0.1-miles % of this category 

Measured Predicted Δ Measured Predicted Δ 

trainlm 

GOOD <5 2522 2486 36 71.0 70.0 1.0 

FAIR 5 – 20 828 885 -57 23.3 24.9 -1.6 

POOR >20 203 182 21 5.7 5.1 0.6 

trainbr 

GOOD <5 2522 2454 68 71.0 69.1 1.9 

FAIR 5 – 20 828 845 -17 23.3 23.8 -0.5 

POOR >20 203 254 -51 5.7 7.1 -1.4 

trainscg 

GOOD <5 2522 2556 -34 71.0 71.9 -1.0 

FAIR 5 – 20 828 826 2 23.3 23.2 0.1 

POOR >20 203 171 32 5.7 4.8 0.9 

Table 8 indicates that the ANN model with the training function “trainscg” has the least 

difference in both the number of 0.1-mile sections and the percent of total pavement mile 

length. Based on the overall performance shown in Table 8 and Figure 17, an ANN model 

with 8 neurons and the Scaled Conjugate Gradient Algorithm is considered the optimal 

one for predicting the short-term pavement performance of asphalt pavement on interstate 

highways in rural area. 

Developed ANN Models for Predicting Short-Term Cracking Percent of NHS 

Pavements 

A similar ANN modeling procedure was followed to generate various ANN cracking 

percent prediction models for three pavement types (ASP, COM and JCP) and various 

roadway function classes, as listed in Table 3. Note that each model has the same four 

inputs (Age, ADT, T% and Current Cracking Percent), along with a unique weather input 

selected from the five MERRA average climate parameters by district. Additionally, all 

three training functions (trainlm, trainbr and trainscg) were tested with various neuron 

numbers. For each training function, the optimal model was determined by disregarding 

the testing RMSE, which began to rise, indicating that overfitting occurred when more 

neurons were assigned. These three optimal models, obtained using various training 

functions, were used to predict the cracking percent for 2021 based on 2019 values. The 
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predicted cracking percent was then compared with the measured 2021 performance. The 

best model was selected by considering both the training performance (R2, RMSE) and its 

prediction power in simulating the 2021 performance. In general, models with better 

prediction accuracy (compared to 2021 measured crack percent) and fewer neuron 

numbers are preferred. 

      ANN Models in ASP Pavements. The developed ANN models of 7 functional classes 

for ASP pavements are listed in Table 9. Functional Classification 06 (Minor Arterial 

Rural) was excluded because there were only 4 data records in this category, which 

was not sufficient to build up ANN models. It can be concluded that all these models 

have sound prediction power with R2 values larger than 0.85 and RMSE values less 

than 3.1. This can be seen in the overall comparison between measured and predicted 

cracking percent of these 16,965 0.1-mile ASP sections plotted in Figure 18.  

Table 9. ANN ASP cracking models 

FUN Rows Weather Input* Trained Models Pred. 2021 

R2 TrainFcn Neurons R2 RMSE (test) 

01 3879 AAFI trainscg 8 0.88 2.85 0.86 

02 9469 AAFI trainbr 7 0.94 3.04 0.91 

06 2 - - - - - - 

11 1728 AAFTC trainbr 2 0.95 1.75 0.92 

12 469 AAWD trainlm 3 0.95 2.52 0.86 

14 1840 AAP trainbr 4 0.94 2.92 0.94 

16 486 AAFTC trainbr 2 0.95 2.72 0.91 

*AAT - Average annual air temperature 

  AAP - Average annual precipitation 

  AAFI - Average annual freeze index 

  AAWD - Average annual wet days 

  AAFTC - Average annual freeze/thaw cycles 
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Figure 18. Overall comparison between predicted and measured cracking percent on ASP 

 

Figure 19. Goodness ranking between predicted and measured cracking percent on ASP 

 

Figure 19 also compared the goodness levels of predicted and measured crack percentage 

on overall ASP 0.1-mile sections. Only 190 out of 16,965 (1.1%) 0.1-mile sections were 

different, indicating the soundness of this short-term performance model. 



—  69  — 

 

      ANN Models in COM Pavements. The developed ANN models of 6 functional 

classes in COM pavements are listed in Table 10. Note that the R2 value of the ANN 

model for functional class 16 (Minor Arterial Urban) was relatively low. This is 

because the available data for this group were insufficient for model training (the 

same category for ASP had 400 data and sound model performance).  

Table 10. ANN COM cracking models 

FUN Rows Weather Input Trained Models Pred. 2021 

R2 TrainFcn Neurons R2 RMSE (test) 

01 4317 AAP trainbr 7 0.89 2.40 0.88 

02 9825 AAFI trainlm 5 0.91 3.30 0.91 

06 4 - - - - - - 

11 1840 AAWD trainlm 5 0.94 1.84 0.93 

12 183 AAP trainbr 2 0.99 1.85 0.94 

14 4982 AAWD trainlm 3 0.92 2.93 0.93 

16 104 AAT trainscg 1 0.43 1.54 0.74 

In general, the overall performance of ANN models developed for COM pavements 

showed very promising potential in predicting 2-year future cracking percent conditions, 

as is shown in Figure 20. This overall performance would be improved if the Functional 

Class 16 data were removed. 
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Figure 20. Overall comparison between predicted and measured cracking percent on COM 

 

Regarding the goodness rating of 2021 cracking prediction for COM pavements, there 

was only a difference of less than 1% (0.89%, 151 out of 19,564 0.1-mile sections) when 

compared with the measured values. 

Figure 21. Goodness ranking between predicted and measured cracking percent on COM 
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Figure 21 shows the predicted and measured 2021 goodness rating of cracking percent, in 

which the two overall rating percent values are very close.  

      ANN Models in JCP Pavements. Functional Class 06 and 16 were not available for 

JCP models. Furthermore, Functional Class 01 did not show a very high R2 value, 

although the RMSE was less than 1.5. However, the rest four models were still 

suitable for implementation, as the model training results showed in Table 11. 

Table 11. ANN JCP cracking models 

FUN Rows Weather Input Trained Models Pred. 2021 

R2 TrainFcn Neurons R2 RMSE (test) 

01 4641 AAP trainbr 4 0.67 1.46 0.76 

02 4566 AAFTC trainlm 5 0.92 4.68 0.95 

06 - - - - - - - 

11 2738 AAT trainlm 5 0.95 3.23 0.96 

12 561 AAT trainlm 1 0.94 7.27 0.90 

14 3656 AAWD trainbr 1 0.93 3.14 0.93 

16 17 - - - - - - 

The combined 5 JCP models in Table 11 showed good prediction power in both cracking 

percent values and goodness rating (Figure 22 and 23). 

Figure 22. Overall comparison between predicted and measured cracking percent on JCP 
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Figure 23. Goodness ranking between predicted and measured cracking percent on JCP 

 

 

Prediction of 2022 and 2024 Cracking Percent Goodness Levels and Targets 

The above comparision and validation indicate that the developed short-term models 

have the capability to predict 2-year performance with high accuracy. Therefore, they 

could be adopted in forecasting the 2-year and 4-year cracking percent and determining 

the condition targets required by FHWA. With the developed models for each pavement 

types and functional classification, their 2020 cracking percentages and pavement ages 

were used as inputs, along with other constant parameters (climate, truck percentage, and 

ADT), to predict 2022 cracking percents on these 0.1-mile sections. Then, the predicted 

2022 cracking percentages were used as inputs for predicting 2024 performances (age 

values were +2 from 2022 inputs) following the same procedure. The predicted 2022 and 

2024 cracking percentages of the three pavement types were transferred as goodness 

condition rating and plotted in Figure 24. 
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Figure 24. Overall cracking distress goodness levels predicted for three NHS pavement types  

 

(a) ASP sections 

 

(b) COM sections 
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(c) JCP sections 

In order to validate the trend of the predicted cracking percents for 2022 and 2024, the 

corresponding measured values of 2018 and 2020 were also plotted in Figure 24. Within 

these four years of cracking performances, the differences between the simulated results 

(from 2020 to 2022 and from 2022 to 2024) and the measured ones (from 2018 to 2020) 

showed consistent trends for three pavement categories. This indicates that the simulated 

results were able to accurately reflect the changes in conditions on these roadway 

networks. It should be noted that the 0.1-mile sections used for model training, condition 

prediction and verification were those with increasing cracking percentages, assuming no 

treatment was applied in between (any difference larger than -5% was accepted due to 

variation in PMS data). Therefore, the effects of maintenance and rehabilitation on the 

roadway network were not included. This is the reason why the trends of the simulation 

results were larger than the actual conditions of the overall roadway system. In Figure 25, 

the plots only show the deterioration rate over a 6-year span. To obtain the actural 

conditions, the rest percentages of pavement treatments should be added.       
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Figure 25. Overall cracking distress goodness levels predicted for interstate  

and non-interstate pavement sections 

 

(a) interstate sections 

 

(b) non-interstate sections 
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The short-term models were developed based on pavement types and functional 

classification. Therefore, the overall performance of interstate highways and NHS can be 

easily summarized by grouping 0.1-mile sections from all three pavement types by 

functional classifications.  

ANFIS Training and Model Performance 

ANFIS is another neural network training technique often used in engineering prediction 

models. One potential benefit is that ANFIS can handle incomplete or noisy data by using 

fuzzy logic to transform given inputs into a desired output through highly interconnected 

neural network processing elements and information connections. In this study, the 

Neuro-Fuzzy Designer in Matlab [92] was used to train ANFIS cracking percent 

prediction models based on the same datasets used in the aforementioned ANN model 

training, as listed in Table 3.  

Specifically, three typical ANFIS membership functions were examined to obtain 

candidate models: triangular (trimf), Gaussian (gaussmf), and difference sigmoidal 

(dsigmf) membership functions. The candidate models were then used to predict cracking 

percentages for the year 2021, using data from 2019. The predicted 2021 conditions were 

compared to the HPMS measurements to determine the optimal models for their function 

classes. The obtained models are listed below in Table 12 through Table 14. 

Table 12. ANFIS ASP cracking models 

FUN Rows Weather Input Trained Models Pred. 2021 

R2 MF R2 RMSE (test) 

01 3879 AAFI trimf 0.89 2.61 0.41 

02 9469 AAFI trimf 0.93 3.20 0.88 

06 2 - - - - - 

11 1728 AAFTC trimf 0.96 1.64 0.92 

12 469 AAWD - - - - 

14 1840 AAP trimf 0.94 2.86 0.86 

16 486 AAFTC - - - - 

Table 13. ANFIS COM cracking models 

FUN Rows Weather Input Trained models Pred. 2021 

R2 MF R2 RMSE (test) 

01 4317 AAP gaussmf 0.87 2.61 0.88 
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FUN Rows Weather Input Trained models Pred. 2021 

R2 MF R2 RMSE (test) 

02 9825 AAFI gaussmf 0.90 3.66 0.91 

06 4 - - - - - 

11 1840 AAWD trimf 0.94 1.79 0.83 

12 183 AAP gaussmf 0.99 1.56 0.92 

14 4982 AAWD trimf 0.9 3.28 0.93 

16 104 AAT trimf 0.74 1.20 0.21 

Table 14. ANFIS JCP cracking models 

FUN Rows Weather Input Trained models Pred. 2021 

R2 MF R2 RMSE (test) 

01 4641 AAP trimf 0.66 1.45 0.78 

02 4566 AAFTC trimf 0.92 4.52 0.93 

06 - - - - - - 

11 2738 AAT trimf 0.96 3.04 0.95 

12 561 AAT - - - - 

14 3656 AAWD trimf 0.93 3.09 0.93 

16 17 - - - - - 

It can be observed in the tables above that ANFIS also demonstrated sound prediction 

performance for the short-term cracking percent modeling. Out of the 14 obtained ANFIS 

models, 10 of them had R2 values over 0.85. On the other hand, some of the ANN 

trainable datasets could not be trained using ANFIS (i.e., ASP FUN 12 and 16, and JCP 

FUN 12) due to constant parameters in the input arrays. For example, all training data for 

JCP FUN 12 were within the same district, resulting in the climate inputs.  

A direct performance comparison between the ANN and ANFIS models are listed in 

Table 15. In general, ANN demonstrated better performance in 9 out of 17 models, while 

ANN and ANFIS showed very similar performance in the remaining models.  

Table 15. Comparison between ANN and ANFIS cracking percent perdition models 

Pavement FUN 
ANN ANFIS 

Select 
R2 RMSE 2021 R2 R2 RMSE 2021 R2 

ASP 

01 0.88 2.85 0.86 0.89 2.61 0.41 ANN 

02 0.94 3.04 0.91 0.93 3.20 0.88 ANN 

06 - - - - - -  

11 0.95 1.75 0.92 0.96 1.64 0.92 Both 
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Guidance for Implementation of Short-Term Cracking Models  

Based on the results of this section, it is recommended to implement the trained ANN 

models for predicting the future performance of the corresponding pavement family. The 

models should be used with collected pavement conditions and related parameters as 

inputs.  

The trained neural networks listed in Table 9 through 11 have been saved. Users can 

directly copy the trained models into their own folders and load them into Matlab. The 

inputs, including current cracking percent, truck percent, the selected averge climate 

parameter by district, pavement age, and ADT per lane, should be loaded as a matrix 

following this specific order, and the predicted crack percent to years later is calculated 

by the command line:      

  Pred = sim(net, input); 

Where, input is the n by 5 array, n is the number of data rows, and the input parameters 

are sorted into 5 columns as order. The ‘net’ represents the trained ANN for the inputs’ 

pavement family.  

12 0.95 2.52 0.86 - - - ANN 

14 0.94 2.92 0.94 0.94 2.86 0.86 ANN 

16 0.95 2.72 0.91 - - - ANN 

COM 

01 0.89 2.40 0.88 0.87 2.61 0.88 Both 

02 0.91 3.30 0.91 0.90 3.66 0.91 Both 

06 - - - - - -  

11 0.94 1.84 0.93 0.94 1.79 0.83 ANN 

12 0.99 1.85 0.94 0.99 1.56 0.92 Both 

14 0.92 2.93 0.93 0.9 3.28 0.93 Both 

16 0.43 1.54 0.74 0.74 1.20 0.21 ANN 

JCP 

01 0.67 1.46 0.76 0.66 1.45 0.78 Both 

02 0.92 4.68 0.95 0.92 4.52 0.93 ANN 

06 - - - - - -  

11 0.95 3.23 0.96 0.96 3.04 0.95 Both 

12 0.94 7.27 0.90 - - - ANN 

14 0.93 3.14 0.93 0.93 3.09 0.93 Both 

16 - - - - - -  
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An Excel spreadsheet has also been prepared for users who do not have access to Matlab 

software. The weight and bias values of the trained neural networks are extracted in 

Matlab and copied into the Excel sheet as an array. These arrays include the bias array b1 

and the weight array iw of the hidden layer (there is only one weight array for the shallow 

neural network trained in this section with a single hidden layer), and the weight array lw 

and bias array b2 of the output layer.  

The predicted crack percent array can be calculated with input array, weight arrays, and 

bias arrays as follows: 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑙𝑤 ∙ {
2

[1+𝐸𝑋𝑃(−2∗(𝑖𝑤∙𝑖𝑛𝑝𝑢𝑡+𝑏1))]
− 1} + 𝑏2                        (24)    

Where, output is the array of predicted crack percent, and input is the array of 5 input 

parameters. 

The detailed weights and bias values (i.e., iw, lw, b1 and b2) of the developed ANN 

cracking models are presented in Appendix A. Using an Excel spreadsheet, the future 

crack percent of HPMS pavements can be predicted, taking into account the traffic 

condition, climate, and pavement age, in addition to the saved Matlab ANN networks, 

which can also be directly impletemented. 

In the future, the above procedures can be repeated with more collected data to update the 

neural networks with better prediction power, especially for functional classes and 

pavement types that currently have insuficient data. 

Long-Term Performance Prediction for Asphalt Overlays 

According to the current state of practice, DOTD uses five distress indices to model 

pavement deterioration for its flexible pavement performance: three cracking and 

patching indices (ALCR, RNDM, and PTCH), RUFF (roughness), and RUT (rutting) 

indices. When all the values are loaded into a pavement management software called 

dTIMS, it generates pavement age-based deterioration curves for each distress index 

based on a simple curve-fitting method. For each homogenous segment, five performance 

curves are generated for each of the distress indices based on historic-collected PMS 

performance data. These performance curves are referred to as the site-specific curves. 

Additionally, DOTD uses another type of performance curve called pavement family. 

DOTD uses the following criteria to define the family curve: pavement type (ASP, 
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Composite, JCP, and CRCP), roadway functional class (i.e., Interstate, Principal Arterial, 

Minor Arterial, Collector, Local, and Others) and pavement type-related distress indices. 

These categories allow for 126 pavement family curves to be generated for DOTD, 

including 70 related to flexible pavements and 56 for rigid pavements. While the most 

desirable of these pavement deterioration models (or curves) are the site-specific curves, 

when site-specific curves are not available, family curves must be used as a replacement. 

As reported in the literature [57, 66, 76, 77], ANN-based models are very useful tools for 

modeling pavement deterioration at the network level when taking into account multiple 

pavement sections with various traffic, thickness (network level), or deterioration trends. 

They are also very fast tools that can solve thousands of pavement scenarios with various 

traffic scenarios, thickness, and conditions in seconds. 

Development of Incremental Performance Prediction Models Using ANN 

In this study, an ANN-based pavement performance model was developed for each of the 

three flexible pavement performance indicators (i.e., IRI, rutting and percent cracking) 

and five performance indices (ALCR, RNDM, PTCH, RUT, and RUFF) for the 

considered flexible pavement sections. The Neural Network toolbox in the MATLAB 

software was used for the ANN simulation analysis. A total of 255 ASP overlay pavement 

projects with 484 biennially-PMS data points for each pavement performance indicator 

were used in the model development and testing. Specifically, 70%, 15%, and 15% of the 

484 data points in each model development were used as training, testing, and validation 

datasets, respectively. 

Table 16 summarizes input and output parameters used in the eight ANN models 

developed for flexible pavement. Those developed pavement deterioration models may 

be implemented by DOTD as an alternative method for developing the site-specific 

curves using the simple regression method. The eight ANN models used incremental 

methods, where the previous two pavement conditions (collected in year i-2 and i-4) were 

adopted to predict the same pavement condition in year i. With the trained ANN model, 

the time-series pavement condition in the future could be predicted incrementally (e.g., 

predict performance at year i+2 using year i and i-2, then predict i+4 based on predicted 

i+2 and i, etc.). This method combines the advantages from both machine learning and 

site-specific curves incorporating the previous performance trends and characteristics of 

the pavement section (treatment, weather, traffic and climate).   
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Table 16. Input parameters in long-term performance modeling 

Model name Input Parameters Output 

IRI 
IRI(i-4), IRI(i-2), age (i), accumulative truck, 

overlay_h, mill_h 
IRI (i) year 

Rutting 
RD(i-4), RD(i-2), age (i), accumulative truck, 

overlay_h, mill_h 
RD (i) year 

Percent of Alligator 

Cracking 

CK(i-4), CK(i-2), age (i), accumulative truck, 

overlay_h, mill_h 
CK (i) year 

ALCR 
ALCR(i-4), ALCR(i-2), age (i), accumulative 

truck, overlay_h, mill_h 
ALCR (i) year 

RNDM 
RNDM(i-4), RNDM(i-2), age (i), 

accumulative truck, overlay_h, mill_h 
RNDM (i) year 

PTCH 
PTCH (i-4), PTCH (i-2), age (i), accumulative 

truck, overlay_h, mill_h 
PTCH (i) year 

RUT 
RUT(i-4), RUT(i-2), age (i), accumulative 

truck, overlay_h, mill_h 
RUT (i) year 

RUFF 
RUFF (i-4), RUFF (i-2), age (i), accumulative 

truck, overlay_h, mill_h 
RUFF (i) year 

Figure 26 presents the structures and prediction performances of the developed 

incremental ANN models (predicted vs. measured performance). Overall, all the 

developed ANN models showed high R2 and low RMSE, indicating their high accuracy 

in producing results that are very similar to the measured distresses. These models also 

provided physically meaningful future distress based on two previous distress data points 

and information regarding traffic and pavement thickness. 
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Figure 26. Structures and performances of incremental long-term performance models 

 

As described above, at least 6 years of PMS data was required to build site-specific 

curves for a homogenous section or project. If there was insufficient data for the section, 

or if the precious time-series performance records did not show a consistent trend, family 

curves were recommended for forecasting the performance. However, it is important to 

note that the family curves, which are regressed from a large group of roadways, may not 

reflect the specific condition of a particular section. This can introduce a significant 
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difference. To address this issue, the developed incremental models effectively combined 

the performance trend of the pavement family together with existing site specific 

conditions (e.g., traffic, overlay thickness). This helped mitigate the problems caused by 

using the family curves alone. The predicted performance curves are useful for the 

analysis of remaining life, cost-benefit and pavement preservation at a project-level using 

limited PMS data. 

Development of Family-Curve Prediction Models Using ANN 

A suite of ANN models was developed for distress family curves of ASP pavements. 

These individual family curves were predicted based on weather factors (i.e., 

temperature, precipitation, and freeze-thaw cycles), traffic loading, pavement age, 

overlay thicknesses, and pavement functional classes. 

In the analysis, the climate and weather data, including annual average air temperature 

(AAT), annual average precipitation (AAP), annual average freezing index (AAFI), 

annual number of wet days (AAWD), and average annual number of freeze/thaw cycles 

(AAFTC), were obtained from the PavementME weather MERRA database for the nine 

districts of DOTD. IRI, annual ADT, truck percentage, and treatment age were collected 

from the DOTD’s PMS and other databases. To confirm the treatment history and further 

validate the collected PMS condition data, any projects without an as-built plan were not 

considered in this study. An overview of the selected overlay pavement sections and the 

duration for which data has been collected is included in Table 17. According to Table 5, 

the service lives for the selected flexible pavements are generally around 11 to 16 years. 

The pavements were chosen in such a way that maintenance operations had not been 

conducted to improve IRI during the listed service life.  Pavements that have undergone 

maintenance operations can be identified by the sudden improvement in IRI or a lower 

value of IRI compared to the previous year. The parameters adopted in this ANN 

modeling is listed in Table 17. 

Table 17. Input parameters for distress family curves 

VARIABLES DESCRIPTION DATA RANGE             SEQUENTIAL 

PROJECT 

NO. 

DOTD project number n/a No 

DISTRICT 02,03,04,05,61,62,07,08,58 n/a No 

FUNCTION_C 1,2,4,6,7,8,11,14,16,17,19 n/a No 

MILL_H Milling thickness  No 
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VARIABLES DESCRIPTION DATA RANGE             SEQUENTIAL 

OVLY_H Overlay thickness  No 

AGE Pavement age  Yes 

ADT Two-way average daily traffic  No 

T% Truck percentage  No 

IRIAVE Average IRI  Yes 

IRIINIT Initial IRI  No 

RDAVE Average rut depth  Yes 

ALCR Alligator cracking index  Yes 

RNDM Random cracking index  Yes 

PICH Patching index  Yes 

RUT Rutting index  Yes 

RUFF Roughness index  Yes 

AAT Average annual air temperature  No 

AAP Average annual precipitation  No 

AAFI Average annual freeze index  No 

AAWD Average annual wet days  No 

AAFTC Average annual freeze/thaw 

cycles 

 No 

Table 17 provides the pavement overlay dataset constructed for the long-term 

performance prediction analysis in this study.  As shown in Table 17, pavement condition 

data (e.g., pavement age, IRI, rutting) and pavement indices (e.g., ALCR, RNDM, 

ROUGH) are sequential variables that change over time. On the other hand, the pavement 

functional class, districts, ADT, truck percentage, and five average climate/weather 

parameters are non-sequential variables, meaning that one value is received for each 

variable over the entire life of a selected pavement project. 

To develop a long-term pavement performance model for ASP pavements in DOTD, an 

ASP dataset consisting of 1172 rows was prepared. This dataset includes the average IRI 

and all five distress indices, along with different pavement functional classes, pavement 

ages, cumulative trucks, mill and overlay thicknesses, and five climate factors. In 

addition, the dataset contains a total of 257 homogeneous sections and 899 miles. Table 

18 presents the correlations between the average IRI and different influencing variables. 

As seen in Table 18, the main contributing variables include age, ADT and truck, function 

class, and overlay thickness. The five climate factors were also included in the IRI 

prediction model development because the pavement condition performance is known to 

be influenced by local climate and weather. 
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Table 18. Correlations of input parameters for IRI family curves 

Input R2 

Age 0.30 

ADT*Truck% -0.23 

Function 0.17 

Mill -0.07 

Overlay -0.29 

AAFTC -0.02 

AAT 0.05 

AAP -0.07 

AAFI 0.02 

AAWD -0.07 

It can be observed from Table 18 that pavement age, trucks (ADT*Truck%), functional 

classification, and overlay thickness have the highest correlations with the output. 

However, the correlations of these parameters were not strong enough to build a model 

with conventional regression methods.  Nevertheless, the ANN model demonstrated 

significant improvement, as indicated by an improved R2 value of over 0.73, as shown in 

Figure 27. 

Figure 27. Model performance of IRI family curve 

 



—  86  — 

 

The finalization of the number of layers and neurons in an ANN was achieved through a 

trial-and-error process. Different number of neurons were used during the training of 

ANN model. It was observed that increasing the number of neurons and hidden layers 

generally led to an improvement in the overall training R-value. However, the prediction 

results fluctuated due to the limited data size of the data (1172 rows) and the presence of 

10 input variables, indicating the occurrence of overfitting. Similar to the procedures used 

in short-term performance modeling, the optimal ANN structures were determined 

considering both training and testing performance.  Furthermore, a correlation equation 

that takes into account the initial IRI value was obtained for each of the model-predicted 

IRI curves for future implementation. The general expression of IRI vs. age may be 

expressed as: 

ln (
𝐼𝑅𝐼𝑖𝑛𝑖𝑡

𝐼𝑅𝐼−𝐼𝑅𝐼𝑖𝑛𝑖𝑡
) = A ∗ EXP(−B ∗ Age)                                         (25) 

Where, A and B are regression parameters. 

Table 19 lists the obtained correlation model parameters of A and B for each function 

class of ASP pavement considered.  

Table 19. IRI model parameters 

Functional 

Class No. 
Roadway Category A B R2 

01 Interstate Rural 2.3433 0.094 0.92 

11 Interstate Urban 5.1427 0.185 0.99 

02 Principal Arterial Rural 3.1261 0.093 0.97 

14 Principal Arterial Urban 4.7372 0.308 0.84 

06 Minor Arterial Rural 3.1799 0.139 0.99 

16 Minor Arterial Urban 3.4975 0.188 0.99 

07 Major Collector Rural 3.541 0.138 0.98 

17 Collector Urban 3.0566 0.152 0.99 

Using the developed ANN IRI model, the predicted IRI curves for various function class 

of ASP pavement were obtained. The average values of the input parameters were applied 

as new inputs to calculate the average performance. When normalizing the developed IRI 

family curves based on initialized IRI of 50 in./mile, Figure 28 below shows a 

comparison between urban and rural IRI family curves of different functional classes. In 

general, urban pavements had higher IRI development rates than rural pavements. 
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Figure 28. IRI family curves for rural and urban roadways 

 

 

To compare with the current DOTD application, the pavement age and IRI values were 

also extracted from training datasets for building ANN models. Thus, a conventional 

family curve can be regressed. The comparison between these two family curves is 

plotted in Figure 29. 
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Figure 29. Comparison between ANN and conventional family curves 

 

As is shown in Figure 29, the family curves derived from ANN predicted results were 

consistent with the traditional ones in all functional classifications. This indicates that the 

family curve obtained from the average condition and ANN models can replace the 

traditional ones. The traditional family curves only considered pavement age, resulting in 

low correlations with measured values, as seen in Figure 29. However, the ANN-

predicted family curves have high correlations with measured values and incorporates 
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many factors. This allowed them to simulate more detailed conditions within a pavement 

family, such as overlay thickness and traffic volume. These advantages make the ANN-

predicted family curves more suitable for planning specific pavement projects with better 

accuracy.   

