LRFD Application in Driven Piles (Recent Development in Pavement & Geotech at LTRC)

2007 Louisiana Transportation Engineering Conference

February 12, 2007

Sungmin “Sean” Yoon, Ph. D., P.E. and Murad Abu-Farsakh, Ph. D., P.E.
Outline

- Problem statement
- Different design methods
- Statistical concept
- Methods used in LADOTD for driven piles
- LRFD calibration
- Conclusion
Problem Statement and Research Objectives

- Working Stress Design (WSD), Allowable Stress Design (ASD) vs. LRFD
- Bridge super structures vs. Foundation
- Federal Highway Administration and ASSHTO set a transition date of October 1, 2007
- Resistance Factor (Φ) reflecting Louisiana soil and DOTD design process
Calibration of the Design Code for Bridge Substructure

- Identify the load and resistance parameters for bridge substructure
- Formulate the limit state functions
- Develop the reliability analysis procedure and calculate reliability indices
- Select the target reliability index
- Determine the load and resistance factors for bridge substructure (including earth pressure related loads)
Stress Design Methodologies vs. LRFD

- Working Stress Design (WSD) – also called Allowable Stress Design (ASD)

\[Q \leq Q_{\text{all}} = \frac{R_n}{FS} = \frac{Q_{\text{ult}}}{FS} \]

where, \(Q = \) design load; \(Q_{\text{all}} = \) allowable design load; \(R_n = \) resistance of the structure, and \(Q_{\text{ult}} = \) ultimate resistance of the structure
Stress Design Methodologies vs. LRFD

- Limit State Design (LSD)
 - Ultimate Limit Stress (ULS)
 - Factored resistance ≥ Factored load effects
 - Service Limit Stress (SLS)
 - Deformation ≥ Tolerable deformation to remain serviceable
Load and Resistance Factor Design (LRFD)

\[\phi R_n \geq r_D Q_D + r_L Q_L = \sum r_i Q_i \]

where, \(\Phi \) = resistance factor, \(R_n \) = ultimate resistance; \(r_D \) = load factor for dead load; \(r_L \) = load factor for live load; \(r_i \) = corresponding load factor, and \(Q_i \) = summation of load
Working Stress Design (WSD) vs. LRFD

- **Working Stress Design (WSD)**
 - Load vs. Displacement
 - S_D vs. Ru
 - Factor of Safety (FS)

- **Load & Resistance Factor Design (LRFD)**
 - Load vs. Displacement
 - S_D vs. Ru
 - ϕRu
 - γS_D

- **Limit States Design (LSD)**
 - Load vs. Displacement
 - S_D vs. Ru
Random Variation

- Load and resistance parameters are random variables
- Reliability index is a measure of structural performance
- Practical procedure for calculation of the reliability indices
- Target reliability index
- Load and resistance factors that result in design that is close to the target reliability index
Statistical Concept

- Mean (μ) and Mode
- Variance (σ^2) and Standard Deviation (σ)

\[\sigma^2 = \frac{\sum (x_i - \bar{x})^2}{n-1} \]

- Coefficient of Variation (COV)

\[COV = \frac{\sigma}{\mu} \]

- Probability Density Function (PDF)
Limit State Function can be defined as
\[g = R - Q \]
Reliability Index, β

\[f_U = \text{probability density of } U \]

\[\beta = \frac{g}{\sigma_g} = \frac{\mu_R - \mu_Q}{\sqrt{\sigma_R^2 + \sigma_Q^2}} \]

