Benefits of Pavement Preservation

Simone Ardoin
Systems Preservation Engineer Administrator
LA DOTD

2011 LA Transportation Conference
Baton Rouge, Louisiana

January 2011
What is PAVEMENT PRESERVATION?

Network level program
Long term strategy
Cost effective practices
Extends life
Improves surface conditions
Why is Pavement Preservation Essential?

• Our lane-mile assets age with time
• By applying low cost treatments to appropriate roadways, the pavement life can be extended 3 to 10 years (Right treatment on the Right roadway at the Right time)
• Analogies
LOW COST TREATMENTS TO EXTEND OUR LIVES
WHY LOW COST TREATMENTS?

- Purpose is to seal surface cracks and prevent water from deteriorating the foundation and/or improve surface texture and correct minor surface defects
TYPICAL TREATMENTS
PREVENTIVE MAINTENANCE

Preservation Treatment

- Chip seals
- Micro-surfacing
- Thin Overlays (< 1.5”)
- Joint Resealing
- Crack Sealing
LIGHT MINOR REHABILITATION

Preservation Treatment
• Concrete and Asphalt Patching without overlay
• Single Lift Overlay (2”) with no patching or cold planing
• Pavement Grinding/Grooving without overlay
• Load Transfer Restoration only
MINOR REHABILITATION

- Patching with single lift overlay ≤ 2”
- Cold Plane with single lift overlay ≤ 2”
Current Pavement Condition

- Excellent: 22%
- Good: 28%
- Fair: 43%
- Poor: 7%
- Very Poor: 1%
Poor Asphalt Roadway
Poor Jointed Concrete Roadway
HOW DO WE MEASURE SUCCESS?
One tool provided to Districts is:

Lane-Mile-Years Calculations
What is the Lane-Mile-Years Concept?

- Our Highway System includes 37,167 lane miles of paved roadways.

- Without intervention, the system will age 37,167 lane-mile-years per year.
“To offset the deterioration over the system, the agency needs to annually perform a quantity of work equal to the total number of lane-mile-years lost to maintain the status quo.”
THE FORMULA

Lane Miles × Life Extension of Treatment
= Lane-Mile-Years Treated
Applying this Concept to DOTD

<table>
<thead>
<tr>
<th>District - 58-Chase ; Category - PR/NI-Preservation/Non-Interstate ; Lettings - From Jul 2009 to Jun 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
</tr>
<tr>
<td>026-03-0042</td>
</tr>
<tr>
<td>051-03-0030</td>
</tr>
<tr>
<td>811-07-0012</td>
</tr>
<tr>
<td>026-06-0059</td>
</tr>
<tr>
<td>815-07-0007</td>
</tr>
<tr>
<td>TOTAL Q1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>178-02-0021</td>
</tr>
<tr>
<td>TOTAL Q2</td>
</tr>
<tr>
<td>186-30-0009*</td>
</tr>
<tr>
<td>186-30-0010*</td>
</tr>
</tbody>
</table>
Treated vs. Non-Treated Lane Mile Years
2007-2008
Includes Surplus
% cost of treatments used

2008-2009 Pavement Preservation Program
Cost Allocated to Preventive and Non Preventive Treatments
Another Scenario

• The SHS (State Highway System) contains 14,886 lane miles of roadway
• $220 million/year investment in the SHS, using a mix of treatments, will treat an average of 14,886 lane-mile-years
• Without including preventive and minor rehabilitation treatments, it will require $260 million in major rehabilitation treatments to meet the same goal
• This is an 15% savings
• Mix of treatments includes 26% of the budget for preventive maintenance and minor rehabilitation with 74% for major rehabilitation
SHS $220 MILLION/YEAR BUDGET

$161,823,519, 74%

$58,153,271, 26%

PREVENTIVE MAINTENANCE
NON-PREVENTIVE MAINTENANCE
WHY INVEST IN PREVENTION TREATMENTS?
Expected Benefits
Improved Pavement Performance

- Preventive Maintenance
- Rehabilitation
- Reactive Maintenance
Roadway Example – LA 565

- LA 565
- Concordia Parish
- ADT = 1230
- Major Collector
- Length = 8.48 miles
- 2 Lanes = 16.96 Lane-Miles
- Major Reconstruction in 1990
- Initial Cost (1990) = $877,271
- Surface Treatment Completed in 2000
- Cost (2000) = $68,792
- Surface Treatment Completed in 2009
- Cost (2009) = $348,000
CS 815-17, LA 565
Concordia Parish
Actual Roadway Application