Similarly, family curves were developed for four distress indices (ALCR, RNDM, RUT 

and RUFF) based on the developed ANN model. The developed family curves for each 

distress index are presented in Tables 20-23. 

Table 20. Developed distress index family curves -ALCR 

Functional 

Class No. 
Roadway Category ANN-Model Based Family Curves R2 

02 
Principal 

Arterial Rural 

ALCR02 = -0.1748(Age)2 + 0.5965Age + 

99.731 
0.997 

14 
Principal 

Arterial Urban 

ALCR14 = -0.1269(Age)2 + 0.4957Age + 

98.736 
0.992 

06 
Minor Arterial 

Rural 

ALCR06 = -0.1389(Age)2 + 0.3237Age + 

98.969 
0.992 

16 
Minor Arterial 

Urban 

ALCR16 = -0.0678(Age)2 - 0.3781Age + 

100.76 
0.995 

07 
Major Collector 

Rural 

ALCR07 = -0.0571(Age)2 - 0.5717Age + 

100.14 
0.998 

17 
All Collector 

Urban 

ALCR17 = -0.0314(Age)2 - 0.7684Age + 

101.23 
0.995 

Table 21. Developed distress index family curves -RUFF 

Functional 

Class No. 
Roadway Category ANN-Model Based Family Curves R2 

02 
Principal 

Arterial Rural 
RUFF02 = 102.58 e -0.013Age  0.970 

14 
Principal 

Arterial Urban 
RUFF14 = 99.59 e -0.011Age 0.977 

06 
Minor Arterial 

Rural 
RUFF06 = 97.404 e -0.008Age 0.995 

16 
Minor Arterial 

Urban 
RUFF16 = 95.726 e -0.013Age 0.995 

07 
Major Collector 

Rural 
RUFF07 = 96.088 e -0.007Age 0.999 
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Functional 

Class No. 
Roadway Category ANN-Model Based Family Curves R2 

17 
All Collector 

Urban 
RUFF17 = 94.478 e -0.006Age 0.999 

Table 22. Developed distress index family curves -RUT 

Functional 

Class No. 
Roadway Category ANN-Model Based Family Curves R2 

02 
Principal 

Arterial Rural 
RUT02 = 0.038(Age)2 - 1.4178Age + 99.293 0.970 

14 
Principal 

Arterial Urban 
RUT14 = 0.0594(Age)2 - 1.7905Age + 100.07 0.981 

06 
Minor Arterial 

Rural 
RUT06 = -0.0187(Age)2 - 0.6599Age + 100.02 0.988 

16 
Minor Arterial 

Urban 
RUT16 = 0.0009(Age)2 – 1.1822Age + 100.61 0.995 

07 
Major Collector 

Rural 
RUT07 = -0.0203(Age)2 - 0.4969Age + 100.94 0.999 

17 
All Collector 

Urban 
RUT17 = -0.0296(Age)2 - 0.4371Age + 99.661 0.999 

Table 23. Developed distress index family curves -RNDM 

Functional 

Class No. 
Roadway Category ANN-Model Based Family Curves R2 

02 
Principal 

Arterial Rural 
RNDM02 = 99.259 e -0.018Age  0.995 

14 
Principal 

Arterial Urban 
RNDM14 = 100.61 e -0.014Age 0.995 

06 
Minor Arterial 

Rural 
RNDM06 = 101.47 e -0.016Age 0.996 

16 
Minor Arterial 

Urban 
RNDM16 = 102.64 e -0.015Age 0.990 

07 
Major Collector 

Rural 
RNDM07 = 101.78 e -0.015Age 0.971 

17 
All Collector 

Urban 
RNDM17 = 104.49 e -0.014Age 0.961 

Due to the limitation of the used database (i.e., all ages <14 years) in the model training, 

when more IRI data is collected, the developed ANN model was retrained, and a set of 
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new prediction results was obtained. The significance lies in the approach used for ANN 

model development. The above approach for developing the long-term IRI prediction 

model not only utilized the ANN approach, but also incorporated regression methods and 

some engineering judgements.  
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Conclusions 

In this study, a detailed step-by-step methodology was established and explained for 

development of both short-term and long-term ANN-based pavement performance 

prediction models. Real pavement performance data obtained from various DOTD 

databases were used for this purpose. To achieve the research objectives, two different 

network-level pavement condition datasets were prepared. One dataset was used for 

short-term cracking percent prediction, while the other was used for long-term 

smoothness and load-induced distress condition predictions. As a result, three types of 

ANN pavement performance prediction models were developed. This included seventeen 

individual neural network models for short-term prediction, eight for incremental long-

term prediction, and five for family curve generation. Although the ANN approach has 

been successfully used by many researchers in developing pavement deterioration models 

based on a project-level pavement condition dataset (e.g., LTTP), only a few reported 

using network-level PMS data with many variations in pavement structure and materials, 

as well as distress data with various traffic, thickness, and climate conditions. The 

following observations were drawn from this research: 

 In general, the developed ANN-based pavement performance models showed 

greater accuracy to statistical regression models for the network level pavement 

performance prediction. They exhibited higher R2 and lower RMSE values. 

Additionally, these models were also efficient and easily implemented for 

predicting pavement performance indicators of multiple pavement sections with 

varying traffic, thickness, and climate conditions. 

 The feedforward neural network technique was used for training, validation, and 

testing of the ANN model in this study. It was found that increasing the number of 

neurons and/or hidden layers resulted in very high R2 (near to 1.0) with very low 

RMSE values. However, adding more neurons and/or hidden layers could 

potentially lead to overfitting of the ANN model, making future pavement 

performance prediction unstable and inaccurate.  

 In the development of the short-term cracking percent prediction model, several 

modeling approaches were studied. It was found that both the feedforward ANN 

and ANFIS approaches were suitable for this prediction. However, determining an 

optimum ANFIS prediction model would require more computing time and be 

more difficult to implement by DOTD than a feedforward ANN model. In 

addition, the developed ANN-based cracking percent prediction models, which 
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were based on the 2017-2020 HPMS dataset, were validated using the newly 

collected 2021 PMS data. The validation results showed that the ANN modeling 

approach developed has the potential to be implemented in developing short-term 

prediction models for other pavement distress and condition indicators, such as 

IRI and rutting. 

 A similar ANN modeling approach was used in developing long-term pavement 

performance models. The developed ANN incremental pavement performance 

models were found to be capable of making network-level long-term pavement 

performance predictions for IRI, rutting, percent cracking, and five distress 

indices (ALCR, RNDM, PTCH, RUT, and RUFF) for all DOTD asphalt 

pavements. Those ANN-based models can make future pavement performance 

calculations for any pavement sections using only milling and overlay thickness, 

traffic, age, and two previous cycles of PMS pavement condition records. 

Therefore, the developed ANN-based incremental pavement performance models 

can be a good alternative when a site-specific performance curve cannot be 

generated in PMS due to insufficient historic pavement condition data for a 

homogeneous pavement section. On the other hand, because the overlay pavement 

database considered in the ANN model training of this study was all constructed 

after the year 2009, the developed incremental pavement performance models are 

only recommended to be used for long-term pavement performance prediction up 

to 15 years of pavement life.   

 This study also developed a long-term pavement performance prediction model 

using only pavement age, traffic, climate, and overlay information as ANN model 

training inputs. The results were used to generate a set of family curve models for 

various functional classes of ASP pavements of DOTD. The developed family 

curve models are deemed more accurate than those generated in the current PMS 

system, which are only pavement-aged based regression models. 
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Acronyms, Abbreviations, and Symbols 

Term Description 

AASHTO American Association of State Highway and Transportation Officials 

ADT Average daily traffic 

ALCR Alligator cracking index 

ASP Asphalt pavement 

ANN Artificial Neural Network 

ANFIS Adaptive Neuro-Fuzzy Inference System 

COM Composite Pavement 

CRCP Continuously Reinforced Concrete Pavement 

dTIMS Deighton Total Infrastructure Management System 

EC Equivalent cracking 

FHWA Federal Highway Administration 

CNN Convolutional Neural Network 

DOT Department of Transportation 

DOTD Louisiana Department of Transportation and Development 

ESAL Equivalent single axle load 

FIS fuzzy inference system 

GPR Ground Penetration Radar 

GPS Global Positioning System 

IRI International Roughness Index 

JCP Jointed Concrete Pavement 

JPCP Jointed Plain Concrete Pavement 

LSTM Long Short-Term Memory 

LTPP Long-term pavement performance 

LTRC Louisiana Transportation Research Center 

MAP-21 Moving Ahead for Progress in the 21st Century Act 

MEPDG Mechanistic-Empirical Pavement Design Guide 

MERRA The Modern Era Retrospective-Analysis for Research and Applications 

MLP Multi-layer Perceptron 
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MPO Metropolitan Planning Organizations 

M&R Maintenance and Rehabilitation 

NHS National Highway System 

PCI Pavement Condition Index 

PCR Pavement Condition Rating 

PMS Pavement Management System 

PMU Pavement Management Unit 

PSC Pavement Structural Condition 

PSR Present Serviceability Rating 

PTCH Patching Index 

RNDM Random Cracking Index 

RUFF Roughness Index 

RUT Rutting Index 

RHS Regional Highway System 

RNN Recurrent Neural Network 

SHS State Highway System 

SVM Support Vector Machine 

SVR Support Vector Regression 

TAMP Transportation Asset Management Plan 
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Appendix A 

The specific weight and bias values for the developed ANN cracking prediction models 

listed in Table 9 through Table 11 are presented below: 

(A) The developed ANN model parameters for Asphalt Pavements (ASP) 

 

Functional 

Class No. 

Roadway 

Category 
Weight (iw) Bias (b1) Weight (lw) Bias (b2) 

01 Interstate Rural iw_01(asp) b1_01(asp) lw_01(asp) b2_01(asp) 

02 
Principal 

Arterial Urban 
iw_02(asp) b1_02(asp) lw_02(asp) b2_02(asp) 

11 Interstate Urban iw_11(asp) b1_11(asp) lw_11(asp) b2_11(asp) 

12 Freeway Urban iw_12(asp) b1_12(asp) lw_12(asp) b2_12(asp) 

14 
Principal 

Arterial Urban 
iw_14(asp) b1_14(asp) lw_14(asp) b2_14(asp) 

16 
Minor Arterial 

Urban 
iw_16(asp) b1_16(asp) lw_16(asp) b2_16(asp) 

 Function Class No. = 01 

      iw_01(asp) = [8 x 5]  = 

1.053699515 1.755481155 -0.312824039 -0.091241531 -1.061294433 

0.987116191 1.199858643 0.996056665 0.544340538 -1.093503543 

-1.23715647 -0.557744176 0.758864639 0.309993888 -1.21802477 

1.235528161 1.180908678 0.305587883 -0.026143953 0.534241888 

0.029317903 1.763821811 1.008421206 0.446747654 0.852315783 

-1.211842075 -0.296484983 -1.52190556 -0.7741759 -0.252429035 

-0.74485554 0.453905391 0.960410298 0.586535839 1.59603166 

0.09069055 -0.897825286 1.048783329 -0.860227347 -1.411669801 

     b101(asp) = [8 x 1] =  
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-1.86576492 

-1.412137958 

0.905929056 

0.496057541 

0.176609796 

-0.88249823 

-1.516169135 

2.119398457 

     lw_01(asp)  =  [1 x 8]  =  [0.500128232     -0.39082904     -0.27559375     0.45846716    

                                -0.514368719     -0.495842001 -0.371093497 -0.22523529] 

     b2_01(asp) = [1 x 1] = -0.260763044 

 

 Function Class No. = 02 

    iw_02(asp) = [7 x 5]  = 

0.025247634 -0.618406913 1.527798957 -2.314662987 -1.433732234 

0.227172836 0.373184075 -0.614258538 -0.101909034 0.092675031 

0.172147949 0.073746169 1.101994896 0.871451755 0.590222768 

-0.081657182 -0.258230424 -0.017235637 -0.968008782 -0.570693258 

-0.08347096 0.717527695 2.978094164 -1.277145163 0.488701211 

-0.294514003 -0.050316073 -0.315059077 -0.629912142 -0.443485446 

-4.000696515 0.023059125 0.385632547 -0.525590413 0.330120363 

     b102(asp) = [7 x 1] =  
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1.466719342 

-0.291775505 

1.476450838 

-0.597914379 

0.942140656 

-0.213708577 

-5.300564726 

     lw_02(asp)  =  [1 x 8]  =  [0.530392266     1.563671014    1.233340924    1.974541241 

                                    -0.410394668    -1.951905455    -1.580960224] 

     b2_02(asp) = [1 x 1] = -1.814255436 

 

 Function Class No. = 11 

    iw_11(asp) = [2 x 5]  = 

0.45945151 0.260747176 -0.459883557 1.081220919 2.363395101 

0.733280784 -0.300857729 0.565356962 -0.937861637 -2.084966413 

     b1_11(asp) = [2 x 1] =  

3.129860622 

-2.226821494 

     lw_11(asp)  =  [1 x 2]  =  [0.496238877    1.034454519] 

     b2_11(asp) = [1 x 1] =  -0.451019641 
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 Function Class No. = 12 

     iw_12(asp) = [3 x 4]  = 

1.3069213 1.694850263 -1.734671309 0.009611953 

0.431834875 0.047992353 -0.046252939 0.032720437 

-0.348664622 -2.564990347 -0.859783782 0.461337666 

     b1_12(asp) = [3 x 1] =  

-0.612305906 

0.467205418 

-1.989658342 

     lw_12(asp)  =  [1 x 3]  =  [-0.408212931 3.89173946 0.105976779] 

     b2_12(asp) = [1 x 1] =  -1.299575778 

 

 Function Class No. = 14 

     iw_14(asp) = [4 x 5]  = 

0.709574849 0.282267907 -0.136285271 -1.592699908 -1.680582968 

0.681710817 -0.063444727 0.285895071 0.266028644 0.379628139 

-0.090779894 0.148322811 -1.994452953 -0.287582381 -0.190932587 

1.321740072 -0.040472509 0.282077943 0.317756289 0.284851016 

     b1_14(asp) = [4 x 1] =  

-0.429549422 

-0.293798532 
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-0.295132597 

2.114468334 

     lw_14(asp)  =  [1 x 4]  =  [0.301108436 1.111348084 0.285209939 1.288802613] 

     b2_14(asp) = [1 x 1] =  -0.733100242 

 

 Function Class No. = 16 

     iw_16(asp) = [2 x 3]  = 

0.293518166 0.002842591 -0.574578113 

5.56410423 -0.019840265 3.500922141 

     b1_16(asp) = [2 x 1] =  

-0.219206619 

2.938146015 

     lw_16(asp)  =  [1 x 2]  =  [3.794560636 1.920407647] 

     b2_16(asp) = [1 x 1] =  0.71346133 

 

 (B) The developed ANN model parameters for Composite Pavements (COM) 

 

Functional 

Class No. 

Roadway 

Category 
Weight (iw) Bias (b1) Weight (lw) Bias (b2) 

01 Interstate Rural iw_01(com) b1_01(com) lw_01(com) b2_01(com) 

02 
Principal 

Arterial Urban 
iw_02(com) b1_02(com) lw_02(com) b2_02(com) 

11 Interstate Urban iw_11(com) b1_11(com) lw_11(com) b2_11(com) 

12 Freeway Urban iw_12(com) b1_12(com) lw_12(com) b2_12(com) 
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Functional 

Class No. 

Roadway 

Category 
Weight (iw) Bias (b1) Weight (lw) Bias (b2) 

14 
Principal 

Arterial Urban 
iw_14(com) b1_14(com) lw_14(com) b2_14(com) 

16 
Minor Arterial 

Urban 
iw_16(com) b1_16(com) lw_16(com) b2_16(com) 

 Function Class No. = 01 

      iw_01(com) = [7 x 5]  = 

0.269177228 0.634588088 -0.619313821 -1.40899347 1.255907864 

0.678686722 1.381213404 -1.573440524 -0.864257723 -0.519584337 

-1.472345911 -2.572031772 1.458563056 1.741746182 0.911298691 

2.504221237 -0.074747011 0.132455108 0.782342542 -0.933577645 

-0.774007813 -1.692108058 1.229768929 1.117719696 0.626766694 

1.240715946 -1.356731064 2.01206133 3.517563452 -0.188159803 

-0.615382518 -0.242299159 -0.076041652 0.542046772 1.144862984  

     b101(com) = [7 x 1] =  

-0.162232732 

-0.411985263 

0.657449657 

2.427986768 

0.634808303 

1.666552687 

1.018027499 

     lw_01(com)  =  [1 x 7]  =  [0.724615615    1.453422056    -1.875174536    0.51980295 
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                                3.555328156    0.330652006    -0.747213811] 

     b2_01(com) = [1 x 1] = -0.337234831 

 

 Function Class No. = 02 

    iw_02(com) = [5 x 5]  = 

1.411448153 -0.377868991 -0.092303345 0.078370299 -0.119961504 

0.428332602 0.528182832 1.678707034 1.388774026 -1.70234599 

-0.475130701 -2.343144722 0.155010599 -0.35351921 -0.514824194 

0.478515935 -0.515538021 -0.047124579 -0.229324961 0.056733842 

3.719963778 0.294047946 0.073497855 0.319061184 -0.283921476 

     b102(com) = [5 x 1] =  

-0.150810116 

-2.096614308 

0.920942613 

1.508484904 

4.254576295 

     lw_02(com)  =  [1 x 5]  =  [0.405855953    0.098902316    -0.331197361    1.71304983 

                                     0.73376092] 

     b2_02(com) = [1 x 1] = -2.040683413 

 

 Function Class No. = 11 

    iw_11(com) = [5 x 5]  = 
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4.164973314 1.667796049 -0.659888848 -0.581522041 -2.752903745 

3.8577821 0.450397044 1.774800176 1.130291499 -1.150580048 

-3.525833139 -0.457798656 0.244575426 1.997281005 2.517404487 

2.202342684 6.417253949 3.830429881 0.995728254 -1.568911034 

0.168770712 7.621388276 -1.572815093 -1.174435855 1.124377965 

     b1_11(com) = [5 x 1] =  

-2.437167956 

2.37413695 

1.652892303 

-2.164617051 

9.48600954 

     lw_11(com)  =  [1 x 5]  =  [0.26337031    0.445388007    -0.31154564    -0.153811092 

    0.416050488] 

     b2_11(com) = [1 x 1] =  -0.548216269 

 

 

 Function Class No. = 12 

     iw_12(com) = [2 x 5]  = 

0.534204669 0.087737794 -0.065992316 0.065636395 0.312847561 

0.979844591 -0.088288919 -0.033188884 -0.028929095 -0.298626356 

     b1_12(com) = [2 x 1] =  

0.055410547 
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0.073156626 

     lw_12(com)  =  [1 x 2]  =  [0.604754022 0.961319246] 

     b2_12(com) = [1 x 1] =  -0.049597858 

 Function Class No. = 14 

     iw_14(com) = [3 x 5]  = 

0.551764848 -0.003884088 0.005264446 -0.012630488 0.029465243 

14.55702543 0.004420367 -0.50209711 -12.05339232 -4.639821474 

-5.762054359 0.116385526 0.102411995 0.082842069 0.540654015 

     b1_14(com) = [3 x 1] =  

-0.080408165 

3.193114169 

-5.17036189 

     lw_14(com)  =  [1 x 3]  =  [1.743582922 0.026716733 -0.129765977] 

     b2_14(com) = [1 x 1] =  0.084412457 

 

 Function Class No. = 16 

     iw_16(com) = [1 x 5]  = 

[-2.207724159 -0.692095736 -0.409775912 0.626647328 0.508499662] 

     b1_16(com) = [1 x 1] = [-0.344154739] 

     lw_16(com)  =  [1 x 1]  =  [-0.46849547] 

     b2_16(com) = [1 x 1] =  [-0.525449568] 
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(C) The developed ANN model parameters for Jointed Concrete Pavements (JCP) 

 

Functional 

Class No. 

Roadway 

Category 
Weight (iw) Bias (b1) Weight (lw) Bias (b2) 

01 Interstate Rural iw_01(Jcp) b1_01(Jcp) lw_01(Jcp) b2_01(Jcp) 

02 
Principal 

Arterial Urban 
iw_02(Jcp) b1_02(Jcp) lw_02(Jcp) b2_02(Jcp) 

11 Interstate Urban iw_11(Jcp) b1_11(Jcp) lw_11(Jcp) b2_11(Jcp) 

12 Freeway Urban iw_12(Jcp) b1_12(Jcp) lw_12(Jcp) b2_12(Jcp) 

14 
Principal 

Arterial Urban 
iw_14(Jcp) b1_14(Jcp) lw_14(Jcp) b2_14(Jcp) 

 Function Class No. = 01 

      iw_01(Jcp) = [4 x 5]  = 

3.332207403 0.425195148 -0.194392242 -0.539810969 -1.165240673 

2.751362105 -0.647659708 -0.119853335 -0.45627788 -1.382604122 

2.944147049 -1.443683461 -0.144823992 -0.363579587 -1.427395561 

4.204190848 2.833010774 0.461479853 0.491777699 -0.998897896  

     b101(Jcp) = [4 x 1] =  

0.43282688 

0.357866437 

-0.107679128 

-1.665206304 

     lw_01(Jcp)  =  [1 x 4]  =  [1.122333368    -2.270068136 1.984396286 0.796987606] 

     b2_01(Jcp) = [1 x 1] = 0.615018113 
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 Function Class No. = 02 

    iw_02(Jcp) = [5 x 5]  = 

1.603774614 -0.906286204 -1.1416795 -0.840786008 0.983522952 

1.141565099 -0.273351019 0.467779771 0.07629874 -0.545729543 

-0.375890502 0.281525188 0.277894576 -0.124170639 0.22140033 

1.023200206 0.626843646 0.360412157 -0.217767071 0.410895043 

-0.072484183 1.289496311 1.042001152 0.642788045 0.177904104 

     b102(Jcp) = [5 x 1] =  

-1.615531207 

-0.335873206 

-0.585218371 

0.504437875 

2.681810917 

     lw_02(Jcp)  =  [1 x 5]  =  [0.11510969    0.408260858    -0.980752183    0.667040412 

    -0.298127129] 

     b2_02(Jcp) = [1 x 1] = -0.19332537 

 

 Function Class No. = 11 

    iw_11(Jcp) = [5 x 5]  = 

0.62652813 -0.013100234 0.002184099 0.014856307 -0.005967983 

4.965532491 -0.296397207 -1.775587429 -4.542047402 0.306935041 

-25.50795386 -0.749641689 1.517467616 5.428977207 -0.112877996 
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3.854940237 3.440065769 -1.428428069 1.971456871 3.462942978 

7.192784215 1.103652877 -2.370667267 10.23288213 -1.216030308 

     b1_11(Jcp) = [5 x 1] =  

0.51904898 

1.880108128 

-22.12856046 

5.0843082 

8.409800346 

     lw_11(Jcp)  =  [1 x 5]  =  [2.138092076    0.020316049    0.010790832    0.032166761 

    -0.016078518] 

     b2_11(Jcp) = [1 x 1] =  -0.766553002 

 

 Function Class No. = 12 

     iw_12(Jcp) = [1 x 4]  = 

0.227179874 -0.001792371 0.004232937 0.00101699 

     b1_12(Jcp) = [1 x 1] =  0.4137024 

     lw_12(Jcp)  =  [1 x 1]  =  5.292764017 

     b2_12(Jcp) = [1 x 1] =  -1.935001527 

 

 Function Class No. = 14 

     iw_14(Jcp) = [1 x 5]  = 

-0.533834085 0.001887079 -0.000476969 0.001294354 -0.001856218 
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     b1_14(Jcp) = [1 x 1] = -0.278844494 

     lw_14(Jcp)  =  [1 x 1]  =  -2.104845728 

     b2_14(Jcp) = [1 x 1] =  -0.464208275 
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	The accuracy of pavement performance models is crucial for local agencies in managing their transportation assets. Reliable models help determine the most cost-effective maintenance and rehabilitation (M&R) treatments based on specific traffic, climate and existing pavement conditions. The M&R project selection and priority can be determined and significantly improved for budget allocation and distribution with limited resources. An accurate pavement performance model can greatly enhance the selection and p
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	The Pavement Management System (PMS), supported and operated by the Pavement Management Unit (PMU) of Louisiana DOTD, monitors all state-maintained highway sections within the Louisiana roadway network. The PMU measures pavement conditions and optimizes repair strategies for pavement maintenance and rehabilitation based on pavement performance. The pavement condition data is collected through a consultant contract every two years and primarily consists of roughness, rutting, cracking, patching, and faulting
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	To achieve this goal, the PMU predicts pavement performances with empirical models regressed from accumulated PMS data, which are presented as curves of distress index versus pavement age. These models have a similar format but different coefficients among pavement types (flexible, composite, jointed concrete, and continuously reinforced concrete) and functional classifications (interstate, principal and minor arterial, major and minor collector, local, and others), which are referred to as pavement family.
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	The distress models adopted for this task are based on at least four data points with 2-year intervals in between [1]. These models are functions of pavement age, with recommended transformations. For example, polynomial functions are used for the roughness index and exponential functions for rutting index.     
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	Figure 1. Roughness index family curve for composite interstate pavements 
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	Figure
	Figure 1 shows an example of the family curve for the roughness index of composite pavement on the interstate. The app in dTIMS offers various options, and the best-fit function can be selected based on correlation and judgement. The pavement family and site-specific performance curves provide relationships between pavement age and condition, which are directly obtained from data collected by Louisiana. The PMS team has full control over the input data. However, it is also evident that this model, based on 
	maintenance and rehabilitation of the roadway system, a long-term performance model with better prediction power is necessary in preservation planning. 
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	In order to improve and preserve the condition of the National Highway System (NHS), the State Department of Transportation is required to develop and implement an asset management plan mandated by the Moving Ahead for Progress in the 21st Century Act (MAP-21) [3]. One of the national goals of MAP-21 is “to maintain the highway infrastructure asset system in a state of good repair” for the NHS. The Federal Highway Administration (FHWA) defines the state of good repair as “a condition in which the existing p
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	This Transportation Asset Management Plan (TAMP) is a performance-based document [4] which focuses on replacing the historical “Worst First” practice of infrastructure improvement with a strategy of “Preservation First” of all interstate and NHS roadways and bridges. The traditional “Worst First” approach is not cost-effective. Instead of spending resources on replacing only a few of assets in very poor condition (“Worst First” Strategy), the “Preservation First” approach utilizes limited available funding 
	This Transportation Asset Management Plan (TAMP) is a performance-based document [4] which focuses on replacing the historical “Worst First” practice of infrastructure improvement with a strategy of “Preservation First” of all interstate and NHS roadways and bridges. The traditional “Worst First” approach is not cost-effective. Instead of spending resources on replacing only a few of assets in very poor condition (“Worst First” Strategy), the “Preservation First” approach utilizes limited available funding 
	 

	To achieve these objectives, MAP-21 requires a data-driven and strategic method to improve driving safety, with a focus on highway performance [5]. Under the legislation of Title 23, Code of Federal Regulations (23 CFR Part 490 - National Performance Management Measures), guided by FHWA, performance measurements were established for assessing pavement and bridge conditions, which are percentages of interstate and non-interstate pavements in good and poor condition. Effective on May 2017 and started by Janua
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	The 2-year and 4-year condition targets are identified based on historical trends, the latest funding projects, and future deterioration modeling [6]. However, the previous distress measurement for PMS for most of the State DOTs were different from the methods demanded in 23 CFR Part 490. The new data collected is insufficient to plot historical trends, and the deterioration models are also usually too simple to ensure the accuracy of predicting pavement performance. For example, Texas DOT used the moving-a
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	The primary goals of a network-level PMS include determining budget requirements for both short- and long-term periods and generating a list of possible projects based on budget limitations [13].  Performance models can be used to predict the need for maintenance, rehabilitation, or reconstruction of pavements. Pavements naturally degrade over time, but the pavement’s lifespan can be extended by addressing damages to improve their condition [14]. Pavement performance prediction models can forecast the remai
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	Over the years, researchers have used mathematical tools to investigate and explore the impacts of these parameters on pavement conditions. With the rapid development of computer science in recent years, machine learning techniques have been applied to forecast pavement conditions. As a result, pavement performance models can be classified into two major groups: probabilistic reasoning and shallow machine learning models [17]. 
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	Figure 2. Family of pavement performance models [17] 
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	Figure 2 shows the categories of pavement performance models, in which the two main model categories could be further divided based on their inputs, model structures, and algorithms.
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	Empirical models are mainly developed based on experimental data and field observation. These models have a long history and are widely accepted by State DOTs and local agencies due to the availability of accumulated project records and their feasibility in application. 
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	As mentioned above, DOTD utilizes empirical models that have been regressed from more than 6 years of data collected at 2-year intervals. These models are equations of pavement age with recommended transformation functions [2]:
	As mentioned above, DOTD utilizes empirical models that have been regressed from more than 6 years of data collected at 2-year intervals. These models are equations of pavement age with recommended transformation functions [2]:
	 

	 Roughness index: polynomial function;
	 Roughness index: polynomial function;
	 Roughness index: polynomial function;
	 Roughness index: polynomial function;
	 


	 All indices for continuously reinforced concrete pavement (CRCP): power function;
	 All indices for continuously reinforced concrete pavement (CRCP): power function;
	 All indices for continuously reinforced concrete pavement (CRCP): power function;
	 


	 Rutting index: exponential function; and
	 Rutting index: exponential function; and
	 Rutting index: exponential function; and
	 


	 All other indices: linear function.
	 All other indices: linear function.
	 All other indices: linear function.
	 



