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ABSTRACT 
 
 
Little attention has been given to estimating dynamic travel demand in transportation 
planning in the past.  However, when factors influencing travel are changing significantly 
over time – such as with an approaching hurricane - dynamic demand and the resulting 
variation in traffic flow on the network become important.  In this study, dynamic travel 
demand models for hurricane evacuation were developed with two methodologies: survival 
analysis and sequential choice model. Using survival analysis, the time before evacuation 
from a pending hurricane is modeled with those that do not evacuate considered as censored 
observations.  A Cox proportional hazards regression model with time-dependent variables 
and a Piecewise Exponential model were estimated.  In the sequential choice model, the 
decision to evacuate in the face of an oncoming hurricane is considered as a series of binary 
choices over time.  A sequential logit model and a sequential complementary log-log model 
were developed.  Each model is capable of predicting the probability of a household 
evacuating at each time period before hurricane landfall as a function of the household’s 
socio-economic characteristics, the characteristics of the hurricane (such as distance to the 
storm), and policy decisions (such as the issuing of evacuation orders).   
 
Three datasets were used in this study.  They were data from southwest Louisiana collected 
following Hurricane Andrew, data from South Carolina collected following Hurricane Floyd, 
and stated preference survey data collected from the New Orleans area.   
 
Based on the analysis, the sequential logit model was found to be the best alternative for 
modeling dynamic travel demand for hurricane evacuation.  The sequential logit model 
produces predictions which are superior to those of the current evacuation participation rate 
models with response curves.  Transfer of the sequential logit model estimated on the Floyd 
data to the Andrew data demonstrated that the sequential logit model is capable of estimating 
dynamic travel demand in a different environment than the one in which it was estimated 
with reasonable accuracy.  However, more study is required on the transferability of models 
of this type, as well as the development of procedures that would allow the updating of 
transferred model parameters to better reflect local evacuation behavior. 
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IMPLEMENTATION STATEMENT 
 
 
This research developed dynamic travel demand models for hurricane evacuation.  The 
application of the models developed in this study will improve travel demand estimation for 
hurricane evacuation.  The models can be used to estimate hurricane evacuation travel 
demand within discrete time intervals under different storm scenarios and evacuation policy 
variable–type and timing of evacuation orders.  The models support the application of 
dynamic traffic assignment techniques, which represent the state-of-the-art transportation 
modeling since they provide a more accurate and realistic prediction of the traffic conditions 
as time changes. 
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INTRODUCTION/BACKGROUND 
 
 
Hurricanes are one of the major natural threats to the coastal regions of the United States.  An 
effective measure to reduce the potential damage of hurricanes is to evacuate the population 
at risk from the threatened area.  However, hurricane evacuation is a complicated activity 
since “it involves moving a large population that may grow or change, onto a highly 
congested and possibly damaged road network, towards destinations that are not easily 
determined.” [1]  As a result, a hurricane evacuation modeling system, which provides 
decision support capability to local officials and emergency response teams to effectively 
develop, test, and compare evacuation plans and management strategies, is very important.  
A major component of the modeling system is the modeling of the transportation system. 
 
In general, transportation modeling for evacuation has followed similar procedures to that 
used in urban transportation planning.  Historically, the traditional urban transportation 
planning method has been used to estimate traffic conditions for an average weekday or for a 
peak period.  This approach has worked reasonably well for long-range transportation 
planning, especially when congestion in the system was not pronounced.  However, with 
increasing levels of congestion that have developed in urban areas over time, the need to 
conduct air quality analysis, evaluate Transportation Demand Management (TDM) 
alternatives, and assess the impact of Intelligent Transportation Systems (ITS) has resulted in 
the demand for the ability to estimate traffic conditions in urban transportation planning on 
the network more accurately.  One of the consequences of this need has been the 
development of time-of-day modeling procedures, which can produce a more accurate 
estimate of the traffic conditions.  This has relevance to evacuation modeling as well since it 
is not only the total volume of traffic that uses a facility that is of interest, but the time at 
which it is used by individual vehicles, leading to peaking, congestion, and delays. 
 
In time-of-day analysis used in urban transportation planning, a day is divided into different 
periods according to the levels of congestion normally experienced during the day.  For 
example, a day could be divided into three periods: the morning peak period, afternoon peak 
period, and the rest of the day.  Typically, people are more interested in the peak periods 
since the demands of these periods are usually used to determine the facility size.  The time-
of-day factor (TODF), the ratio of vehicle trips made in a peak period to those in some given 
base period (usually a day), is commonly used in urban transportation planning to estimate 
time-of-day volumes.  TODFs are commonly derived either from household surveys or from 
traffic counts.  TODFs are then factored into the four-step modeling procedures to produce 
estimates of traffic conditions for the periods in which they are estimated.  TODFs can be 
applied in different places of the four-step procedures with different advantages and 
limitations [2].  
 
