

Muhannad T. Suleiman, Kam Ng and Sri Sritharan

Research Significance

- Evidence of pile setup (or increase of pile capacity as a function of time compared to End of Driving - EOD) is well documented in the literature.
- If accounted for, design will be more cost-effective resulting in a reduced number and/or length of piles.
- The mechanisms of pile setup are related to remolding of soil, increase of lateral soil stresses and dissipation of pore water pressure.
- Shortcomings of available methods to estimate pile setup:
 - Most do not incorporate soil properties
 - Require the determination of pile capacity at some time other than EOD (examples: 1 day after EOD, 14 days or long time)

Pile Setup Equations

Reference	Setup equation	Limitations			
Pei and Wang (1986)	$\frac{R_t}{R_t} = 0.236[\log(t) + 1] \left(\frac{R_{max}}{R_{max}} - 1 \right) + 1$	Purely empirical Site specific			
	$\frac{1}{R_{EOD}} = 0.236[\log(0) + 1]\left(\frac{1}{R_{EOD}} - 1\right) + 1$	No soil property			
		Unknown or difficult to determine R _{max}			
Zhu (1988)	R ₁₄	Only predict pile resistance at 14 th day			
	$\frac{1}{R_{EOD}} = 0.375S_t + 1$	No consolidation effect is considered			
Skov and Denver (1988)	$\frac{R_t}{R_o} = A \log\left(\frac{t}{t_o}\right) + 1$	Require restrikes			
		Wide range and non uniqueness of A			
Svinkin and Skov (2000)	$\frac{R_t}{R_{EOD}} = B[\log(t) + 1] + 1$	Require restrikes B value has not been extensively quantified No clear relationship between B value and soil properties.			
Karlsrud et al. (2005)	$\frac{R_t}{R_{100}} = A \log\left(\frac{t}{t_{100}}\right) + 1;$ $A = 0.1 + 0.4 \left(1 - \frac{PI}{P}\right) \rho C R^{-0.8}$	Assumed complete dissipation after 100 days is not true Not practical to use R_{100}			

 R_t pile resistance at any time *t* after EOD; R_{EOD} : pile resistance at EOD; R_{max} : maximum pile resistance after completing soil consolidation; R_o : reference pile resistance; R_{14} : pile resistance at 14 days after EOD; R_{100} : pile resistance at 100 days after EOD; S_t : soil sensitivity; *A*: pile setup factor of 0.6 defined by Skov and Denver (1988); *B*: pile setup factor defined by Svinkin and Skov (2000); *PI*: plasticity index; and *OCR*: overconsolidation ratio.

Our Study

Experimental study with full-scale tests (10 tests – five in clay)

- □ Used Steel H-piles. Why?
- Piles were instrumented with strain gauges
- PDA and CAPWAP at different times
- Push-in pressure cells to measure change of soil stresses and dissipation of pore water pressure as a function of time
- Soil characterization using SPT, CPTu (with dissipation tests), laboratory tests including consolidation tests
- Analytical study to develop an equation to estimate pile setup
- How to incorporate pile setup in LRFD Approach

Experimental Study – Soil Properties

Experimental Study – Pile Capacity with time

Driving & Re-strikes

PDA and CAPWAP

Experimental Study – Pile Capacity with time

Experimental Study – Pile Capacity with time

Experimental Study – Pore Pressure Dissipation

Analytical Study

Based on five full-scale tests with available soil data, we:

- **G** Found that pile setup is related to:
 - □ Horizontal coefficient of consolidation (C_h) [vertical coef. Of cons. showed good results too]
 - SPT N value or CPT
 - Pile size
- Developed a relationship between SPT N value and C_h
- Developed this equation to estimate pile setup knowing soil properties

$$\frac{R_t}{R_{EOD}} = \left[\left(\frac{39.05C_h}{N_a r_p^2} + 0.09 \right) \log_{10} \left(\frac{t}{t_{EOD}} \right) + 1 \right] \left(\frac{L_t}{L_{EOD}} \right)$$

- Assumed $t_{EOD} = 1 \text{ min}$
- Accounted for length change due to restrike

