PILE SETUP – LA-1
EXPERIENCE

Ching-Nien Tsai, P.E.
GEOTECHNICAL INVESTIGATION PROGRAM

• 102 CPT soundings
 – Depths from 100 feet to 200 feet
• 118 borings
 – Depths from 100 feet to 200 feet
• Exploration spacing
 – 400 feet
• 9 test piles at 4 locations during design
• 23 new CPT soundings and 7 load tests to be performed during construction
• Air boats were used for all explorations to minimize damage to the marsh
GAS POCKET & TOP DOWN CONSTRUCTION
LAI Pile Test Program
As of August 21, 2004 our LAI Pile Load Test Program has come to a successful conclusion.

Figure 1
Inspector monitoring data during one of the pile test loading sequences.

Center Photo
Boh Bros., pile test contractor, rigging the hydraulic jack to test concrete pile to 600 tons.

Figure 2
Rigging test pile with instrumentation prior to driving.
LOAD TEST PROGRAM

- **During Design**
 - 4 Locations
 - 9 Piles
 - Steel Pipe, Cylinder, and Square Concrete Piles

- **During Construction**
 - 7 Piles

- **Test Methods**
 - Static, Statnamic, Dynamic, EDC
<table>
<thead>
<tr>
<th>Test Location</th>
<th>Pile Type</th>
<th>Length (ft)</th>
<th>Hammer Type</th>
<th>Tip Elev. (ft)</th>
<th>Test Method</th>
<th>Setup Time (days)</th>
<th>Resistance (kips)</th>
<th>Splice</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-2</td>
<td>16" PPC</td>
<td>130</td>
<td>Vulcan 010</td>
<td>-119.5</td>
<td>Dyn. & Static</td>
<td>7</td>
<td>427</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>54" Cylinder</td>
<td>160</td>
<td>Vulcan 040</td>
<td>-147.5</td>
<td>Dyn. & Statnamic</td>
<td>7</td>
<td>1295</td>
<td>no</td>
</tr>
<tr>
<td>T-3</td>
<td>30" PPC</td>
<td>190</td>
<td>Vulcan 010/020</td>
<td>-176.0</td>
<td>Dyn. & Static</td>
<td>13</td>
<td>1650</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>30" Steel Pipe</td>
<td>195</td>
<td>Vulcan 020</td>
<td>-184.5</td>
<td>Dyn. & Static</td>
<td>15</td>
<td>1597</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>54" Cylinder</td>
<td>160</td>
<td>Vulcan 040</td>
<td>-149.1</td>
<td>Dyn. & Statnamic</td>
<td>16</td>
<td>1395</td>
<td>no</td>
</tr>
<tr>
<td>T-4</td>
<td>24" PPC</td>
<td>210</td>
<td>Vulcan 020/025</td>
<td>-202.5</td>
<td>Dyn. & Static</td>
<td>6</td>
<td>1656</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>24" PPC</td>
<td>160</td>
<td>Vulcan 025</td>
<td>-153.0</td>
<td>Dyn. & Static</td>
<td>7</td>
<td>861</td>
<td>yes</td>
</tr>
<tr>
<td>T-5</td>
<td>24" PPC</td>
<td>145</td>
<td>Vulcan 020/025</td>
<td>-130.5</td>
<td>Dyn. & Static</td>
<td>6</td>
<td>739</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>24" PPC</td>
<td>170</td>
<td>Vulcan 020/025</td>
<td>-134.0</td>
<td>Dyn. & Static</td>
<td>6</td>
<td>769</td>
<td>yes</td>
</tr>
</tbody>
</table>
LOAD TEST PROCEDURES

• When can the pile be loaded and what load?

