PERFORMANCE OF LOUISIANA'S CHIP SEAL AND MICRO-SURFACING PROJECTS

Samuel B. Cooper, Jr. Senior Asphalt Research Engineer Louisiana Transportation Research Center

Louisiana Asphalt Technology Conference Shreveport, LA. February 23-24, 2005

Background - Chip Seals - Micro-Surfacing Objective Scope Research Summary and Conclusions

Chip Seals

What is a Chip Seal?

 Single layer of asphalt binder covered by embedded aggregate one rock thick.

Dates back to the 1920's.

Used primarily as wearing course for low volume roads.

Evolved into maintenance treatments for low and high volume roadways.

Popularity is a result of low initial cost in comparison to thin asphalt overlays.

Chip Seals

- NCHRP Synthesis 35-02, Chip Seal Best Practices.
 - States and municipalities reporting excellent chip seal programs.
 - Use Chips Seals as preventative maintenance.
 - Apply to roads before distress levels are classified as moderate.
 - Chip Seals scheduled every 5 years with life expectancy of chip seals being 6 years.

Micro-Surfacing

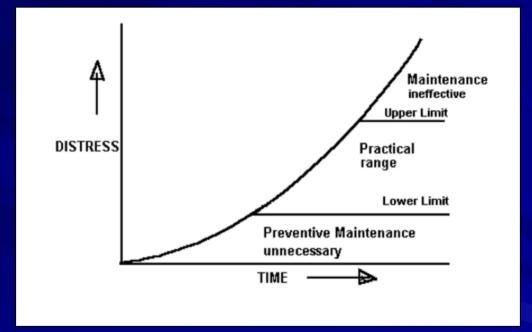
What is Micro-Surfacing?

- Type of Slurry Seal
- Mixture of dense-graded aggregate, asphalt emulsion, water, and mineral fillers.
- Applied with specialized paver which carries and mixes all components.
- Surface is initially dark brown and then changes to black.
- Cures in 1 hour.

Micro-surfacing

Chip seals and micro-surfacing are two of the commonly used techniques to preserve or extend pavement life.

These techniques can be classified according to their purpose or function as either corrective or preventive.
 Should only be considered for structurally sound pavements.



Critical Decisions for Pavement Preservation

Timing of application Selection of an appropriate technique

Time of Application

Effectiveness of Maintenance Operations

Which Application?

Chip Seal

- Seal Surface
- Seal low intensity fatigue and block cracking
- Restore Surface Friction
- Micro-Surfacing
 - For Asphalt Pavements
 - Rut Filling
 - Texturing/Sealing
 - For Concrete Pavements
 - Texturing

Objective

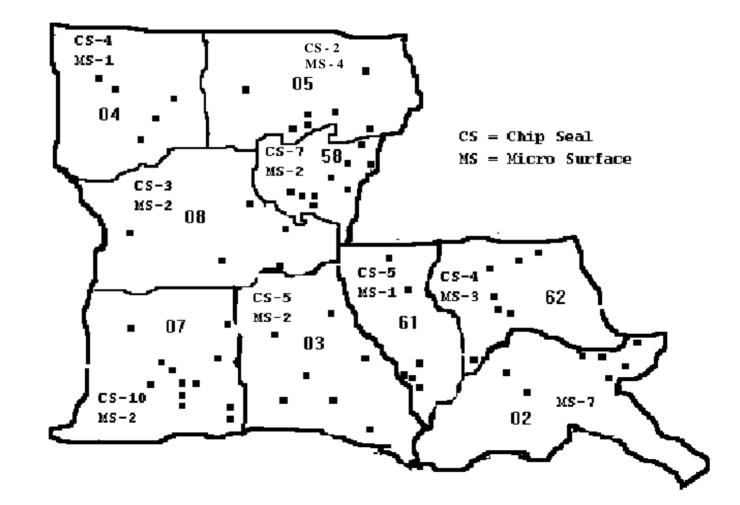
 Evaluate the effectiveness of LADOTD's chip seal and micro-surfacing program in terms of their performance and cost.

Scope

 Limited to the evaluation of performance relative to age and traffic factors and not factors associated with materials and/or construction.

