Unknown Foundations Investigations
The Experiences of the LA DOTD
Background & Stats

• 1990’s – Began assessing bridges for scour susceptibility.
• Bridges without plans rated “U” - Unknown
• Keeping an eye on the uncertain ones.
• 2002 – 5,460 Unknown Foundations
• No real method to eliminate them except replace them as we are able……(250 yrs)
LADOTD Bridge Inspection

- Divided into 10 parts – 9 districts, 1 HQ
- Program manager at HQ manages statewide
- 2 year inspection cycle
- Bridge inspectors collect streambed profile to be kept with bridge inspections
• Non-State owned bridges make up most of our unknowns
• Many of them are timber
• No pile driving records
• No record of what standard plan they are from
Research

• In 2003, LA DOTD was approached by FDH-SE, Inc. (Dispersive Wave)

• Parallel Seismic
• Cross bore-hole logging
• Sonic Echo
Technology Demo

• 3 bridges tested (2 concrete, 1 timber)
• 2.66% - Average error for concrete
• 4.92% - Average error for timber
Pilot Project

- 107 Bridges were tested
- 11 “Control” structures
Test Pile Selection

• Location of channel
• Previous streambed profiles
• Pile conditions per most recent inspection reports
• Good locations for distribution statewide
Distribution of Test Sites
Issues Identified

• Inconsistent results for steel piles
• Larger errors in timber piles than expected
Typical Steel Results Experienced

Length Result Comparison (Site# XXX)

Test Pile

<table>
<thead>
<tr>
<th></th>
<th>B3P2</th>
<th>B4P3</th>
<th>B7P3</th>
<th>B8P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp. Length</td>
<td>40.5</td>
<td>55.0</td>
<td>49.8</td>
<td>48.7</td>
</tr>
<tr>
<td>Rec. Length</td>
<td>76.00</td>
<td>56.00</td>
<td>75.50</td>
<td>55.92</td>
</tr>
</tbody>
</table>
Typical Timber Results Experienced

Length Result Comparison (Pilot Project)

Test Pile

- B2P4
- B2P5

Pile Length (ft)

<table>
<thead>
<tr>
<th>Pile Length</th>
<th>Comp. Length</th>
<th>Rec. Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.0</td>
<td>30.0</td>
<td></td>
</tr>
<tr>
<td>39.75</td>
<td>39.75</td>
<td>39.10</td>
</tr>
</tbody>
</table>

Southwest Geotechnical Engineers Conference 2010
(Baton Rouge, LA)
Problems with Steel Bridges

• LADOTD observed very large errors in computed vs. recorded pile length
Other Results

- 2.69% - Average error for concrete piles
- Timber results varied because of poor selection of control structures
Typical Concrete Results Experienced

Length Result Comparison (Site# XXX)

Test Pile

<table>
<thead>
<tr>
<th>B2P1</th>
<th>B3P2</th>
<th>B4P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.5</td>
<td>32.0</td>
<td></td>
</tr>
<tr>
<td>35.00</td>
<td>34.10</td>
<td>34.30</td>
</tr>
</tbody>
</table>

Pile Length (ft)

- Comp. Length
- Rec. Length

Southwest Geotechnical
Engineers Conference 2010
(Baton Rouge, LA)
Typical Timber Results
Experienced

Length Result Comparison (Demo)

Test Pile

B7 P5

B8 P5

Rec. Length

Comp. Length

Southwest Geotechnical
Engineers Conference 2010
(Baton Rouge, LA)
LADOTD Data Usage

• Bridge Scour analysis to be conducted
 – Phase 1 and 2
• Scour Susceptibility rated based on predicted scour and tested pile length
• Statistical approach to selecting future testing sites
Scour Vulnerability Codes

• Structure Inventory and Appraisal Coding Guide
 – Item 113

• Range from 9-0, indicating vulnerability to scour

• Also have “N”, “U”, and “T” ratings
Scour Vulnerability Codes Cont’d

• 8 - indicates that bridge foundation is stable for calculated scour conditions
• 6 – indicates bridge has not yet been evaluated for scour
• 3 – indicates a structure that is scour critical
Testing

- LA DOTD Contracted FDH-SE, Inc. to test 1248 concrete and timber piles
- FDH promised to find the problem with steel pile testing
- LA DOTD assisted them (at no cost) in verifying a testing procedure for steel piles
Upgrades in Testing Methodology

- Dispersive wave
- Problems with steel piles prompted switch to Parallel Seismic
S.P.# 700-99-0378

- Data mining operation (unknowns)
- Scour Analysis and NDT Testing on approx. 1,156 bridges statewide
- Three piles per bridge
- 110 “knowns” inserted for QA/QC
S.P.# 700-99-0378 Cont’d

• 75% completion
• 5% tolerance in pile lengths

• Trouble Bridges:
 – Have no pile records
 – Awaiting PE review
 – Awaiting pile data from LADOTD
S.P.# 700-99-0499

• Awarded Jan. 2010
• Approx. 900 bridges
 – 50% timber
 – 42% concrete
 – 8% steel

• 90 “knowns” for QA/QC
Forecast

• At the conclusion of S.P.#700-99-0499, LADOTD will have approx. 2,433 unknown structures left in our database

• LADOTD estimates that the majority of these will be 3’s and 6’s due to age of the inventory
Observations

• LADOTD has been pro-active in removal of unknown foundation
• Dispersive wave and parallel seismic work best for our application, but open to other methods
• LADOTD will continue to decrease number of unknowns in accordance with FHWA
• Cost will play a significant role
Questions ???
Comments /
Suggestions
Thank you!