Louisiana's Longest Steel Girder Double Leaf Bascule Bridge

Presentation by Rudy McLellan, PE HNTB, Baton Rouge, LA 2008 Louisiana Structures Conference Louisa Bridge

Project Location

Gulf of Mexico

©2008 Google - Imagery ©2008 TerraMetrics, Map data ©2008 LeadDog Consulting, NAVTEQ[™] - Terms of Use

Louisiana

Average Daily Traffic \rightarrow 1,200 Vehicles **Unequal Arm (Bobtail) Swing Span** Long Arm at 160 Ft and Short Arm at 80 Ft **125** Ft Horizontal Clearance When Opened **6** Ft of Vertical Clearance When Closed Number of Openings → 1,050 / Month (35 / Day) **Structurally Deficient 20 Ton Limit**

A portion of the Louisa bridge, the only bridge to Cypremort Point, lies in the water Thursday after barges hit it.

Existing Bridge

UILDS THE WAY

Project Corridors

2008 Louisiana Structures Conference Louisa Bridge

TB

Alignment Study

Alternate 1

250 m (800 Ft) East of Existing Bridge Additional 24 Acres of ROW

Alternate 2

198 m (600 Ft) West of Existing Bridge Additional 28 Acres of ROW

Alternate 1A

30 m (100 Ft) East and Adjacent To Existing Bridge Additional 24 Acres of ROW

Port Bypass

Ships Enter Port Without Passing Bridge Discounted Because of Environmental Impact & Roadway Cost Additional 70 Acres of ROW

Alternate 1, 2, 1A

Intracoastal Waterway - Sabine River To Houma

5 Major Bridges (3 High Level Fixed, 2 Movable)High Levels Have 22 m (73 Ft) of Vertical ClearanceExisting Swing Span Averages 1,050 Openings/Month

Close Proximity To Port of West St. Mary

1500 Acre Complex With Total Intermodal OperationsImport/Export Business for International TradeConstructed and Shipped the Largest Offshore Drilling Deck

Majority Barge/Tug Vessels Some Shallow Draft Ships

Drilling Platforms

Existing Swing Span Average Number of Openings Per Month (1993 – 1994)						
No. of Vessels	No. of Openings	0'-40'	<u>41' - 50 '</u>	51' - 60'	61' - 73'	Over 73'
1,714	1,050	872	132	33	6	7

Geotechnical

Borings To 39.6 m (130 Ft)

9.1 m (30 Ft) Soft Clay Over Stiff Clay

Bascule Pier Foundations

50 Steel Pipe Piles 762 mm (30 inch) Diameter x 42.7 m (140 Ft) Long 50 Ton Design Capacity Reinforced Concrete Footing / Seal

Adjacent Approach Pier Foundations

33 PPC Piles
450 mm (18 inch) Square x 25 m (82 Ft) Long
50 Ton Design Capacity
Reinforced Concrete Footing

Pier Protection System

AASHTO Vessel Collision Design

Design 4 Barges with 1 Towboat (LOA = 1200 Ft)

Flow Is Tidal with Water EL 0.0 To 3.0 Ft

1967-1995 Vessel Collisions to Existing Bridge(26 Barge Tows)3 Barge Collisions In 2001

Classification - Critical

Vessel Impact Speed = 6 MPH (4 to 6 MPH recorded)

Method II (Method I) Force = 3,800 (4,100) Kips

Two Bascule Piers In Navigable Waterway

Pier Protection Alternates Drilled Shaft → Elastic/Not Destroyed

Guide Wall → Plastic/Partial Breakup

Dolphin System -> Plastic/Partial or Complete Breakup

2008 Louisiana Structures Conference Louisa Bridge

NEW LA-319 INTRACOASTAL WATERWAY BRIDGE AT LOUISA STATE PROJECT NO. 239-01-0077 & 700-30-0159 FEDERAL AID PROJECT NO. DPR-0113 (002) & DPR-0113 (001) ST. MARY PARISH, LOUISIANA

VESSEL COLLISION STUDY

STATE OF LOUISIANA DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT

Source: Vicksburg COE Pier Protection System

Pier Protection System

32-1370 mm (54") Diameter Drilled Shaft within a Concrete Cap System

Bascule Pier Alternates Open Pier Counterweight Under Approach Span Counterweight Will Not Dip Into Water Approach Spans Need To Be Two Girder Systems Bascule Span Live Load Anchors Mounted On Approach Span Approach Spans Mimic Bascule Haunch To Hide Counterweight

Enclosed Pier

Counterweight Enclosed Simplified Approach Spans Higher Pier Cost

Bascule Superstructure Alternates Alternate A

Double Leaf Trunnion Bascule

Two Steel Girder

Open Bascule Pier

Bascule Superstructure Alternates Alternate B

Double Leaf Trunnion Bascule

Three Steel Girder

Enclosed Bascule Pier

Bascule Superstructure Alternates Alternate C

00-30-0(59

9.5 m (64.0')