Project Factorial

Single layer Chip Seals


 40 projects
 Constructed 1995 – 1997

 Micro-Surfacing

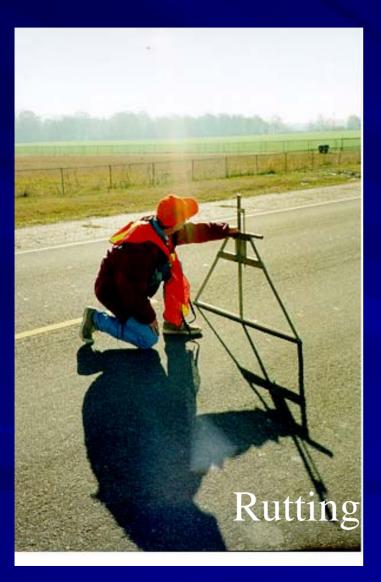
 24 projects
 Constructed 1995 – 1997

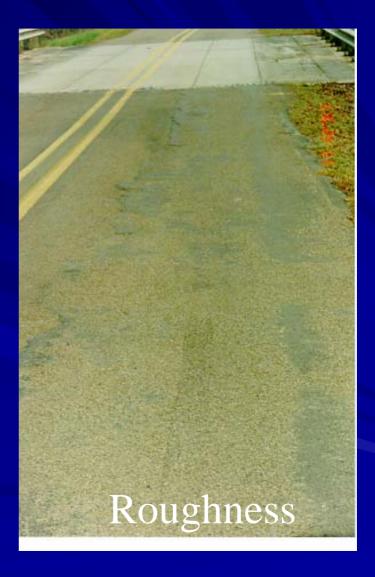
General Location of Preventive Maintenance Projects

Pavement Evaluation Process

Ride each entire project. Rate roughness Select a representative test section from each project. - 500 to 700 foot test section Survey same section every 12 – 24 months.

Conduct a minimum of four surveys.


Test Section Evaluation


Conduct a walking survey.
 Rate Severity and Extent of Pavement Distresses.

Photograph each test section.


Rating Distresses:

Rating Distresses: Cracking

Alligator

Edge (Widening)

Rating Distresses:

Patch/ Pothole

Aggregate Loss

Field Evaluation Rating Procedure

- Subjectively rate each distress in terms of :
 - Severity
 - Degree of deterioration
 - Extent
 - Frequency of occurrence
- Assign weight to each pavement distress
- Record the rating on the rating form

PAVEMENT CONDITION RATING FORM

Project No: <u>424-08-0023</u> Project Begin: <u>US 90 @ the Overpa</u> Project End: <u>its intersection with L</u>		; thence croSurfac	North to	Name: <u>Overp</u> Proje				
Project End: its intersection with L	<u>.A 3199</u> eal Type: <u>Mi</u>	croSurfac	<u>.e</u>	Proje	ct Length	2.60		
	eal Type: <u>M</u> i			Proje	ct Longth	2.60		
				Proje	ct Length	2 (0		
Route: US 90 Se	ate Surveyed	1: 4.15.03			Project Length: 3.60			
Date Constructed: 2/97(75) D				Surveyed By: SCS				
Test Section Begin: Sheriff's Bldg							Test Secti	on
End:			Insp	Lane: NB SI	EB WB			
Distress	Severi	ty Level			Extent	Level		Deduct
Type Weight No Factor	one Low	Med	High	None	Occ	Freq	Ext	Points
Long/Trans 20 No Cracking	one <1/4	1/4	>1/4	None	<10%L	10-30	>30%L	
0.	.1 0.2	0.6	1.0	0.1	0.4	0.8	1.0	
Alligator 15 No Cracking	one <1/8"	1/8"	>1/8"	None	<10%A	10-30	>30%A	
0.	.1 0.2	0.6	1.0	0.1	0.4	0.8	1.0	
Edge 10 No Cracking	one <1'	1-2'	>2 '	None	<10%	10-30	>30%	
0.	.1 0.2	0.6	1.0	0.1	0.4	0.8	1.0	
Patch/Pothole 10 No	one Small	Med	Large	None	<5/1K'	5-10	>10	
0.	.1 0.6	0.8	1.0	0.1	0.6	0.8	1.0	
Rutting 10 <1	L/4" 1/4-1/	2 1/2-1"	>1"					
0.	1 0.3	0.7	1.0					
Aggregate 10 No Loss	one Slight	Mod	Severe	None	<10%A	10-30	>30%A	
0.	1 0.3	0.6	1.0	0.1	0.5	0.8	1.0	
Bleeding 10 No	one Slight	Mod	Severe	None	<10%A	10-30	>30%A	
0.	1 0.6	0.8	1.0	0.1	0.6	0.8	1.0	
Roughness 15	Good	Fair	Poor	1			a	
	0.2	0.6	1.0					

