FHWA/AASHTO Wave Task Force
Plan of Action

A Briefing by

Joe Krolak, P.E.
Senior Hydraulic Engineer
Federal Highway Administration

14 February 2007
Caveats

- Discussions of
 - Laws (lawyers)
 - Regulations (more lawyers)
 - Policy (even more lawyers)

... can be dangerous for the Hydraulic Engineer ...
Background

FHWA Organization

- Headquarters
- Division Offices
 - 50 States, District of Columbia, Puerto Rico
 - 3 Federal Lands Divisions
- Turner Fairbanks Highway Research Center
- Resource Centers
An Alternative View

FHWA Organization

Poobahs

Legal

Infrastructure

Bridge Office

Environment & Planning

Safety & Operations

TFHRC & RCs

Divisions
Background

Highway “Players”

- **State DOTs**
 - Standards, Guidance, and Procedures
 - Allowable Loads on bridges
 - Design frequency of bridges
 - Adopts AASHTO when appropriate
 - Funds Research

- **AASHTO**
 - Represents State DOTs (funded by States)
 - Subcommittee on Bridges and Structures
 - Special Committee on Hydrology and Hydraulics
 - Standards, Guidance, and Procedures
 - Funds Research (NCHRP)

- **FHWA**
 - Policy, Standards, Guidance, and Procedures
 - Tied to Federal-aid monies
 - 80% - 20% cost sharing
 - 90% - 10% on Interstates
 - 100% emergency relief
 - Can adopt AASHTO into regulations
 - Funds Research

Congress
What’s the Status Quo?

Bridge Design Frequency

- Typical Design
 - Use 25 to 50-year return period
 - Consider freeboard
 - Peak flow
 - Does not consider
 - unsteady flow
 - waves

- Why?
 - National Bridge Inventory
 - 600,000 bridges
 - 475,000 over waterways
 - Approximately 95% of those riverine
Coastal Storms
Is ‘Status Quo’ Good Policy?

- Perception/Reality
 - Not ‘losing’ coastal bridges
 - Scarce resources
 - Staff
 - $$$
 - Insufficient coastal bridge research, methods, and tools
 - Informal assessment of risk
Status Quo

Consequences
Consequences

Ivan: I-10 Escambia Bay

- **Storm Surge**
 - Design stillwater level = 11.7 ft

- **Waves**
 - Significant wave height = 6.5 ft
 - Maximum wave height = 13.0 ft
 - Maximum wave elevation = 21.2 ft
 - Peak period = 3.2 seconds

- **Probabilistic characterization**
 - About the 200-year event

- **Replacement bridge**
 - Built to maximum surge + wave
 - $200 million
Consequences

Katrina: US-90 Biloxi Bay

- **Storm Surge**
 - Design stillwater level = 20 ft

- **Waves**
 - Significant wave height = 6.2 ft
 - Maximum wave height = 10.6 ft
 - Maximum wave elevation = 27.2 ft
 - Peak period = 5.1 seconds

- **Probabilistic characterization**
 - Slightly greater than 100-year event

- **Replacement bridge**
 - Built to maximum surge + wave
 - $250 million
Consequences

Katrina: US-90 Bay Saint Louis

- **Storm Surge**
 - Design stillwater level = 25 ft

- **Waves**
 - Significant wave height = 9.1 ft
 - Maximum wave height = 15.3 ft
 - Maximum wave elevation = 37.2 ft
 - Peak period = 6.1 seconds

- **Probabilistic characterization**
 - Much greater than 100-year event

- **Replacement bridge**
 - Built to maximum surge + wave
 - $300 million
Consequences

Katrina: I-10 Lake Pontchartrain

- **Storm Surge**
 - Design stillwater level = 12 ft

- **Waves**
 - Significant wave height = 6.0 ft
 - Maximum wave height = 12.6 ft
 - Maximum wave elevation = 22.8 ft
 - Peak period = unknown

- **Probabilistic characterization**
 - Katrina about a 130-year event
 - Used extreme event

- **Replacement bridge**
 - Built to extreme event surge + wave
 - $600 million
Consequences

What to Do?