Random Cracking
815-17
Concordia Parish

Index Value

Data Year
AST 2000 OVERLAY 2003

Test Index Random Index 1 Random Index 2
Thin Overlay Polynomial (Test Index) Polynomial (Random Index 1) Polynomial (Random Index 2)
Linear (Trigger for Overlay) Polynomial (Thin Overlay)
Actual Life Cycle Cost Analysis

LIFE CYCLE COST ANALYSIS
CONTROL SECTION 815-17
CONCORDIA PARISH

<table>
<thead>
<tr>
<th>ALTERNATE</th>
<th>PV FACTOR 0.6756</th>
<th>PV FACTOR 0.6006</th>
<th>PV FACTOR 0.4746</th>
<th>END OF LIFE</th>
<th>PRESENT VALUE TOTALS</th>
<th>TOTAL SAVINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 NO PREVENTIVE MAINTENCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW ASPHALT PAVEMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$877,271</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV Cost</td>
<td>$877,271</td>
<td>$825,162</td>
<td></td>
<td></td>
<td>$1,702,243</td>
<td>0%</td>
</tr>
<tr>
<td>A2 WITH PREVENTIVE MAINTENCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW ASPHALT PAVEMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$877,271</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASPHALTIC SURFACE TREATMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$68,792</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASPHALTIC SURFACE TREATMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$348,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV Cost</td>
<td>$877,271</td>
<td>$46,476</td>
<td>$165,161</td>
<td></td>
<td>$1,088,908</td>
<td>36%</td>
</tr>
</tbody>
</table>

TOTAL INVESTMENT LIFE (27 YEARS)
RETURN ON INVESTMENT

• Initial investment of $1,088,908 using preventive treatments vs. an investment of $1,702,243 without preventive treatments yields an overall savings of **36%**
• For every $1.00 invested in preventive treatments during the life of this roadway, a savings of $3.90 in major construction costs was realized.
Roadway Example

- LA 127
- Caldwell Parish
- ADT = 814
- Major Collector
- Length = 6.12 miles
- 2 Lanes = 12.24 Lane-Miles
- **Major Reconstruction in 1982**
- Initial Cost (1982) = $545,570
- **Surface Treatment Completed in 2001**
- Cost (2001) = $68,250
- **Surface Treatment Completed in 2008**
- Cost (2008) = $157,396
Control Section 127-04

Random Cracking
Caldwell Parish
127-04

Index Value

TRIGGER FOR THIN OVERLAY (2")

TRIGGER FOR MEDIUM OVERLAY (3.5")

Data Year

New Asphalt
Chipseal (2001)
Chipseal (2008)
Linear (New Asphalt)
Linear (Chipseal (2001))
Linear (Chipseal (2008))
Life Cycle Cost Analysis

<table>
<thead>
<tr>
<th>ALTERNATE</th>
<th>PV FACTOR 0.4746</th>
<th>PV FACTOR 0.3607</th>
<th>PV FACTOR 0.2636</th>
<th>Present Value Totals</th>
<th>Total Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEAR 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1 NO PREVENTIVE MAINTENCE</td>
<td>NEW ASPHALT PAVEMENT $545,570</td>
<td>NO ACTION</td>
<td>NO ACTION</td>
<td>MEDIUM OVERLAY (REHABILITATION) $485,760 * 6.12 = $2,973,851</td>
<td>$783,907</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$783,907</td>
<td></td>
</tr>
<tr>
<td>A2 WITH PREVENTIVE MAINTENCE</td>
<td>NEW ASPHALT PAVEMENT $545,570</td>
<td>ASPHALTIC SURFACE TREATMENT $68,250 $32,391</td>
<td>ASPHALTIC SURFACE TREATMENT $157,396 $56,773</td>
<td>ASPHALTIC SURFACE TREATMENT $63,250 * 6.12 = $387,090</td>
<td>$102,037</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$102,037</td>
<td></td>
</tr>
<tr>
<td>A3 WITH PREVENTIVE MAINTENCE</td>
<td>NEW ASPHALT PAVEMENT $545,571</td>
<td>ASPHALTIC SURFACE TREATMENT $68,250 $32,391</td>
<td>ASPHALTIC SURFACE TREATMENT $157,396 $56,773</td>
<td>THIN OVERLAY (REHABILITATION) $270,710 * 6.12 = $1,646,745</td>
<td>$434,082</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$434,082</td>
<td></td>
</tr>
</tbody>
</table>