	For example, the longitudinal distress index for CRCP can be written as:
	For example, the longitudinal distress index for CRCP can be written as:
	 

	𝐿𝑜𝑛𝑔𝑖𝐶𝑟𝑎𝑐𝑘 𝐼𝑛𝑑𝑒𝑥𝐶𝑅𝐶𝑃=100−𝑎(𝑎𝑔𝑒)𝑏                                    
	𝐿𝑜𝑛𝑔𝑖𝐶𝑟𝑎𝑐𝑘 𝐼𝑛𝑑𝑒𝑥𝐶𝑅𝐶𝑃=100−𝑎(𝑎𝑔𝑒)𝑏                                    
	 
	 
	 
	(1)
	 

	Where, a and b are model coefficients equal to 0.0173 and 2.6 correspondingly. 
	Where, a and b are model coefficients equal to 0.0173 and 2.6 correspondingly. 
	 

	For the newly constructed pavement, this index equals 100. The index equations for other pavement conditions also adopt this constant as the initial status of new pavement surfaces. The  𝑎(𝑎𝑔𝑒)𝑏 deduct point represents the degradation of pavement performance with increased pavement age, in which the coefficients are obtained from the same category of pavements for family curve or average values on homogenous sections for site-specific curves. 
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	To determine the appropriate maintenance strategy for existing pavements, other indicators such as PCI, Present Serviceability Rating (PSR), and roughness index have been widely utilized by other DOTs to prioritize maintenance and rehabilitation efforts [18]. The general form of the distress indices equation using deduct points, same as DOTD models in Equation 1, in which the distress index equals a constant of maximum pavement rating (e.g., 4, 5 or 100) minus the total deduct points. These deduct points ar
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	Where, c is the slope coefficient, Age is the time since the last maintenance or rehabilitation, and d is a constant that controls the degree of the performance curve (2). WSDOT also calculates pavement structural condition (PSC) in similar forms for both flexible and rigid pavements, where the deduct points are defined as equations of equivalent cracking (EC) numbers: 
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	Where, PSCflexible and PSCrigid are pavement structural conditions for flexible and rigid pavements. EC represents equivalent cracking numbers, which is the sum of all types of distress with their seventies and extents. Equivalent cracking also has similar expression: 
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	Where, T is the coefficient of distress type, and C and P are the coefficients of distress severity level (high, medium and low). This PSC evaluates the current condition of pavements based on the combination of various distress types, severity levels, and extents, but without considering pavement age. PSC is calculated separately for flexible and rigid pavements and described by four broad pavement condition categories: excellent (75-100), good (50-75), fair (25-50), and poor (0-25). In practice, a thresho
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	The Arizona Department of Transportation (ADOT) uses a sigmoidal or S-shaped model to predict pavement performance, which allows for more flexibility in describing how a section deteriorates over time. The sigmoidal model used by Stantec's Highway Pavement Management Application (HPMA) for performance prediction modeling is showed below:
	The Arizona Department of Transportation (ADOT) uses a sigmoidal or S-shaped model to predict pavement performance, which allows for more flexibility in describing how a section deteriorates over time. The sigmoidal model used by Stantec's Highway Pavement Management Application (HPMA) for performance prediction modeling is showed below:
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	Where, the PSR and initial pavement condition (O) are used to predict pavement performance over time, measured in years since the last rehabilitation or construction activity. The model uses coefficients A, B, and C to shape the curve, which can be concave, convex, S-shaped, or almost linear, depending on the flexibility of the sigmoid. This flexibility helps the model fit the data and accurately describe performance trends [20].
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	The IRI has been utilized for evaluating road smoothness, estimating vehicle operating expenses, and assessing the environmental consequences of road conditions for network-level pavement management systems [21]. The IRI measures the total vertical movement of the axle relative to a reference point on a quarter-car per distance traveled along the pavement profile at a constant speed of 80.5 km/h (50 mph). The World Bank was the first organization to create the IRI [22]. The general form of the IRI predictio
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	Where, IRIi = initial IRI; IRIn = IRI in year n; β1 and β3 = parameters controlling the IRI increment rate; β2 = parameter controlling the year in which IRI begins to increase; and time = number of years since initial IRI. 
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	Elhadidy et al. conducted research using the Long-Term Pavement Performance (LTPP) database to develop a simplified regression model that links PCI with IRI. They found that a sigmoid function best expresses the relationship between PCI and IRI, with a coefficient of determination (R2) of 0.995. Their predicted IRI values had very low bias, and they also validated the model using a different dataset, obtaining highly accurate predictions (R2 = 0.992). They proposed a pavement condition rating system based o
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	Mechanistic-Empirical Models
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	While the introduced empirical models provide convenience in application for performance modeling, which usually consider pavement age or time span as the only or primary variable, they do not incorporate other factors that also have a significant influence on pavement deterioration. Researchers realized that considering parameters such as layer thickness, materials, traffic, and climate would provide more reliable prediction.    
	While the introduced empirical models provide convenience in application for performance modeling, which usually consider pavement age or time span as the only or primary variable, they do not incorporate other factors that also have a significant influence on pavement deterioration. Researchers realized that considering parameters such as layer thickness, materials, traffic, and climate would provide more reliable prediction.    
	 

	As early as the 1980’s, George et al. [25] developed a mechanistic-empirical model based on PCI values collected from over 2000 miles in Mississippi, USA. Various parameters were studied, including traffic volume, pavement age, and structural number, to investigate their influences on maintenance strategies.  The pavement condition rating (PCR) was defined as: 
	As early as the 1980’s, George et al. [25] developed a mechanistic-empirical model based on PCI values collected from over 2000 miles in Mississippi, USA. Various parameters were studied, including traffic volume, pavement age, and structural number, to investigate their influences on maintenance strategies.  The pavement condition rating (PCR) was defined as: 
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	Where, RR is roughness rating and DR is distress rating. 
	Where, RR is roughness rating and DR is distress rating. 
	 

	The pavement condition rating at time t, PCR(t), for three pavement types (flexible pavement without overlay, with overlay, and the composite pavement), is obtained through Equation (9) to (11):
	The pavement condition rating at time t, PCR(t), for three pavement types (flexible pavement without overlay, with overlay, and the composite pavement), is obtained through Equation (9) to (11):
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	Where, a, b, and c are regressed coefficients, ESAL is the equivalent single axle loads, SN refer to the structural number, and T represents the overlay thickness. 
	Where, a, b, and c are regressed coefficients, ESAL is the equivalent single axle loads, SN refer to the structural number, and T represents the overlay thickness. 
	 

	Sidess et al. [26] developed a model to predict IRI based on a combination of the empirical-mechanistic and regressive-empirical approach. The model coefficients consider the subgrade modulus, the pavement’s structural number, the thickness of the asphalt layer, and climate zones. Their IRI deterioration model for pavements with a traffic loading history may be expressed as follows:
	Sidess et al. [26] developed a model to predict IRI based on a combination of the empirical-mechanistic and regressive-empirical approach. The model coefficients consider the subgrade modulus, the pavement’s structural number, the thickness of the asphalt layer, and climate zones. Their IRI deterioration model for pavements with a traffic loading history may be expressed as follows:
	 

	𝐼𝑅𝐼(𝑡≥𝑡𝑖𝑛𝑖)=1.10+𝐾∗(𝑊0+𝑊𝑡)𝑦                                               
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	Where, K and y are regressed coefficients, W0 is the ESAL applied from IRI = 1.10 to IRI at time tini, and Wt is the ESAL accumulated until time t. This model demonstrates a strong correlation between prediction and measurement (R2>0.9).
	Where, K and y are regressed coefficients, W0 is the ESAL applied from IRI = 1.10 to IRI at time tini, and Wt is the ESAL accumulated until time t. This model demonstrates a strong correlation between prediction and measurement (R2>0.9).
	 

	The most well-known application of mechanistic-empirical models is the Mechanistic-Empirical Pavement Design Guide (MEPDG). The MEPDG software serves as an advanced tool for designing flexible pavements and predicting future pavement performance [27]. The accuracy of the MEPDG performance models has been statistically evaluated, and the verification testing shows promising results in terms of its performance prediction accuracy [28]. While MEPDG software is relatively conservative for highway pavements with
	The most well-known application of mechanistic-empirical models is the Mechanistic-Empirical Pavement Design Guide (MEPDG). The MEPDG software serves as an advanced tool for designing flexible pavements and predicting future pavement performance [27]. The accuracy of the MEPDG performance models has been statistically evaluated, and the verification testing shows promising results in terms of its performance prediction accuracy [28]. While MEPDG software is relatively conservative for highway pavements with
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	Models used for predicting pavement performance can also be categorized into probabilistic and deterministic models. Probabilistic models use a probability function to estimate the likelihood of future pavement conditions with a certain degree of probability. The probability levels are determined by either expert opinion or an evaluation of past pavement performance [31]. An example of a probabilistic model is the Markov process, which is used to develop a probabilistic network-level PMS based on pavement p
	Models used for predicting pavement performance can also be categorized into probabilistic and deterministic models. Probabilistic models use a probability function to estimate the likelihood of future pavement conditions with a certain degree of probability. The probability levels are determined by either expert opinion or an evaluation of past pavement performance [31]. An example of a probabilistic model is the Markov process, which is used to develop a probabilistic network-level PMS based on pavement p
	 

	The other type of model used for predicting pavement performance is deterministic. The deterministic approach of the pavement performance prediction model is based on an incremental analysis of the American Association of State Highway and Transportation Officials (AASHTO) basic design equation developed for flexible pavement design. The AASHTO basic design equation is based on empirical data from the AASHTO Road Test and is derived using regression techniques. The model creates a specific performance curve
	other relevant factors [31]. Implementing a multiple linear regression analysis-based model for predicting pavement performance in the Pavement Management System can significantly impact the decision-making process for managing asphalt pavements [37]. Johnson et al. categorized various pavement types and analyzed the data for any necessary adjustments. They initially attempted to use a linear regression model but found that the performance index would increase and then decrease due to road rehabilitation. T
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	Shallow Machine Learning Models
	Shallow Machine Learning Models
	 

	Researchers have explained artificial intelligence (AI) as a system that either thinks or acts like a human or a system that thinks rationally or acts rationally [38]. IBM defines Machine Learning (ML) as a branch of AI and computer science that focuses on the use of data and algorithms to imitate the way that humans learn, gradually improving its accuracy. Deep learning, a more advanced and sophisticated branch of machine learning, requires more training data and greatly depends on the network's structure 
	Researchers have explained artificial intelligence (AI) as a system that either thinks or acts like a human or a system that thinks rationally or acts rationally [38]. IBM defines Machine Learning (ML) as a branch of AI and computer science that focuses on the use of data and algorithms to imitate the way that humans learn, gradually improving its accuracy. Deep learning, a more advanced and sophisticated branch of machine learning, requires more training data and greatly depends on the network's structure 
	 

	There are several types of machine learning. Supervised learning is a type of ML where the algorithms aim to predict and classify the predetermined attribute, and their performance measures such as accuracy and misclassification are determined by the correct prediction or classification of that attribute [42]. Conversely, unsupervised learning involves pattern recognition without the involvement of a target attribute [43]. Semi-supervised, as the name suggests, is when small amounts of labeled data are avai
	system, or "agent," uses information from its environment to determine the best way to optimize itself and adapt to its surroundings [44]. 
	system, or "agent," uses information from its environment to determine the best way to optimize itself and adapt to its surroundings [44]. 
	 

	Pavement performance prediction using ML is not a new thing. As advancements in ML grow every year, they have been applied to make more accurate and comprehensive predictions by researchers.
	Pavement performance prediction using ML is not a new thing. As advancements in ML grow every year, they have been applied to make more accurate and comprehensive predictions by researchers.
	 

	 
	 
	ML has progressed dramatically over the past two decades, from laboratory curiosity to practical technology in widespread commercial use [45]. Researchers in the 1990’s realized the advantages of ML, such as generalization, massive parallelism, and real-time solutions, over traditional methods [46]. ML algorithms are organized into a taxonomy based on the desired outcome of the algorithm [47]. There are several ML algorithms in use, including Artificial Neural Network (ANN), Recurrent Neural Network (RNN), 
	 

	While most papers seem to use LTPP [51, 52-59], as their source of data, some papers have also used PMS [50, 60] for data collection. In some cases, data had to be generated so that the model could be trained for a full range of possibilities [61]. These data can be used in pavement performance prediction at both the network [50] and project level. After data collection, the next objective is to improve the quality of the data by detecting and removing errors and inconsistencies through data cleaning. These
	them depends on the specific context. In the case of pavement performance problems, performing sanity checks based on engineering judgment is a logical approach [54]. When using real data for modeling, one common challenge is the presence of "noise," which refers to random errors in the data. This term comes from the field of information theory and engineering, which was instrumental in early work on ANNs. While noise can be intentionally added to the training set to help the network learn a more general so
	them depends on the specific context. In the case of pavement performance problems, performing sanity checks based on engineering judgment is a logical approach [54]. When using real data for modeling, one common challenge is the presence of "noise," which refers to random errors in the data. This term comes from the field of information theory and engineering, which was instrumental in early work on ANNs. While noise can be intentionally added to the training set to help the network learn a more general so
	 

	Most papers use traffic [49, 50, 54, 58, 63], climate [49, 50, 54], initial IRI [49], other distresses, material properties [49], age [53], rut depth [53], subgrade [50], layer thickness [58], structural number [63], and cracking as input parameters for models. Hossain et al. only used traffic and climate data in their model [64]. Kargah-Ostadi et al. used MATLAB stepwise regression and found that factors like age, traffic, annual average precipitation, subgrade moisture, and total post-overlay HMA thicknes
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	Artificial Neural Networks
	Artificial Neural Networks
	 

	ANNs are computational models that process information through interconnected units with activation functions and weight optimization during training to learn and generalize from input data [47]. A key technique used in ANNs is backpropagation, which involves adjusting the weights between nodes based on the difference between the predicted and actual output during training. This process enables the network to continuously improve its performance over time, making ANNs a powerful tool in many applications. T
	ANNs are computational models that process information through interconnected units with activation functions and weight optimization during training to learn and generalize from input data [47]. A key technique used in ANNs is backpropagation, which involves adjusting the weights between nodes based on the difference between the predicted and actual output during training. This process enables the network to continuously improve its performance over time, making ANNs a powerful tool in many applications. T
	 

	The feedforward neural network is a typical shallow artificial neural network, consisting of an input layer, one or more hidden layers, and an output layer. As one of the simplest forms of neural network, the data is processed only in one direction within a feedforward model. Figure 5 gives an example of ANN [42], consisting of an input layer, a hidden layer, and an output layer with 3, 4, and 2 neurons in each layer. The input layer contains neurons that receive input values and deliver these inputs to the
	The feedforward neural network is a typical shallow artificial neural network, consisting of an input layer, one or more hidden layers, and an output layer. As one of the simplest forms of neural network, the data is processed only in one direction within a feedforward model. Figure 5 gives an example of ANN [42], consisting of an input layer, a hidden layer, and an output layer with 3, 4, and 2 neurons in each layer. The input layer contains neurons that receive input values and deliver these inputs to the
	 

	As is shown in Figure 3, when the weights and bias values of this ANN are determined and the values are defined as input neurons, these values will pass through hidden layers with a certain algorithm and eventually generate output values. ANNs may have more than one hidden layer, but the data always moves in one direction, from input layer to output layer. 
	As is shown in Figure 3, when the weights and bias values of this ANN are determined and the values are defined as input neurons, these values will pass through hidden layers with a certain algorithm and eventually generate output values. ANNs may have more than one hidden layer, but the data always moves in one direction, from input layer to output layer. 
	 

	The predicted value of ANN is compared to the given output, and then an error is calculated and propagated back within the ANN. The weights are updated during this process based on their influence on the error. The algorithm applied in this procedure is called backpropagation.
	The predicted value of ANN is compared to the given output, and then an error is calculated and propagated back within the ANN. The weights are updated during this process based on their influence on the error. The algorithm applied in this procedure is called backpropagation.
	 

	Figure 3. Sample of a 3-4-2 feed-forward neural network [42] 
	 
	Figure
	RNN is another type of ANN that is specifically designed to analyze sequences of data, such as time-series data, speech, and text. Unlike traditional feedforward neural networks, RNNs can process input data of any length, and they use loops to retain information about the previous computations, making them well-suited for handling time-series data [48]. With the ability to classify, cluster, and make predictions about such data, RNNs are powerful tools for pattern recognition and analysis. When working with
	RNN is another type of ANN that is specifically designed to analyze sequences of data, such as time-series data, speech, and text. Unlike traditional feedforward neural networks, RNNs can process input data of any length, and they use loops to retain information about the previous computations, making them well-suited for handling time-series data [48]. With the ability to classify, cluster, and make predictions about such data, RNNs are powerful tools for pattern recognition and analysis. When working with
	 

	On the other hand, MLP neural networks consist of nodes organized into layers, with each layer consisting of nodes that connect to all nodes in the following layers. These networks are widely used for supervised learning tasks like image recognition and classification [66]. 
	On the other hand, MLP neural networks consist of nodes organized into layers, with each layer consisting of nodes that connect to all nodes in the following layers. These networks are widely used for supervised learning tasks like image recognition and classification [66]. 
	 

	LSTMs are a unique form of RNNs that possess the ability to acquire long-term dependencies and retain information for extended periods [67]. RNNs typically use feedback loops to retain information over time, but they struggle to learn long-term temporal dependencies due to the vanishing gradient problem. LSTMs address this by introducing a memory cell that can hold information for extended periods. They use gates 
	to control when information enters and exits the memory cell, solving the vanishing or exploding gradient problem.
	to control when information enters and exits the memory cell, solving the vanishing or exploding gradient problem.
	 

	CNNs are a type of deep learning model designed for image and video processing. They extract and learn features from input data using specialized layers, which are then classified into different categories. Compared to traditional machine learning methods, which often rely on shallow learning techniques, CNNs use multilayer neural networks that can automatically learn increasingly complex features from the data [68]. 
	CNNs are a type of deep learning model designed for image and video processing. They extract and learn features from input data using specialized layers, which are then classified into different categories. Compared to traditional machine learning methods, which often rely on shallow learning techniques, CNNs use multilayer neural networks that can automatically learn increasingly complex features from the data [68]. 
	 

	Artificial Neural Networks has been applied to developing short-term pavement performance model. They can incorporate more factors and overcome the shortcomings of traditional regression methods by considering time series or identifying categories within the database. Even with the same input and output, the ANN models showed significantly better predicting performance than multiple linear regressions [69] on PMS database. 
	Artificial Neural Networks has been applied to developing short-term pavement performance model. They can incorporate more factors and overcome the shortcomings of traditional regression methods by considering time series or identifying categories within the database. Even with the same input and output, the ANN models showed significantly better predicting performance than multiple linear regressions [69] on PMS database. 
	 

	One application of the ANN in short-term pavement performance modeling is to predict or evaluate the effectiveness of preventive maintenance treatments in the coming years. Previous researchers have accumulated many outcomes with this topic based on ANN and pavement performance database. Luo et al. [70] evaluate the effectiveness of PM treatments in short-term asphalt pavement performance using the Specific Pavement Studies (SPS-3) data of the LTPP Program, including chip seal, crack seal, slurry seal, and 
	term performance on rutting, IRI reduction after treatment, and the deterioration rate of cracking [73-75].  
	term performance on rutting, IRI reduction after treatment, and the deterioration rate of cracking [73-75].  
	 

	ANN was also adopted to build short-term pavement performance models to support decision-making procedures in PMS. Ziari et al. [76] selected the group method of data handling (GMDH) and ANN to construct IRI prediction models based on the LTPP database. The models considered pavement structure information, climates, traffic, and pavement age. Kargah-Ostadi et al. [56] also used performance data after rehabilitation (LTPP SPS-5) to build IRI prediction models, in which the precious IRI was used as input, and
	ANN was also adopted to build short-term pavement performance models to support decision-making procedures in PMS. Ziari et al. [76] selected the group method of data handling (GMDH) and ANN to construct IRI prediction models based on the LTPP database. The models considered pavement structure information, climates, traffic, and pavement age. Kargah-Ostadi et al. [56] also used performance data after rehabilitation (LTPP SPS-5) to build IRI prediction models, in which the precious IRI was used as input, and
	 

	These research projects provided valuable reference and guidance in constructing ANN structures and selecting input parameters for model training. However, most of these models are based on LTPP data and IRI prediction only. Other distresses, such as faulting and cracking, were not involved, and some of the inputs (e.g. asphalt binder properties, pavement layer thickness, and subgrade soil information) are not available for most of the PMS, which is necessary for accomplishing the prediction of pavement con
	These research projects provided valuable reference and guidance in constructing ANN structures and selecting input parameters for model training. However, most of these models are based on LTPP data and IRI prediction only. Other distresses, such as faulting and cracking, were not involved, and some of the inputs (e.g. asphalt binder properties, pavement layer thickness, and subgrade soil information) are not available for most of the PMS, which is necessary for accomplishing the prediction of pavement con
	 

	Adaptive Neuro-Fuzzy Inference System (ANFIS)
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	The Adaptive Neuro Fuzzy Inference System (ANFIS) is a combination of ANN and fuzzy inference system (FIS). It is well-known for its capacity to reduce noise and has many applications from identifying voice signals [78] [79] to diagnosing medical images [80] [81]. 
	The Adaptive Neuro Fuzzy Inference System (ANFIS) is a combination of ANN and fuzzy inference system (FIS). It is well-known for its capacity to reduce noise and has many applications from identifying voice signals [78] [79] to diagnosing medical images [80] [81]. 
	 

	ANFIS is a data learning technique in which given input values are transformed with Fuzzy Logics into output by a highly interconnected neural network with weights and biases [82]. This structure adopts ANN to update the parameters of FIS and therefore benefits from both ANN and FIS techniques. ANFIS refines IF-THEN fuzzy rules to describe the behavior of a complex system, without requiring prior human expertise and 
	with simple implementation. ANFIS also provides various options of membership functions (MF) for explaining fuzzy rules, enabling learning efficiency and accuracy.
	with simple implementation. ANFIS also provides various options of membership functions (MF) for explaining fuzzy rules, enabling learning efficiency and accuracy.
	 

	Figure 4 shows a typical example of ANFIS structure with two inputs (x and y) and one output (f). Assume that there are two IF-THEN rules based on the first order of the Sugeno model as shown:
	Figure 4 shows a typical example of ANFIS structure with two inputs (x and y) and one output (f). Assume that there are two IF-THEN rules based on the first order of the Sugeno model as shown:
	 

	Figure 4. Typical structure of ANFIS [82] 
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	          Rule 1: IF x is A1 AND y is B1, THEN   f1= p1x+q1y+r1
	          Rule 1: IF x is A1 AND y is B1, THEN   f1= p1x+q1y+r1
	 

	          Rule 2: IF x is A2 AND y is B2, THEN  f2= p2x+q2y+r2
	          Rule 2: IF x is A2 AND y is B2, THEN  f2= p2x+q2y+r2
	 

	Where A1 and B1 are fuzzy sets, f1 are the fuzzy region outputs obtained from fuzzy rules, and p1, q1 and r1 are design parameters determined by the training process.
	Where A1 and B1 are fuzzy sets, f1 are the fuzzy region outputs obtained from fuzzy rules, and p1, q1 and r1 are design parameters determined by the training process.
	 

	The layer structure of ANFIS model in Figure 4 are explained as follows:
	The layer structure of ANFIS model in Figure 4 are explained as follows:
	 

	Layer 1: all the nodes in this layer are adaptive nodes with a fuzzy membership function:
	Layer 1: all the nodes in this layer are adaptive nodes with a fuzzy membership function:
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	O1,j=µBj(y),  j=1,2
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	Where, x and y are input values to nodes i or j, and A1 and B1 are the linguistic labels (such as high, low or medium, etc.) for membership functions of the nodes. These membership functions specify the degree to which the inputs are marched to the 
	quantifiers (fuzzy sets) A1 or B1. An example of a bell-shaped function, denoted as µAi(x) with a maximum value of 1 and a minimum value of 0 can be written as:
	quantifiers (fuzzy sets) A1 or B1. An example of a bell-shaped function, denoted as µAi(x) with a maximum value of 1 and a minimum value of 0 can be written as:
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	Similarly, a Gaussian membership function can be expressed as: 
	Similarly, a Gaussian membership function can be expressed as: 
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	Where, ai, bi, and ci are parameters of the membership functions. The shape of the membership function varies as these parameters change.  
	Where, ai, bi, and ci are parameters of the membership functions. The shape of the membership function varies as these parameters change.  
	 

	Layer 2: The nodes in this layer are fixed and labeled as π, in which the outputs from the previous layer are multiplied as:
	Layer 2: The nodes in this layer are fixed and labeled as π, in which the outputs from the previous layer are multiplied as:
	 

	O2,i=wi=µAi(x)* µBj(y),  i, j=1,2
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	The output O2,i of this layer is also called as firing strength.
	The output O2,i of this layer is also called as firing strength.
	 

	Layer 3: The nodes in this layer are also fixed as well and labeled as N, in which the sum of all rules’ firing strength is calculated as:
	Layer 3: The nodes in this layer are also fixed as well and labeled as N, in which the sum of all rules’ firing strength is calculated as:
	 

	𝑂3,𝑖=𝑤̅𝑖=𝑤𝑖𝑤1+𝑤2
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	The outputs of this layer are called normalized firing strength.
	The outputs of this layer are called normalized firing strength.
	 