Given: *Legislative & Regulatory Authority*

- **Policy**
 Intent of a specific Section
 “Prevent coastal bridge failure …”

- **Technical Advisory & Guidance**
 Provide Guidance on how to achieve Policy

- **Research, Documents, & Specs**
 Procedures on how to achieve Guidance

Plan of Action
How FHWA will proceed with Policy, Guidance, and Procedures
Plan of Action

GOAL

A proposed set of studies, technology transfer activities, and policies to fully achieve a rational approach that addresses wave force, storm surge, and scour vulnerabilities in existing and new structures.
Plan of Action

Incentives

- Storm Events may be Increasing

- Public Safety
 - Loss of Life
 - Loss of access
 - >1000 structures?

- Economics
 - Several $billion ER
 - Lost capacity

- Political
 - Congress will act
Plan of Action

Initial Efforts

- **FHWA**
 - Wave Force Workshop
 - University of South Alabama
 - HEC-25 “Highways in Coastal Environment”
 - Numerical & Physical Modeling
 - TFHRC research
 - Vulnerability & hazards assessment

- **DOT**
 - Vulnerability screening
 - Probabilistic wave force assessment
 - Time dependent / wave synergistic scour
 - Use of coastal models

- **AASHTO**
 - LFRD specifications
 - Coastal H&H specifications
 - NCHRP

- **Others**
Plan of Action

Focused Direction!

Joint FHWA-AASHTO Task Force

- Work together to address
 - technical issues
 - design specifications
 - implementation measures

- Multidisciplinary
 - structural
 - coastal
 - hydraulic
 - geotechnical

- Composition
 - FHWA
 - State DOT
 - Academia
 - Consulting

Task Force Approach

Worked well in other bridges related issues:
- Seismic
- Vessel collision
- Extreme events
Plan of Action

Task Force Membership

Greg Perfetti – NCDOT – Chair
Tom Everett – FHWA – vice-Chair

State DOT Partners

Bridge Engineers
- Mitch Carr – MS DOT
- vacant

Hydraulic Engineers
- Rick Renna – FDOT
- Dave Henderson – NCDOT
- Kevin Flora – CALTRANS

Academic Partners
- Robert Dalrymple – JHU
- David Kriebel – USNA
- Spencer Rogers – NCS

FHWA Partners
- Kornel Kerenyi – TFHRC
- Shoukry Elnahal – RC
- Joe Krolak – HIBT
Plan of Action

Approach

- **Pooled Fund Project (on-going)**
 - Coastal State DOTs & FHWA
 - Bridges Vulnerable to Coastal Storms
 - Development of Guide Specifications
 - Handbook of Retrofit Options
 - Modjeski & Masters
 - John Kulicki, PI
 - Other Team members
 - Moffatt & Nicols (Jeffrey Sheldon/John Headland)
 - OEA (Max Sheppard)
 - D’Appolonia (James Withiam)
 - Dennis Mertz
Plan of Action
Scope & Focus

National & Coastal Orientation

- **Present**
 - Fixed Bridges
 - Constituents
 - storm surge
 - hydrodynamic forces*
 - scour
- **Future**
 - Movable Bridges
 - Roadway embankments
 - Ancillary structures (signs, signals, lights)

*wave impact, uplift, and buoyancy

Douglass, 2005
Plan of Action

Pieces of the Puzzle

- State of Practice
- Damaging Waves
 - Size, Period, Frequency, Cycles, Probability of occurrence
 - Where and how do they cause damage?
- Wave and water loads and forces
 - What are they?
 - Where and how do they act on structure and substructure?
- Vulnerable Bridges
 - Which are they?
 - How do you determine (screen) these?
 - What is the risk?
- Potential mitigation and retrofit measures
 - Older bridges v. New bridges
- Gordian Knot
 - "policy-guidance-technical document--who-does-what-and when--show-me-the-money“
Plan of Action