Deduct Points = Distress Weight Factor X Severity Weight Factor x Extent Weight Factor Total Deduct Points(TDP) =

Pavement Condition Rating, PCI = (100 - TDP)

=

2

PCI Computation

Compute deduct points for each distress (Wt Factor) x (Severity Factor) x (Extent Factor) Maximum Deduct Factors Cracking – 45 Points Patch/Potholes – 10 Points Rutting – 10 Points Aggregate Loss – 10 Points Bleeding – 10 Points Roughness – 15 Points

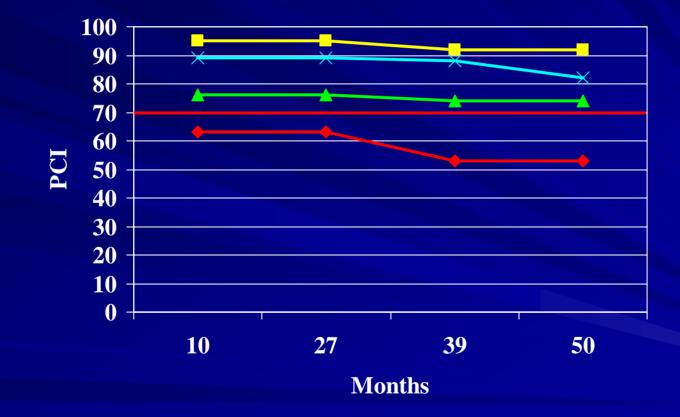
PCI Computation

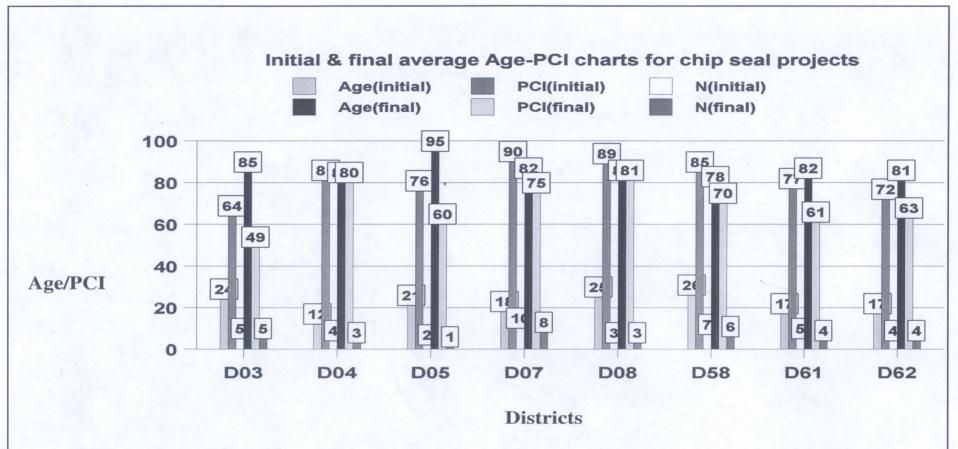
Determine Total Deduct Points

 Sum all deduct points for each distress

 Compute the Pavement Condition Index (PCI)

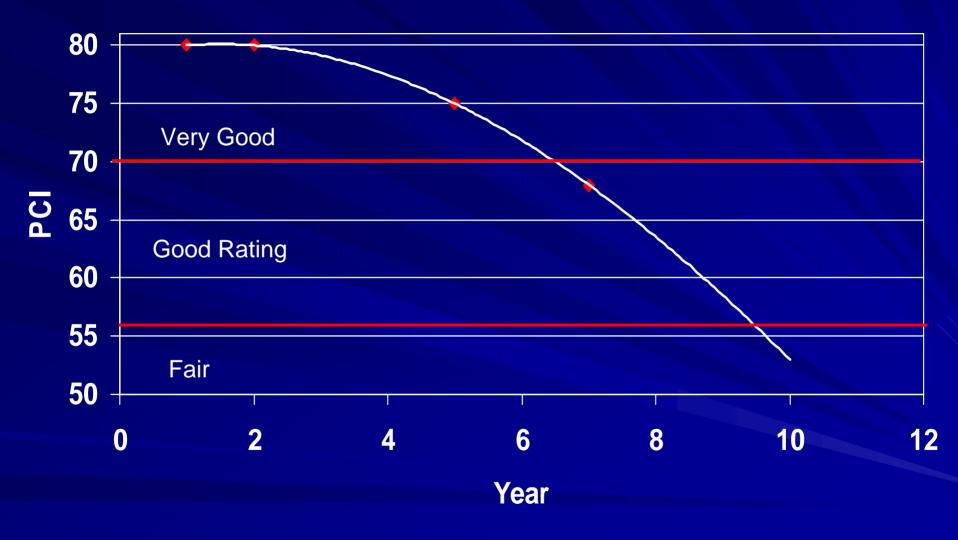
 PCI = (100 – Total Deduct Points)