One of the most significant features of urban transportation planning, with respect to 
evacuation modeling, is that the forecast of traffic conditions is static.  That is, traffic is 
forecasted for a period, such as a day or a peak period, and, within that period, traffic is 
assumed to flow uniformly.  In reality, traffic conditions, especially during peak hours, 
change regularly, and people make route-changing decisions dynamically due to varying 
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traffic conditions.  The traditional static procedures do not give any information on the 
dynamics of the traffic.  Moreover, Robles and Janson [3] demonstrated that dynamic traffic 
modeling yields much closer estimates of traffic conditions than traditional static procedures 
when applied to urban area networks during congested periods.  
 
Another feature of static traffic assignment that does not suit the evacuation environment 
well is that in the assignment process, all links on the shortest path between an origin and 
destination are assumed to carry the traffic between those two points.  In an urban 
environment where trip lengths are relatively short with respect to the time period considered 
(e.g. a day or a peak period), this assumption is acceptable because most trips that are made 
will occupy each link in the shortest path at some time during the time period.  However, in 
evacuations, trips are long with long travel times due to congestion, meaning that the 
assumption that each trip will occupy each link in their shortest path can only be true if the 
time period in which the traffic is reported is longer than the longest trip.  Thus, the reporting 
periods of evacuation traffic using static traffic assignment must be long, yet it is the traffic 
conditions in shorter time periods that are of interest.  For example, peaking within the time 
period can cause congestion that would not be discerned with static assignment over longer 
periods, and knowing when vehicles occupy each link will help get the maximum use out of 
the network by ensuring that each link is used to its capacity each hour of the evacuation 
period.  The maximum use of the network could conceivably be orchestrated by issuing 
evacuation orders among the different counties/parishes in such an order that the resulting 
evacuating traffic uses the network optimally without overloading some links in one of the 
short time period and underutilizing them in another. 
 
In the past 20 years, one of the fastest growing research areas in travel demand modeling has 
been Dynamic Traffic Assignment (DTA) [4-9].  The advancement of some aspects of ITS, 
such as Advanced Traveler Information Systems (ATIS) and Advanced Traffic Management 
Systems (ATMS), have generated the need to model travel behavior dynamically, as drivers 
respond to traveler information or traveler directives issued in response to current conditions 
[10,11,12].  DTA seeks to assign traffic continuously, or in very short time intervals, and 
then keeps track of the vehicles both temporally and spatially.  This makes it possible to 
know, at every moment, or in short periods of time, which vehicle is traversing which link at 
what speed.  This is fundamentally different from static assignment, as described earlier, 
which only tells that a certain vehicle will use certain links of a route with certain average 
speeds during the analysis period, which may be a day or several hours.  Moreover, DTA can 
make the assignment responsive to varying road conditions, such as capacity changes due to 
incidents, road closures, or the reverse-laning of facilities at certain times during the 
evacuation process.  As a result, DTA provides a more accurate and realistic prediction of the 
traffic conditions as time changes.  Such dynamic modeling represents the future state-of-the-
art transportation modeling since there exists little operational capability at the present time 
to solve the computational demands represented by large-scale networks [8,9] except for the 
work by Boyce et al. [13] and Robles and Janson [3]. 
 
To perform dynamic modeling, the estimation of time-dependent origin-destination (O-D) 
demand is required.  However, most researchers assume such time-dependent O-D tables are 
available a priori.  Ziliaskopoulos and Peeta [9] pointed out in their recent review on DTA:  
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“Probably, the single most challenging obstacle to overcome, before deploying 
DTA for planning applications, is that of estimating and predicting the time-
dependent origin-destination demand…  Surprisingly, the problem of estimating 
the temporal distribution of demand has been addressed by only a few studies.” 
 

Hurricane evacuation is a very different situation from that of day-to-day travel.  It involves, 
as mentioned earlier, long travel times (usually more than several hours), high levels of 
extended congestion (more people traveling in the same period of time on limited evacuation 
routes), uncertainty of road conditions (wind, visibility, availability of facilities), and the 
possibility that destinations may need to be changed due to closed roads or roads that are 
overcrowded, just to name a few.  In urban transportation planning, trips are more 
discretionary in nature and some trips can be postponed from one day to the next (e.g. 
shopping trips), while in a hurricane evacuation situation, relatively little discretion is 
allowed for when to make the trip.  Evacuees are more willing to follow official directions as 
to which route to use and are less likely to choose the shortest path than the urban travelers 
who make regular trips.  These differences all point to the fact that while travel is also being 
generated during evacuation, as it is in regular urban travel, the motivation for travel and the 
resulting travel behavior is considerably different in the two situations.  The capability to 
accurately forecast dynamic traffic conditions in terms of speed, travel time, volume, level of 
congestion, and the overall evacuation time would greatly enhance the ability to effectively 
develop, test, and compare evacuation plans and management strategies.  Dynamic 
assessment of travel conditions is important in modeling hurricane evacuation. 