	Layer 4: The nodes in this layer are adaptive ones, with node function that is multiplied by normalized firing strength from the previous layer and first-order Sugeno model (IF-THEN Rules). The outputs of this layer are written as:
	Layer 4: The nodes in this layer are adaptive ones, with node function that is multiplied by normalized firing strength from the previous layer and first-order Sugeno model (IF-THEN Rules). The outputs of this layer are written as:
	 

	𝑂4,𝑖=𝑤̅𝑖𝑓𝑖=𝑤̅𝑖(𝑝𝑖𝑥𝑖+𝑞𝑖𝑦𝑖+𝑟𝑖)
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	Where, pi, qi, and ri are called as consequent parameters.
	Where, pi, qi, and ri are called as consequent parameters.
	 

	Layer 5: There is only one node in this layer that computes the overall output, which is the summation of all incoming signals:
	Layer 5: There is only one node in this layer that computes the overall output, which is the summation of all incoming signals:
	 

	𝑂5,𝑖=∑𝑤̅𝑖𝑓𝑖𝑖=∑𝑤𝑖𝑓𝑖𝑖∑𝑤𝑖𝑖
	𝑂5,𝑖=∑𝑤̅𝑖𝑓𝑖𝑖=∑𝑤𝑖𝑓𝑖𝑖∑𝑤𝑖𝑖
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	The above five layers are the basic components of ANFIS structure.
	The above five layers are the basic components of ANFIS structure.
	 

	ANFIS is famous for its capacity of noise reduction and has many applications from identifying voice signals [78][79] to medical image diagnosing [80][81]. ANFIS has also been utilized in predicting pavement roughness [83][84] and PCI [85], especially for short-term pavement roughness prediction [86].  This advantage would be very useful in dealing with the noise of the network-level database, such as error and variation due to device and operators. 
	ANFIS is famous for its capacity of noise reduction and has many applications from identifying voice signals [78][79] to medical image diagnosing [80][81]. ANFIS has also been utilized in predicting pavement roughness [83][84] and PCI [85], especially for short-term pavement roughness prediction [86].  This advantage would be very useful in dealing with the noise of the network-level database, such as error and variation due to device and operators. 
	 

	Regression Models
	Regression Models
	 

	Random Forest is another popular algorithm that creates an ensemble of decision trees using a modified bagging technique to improve predictive accuracy. Each tree in the ensemble is constructed using a randomly selected training subset, which is replaced as many times as the number of trees. The bootstrap aggregation technique is typically used in the construction of the trees, where scenarios from the training subset are replaced by the constructed populations during analysis [87-89]. The Random Forest alg
	Random Forest is another popular algorithm that creates an ensemble of decision trees using a modified bagging technique to improve predictive accuracy. Each tree in the ensemble is constructed using a randomly selected training subset, which is replaced as many times as the number of trees. The bootstrap aggregation technique is typically used in the construction of the trees, where scenarios from the training subset are replaced by the constructed populations during analysis [87-89]. The Random Forest alg
	 

	Other Machine Learning Techniques 
	Other Machine Learning Techniques 
	 

	Support Vector Regression (SVR) is a technique used to develop a regression function that can map input predictor variables to observed output response values. One of the key benefits of SVR is its ability to strike a balance between the complexity of the model and the prediction error, making it a useful tool for analyzing high-dimensional data [90]. SVR was chosen for pavement performance modeling due to its flexibility in finding the best hyperplane to fit the data in higher dimensions and customize cont
	Support Vector Regression (SVR) is a technique used to develop a regression function that can map input predictor variables to observed output response values. One of the key benefits of SVR is its ability to strike a balance between the complexity of the model and the prediction error, making it a useful tool for analyzing high-dimensional data [90]. SVR was chosen for pavement performance modeling due to its flexibility in finding the best hyperplane to fit the data in higher dimensions and customize cont
	 

	Review of Pavement Condition Datasets
	Review of Pavement Condition Datasets
	 

	DOTD’s Pavement Management System (PMS)
	DOTD’s Pavement Management System (PMS)
	 

	DOTD has been collecting pavement data on various distress types using Automatic Road Analyzer (ARAN) vehicles for over 20 years. Louisiana has been a national leader in Quality Assurance and Quality Control (QA/QC) for pavement distress data collection. In 
	the “Practical Guide for Quality Management of Pavement Condition Data Collection” issued by the FHWA in 2013, DOTD was one of the three agencies provided as a “Case Study” example of proper Quality Management. 
	the “Practical Guide for Quality Management of Pavement Condition Data Collection” issued by the FHWA in 2013, DOTD was one of the three agencies provided as a “Case Study” example of proper Quality Management. 
	 

	DOTD has continually signed contracts with Fugro Roadware to collect roadway data, including the state-maintained highways (State Highway System, SHS), interstate highways (Interstate Highway System, IHS), regional roadways (Regional Highway System, RHS), and other off-system NHS routes. Currently, the entire pavement network of Louisiana is surveyed once every two years. The full spectrum of pavement information is collected in a single pass at highway speeds. This includes data on alligator, longitudinal,
	DOTD has continually signed contracts with Fugro Roadware to collect roadway data, including the state-maintained highways (State Highway System, SHS), interstate highways (Interstate Highway System, IHS), regional roadways (Regional Highway System, RHS), and other off-system NHS routes. Currently, the entire pavement network of Louisiana is surveyed once every two years. The full spectrum of pavement information is collected in a single pass at highway speeds. This includes data on alligator, longitudinal,
	 

	DOTD adopts these distress indices as a reference for evaluating pavement conditions, including alligator cracking index (ALCR), random cracking index (RNDM), rutting index (RUT), patching index (PTCH) and roughness index (RUFF) for flexible pavements [91]. The pavement performance index for flexible pavement is calculated based on these indices using the following equation:
	DOTD adopts these distress indices as a reference for evaluating pavement conditions, including alligator cracking index (ALCR), random cracking index (RNDM), rutting index (RUT), patching index (PTCH) and roughness index (RUFF) for flexible pavements [91]. The pavement performance index for flexible pavement is calculated based on these indices using the following equation:
	 

	Pavement Performance Index=MAX(MIN(RNDM,ALCR,PTCH,RUFF,RUT ),[AVG(RNDM,ALCR,PTCH,RUFF,RUT ) − 0.85 STD(RNDM,ALCR,PTCH,RUFF,RUT)] )                                    
	Pavement Performance Index=MAX(MIN(RNDM,ALCR,PTCH,RUFF,RUT ),[AVG(RNDM,ALCR,PTCH,RUFF,RUT ) − 0.85 STD(RNDM,ALCR,PTCH,RUFF,RUT)] )                                    
	 
	 
	(21)
	 

	Where, RNDM, ALCR, PTCH, RUFF, and RUT are distress indices.
	Where, RNDM, ALCR, PTCH, RUFF, and RUT are distress indices.
	 

	For composite pavement, the performance index equation is similar but without ALCR. For jointed plain concrete pavement (JPCP), longitudinal and transverse cracking indices 
	are considered separately, while CRCP only considers the longitudinal cracking index, PTCH, and RUFF.
	are considered separately, while CRCP only considers the longitudinal cracking index, PTCH, and RUFF.
	 

	The overall condition is analyzed on homogenous sections to determine optimum pavement treatment based on all these pavement condition indices. DOTD also uses the trigger value system to recommend maintenance and rehabilitation treatments based on the combination of the distress indices. The trigger values vary for different pavement types and functional classifications.
	The overall condition is analyzed on homogenous sections to determine optimum pavement treatment based on all these pavement condition indices. DOTD also uses the trigger value system to recommend maintenance and rehabilitation treatments based on the combination of the distress indices. The trigger values vary for different pavement types and functional classifications.
	 

	The PMS database available for this study ranges from 2003 to 2021. The pavement performance data is stored in 10 sub datasets, with each sub dataset containing PMS data collected from a 2-year cycle. Typically, each PMS dataset contains 191,000 to 197,000 rows, collected from more than 18,000 miles of state owned highways. 
	The PMS database available for this study ranges from 2003 to 2021. The pavement performance data is stored in 10 sub datasets, with each sub dataset containing PMS data collected from a 2-year cycle. Typically, each PMS dataset contains 191,000 to 197,000 rows, collected from more than 18,000 miles of state owned highways. 
	 

	DOTD’s Highway Performance Monitoring System (HPMS)
	DOTD’s Highway Performance Monitoring System (HPMS)
	 

	Federal legislation (23 CFR Part 490 - National Performance Management Measures) requires each state DOT to develop a risk‐based TAMP to improve and preserve the condition of assets on the federal NHS. As part of TAMP structure, the asset condition measurements and collected data are used to build the HPMS database. This database serves as the foundation for setting performance targets required by the FHWA and for conducting life cycle planning and risk management analysis within TAMP.
	Federal legislation (23 CFR Part 490 - National Performance Management Measures) requires each state DOT to develop a risk‐based TAMP to improve and preserve the condition of assets on the federal NHS. As part of TAMP structure, the asset condition measurements and collected data are used to build the HPMS database. This database serves as the foundation for setting performance targets required by the FHWA and for conducting life cycle planning and risk management analysis within TAMP.
	 

	Although PMS and HPMS use similar equipment for data collection, there is a key difference between the two. PMS is collected from all state-maintained roadways, whereas HPMS is only surveyed from interstate highways and non-interstate national highway systems. HPMS does not cover roadways within SHS or RHS. The mileage distribution of PMS and HPMS for these asset classes is listed in Table 1.
	Although PMS and HPMS use similar equipment for data collection, there is a key difference between the two. PMS is collected from all state-maintained roadways, whereas HPMS is only surveyed from interstate highways and non-interstate national highway systems. HPMS does not cover roadways within SHS or RHS. The mileage distribution of PMS and HPMS for these asset classes is listed in Table 1.
	 

	Table 1. State pavement asset inventory [91] 
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	The survey for PMS is conducted every two years, while HMPS collects data annually. There are also several differences between PMS and HPMS, which are listed as follows:
	The survey for PMS is conducted every two years, while HMPS collects data annually. There are also several differences between PMS and HPMS, which are listed as follows:
	 

	 Purpose of database: As mentioned above, the major tasks of PMS are to supervise and forecast pavement conditions as well as select the optimal treatment and timing. HPMS monitors the network-level conditions of interstate and other NHS pavements, and accesses the overall performance of pavements for these asset classes. 
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	 Data measurement: The IRI and rutting measurements are same for both DOTD PMS and federal data. However, there are differences in cracking and faulting measurements between these two datasets.
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	Cracking: DOTD determines treatment selection using PMS; therefore, cracking width is added to support this procedure. PMS also evaluates cracks in both the inside and outside wheel path area, while HPMS only focused on cracks within the wheel path area. In addition, there is also a difference in the definitions of “wheel path,” in which HPMS uses 39-inch wide wheel path while DOTD PMS uses a 36-inch path. Although it is possible to convert the historical 2D PMS data into new 3D federal measures, it would b
	Cracking: DOTD determines treatment selection using PMS; therefore, cracking width is added to support this procedure. PMS also evaluates cracks in both the inside and outside wheel path area, while HPMS only focused on cracks within the wheel path area. In addition, there is also a difference in the definitions of “wheel path,” in which HPMS uses 39-inch wide wheel path while DOTD PMS uses a 36-inch path. Although it is possible to convert the historical 2D PMS data into new 3D federal measures, it would b
	 

	Faulting: The current PMS only records faulting over 0.20 inches, and the average faulting values for 0.1-mile sections are calculated only from all faulting values over 0.20 inches because the criteria for joint repair treatment projects is 0.40 inches. The measured faulting values below 0.20 inches were not kept. However, the range of faulting from 0 to 0.20 inches covers all three rating levels in the federal assessment: good, fair and poor.
	Faulting: The current PMS only records faulting over 0.20 inches, and the average faulting values for 0.1-mile sections are calculated only from all faulting values over 0.20 inches because the criteria for joint repair treatment projects is 0.40 inches. The measured faulting values below 0.20 inches were not kept. However, the range of faulting from 0 to 0.20 inches covers all three rating levels in the federal assessment: good, fair and poor.
	 

	Because the HPMS and DOTD PMS use the same IRI and rutting measurements, these data have been available since 2003, and the PMU is satisfied with the prediction using this previous data. However, for cracking percent and faulting, when the PMU was preparing the TAMP report, only 2017 to 2020 datasets were available. This was due to the different new measurements required by FHWA.  
	Because the HPMS and DOTD PMS use the same IRI and rutting measurements, these data have been available since 2003, and the PMU is satisfied with the prediction using this previous data. However, for cracking percent and faulting, when the PMU was preparing the TAMP report, only 2017 to 2020 datasets were available. This was due to the different new measurements required by FHWA.  
	 

	Figure 5. Pavement condition criteria regulated by FHWA [91] 
	 
	 

	Figure
	With the measured IRI, rutting, cracking percent, and faulting, the conditions of these distress types can be rated. The criteria of the goodness rating is listed in Figure 5. In this figure, IRI and rutting have same criteria for all pavement types: asphalt pavement (ASP), composite pavement (COM), and jointed concrete pavement (JCP). However, the cracking percent rating depends on pavement type. The overall condition of a 0.1-mile section is rated by considering the combination of all these metrics’ ratin
	With the measured IRI, rutting, cracking percent, and faulting, the conditions of these distress types can be rated. The criteria of the goodness rating is listed in Figure 5. In this figure, IRI and rutting have same criteria for all pavement types: asphalt pavement (ASP), composite pavement (COM), and jointed concrete pavement (JCP). However, the cracking percent rating depends on pavement type. The overall condition of a 0.1-mile section is rated by considering the combination of all these metrics’ ratin
	 

	 If all the distress ratings are GOOD, then the overall rating is GOOD.
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	 If one or more distress ratings are POOR, then the overall rating is POOR.
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	 Any other conditions are rated as FAIR.   
	 Any other conditions are rated as FAIR.   
	 Any other conditions are rated as FAIR.   
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	Currently, the analysis of interstate pavements is based on 521 homogeneous sections. The overall condition of the interstate highway system is therefore calculated by summing the average conditions and section lengths.  
	Currently, the analysis of interstate pavements is based on 521 homogeneous sections. The overall condition of the interstate highway system is therefore calculated by summing the average conditions and section lengths.  
	 

	The Modern Era Retrospective-Analysis for Research and Applications (MERRA)
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	The Modern Era Retrospective-Analysis for Research and Applications (MERRA) was undertaken by NASA’s Global Modeling and Assimilation Office and was released in 2009. It is based on a version of the GEOS-5 atmospheric data assimilation system and collected data from 1979 through 2016. The data after 2016 was measured by an upgraded MERRA-2 system. MERRA is also incorporated in pavement research and design, such as LTPP database and pavement ME. Therefore, this database is selected as the source of climate i
	The Modern Era Retrospective-Analysis for Research and Applications (MERRA) was undertaken by NASA’s Global Modeling and Assimilation Office and was released in 2009. It is based on a version of the GEOS-5 atmospheric data assimilation system and collected data from 1979 through 2016. The data after 2016 was measured by an upgraded MERRA-2 system. MERRA is also incorporated in pavement research and design, such as LTPP database and pavement ME. Therefore, this database is selected as the source of climate i
	 

	Five climate parameters were provided in the Pavement ME system for Louisiana, including average annual air temperature, average annual precipitation, average annual freeze index, average annual wet days, and annual freeze/thaw cycles. These five parameters are widely accepted as factors influencing pavement performance. 
	Five climate parameters were provided in the Pavement ME system for Louisiana, including average annual air temperature, average annual precipitation, average annual freeze index, average annual wet days, and annual freeze/thaw cycles. These five parameters are widely accepted as factors influencing pavement performance. 
	 

	Figure 6. MERRA data in Pavement ME 
	 
	 

	Figure
	These datasets are stored as weather stations within Louisiana, with hourly climate data available from 1985 to 2017 (Figure 6). Such a large dataset would be difficult to apply for analysis. Therefore, the average values of these five climate inputs were calculated for each district. 
	These datasets are stored as weather stations within Louisiana, with hourly climate data available from 1985 to 2017 (Figure 6). Such a large dataset would be difficult to apply for analysis. Therefore, the average values of these five climate inputs were calculated for each district. 
	 

	Project/Highway Information and Highway Needs Files
	Project/Highway Information and Highway Needs Files
	 

	The DOTD Construction Project database provides a query tool for users to search all types of highway project records from DOTD TOPS (old projects, mainframe), LaGov PS (Project Systems), AASHTO Projects, and SiteManager Applications. The obtained project information includes project number, control section information (control section number and start/end point of log miles), final inspection dates, and work types (i.e., asphalt new pavement, asphalt widen and overlay, etc.). The main application of this d
	The DOTD Construction Project database provides a query tool for users to search all types of highway project records from DOTD TOPS (old projects, mainframe), LaGov PS (Project Systems), AASHTO Projects, and SiteManager Applications. The obtained project information includes project number, control section information (control section number and start/end point of log miles), final inspection dates, and work types (i.e., asphalt new pavement, asphalt widen and overlay, etc.). The main application of this d
	 

	The Highway Needs files provide additional network-level information, such as homogenous section data, including pavement type, average daily traffic (ADT), number of lanes, and functional classification.
	The Highway Needs files provide additional network-level information, such as homogenous section data, including pavement type, average daily traffic (ADT), number of lanes, and functional classification.
	 

	In addition to the network-level information obtained from the DOTD Construction Project database, more detailed project-level data such as treatment type (thin-overlay, medium overlay, chip seal, etc.), design traffic information (ADT and truck percent), pavement structural information (overlay thickness and milling depth) can be obtained by verifying them with their design documents in FileNet and Plans Room.
	In addition to the network-level information obtained from the DOTD Construction Project database, more detailed project-level data such as treatment type (thin-overlay, medium overlay, chip seal, etc.), design traffic information (ADT and truck percent), pavement structural information (overlay thickness and milling depth) can be obtained by verifying them with their design documents in FileNet and Plans Room.
	 

	Objective
	Objective
	 

	The main objective of the research project was to develop both short-term and long-term pavement performance prediction models that can be used to estimate future pavement condition and smoothness for Louisiana’s flexible and rigid pavements based on DOTD’s PMS and other related pavement data using the soft computing technique– ANN modeling. 
	The main objective of the research project was to develop both short-term and long-term pavement performance prediction models that can be used to estimate future pavement condition and smoothness for Louisiana’s flexible and rigid pavements based on DOTD’s PMS and other related pavement data using the soft computing technique– ANN modeling. 
	 

	 
	 

	Specifically, the following objectives were accomplished in this study:
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	1. Develop an accurate short-term pavement cracking forecasting model (ANN modeling) to predict the 2- and 4-year future cracking percentage for all asphalt surfaced pavement (ASP and COM) and jointed concrete pavement (JCP) segments currently included in Louisiana’s interstate and NHS pavement network, based on DOTD’s 2017-2020 pavement performance condition database. 
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	2. First, establish a historical pavement condition database for all asphalt overlay projects constructed after 2009, including various thicknesses and pavement types of ultra-thin, thin, medium, and structure overlays. The developed overlay pavement database was then used to develop the long-term pavement performance models (ANN modeling) using two different approaches:
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	a. Incremental performance models: Use two previous cycles’ PMS pavement condition data, mill/overlay thickness, and accumulative traffic information to predict the future pavement performance (up to 15 years) for three flexible pavement performance indicators (IRI, rutting, and percent cracking) and five distress indices (ALCR, RNDM, PTCH, RUT, and RUFF). 
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	b. Family-curve prediction models: Use project-based information of pavement age, functional class, thickness, and five weather-related project data to develop IRI and distress indices’ family-curve performance models for different functional class ASP pavements in Louisiana.
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	b. Family-curve prediction models: Use project-based information of pavement age, functional class, thickness, and five weather-related project data to develop IRI and distress indices’ family-curve performance models for different functional class ASP pavements in Louisiana.
	 




	 
	 

	Scope
	Scope
	 

	To achieve the objectives, pavement condition data was collected from the PMS database and from the DOTD and HPMS databases for federal analysis. Other parameters such as pavement age, traffic, structural information, and climate were also extracted from the DOTD system and combined with pavement condition data. Short-term pavement performance models for various pavement types and functional classes were developed based on the HPMS database. ANN and ANFIS were applied for model training, and different algor
	To achieve the objectives, pavement condition data was collected from the PMS database and from the DOTD and HPMS databases for federal analysis. Other parameters such as pavement age, traffic, structural information, and climate were also extracted from the DOTD system and combined with pavement condition data. Short-term pavement performance models for various pavement types and functional classes were developed based on the HPMS database. ANN and ANFIS were applied for model training, and different algor
	 

	Methodology
	Methodology
	 

	The methodology of this research was divided into two parts. First, the procedures for short-term and long-term pavement performance modeling are presented. The objective of these performance models was to support network-level decision-making procedures within maintenance strategy and supervise the overall condition of the roadway system. The data used for the modeling was collected from Louisiana PMS and HPMS databases. Considering the differences in purposes and applications between long-term and short-t
	The methodology of this research was divided into two parts. First, the procedures for short-term and long-term pavement performance modeling are presented. The objective of these performance models was to support network-level decision-making procedures within maintenance strategy and supervise the overall condition of the roadway system. The data used for the modeling was collected from Louisiana PMS and HPMS databases. Considering the differences in purposes and applications between long-term and short-t
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	Second, based on a literature review, several shallow machine learning techniques were selected for training long-term and short-term performance models. The collected data is organized according to the structure design of the models, serving the purpose of performance modeling. The following artificial neural networks were investigated to explore optimal methods for forecasting pavement conditions.   
	Second, based on a literature review, several shallow machine learning techniques were selected for training long-term and short-term performance models. The collected data is organized according to the structure design of the models, serving the purpose of performance modeling. The following artificial neural networks were investigated to explore optimal methods for forecasting pavement conditions.   
	 

	Project Selection and Data Collection
	Project Selection and Data Collection
	 

	Louisiana DOTD has been working on collecting and maintaining various of databases of pavement performance and treatment history records for decades. These databases provide a wealth of valuable information for modeling pavement performance and supporting decision-making procedures. 
	Louisiana DOTD has been working on collecting and maintaining various of databases of pavement performance and treatment history records for decades. These databases provide a wealth of valuable information for modeling pavement performance and supporting decision-making procedures. 
	 

	According to the previous research focused on pavement performance modeling, the model inputs can be generally categorized as (1) pavement performance data, (2) traffic data, (3) climate data, and (4) treatment and structural information. Considering the availability of these categories of databases in Louisiana DOTD, pavement performance datasets were obtained from PMS and HPMS. The traffic data was extracted from the Highway Needs Database. The climate data used in this project was provided by the MERRA, 
	According to the previous research focused on pavement performance modeling, the model inputs can be generally categorized as (1) pavement performance data, (2) traffic data, (3) climate data, and (4) treatment and structural information. Considering the availability of these categories of databases in Louisiana DOTD, pavement performance datasets were obtained from PMS and HPMS. The traffic data was extracted from the Highway Needs Database. The climate data used in this project was provided by the MERRA, 
	 

	Dataset for Short-term Performance Modeling
	Dataset for Short-term Performance Modeling
	 

	The database for short-term pavement performance modeling is prepared based on the purpose of this research, the availability of datasets from DOTD, and the future implementation for local agencies. 
	The database for short-term pavement performance modeling is prepared based on the purpose of this research, the availability of datasets from DOTD, and the future implementation for local agencies. 
	 

	The HPMS database used in this study contains 0.1-mile record of pavement condition for the entire NHS system of Louisiana roadways collected from 2017 to 2020. The database includes measures such as roughness, rutting, cracking (alligator, transverse, and longitudinal cracks), faulting, patching, roadway geometry (number of lanes, route, district, direction and GPS coordinates), and operating information (date, driving speed of data collection). Due to the treatment projects applied during this period, the
	The HPMS database used in this study contains 0.1-mile record of pavement condition for the entire NHS system of Louisiana roadways collected from 2017 to 2020. The database includes measures such as roughness, rutting, cracking (alligator, transverse, and longitudinal cracks), faulting, patching, roadway geometry (number of lanes, route, district, direction and GPS coordinates), and operating information (date, driving speed of data collection). Due to the treatment projects applied during this period, the
	 

	The first step in processing the HPMS database was to filter the data by ElementID to obtain the sections with all 4 years’ performance. ElementID is the description of each 0.1-mile section of HPMS data, consisting of pavement control section, the starting log-mile, and traffic direction of the section, which is unique for each 0.1-mile section. It was found that 35,913 0.1-mile sections, equaling 3,591 miles of NHS pavements, have integrated records for further analysis.
	The first step in processing the HPMS database was to filter the data by ElementID to obtain the sections with all 4 years’ performance. ElementID is the description of each 0.1-mile section of HPMS data, consisting of pavement control section, the starting log-mile, and traffic direction of the section, which is unique for each 0.1-mile section. It was found that 35,913 0.1-mile sections, equaling 3,591 miles of NHS pavements, have integrated records for further analysis.
	 

	The HPMS database only contains pavement performance conditions. In order to incorporate other factors recommended by previous research, such as climate, traffic, and age information, the following databases were utilized to combine with the filtered HPMS data:
	The HPMS database only contains pavement performance conditions. In order to incorporate other factors recommended by previous research, such as climate, traffic, and age information, the following databases were utilized to combine with the filtered HPMS data:
	 

	Climate: The MERRA dataset was adopted, considering its wide application in pavement analysis such as MEPDG. The average climate factors, including annual air temperature, annual precipitation, freezing index, annual number of freeze-thaw cycles, and annual number of wet days for all districts in Louisiana, were extracted. The average climate inputs by district were calculated and listed in Table 2:
	Climate: The MERRA dataset was adopted, considering its wide application in pavement analysis such as MEPDG. The average climate factors, including annual air temperature, annual precipitation, freezing index, annual number of freeze-thaw cycles, and annual number of wet days for all districts in Louisiana, were extracted. The average climate inputs by district were calculated and listed in Table 2:
	 

	Table 2. Average climate inputs by district 
	Table
	TBody
	TR
	Span
	District 
	District 

	Mean annual air temp (F) 
	Mean annual air temp (F) 

	Mean annual precipitation (in) 
	Mean annual precipitation (in) 

	Freezing Index (deg F - days) 
	Freezing Index (deg F - days) 

	Average annual number of freeze/thaw cycles 
	Average annual number of freeze/thaw cycles 

	Number of wet days 
	Number of wet days 


	TR
	Span
	2 
	2 

	69.7 
	69.7 

	49.3 
	49.3 

	1.2 
	1.2 

	3.3 
	3.3 

	305.2 
	305.2 


	TR
	Span
	3 
	3 

	67.9 
	67.9 

	48.7 
	48.7 

	4.0 
	4.0 

	11.3 
	11.3 

	307.2 
	307.2 


	TR
	Span
	4 
	4 

	65.5 
	65.5 

	52.0 
	52.0 

	13.3 
	13.3 

	28.9 
	28.9 

	293.2 
	293.2 


	TR
	Span
	5 
	5 

	65.3 
	65.3 

	53.0 
	53.0 

	18.3 
	18.3 

	31.2 
	31.2 

	287.6 
	287.6 


	TR
	Span
	7 
	7 

	67.7 
	67.7 

	50.9 
	50.9 

	3.5 
	3.5 

	12.9 
	12.9 

	308.7 
	308.7 


	TR
	Span
	8 
	8 

	66.2 
	66.2 

	52.2 
	52.2 

	8.1 
	8.1 

	23.4 
	23.4 

	302.0 
	302.0 


	TR
	Span
	58 
	58 

	66.0 
	66.0 

	51.8 
	51.8 

	13.0 
	13.0 

	26.2 
	26.2 

	297.0 
	297.0 


	TR
	Span
	61 
	61 

	67.6 
	67.6 

	50.7 
	50.7 

	4.2 
	4.2 

	14.0 
	14.0 

	308.6 
	308.6 


	TR
	Span
	62 
	62 

	67.7 
	67.7 

	52.5 
	52.5 

	3.4 
	3.4 

	12.9 
	12.9 

	308.4 
	308.4 




	Traffic: The most recent 2019 Highway Needs file available contains homogenous section performance and traffic information, including annual average daily traffic (AADT) and truck percent. Matlab code was compiled to extract ADT and truck percent for each 0.1-mile HPMS section.
	Traffic: The most recent 2019 Highway Needs file available contains homogenous section performance and traffic information, including annual average daily traffic (AADT) and truck percent. Matlab code was compiled to extract ADT and truck percent for each 0.1-mile HPMS section.
	 