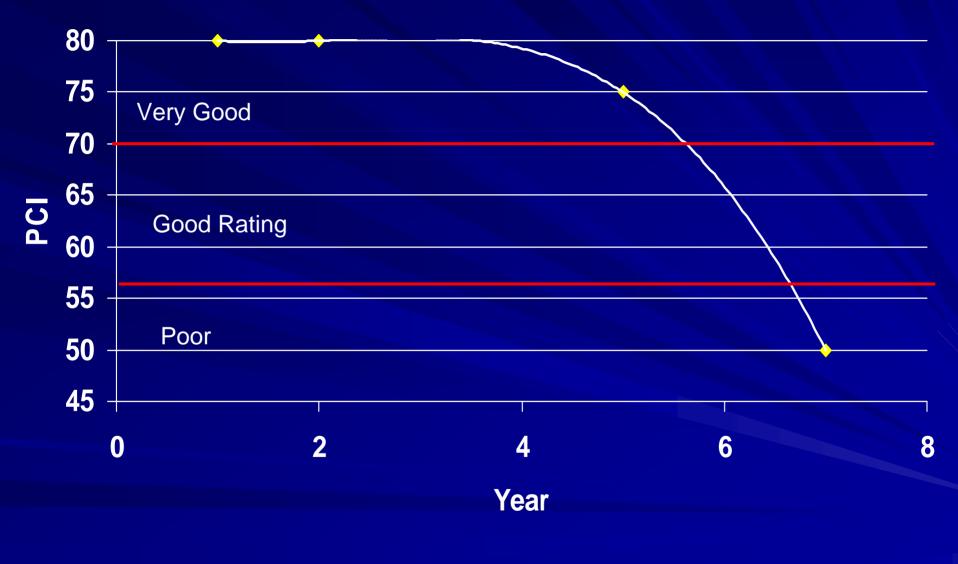

PCI range from 0 to 100


- -0 = Poor
- 100 = Excellent

Generalized PCI Rating Scale

PCI	Rating		
86 – 100	Excellent		
71 – 85	Very Good		
56 – 70	Good		
41 – 55	Fair		
26 – 40	Poor		
11 – 25	Very Poor		
0 – 10	Failed		