 
There are several computer packages to model evacuation.  Some of the packages can be 
applied to hurricane evacuation.  The majority of the packages were developed for nuclear 
power plant evacuation.  Some provide limited information on traffic conditions, with their 
main purpose being to calculate evacuation time using static assignment.  Others use 
dynamic assignment to different degrees, providing more accurate information about traffic 
conditions.  However, all of the packages assume that an O-D table is available.  For those 
that use dynamic assignment, a time-dependent O-D table is assumed to be given, or a 
response (loading) curve, which represents percentage of trips traveled in each time interval 
for the analysis period, has to be specified.  

 
In conclusion, dynamic modeling of travel demand can more accurately and realistically 
forecast traffic conditions than traditional procedures.  Its application in hurricane evacuation 
can be especially valuable to improve planning capability.  At the present time, time-
dependent O-D tables are assumed to be provided a priori for DTA.  Therefore, the 
development of dynamic travel demand estimation for hurricane evacuation is needed as the 
first step in providing an improved modeling process for hurricane evacuation. 
 
In the research reported in this dissertation, the position has been taken that the decision to 
evacuate and the decision to depart are, in fact, a joint decision.  It is also suggested that this 
joint decision is an issue that is considered repeatedly prior to it being taken.  That is, it is 
assumed that each household repeatedly reviews the conditions surrounding a storm as it 
develops, each time making the decision to not evacuate, until, if they decide to evacuate, a 



4 
 

threshold is reached in their decision process and the decision is made.  To model this 
process, the use of survival analysis models and sequential choice models are proposed. 
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OBJECTIVE 
 
 

The objective of this research is to develop alternative dynamic travel demand models of 
hurricane evacuation travel and to compare the performance of these models with each other 
and with the state-of-the-practice models in current use.  Specifically, the research is directed 
at addressing the following hypotheses: 

 
•    Dynamic travel demand models can be developed that reproduce hurricane evacuation 

travel more accurately than conventional methods that use evacuation participation rates 
and response curves. 

•    Dynamic travel demand models can be developed that are capable of reproducing 
hurricane evacuation travel at different locations and under different storm and policy 
conditions. 
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SCOPE 
 
 
The research in this study explored different methodologies to develop dynamic demand 
models for hurricane evacuation.  Two survival analysis method models (the Cox 
Proportional Hazards model and the Piecewise Exponential model) and two sequential choice 
models (sequential logit model and complementary log-log model) were used in the study.  
Household survey data from several hurricanes were utilized in the modeling effort, 
including two revealed preference surveys and one stated preference survey.  The models 
developed in this study were compared with the traditional models.  The transferability of the 
developed models was also tested.
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LITERATURE REVIEW 
 
 
In this section, a brief review of evacuation packages is first presented, followed by a review 
of several proposed modeling frameworks of hurricane evacuation.  These reviews will serve 
to demonstrate that the state of practice in evacuation is shifting toward dynamic modeling, 
and the development of dynamic travel demand model is needed.  The last part is a review on 
travel demand modeling methods for hurricane evacuation. 
 

Evacuation Package Review 
 

Early evacuation studies focused on determining clearance times during an emergency 
evacuation [14]. Recent studies require models with the capability of providing information 
on the dynamics of the traffic system. Jamei [15], Southworth [16], and Mei [17] have 
provided thorough reviews on the packages.  The following is a brief review of important 
recent developments in evacuation software packages, emphasizing the dynamic capabilities 
of the packages and how travel demand is treated. 
 
Evacuation packages can be grouped into two categories: those using static assignment and 
those using dynamic assignment procedures.  DYNEV and ETIS belong to the static group 
while NETVAC, MASSVAC, and OREMS are in the dynamic group. 
 
DYNEV was developed for the Federal Emergency Management Agency (FEMA) by KLD 
Associates [18,19] for nuclear plant evacuation simulation. It is the most widely reported 
network evacuation model [16].  As a macroscopic traffic simulation model, DYNEV 
performs static equilibrium traffic assignment. It requires traffic volume, entering each link 
as input.  The output of the model gives detailed information about the operational 
performance of each link, including vehicle speed, traffic density, and volume.  This 
information can help identify bottlenecks along the evacuation routes. 
 
The Southeast United States Hurricane Evacuation Travel Demand Forecasting System was 
developed by PBS & J [20] for the states of Florida, Georgia, Alabama, North Carolina, and 
South Carolina.  The system is a web-based hurricane evacuation travel demand forecasting 
model with GIS capabilities designed for emergency management officials to access the 
model on-line.  It has subsequently been named the Evacuation Traffic Information System 
(ETIS) [17].  Input to the system includes category of hurricane, expected evacuation 
participation rate, tourist occupancy, and destination percentages for expected counties.  
Default values for participation rates, tourist occupancies, and destination percentages from 
each county are available in the model.  The model uses a shortest-path algorithm to forecast 
traffic volumes on the major highways in the region.  Output includes: expected levels of 
congestions by highway segment, tables of expected volumes of traffic crossing state lines by 
direction, and number of vehicles generated by each county traveling to specific inland 
locations.  ETIS does not have the capability to model traffic dynamically. 
 