Analytical Study

□ Validation with H-Piles from Literature

$$\frac{R_t}{R_{EOD}} = \left[\left(\frac{39.05C_h}{N_a r_p^2} + 0.09 \right) \log_{10} \left(\frac{t}{t_{EOD}} \right) + 1 \right] \left(\frac{L_t}{L_{EOD}} \right)$$

Analytical Study

Validations with other Piles Types from Literature

$$\frac{R_t}{R_{EOD}} = \left[\left(\frac{39.05C_h}{N_a r_p^2} + 0.09 \right) \log_{10} \left(\frac{t}{t_{EOD}} \right) + 1 \right] \left(\frac{L_t}{L_{EOD}} \right)$$

•	Cheng and Ahmad (1988)-244mm-CEP
•	Fellenius (2002)-273mm-OEP
	Fellenius (2002)-273-CEP
\diamond	Thibodeau and Paikowsky (2005)-324mm-CEP
Δ	Kim et al. (2009)-356mm-CEP
۰	Thibodeau and Paikowsky (2005)-356&406mm-PCP
0	Thibodeau and Paikowsky (2005)-457mm-CEP
∇	Thibodeau and Paikowsky (2005)-457-MT
	Kama (2001)-600mm-CEP
•	Thompson et al (2009)-600mm-PCP
▲	Thibodeau and Paikowsky (2005)-600-CEP
0	Thompson et al (2009)-750mm-PCP

Pile Setup in LRFD

Pile Setup in LRFD

Recommended resistance factor

$$\varphi R_{t} = \varphi_{EOD} R_{EOD} + \varphi_{setup} R_{setup}$$

	Proposed pile setup method	Resistance Component	Sample Size	λ	cov	$\beta_{\rm T} = 2.33$	
Pile type						φ	φ/λ
	CAPWAP	EODª	19	1.044	0.159	0.73	0.70
Stool H-nilo		Setup	19	1.097	0.366	0.35	0.32
Steel n-pile	WEAP-SA	EODª	38	1.146	0.220	0.73	0.64
		Setup	35	0.910	0.343	0.32	0.36
	CAPWAP	EODª	14	0.970	0.238	0.60	0.62
Displacement pile (diameter less than 600 mm)		Setup	42	1.236	0.704	0.18	0.14
	r CAPWAP	EODª	23	1.341	0.310	0.72	0.53
Displacement pile (diameter equal or greater than 600 mm)		Setup	36	1.591	0.834	0.15	0.10

^a – measured pile resistances at EOD (R_{m-EOD}) were back-calculated using the proposed setup Eq. (9) from measured pile resistances obtained from SLTs.

Thank you and Questions

If you have data that we can incorporate in our study, please let me know

mts210@lehigh.edu Muhannad T. Suleiman

Thank you and Questions

Experimental Study – Pore Pressure Dissipation

Experimental Study – Pore Pressure Dissipation

Experimental Study

Steel H-Pile Instrumentation

Driving & Re-strikes

Dynamic Pile Test

Static Load Test

Pile Setup in LRFD

Recommended resistance factor

$$\begin{split} \varphi R_t &= \varphi_{EOD} R_{EOD} + \varphi_{setup} R_{setup} \\ \lambda_{setup} \left[\frac{\gamma_D \left(\frac{Q_D}{Q_L} \right) + \gamma_L}{1 + \left(\frac{Q_D}{Q_L} \right)} - \varphi_{EOD} \alpha \right] \\ \varphi_{setup} &= \frac{\left(\frac{\lambda_D \left(\frac{Q_D}{Q_L} \right) + \lambda_L}{1 + \left(\frac{Q_D}{Q_L} \right)} \right) e^{\beta_T \sqrt{\ln\left[\left(1 + COV_{R_{EOD}}^2 + COV_{R_{setup}}^2 \right) \left(1 + COV_{Q_D}^2 + COV_{Q_L}^2 \right) \right]}}{\sqrt{\frac{\left(1 + COV_{R_{EOD}}^2 + COV_{R_{setup}}^2 \right)}{\sqrt{\left(1 + COV_{R_{EOD}}^2 + COV_{R_{setup}}^2 \right)}}}} - \lambda_{EOD} \alpha \end{split}}$$