The Dynamic Cone Penetrometer "The DCP"

What is it, how does it work, and how can it help you?

Gavin P. Gautreau, P.E.
Geotechnical Research Manager
Louisiana Transportation Research Center (LTRC)

http://www.ltrc.lsu.edu
Presentation Objectives:

- What is it?
 - Purpose & Concept
 - Parts
- How does it work?
 - Operation/Technique
 - Data Recording/Analysis
- How can it help you?
 - Layer Stiffness
 - Layer Thickness
 - Acceptance & Verification
 - Forensics
 - Correlations (CBR, Mr, etc.)
What is it?

- Purpose & Concept
 - Dynamic Cone Penetrometer
 - Shallow Pavement Applications
 - Measures Stiffness, mm/blow
 - Simple Concept
 - Like hammering a nail
 - Stiff material requires more drops
 - Weak material requires fewer drops
 - Non Nuclear
 - Possible Method for Acceptance
 - Quick and Cost Effective
 - Another “Tool for the Toolbox”
What is it?

• Parts
 – Handle
 – Upper Rod (5/8” dia)
 – Hammer
 • 17.8 pounds (8kg)
 • 22.6 inch drop
 – Anvil & Lower Rod
 – Cone Tip (60 degree, ¾” dia)
 – Measuring Rod with cm & mm divs.
 – Other
 • Hammer Drill
 • Generator
 • Farm Jack
How does it work?

- **Operation**
 - Assemble DCP
 - Drill thru Asphalt or Concrete if necessary
 - Record reference readings (A)
 - Rod remains stationary
 - Lift hammer to handle
 - Release hammer
 - Record rod reading after each hammer drop (B)
 - Repeat drop, read, and record process thru pavement layers

LTRC

http://www.ltrc.lsu.edu
How does it work?

- **Technique**
 - Keep straight (vertical)
 - Avoid banging hammer into handle during lift.
 - Can lose disposable cone
 - Damage to device
 - Spin rod after each blow.
 - Keep measuring rod in one spot during test.
 - Record reading after every hammer drop.
How does it work?

• Operation (Prep & Planning)
 – Hammer Drill
 • Quickly thru Asphalt or Concrete
 • Minimal Intrusion
 • Various Length bits
 • Dry vs wet coring rig

• Crew Size
 • Hammer Operator
 • Reader
 • Recorder

http://www.ltrc.lsu.edu
How does it work?

• Data Recording
 – Project Information
 • Site Location
 • Station #
 • Distance from Centerline
 • Elevation (if available)
 – Pavement Information (as available)
 • Cross-Section Thickness Information
 • Material Types (classification and gradation)
 • Compaction Info (Proctor Moisture and Density) as available
 • Nuclear Gauge Information if available
How does it work?

• Data Recording, example

<table>
<thead>
<tr>
<th>Blowing</th>
<th>Rod Reading (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anytown, LA – Hwy 1, Sta. 19+00 RL</td>
<td></td>
</tr>
<tr>
<td>Top of Asphalt/Concrete</td>
<td>0</td>
</tr>
<tr>
<td>Top of Testing Surface (bottom of drilled hole, if applicable)</td>
<td>0</td>
</tr>
<tr>
<td>Reading after First Blow</td>
<td>1</td>
</tr>
<tr>
<td>Reading after Second Blow</td>
<td>2</td>
</tr>
<tr>
<td>Reading after Third Blow</td>
<td>3</td>
</tr>
<tr>
<td>Reading after Fourth Blow</td>
<td>4</td>
</tr>
<tr>
<td>Reading after Fifth Blow</td>
<td>5</td>
</tr>
<tr>
<td>Reading after Last Blow</td>
<td></td>
</tr>
</tbody>
</table>

http://www.ltrc.lsu.edu
How does it work?