NETVAC was perhaps the first evacuation package with dynamic assignment capability.  
Sheffi et al. [21] introduced NETVAC1 as a macro traffic simulation model developed for 
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the evacuation of nuclear power plants.  The model is capable of handling large networks 
with different control strategies within the network. Route choice in NETVAC is performed 
dynamically at each intersection.  Based on the directionality of the exit links and the traffic 
conditions directly ahead, the probability of a driver choosing an outbound link, j, at an 
intersection at time, t, Pj(t), is calculated  based on these conditions.  Time-varying O-D 
tables are required as input. For each link and each specified interval, the output gives 
queues, speeds, and other measures of level of service and flow pattern throughout the 
evacuation process. 
 
Hobeika and Kim [22] introduced MASSVAC4.0 as an expanded and modified version of 
MASSVAC3.0 [23] with the addition of a user-equilibrium assignment algorithm (UE).  For 
each simulation interval, say 15 minutes, a time-dependent O-D trip table is assigned using 
the UE algorithm.  After comparing the assigned link volume against link dissipation rate, if 
the link volume does not exceed link capacity, the network is assumed to have served all the 
vehicles assigned; otherwise, the remaining volumes of the congested links are calculated 
and recorded.  These volumes are added to the volumes assigned in the next simulation 
interval.  Although O-D trip tables are assigned dynamically, the system does not keep track 
of vehicles, and they are assumed to occupy the entire path instantaneously.  From this point 
of view, MASSVAC4.0 is not a true dynamic package. 
 
The Oak Ridge Evacuation Modeling Systems (OREMS) Version 2.5 was developed by the 
Center for Transportation Analysis at the Oak Ridge National Laboratory [24].  As a 
macroscopic simulation model developed to simulate traffic flow during an emergency 
evacuation both from a man-made and natural calamity, it has perhaps the most advanced 
features and functions among all the packages.  The analytical core of OREMS is a 
FORTRAN-based program ESIM (for Evacuation SIMulations).  Depending on data 
availability, ESIM can perform three kinds of simulations. If intersection turning counts data 
are available, it performs a link-based simulation; if the user provides origin-destination data, 
it performs a path-based simulation; and if only origin demand and destination attraction 
factors are available, the model distributes the trips for O-D pairs and then performs a path-
based simulation.  ESIM assigns traffic using the user-equilibrium assignment procedure.  
The simulation model moves groups of vehicles on the links.  If it is a path-based simulation, 
then the next link is determined by the path assigned to the vehicles.  If it is a link-based 
simulation, then the downstream link is chosen according to the turning data.  The effects of 
traffic control measures, such as signals, STOP, and YIELD signs, are simulated at every 
intersection.  
 
OREMS can provide dynamic and graphical output about link speed, volume, congestion, 
etc.  It can perform both static and dynamic assignment. However, it requires a loading curve 
for its O-D trip table. 
 
From the above review, it can be concluded that the simulation packages have evolved from 
static assignment with simple capabilities of calculating network clearance time and giving 
limited information on link volume for potential bottlenecks to dynamic assignment that can 
perform dynamic traffic assignments, providing time-varying traffic information.  However, 
to perform dynamic assignment, all models require a loading curve or time-dependent O-D 
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tables.  To date, no dynamic travel demand model has been developed.  There appears to be a 
clear need to develop a dynamic travel demand model for hurricane evacuation.  

 
Hurricane Evacuation Modeling Frameworks Review 

 
Before the 1990s, most of the attention on transportation analysis of evacuations focused on 
man-made disasters, especially nuclear power plant evacuations, as evidenced from the 
development of many evacuation packages such as CLEAR [25], NETVAC1 [21], DYNEV 
[19], MASSVAC [23,26], etc.  However, in more recent times, interest in modeling 
hurricane evacuation has increased.  Lewis [27], Barrett et al. [1], and Franzese and Han 
[28] have proposed traffic modeling frameworks to model hurricane evacuation.  
 
Lewis [27] defined evacuees as either residents living in surge-flooded areas in the coastal 
region or wind-vulnerable residents living in mobile homes or substandard housing in inland 
areas.  Trips are generally home-based trips to shelters, hotels, or friends/relatives.  Lewis 
pointed out the close parallel between the travel demand forecasting process for urban travel 
demand and that needed in evacuation forecasting: zonal delineation, zonal data 
development, network preparation, trip generation, distribution, and assignment.  He 
suggested modeling hurricane evacuation trip generation by trip purpose (i.e., Red 
Cross/public shelters, hotel/motel, friends/relatives, or out-of-county destinations) and by 
evacuation zone for selected hurricane scenarios.  Behavioral response curves were used to 
describe the slow, medium, and rapid response of evacuees leaving their homes.  The entire 
procedure parallels that of the traditional transportation modeling procedure. 
 
