AASHTO’s Highway Safety Manual: Quantification of Highway Safety

Priscilla Tobias, PE
Illinois Department of Transportation
State Safety Engineer
Do you ever find yourself trading safety off against something else?
How to meet the challenge?

• Bring safety at same level as other parameters
• Integrate safety into transportation decision-making processes
 – Quantify effect of decisions on future crash frequency and severity
 – Increase our accountability, measure performance, and meet legislatively mandated priorities
• Fill the gap between state of art and state of practice
The HSM is a tool to change how we consider safety.

Nominal Safety

Examined in reference to compliance with standards, warrants, guidelines and sanctioned design procedures.

Substantive Safety

The expected or actual crash frequency and severity for a highway or roadway.

Ezra Hauer, ITE Traffic Safety Toolbox Introduction, 1999
The Vision:
A Document Akin to the HCM

1. Definitive; represents quantitative ‘state-of-the-art’ information
2. Widely accepted within professional practice of transportation engineering
3. Science-based; updated regularly to reflect research
<table>
<thead>
<tr>
<th>Part</th>
<th>Chapter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>Introduction & Overview</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Human Factors Fundamentals</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>4 / 5</td>
<td>Road Safety Management Process:</td>
</tr>
<tr>
<td></td>
<td>6 / 7</td>
<td>Network Screening / Diagnosis</td>
</tr>
<tr>
<td></td>
<td>8 / 9</td>
<td>Countermeasure Selection / Economic Appraisal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project Prioritization / Safety Effectiveness Evaluation</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td>Predictive Methods for:</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Rural Two-Lane, Two-Way Roads</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Rural Multilane Highways</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Urban & Suburban Arterials</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>Crash Modification Factors for:</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Roadway Segments</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Intersections</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Interchanges</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Special Facilities and Geometric Situations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Networks</td>
</tr>
</tbody>
</table>
Evaluating Individual Projects
Before-after studies

Countermeasure Selection, B/C
Site diagnosis, countermeasure selection, economic analysis

Network Screening
Based on policy focus (e.g. SHSP, systematic approaches, risk-based (proactive) approaches, and reactive approaches; some as a result of STIP, TIP, route development process and corridor planning)

Evaluating System Performance
Performance Measures for Safety

Evaluate Alternatives - Evaluate alternatives in operations, maintenance, and construction

Planning & Programming
Pre-design & Scoping
Design & Construction
Operations, Maintenance & Construction

HSM Part B, C, and D

Compare Safety Impact vs Other Impacts (e.g. environmental)

Countermeasure Selection & B/C - Site diagnosis, countermeasure selection, economic analysis

3R vs 4R - (i.e. less restrictive design requirements vs Green Book new construction criteria)

Design exceptions/deviations Evaluate design alternatives
Compare safety impact vs other impacts (e.g. environmental)
Evaluate design-build proposals - Using value-based evaluation that includes safety

The Project Development Process at a state DOT, activities, and the relationship with the HSM
Goal of HSM Implementation

• Move forward
 – Integration of safety in the day to day activities
 – Support State’s Performance Goals
• Institutionalize safety culture
 – HSM becomes a tool *routinely* used by transportation/road professionals
 – Safety is another quantified parameter always
HSM Implementation Key Components

- Implementation plan / road map / timelines
- Leadership and internal marketing
- Policy (e.g., incorporate HSM into processes)
- Personnel Resources and Funding
- Data
- Training
- Supporting Tools
AASHTO Subcommittee on Safety Management: Technical Safety Publication Oversight & Coordination (HSM)

- Priscilla Tobias (SM)-Chair
- Anne Holder (SM)-Vice Chair
- Robert Hull (SM)
- Michael Curtit (SM)
- Dan Magri (SM)
- Bruce Ibarguen (Traffic Engineering)
- Mark Bott (Traffic Engineering)
- Bart Thrasher (Design)
- Jim Mills (Design)
- Tim Colling (Michigan LTAP)
- John Milton (TRB)
- Brelanl Gowan (TRB)
- Tim Neuman (TRB)
HSM Implementation – Some of the Current Initiatives

• Lead State Peer to Peer Workshop (Nov 2010)
 – 13 States Nationwide
 – State, Local, and Federal Participation
 – Focus on Key Implementation Components
 – Best Practices and Challenges
 – Lessons Learned
 – Next Steps
Coordinated National Initiatives

- **FHWA**
 - National Roadmap for Implementation / Training (NHI) / IHSDM
 - Crash Modification Factor (CMF) Clearinghouse

- **AASHTO**
 - HSM / Safety Analyst / Website www.highwaysafetymanual.org
 - User Discussion Forum

- **TRB**
 - Committee for Highway Safety Performance
 - User Liaison and Technology Facilitation Subcommittee

- **NCHRP**
 - Lead State Initiative
 - CMF Protocols
 - Research projects

- **Individual States**
 - Collaboration and Peer Exchanges
Procedure for Updates to HSM

- Four year cycle for complete update
- Items can be added earlier
- Need to identify areas for research statements
- Major priority items identified
Future Editions of the HSM

• Develop a Strategic Plan
• Identify and Prioritize Research Needs
• Identify Potential Resources
Crash Severity Distributions

Better handling crash severities (SPFs & CMFs)

• Understanding crash severity distribution

• Impact of road changes to crash severities
System-wide Analysis Approaches

• Analytical approaches to system-wide problem identification and countermeasure selection
• Methods for identifying overrepresentation of crash types, severities, contributing factors
• 4 E approaches to address driver behavior
Performance Measurement

• Crash Modification Factors (CMF)
 – Indicators of the potential safety effect of a treatment, such as:
 • Shoulder rumble strips
 • Illumination
 • Pedestrian crossing
 • Paved shoulder

• CMF is given as a multiplier and its standard error, such as 0.8 ± 0.1
Information Sources

• CMFs form a key element of the methodologies for safety quantification
• Highway Safety Manual – Part D
 – Includes the “few” CMFs of high quality
• CMF Clearinghouse (www.cmfclearinghouse.org)
 – Includes all available CMFs
 – Star Quality Rating
Current Status and CMF Expansion Activities

• Current Status
 – Few treatments have high quality CMFs
 – Many treatments / strategies have no CMFs
 – Missed opportunity: studies are being conducting without capturing CMFs

• Need for sound evaluation studies

• Recent activities
 – A Guide to Developing Quality CMFs
 – Recommended Protocol for Developing CMFs (NCHRP 20-07 project)
Questions?

• Follow-up Information
 – Webinar (date TBD)

• Thank you very much!