	Pavement age: The pavement construction and preservation projects recorded in the DOTD Construction Projects database was used for calculating pavement ages. A total of 7,751 projects records from 1990 to 2021 were obtained from this system, including new construction, structural overlay, maintenance overlay, or surface treatment projects on all state-maintained roadways. The information in these records consisted of project number, control section, project cost, final inspection date, begin and end log mil
	Pavement age: The pavement construction and preservation projects recorded in the DOTD Construction Projects database was used for calculating pavement ages. A total of 7,751 projects records from 1990 to 2021 were obtained from this system, including new construction, structural overlay, maintenance overlay, or surface treatment projects on all state-maintained roadways. The information in these records consisted of project number, control section, project cost, final inspection date, begin and end log mil
	 

	With this information combined, the updated HPMS database included traffic data, existing pavement condition, age, and climate. For each year’s data, the accumulated truck numbers on 0.1-mile sections were calculated based on its pavement age, ADT, and truck percent. The data was cleaned by removing records such as no construction and preservation records (pavement age larger than 32) or changes in pavement types. 
	With this information combined, the updated HPMS database included traffic data, existing pavement condition, age, and climate. For each year’s data, the accumulated truck numbers on 0.1-mile sections were calculated based on its pavement age, ADT, and truck percent. The data was cleaned by removing records such as no construction and preservation records (pavement age larger than 32) or changes in pavement types. 
	 

	The data collection device for faulting of JCP surfaces was updated from 2D to 3D in 2020. Therefore, it is not appropriate to train an ANN model with 2018 and 2020 performance as input and output. Although the faulting data from 2017 to 2019 was consistent, the trained models based on these 2D collected specimens would not be suitable for predicting the 2022 performance prediction, since the 2020 data was measured with different methods. Therefore, the faulting model in this study was not determined by mac
	The data collection device for faulting of JCP surfaces was updated from 2D to 3D in 2020. Therefore, it is not appropriate to train an ANN model with 2018 and 2020 performance as input and output. Although the faulting data from 2017 to 2019 was consistent, the trained models based on these 2D collected specimens would not be suitable for predicting the 2022 performance prediction, since the 2020 data was measured with different methods. Therefore, the faulting model in this study was not determined by mac
	 

	Each year, HPMS has a varying number of rows due to the interference caused by project construction on roadway surface condition survey. The rows in Louisiana HPMS during 2017 to 2020 were 41,679, 38,464, 42,731, and 42,651, respectively.
	Each year, HPMS has a varying number of rows due to the interference caused by project construction on roadway surface condition survey. The rows in Louisiana HPMS during 2017 to 2020 were 41,679, 38,464, 42,731, and 42,651, respectively.
	 

	The inputs for training this model included the initial pavement condition (cracking percent), ADT, accumulated trucks, and climate. The output of the model was the pavement condition after a 2-year time interval. The updated HMPS database was then reformatted based on this proposal by using the pavement conditions of 2017 and 2018 to predict the conditions of 2019 and 2020, respectively. For each 0.1-mile section, the 4-year record was transferred as two specimen for model training. If there was a signific
	The inputs for training this model included the initial pavement condition (cracking percent), ADT, accumulated trucks, and climate. The output of the model was the pavement condition after a 2-year time interval. The updated HMPS database was then reformatted based on this proposal by using the pavement conditions of 2017 and 2018 to predict the conditions of 2019 and 2020, respectively. For each 0.1-mile section, the 4-year record was transferred as two specimen for model training. If there was a signific
	 

	FHWA requires State DOTs to separately report the conditions of interstate highways. The traffic conditions of interstate highways vary from rural to urban areas, and the traffic conditions also vary among interstate, arterial, collectors, and local roadways. Therefore, multiple models wee for these functional classifications. For the other non-interstate NHS roadway sections, there were five functional classifications. Note that not all non-interstate NHS functional classifications had enough samples for t
	FHWA requires State DOTs to separately report the conditions of interstate highways. The traffic conditions of interstate highways vary from rural to urban areas, and the traffic conditions also vary among interstate, arterial, collectors, and local roadways. Therefore, multiple models wee for these functional classifications. For the other non-interstate NHS roadway sections, there were five functional classifications. Note that not all non-interstate NHS functional classifications had enough samples for t
	 

	Table 3 presents a final list of short-term performance modeling datasets prepared using the 4 years of pavement condition data (2017-2020) available in HPMS. As shown in 
	Table 3, those datasets were categorized based on three pavement types (i.e., ASP, COM and JCP) and six functional classifications. In addition, the numbers in the table represent the quantity of 0.1-mile sections of each considered modeling dataset in this study.
	Table 3, those datasets were categorized based on three pavement types (i.e., ASP, COM and JCP) and six functional classifications. In addition, the numbers in the table represent the quantity of 0.1-mile sections of each considered modeling dataset in this study.
	 

	Table 3. Prepared HPMS data for modeling short-term performance 
	Table
	TBody
	TR
	Span
	UN 
	UN 

	Roadway Functional Classification 
	Roadway Functional Classification 

	ASP 
	ASP 

	COM 
	COM 

	JCP 
	JCP 


	TR
	Span
	01 
	01 

	Interstate Rural 
	Interstate Rural 

	3879 
	3879 

	4317 
	4317 

	4641 
	4641 


	TR
	Span
	02 
	02 

	Principal Arterial Rural 
	Principal Arterial Rural 

	9469 
	9469 

	9825 
	9825 

	4566 
	4566 


	TR
	Span
	06 
	06 

	Minor Arterial Rural 
	Minor Arterial Rural 

	2 
	2 

	4 
	4 

	- 
	- 


	TR
	Span
	11 
	11 

	Interstate Urban 
	Interstate Urban 

	1728 
	1728 

	1840 
	1840 

	2738 
	2738 


	TR
	Span
	12 
	12 

	Freeway Urban 
	Freeway Urban 

	469 
	469 

	183 
	183 

	561 
	561 


	TR
	Span
	14 
	14 

	Principal Arterial Urban 
	Principal Arterial Urban 

	1840 
	1840 

	4982 
	4982 

	3656 
	3656 


	TR
	Span
	16 
	16 

	Minor Arterial Urban 
	Minor Arterial Urban 

	486 
	486 

	104 
	104 

	17 
	17 




	Dataset for Long-term Performance Modeling
	Dataset for Long-term Performance Modeling
	 

	Long-term performance models play a vital role in the decision-making procedure, serving as the foundation for comparing and analyzing optimal pavement treatment scenarios. In order to build the long-term performance models, the first step was to locate and verify the records of these treatments. PMS treatment history records were adopted since they contain the information of both treatment types and project numbers on 0.1-mile sections distributed across all functional classifications of state maintained r
	Long-term performance models play a vital role in the decision-making procedure, serving as the foundation for comparing and analyzing optimal pavement treatment scenarios. In order to build the long-term performance models, the first step was to locate and verify the records of these treatments. PMS treatment history records were adopted since they contain the information of both treatment types and project numbers on 0.1-mile sections distributed across all functional classifications of state maintained r
	 

	The ElementIDs of these 0.1-mile sections with various maintenance and rehabilitation types were extracted from PMS treatment history records. An ElementID is a nine-digit unique identifier describing the control section, lane direction, and starting log mile of the 0.1-mile section, which is unique within every PMS sub datasets (collected within one cycle). For each treatment type, its ElementID list and project name was obtained, and the final inspection dates of these projects are verified with Highway P
	The ElementIDs of these 0.1-mile sections with various maintenance and rehabilitation types were extracted from PMS treatment history records. An ElementID is a nine-digit unique identifier describing the control section, lane direction, and starting log mile of the 0.1-mile section, which is unique within every PMS sub datasets (collected within one cycle). For each treatment type, its ElementID list and project name was obtained, and the final inspection dates of these projects are verified with Highway P
	 

	The design files for these projects were searched in the FileNet system and DOTD’s Plans and Proposals system to investigate the project-level information of the involved pavement structures. Details of the roadway sections, such as design AADT, truck percentage, overlay thicknesses, and milling depth, were recorded to confirm the maintenance or rehabilitation information from the PMS treatment history. The number, beginning, and end of the control section were checked with the range of the selected project
	The design files for these projects were searched in the FileNet system and DOTD’s Plans and Proposals system to investigate the project-level information of the involved pavement structures. Details of the roadway sections, such as design AADT, truck percentage, overlay thicknesses, and milling depth, were recorded to confirm the maintenance or rehabilitation information from the PMS treatment history. The number, beginning, and end of the control section were checked with the range of the selected project
	 

	For every ElementID, their related project information was verified based on the procedure above, and a table summarizing the project number and the information (final inspection date, ADT, and structure) was generated. Then, for each pavement treatment type, their 0.1-mile sections with ElementID lists and corresponding project information, age, and climate was obtained.  
	For every ElementID, their related project information was verified based on the procedure above, and a table summarizing the project number and the information (final inspection date, ADT, and structure) was generated. Then, for each pavement treatment type, their 0.1-mile sections with ElementID lists and corresponding project information, age, and climate was obtained.  
	 

	The next step was to obtain and organize the pavement performance data of these pavement treatment types on their 0.1-mile sections. The obtained ElementID was used to extract 10 records of this 0.1-mile section from all sub datasets from 2003 to 2021. Access database was applied for this record extraction by importing and combining both ElementID lists and PMS sub dataset, and the ElementID was used as the key for record searching and exporting. For each pavement treatment type, every individual of its 0.1
	The next step was to obtain and organize the pavement performance data of these pavement treatment types on their 0.1-mile sections. The obtained ElementID was used to extract 10 records of this 0.1-mile section from all sub datasets from 2003 to 2021. Access database was applied for this record extraction by importing and combining both ElementID lists and PMS sub dataset, and the ElementID was used as the key for record searching and exporting. For each pavement treatment type, every individual of its 0.1
	 

	The contents of these data rows are listed in Table 4. 
	The contents of these data rows are listed in Table 4. 
	 

	Table 4. PMS data extracted for long-term performance modeling 
	Table
	TBody
	TR
	Span
	Categories 
	Categories 

	Items 
	Items 


	TR
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	Description 
	Description 

	Control section, Roadway name, Direction, ElementID, District, Parish, Log mile from, Log mile to, Functional Class, Pavement type, Date of data collection 
	Control section, Roadway name, Direction, ElementID, District, Parish, Log mile from, Log mile to, Functional Class, Pavement type, Date of data collection 
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	Pavement Performance 
	Pavement Performance 

	ALCR, RNDM, PTCH, RUT, RUFF, Average IRI, Average rut depth, Alligator cracking extents (High, Low, and Medium), Longitudinal cracking extents (High, Low, and Medium), Transverse cracking extents (High, Low, and Medium) 
	ALCR, RNDM, PTCH, RUT, RUFF, Average IRI, Average rut depth, Alligator cracking extents (High, Low, and Medium), Longitudinal cracking extents (High, Low, and Medium), Transverse cracking extents (High, Low, and Medium) 
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	Project Info 
	Project Info 

	Project name,  Design ADT, Truck %, Final inspection date, Overlay thickness, Milling depth 
	Project name,  Design ADT, Truck %, Final inspection date, Overlay thickness, Milling depth 
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	Climate 
	Climate 

	Annual air temperature, Annual precipitation, Freezing index, Annual number of freeze-thaw cycles, Annual number of wet days 
	Annual air temperature, Annual precipitation, Freezing index, Annual number of freeze-thaw cycles, Annual number of wet days 




	Due to the variations of in these 0.1-mile section pavement performance data, it is usually difficult to obtain a smooth performance curve with a clear trend, and thus not immediately adopted for long-term pavement performance modeling. In addition, local agencies do not determine maintenance strategies or select pavement treatments based on a 0.1-mile section. Therefore, the average value of pavement performance was obtained for modeling long-term pavement condition.  
	Due to the variations of in these 0.1-mile section pavement performance data, it is usually difficult to obtain a smooth performance curve with a clear trend, and thus not immediately adopted for long-term pavement performance modeling. In addition, local agencies do not determine maintenance strategies or select pavement treatments based on a 0.1-mile section. Therefore, the average value of pavement performance was obtained for modeling long-term pavement condition.  
	 

	There were a total 112,487 PMS records collected for thin overlay (TO), ultra-thin overlay (UTO), medium overlay (MO), and structural overlay (SO) projects. Out of these records, 46,895 records have a negative value of age, indicating that these pavement conditions were measured before the construction of these overlay projects and were therefore removed from the database. The remaining 65,592 records belong to 1,348.5 lane-miles of roadways on 12 functional classifications. There are a total of 363 overlay
	There were a total 112,487 PMS records collected for thin overlay (TO), ultra-thin overlay (UTO), medium overlay (MO), and structural overlay (SO) projects. Out of these records, 46,895 records have a negative value of age, indicating that these pavement conditions were measured before the construction of these overlay projects and were therefore removed from the database. The remaining 65,592 records belong to 1,348.5 lane-miles of roadways on 12 functional classifications. There are a total of 363 overlay
	 

	Figure 7. The locations of selected overlay projects in Louisiana 
	 
	 

	Figure
	The distribution of collected PMS records in various ADT ranges is plotted in Figure 8. 36% of the data samples of the selected projects have an ADT of less than 3000. Another 30% of the samples have a medium traffic volume (ADT 5000~15000). The data distribution in various functional classifications is shown in Figure 9.
	The distribution of collected PMS records in various ADT ranges is plotted in Figure 8. 36% of the data samples of the selected projects have an ADT of less than 3000. Another 30% of the samples have a medium traffic volume (ADT 5000~15000). The data distribution in various functional classifications is shown in Figure 9.
	 

	Figure 8. Distribution of PMS records of selected projects among ADT ranges 
	 
	 

	Figure
	 Figure 9. Distribution of PMS records among functional classifications 
	 
	Figure
	Figure 7 through Figure 9 show that the investigated PMS data represents most of the conditions in Louisiana. However, the noises and errors present in these single 0.1-mile PMS performance data were introduced due to variations of field measurements, changes in equipment for data collection, and the shifting of the start and end point of the sections. Additionally, the decision-making procedures performed by local agencies for selecting maintenance and rehabilitation treatments are not determined by a sing
	Figure 7 through Figure 9 show that the investigated PMS data represents most of the conditions in Louisiana. However, the noises and errors present in these single 0.1-mile PMS performance data were introduced due to variations of field measurements, changes in equipment for data collection, and the shifting of the start and end point of the sections. Additionally, the decision-making procedures performed by local agencies for selecting maintenance and rehabilitation treatments are not determined by a sing
	 

	The averaged performance data showed a more consistent trend, and therefore has more reliability in performance modeling, especially for long-term performance. The 0.1-mile PMS condition data was averaged by overlay project and roadway directions (some of the roadway projects are constructed on both directions), and these 1,794 average data are summarized in Table 7. 
	The averaged performance data showed a more consistent trend, and therefore has more reliability in performance modeling, especially for long-term performance. The 0.1-mile PMS condition data was averaged by overlay project and roadway directions (some of the roadway projects are constructed on both directions), and these 1,794 average data are summarized in Table 7. 
	 

	The description of this overlay PMS database is listed in Table 5. 
	The description of this overlay PMS database is listed in Table 5. 
	 

	Table 5. Summary of overlay PMS database 
	Table
	TBody
	TR
	Span
	Type 
	Type 

	Projects 
	Projects 

	mileage 
	mileage 

	Age 
	Age 

	ADT range 
	ADT range 

	Truck% 
	Truck% 

	Milling depth 
	Milling depth 

	Overlay thickness 
	Overlay thickness 

	Number of data 
	Number of data 


	TR
	Span
	UTO 
	UTO 

	37 
	37 

	171.2 
	171.2 

	0-12.6 
	0-12.6 

	400-37,300 
	400-37,300 

	5-34 
	5-34 

	0-2 
	0-2 

	0.75-1.0 
	0.75-1.0 

	147 
	147 
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	TO 
	TO 

	230 
	230 

	746.6 
	746.6 

	0-14.8 
	0-14.8 

	75-66,700 
	75-66,700 

	3-34 
	3-34 

	0-4 
	0-4 

	1.5-2 
	1.5-2 

	1,236 
	1,236 


	TR
	Span
	MO 
	MO 

	79 
	79 

	374.3 
	374.3 

	0-15.1 
	0-15.1 

	100-28,600 
	100-28,600 

	7-25 
	7-25 

	0-4 
	0-4 

	2.5-4 
	2.5-4 

	340 
	340 


	TR
	Span
	SO 
	SO 

	17 
	17 

	56.4 
	56.4 

	0.4-11.1 
	0.4-11.1 

	650-23,600 
	650-23,600 

	5-40 
	5-40 

	0-2 
	0-2 

	2-8 
	2-8 

	71 
	71 
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	Total 
	Total 

	363 
	363 

	1348.5 
	1348.5 

	 
	 

	75-66,700 
	75-66,700 

	3-40 
	3-40 

	 
	 

	 
	 

	1,794 
	1,794 




	Difference in Long-term and Short-term datasets
	Difference in Long-term and Short-term datasets
	 

	The differences between the datasets prepared for long-term and short-term pavement performance models are summarized here:
	The differences between the datasets prepared for long-term and short-term pavement performance models are summarized here:
	 

	 Pavement surface condition data: the surface condition data for long-term performance was extracted from the PMS and represents the average values of a series of connected 0.1-mile sections of a treatment project or a homogenous section/control section within a project. These data were collected from pavement treatment projects spread all over the Louisiana area from 2003 to 2021. These data were collected every two years for most of the roadway functional classifications. On the other hand, the data used
	 Pavement surface condition data: the surface condition data for long-term performance was extracted from the PMS and represents the average values of a series of connected 0.1-mile sections of a treatment project or a homogenous section/control section within a project. These data were collected from pavement treatment projects spread all over the Louisiana area from 2003 to 2021. These data were collected every two years for most of the roadway functional classifications. On the other hand, the data used
	 Pavement surface condition data: the surface condition data for long-term performance was extracted from the PMS and represents the average values of a series of connected 0.1-mile sections of a treatment project or a homogenous section/control section within a project. These data were collected from pavement treatment projects spread all over the Louisiana area from 2003 to 2021. These data were collected every two years for most of the roadway functional classifications. On the other hand, the data used
	 Pavement surface condition data: the surface condition data for long-term performance was extracted from the PMS and represents the average values of a series of connected 0.1-mile sections of a treatment project or a homogenous section/control section within a project. These data were collected from pavement treatment projects spread all over the Louisiana area from 2003 to 2021. These data were collected every two years for most of the roadway functional classifications. On the other hand, the data used
	 


	 Pavement structural information: The structural information for long-term performance condition data was collected and verified from design files. However, no structural data was available for short-term performance prediction.
	 Pavement structural information: The structural information for long-term performance condition data was collected and verified from design files. However, no structural data was available for short-term performance prediction.
	 Pavement structural information: The structural information for long-term performance condition data was collected and verified from design files. However, no structural data was available for short-term performance prediction.
	 


	 Traffic data: The traffic information for long-term performance models, including ADT and truck percentage, was extracted from design documents, 
	 Traffic data: The traffic information for long-term performance models, including ADT and truck percentage, was extracted from design documents, 


	which represent the traffic condition at the year of design. For short-term data, these parameters were obtained by matching the log mile and control section with Highway Needs files, in which the ADT and truck percent of 2009 are used. 
	which represent the traffic condition at the year of design. For short-term data, these parameters were obtained by matching the log mile and control section with Highway Needs files, in which the ADT and truck percent of 2009 are used. 
	which represent the traffic condition at the year of design. For short-term data, these parameters were obtained by matching the log mile and control section with Highway Needs files, in which the ADT and truck percent of 2009 are used. 
	which represent the traffic condition at the year of design. For short-term data, these parameters were obtained by matching the log mile and control section with Highway Needs files, in which the ADT and truck percent of 2009 are used. 
	 



	Pavement Performance Prediction Using Machine Learning
	Pavement Performance Prediction Using Machine Learning
	 

	Artificial Neural Network (ANN)
	Artificial Neural Network (ANN)
	 

	In this research, the Matlab Deep Learning Toolbox was adopted for the training procedure of ANN models for predicting pavement performance [92]. The ANN can be built using both Deep Learning Applications and coding. 
	In this research, the Matlab Deep Learning Toolbox was adopted for the training procedure of ANN models for predicting pavement performance [92]. The ANN can be built using both Deep Learning Applications and coding. 
	 

	The dataset was randomly divided into training, validation, and testing sub datasets before training with designed ratios. During the training procedure, the training samples were presented to the ANN and used for computing the gradient, updating the network weights and biases. Additionally, the ANN was adjusted according to its error. Validation samples were used to measure the network’s generalization and to halt the training procedure when generalization stops improving [92]. The error on the validation 
	The dataset was randomly divided into training, validation, and testing sub datasets before training with designed ratios. During the training procedure, the training samples were presented to the ANN and used for computing the gradient, updating the network weights and biases. Additionally, the ANN was adjusted according to its error. Validation samples were used to measure the network’s generalization and to halt the training procedure when generalization stops improving [92]. The error on the validation 
	 

	The testing dataset did not have an effect on training; instead, it provided an independent measure of network performance during and after the training procedure. If the error on the test set reached a minimum at a significantly different iteration number than the validation set error, this might indicate a poor division of the dataset. The default ratio among these three datasets was 70%, 15%, and 15%. 
	The testing dataset did not have an effect on training; instead, it provided an independent measure of network performance during and after the training procedure. If the error on the test set reached a minimum at a significantly different iteration number than the validation set error, this might indicate a poor division of the dataset. The default ratio among these three datasets was 70%, 15%, and 15%. 
	 

	The number of hidden layers and the numbers of neurons in each layer were designed. The numbers of neurons in hidden layers directly affected the model performance. Having too many or too few neurons resulted in overcomplicated or oversimplified models. Therefore, it was necessary to determine the optimized numbers of neurons through a trial-and-error process. Figure 10 shows an example of designed ANN structure with 5 input neurons, a hidden layer with 5 neurons, and 1 output neuron in Matlab.
	The number of hidden layers and the numbers of neurons in each layer were designed. The numbers of neurons in hidden layers directly affected the model performance. Having too many or too few neurons resulted in overcomplicated or oversimplified models. Therefore, it was necessary to determine the optimized numbers of neurons through a trial-and-error process. Figure 10 shows an example of designed ANN structure with 5 input neurons, a hidden layer with 5 neurons, and 1 output neuron in Matlab.
	 

	Figure 10. Designed ANN structure in Matlab 
	 
	 

	Figure
	The training algorithm should be defined before training the designed ANN. The Neural Net Fitting (nftool) Application of the Matlab Deep Learning Toolbox offers three of the most commonly used training algorithms: Levenberg-Marquardt, Bayesian Regularization, and Scaled Conjugate Gradient:
	The training algorithm should be defined before training the designed ANN. The Neural Net Fitting (nftool) Application of the Matlab Deep Learning Toolbox offers three of the most commonly used training algorithms: Levenberg-Marquardt, Bayesian Regularization, and Scaled Conjugate Gradient:
	 

	Levenberg-Marquardt Algorithm typically requires more memory but less time. With this algorithm, the training procedure stops when generalization is not improving anymore. This can be dragonized by increasing the mean square error (MSE) of the validation sample dataset. 
	Levenberg-Marquardt Algorithm typically requires more memory but less time. With this algorithm, the training procedure stops when generalization is not improving anymore. This can be dragonized by increasing the mean square error (MSE) of the validation sample dataset. 
	 

	Bayesian Regularization Algorithm requires more computing time, but its algorithm is suitable for datasets with a smaller sample population and noise. With this algorithm, the training procedure stops according to adaptive weight minimization (regularization).
	Bayesian Regularization Algorithm requires more computing time, but its algorithm is suitable for datasets with a smaller sample population and noise. With this algorithm, the training procedure stops according to adaptive weight minimization (regularization).
	 

	Scaled Conjugate Gradient Algorithm has the benefit of requiring less memory. Similar to the Levenberg-Marquardt Algorithm, the training procedure using this algorithm stops when generalization is not improving.
	Scaled Conjugate Gradient Algorithm has the benefit of requiring less memory. Similar to the Levenberg-Marquardt Algorithm, the training procedure using this algorithm stops when generalization is not improving.
	 

	The prediction power of trained ANN models was evaluated by the mean squared error (MSE) and regression R values. Figure 11 shows an example of ANN training based on data of the cracking percentage of JCP pavement collected on functional class 14 (Minor Arterial Urban). The training used the Levenberg-Marquardt algorithm and stopped at epoch 28, where the validation dataset had the best performance with an MSE of 9.2. The R values for all 3 datasets and the overall dataset were all above 0.96 (R2 >0.92), in
	The prediction power of trained ANN models was evaluated by the mean squared error (MSE) and regression R values. Figure 11 shows an example of ANN training based on data of the cracking percentage of JCP pavement collected on functional class 14 (Minor Arterial Urban). The training used the Levenberg-Marquardt algorithm and stopped at epoch 28, where the validation dataset had the best performance with an MSE of 9.2. The R values for all 3 datasets and the overall dataset were all above 0.96 (R2 >0.92), in
	 

	Figure 11. Model performance and regression of trained ANN (JCP, Functional Class 14) 
	  
	Figure
	Figure
	In this study, the ANN was applied to obtain short-term performance models based on the PMS and HPMS databases. For each dataset from a specific pavement category (pavement distress, pavement type, and functional class), various combinations of input values were tested to examine the most suitable parameters for predicting future pavement performance. Trail-and-error procedures were also applied to obtain the optimized ANN structures (number of neurons) and training functions. Due to the fact that various M
	In this study, the ANN was applied to obtain short-term performance models based on the PMS and HPMS databases. For each dataset from a specific pavement category (pavement distress, pavement type, and functional class), various combinations of input values were tested to examine the most suitable parameters for predicting future pavement performance. Trail-and-error procedures were also applied to obtain the optimized ANN structures (number of neurons) and training functions. Due to the fact that various M
	 

	Neuro-Fuzzy Designer
	Neuro-Fuzzy Designer
	 

	The Matlab Fuzzy Logic Toolbox software provides a command-line function and an interactive app (Neuro-Fuzzy Designer) for Sugeno fuzzy inference systems using neuro-adaptive learning techniques, similar to the techniques used for training ANN models. The panel of the Neuro-Fuzzy Designer is shown in Figure 12.
	The Matlab Fuzzy Logic Toolbox software provides a command-line function and an interactive app (Neuro-Fuzzy Designer) for Sugeno fuzzy inference systems using neuro-adaptive learning techniques, similar to the techniques used for training ANN models. The panel of the Neuro-Fuzzy Designer is shown in Figure 12.
	 