Barrett et al. [1] proposed a framework in which a dynamic traffic management model for 
hurricane evacuation can be used for long term and short term planning purposes as well as 
for real-time operational purposes.  They proposed functional requirements for dynamic 
hurricane evacuation modeling.  The system is set up to provide not only evacuation time, 
but also evacuation routes and departure times that drivers can be predicted to choose and 
maximize the system performance.  The system also allows development of management 
strategies that optimize evacuation from either the user or the system perspective.  Barrett et 
al.’s framework [1] is a dynamic modeling approach.  It utilizes time-dependent travel 
demand.  However, it is not clear how demand estimation will be modeled. 
 
To reflect the dynamic nature of the demand and network conditions, Peeta and Mahmassani 
[29] proposed a Rolling Horizon (RH) approach.  The underlying philosophy behind the RH 
approach is that events “far” in the future will not influence current events.  For example, 
current vehicle assignment may be performed with only limited consideration of vehicle 
assignments that are “far” in the future, because by the time future trips are assigned current 
vehicles are already out of the system [11].  The RH approach assumes that deterministic 
information of dynamic traffic demand and network conditions is available only for a short 
period of time, and the model is implemented in every “roll period” [30].  The demand and 
network data are updated for each roll period.   At each time period, the time horizon is rolled 
forward by a length equal to the roll period.  The problem with this method is that if the 
updated information is not accurate, the result will be sub-optimal [9]. 
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Franzese and Han [28] developed a traffic modeling framework for hurricane evacuation 
called the Incident Management Decision Aid System (IMDAS).  In their framework, 
hurricane evacuation analysis is conducted in several steps.  The first step is the classification 
of the evacuation area into an Immediate Response Zone (IRZ), a Protective Action Zone 
(PAZ), and a Precautionary Zone (PZ) according to the risk each area faces.  The next step 
determines the population at risk within the IRZ, which, with hurricanes, includes coastal 
communities and areas housing tourists and other transient populations.  Step three uses 
behavioral analysis to estimate the number of people that will actually evacuate.  Departing 
times, destinations, and vehicle occupancy are determined as part of this process. 
 
The output of the first three steps is an O-D trip table.  This O-D table, along with the 
transportation network, serves as input to the traffic model that is used to evaluate the 
effectiveness of evacuation.  The traffic model can evaluate and compare different 
alternatives involving alternate routes, destinations, traffic control strategies, traffic 
management strategies, evacuee response rates, and evacuee departing times.  
 
An evacuation departure time curve is used to represent the temporal travel demand 
distribution.  The O-D trip table is factored according to the evacuation departure curve 
(slow, medium, or rapid response) to produce a time-varying travel demand.  The central 
component of the system is a traffic simulation model developed at ORNL, which was 
reviewed earlier. 

 
Travel Demand Modeling for Hurricane Evacuation 

 
State-of-the-Practice in Urban Travel Demand Modeling 
Urban travel demand modeling has evolved over the past forty years into an established 
procedure, which is usually referred to as the classical four-step approach [31].  Since the 
1960’s, urban travel demand modeling has followed the four-step procedure: trip generation, 
trip distribution, mode choice, and traffic assignment.  As the first step in travel demand 
modeling, the traditional trip generation model estimates the number of trips originating or 
ending in each Traffic Analysis Zone (TAZ ).  The analysis can be performed at two levels, 
disaggregate or aggregate.  At the disaggregate level, trip estimation is based on the 
characteristics of households, such as income, household size, number of workers, car 
ownership, and number of licensed drivers in the household; while, at the aggregate level, the 
characteristics of the TAZ are used.   
 
In general, statistical analysis methods are used in trip generation modeling.  The simplest 
method is to use zonal or household trip rates as estimated using either regression or cross-
classification (sometimes also referred to as category analysis) [32,33].  In cross-
classification analysis, several techniques might be used to classify travelers into a few 
homogeneous and distinct groups so that each has a characteristic trip rate.  These techniques 
include: analysis of variance, factor and cluster analysis, contingency tables, and discriminant 
analysis [31].   
 
Recently, there have been some efforts to use Artificial Neural Networks (ANN) to model 
trip generation [34-36].  Anderson and Malave [37] developed a dynamic trip generation 
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model for a medium sized urban community.  It is a linear regression model aggregated at the 
zonal level.  The variables used in the model include socioeconomic characteristics of the 
zones and the distance to the central business district.  With data collected from 7:30 a.m. to 
8:30 a.m., they developed two dynamic trip generation models, one for every five minute 
interval and one for every 15 minute interval.  The model using the 15 minute time interval 
outperformed the one with the five minute time interval. 
 