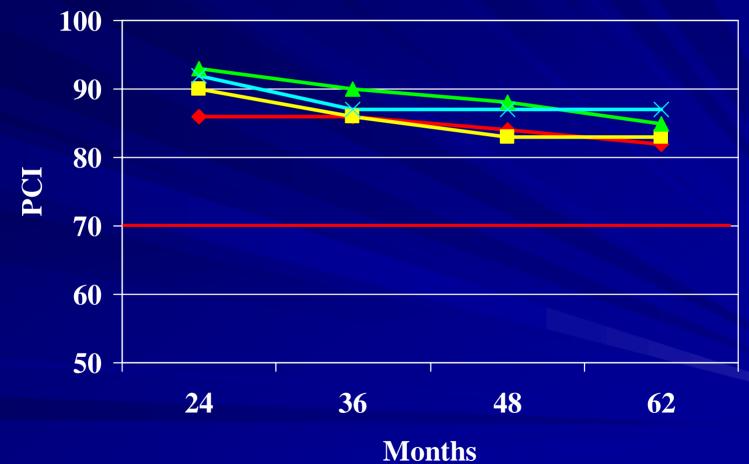

Pavement Condition Index –PCI Chip Seals

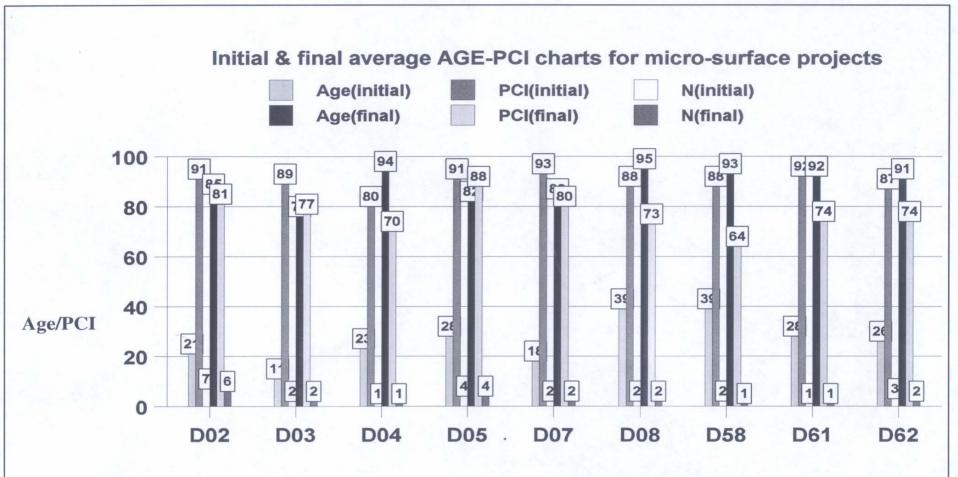


Chip Seal PCI Deterioration Curve

Chip Seal PCI Deterioration Curve

LA 4 Chip Seal

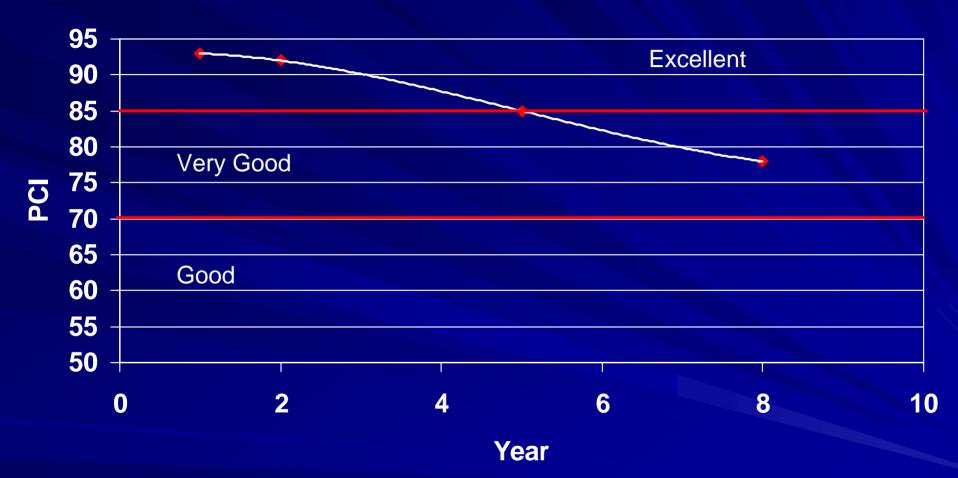

LA 999 Chip Seal

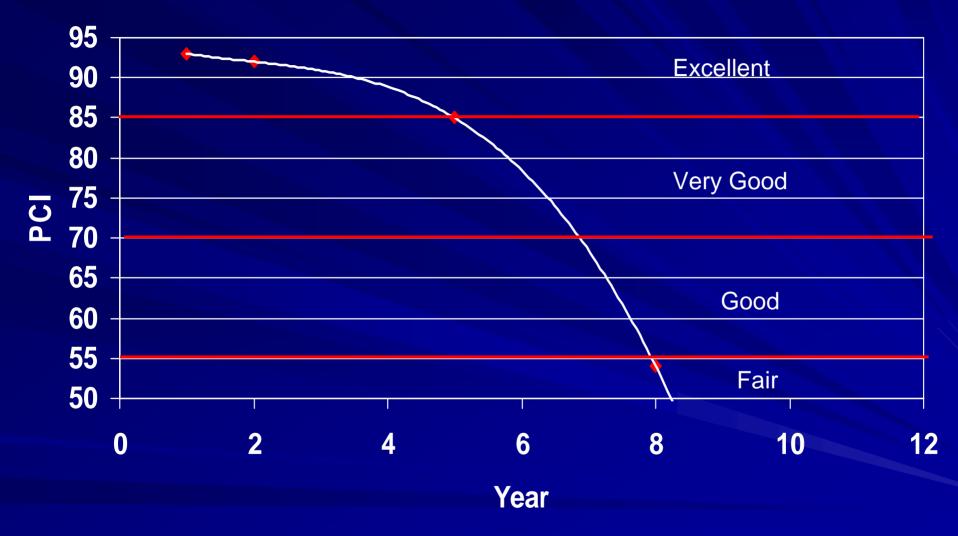


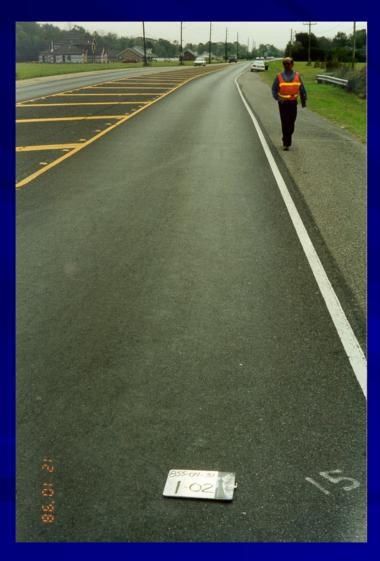
December 1998

Pavement Condition Index –PCI

Micro Surfacing

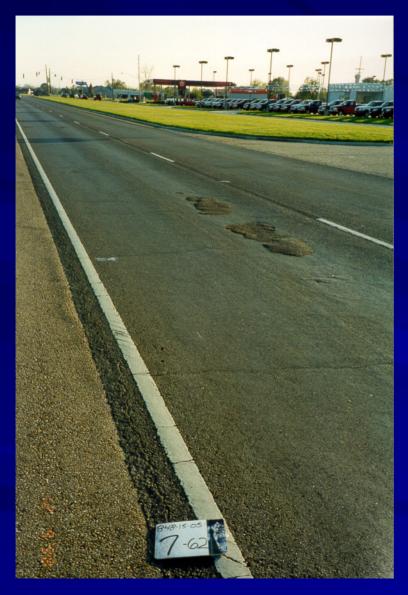



Districts


Micro-Surfacing PCI Deterioration Curve

Micro-Surfacing PCI Deterioration Curve

LA 659 Micro Surfacing, Houma


December 1998

100

February 2001

LA 3188 Micro Surfacing

December 1998

February 2001

Cost Effectiveness

 Expressed as Equivalent Annual Cost (EAC)
 – EAC = <u>Unit Cost of Treatment</u> Expected Life of Treatment

– Unit Cost = Construction Cost plus Maintenance Costs

Cost Effectiveness

- Average Unit Cost of Chip Seal
 - \$1.67/sq. yd
- Average Unit Cost of Micro-Surfacing
 - \$3.20/sq.yd.
- EAC_{Chip Seal} = (\$1.67/sq.yd.)/(6years)
 - \$0.28/sq.yd./year for average expected life.
 - \$0.33/sq.yd./year for preventative maintenance cycle of 5 years.
- EAC_{Micro-Surfacing} = (\$3.20/sq.yd.)/(7years)
 - \$0.46/sq.yd./year for expected life.

Chip Seals

- 30 percent of projects have been rehabilitated.
