2008 LTRC Peer Exchange Regional Cooperation

Review of LTRC Capabilities

LTRC University Employees

Engineering Materials Characterization Dr. Louay Mohammad, LSU

Geosynthetic Laboratory, Dr. Murad Abu-Farsakh, LSU

Accelerated Research Facility; Dr. Zhong Wu, LSU

Laboratory Materials Characterization

Superpave Asphalt Binder Testing Equipment

Geosynthetics Research Laboratory (GERL)

Blue Boxes

Larger Samples

Less boundary issues.

Heavy Reaction Frame

Geotextile Testing

Strain & Pressure Gauges

Direct Shear

Pluviator

Fabrics & Geotextile Storage

Large Quantity Soil Storage

Repeated Loading Cyclic Plate Test Lab Tests

Louisiana Pavement Research Facility (PRF)

- PRF Located in Port Allen, LA
 - Six-acre land with space for construction of 10 full-scale test sections
- **Accelerated Loading Facility (ALF)**
 - Approximately 100-ft long and 55-ton
 - One half of a single axle
 - Load adjustable from
 - **»** 9,750 lbs ~ 18,950 lbs
 - » Simulate traffic wander
 - Speed 10.5 mile per hour
- ALF is one of only three of its kind in the nation

In-Situ Test Devices

Mobile Asphalt Laboratory

Engineering Materials Characterization Research Facility

- Experimental Capability
- Modeling and Numerical Simulation

Asphalt Laboratory is AMRL Certified

GPC Data for PAV Aged Samples

Asphalt Laboratory Compactors

Concrete Testing Laboratory

Geotechnical Lab;

2.75 inch diameterSmaller Grain Sizes

Direct Shear

12 inch square boxAggregates, Tire Chips, etc

Performance Lab Mixture Characterization Tests

- Indirect Tensile Strength Test, 25C
- Indirect Tensile Resilient Modulus Test, 5-,25-, 40C
- Indirect Tensile Creep Test, 40C
- Axial Creep Test, 40C
- Frequency Sweep at Constant Height Test, 60C

Repeated Shear at Constant Height Test, 60C

Permanent Deformation Fatigue Cracking

Semi Circular Bend Test Fracture Resistance, Jc

Mechanistic Tests

Material Test System

0.6-

Dissipated Creep Strain Energy

Loaded Wheel Tracking

SPT Sample Preparation

Dynamic Modulus |E*| Test

- IPC UTM-25
- **AASHTO TP-62**
- Sinusoidal axial compressive stress is applied to a specimen
 - temperature and frequency

$$|E^*| = \frac{\sigma_0}{\varepsilon_0}$$

$$|E^*| = \frac{\sigma_0}{\varepsilon_0} \phi = \omega t_i$$

Repeated Load Permanent Deformation Test – F_N

- IPC UTM-25
- A haversine axial compressive stress is applied
 - Loading: 0.1 Second
 - Rest Period: 0.9 Second
 - 54.4°C
- F_N: Number of cycles
 - Tertiary Failure
 - 10,000 cycles
 - Related to Strength

Frequency Sweep Test at Constant Height

- AASHTO TP-7
- A sinusoidal horizontal shear strain and axial stress are applied
 - temperature and frequency
- G* and δ

Frequency, HZ	10, 5, 2, 1, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01
Temp. (°C)	48,60

Apply repeated controlled shearing strain...

Apply repeated axial stress to keep speciment height constant

MTS System (Repeated Load Triaxial Test) Soil Resilient Modulus & Permanent Deformation

Direct Shear Test

Shear Stress vs Displacement

Characterization of Tack Coat Quality

- Developed equipment
 - NCHRP Project 9-40
 - Tack coat quality -- residual
 - Tension
- User friendly
- Easy to use
- Laboratory and field

Interface Bond Strength Test

- Developed equipment
 - NCHRP Project 9-40
 - Louisiana Interlayer Shear Strength Tester (LISST)
 - Interface Bond Strength
 - Shear
- Easy to use
- Portable
- Adoptable to exiting load frames
- Reasonable cost
- accommodate both 100 and 150-mm sample diameter

In-Situ Test Devices

FWD & LFWD

LFWD - PRIMA 100 model Carl Bro Company, Denmark

DYNATEST FWD TEST SYSTEM

(NOTE: The right trailer tire has been removed to clarify illustration)

Comparison B/W Tests FWD and LFWD

Louisiana Accelerated Loading Facility

- Full-scale Accelerated Loading Facility
 - Simulates pavement response to real loading at vehicle speed
 - Responses of pavement sensors allow advanced pavement modeling of test lanes
 - Findings of three experiments were successfully implemented by DOTD
 - Cost to Benefit Ratio = 5.3: 1

Model

Repeated Loading Cyclic Plate Test Field Tests

Advanced Imaging

Optical Imaging

SGI Workstation

X-ray Computerized Tomography

Cordin M550 Speed Imaging System

PM 675 Infrared Imaging

Computational capability

- Several high end processor based PCs
- Two Sun workstation
 - equipped with ABAQUS
 - commercial finite element program.