At either level of aggregation, planning agencies spend significant resources collecting zonal 
or household information (usually through household surveys).  With this information, trip 
generation models are usually developed to produce 24-hour trip production and attraction 
estimates.  There have been limited attempts to collect time-dependent trip generation data 
and to model trip generation in a time-dependent manner.  It is therefore not surprising that 
the time-dependent trip generation model in hurricane evacuation modeling has received 
relatively little attention in the past as well. 

 
Current Practice in Hurricane Evacuation Travel Demand Modeling 
Current practice in hurricane evacuation travel demand modeling is to conduct the process of 
estimating travel demand in two steps: the estimation of total evacuation demand in the first 
step and the estimation of departure time in the second.  Generally, these steps are conducted 
using simple relationships, such as means, rates, and distributions, rather than the more 
sophisticated mathematical relationships observed in urban transportation planning [17].  
The most common method of estimating total evacuation demand is to use evacuation 
“participation rates” of geographic subdivisions of the area in which evacuation behavior is 
considered homogeneous.  Participation rates are the proportion of households in an area that 
evacuate.  Participation rates are assumed to vary among these geographic subdivisions 
(evacuation zones) depending on the severity of the storm and its flooding potential.  
Participation rates are established subjectively based on past behavior under different storm 
conditions.   
 
Some researchers report the use of logistic regression to model hurricane evacuation demand 
[17,38,39].  Johnson and Zeigler [40] used logistic regression to model evacuation demand 
from areas surrounding the Three Mile Island nuclear power station following the nuclear 
accident there in 1979.  Using data from Three Mile Island Telephone Survey, Johnson and 
Zeigler [40] selected eleven variables in their logistic regression analysis.  The variables 
included: locational variables (including perceived distance and direction), stage-in-life-cycle 
variables (including age of household head, marital status, whether young children were 
present in the home and whether there was anyone pregnant in the home), educational status 
(years of school completed), and pre-accident attitude toward the nuclear plant at Three Mile 
Island (general attitude toward nuclear power, attitude toward the Three Mile Island plant, 
and perception of risk of an accident at the Three Mile Island facility).  The dependent 
variable was the evacuation decision. The analysis found that the evacuation decision was 
directly influenced by all of the above variables. 
 
The independent variables tested in the study by Irwin et al. [38] were: type of dwelling, 
gender, marital status, education, age, race, income, prior hurricane experience, and 
perception of being hurt if they did not evacuate.  Income was not found to be influential in 
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the evacuation decision probably because of the presence of other socio-economic variables 
such as education and race in this particular data set. It was found that the perception of risk, 
type of dwelling, gender, and age significantly influenced the probability of evacuation for 
Hurricane Andrew.  A critique on the problems of the study is provided by Mei [17]. 
 
A team from the Regional Development Service (RDS) and East Carolina University [39] 
used logistic regression analysis to model the probability that a household will evacuate 
using a sample of 940 households collected following Hurricane Bonnie [39].  Nine variables 
were tested in the model and all were significant.  These variables were evacuation order, 
perceived risk of flood, whether the household had an evacuation plan or not, vehicle 
ownership, whether the respondent was working full-time, whether neighbors evacuated or 
not, the presence of pets, housing type (mobile home or not), and level of education.  
 
Mei [17] used logistic regression to develop a trip generation model with Hurricane Andrew 
household survey data from southwest Louisiana.  The dataset was relatively small (410 
households).  The dependent variable was the probability of a household evacuating. The 
independent variables, which were found significant, included housing type, whether the 
household received a mandatory evacuation order or not, age of the respondent, distance of 
the household from the closest body of water, and marital status.  Variables tested but found 
to be insignificant included ownership of the residence, prior hurricane experience, race, 
education level, and household size. 
 
Mei [17] also utilized ANN to develop trip generation models for hurricane evacuation with 
disaggregate data.  Three kinds of ANN models were tested. They were a Bayesian-based 
probabilistic neural network (PNN) model, a learning vector quantizer (LVQ) model using an 
adaptation of the Kohonen Self Organizing Mapping approach, and a conventional feed-
forward neural network model using back propagation in its estimation (BPNN).  The 
backpropagation  neural network model described the probability of a household evacuating 
while the other two models, being classification-type models, directly identified whether the 
household would evacuate or not.  The Root-mean-squared-error (RMSE), the percent 
correctly predicted (PCP), and results from the Receiver Operating Characteristic (ROC) 
curve were used to compare models.  In general, the study demonstrated that ANN models 
can be used to model evacuation travel demand estimation with similar accuracy to other 
methods of evacuation demand.  The logistic regression and neural networks displayed 
similar predictive performance, but the logistic regression and the BPNN models were a little 
better than the PNN and LVQ models.  The models performed well with the overall percent 
correctly predicted with rates ranging from 65 percent to 68 percent. 
 