- Remaining 70 percent have a median PCI of 68 (Good Rating) after 7 years of service.
- Based on PCI Deterioration Curves
 - 5-7 year life expectancy
 - 5 year preventative maintenance (PM) cycle
- Equivalent Annual Cost (EAC)
 - \$0.33/sq.yd./year for PM cycle.
 - \$0.28/sq.yd./year for average expected life

Micro-Surfacing

- 33 percent of the projects have been rehabilitated.
- Remaining 67 percent have a median PCI of 78 after 8 years of service.
- Based on PCI Deterioration Curves

7 year life expectancy

 Equivalent Annual Cost (EAC) of about \$0.46/sq.yd./year.

Two major distresses affecting performance

- Cracking
- Followed by roughness

Surface treatment techniques considered only for structurally sound pavements.

Timing of application

- Louisiana evaluation shows nothing to refute NCHRP 35-02, Chip Seals Best Practice, findings.
- May be possible to extend preventative maintenance cycle for individual roadways depending on historical data, distress rating and rate of deterioration.
- Principle Investigator, Shashikant Shah, developing guidelines.

Selection of an appropriate technique.

- Galehouse, L., Moulthrop, J.S., Hicks, R.G.

- "Place the right treatment, on the right road, at the right time"
- Abadie, Chris

"Place any preventative maintenance treatment, on all roads, at the right time".

Thank You !