Year-by-Year Analysis

A1 NO PREVENTIVE MAINTENCE
- Year 0: NEW ASPHALT PAVEMENT $545,570
- Year 19: NO ACTION
- Year 26: NO ACTION
- Year 34: MEDIUM OVERLAY (REHABILITATION) $485,760 * 6.12 = $2,973,851

A2 WITH PREVENTIVE MAINTENCE
- Year 0: NEW ASPHALT PAVEMENT $545,570
- Year 19: ASPHALTIC SURFACE TREATMENT $68,250 $32,391
- Year 26: ASPHALTIC SURFACE TREATMENT $157,396 $56,773
- Year 34: ASPHALTIC SURFACE TREATMENT $63,250 * 6.12 = $387,090

A3 WITH PREVENTIVE MAINTENCE
- Year 0: NEW ASPHALT PAVEMENT $545,571
- Year 19: ASPHALTIC SURFACE TREATMENT $68,250 $32,391
- Year 26: ASPHALTIC SURFACE TREATMENT $157,396 $56,773
- Year 34: THIN OVERLAY (REHABILITATION) $270,710 * 6.12 = $1,646,745

Total Investment Life (34 Years)

- **A1**: $1,329,477 (0%)
- **A2**: $736,771 (45%)
- **A3**: $1,068,816 (20%)
Control Section 127-04

Random Cracking
Caldwell Parish
127-04

- TRIGGER FOR THIN OVERLAY (2")
- TRIGGER FOR MEDIUM OVERLAY (3.5")

Data Year:
- New Asphalt
- Chipseal (2001)
- Chipseal (2008)

Index Value:

Linear (New Asphalt)
Linear (Chipseal (2001))
Linear (Chipseal (2008))
Control Section 127-04

Life Cycle Cost Analysis

<table>
<thead>
<tr>
<th>ALTERNATE</th>
<th>PV FACTOR 0.4746</th>
<th>PV FACTOR 0.3607</th>
<th>PV FACTOR 0.2636</th>
<th>SALVAGE VALUE</th>
<th>PRESENT VALUE TOTALS</th>
<th>TOTAL SAVINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 NO PREVENTIVE MAINTENCE</td>
<td>YEAR 0</td>
<td>YEAR 19</td>
<td>YEAR 26</td>
<td>YEAR 34</td>
<td>END OF LIFE MEDIUM OVERLAY (REHABILITATION) $485,760 * 6.12 MILES = $2,973,851</td>
<td>0</td>
</tr>
<tr>
<td>NEW ASPHALT PAVEMENT</td>
<td>$545,570</td>
<td>NO ACTION</td>
<td>NO ACTION</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PV Cost</td>
<td>$545,570</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$545,570</td>
</tr>
<tr>
<td>A2 WITH PREVENTIVE MAINTENCE</td>
<td>NEW ASPHALT PAVEMENT</td>
<td>ASPHALTIC SURFACE TREATMENT</td>
<td>ASPHALTIC SURFACE TREATMENT</td>
<td>6 YEARS REMAINING UNTIL REACHING TRIGGER FOR MEDIUM OVERLAY</td>
<td>RSL = 6 YEARS (6/34)*783,907 = $138,336</td>
<td>TOTAL INVESTMENT LIFE (34 YEARS)</td>
</tr>
<tr>
<td>$545,570</td>
<td>$68,250</td>
<td>$157,396</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV Cost</td>
<td>$545,570</td>
<td>$32,391</td>
<td>$56,773</td>
<td>($138,336)</td>
<td>$496,398</td>
<td>9%</td>
</tr>
</tbody>
</table>
Life Cycle Return on Investment

• For every $1.00 invested in preventive treatments during the life of this roadway, a savings of $1.50 - $4.10 major rehabilitation costs.
No Matter How You Slice It -

• All examples show moderate (9%) to large savings ($1.00 vs. $4.10)
• Preventive maintenance and minor rehabilitation make sense.
RECOMMENDATIONS

- Dedicate 25%-30% of overall Pavement Preservation Budget to Preventive Maintenance and Minor Rehabilitation Treatments
Resources

NCPP – National Center for Pavement Preservation
www.pavementpreservation.org

DOTD Pavement Management Section
DOTD Pavement Design Section
DOTD Systems Preservation Section
www.dotd.la.gov/highways/systemsengineering/syspreservation/
QUESTIONS

?
THANK YOU