The models reviewed all produce trip generation estimates without considering when these 
trips will take place.   That is, trip generation models that have been developed for hurricane 
evacuation in the past, as well as those that have been developed to model other travel 
behavior, have not tried to model the time at which the trips were generated.  Instead, in 
hurricane evacuation modeling, a response curve has typically been used to predict the 
percentage of trips evacuating in each time interval during the analysis period.  A response 
curve is the assumed departure time distribution of evacuees.  It is also sometimes referred to 
as a loading or mobilization curve.  The loading curve is usually portrayed as the cumulative 
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percentage of evacuees evacuating by time period and, traditionally, has been assumed to 
take on a sigmoid or “S” shape.  According to how readily the analyst expects the evacuees 
to respond to an order to evacuate, loading curves are typically classified as “quick”, 
“medium”, or “slow”.  The quicker the response, the steeper the curve.  The choice of a 
loading curve is a subjective decision by the analyst. 
 
Leik et al. [41] was among the first to study the cumulative percent of evacuees leaving 
home during each hourly period in the face of an oncoming hurricane.  Leik et al.’s study, 
and other evacuation planning related studies in social science, showed that highway network 
loading starts at a low rate at the beginning and as time progresses the rate increases until it 
reaches its maximum rate of loading approximately halfway through the total loading period. 
The loading curve takes the form of a sigmoid or ‘S’ shape. Jamei [15] gave the following 
equation to describe the loading curve: 

 
 ( )[ ]{ }βα −−+= ttP exp1/1)( ,                                                                                   (1) 
 

where P(t) is the cumulative percentage of total trips loading the network, α is a curve slope 
factor, β is the half loading time (the time at which half of the total volume is loaded on the 
network), and t is current time.  Figure 1 gives three loading curves compiled by Earl J. 
Baker of Florida State University [42], representing slow, medium, and rapid loading as 
obtained from past records of vehicle volumes observed during the evacuation from 
numerous hurricanes.  The time when the evacuation order is issued is defined as 0 on the 
horizontal axis.  Equation 1 is adopted by Radwan et al. [26] and Hobeika and Kim [22].  
Lewis [27] and U.S. Corps of Engineers [42] also use similar curves as in Figure 1.  The 
same sort of response has also been reported for flash flooding [43]. 
 
Tweedie et al. [44] reported a loading curve that can be approximated by the Rayleigh 
probability distribution function given by: 
 

 F(t) = 1-exp(-t2/1800),                                                                                             (2) 
 

where F(t) is the percentage of the population mobilized by time t, and t is the mobilization 
time in minutes. 
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Figure 1   

Three different loading curves [42] 
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DESCRIPTION OF DATA 
 
 
Three datasets were used in this study.  They came from surveys of different hurricanes at 
different geographic locations.  Two were from revealed-choices and one was from stated-
choices.  The variety of data makes it possible to create models with different methodologies 
and test their transferability. 
 

Southwest Louisiana Post-Andrew Household Survey Data 
 

One dataset used in this study was collected in southwest Louisiana following the passage of 
Hurricane Andrew through that region in August 1992.  The survey was conducted by the 
Louisiana Population Data Center at Louisiana State University (LSU) and sponsored by the 
Louisiana Office of Emergency Preparedness.  The survey asked about 100 questions 
covering a variety of information of a household.  Data collected included household socio-
demographic information, type and location of residence, past hurricane experience, 
perceived assessment of risk from the hurricane, the ability to protect property, whether a 
hurricane evacuation order was received, the time of evacuation if the household evacuated, 
evacuation destination and how to get there, etc.  Of the 651 households surveyed, 466 were 
living in an affected parish when Andrew struck.  After deleting households with missing 
information on evacuation time, the final dataset contained data from 428 households of 
which 156 evacuated.  The time of evacuation for each household was reported in terms of 
four time intervals per day (12 a.m. to 6 a.m., 6 a.m. to 12 p.m., 12 p.m. to 6 p.m., and 6 p.m. 
to 12 a.m.).  Since evacuation lasted for three days, in this case, the total number of time 
intervals reported in this study was 12. 