• Data Calculations (without drilling)

<table>
<thead>
<tr>
<th>Blow #</th>
<th>Rod Reading, cm</th>
<th>Distance per Blow cm</th>
<th>Cumulative Penetration cm</th>
<th>Distance below Surface cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NA</td>
<td>0.0</td>
<td>0.0</td>
<td>equal to tip location below surface</td>
</tr>
<tr>
<td>0</td>
<td>46.0</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>1</td>
<td>46.3</td>
<td>0.3</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>2</td>
<td>46.6</td>
<td>0.3</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>3</td>
<td>46.9</td>
<td>0.3</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>4</td>
<td>47.2</td>
<td>0.3</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>5</td>
<td>47.5</td>
<td>0.3</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>6</td>
<td>47.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How does it work?

- Data Calculations (drilling occurred)

<table>
<thead>
<tr>
<th>Blow #</th>
<th>Rod Reading, cm</th>
<th>Distance per Blow cm</th>
<th>Cumulative Penetration Running Total cm</th>
<th>Distance below Surface cm can plot as inches or elev. tip location below pavement surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>38.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>46.0</td>
<td>7.6</td>
<td>0.0</td>
<td>9.4</td>
</tr>
<tr>
<td>1</td>
<td>46.3</td>
<td>0.3</td>
<td>0.3</td>
<td>7.9</td>
</tr>
<tr>
<td>2</td>
<td>46.6</td>
<td>0.3</td>
<td>0.6</td>
<td>8.2</td>
</tr>
<tr>
<td>3</td>
<td>46.9</td>
<td>0.3</td>
<td>0.9</td>
<td>8.5</td>
</tr>
<tr>
<td>4</td>
<td>47.2</td>
<td>0.3</td>
<td>1.2</td>
<td>8.8</td>
</tr>
<tr>
<td>5</td>
<td>47.5</td>
<td>0.3</td>
<td>1.5</td>
<td>9.1</td>
</tr>
<tr>
<td>6</td>
<td>47.8</td>
<td>0.3</td>
<td>1.8</td>
<td>9.4</td>
</tr>
</tbody>
</table>
Example, cont’d

<table>
<thead>
<tr>
<th>Station Number</th>
<th>0.0 Rod Reading, cm</th>
<th>Distance per blow, cm</th>
<th>Cumulative Penetration, cm</th>
<th>Depth below pavement surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of Asphalt/Concrete</td>
<td>NA</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Top of Test Layer</td>
<td>0</td>
<td>46.0</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>After First Blow</td>
<td></td>
<td></td>
<td>3 mm/blow</td>
<td>Layer Change</td>
</tr>
<tr>
<td>1</td>
<td>46.3</td>
<td>0.3</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>2</td>
<td>46.6</td>
<td>0.3</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>3</td>
<td>46.9</td>
<td>0.3</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>4</td>
<td>47.2</td>
<td>0.3</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>5</td>
<td>47.5</td>
<td>0.3</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>6</td>
<td>47.8</td>
<td>0.3</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>7</td>
<td>48.1</td>
<td>0.3</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>8</td>
<td>48.4</td>
<td>0.3</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>9</td>
<td>48.7</td>
<td>0.3</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>10</td>
<td>49.0</td>
<td>0.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>11</td>
<td>49.3</td>
<td>0.3</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>12</td>
<td>49.6</td>
<td>0.3</td>
<td>3.9</td>
<td>3.9</td>
</tr>
<tr>
<td>13</td>
<td>49.9</td>
<td>0.3</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>14</td>
<td>50.2</td>
<td>0.3</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>15</td>
<td>50.5</td>
<td>0.3</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>16</td>
<td>50.8</td>
<td>0.3</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>17</td>
<td>51.1</td>
<td>0.3</td>
<td>5.4</td>
<td>5.4</td>
</tr>
<tr>
<td>18</td>
<td>51.4</td>
<td>0.3</td>
<td>5.7</td>
<td>5.7</td>
</tr>
<tr>
<td>19</td>
<td>51.7</td>
<td>0.3</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>20</td>
<td>52.0</td>
<td>0.3</td>
<td>6.3</td>
<td>6.3</td>
</tr>
<tr>
<td>21</td>
<td>52.3</td>
<td>0.3</td>
<td>6.6</td>
<td>6.6</td>
</tr>
<tr>
<td>22</td>
<td>52.6</td>
<td>0.3</td>
<td>6.9</td>
<td>6.9</td>
</tr>
<tr>
<td>23</td>
<td>52.9</td>
<td>0.3</td>
<td>7.2</td>
<td>7.2</td>
</tr>
<tr>
<td>24</td>
<td>53.2</td>
<td>0.3</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>25</td>
<td>53.5</td>
<td>0.3</td>
<td>7.8</td>
<td>7.8</td>
</tr>
<tr>
<td>26</td>
<td>53.8</td>
<td>0.3</td>
<td>8.1</td>
<td>8.1</td>
</tr>
<tr>
<td>27</td>
<td>54.1</td>
<td>0.3</td>
<td>8.4</td>
<td>8.4</td>
</tr>
<tr>
<td>28</td>
<td>54.4</td>
<td>0.3</td>
<td>8.7</td>
<td>8.7</td>
</tr>
<tr>
<td>29</td>
<td>54.7</td>
<td>0.3</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>30</td>
<td>55.0</td>
<td>0.3</td>
<td>9.3</td>
<td>9.3</td>
</tr>
</tbody>
</table>