	Figure 12. Neuro-Fuzzy Designer panel in Matlab 
	 
	 
	 

	Figure
	Figure 12 presents the main panel of ANFIS Panel in Matlab, where the training, testing, and checking datasets were loaded using this graphical user interface (GUI) either through a file or workspace. The FIS was created using either the grid partition method or the subtractive clustering method. The grid partition is the default method of the FIS generation in Matlab. It generates rules by enumerating all possible combinations of membership functions for all inputs. However, this resulted in a large number
	Figure 12 presents the main panel of ANFIS Panel in Matlab, where the training, testing, and checking datasets were loaded using this graphical user interface (GUI) either through a file or workspace. The FIS was created using either the grid partition method or the subtractive clustering method. The grid partition is the default method of the FIS generation in Matlab. It generates rules by enumerating all possible combinations of membership functions for all inputs. However, this resulted in a large number
	 

	Neuro-Fuzzy Designer also provided various options for membership functions to build FIS models. In addition to the bell-shaped and Gaussian membership functions introduced above, MFs with other shapes and equations were also available for users to perform trial-and-error to locate suitable MFs and determine their corresponding 
	parameters through training procedures. The MFs and their details available in Neuro-Fuzzy Designer are listed in Table 6.
	parameters through training procedures. The MFs and their details available in Neuro-Fuzzy Designer are listed in Table 6.
	 

	Table 6. Membership functions in Matlab’s Neuro-Fuzzy Designer 
	Table
	TBody
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	MF 
	MF 

	Name 
	Name 

	Plot 
	Plot 

	MF 
	MF 

	Name 
	Name 

	Plot 
	Plot 


	TR
	Span
	trimf 
	trimf 

	triangular 
	triangular 

	 
	 
	Figure

	psigmf 
	psigmf 

	product sigmoidal 
	product sigmoidal 

	 
	 
	Figure
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	trapmf 
	trapmf 

	trapezoidal 
	trapezoidal 

	 
	 
	Figure

	gbellmf 
	gbellmf 

	generalized bell-shaped 
	generalized bell-shaped 

	 
	 
	Figure
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	pimf 
	pimf 

	π shaped 
	π shaped 

	 
	 
	Figure

	gaussmf 
	gaussmf 

	Gaussian 
	Gaussian 

	 
	 
	Figure
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	dsigmf 
	dsigmf 

	difference sigmoidal 
	difference sigmoidal 

	 
	 
	Figure

	gauss2mf 
	gauss2mf 

	two-sided composite of different Gaussian 
	two-sided composite of different Gaussian 

	 
	 
	Figure




	The parameters of these MFs are also shown in the panels, and the main task of the training procedure was to update and obtain these MF parameters to fit the given input data. 
	The parameters of these MFs are also shown in the panels, and the main task of the training procedure was to update and obtain these MF parameters to fit the given input data. 
	 

	With the designed structure of membership function numbers and types, the ANFIS can be trained with a given error tolerance and number of epochs. The training was stopped when either of these two criteria is achieved. The training procedure was monitored, as shown in Figure 10, where the error values (RMSE) of both the training and checking datasets for each completed epochs are plotted in the window. 
	With the designed structure of membership function numbers and types, the ANFIS can be trained with a given error tolerance and number of epochs. The training was stopped when either of these two criteria is achieved. The training procedure was monitored, as shown in Figure 10, where the error values (RMSE) of both the training and checking datasets for each completed epochs are plotted in the window. 
	 

	K-Fold Cross Validation in Machine Learning
	K-Fold Cross Validation in Machine Learning
	 

	During the developing of ANN models, the training, validation, and testing datasets were usually randomly selected from original database. To evaluate the performance of the trained models, R2 values and root mean square errors (RMSE) of both the training and testing datasets were observed, and the optimal model structures were determined. However, the RMSE values could greatly vary due to the bias of the randomly divided datasets, which introduced difficulty in model optimization. The R2 and RMSE were calc
	During the developing of ANN models, the training, validation, and testing datasets were usually randomly selected from original database. To evaluate the performance of the trained models, R2 values and root mean square errors (RMSE) of both the training and testing datasets were observed, and the optimal model structures were determined. However, the RMSE values could greatly vary due to the bias of the randomly divided datasets, which introduced difficulty in model optimization. The R2 and RMSE were calc
	 

	𝑅2=1−∑(𝑦𝑖−𝑦𝑖𝑝)2/∑(𝑦𝑖−𝑦𝑎𝑣𝑒)2                          
	𝑅2=1−∑(𝑦𝑖−𝑦𝑖𝑝)2/∑(𝑦𝑖−𝑦𝑎𝑣𝑒)2                          
	 
	 
	 
	 
	(22)
	 

	𝑅𝑀𝑆𝐸=[(1𝑁)∑(𝑦𝑖−𝑦𝑖𝑝)2]1/2                                       
	𝑅𝑀𝑆𝐸=[(1𝑁)∑(𝑦𝑖−𝑦𝑖𝑝)2]1/2                                       
	 
	 
	 
	 
	(23)
	 

	Where, yi is the i-th measurement, yip is its corresponding prediction, N is the number of data points, and yave is the average value of all yi.
	Where, yi is the i-th measurement, yip is its corresponding prediction, N is the number of data points, and yave is the average value of all yi.
	 

	One method for avoiding this drawback was to train the model (with the same model configuration) multiple times, with different training and testing sets each time (these sets came from same dataset), then evaluate the average RMSE and R2. K-Fold cross validation provided a standard procedure for this methodology. 
	One method for avoiding this drawback was to train the model (with the same model configuration) multiple times, with different training and testing sets each time (these sets came from same dataset), then evaluate the average RMSE and R2. K-Fold cross validation provided a standard procedure for this methodology. 
	 

	 The first step was to divide the original dataset into K equally-sized folds. 
	 The first step was to divide the original dataset into K equally-sized folds. 
	 The first step was to divide the original dataset into K equally-sized folds. 
	 The first step was to divide the original dataset into K equally-sized folds. 
	 


	 Then the No. K fold of data was assigned as the testing dataset, the No.1 through K-1 sets were applied as training set, and the R2 and RMSE were recorded after model development. 
	 Then the No. K fold of data was assigned as the testing dataset, the No.1 through K-1 sets were applied as training set, and the R2 and RMSE were recorded after model development. 
	 Then the No. K fold of data was assigned as the testing dataset, the No.1 through K-1 sets were applied as training set, and the R2 and RMSE were recorded after model development. 
	 


	 Next, use No. (K-1) fold as the testing set and all the remaining folds as training set, and record R2 and RMSE. 
	 Next, use No. (K-1) fold as the testing set and all the remaining folds as training set, and record R2 and RMSE. 
	 Next, use No. (K-1) fold as the testing set and all the remaining folds as training set, and record R2 and RMSE. 
	 


	 Repeat this procedure until every individual fold has been used as the testing sets, then take the average R2 and RMSE as a reference for model evaluation.
	 Repeat this procedure until every individual fold has been used as the testing sets, then take the average R2 and RMSE as a reference for model evaluation.
	 Repeat this procedure until every individual fold has been used as the testing sets, then take the average R2 and RMSE as a reference for model evaluation.
	 



	In order to further optimize this method, the original dataset was shuffled before dividing it into K folds. This K-fold cross-validation was implemented as a loop for ANN modeling to detect the optimal model structures. 
	In order to further optimize this method, the original dataset was shuffled before dividing it into K folds. This K-fold cross-validation was implemented as a loop for ANN modeling to detect the optimal model structures. 
	 

	Development of Short-Term Prediction Models
	Development of Short-Term Prediction Models
	 

	For every individual model, a correlation matrix was constructed to determine the optimal climate factor out of the five MREEA parameters for model training. Using the selected climate factor, existing cracking percent, ADT per lane, and accumulated trucks as input, and cracking percent after two years as output, the dataset for each model was loaded into an ANN for model training. 
	For every individual model, a correlation matrix was constructed to determine the optimal climate factor out of the five MREEA parameters for model training. Using the selected climate factor, existing cracking percent, ADT per lane, and accumulated trucks as input, and cracking percent after two years as output, the dataset for each model was loaded into an ANN for model training. 
	 

	The performance of various ANN structures (hidden layer size) and training algorithms were examined based on correlation coefficients and RMSE. K-Fold validation was applied within this procedure to minimize the variation introduced by random selection of datasets (training, testing, and validation) and provide a stable trend for RMSE values. 
	The performance of various ANN structures (hidden layer size) and training algorithms were examined based on correlation coefficients and RMSE. K-Fold validation was applied within this procedure to minimize the variation introduced by random selection of datasets (training, testing, and validation) and provide a stable trend for RMSE values. 
	 

	For each algorithm, the optimal model considering R2 and the least RMSE was obtained. These candidate models were further validated with a newly measured dataset in HPMS (i.e., pavement condition data collected in 2021). Since the pavement age is missing in the dataset of the HPMS 2021, the 0.1-mile sections with a significant decrease in cracking percent from 2019 to 2021 were considered as sections where treatments were applied during this period, and therefore removed. The remaining 2021 measured data wa
	For each algorithm, the optimal model considering R2 and the least RMSE was obtained. These candidate models were further validated with a newly measured dataset in HPMS (i.e., pavement condition data collected in 2021). Since the pavement age is missing in the dataset of the HPMS 2021, the 0.1-mile sections with a significant decrease in cracking percent from 2019 to 2021 were considered as sections where treatments were applied during this period, and therefore removed. The remaining 2021 measured data wa
	 

	Figure 13. Flow chart of building short-term ANN pavement performance models 
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	Development of Long-term Prediction Models
	Development of Long-term Prediction Models
	 

	Different machine learning and neural network methods, such as including the SVM model, tree-shaped models, and artificial neural network (ANN) models, have been successfully used to forecast short-term pavement conditions at either the project level or network level [56, 92]. However, existing models still face challenges in accurately predicting long-term pavement conditions under real-world conditions. These conditions include different types of sequential and non-sequential variables that affect the dev
	Different machine learning and neural network methods, such as including the SVM model, tree-shaped models, and artificial neural network (ANN) models, have been successfully used to forecast short-term pavement conditions at either the project level or network level [56, 92]. However, existing models still face challenges in accurately predicting long-term pavement conditions under real-world conditions. These conditions include different types of sequential and non-sequential variables that affect the dev
	 

	Figure 14. ANN model structure for IRI family curve 
	 
	 

	Figure
	Similar to the optimizing procedure for short-term performance models, the model structures of both hidden layer sizes and number of layers was investigated. Their R2 and RMSE values were used as references for model evaluation. In addition, the predicted long-term performance curves was also considered when selecting models with better 
	prediction power. For example, performance curves with significant variation after 13 years were not rated as desired models, even though they may have had excellent R2 and RMSE during training.  
	prediction power. For example, performance curves with significant variation after 13 years were not rated as desired models, even though they may have had excellent R2 and RMSE during training.  
	 

	Discussion of Results
	Discussion of Results
	 

	Short-Term Cracking Percent Prediction
	Short-Term Cracking Percent Prediction
	 

	Based on the methodology mentioned above, in order to predict 2- and 4-year future cracking percentages for all interstate and NHS pavement segments in Louisiana, a group of short-term performance modeling datasets were assembled, as shown in Table 3. The modeling datasets were prepared through data mining from all 2017-2020 HPMS 0.1-mile sections together with associated traffic loading and site-specific climate data.  Two machine learning techniques, ANN and ANFIS, were considered to build each individual
	Based on the methodology mentioned above, in order to predict 2- and 4-year future cracking percentages for all interstate and NHS pavement segments in Louisiana, a group of short-term performance modeling datasets were assembled, as shown in Table 3. The modeling datasets were prepared through data mining from all 2017-2020 HPMS 0.1-mile sections together with associated traffic loading and site-specific climate data.  Two machine learning techniques, ANN and ANFIS, were considered to build each individual
	 

	ANN Model Training and Performance
	ANN Model Training and Performance
	 

	Selection of Neuron Numbers and Backpropagation Algorithms
	Selection of Neuron Numbers and Backpropagation Algorithms
	 

	In this study, a single layer feedforward ANN model structure was adopted for training short-term pavement cracking percent prediction datasets. However, due to the variation in the quality and quantity of data samples among different pavement categories, it was difficult to obtain a single model suitable for all pavement types and functional classifications. In addition, each backpropagation algorithm also had pros and cons when working with different types of datasets. Therefore, for every individual pave
	In this study, a single layer feedforward ANN model structure was adopted for training short-term pavement cracking percent prediction datasets. However, due to the variation in the quality and quantity of data samples among different pavement categories, it was difficult to obtain a single model suitable for all pavement types and functional classifications. In addition, each backpropagation algorithm also had pros and cons when working with different types of datasets. Therefore, for every individual pave
	 

	This procedure is explained here based on an example of selecting neuron numbers and training algorithms for asphalt pavement sections on Interstate Rural (ASP, Functional Classification 01). There were total 3,869 rows of data prepared in this category, with five inputs, including current cracking percent, freezing index, pavement age, and ADT per lane. Freezing index was selected as the climate feature because this parameter has the most relevance to the output, future cracking percent (measured two years
	folds for a five-fold cross validation. The benefits of the K-fold cross validation can be seen in Figure 15, where the noise in both training and testing RMSE curves was too significant to determine the extremum points for capturing the optimal hidden layer size (Figure 15 (a)). However, when a five-fold cross validation was applied, it became obvious that when the number of neurons was larger than 20, the ANN model lost the stability in performance and showed significant oscillation in RMSEs. This indicat
	folds for a five-fold cross validation. The benefits of the K-fold cross validation can be seen in Figure 15, where the noise in both training and testing RMSE curves was too significant to determine the extremum points for capturing the optimal hidden layer size (Figure 15 (a)). However, when a five-fold cross validation was applied, it became obvious that when the number of neurons was larger than 20, the ANN model lost the stability in performance and showed significant oscillation in RMSEs. This indicat
	 

	Figure 15. Relationships of RMSE values with neuron numbers (a) without cross validation (b) with five-fold cross validation 
	 
	 

	Figure
	Three training algorithms commonly adopted by other researchers were also examined: Levenberg-Marquardt (trainlm), Bayesian Regularization (trainbr), and Scaled Conjugate Gradient (trainscg). For each training algorithm and a specific number of neurons, K-fold validation was added to obtain the average RMSE for both training and validation as well as testing datasets. The relationships between RMSE and the number of neurons for the three algorithms are plotted in Figure 16.
	Three training algorithms commonly adopted by other researchers were also examined: Levenberg-Marquardt (trainlm), Bayesian Regularization (trainbr), and Scaled Conjugate Gradient (trainscg). For each training algorithm and a specific number of neurons, K-fold validation was added to obtain the average RMSE for both training and validation as well as testing datasets. The relationships between RMSE and the number of neurons for the three algorithms are plotted in Figure 16.
	 

	Figure 16. Neuron numbers vs. training/testing RMSE values with (a) Levenberg-Marquardt Algorithm, (b) Bayesian Regularization Algorithm and (c) Scaled Conjugate Gradient Algorithm      
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	Figure
	The curves in Figure 16 were used to evaluate the performance of models and algorithm for the dataset of the selected pavement category. The optimal ANN model, including model structure (hidden layer size) and suitable algorithm, could be determined as well.  (1) The ANN models using Levenberg-Marquardt Algorithm (trainlm) with a hidden layer size from 1 to 6 showed consistently decreasing trends in both training and testing RMSEs. The RMSE curves began to fluctuate starting from 7. Therefore, neuron number
	The curves in Figure 16 were used to evaluate the performance of models and algorithm for the dataset of the selected pavement category. The optimal ANN model, including model structure (hidden layer size) and suitable algorithm, could be determined as well.  (1) The ANN models using Levenberg-Marquardt Algorithm (trainlm) with a hidden layer size from 1 to 6 showed consistently decreasing trends in both training and testing RMSEs. The RMSE curves began to fluctuate starting from 7. Therefore, neuron number
	 

	Table 7. Summary of optimal ANN models (ASP FUNCLAS=01) 
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	2.75 

	2.85 
	2.85 




	From the comparison in Table 7, it can be seen that trainlm and trainbr have better R2 in prediction, however the RMSEs of all three models were at the same level; therefore, more evaluation is needed to determine the best model for this pavement group. 
	From the comparison in Table 7, it can be seen that trainlm and trainbr have better R2 in prediction, however the RMSEs of all three models were at the same level; therefore, more evaluation is needed to determine the best model for this pavement group. 
	 

	The developed ANN models in Table 7 were then applied to predict the future pavement performance. Although the HPMS data for year 2021 was delivered, its project records during 2020-2021 were not yet prepared. Therefore, this year’s performance was not used for model training. However, it would still be valuable for testing the model’s performance and evaluating its capability in assisting DOTs in determining their condition targets.
	The developed ANN models in Table 7 were then applied to predict the future pavement performance. Although the HPMS data for year 2021 was delivered, its project records during 2020-2021 were not yet prepared. Therefore, this year’s performance was not used for model training. However, it would still be valuable for testing the model’s performance and evaluating its capability in assisting DOTs in determining their condition targets.
	 

	The cracking percent of 2019 and its corresponding age were used as input, while ADT/lane, climate (freezing index in this model), and truck percent were the same. The output was 2021’s cracking percent. The difference in the cracking percent values between 2019 and 2021 was reviewed. If the reduction in the cracking percent from 2019 to 2021 was larger than 5%, it was assumed that a project constructed on this pavement section, and this row of data was therefore deleted. There were a total 3,553 rows of 20
	The cracking percent of 2019 and its corresponding age were used as input, while ADT/lane, climate (freezing index in this model), and truck percent were the same. The output was 2021’s cracking percent. The difference in the cracking percent values between 2019 and 2021 was reviewed. If the reduction in the cracking percent from 2019 to 2021 was larger than 5%, it was assumed that a project constructed on this pavement section, and this row of data was therefore deleted. There were a total 3,553 rows of 20
	 

	The five inputs of these datasets were fed into the trained ANN models, and the outputs, which were the predicted 2021 cracking percent values, were compared with the field-measured HPMS data. The comparisons are plotted in Figure 17. 
	The five inputs of these datasets were fed into the trained ANN models, and the outputs, which were the predicted 2021 cracking percent values, were compared with the field-measured HPMS data. The comparisons are plotted in Figure 17. 
	 

	Figure 17. Comparison between measured and predicted cracking percent with (a) trainlm,  (b) trainbr and (c) trainscg 
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	Figure
	It is observed that there was a group of data points that could not be predicted well with the model developed using training function trainbr (Figure 17b), which significantly reduced the overall prediction power of this model. On the other hand, the other two models showed a sound correlation with an R2 value greater than 0.85 (Figure 17a & 17c). 
	It is observed that there was a group of data points that could not be predicted well with the model developed using training function trainbr (Figure 17b), which significantly reduced the overall prediction power of this model. On the other hand, the other two models showed a sound correlation with an R2 value greater than 0.85 (Figure 17a & 17c). 
	 

	Instead of using cracking percent values, FHWA has regulations for rating pavement cracking condition goodness as good, fair and poor. The goodness of the predicted cracking percent and measured cracking percent were rated according to FHWA criteria and summarized in Table 8.
	Instead of using cracking percent values, FHWA has regulations for rating pavement cracking condition goodness as good, fair and poor. The goodness of the predicted cracking percent and measured cracking percent were rated according to FHWA criteria and summarized in Table 8.
	 

	Table 8. Federal goodness rating of predicted and measured cracking percent 
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	1.9 


	TR
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	845 
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	Table 8 indicates that the ANN model with the training function “trainscg” has the least difference in both the number of 0.1-mile sections and the percent of total pavement mile length. Based on the overall performance shown in Table 8 and Figure 17, an ANN model with 8 neurons and the Scaled Conjugate Gradient Algorithm is considered the optimal one for predicting the short-term pavement performance of asphalt pavement on interstate highways in rural area.
	Table 8 indicates that the ANN model with the training function “trainscg” has the least difference in both the number of 0.1-mile sections and the percent of total pavement mile length. Based on the overall performance shown in Table 8 and Figure 17, an ANN model with 8 neurons and the Scaled Conjugate Gradient Algorithm is considered the optimal one for predicting the short-term pavement performance of asphalt pavement on interstate highways in rural area.
	 

	Developed ANN Models for Predicting Short-Term Cracking Percent of NHS Pavements
	Developed ANN Models for Predicting Short-Term Cracking Percent of NHS Pavements
	 

	A similar ANN modeling procedure was followed to generate various ANN cracking percent prediction models for three pavement types (ASP, COM and JCP) and various roadway function classes, as listed in Table 3. Note that each model has the same four inputs (Age, ADT, T% and Current Cracking Percent), along with a unique weather input selected from the five MERRA average climate parameters by district. Additionally, all three training functions (trainlm, trainbr and trainscg) were tested with various neuron nu
	predicted cracking percent was then compared with the measured 2021 performance. The best model was selected by considering both the training performance (R2, RMSE) and its prediction power in simulating the 2021 performance. In general, models with better prediction accuracy (compared to 2021 measured crack percent) and fewer neuron numbers are preferred.
	predicted cracking percent was then compared with the measured 2021 performance. The best model was selected by considering both the training performance (R2, RMSE) and its prediction power in simulating the 2021 performance. In general, models with better prediction accuracy (compared to 2021 measured crack percent) and fewer neuron numbers are preferred.
	 

	      ANN Models in ASP Pavements. The developed ANN models of 7 functional classes for ASP pavements are listed in Table 9. Functional Classification 06 (Minor Arterial Rural) was excluded because there were only 4 data records in this category, which was not sufficient to build up ANN models. It can be concluded that all these models have sound prediction power with R2 values larger than 0.85 and RMSE values less than 3.1. This can be seen in the overall comparison between measured and predicted cracking 
	      ANN Models in ASP Pavements. The developed ANN models of 7 functional classes for ASP pavements are listed in Table 9. Functional Classification 06 (Minor Arterial Rural) was excluded because there were only 4 data records in this category, which was not sufficient to build up ANN models. It can be concluded that all these models have sound prediction power with R2 values larger than 0.85 and RMSE values less than 3.1. This can be seen in the overall comparison between measured and predicted cracking 
	 

	Table 9. ANN ASP cracking models 
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	AAFTC 
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	2 

	0.95 
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	*AAT - Average annual air temperature
	*AAT - Average annual air temperature
	 

	  AAP - Average annual precipitation
	  AAP - Average annual precipitation
	 

	  AAFI - Average annual freeze index
	  AAFI - Average annual freeze index
	 

	  AAWD - Average annual wet days
	  AAWD - Average annual wet days
	 

	  AAFTC - Average annual freeze/thaw cycles
	  AAFTC - Average annual freeze/thaw cycles
	 

	Figure 18. Overall comparison between predicted and measured cracking percent on ASP 
	 
	 

	Figure
	Figure 19. Goodness ranking between predicted and measured cracking percent on ASP 
	 
	 

	Figure
	Figure 19 also compared the goodness levels of predicted and measured crack percentage on overall ASP 0.1-mile sections. Only 190 out of 16,965 (1.1%) 0.1-mile sections were different, indicating the soundness of this short-term performance model.
	Figure 19 also compared the goodness levels of predicted and measured crack percentage on overall ASP 0.1-mile sections. Only 190 out of 16,965 (1.1%) 0.1-mile sections were different, indicating the soundness of this short-term performance model.
	 

	      ANN Models in COM Pavements. The developed ANN models of 6 functional classes in COM pavements are listed in Table 10. Note that the R2 value of the ANN model for functional class 16 (Minor Arterial Urban) was relatively low. This is because the available data for this group were insufficient for model training (the same category for ASP had 400 data and sound model performance). 
	      ANN Models in COM Pavements. The developed ANN models of 6 functional classes in COM pavements are listed in Table 10. Note that the R2 value of the ANN model for functional class 16 (Minor Arterial Urban) was relatively low. This is because the available data for this group were insufficient for model training (the same category for ASP had 400 data and sound model performance). 
	 

	Table 10. ANN COM cracking models 
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	In general, the overall performance of ANN models developed for COM pavements showed very promising potential in predicting 2-year future cracking percent conditions, as is shown in Figure 20. This overall performance would be improved if the Functional Class 16 data were removed.
	In general, the overall performance of ANN models developed for COM pavements showed very promising potential in predicting 2-year future cracking percent conditions, as is shown in Figure 20. This overall performance would be improved if the Functional Class 16 data were removed.
	 

	Figure 20. Overall comparison between predicted and measured cracking percent on COM 
	 
	 

	Figure
	Regarding the goodness rating of 2021 cracking prediction for COM pavements, there was only a difference of less than 1% (0.89%, 151 out of 19,564 0.1-mile sections) when compared with the measured values.
	Regarding the goodness rating of 2021 cracking prediction for COM pavements, there was only a difference of less than 1% (0.89%, 151 out of 19,564 0.1-mile sections) when compared with the measured values.
	 

	Figure 21. Goodness ranking between predicted and measured cracking percent on COM 
	 
	 

	Figure
	Figure 21 shows the predicted and measured 2021 goodness rating of cracking percent, in which the two overall rating percent values are very close. 
	Figure 21 shows the predicted and measured 2021 goodness rating of cracking percent, in which the two overall rating percent values are very close. 
	 

	      ANN Models in JCP Pavements. Functional Class 06 and 16 were not available for JCP models. Furthermore, Functional Class 01 did not show a very high R2 value, although the RMSE was less than 1.5. However, the rest four models were still suitable for implementation, as the model training results showed in Table 11.
	      ANN Models in JCP Pavements. Functional Class 06 and 16 were not available for JCP models. Furthermore, Functional Class 01 did not show a very high R2 value, although the RMSE was less than 1.5. However, the rest four models were still suitable for implementation, as the model training results showed in Table 11.
	 

	Table 11. ANN JCP cracking models 
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	The combined 5 JCP models in Table 11 showed good prediction power in both cracking percent values and goodness rating (Figure 22 and 23).
	The combined 5 JCP models in Table 11 showed good prediction power in both cracking percent values and goodness rating (Figure 22 and 23).
	 

	Figure 22. Overall comparison between predicted and measured cracking percent on JCP 
	 
	 

	Figure
	Figure 23. Goodness ranking between predicted and measured cracking percent on JCP 
	 
	 

	Figure
	 
	 
	Prediction of 2022 and 2024 Cracking Percent Goodness Levels and Targets
	 

	The above comparision and validation indicate that the developed short-term models have the capability to predict 2-year performance with high accuracy. Therefore, they could be adopted in forecasting the 2-year and 4-year cracking percent and determining the condition targets required by FHWA. With the developed models for each pavement types and functional classification, their 2020 cracking percentages and pavement ages were used as inputs, along with other constant parameters (climate, truck percentage,
	The above comparision and validation indicate that the developed short-term models have the capability to predict 2-year performance with high accuracy. Therefore, they could be adopted in forecasting the 2-year and 4-year cracking percent and determining the condition targets required by FHWA. With the developed models for each pavement types and functional classification, their 2020 cracking percentages and pavement ages were used as inputs, along with other constant parameters (climate, truck percentage,
	 

	Figure 24. Overall cracking distress goodness levels predicted for three NHS pavement types  
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	(a) ASP sections 
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	Figure
	(b) COM sections 
	(b) COM sections 
	(b) COM sections 


	 
	 

	Figure
	(c) JCP sections 
	(c) JCP sections 
	(c) JCP sections 


	In order to validate the trend of the predicted cracking percents for 2022 and 2024, the corresponding measured values of 2018 and 2020 were also plotted in Figure 24. Within these four years of cracking performances, the differences between the simulated results (from 2020 to 2022 and from 2022 to 2024) and the measured ones (from 2018 to 2020) showed consistent trends for three pavement categories. This indicates that the simulated results were able to accurately reflect the changes in conditions on these
	In order to validate the trend of the predicted cracking percents for 2022 and 2024, the corresponding measured values of 2018 and 2020 were also plotted in Figure 24. Within these four years of cracking performances, the differences between the simulated results (from 2020 to 2022 and from 2022 to 2024) and the measured ones (from 2018 to 2020) showed consistent trends for three pavement categories. This indicates that the simulated results were able to accurately reflect the changes in conditions on these
	 

	Figure 25. Overall cracking distress goodness levels predicted for interstate  and non-interstate pavement sections 
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	(b) non-interstate sections
	(b) non-interstate sections
	(b) non-interstate sections
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	The short-term models were developed based on pavement types and functional classification. Therefore, the overall performance of interstate highways and NHS can be easily summarized by grouping 0.1-mile sections from all three pavement types by functional classifications. 
	The short-term models were developed based on pavement types and functional classification. Therefore, the overall performance of interstate highways and NHS can be easily summarized by grouping 0.1-mile sections from all three pavement types by functional classifications. 
	 

