MODIFICATION OF LA DOTD SPECIFICATION ON HIGHWAY CROSS-DRAIN TRENCH BACKFILL

Zhongjie "Doc" Zhang, PhD, P.E.

April 2006

Louisiana Transportation Research Center

Problem

Unexpected pavement surface dips at highway cross-drain sites

Field Investigation Indicates

Pavement surface "dips" at highway cross-drain locations are mainly due to weak trench backfill compared to adjacent subgrade

Field Testing Scheme

Penetration Resistance Ratio (PRR)

$PRR = \frac{\text{Penetration Resistance in Trench}}{\text{Penetration Resistance out of Trench}}$

PRR with or without surface "dip"

Prevention of Pavement Dips

To prevent pavement surface "dips" at highway cross-drains, we should make trench backfill stronger than adjacent subgrade soils

Backfilling

- Type A backfill material Stone, recycled Portland cement concrete, or flowable fill
 Type B backfill material Stone, recycled Portland cement concrete, flowable fill, selected soils, or granular material
- Type A for pipes/trenches subject to traffic; Type B for others
- More details

BM-01 Detail (cont.) – Type B Backfill

Concrete Pipe

BM-01 Detail (cont.) – Type A Backfill

Metal or Plastic Pipe

BM-01 Detail (cont.) – Type B Backfill

Metal or Plastic Pipe

BM-01 Detail (cont.) – Type A Backfill

Cover Layer Less Than 5'

BM-01 Detail (cont.) – Type B Backfill

RAP – Type A Backfill

Not in the new specs, but can be tried on a project basis
 To be added to the new spec

Equipment:
 Wacker packer compactor

Lift thickness:
 8 inches (200 mm) - 12 inches (300 mm) compacted thickness

RAP – Type A Backfill

Quality control

- Start with 8 coverage passes
 - Can be reduced to, but not less than 6 passes
- Dry density probably be 90 to 92% of the maximum dry density (102 to 104 pcf)
 DCP tests should be conducted for every 3 foot backfill
- Below the springline of pipe: 12 mm/blow
 Above the springline of pipe: 10 mm/blow
- Pay attention to the compaction quality of layers that cover the pipes because that is the location for the settlement of backfill to occur

Field Testing - Program

- Number of Trenches: 19
- Pipe size and type: 36" 54", concrete

Backfill Materials:

Sand, Kentucky/Mexican crushed limestone, RAP, sand gravel mixture, and Selected soil

Compaction Equipment Vibratory Plate, Vibratory Roller, and Wacker Packer Compactors

Field Testing - Results

Poor backfill was related to
Construction conditions
Workmanship and inspection
Backfill material and compaction

Construction Conditions

Conditions that make it difficult to compact backfill include **Tight schedule Under traffic** Poor weather Wrong moisture Poor drainage **Confined construction space** etc.

Tight Construction Schedule

What Weather Can Do

Work under Traffic

Too Much Moisture

In summary, creating and maintaining a good construction environment is important to the quality control of trench backfills at highway cross-drains

Workmanship & Inspection

Is the most important factor in quality control Most contractors are experienced Tension can build in the field when under pressure due to construction delays, under traffic, bad weather, wrong moisture content of backfill, poor drainage conditions

Communication and cooperation are very important

All should share the consequences of their construction products, good or bad

Backfill Material

Material Compaction
 Moisture Adjustment
 Seepage Stability

Field Compaction Equipment

Wacker Packer

Vibratory Roller

Vibratory Plate

Summary of Compaction – Standard Proctor

Material	Maximum Dry Density pcf	Working Moisture Range, %	Compaction in field
Sand	105 - 107	4 – 7	Difficult
Kentucky limestone	135 - 139	5 – 7	Very easy
Mexican limestone	116 -121	8 – 12	Very easy
Bedding (Sand gravel)	125 - 128	5 – 8	Better than sand
RAP	102 - 104	5 – 9	Easy
Selected soil	106 - 109	15 – 18	Not easy

Backfill Material

Material Compaction
 Moisture Adjustment
 Seepage Stability

Moisture Adjustment

 How fast a backfill material can be dried out in the field
 Laboratory dry-out test

Laboratory Dry-Out Test Results

Backfill Material

Material Compaction Moisture Adjustment

Seepage Stability

Seepage Stability

Resistance to erosion caused by the water that leaks out from the joints or cracks of cross-drain pipes

- Backfill dry density
- Material cohesion or particle interlock

Material comparison

- Kentucky limestone:
- Mexican limestone:
- ✓ RAP:
- ✓ Bedding:
- Selected soil:
- ✓ Sand:

high medium low medium low low

Density

Strength high medium high medium low low

Summary for Backfill Material

Kentucky limestone: The best choice

 \geq

- Easy to compact to a high dry density and stiffness
- Narrow moisture range to deal with in the field
- Strong particle interlock with good seepage stability
- Followed by Mexican limestone, RAP, bedding material (sand gravel mixture), Selected soil, and sand

Field Testing - Results

Other factors for the occurrence of pavement surface dips

Pipe cover layer

Configuration of cross-drain trench

Pipe Cover Layer

- Refers to the subgrade soil over pipes
- It is a buffer zone between a pavement structure and pipes for construction and traffic loading
- A thick and well compacted cover layer will spread traffic loading well over trench area

Pipe Cover Layer – 4.4 feet

Cover Layer Spread Traffic Loading – Embedded pressure cells

8" Asphalt Pavement

8.5" Mexican Limestone

Construction Loading – on Binder

Summary for Pipe Cover Layer

A well compacted thick cover layer will "bridge" traffic loading over trench area and prevent overloading cross-drain pipes and backfill

Configuration of Cross-Drain Trench

Compaction in subgrade backfill area is important

- If properly compacted, it can provide a smooth transition in stiffness
- Otherwise, it can be a weak area causing pavement surface dips

Subgrade

Field Example of Subgrade Backfill Area

Conclusion

Field experience indicates that we will have to build highway crossdrains under different (good and bad) conditions

We need to make backfill stronger than adjacent subgrade soils to prevent pavement surface dips at highway cross-drains

Conclusions (cont.)

To prevent pavement surface dips
 Use backfill materials that can be properly compacted under different construction conditions
 Try to avoid bad construction

conditions that affect construction quality

Have good project inspections

Louisiana Transportation Research

Alternative Methods to Trench Backfill by Zhongjie "Doc" Zhang, Ph.D., P.E. Mingjiang Tao, Ph.D. LTRC

Sponsored Jointly by the Louisiana Department of Transportation and Development and Louisiana State University

Questions?