17.1 m (56.0') PIER WOTH

Double Leaf Trunnion Bascule

Two Steel Deck Truss

Enclosed Bascule Pier

2008 Louisiana Structures Conference Louisa Bridge

ELEVATION

Bascule Superstructure Alternates Alternate D

Single Leaf Trunnion Bascule

Two Steel Through Truss

Enclosed Bascule Pier

2008 Louisiana Stru

Bascule Superstructure Alternates

Preliminary Cost Estimate 1996 (\$ millions)								
Alt	ernate	ate Bascule Span		Pier Protection	Mechanical / Electrical	Approach Structure & Roadway	Mobilization / Contingencies	Total Cost
		Super	Sub		1	1	18%	
	A	2.7	2.7	1.5	6.4	8.5	3.9	25.7
	В	2.1	4.1	1.5	6.4	8.5	4.1	26.7
	С	2.4	4.4	1.5	6.4	9.8	4.4	28.9
	D	4.8	3.7	1.5	5.7	7.5	4.2	27.4

Alternate A Chosen

Environmental Assessment Land Use - Alignment 1A Smallest Impact **Farmland Protection Policy Act (FPPA) USDA Ranked Alternate 1A As The Lowest Impact Air Quality** – No Impact **Noise** – No Impact Water Quality – Little Impact Chicot Aquifer (300 Foot Wells) **NEPA Permits - Wetlands** Much of It Prior Converted To Agriculture **Bypass Has The Highest Impact** Alignment 1A Is Second Highest LADOTD Responsible For Mitigation **Floodplains** – Project Lies In A 100 Year Floodplain **Endangered And Threatened Species - USFWS No Effect Archeological/Historical Visual Impact - Public Hearing - Alignment 1A Preferred**

Environmental Assessment

Impacts To Wetland Habit

Impacts to Wetland Habitat							
Impact	Alternate						
Categories	1		2		1A		
Area (ac)	2.17		2.10		3.80		
	BHW ¹	FSWP ²	BHW	FSWP	BHW	FSWP	
AAHU's ³	.5	.76	1.19		_	2.44	

¹ Bottomland Hardwood; ² Fresh Swamp; ³ Average Annual Habitat Units

FONSI Determined

Proposed Bridge Rendering

New Louisa Bridge

Construction Team

Louisiana DOTD / HNTB **Coastal Bridge Company – General Contractor CEC/Huvall Associates – Bascule Span Erection Steward Machine – Bascule Span Steel and Machinery IKG Industries – Bascule Span Steel Grating Carolina Steel – Approach Span Steel Orleans Material – Bascule Pier Trunnion Support Steel** J.H Menge & Co. – Pier Protection Fendering **E.** P. Breaux – Electrical

New Movable Span Bridge

2-Lanes 11.4 m (37 Ft) Wide Roadway/No Sidewalks

84 m (276 Ft) 2 Steel Girder Double Leaf Fixed Trunnion Bascule Span

Bascule is French for "Seesaw" Trunnion is French for "Trunk" or "Stump" Bascule Span Girders vary in depth 2.3 m to 5.3 m (7.5 to 17.3 Ft)

64 m (210 Ft) 2 Steel Girder Adjacent Span

Adjacent Span Girders vary in depth 2.5 m to 5.0 m (8.3 to 16.4 Ft)

Approach Spans

38 – 37 m (121 Ft) Spans (Typical Units are Two Span Continuous)
5 Girder BT Sections 1830 mm (72")
2 Column Reinforced Concrete Bents

Bascule Girders

Trunnion Inserted After LN2 Bath Class 7 Fit with Trunnion Medium Drive Fit

Photos courtesy of Steward Machine Company

Bascule Piers

Bascule Piers

Steel Pipe Pile Foundation Reinforced Cast In Place Concrete Bascule Span Steel Support Structure

Pier Protection

Concrete Filled Steel Pile

Reinforced concrete cap

UHMW-PE

Ultra High Molecular Weight Polyethylene

Bascule Span Erection

Tail Erected Toe Added Deck Placed Steel and Concrete Filled Steel Box Counterweight

Machinery Erection

Trunnion Bearing

600 mm (24") To 760 mm (30") Bronze Bushing

Rack Bolts To Bascule Girder Flange Plates

Drive Machinery

Simple Arrangement 2 - 25 HP Two Speed AC Motors Single Central Reducer

Rack Alignment Analysis

Tooth Finite Element Analysis

Condition	Root Stress (ksi)	Loading Diagram
1 – Load Applied Full Width	14	
2 – Load Applied 20% Width	40	
3 – Load Applied 20% Width at end of tooth	60	-

Finished Span 2005

Finished Span 2005

Imisiana

STATE FUNDING \$ 4,431,273 FEDERAL FUNDING \$17,725,094

TOTAL COST \$22,156,367

YOUR TAX DOLLARS AT WORK

\$12.7 M Approach \$22.2 M Bascule \$34.9 M Total

Intracoastal Waterway Bridge at Louisa

2007 Prize Bridge Award - Movable Span Category Presented at the 2007 World Steel Bridge Symposium