	ANFIS Training and Model Performance
	ANFIS Training and Model Performance
	 

	ANFIS is another neural network training technique often used in engineering prediction models. One potential benefit is that ANFIS can handle incomplete or noisy data by using fuzzy logic to transform given inputs into a desired output through highly interconnected neural network processing elements and information connections. In this study, the Neuro-Fuzzy Designer in Matlab [92] was used to train ANFIS cracking percent prediction models based on the same datasets used in the aforementioned ANN model tra
	ANFIS is another neural network training technique often used in engineering prediction models. One potential benefit is that ANFIS can handle incomplete or noisy data by using fuzzy logic to transform given inputs into a desired output through highly interconnected neural network processing elements and information connections. In this study, the Neuro-Fuzzy Designer in Matlab [92] was used to train ANFIS cracking percent prediction models based on the same datasets used in the aforementioned ANN model tra
	 

	Specifically, three typical ANFIS membership functions were examined to obtain candidate models: triangular (trimf), Gaussian (gaussmf), and difference sigmoidal (dsigmf) membership functions. The candidate models were then used to predict cracking percentages for the year 2021, using data from 2019. The predicted 2021 conditions were compared to the HPMS measurements to determine the optimal models for their function classes. The obtained models are listed below in Table 12 through Table 14.
	Specifically, three typical ANFIS membership functions were examined to obtain candidate models: triangular (trimf), Gaussian (gaussmf), and difference sigmoidal (dsigmf) membership functions. The candidate models were then used to predict cracking percentages for the year 2021, using data from 2019. The predicted 2021 conditions were compared to the HPMS measurements to determine the optimal models for their function classes. The obtained models are listed below in Table 12 through Table 14.
	 

	Table 12. ANFIS ASP cracking models 
	Table
	TBody
	TR
	Span
	FUN 
	FUN 

	Rows 
	Rows 

	Weather Input 
	Weather Input 

	Trained Models 
	Trained Models 

	Pred. 2021 
	Pred. 2021 
	R2 


	TR
	Span
	MF 
	MF 

	R2 
	R2 

	RMSE (test) 
	RMSE (test) 


	TR
	Span
	01 
	01 

	3879 
	3879 

	AAFI 
	AAFI 

	trimf 
	trimf 

	0.89 
	0.89 

	2.61 
	2.61 

	0.41 
	0.41 


	TR
	Span
	02 
	02 

	9469 
	9469 

	AAFI 
	AAFI 

	trimf 
	trimf 

	0.93 
	0.93 

	3.20 
	3.20 

	0.88 
	0.88 


	TR
	Span
	06 
	06 

	2 
	2 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 


	TR
	Span
	11 
	11 

	1728 
	1728 

	AAFTC 
	AAFTC 

	trimf 
	trimf 

	0.96 
	0.96 

	1.64 
	1.64 

	0.92 
	0.92 


	TR
	Span
	12 
	12 

	469 
	469 

	AAWD 
	AAWD 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 


	TR
	Span
	14 
	14 

	1840 
	1840 

	AAP 
	AAP 

	trimf 
	trimf 

	0.94 
	0.94 

	2.86 
	2.86 

	0.86 
	0.86 


	TR
	Span
	16 
	16 

	486 
	486 

	AAFTC 
	AAFTC 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 




	Table 13. ANFIS COM cracking models 
	Table
	TBody
	TR
	Span
	FUN 
	FUN 

	Rows 
	Rows 

	Weather Input 
	Weather Input 

	Trained models 
	Trained models 

	Pred. 2021 
	Pred. 2021 
	R2 


	TR
	Span
	MF 
	MF 

	R2 
	R2 

	RMSE (test) 
	RMSE (test) 


	TR
	Span
	01 
	01 

	4317 
	4317 

	AAP 
	AAP 

	gaussmf 
	gaussmf 

	0.87 
	0.87 

	2.61 
	2.61 

	0.88 
	0.88 




	Table
	TBody
	TR
	Span
	FUN 
	FUN 

	Rows 
	Rows 

	Weather Input 
	Weather Input 

	Trained models 
	Trained models 

	Pred. 2021 
	Pred. 2021 
	R2 




	Table
	TBody
	TR
	Span
	MF 
	MF 

	R2 
	R2 

	RMSE (test) 
	RMSE (test) 


	TR
	Span
	02 
	02 

	9825 
	9825 

	AAFI 
	AAFI 

	gaussmf 
	gaussmf 

	0.90 
	0.90 

	3.66 
	3.66 

	0.91 
	0.91 


	TR
	Span
	06 
	06 

	4 
	4 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 


	TR
	Span
	11 
	11 

	1840 
	1840 

	AAWD 
	AAWD 

	trimf 
	trimf 

	0.94 
	0.94 

	1.79 
	1.79 

	0.83 
	0.83 


	TR
	Span
	12 
	12 

	183 
	183 

	AAP 
	AAP 

	gaussmf 
	gaussmf 

	0.99 
	0.99 

	1.56 
	1.56 

	0.92 
	0.92 


	TR
	Span
	14 
	14 

	4982 
	4982 

	AAWD 
	AAWD 

	trimf 
	trimf 

	0.9 
	0.9 

	3.28 
	3.28 

	0.93 
	0.93 


	TR
	Span
	16 
	16 

	104 
	104 

	AAT 
	AAT 

	trimf 
	trimf 

	0.74 
	0.74 

	1.20 
	1.20 

	0.21 
	0.21 




	Table 14. ANFIS JCP cracking models 
	Table
	TBody
	TR
	Span
	FUN 
	FUN 

	Rows 
	Rows 

	Weather Input 
	Weather Input 

	Trained models 
	Trained models 

	Pred. 2021 
	Pred. 2021 
	R2 


	TR
	Span
	MF 
	MF 

	R2 
	R2 

	RMSE (test) 
	RMSE (test) 


	TR
	Span
	01 
	01 

	4641 
	4641 

	AAP 
	AAP 

	trimf 
	trimf 

	0.66 
	0.66 

	1.45 
	1.45 

	0.78 
	0.78 


	TR
	Span
	02 
	02 

	4566 
	4566 

	AAFTC 
	AAFTC 

	trimf 
	trimf 

	0.92 
	0.92 

	4.52 
	4.52 

	0.93 
	0.93 


	TR
	Span
	06 
	06 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 


	TR
	Span
	11 
	11 

	2738 
	2738 

	AAT 
	AAT 

	trimf 
	trimf 

	0.96 
	0.96 

	3.04 
	3.04 

	0.95 
	0.95 


	TR
	Span
	12 
	12 

	561 
	561 

	AAT 
	AAT 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 


	TR
	Span
	14 
	14 

	3656 
	3656 

	AAWD 
	AAWD 

	trimf 
	trimf 

	0.93 
	0.93 

	3.09 
	3.09 

	0.93 
	0.93 


	TR
	Span
	16 
	16 

	17 
	17 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 




	It can be observed in the tables above that ANFIS also demonstrated sound prediction performance for the short-term cracking percent modeling. Out of the 14 obtained ANFIS models, 10 of them had R2 values over 0.85. On the other hand, some of the ANN trainable datasets could not be trained using ANFIS (i.e., ASP FUN 12 and 16, and JCP FUN 12) due to constant parameters in the input arrays. For example, all training data for JCP FUN 12 were within the same district, resulting in the climate inputs. 
	It can be observed in the tables above that ANFIS also demonstrated sound prediction performance for the short-term cracking percent modeling. Out of the 14 obtained ANFIS models, 10 of them had R2 values over 0.85. On the other hand, some of the ANN trainable datasets could not be trained using ANFIS (i.e., ASP FUN 12 and 16, and JCP FUN 12) due to constant parameters in the input arrays. For example, all training data for JCP FUN 12 were within the same district, resulting in the climate inputs. 
	 

	A direct performance comparison between the ANN and ANFIS models are listed in Table 15. In general, ANN demonstrated better performance in 9 out of 17 models, while ANN and ANFIS showed very similar performance in the remaining models. 
	A direct performance comparison between the ANN and ANFIS models are listed in Table 15. In general, ANN demonstrated better performance in 9 out of 17 models, while ANN and ANFIS showed very similar performance in the remaining models. 
	 

	Table 15. Comparison between ANN and ANFIS cracking percent perdition models 
	Table
	TBody
	TR
	Span
	Pavement 
	Pavement 

	FUN 
	FUN 

	ANN 
	ANN 

	ANFIS 
	ANFIS 

	Select 
	Select 


	TR
	Span
	R2 
	R2 

	RMSE 
	RMSE 

	2021 R2 
	2021 R2 

	R2 
	R2 

	RMSE 
	RMSE 

	2021 R2 
	2021 R2 


	TR
	Span
	ASP 
	ASP 

	01 
	01 

	0.88 
	0.88 

	2.85 
	2.85 

	0.86 
	0.86 

	0.89 
	0.89 

	2.61 
	2.61 

	0.41 
	0.41 

	ANN 
	ANN 


	TR
	Span
	02 
	02 

	0.94 
	0.94 

	3.04 
	3.04 

	0.91 
	0.91 

	0.93 
	0.93 

	3.20 
	3.20 

	0.88 
	0.88 

	ANN 
	ANN 


	TR
	Span
	06 
	06 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 

	 
	 


	TR
	Span
	11 
	11 

	0.95 
	0.95 

	1.75 
	1.75 

	0.92 
	0.92 

	0.96 
	0.96 

	1.64 
	1.64 

	0.92 
	0.92 

	Both 
	Both 




	Table
	TBody
	TR
	Span
	12 
	12 

	0.95 
	0.95 

	2.52 
	2.52 

	0.86 
	0.86 

	- 
	- 

	- 
	- 

	- 
	- 

	ANN 
	ANN 


	TR
	Span
	14 
	14 

	0.94 
	0.94 

	2.92 
	2.92 

	0.94 
	0.94 

	0.94 
	0.94 

	2.86 
	2.86 

	0.86 
	0.86 

	ANN 
	ANN 


	TR
	Span
	16 
	16 

	0.95 
	0.95 

	2.72 
	2.72 

	0.91 
	0.91 

	- 
	- 

	- 
	- 

	- 
	- 

	ANN 
	ANN 


	TR
	Span
	COM 
	COM 

	01 
	01 

	0.89 
	0.89 

	2.40 
	2.40 

	0.88 
	0.88 

	0.87 
	0.87 

	2.61 
	2.61 

	0.88 
	0.88 

	Both 
	Both 


	TR
	Span
	02 
	02 

	0.91 
	0.91 

	3.30 
	3.30 

	0.91 
	0.91 

	0.90 
	0.90 

	3.66 
	3.66 

	0.91 
	0.91 

	Both 
	Both 


	TR
	Span
	06 
	06 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 

	 
	 


	TR
	Span
	11 
	11 

	0.94 
	0.94 

	1.84 
	1.84 

	0.93 
	0.93 

	0.94 
	0.94 

	1.79 
	1.79 

	0.83 
	0.83 

	ANN 
	ANN 


	TR
	Span
	12 
	12 

	0.99 
	0.99 

	1.85 
	1.85 

	0.94 
	0.94 

	0.99 
	0.99 

	1.56 
	1.56 

	0.92 
	0.92 

	Both 
	Both 


	TR
	Span
	14 
	14 

	0.92 
	0.92 

	2.93 
	2.93 

	0.93 
	0.93 

	0.9 
	0.9 

	3.28 
	3.28 

	0.93 
	0.93 

	Both 
	Both 


	TR
	Span
	16 
	16 

	0.43 
	0.43 

	1.54 
	1.54 

	0.74 
	0.74 

	0.74 
	0.74 

	1.20 
	1.20 

	0.21 
	0.21 

	ANN 
	ANN 


	TR
	Span
	JCP 
	JCP 

	01 
	01 

	0.67 
	0.67 

	1.46 
	1.46 

	0.76 
	0.76 

	0.66 
	0.66 

	1.45 
	1.45 

	0.78 
	0.78 

	Both 
	Both 


	TR
	Span
	02 
	02 

	0.92 
	0.92 

	4.68 
	4.68 

	0.95 
	0.95 

	0.92 
	0.92 

	4.52 
	4.52 

	0.93 
	0.93 

	ANN 
	ANN 


	TR
	Span
	06 
	06 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 

	 
	 


	TR
	Span
	11 
	11 

	0.95 
	0.95 

	3.23 
	3.23 

	0.96 
	0.96 

	0.96 
	0.96 

	3.04 
	3.04 

	0.95 
	0.95 

	Both 
	Both 


	TR
	Span
	12 
	12 

	0.94 
	0.94 

	7.27 
	7.27 

	0.90 
	0.90 

	- 
	- 

	- 
	- 

	- 
	- 

	ANN 
	ANN 


	TR
	Span
	14 
	14 

	0.93 
	0.93 

	3.14 
	3.14 

	0.93 
	0.93 

	0.93 
	0.93 

	3.09 
	3.09 

	0.93 
	0.93 

	Both 
	Both 


	TR
	Span
	16 
	16 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 

	 
	 




	Guidance for Implementation of Short-Term Cracking Models 
	Guidance for Implementation of Short-Term Cracking Models 
	 

	Based on the results of this section, it is recommended to implement the trained ANN models for predicting the future performance of the corresponding pavement family. The models should be used with collected pavement conditions and related parameters as inputs. 
	Based on the results of this section, it is recommended to implement the trained ANN models for predicting the future performance of the corresponding pavement family. The models should be used with collected pavement conditions and related parameters as inputs. 
	 

	The trained neural networks listed in Table 9 through 11 have been saved. Users can directly copy the trained models into their own folders and load them into Matlab. The inputs, including current cracking percent, truck percent, the selected averge climate parameter by district, pavement age, and ADT per lane, should be loaded as a matrix following this specific order, and the predicted crack percent to years later is calculated by the command line:     
	The trained neural networks listed in Table 9 through 11 have been saved. Users can directly copy the trained models into their own folders and load them into Matlab. The inputs, including current cracking percent, truck percent, the selected averge climate parameter by district, pavement age, and ADT per lane, should be loaded as a matrix following this specific order, and the predicted crack percent to years later is calculated by the command line:     
	 

	  Pred = sim(net, input);
	  Pred = sim(net, input);
	 

	Where, input is the n by 5 array, n is the number of data rows, and the input parameters are sorted into 5 columns as order. The ‘net’ represents the trained ANN for the inputs’ pavement family. 
	Where, input is the n by 5 array, n is the number of data rows, and the input parameters are sorted into 5 columns as order. The ‘net’ represents the trained ANN for the inputs’ pavement family. 
	 

	An Excel spreadsheet has also been prepared for users who do not have access to Matlab software. The weight and bias values of the trained neural networks are extracted in Matlab and copied into the Excel sheet as an array. These arrays include the bias array b1 and the weight array iw of the hidden layer (there is only one weight array for the shallow neural network trained in this section with a single hidden layer), and the weight array lw and bias array b2 of the output layer. 
	An Excel spreadsheet has also been prepared for users who do not have access to Matlab software. The weight and bias values of the trained neural networks are extracted in Matlab and copied into the Excel sheet as an array. These arrays include the bias array b1 and the weight array iw of the hidden layer (there is only one weight array for the shallow neural network trained in this section with a single hidden layer), and the weight array lw and bias array b2 of the output layer. 
	 

	The predicted crack percent array can be calculated with input array, weight arrays, and bias arrays as follows:
	The predicted crack percent array can be calculated with input array, weight arrays, and bias arrays as follows:
	 

	𝑜𝑢𝑡𝑝𝑢𝑡=𝑙𝑤∙{2[1+𝐸𝑋𝑃(−2∗(𝑖𝑤∙𝑖𝑛𝑝𝑢𝑡+𝑏1))]−1}+𝑏2                     
	𝑜𝑢𝑡𝑝𝑢𝑡=𝑙𝑤∙{2[1+𝐸𝑋𝑃(−2∗(𝑖𝑤∙𝑖𝑛𝑝𝑢𝑡+𝑏1))]−1}+𝑏2                     
	 
	 
	 
	(24)   
	 

	Where, output is the array of predicted crack percent, and input is the array of 5 input parameters.
	Where, output is the array of predicted crack percent, and input is the array of 5 input parameters.
	 

	The detailed weights and bias values (i.e., iw, lw, b1 and b2) of the developed ANN cracking models are presented in Appendix A. Using an Excel spreadsheet, the future crack percent of HPMS pavements can be predicted, taking into account the traffic condition, climate, and pavement age, in addition to the saved Matlab ANN networks, which can also be directly impletemented.
	The detailed weights and bias values (i.e., iw, lw, b1 and b2) of the developed ANN cracking models are presented in Appendix A. Using an Excel spreadsheet, the future crack percent of HPMS pavements can be predicted, taking into account the traffic condition, climate, and pavement age, in addition to the saved Matlab ANN networks, which can also be directly impletemented.
	 

	In the future, the above procedures can be repeated with more collected data to update the neural networks with better prediction power, especially for functional classes and pavement types that currently have insuficient data.
	In the future, the above procedures can be repeated with more collected data to update the neural networks with better prediction power, especially for functional classes and pavement types that currently have insuficient data.
	 

	Long-Term Performance Prediction for Asphalt Overlays
	Long-Term Performance Prediction for Asphalt Overlays
	 

	According to the current state of practice, DOTD uses five distress indices to model pavement deterioration for its flexible pavement performance: three cracking and patching indices (ALCR, RNDM, and PTCH), RUFF (roughness), and RUT (rutting) indices. When all the values are loaded into a pavement management software called dTIMS, it generates pavement age-based deterioration curves for each distress index based on a simple curve-fitting method. For each homogenous segment, five performance curves are gener
	Composite, JCP, and CRCP), roadway functional class (i.e., Interstate, Principal Arterial, Minor Arterial, Collector, Local, and Others) and pavement type-related distress indices. These categories allow for 126 pavement family curves to be generated for DOTD, including 70 related to flexible pavements and 56 for rigid pavements. While the most desirable of these pavement deterioration models (or curves) are the site-specific curves, when site-specific curves are not available, family curves must be used as
	Composite, JCP, and CRCP), roadway functional class (i.e., Interstate, Principal Arterial, Minor Arterial, Collector, Local, and Others) and pavement type-related distress indices. These categories allow for 126 pavement family curves to be generated for DOTD, including 70 related to flexible pavements and 56 for rigid pavements. While the most desirable of these pavement deterioration models (or curves) are the site-specific curves, when site-specific curves are not available, family curves must be used as
	 

	As reported in the literature [57, 66, 76, 77], ANN-based models are very useful tools for modeling pavement deterioration at the network level when taking into account multiple pavement sections with various traffic, thickness (network level), or deterioration trends. They are also very fast tools that can solve thousands of pavement scenarios with various traffic scenarios, thickness, and conditions in seconds.
	As reported in the literature [57, 66, 76, 77], ANN-based models are very useful tools for modeling pavement deterioration at the network level when taking into account multiple pavement sections with various traffic, thickness (network level), or deterioration trends. They are also very fast tools that can solve thousands of pavement scenarios with various traffic scenarios, thickness, and conditions in seconds.
	 

	Development of Incremental Performance Prediction Models Using ANN
	Development of Incremental Performance Prediction Models Using ANN
	 

	In this study, an ANN-based pavement performance model was developed for each of the three flexible pavement performance indicators (i.e., IRI, rutting and percent cracking) and five performance indices (ALCR, RNDM, PTCH, RUT, and RUFF) for the considered flexible pavement sections. The Neural Network toolbox in the MATLAB software was used for the ANN simulation analysis. A total of 255 ASP overlay pavement projects with 484 biennially-PMS data points for each pavement performance indicator were used in th
	In this study, an ANN-based pavement performance model was developed for each of the three flexible pavement performance indicators (i.e., IRI, rutting and percent cracking) and five performance indices (ALCR, RNDM, PTCH, RUT, and RUFF) for the considered flexible pavement sections. The Neural Network toolbox in the MATLAB software was used for the ANN simulation analysis. A total of 255 ASP overlay pavement projects with 484 biennially-PMS data points for each pavement performance indicator were used in th
	 

	Table 16 summarizes input and output parameters used in the eight ANN models developed for flexible pavement. Those developed pavement deterioration models may be implemented by DOTD as an alternative method for developing the site-specific curves using the simple regression method. The eight ANN models used incremental methods, where the previous two pavement conditions (collected in year i-2 and i-4) were adopted to predict the same pavement condition in year i. With the trained ANN model, the time-series
	Table 16 summarizes input and output parameters used in the eight ANN models developed for flexible pavement. Those developed pavement deterioration models may be implemented by DOTD as an alternative method for developing the site-specific curves using the simple regression method. The eight ANN models used incremental methods, where the previous two pavement conditions (collected in year i-2 and i-4) were adopted to predict the same pavement condition in year i. With the trained ANN model, the time-series
	 

	Table 16. Input parameters in long-term performance modeling 
	Table
	TBody
	TR
	Span
	Model name 
	Model name 

	Input Parameters 
	Input Parameters 

	Output 
	Output 


	TR
	Span
	IRI 
	IRI 

	IRI(i-4), IRI(i-2), age (i), accumulative truck, overlay_h, mill_h 
	IRI(i-4), IRI(i-2), age (i), accumulative truck, overlay_h, mill_h 

	IRI (i) year 
	IRI (i) year 


	TR
	Span
	Rutting 
	Rutting 

	RD(i-4), RD(i-2), age (i), accumulative truck, overlay_h, mill_h 
	RD(i-4), RD(i-2), age (i), accumulative truck, overlay_h, mill_h 

	RD (i) year 
	RD (i) year 


	TR
	Span
	Percent of Alligator Cracking 
	Percent of Alligator Cracking 

	CK(i-4), CK(i-2), age (i), accumulative truck, overlay_h, mill_h 
	CK(i-4), CK(i-2), age (i), accumulative truck, overlay_h, mill_h 

	CK (i) year 
	CK (i) year 


	TR
	Span
	ALCR 
	ALCR 

	ALCR(i-4), ALCR(i-2), age (i), accumulative truck, overlay_h, mill_h 
	ALCR(i-4), ALCR(i-2), age (i), accumulative truck, overlay_h, mill_h 

	ALCR (i) year 
	ALCR (i) year 


	TR
	Span
	RNDM 
	RNDM 

	RNDM(i-4), RNDM(i-2), age (i), accumulative truck, overlay_h, mill_h 
	RNDM(i-4), RNDM(i-2), age (i), accumulative truck, overlay_h, mill_h 

	RNDM (i) year 
	RNDM (i) year 


	TR
	Span
	PTCH 
	PTCH 

	PTCH (i-4), PTCH (i-2), age (i), accumulative truck, overlay_h, mill_h 
	PTCH (i-4), PTCH (i-2), age (i), accumulative truck, overlay_h, mill_h 

	PTCH (i) year 
	PTCH (i) year 


	TR
	Span
	RUT 
	RUT 

	RUT(i-4), RUT(i-2), age (i), accumulative truck, overlay_h, mill_h 
	RUT(i-4), RUT(i-2), age (i), accumulative truck, overlay_h, mill_h 

	RUT (i) year 
	RUT (i) year 


	TR
	Span
	RUFF 
	RUFF 

	RUFF (i-4), RUFF (i-2), age (i), accumulative truck, overlay_h, mill_h 
	RUFF (i-4), RUFF (i-2), age (i), accumulative truck, overlay_h, mill_h 

	RUFF (i) year 
	RUFF (i) year 




	Figure 26 presents the structures and prediction performances of the developed incremental ANN models (predicted vs. measured performance). Overall, all the developed ANN models showed high R2 and low RMSE, indicating their high accuracy in producing results that are very similar to the measured distresses. These models also provided physically meaningful future distress based on two previous distress data points and information regarding traffic and pavement thickness.
	Figure 26 presents the structures and prediction performances of the developed incremental ANN models (predicted vs. measured performance). Overall, all the developed ANN models showed high R2 and low RMSE, indicating their high accuracy in producing results that are very similar to the measured distresses. These models also provided physically meaningful future distress based on two previous distress data points and information regarding traffic and pavement thickness.
	 

	Figure 26. Structures and performances of incremental long-term performance models 
	 
	 

	Figure
	As described above, at least 6 years of PMS data was required to build site-specific curves for a homogenous section or project. If there was insufficient data for the section, or if the precious time-series performance records did not show a consistent trend, family curves were recommended for forecasting the performance. However, it is important to note that the family curves, which are regressed from a large group of roadways, may not reflect the specific condition of a particular section. This can intro
	difference. To address this issue, the developed incremental models effectively combined the performance trend of the pavement family together with existing site specific conditions (e.g., traffic, overlay thickness). This helped mitigate the problems caused by using the family curves alone. The predicted performance curves are useful for the analysis of remaining life, cost-benefit and pavement preservation at a project-level using limited PMS data.
	difference. To address this issue, the developed incremental models effectively combined the performance trend of the pavement family together with existing site specific conditions (e.g., traffic, overlay thickness). This helped mitigate the problems caused by using the family curves alone. The predicted performance curves are useful for the analysis of remaining life, cost-benefit and pavement preservation at a project-level using limited PMS data.
	 

	Development of Family-Curve Prediction Models Using ANN
	Development of Family-Curve Prediction Models Using ANN
	 

	A suite of ANN models was developed for distress family curves of ASP pavements. These individual family curves were predicted based on weather factors (i.e., temperature, precipitation, and freeze-thaw cycles), traffic loading, pavement age, overlay thicknesses, and pavement functional classes.
	A suite of ANN models was developed for distress family curves of ASP pavements. These individual family curves were predicted based on weather factors (i.e., temperature, precipitation, and freeze-thaw cycles), traffic loading, pavement age, overlay thicknesses, and pavement functional classes.
	 