• Dynamic testing
 – Initial drive
 – 2, 4, 8, 24 hour, 2 days, 4 days, post static load test

• Static or Statnamic testing
 – 5 to 7 days after driving
SKOV-DENVER MODEL

\[
\frac{Q_t}{Q_0} = A \log\left(\frac{t}{t_0}\right) + 1
\]

\[t_0 = 1\text{day}\]
PILE SETUP

T-2 16-inch 109 Feet Penetration

\[
\frac{Q_s}{Q_0} = 0.4435 \log \left(\frac{t}{t_0} \right) + 1
\]

\[
R^2 = 0.9924
\]

\[
\frac{Q_t}{Q_0} = 0.4271 \log \left(\frac{t}{t_0} \right) + 1
\]

\[
R^2 = 0.9509
\]
PILE SETUP

T-2 54-inch 147 Feet Penetration

\[\frac{Q_t}{Q_0} = 0.3205 \log\left(\frac{t}{t_0}\right) + 1 \]
\[R^2 = 0.9865 \]

\[\frac{Q_s}{Q_0} = 0.3511 \log\left(\frac{t}{t_0}\right) + 1 \]
\[R^2 = 0.9413 \]
PILE SETUP
TEST LOCATION T-4
24-in 145-ft PENETRATION

\[\frac{Q}{Q_{1s}} = 0.441 \log \left(\frac{t}{t_1} \right) + 1 \]
\[R^2 = 0.9884 \]

\[\frac{Q_t}{Q_{1t}} = 0.401 \log \left(\frac{t}{t_1} \right) + 1 \]
\[R^2 = 0.9685 \]
PILE SETUP

TEST LOCATION T-4
24-in 195-ft PENETRATION - SPLICED

\[
\frac{Q_t}{Q_{1t}} = 0.222\log\left(\frac{t}{t_1}\right) + 1 \\
R^2 = 0.6457
\]

\[
\frac{Q_s}{Q_{1s}} = 0.137\log\left(\frac{t}{t_1}\right) + 1 \\
R^2 = 0.2543
\]

\[
\frac{Q_t}{Q_{1t}} = 0.259\log\left(\frac{t}{t_1}\right) + 1 \\
R^2 = 0.7885
\]

\[
\frac{Q_s}{Q_{1s}} = 0.222\log\left(\frac{t}{t_1}\right) + 1 \\
R^2 = 0.9842
\]

Relative Resistance (Q/Q1day)

Elapsed Time (days)

- **24-in PSC 194-ft Penetration - Total Resistance**
- **24-in PSC 194-ft Penetration - Skin Friction**
RESULT SUMMARY

• Range of $A = 0.30$ to 0.68
• Average $A = 0.45$
• The results showed the test piles gained at least 65% of 14-day resistance in one day
Normalized Pile Resistance

Setup Time (days)

Relative Resistance

Max. Setup

Average Setup

Min. Setup

Max. Setup

Average Setup

Min. Setup
Size Effect on Pile Setup (T-2)

<table>
<thead>
<tr>
<th>Pile Type</th>
<th>Setup Parameter (A)</th>
<th>Skin Friction</th>
<th>Total Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-inch PPC</td>
<td></td>
<td>0.44</td>
<td>0.43</td>
</tr>
<tr>
<td>54-inch Cylinder</td>
<td></td>
<td>0.35</td>
<td>0.32</td>
</tr>
</tbody>
</table>
PILE TYPE EFFECT (T-3)

<table>
<thead>
<tr>
<th>Pile Type</th>
<th>Setup Parameter (A)</th>
<th>Skin Friction</th>
<th>Total Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-inch PPC</td>
<td></td>
<td>0.45</td>
<td>0.25</td>
</tr>
<tr>
<td>30-inch Steel Pipe</td>
<td></td>
<td>0.28</td>
<td>0.27</td>
</tr>
<tr>
<td>54-inch Cylinder</td>
<td></td>
<td>0.32</td>
<td>0.29</td>
</tr>
</tbody>
</table>
FINAL DESIGN

- 24-inch square concrete piles for all VECS bridges
- 24-hour restrikes are being used to verify the pile resistance
- Acceptance criterion: 65% of the nominal resistance at the 24-hour restrike
CONSTRUCTION AND ACTUAL PERFORMANCE

• 20- to 50-hour restrike on one pile each bent

• 194 bents has been completed as of last week

• 24-hour resistance
 – Range: 57% to 141% of the anticipated 14-day resistance
 – Average 74%
 – COV: 13%
ACTUAL RESULTS

Frequency

Resistance Ratio

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15
OTHER INTERESTING RESULTS

![Graph showing resistance (kips) vs. pile location with skin friction, end bearing, and total resistance marked.](image-url)
Questions