β : reliability (or safety) index

$P_f = \text{shaded area}$

$\ln R - \ln S = \bar{U}$
Reliability Based FS

Load effect = Q

Capacity = R

design load

design capacity
Relationship between β and P_f

<table>
<thead>
<tr>
<th>P_f</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-1</td>
<td>1.28</td>
</tr>
<tr>
<td>10-2</td>
<td>2.33</td>
</tr>
<tr>
<td>10-3</td>
<td>3.09</td>
</tr>
<tr>
<td>10-4</td>
<td>3.71</td>
</tr>
<tr>
<td>10-5</td>
<td>4.26</td>
</tr>
<tr>
<td>10-6</td>
<td>4.75</td>
</tr>
<tr>
<td>10-7</td>
<td>5.19</td>
</tr>
<tr>
<td>10-8</td>
<td>5.62</td>
</tr>
<tr>
<td>10-9</td>
<td>5.99</td>
</tr>
</tbody>
</table>
First Order Second Moment (FOSM)

Load and Resistance Factor Design (LRFD)

\[\phi R_n \geq r_D Q_D + r_L Q_L = \sum r_i Q_i \]

where, \(\Phi \) = resistance factor, \(R_n \) = ultimate resistance; \(r_D \) = load factor for dead load; \(r_L \) = load factor for live load; \(r_i \) = corresponding load factor, and \(Q_i \) = summation of load
First Order Second Moment (FOSM)

\[\phi R_n \geq r_D Q_D + r_L Q_L = \sum r_i Q_i \]

(1)

\[\beta = \frac{\ln \left(\frac{\lambda_R R_n}{Q_D} + \lambda_Q \right) \sqrt{1 + COV_{QD}^2 + COV_{QL}^2}}{\sqrt{\ln (1 + COV_{R}^2)(1 + COV_{QD}^2 + COV_{QL}^2)}} \]

(2)

Combining eq (1) and (2) using \(R_n \)

\[\phi = \frac{\frac{\gamma_D Q_D}{Q_L} + \gamma_L}{\left(\frac{\lambda_Q Q_D}{Q_L} + \lambda_Q \right) \exp \left(\beta \ln \left(1 + COV_{R}^2 \right) \right)} \times \sqrt{\left(1 + COV_{QD}^2 + COV_{QL}^2 \right)} \]

AASHTO (1994)

\[\lambda_{QD} = 1.08, \quad \lambda_{QL} = 1.15, \quad r_D = 1.25, \quad r_L = 1.75, \quad COV_{QD} = 0.13, \quad COV_{QL} = 0.18 \]

\(\gamma_D, \gamma_L = \) dead and live load factors

\(Q_D/Q_L = \) dead to live load ratio

\(\lambda_{QD}, \lambda_{QL} = \) dead and live load bias factors
Methods used in LADOTD
(Ultimate Capacity for Driven Piles)

- Static method
 - α method - General adhesion for cohesive soil (Tomlison 1979)
 - Nordlund method

- CPT method
 - Schmertmann, LCPC, de Ruiter and Beringen

- Dynamic Analysis
 - GRL WEAP

- Dynamic Measurement
 - CAPWAP

- Measured Ultimate Pile Capacity
 - Davisson, Butler-Hoy
Davisson (Interpretation of Pile Load Tests)

\[\Delta = \frac{Q}{AE} \]

\[x = 0.15 + \frac{D}{120} \text{ (in)} \]
Butler-Hoy (Interpretation of Pile Load Tests)

Static Load Test Results

Load (Tons)

Settlement (in)

- **Slope** = 0.05 in./ton

Q_{ult}
Cone Penetration Test (CPT) Method

- Penetration Rate: 2 cm/sec
- Sleeve friction, f_s
- Tip resistance, q_c

Cone rod: 36 mm dia.
Ultimate Pile Capacity from CPT

\[Q_{ult} = Q_{tip} + Q_{shaft} \]

Shaft friction Capacity,
\[Q_{shaft} = \sum f_i \cdot A_i \]

End-bearing Capacity, \(Q_{tip} \)
\[= q_t \cdot A_t \]
Schmertmann method (CPT)

where,

\(q_t = \frac{q_{c1} + q_{c2}}{2} \)

\(f = \alpha_c f_s \)