State of Practice

Headland, Allsopp, 2005
Plan of Action

Design Frequency

- **Interim Guidance**
- **Help out Gulf States directly affected by Katrina**
 - Allowing them to rebuild structures
 - State DOT standards would have required them to rebuild to same elevation as Katrina destroyed
 - FHWA showed a way to use our regulations to avoid this
 - Codified same approach used after Ivan at I-10 Escambia Bay, Florida
Plan of Action

Wave Forensics

- Conceptualization

Douglass, 2006
Plan of Action

Wave Forensics

- Numerical Modeling

Simulation Time = 120.000 hrs

Sheppard/Chen, 2005-2006
Plan of Action

Wave Forensics

- Wave Tank Modeling
Plan of Action

Wave Forensics

- Wave Tank Modeling
Plan of Action

Wave Forensics

- Wave Tank Modeling

Sheppard, 2007
Plan of Action

Wave Forensics

Field Work

Douglass, et. al., 2006

this girder moved this way off the pile cap and pulled 4 bolts out
Plan of Action

Wave Forensics

- Field Work

Kulicki, et. al., 2006
Plan of Action
Wave Forces

WAVE FORCES ON BRIDGE DECKS

Scott L. Douglass, Qin "Jim" Chen, and Joseph M. Olsen
Coastal Transportation Engineering Research & Education Center
Department of Civil Engineering
University of South Alabama
Mobile, AL 36688

Billy L. Edge
Texas A&M University
College Station, TX

Dan Brown
Dan Brown and Associates
380 Woodlands Road
Squamish, BC V8B 5P2

April 2006
DRAFT REPORT

Prepared for
U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL HIGHWAY ADMINISTRATION
Office of Bridge Technology
Washington, DC

http://www.southalabama.edu/usacterrec/waveforces.html
Plan of Action

Vulnerability

- Hazard Characterization
 - Storm Surge
 - Waves
 - Joint Probability

- Risk Analyses
 - Seismic & Other approaches

- Bridge Screening
 - Multi-level screening
Plan of Action

Retrofit Options

- Compile & Catalog Options
Plan of Action

Retrofit Options

- Compile & Catalog Options
 - Concept Drawings
 - Shear blocks
 - Fuses
 - Break-ways barriers
 - I-girder replacement
 - Analytical Studies of Options
 - Apply to set of actual bridges

Unsure of effectiveness of these concepts!
Plan of Action

Desired Results

- **Guide Specification**
 - Incorporate into LFRD specs
 - Risk and Vulnerability
 - Balloted by AASHTO

- **Retrofit Handbook**
 - Programmatic component
 - Screening methods
 - Standard sheets and drawings
Plan of Action

Timeline

- Research - ongoing
- Retrofit Options – March 2007
- Analytical Study of Retrofits – April 2007
- Retrofit Handbook – October 2007
- Final Reports – November 2007

All dates subject to change
Questions?
Acknowledgments & Credits

- University of South Alabama
 - Dr. Scott Douglass
 - Dr. Jim Chen

- Texas A&M
 - Dr. Billy Edge

- OEA
 - Dr. Max Sheppard
 - Dr. Mark Gosling

- Moffatt & Nichol
 - John Headland
 - Jeff Sheldon

- HR Wallingford
 - William Allsopp

- Florida DOT
 - Rick Renna
 - William Nickas

- North Carolina DOT
 - Dave Henderson

- Delaware DOT
 - Dennis Shea

- USACE

- NOAA

- FEMA

- FHWA
 - Fred Skaer
 - Tom Everett
 - Jorge Pagan
 - Kornel Kerenyi
 - Jeffrey Ger
 - Phil Thompson (ret)