Data Analysis
- Plotting Data
- Layer Changes
- Average mm/blow

Anytown, LA – Hwy 1, Sta. 19+00 RL

```
• Data Analysis
  – Plotting Data
  – Layer Changes
  – Average mm/blow
```

http://www.ltrc.lsu.edu
How can it help you?

Advantages:

- Determines Stiffness in mm/blow
- Plotted slope = Stiffness in mm/blow
 - Flatter Slopes indicate stiffer layers
 - Steeper Slopes indicate weak layers
- Layer Changes identified by Slope Changes
 - Thicknesses can be determined/verified
 - Weak layers identified
- Minimal disturbance
- Test lower pavement layers without removal of upper layers
- Test different materials (Stone, Sand, Clay, and Silt)
- Compare time differences or adjacent sites

Disadvantages:

- Not for use on large stone, shell, asphalt, and concrete
- Damage can occur (repetitive blows in very stiff & improper removal)
- Does not measure moisture content or density – measures stiffness
How can it help you?

• Advantages:
 • Possibly another way to adjust pay, based on Stiffness of in-place layers
 • Non “Nuclear”
 • Not rocket science
 • Correlations to CBR, Mr, etc.
 • Another “tool for the toolbox”… spread the word

• Simple reliable, cost-effective tool for shallow pavement applications
LTRC Project: 06-4GT

This is a comprehensive follow-up study after four LTRC research projects on involving DCP applications.

Objectives:

- Develop a comprehensive implementation plan of DCP with procedures that DOTD can use in its daily production
- Develop or modify current DOTD specifications to accommodate such changes.

LTRC

http://www.ltrc.lsu.edu
ALF Lane 4
Base, Treated Subbase, & Subgrade
Field & Laboratory Test Summary
Cross-Section

- **Asphalt Surface (2”)**
- **Base (8.5”)**
 - Stone
 - BCS with 10% Slag
 - BCS with FlyAsh (small untreated area at end)
 - Foamed Asphalt
- **Treated Subbase (12”)**
 - Lime
 - Cement
- **Untreated Subgrade**
Subgrade DCP Values

Time, Date

<table>
<thead>
<tr>
<th>Date</th>
<th>Average MM/Blow</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-Nov</td>
<td>28.9</td>
</tr>
<tr>
<td>10-Dec</td>
<td>13.6</td>
</tr>
</tbody>
</table>

November Average = 28.9
February Average = 13.6
TREATED SUBBASE DCP VALUES

TIME, DATE

<table>
<thead>
<tr>
<th>Time</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-Nov</td>
<td>10-Dec</td>
</tr>
<tr>
<td>30-Dec</td>
<td>19-Jan</td>
</tr>
<tr>
<td></td>
<td>8-Feb</td>
</tr>
</tbody>
</table>

Treated Subbase DCP Values

AVERAGE MM / BLO

1A AVERAGE
2A AVERAGE
2A 0+10
1B AVERAGE
2B AVERAGE
3A AVERAGE
3B AVERAGE

Cement Initial Average = 20.3
Lime Initial Average = 31.8
Cement Average = 5.3
Lime Average = 7.3

http://www.ltrc.lsu.edu
Thanks!

• Questions?