	In the analysis, the climate and weather data, including annual average air temperature (AAT), annual average precipitation (AAP), annual average freezing index (AAFI), annual number of wet days (AAWD), and average annual number of freeze/thaw cycles (AAFTC), were obtained from the PavementME weather MERRA database for the nine districts of DOTD. IRI, annual ADT, truck percentage, and treatment age were collected from the DOTD’s PMS and other databases. To confirm the treatment history and further validate 
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	Table 17. Input parameters for distress family curves 
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	Table 17 provides the pavement overlay dataset constructed for the long-term performance prediction analysis in this study.  As shown in Table 17, pavement condition data (e.g., pavement age, IRI, rutting) and pavement indices (e.g., ALCR, RNDM, ROUGH) are sequential variables that change over time. On the other hand, the pavement functional class, districts, ADT, truck percentage, and five average climate/weather parameters are non-sequential variables, meaning that one value is received for each variable 
	Table 17 provides the pavement overlay dataset constructed for the long-term performance prediction analysis in this study.  As shown in Table 17, pavement condition data (e.g., pavement age, IRI, rutting) and pavement indices (e.g., ALCR, RNDM, ROUGH) are sequential variables that change over time. On the other hand, the pavement functional class, districts, ADT, truck percentage, and five average climate/weather parameters are non-sequential variables, meaning that one value is received for each variable 
	 

	To develop a long-term pavement performance model for ASP pavements in DOTD, an ASP dataset consisting of 1172 rows was prepared. This dataset includes the average IRI and all five distress indices, along with different pavement functional classes, pavement ages, cumulative trucks, mill and overlay thicknesses, and five climate factors. In addition, the dataset contains a total of 257 homogeneous sections and 899 miles. Table 18 presents the correlations between the average IRI and different influencing var
	To develop a long-term pavement performance model for ASP pavements in DOTD, an ASP dataset consisting of 1172 rows was prepared. This dataset includes the average IRI and all five distress indices, along with different pavement functional classes, pavement ages, cumulative trucks, mill and overlay thicknesses, and five climate factors. In addition, the dataset contains a total of 257 homogeneous sections and 899 miles. Table 18 presents the correlations between the average IRI and different influencing var
	 

	Table 18. Correlations of input parameters for IRI family curves 
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	It can be observed from Table 18 that pavement age, trucks (ADT*Truck%), functional classification, and overlay thickness have the highest correlations with the output. However, the correlations of these parameters were not strong enough to build a model with conventional regression methods.  Nevertheless, the ANN model demonstrated significant improvement, as indicated by an improved R2 value of over 0.73, as shown in Figure 27.
	It can be observed from Table 18 that pavement age, trucks (ADT*Truck%), functional classification, and overlay thickness have the highest correlations with the output. However, the correlations of these parameters were not strong enough to build a model with conventional regression methods.  Nevertheless, the ANN model demonstrated significant improvement, as indicated by an improved R2 value of over 0.73, as shown in Figure 27.
	 

	Figure 27. Model performance of IRI family curve 
	 
	 

	Figure
	The finalization of the number of layers and neurons in an ANN was achieved through a trial-and-error process. Different number of neurons were used during the training of ANN model. It was observed that increasing the number of neurons and hidden layers generally led to an improvement in the overall training R-value. However, the prediction results fluctuated due to the limited data size of the data (1172 rows) and the presence of 10 input variables, indicating the occurrence of overfitting. Similar to the
	The finalization of the number of layers and neurons in an ANN was achieved through a trial-and-error process. Different number of neurons were used during the training of ANN model. It was observed that increasing the number of neurons and hidden layers generally led to an improvement in the overall training R-value. However, the prediction results fluctuated due to the limited data size of the data (1172 rows) and the presence of 10 input variables, indicating the occurrence of overfitting. Similar to the
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	Where, A and B are regression parameters.
	Where, A and B are regression parameters.
	 

	Table 19 lists the obtained correlation model parameters of A and B for each function class of ASP pavement considered. 
	Table 19 lists the obtained correlation model parameters of A and B for each function class of ASP pavement considered. 
	 

	Table 19. IRI model parameters 
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	B 
	B 

	R2 
	R2 
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	01 

	Interstate Rural 
	Interstate Rural 

	2.3433 
	2.3433 

	0.094 
	0.094 

	0.92 
	0.92 


	TR
	Span
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	11 

	Interstate Urban 
	Interstate Urban 

	5.1427 
	5.1427 

	0.185 
	0.185 

	0.99 
	0.99 


	TR
	Span
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	02 

	Principal Arterial Rural 
	Principal Arterial Rural 

	3.1261 
	3.1261 

	0.093 
	0.093 

	0.97 
	0.97 
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	Principal Arterial Urban 
	Principal Arterial Urban 

	4.7372 
	4.7372 

	0.308 
	0.308 

	0.84 
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	Minor Arterial Rural 
	Minor Arterial Rural 

	3.1799 
	3.1799 

	0.139 
	0.139 

	0.99 
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	Minor Arterial Urban 
	Minor Arterial Urban 

	3.4975 
	3.4975 

	0.188 
	0.188 

	0.99 
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	Major Collector Rural 
	Major Collector Rural 

	3.541 
	3.541 

	0.138 
	0.138 

	0.98 
	0.98 
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	Collector Urban 
	Collector Urban 

	3.0566 
	3.0566 

	0.152 
	0.152 

	0.99 
	0.99 




	Using the developed ANN IRI model, the predicted IRI curves for various function class of ASP pavement were obtained. The average values of the input parameters were applied as new inputs to calculate the average performance. When normalizing the developed IRI family curves based on initialized IRI of 50 in./mile, Figure 28 below shows a comparison between urban and rural IRI family curves of different functional classes. In general, urban pavements had higher IRI development rates than rural pavements.
	Using the developed ANN IRI model, the predicted IRI curves for various function class of ASP pavement were obtained. The average values of the input parameters were applied as new inputs to calculate the average performance. When normalizing the developed IRI family curves based on initialized IRI of 50 in./mile, Figure 28 below shows a comparison between urban and rural IRI family curves of different functional classes. In general, urban pavements had higher IRI development rates than rural pavements.
	 

	Figure 28. IRI family curves for rural and urban roadways 
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	Figure
	To compare with the current DOTD application, the pavement age and IRI values were also extracted from training datasets for building ANN models. Thus, a conventional family curve can be regressed. The comparison between these two family curves is plotted in Figure 29.
	To compare with the current DOTD application, the pavement age and IRI values were also extracted from training datasets for building ANN models. Thus, a conventional family curve can be regressed. The comparison between these two family curves is plotted in Figure 29.
	 

	Figure 29. Comparison between ANN and conventional family curves 
	 
	 

	Figure
	As is shown in Figure 29, the family curves derived from ANN predicted results were consistent with the traditional ones in all functional classifications. This indicates that the family curve obtained from the average condition and ANN models can replace the traditional ones. The traditional family curves only considered pavement age, resulting in low correlations with measured values, as seen in Figure 29. However, the ANN-predicted family curves have high correlations with measured values and incorporate
	many factors. This allowed them to simulate more detailed conditions within a pavement family, such as overlay thickness and traffic volume. These advantages make the ANN-predicted family curves more suitable for planning specific pavement projects with better accuracy.  
	many factors. This allowed them to simulate more detailed conditions within a pavement family, such as overlay thickness and traffic volume. These advantages make the ANN-predicted family curves more suitable for planning specific pavement projects with better accuracy.  
	 

	Similarly, family curves were developed for four distress indices (ALCR, RNDM, RUT and RUFF) based on the developed ANN model. The developed family curves for each distress index are presented in Tables 20-23.
	Similarly, family curves were developed for four distress indices (ALCR, RNDM, RUT and RUFF) based on the developed ANN model. The developed family curves for each distress index are presented in Tables 20-23.
	 

	Table 20. Developed distress index family curves -ALCR 
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	ANN-Model Based Family Curves 
	ANN-Model Based Family Curves 

	R2 
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	Principal Arterial Rural 
	Principal Arterial Rural 

	ALCR02 = -0.1748(Age)2 + 0.5965Age + 99.731 
	ALCR02 = -0.1748(Age)2 + 0.5965Age + 99.731 

	0.997 
	0.997 
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	Major Collector Rural 
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	All Collector Urban 
	All Collector Urban 

	ALCR17 = -0.0314(Age)2 - 0.7684Age + 101.23 
	ALCR17 = -0.0314(Age)2 - 0.7684Age + 101.23 

	0.995 
	0.995 




	Table 21. Developed distress index family curves -RUFF 
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	RUFF14 = 99.59 e -0.011Age 
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	RUFF06 = 97.404 e -0.008Age 
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	RUFF16 = 95.726 e -0.013Age 
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	RUFF07 = 96.088 e -0.007Age 
	RUFF07 = 96.088 e -0.007Age 

	0.999 
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	Functional Class No. 

	Roadway Category 
	Roadway Category 

	ANN-Model Based Family Curves 
	ANN-Model Based Family Curves 

	R2 
	R2 


	TR
	Span
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	17 

	All Collector Urban 
	All Collector Urban 

	RUFF17 = 94.478 e -0.006Age 
	RUFF17 = 94.478 e -0.006Age 

	0.999 
	0.999 




	Table 22. Developed distress index family curves -RUT 
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	Roadway Category 
	Roadway Category 

	ANN-Model Based Family Curves 
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	R2 
	R2 


	TR
	Span
	02 
	02 

	Principal Arterial Rural 
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	RUT02 = 0.038(Age)2 - 1.4178Age + 99.293 
	RUT02 = 0.038(Age)2 - 1.4178Age + 99.293 

	0.970 
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	Principal Arterial Urban 
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	RUT14 = 0.0594(Age)2 - 1.7905Age + 100.07 
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	0.981 
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	RUT06 = -0.0187(Age)2 - 0.6599Age + 100.02 
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	0.988 
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	Minor Arterial Urban 
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	RUT16 = 0.0009(Age)2 – 1.1822Age + 100.61 
	RUT16 = 0.0009(Age)2 – 1.1822Age + 100.61 

	0.995 
	0.995 
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	Major Collector Rural 
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	RUT07 = -0.0203(Age)2 - 0.4969Age + 100.94 
	RUT07 = -0.0203(Age)2 - 0.4969Age + 100.94 

	0.999 
	0.999 
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	All Collector Urban 
	All Collector Urban 

	RUT17 = -0.0296(Age)2 - 0.4371Age + 99.661 
	RUT17 = -0.0296(Age)2 - 0.4371Age + 99.661 

	0.999 
	0.999 




	Table 23. Developed distress index family curves -RNDM 
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	Roadway Category 
	Roadway Category 

	ANN-Model Based Family Curves 
	ANN-Model Based Family Curves 

	R2 
	R2 


	TR
	Span
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	Principal Arterial Rural 
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	RNDM02 = 99.259 e -0.018Age  
	RNDM02 = 99.259 e -0.018Age  

	0.995 
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	TR
	Span
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	Principal Arterial Urban 
	Principal Arterial Urban 

	RNDM14 = 100.61 e -0.014Age 
	RNDM14 = 100.61 e -0.014Age 

	0.995 
	0.995 


	TR
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	Minor Arterial Rural 
	Minor Arterial Rural 

	RNDM06 = 101.47 e -0.016Age 
	RNDM06 = 101.47 e -0.016Age 

	0.996 
	0.996 


	TR
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	Minor Arterial Urban 
	Minor Arterial Urban 

	RNDM16 = 102.64 e -0.015Age 
	RNDM16 = 102.64 e -0.015Age 

	0.990 
	0.990 


	TR
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	Major Collector Rural 
	Major Collector Rural 

	RNDM07 = 101.78 e -0.015Age 
	RNDM07 = 101.78 e -0.015Age 

	0.971 
	0.971 


	TR
	Span
	17 
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	All Collector Urban 
	All Collector Urban 

	RNDM17 = 104.49 e -0.014Age 
	RNDM17 = 104.49 e -0.014Age 

	0.961 
	0.961 




	Due to the limitation of the used database (i.e., all ages <14 years) in the model training, when more IRI data is collected, the developed ANN model was retrained, and a set of 
	new prediction results was obtained. The significance lies in the approach used for ANN model development. The above approach for developing the long-term IRI prediction model not only utilized the ANN approach, but also incorporated regression methods and some engineering judgements. 
	new prediction results was obtained. The significance lies in the approach used for ANN model development. The above approach for developing the long-term IRI prediction model not only utilized the ANN approach, but also incorporated regression methods and some engineering judgements. 
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	In this study, a detailed step-by-step methodology was established and explained for development of both short-term and long-term ANN-based pavement performance prediction models. Real pavement performance data obtained from various DOTD databases were used for this purpose. To achieve the research objectives, two different network-level pavement condition datasets were prepared. One dataset was used for short-term cracking percent prediction, while the other was used for long-term smoothness and load-induc
	In this study, a detailed step-by-step methodology was established and explained for development of both short-term and long-term ANN-based pavement performance prediction models. Real pavement performance data obtained from various DOTD databases were used for this purpose. To achieve the research objectives, two different network-level pavement condition datasets were prepared. One dataset was used for short-term cracking percent prediction, while the other was used for long-term smoothness and load-induc
	 

	 In general, the developed ANN-based pavement performance models showed greater accuracy to statistical regression models for the network level pavement performance prediction. They exhibited higher R2 and lower RMSE values. Additionally, these models were also efficient and easily implemented for predicting pavement performance indicators of multiple pavement sections with varying traffic, thickness, and climate conditions.
	 In general, the developed ANN-based pavement performance models showed greater accuracy to statistical regression models for the network level pavement performance prediction. They exhibited higher R2 and lower RMSE values. Additionally, these models were also efficient and easily implemented for predicting pavement performance indicators of multiple pavement sections with varying traffic, thickness, and climate conditions.
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	 In general, the developed ANN-based pavement performance models showed greater accuracy to statistical regression models for the network level pavement performance prediction. They exhibited higher R2 and lower RMSE values. Additionally, these models were also efficient and easily implemented for predicting pavement performance indicators of multiple pavement sections with varying traffic, thickness, and climate conditions.
	 


	 The feedforward neural network technique was used for training, validation, and testing of the ANN model in this study. It was found that increasing the number of neurons and/or hidden layers resulted in very high R2 (near to 1.0) with very low RMSE values. However, adding more neurons and/or hidden layers could potentially lead to overfitting of the ANN model, making future pavement performance prediction unstable and inaccurate. 
	 The feedforward neural network technique was used for training, validation, and testing of the ANN model in this study. It was found that increasing the number of neurons and/or hidden layers resulted in very high R2 (near to 1.0) with very low RMSE values. However, adding more neurons and/or hidden layers could potentially lead to overfitting of the ANN model, making future pavement performance prediction unstable and inaccurate. 
	 The feedforward neural network technique was used for training, validation, and testing of the ANN model in this study. It was found that increasing the number of neurons and/or hidden layers resulted in very high R2 (near to 1.0) with very low RMSE values. However, adding more neurons and/or hidden layers could potentially lead to overfitting of the ANN model, making future pavement performance prediction unstable and inaccurate. 
	 


	 In the development of the short-term cracking percent prediction model, several modeling approaches were studied. It was found that both the feedforward ANN and ANFIS approaches were suitable for this prediction. However, determining an optimum ANFIS prediction model would require more computing time and be more difficult to implement by DOTD than a feedforward ANN model. In addition, the developed ANN-based cracking percent prediction models, which 
	 In the development of the short-term cracking percent prediction model, several modeling approaches were studied. It was found that both the feedforward ANN and ANFIS approaches were suitable for this prediction. However, determining an optimum ANFIS prediction model would require more computing time and be more difficult to implement by DOTD than a feedforward ANN model. In addition, the developed ANN-based cracking percent prediction models, which 


	were based on the 2017-2020 HPMS dataset, were validated using the newly collected 2021 PMS data. The validation results showed that the ANN modeling approach developed has the potential to be implemented in developing short-term prediction models for other pavement distress and condition indicators, such as IRI and rutting.
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	were based on the 2017-2020 HPMS dataset, were validated using the newly collected 2021 PMS data. The validation results showed that the ANN modeling approach developed has the potential to be implemented in developing short-term prediction models for other pavement distress and condition indicators, such as IRI and rutting.
	 


	 A similar ANN modeling approach was used in developing long-term pavement performance models. The developed ANN incremental pavement performance models were found to be capable of making network-level long-term pavement performance predictions for IRI, rutting, percent cracking, and five distress indices (ALCR, RNDM, PTCH, RUT, and RUFF) for all DOTD asphalt pavements. Those ANN-based models can make future pavement performance calculations for any pavement sections using only milling and overlay thicknes
	 A similar ANN modeling approach was used in developing long-term pavement performance models. The developed ANN incremental pavement performance models were found to be capable of making network-level long-term pavement performance predictions for IRI, rutting, percent cracking, and five distress indices (ALCR, RNDM, PTCH, RUT, and RUFF) for all DOTD asphalt pavements. Those ANN-based models can make future pavement performance calculations for any pavement sections using only milling and overlay thicknes
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	 This study also developed a long-term pavement performance prediction model using only pavement age, traffic, climate, and overlay information as ANN model training inputs. The results were used to generate a set of family curve models for various functional classes of ASP pavements of DOTD. The developed family curve models are deemed more accurate than those generated in the current PMS system, which are only pavement-aged based regression models.
	 This study also developed a long-term pavement performance prediction model using only pavement age, traffic, climate, and overlay information as ANN model training inputs. The results were used to generate a set of family curve models for various functional classes of ASP pavements of DOTD. The developed family curve models are deemed more accurate than those generated in the current PMS system, which are only pavement-aged based regression models.
	 This study also developed a long-term pavement performance prediction model using only pavement age, traffic, climate, and overlay information as ANN model training inputs. The results were used to generate a set of family curve models for various functional classes of ASP pavements of DOTD. The developed family curve models are deemed more accurate than those generated in the current PMS system, which are only pavement-aged based regression models.
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	     iw_14(asp) = [4 x 5]  =
	 

	0.709574849
	0.709574849
	 
	0.282267907
	 
	-0.136285271
	 
	-1.592699908
	 
	-1.680582968
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	-0.090779894
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	-0.190932587
	 

	1.321740072
	1.321740072
	 
	-0.040472509
	 
	0.282077943
	 
	0.317756289
	 
	0.284851016
	 

	     b1_14(asp) = [4 x 1] = 
	     b1_14(asp) = [4 x 1] = 
	 

	-0.429549422
	-0.429549422
	 

	-0.293798532
	-0.293798532
	 

	-0.295132597
	-0.295132597
	 

	2.114468334
	2.114468334
	 

	     lw_14(asp)  =  [1 x 4]  =  [0.301108436
	     lw_14(asp)  =  [1 x 4]  =  [0.301108436
	 
	1.111348084
	 
	0.285209939
	 
	1.288802613] 

	     b2_14(asp) = [1 x 1] =  -0.733100242
	     b2_14(asp) = [1 x 1] =  -0.733100242
	 

	 
	 

	 Function Class No. = 16
	 Function Class No. = 16
	 Function Class No. = 16
	 Function Class No. = 16
	 



	     iw_16(asp) = [2 x 3]  =
	     iw_16(asp) = [2 x 3]  =
	 

	0.293518166
	0.293518166
	 
	0.002842591
	 
	-0.574578113
	 

	5.56410423
	5.56410423
	 
	-0.019840265
	 
	3.500922141
	 

	     b1_16(asp) = [2 x 1] = 
	     b1_16(asp) = [2 x 1] = 
	 

	-0.219206619
	-0.219206619
	 

	2.938146015
	2.938146015
	 

	     lw_16(asp)  =  [1 x 2]  =  [3.794560636
	     lw_16(asp)  =  [1 x 2]  =  [3.794560636
	 
	1.920407647] 

	     b2_16(asp) = [1 x 1] =  0.71346133
	     b2_16(asp) = [1 x 1] =  0.71346133
	 

	 
	 

	 (B) The developed ANN model parameters for Composite Pavements (COM)
	 (B) The developed ANN model parameters for Composite Pavements (COM)
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	 Function Class No. = 01
	 Function Class No. = 01
	 Function Class No. = 01
	 Function Class No. = 01
	 



	      iw_01(com) = [7 x 5]  =
	      iw_01(com) = [7 x 5]  =
	 

	0.269177228
	0.269177228
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	-0.162232732
	-0.162232732
	 

	-0.411985263
	-0.411985263
	 

	0.657449657
	0.657449657
	 

	2.427986768
	2.427986768
	 

	0.634808303
	0.634808303
	 

	1.666552687
	1.666552687
	 

	1.018027499
	1.018027499
	 

	     lw_01(com)  =  [1 x 7]  =  [0.724615615    1.453422056    -1.875174536    0.51980295
	     lw_01(com)  =  [1 x 7]  =  [0.724615615    1.453422056    -1.875174536    0.51980295
	 

	 
	 
	                               3.555328156    0.330652006    -0.747213811]
	 

	     b2_01(com) = [1 x 1] = -0.337234831
	     b2_01(com) = [1 x 1] = -0.337234831
	 

	 
	 

	 Function Class No. = 02
	 Function Class No. = 02
	 Function Class No. = 02
	 Function Class No. = 02
	 



	    iw_02(com) = [5 x 5]  =
	    iw_02(com) = [5 x 5]  =
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	     b102(com) = [5 x 1] = 
	     b102(com) = [5 x 1] = 
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	0.920942613
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	4.254576295
	 

	     lw_02(com)  =  [1 x 5]  =  [0.405855953    0.098902316    -0.331197361    1.71304983
	     lw_02(com)  =  [1 x 5]  =  [0.405855953    0.098902316    -0.331197361    1.71304983
	 

	                                    
	                                    
	 
	0.73376092] 

	     b2_02(com) = [1 x 1] = -2.040683413
	     b2_02(com) = [1 x 1] = -2.040683413
	 

	 
	 

	 Function Class No. = 11
	 Function Class No. = 11
	 Function Class No. = 11
	 Function Class No. = 11
	 



	    iw_11(com) = [5 x 5]  =
	    iw_11(com) = [5 x 5]  =
	 

	4.164973314
	4.164973314
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	     b1_11(com) = [5 x 1] = 
	     b1_11(com) = [5 x 1] = 
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	2.37413695
	 

	1.652892303
	1.652892303
	 

	-2.164617051
	-2.164617051
	 

	9.48600954
	9.48600954
	 

	     lw_11(com)  =  [1 x 5]  =  [0.26337031    0.445388007    -0.31154564    -0.153811092
	     lw_11(com)  =  [1 x 5]  =  [0.26337031    0.445388007    -0.31154564    -0.153811092
	 

	 
	 
	 
	 
	 
	0.416050488] 

	     b2_11(com) = [1 x 1] =  -0.548216269
	     b2_11(com) = [1 x 1] =  -0.548216269
	 

	 
	 

	 
	 

	 Function Class No. = 12
	 Function Class No. = 12
	 Function Class No. = 12
	 Function Class No. = 12
	 



	     iw_12(com) = [2 x 5]  =
	     iw_12(com) = [2 x 5]  =
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	     lw_12(com)  =  [1 x 2]  =  [0.604754022
	     lw_12(com)  =  [1 x 2]  =  [0.604754022
	 
	0.961319246] 

	     b2_12(com) = [1 x 1] =  -0.049597858
	     b2_12(com) = [1 x 1] =  -0.049597858
	 

	 Function Class No. = 14
	 Function Class No. = 14
	 Function Class No. = 14
	 Function Class No. = 14
	 



	     iw_14(com) = [3 x 5]  =
	     iw_14(com) = [3 x 5]  =
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	-0.080408165
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	-5.17036189
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	     lw_14(com)  =  [1 x 3]  =  [1.743582922
	     lw_14(com)  =  [1 x 3]  =  [1.743582922
	 
	0.026716733
	 
	-0.129765977] 

	     b2_14(com) = [1 x 1] =  0.084412457
	     b2_14(com) = [1 x 1] =  0.084412457
	 

	 
	 

	 Function Class No. = 16
	 Function Class No. = 16
	 Function Class No. = 16
	 Function Class No. = 16
	 



	     iw_16(com) = [1 x 5]  =
	     iw_16(com) = [1 x 5]  =
	 

	[-2.207724159
	[-2.207724159
	 
	-0.692095736
	 
	-0.409775912
	 
	0.626647328
	 
	0.508499662]
	 

	     b1_16(com) = [1 x 1] = [-0.344154739]
	     b1_16(com) = [1 x 1] = [-0.344154739]
	 

	     lw_16(com)  =  [1 x 1]  =  [-0.46849547] 
	     b2_16(com) = [1 x 1] =  [-0.525449568]
	     b2_16(com) = [1 x 1] =  [-0.525449568]
	 

	 
	 

	(C) The developed ANN model parameters for Jointed Concrete Pavements (JCP)
	(C) The developed ANN model parameters for Jointed Concrete Pavements (JCP)
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	 Function Class No. = 01
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	      iw_01(Jcp) = [4 x 5]  =
	      iw_01(Jcp) = [4 x 5]  =
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	     lw_01(Jcp)  =  [1 x 4]  =  [1.122333368    -2.270068136
	 
	1.984396286
	 
	0.796987606]
	 

	     b2_01(Jcp) = [1 x 1] = 0.615018113
	     b2_01(Jcp) = [1 x 1] = 0.615018113
	 

	 
	 

	 Function Class No. = 02
	 Function Class No. = 02
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	    iw_02(Jcp) = [5 x 5]  =
	    iw_02(Jcp) = [5 x 5]  =
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	0.504437875
	 

	2.681810917
	2.681810917
	 

	     lw_02(Jcp)  =  [1 x 5]  =  [0.11510969    0.408260858    -0.980752183    0.667040412
	     lw_02(Jcp)  =  [1 x 5]  =  [0.11510969    0.408260858    -0.980752183    0.667040412
	 

	 
	 
	 
	 
	 
	-0.298127129] 

	     b2_02(Jcp) = [1 x 1] = -0.19332537
	     b2_02(Jcp) = [1 x 1] = -0.19332537
	 

	 
	 

	 Function Class No. = 11
	 Function Class No. = 11
	 Function Class No. = 11
	 Function Class No. = 11
	 



	    iw_11(Jcp) = [5 x 5]  =
	    iw_11(Jcp) = [5 x 5]  =
	 

	0.62652813
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	1.103652877
	 
	-2.370667267
	 
	10.23288213
	 
	-1.216030308
	 

	     b1_11(Jcp) = [5 x 1] = 
	     b1_11(Jcp) = [5 x 1] = 
	 

	0.51904898
	0.51904898
	 

	1.880108128
	1.880108128
	 

	-22.12856046
	-22.12856046
	 

	5.0843082
	5.0843082
	 

	8.409800346
	8.409800346
	 

	     lw_11(Jcp)  =  [1 x 5]  =  [2.138092076    0.020316049    0.010790832    0.032166761
	     lw_11(Jcp)  =  [1 x 5]  =  [2.138092076    0.020316049    0.010790832    0.032166761
	 

	 
	 
	 
	 
	 
	-0.016078518] 

	     b2_11(Jcp) = [1 x 1] =  -0.766553002
	     b2_11(Jcp) = [1 x 1] =  -0.766553002
	 

	 
	 

	 Function Class No. = 12
	 Function Class No. = 12
	 Function Class No. = 12
	 Function Class No. = 12
	 



	     iw_12(Jcp) = [1 x 4]  =
	     iw_12(Jcp) = [1 x 4]  =
	 

	0.227179874
	0.227179874
	 
	-0.001792371
	 
	0.004232937
	 
	0.00101699
	 

	     b1_12(Jcp) = [1 x 1] =  0.4137024
	     b1_12(Jcp) = [1 x 1] =  0.4137024
	 

	     lw_12(Jcp)  =  [1 x 1]  =  5.292764017 
	     b2_12(Jcp) = [1 x 1] =  -1.935001527
	     b2_12(Jcp) = [1 x 1] =  -1.935001527
	 

	 
	 

	 Function Class No. = 14
	 Function Class No. = 14
	 Function Class No. = 14
	 Function Class No. = 14
	 



	     iw_14(Jcp) = [1 x 5]  =
	     iw_14(Jcp) = [1 x 5]  =
	 

	-0.533834085
	-0.533834085
	 
	0.001887079
	 
	-0.000476969
	 
	0.001294354
	 
	-0.001856218
	 

	     b1_14(Jcp) = [1 x 1] = -0.278844494
	     b1_14(Jcp) = [1 x 1] = -0.278844494
	 

	     lw_14(Jcp)  =  [1 x 1]  =  -2.104845728 
	     b2_14(Jcp) = [1 x 1] =  -0.464208275
	     b2_14(Jcp) = [1 x 1] =  -0.464208275
	 

	 
	 

	     
	     
	 

	 
	 

	 
	 

	 
	 
	 






