HIGHWAY MATERIALS & CARBON FOOTPRINT ASSESSMENT

Larry Sutter
Director, University Transportation Center-Materials in Sustainable Transportation Infrastructure (UTC-MiSTI)
Michigan Technological University

Darrell Cass
Graduate Research Assistant
Michigan Technological University
Materials in Sustainable Transportation Infrastructure (MiSTI)

- Tier II UTC
- One of 60 authorized in SAFETEA-LU
- Charge
 - Education
 - Work Force Development
 - Tech Transfer
 - Research
- Michigan Tech is also the home of the Michigan LTAP and the Eastern/Midwestern TTAP
Materials in Sustainable Transportation Infrastructure (MiSTI)

- **Education**
 - Course development
 - Undergraduate research opportunities
 - Graduate student support
 - 23% increase in students pursuing M.S
 - 300% increase in Ph. D. program

- **Work Force Development**
 - Construction Career Days
 - National Summer Transportation Institute (FHWA)
UTC-MiSTI and Tech Transfer

- UTC-LTAP-TTAP Collaboration

 - Pooled Fund TPF-5 (042)
 - The Deleterious Chemical Effects of Deicing Solutions on Portland Cement Concrete
 - Fly Ash and Blast Furnace Slag-plus
 - Appropriate use of deicing chemicals
 - Consider sealants in maintenance strategies

 - T2
 - TTAP-Tech Brief
 - LTAP-4 Webinars
 - 859 participants, 29 states, 3 countries
 - UTC-On-site Presentations
 - 8 states and 2 national meetings
UTC-MiSTI and Tech Transfer

- Interdepartmental Working Group
 - MDOT, MDEQ, Michigan Tech
 - Monthly meetings
 - Recycling, use of beneficial materials, opportunities for collaboration, knowledge transfer and greater understanding
 - Discovery calls—barriers and obstacles
 - People
 - Policies
 - Politics
 - Perceptions
 - Price

January 12, 2011
UTC-MiSTI Research

- National Cooperative Highway Research Program (NCHRP)
 - 18-13 Specifications and Protocols for Acceptance Tests of Fly Ash Used in Highway Concrete
 - Sustainability and Fly Ash (FA)
 - Lower “cost” than cement
 - Reduces the end product carbon footprint
 - FA may improve durability
 - Beneficial use - Reduce landfill waste
 - Focus: Air entrainment, hydraulic reactivity, ASR mitigation

January 12, 2011

72 million tons were produced in 2008
42% was beneficially reused
Stay Tuned…

- New EPA rule on fly ash disposal pending
- If Fly Ash is regulated by the EPA as a Hazardous Waste…
 - Costs for use will increase
 - Less will be used
 - More will be land filled
 - Alternative SCMs will be sought
UTC-MiSTI Research

- Wisconsin Highway Research Program
 - Reduction of the Minimum required Weight of Cementitious Materials in WisDOT Concrete Mixes
 - Reducing Cement Content
 - Lowers carbon footprint
 - Reduces “cost” if durability is maintained

January 12, 2011
UTC-MiSTI Research

- Michigan Department of Transportation
 - Use of Recycled Concrete in Michigan Pavements
 - Routinely used in soil stabilization, subbase and base courses
 - Research focuses on use as aggregate in HMA and PCC pavements
 - Benefits
 - Reduce amount being land filled
 - Reduce mining for virgin aggregate
 - Reduce the carbon footprint of end product
UTC-MiSTI Research

- Michigan Department of Transportation
 - Carbon Footprint for Hot Mix Asphalt and Portland Cement Concrete Pavements
 - P.I. Amlan Mukherjee, Assistant Professor, Michigan Technological University
- Aims at evaluating alternative Pavement Designs
 - Incorporating secondary materials
- Investigates reconstruction, rehabilitation, and maintenance projects

Transportation accounts for 28% of U.S. GHG Emissions
Materials & Construction account for 10% of Pavement Life Cycle GHG Emissions

January 12, 2011
Sustainability Research - Approach

- Use existing tools and reporting procedures
- Estimate GHG Emissions
 - Global Warming Potential
 - Expressed as CO$_2$ Equivalence
- Investigates Context Sensitive Impacts
- Determine Life Cycle Energy and Resource Consumption
Approach

Interface 1

Pavement History (Performance & Maintenance)

Interface 2

- On-Going Projects
- Previous Projects

Central Database

Interface 3

Published Data & Contractor Inputs

Design Decisions Based on Performance & Construction Operations

<table>
<thead>
<tr>
<th>Job Types</th>
<th>Earthwork</th>
<th>Subbase</th>
<th>Aggregate Base</th>
<th>Rubblizing PCC</th>
<th>HMA Base C&S</th>
<th>HMA Placement</th>
<th>PCC Placement</th>
<th>Drainage Features</th>
<th>Cold Milling</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA Reconstruct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCC Reconstruct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCC Overlay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMA Overlay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operation Specifics
- Material
- Equipment
- Site Info
- Emissions
- Cost

Methods/Tools
- LCA
- LCCA
- Emission Calculator

Final Decision Based on Chosen Design and resulting Total Emission, Total Cost, and Performance Expectations
Data Collection

Data from Construction Management Software

- Inspectors Daily Reports
- Material Use
 - Manufacturing Impacts
- Equipment Use
 - Operational Impacts
 - Transportation Impacts
- Fuel Use
Data Collection

- Data from Material Testing Orders
 - Site Layout
 - Material Source Locations
 - Estimate Transportation Impacts
A method that:

- Affords more accuracy as it uses actual on-site data
- Maintains actual energy and emissions records for each control section
- Allows a performance based assessment of constructing highway infrastructure
Significance

- This method will enable agencies to support decision-making
 - within their environmental contexts
 - using historical data pertinent to local highway infrastructure
- This will aide in analyzing the behavior of alternative designs
- Such enhanced calculation methods promise to:
 - improve construction operations, processes, and design selection methods
 - reduce long term emissions and environmental impacts
 - Improve cost effectiveness through efficiency
The Devil’s in the Details!

- **Bottom Line:** RECORD EVERYTHING!
 - Develop a long term sustainability plan
 - What are the indicators?
 - What are the performance measures?
 - Analyze trends
 - Recognize leverage points
 - Become more Sustainable!

January 12, 2011
Questions

UTC-MiSTI Web site: www.misti.mtu.edu
Phone: 906-487-3154
Email: misti@mtu.edu