- \(q_t \): unit bearing capacity of pile
- \(f \): unit skin friction
- \(\alpha_c \): reduction factor (0.2 ~ 1.25 for clayey soil)
- \(f_s \): sleeve friction

\[Q_s = \alpha_s \left(\sum_{y=0}^{8D} \frac{y}{8D} f_s A_s + \sum_{y=8D}^{L} f_s A_s \right) \]

\[Q_{ul} = Q_t + Q_s = q_t A_t + f A_s \]
LCPC method (CPT)

\[
q_t = k_b \ q_{eq} \ (\text{tip})
\]

\[
k_b = 0.6 \ \text{clay-silt}
\]

\[
0.375 \ \text{sand-gravel}
\]

\[
f = \frac{q_{eq} \ (\text{side})}{k_s} < f_{\text{max}}
\]

\[
k_s = 30 \ \text{to} \ 150
\]
de Ruiter and Beringen (CPT)

- In clay
 \[S_u(\text{tip}) = \frac{q_c(\text{tip})}{N_k} \]
 \[q_t = N_c.S_u(\text{tip}) \]
 \[f = \beta.S_u(\text{side}) \]
 \[N_k = 15 \text{ to } 20 \]
 \[N_c = 9 \]
 \[\beta = 1 \text{ for NC clay} \]
 \[= 0.5 \text{ for OC clay} \]

- In sand
 \[q_t \text{ similar to Schmertmann method} \]
 \[f = \min \left\{ \begin{array}{l}
 f_s \text{ (sleeve friction)} \\
 q_c(\text{side}) / 300 \text{ (compression)} \\
 q_c(\text{side}) / 400 \text{ (tension)} \\
 1.2 \text{ TSF}
 \end{array} \right\} \]
Implementation into a Computer Program

- Louisiana Pile Design by Cone Penetration Test
- [Link](http://www.ltrc.lsu.edu/)
Histograms

- De Ruiter & Beringen method
- LCPC method
- Schmertmann method
- α method
Resistance Factors, ϕ (Davisson)

- LCPC method
- Schmertmann method
- Static method

Ratio of dead load to live load (Q_D/Q_L)

Resistance factor, ϕ
Resistance Factors, ϕ (Butler-Hoy)

![Graph showing resistance factors for various methods.](Image)
Resistance Factors, ϕ ($\beta_T=2.5$)

<table>
<thead>
<tr>
<th>Load Test Interpretation Method</th>
<th>Pile Capacity Prediction Method</th>
<th>Span Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30 ft</td>
</tr>
<tr>
<td>Davisson</td>
<td>α-Method</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>LCPC</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>Schmertmann</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>De Ruiter</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90 ft</td>
</tr>
<tr>
<td></td>
<td>α-Method</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>LCPC</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>Schmertmann</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>De Ruiter</td>
<td>0.68</td>
</tr>
</tbody>
</table>
Conclusions

- **Tentative** resistance factors (ϕ) for Louisiana soil were evaluated for different driven pile design methods (Research is on going).
- Values of resistance factor depend on the pile load test interpretation and design methods.
- LRFD in deep foundation can improve its reliability due to more balanced design.
- There is a strong need for more statistical data to get more rational resistance factor.
LRFD Implementation in Louisiana

- Dr. Ching Tsai
- Wednesday 10:00 - 11:45 a.m.
- Session 83: Geotechnical Services
- Meeting Room 3
Acknowledgement

- The project is financially supported by the Louisiana Transportation Research Center and Louisiana Department of Transportation and Development (LA DOTD).

- LTRC Project No. 07-2GT.
References

- Paikowsky, S.G. 2007 TRB presentation.
- Bea, Robert G. 2006 presentation
- Nowak, Andrzej S. 2007 TRB presentation.
- Mayne, Paul W.
 <http://www.ce.gatech.edu/~geosys/Faculty/Mayne>
- NCHRP report 507: Load and Resistance Factor Design (LRFD) for Deep Foundation.
THANK YOU!

Sungmin “Sean” Yoon
LTRC
syoon@lsu.edu