 
During initial data analysis, the information that was clearly not related to hurricane demand 
modeling, such as evacuation destination and how to get there, were deleted first.  Next, 
AnswerTree, a statistical software package from SPSS that facilitates finding the best 
grouping strategy for categorical variables, was applied to find the best ways to group 
different levels of a categorical variable.  Third, Gehan’s generalized Wilcoxon test [45] was 
conducted for each of the variables to test the impact of each variable on evacuation.  In 
Gehan’s generalized Wilcoxon test, every observation in one group was compared with every 
observation in another group, a score was given to the result of every comparison.  The total 
of all scores was an indication of the impact of the levels of the variable on evacuation.  A 
statistical test is available to test the level of significance.  Any variable that did not pass the 
test at a 20 percent level of significance was deleted from the dataset.  The names of 
remaining variables were changed from the original coding names into ones that more 
appropriately reflect the nature of the variables.  At this time, the data were split into two 
parts, 85 percent of the data was retained for model estimation and 15 percent for model 
validation.  Fourth, the 85 percent estimation dataset was transformed so that each household 
would have multiple rows in the dataset.  The number of rows for each household was the 
same as the time interval in which the household evacuated.  The 15 percent validation 
dataset was transformed in the similar way, but each household had 12 rows, which was the 
total number of time intervals for the Andrew data.  Fifth, data enhancement was conducted, 
which will be discussed later.  Last, the values of distance from each household to the center 
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of the storm were calculated using the longitude and latitude information of the storm and of 
the household.  All the households from one city shared the same longitude and latitude, 
which represented the geometric center of the city.  A variable representing time-of-day was 
also created.  This variable distinguished between nighttime, morning, and afternoon.  For 
the multiple rows for each household, information was the same for static variables but 
different for time-dependent (or dynamic) variables.   

 

South Carolina Post-Floyd Household Survey Data 
 

Another dataset used in this study was collected in South Carolina following the passage of 
Hurricane Floyd through that region in September 1999.  The data were collected as part of a 
study sponsored by the Corps of Engineers and conducted by Dr. Earl J. Baker of Florida 
State University.  The survey was stratified by county and by risk area.  Approximately 600 
telephone interviews were conducted in southern South Carolina, including the coastal 
counties of Beaufort, Jasper, and Colleton; approximately 600 telephone interviews were 
conducted in the northern region of South Carolina, including the coastal counties of Horry 
and Georgetown; and approximately 600 telephone interviews were conducted in the central 
coastal portion of South Carolina, including the coastal and adjacent counties in the 
Charleston region.  After deleting households with missing information on evacuation status 
and time of evacuation if evacuated, the dataset contained data from 1,688 households of 
which about 60 percent evacuated.  Data items in the dataset were similar to those of the 
Andrew data.  Evacuation during Hurricane Floyd lasted from the 12th to the 17th of 
September 1999.  The time of evacuation for each household was reported by each hour of 
the day.  About 98.5 percent of evacuation occurred in the first four days.  To reduce the 
number of time intervals in the model, each time interval was set to two hours and only the 
first four days were modeled.  As a result, 48 time intervals were established for the Floyd 
data. 
 
The Floyd data were much larger than the Andrew data.  During data preparation, those 
variables that were obviously unrelated to evacuation demand modeling were deleted first.  
Most of the variables were retained without the process of applying the Gehan’s generalized 
Wilcoxon test.  The split between estimation and validations data was 75 percent and 25 
percent.  Then the datasets were transformed into multiple rows in the same manner as in the 
Andrew data.  The only difference was that the total number of time intervals was 48 for 
Floyd instead of 12 for Andrew, and each time interval was two hours for Floyd instead of 
the six hours for Andrew.  Data enhancement was conducted last.  Values of distance were 
calculated and a time-of-day variable was created in a similar manner to the Andrew data.  
Variable names were changed from the original coding names into ones that more 
appropriately reflect the nature of the variables. 
 

New Orleans Stated Preference Data 
 

A stated preference (SP) survey of evacuation behavior was conducted in New Orleans as 
part of a pilot study entitled “Assessment and Remediation of Public Health Impacts due to 
Hurricanes and Major Flooding Events” in 2003.  The SP survey was conducted by the 
Center for the Study of the Public Health Impacts of Hurricanes (CSPHIH), established at 
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LSU in 2002 through grant support provided by the Louisiana Board of Regents, Millennium 
Trust Health Excellence Fund.  The survey involved 607 households who provided 
information about the social linkages they felt existed in their communities that they could 
rely on in times of crisis, such as during evacuation from a hurricane.  In the SP portion of 
the survey, respondents were presented with different storm scenarios and asked, in each 
scenario, if they would evacuate and, if so, when they would evacuate.  The storm scenarios 
were combinations of different storm and respondent conditions.  The conditions and the 
range are shown in Table 1. 
 

Table 1   
Attributes and their values in the SP survey 

Attribute 
Level 

0 1 2 3 
Evacuation ordered No Precautionary Recommended Mandatory 
Level of Storm Advisory Watch Warning     
Time to expected landfall >2 days 1-2 days 12-24 hours <12 hours 
Distance from expected landfall <10 miles 10-50 miles 50-100 miles >100 miles 
Expected intensification of storm None Slight Medium Considerable 
Current Storm width <50 miles 50-100 miles 100-200 miles >200 miles 
Direction of storm approach Sector 1 Sector 2 Sector 3 Sector 4 
Expected maximum winds <100 mph 100-130 mph 130-150 mph >150 mph 
Expected rainfall <5 inches 5-12 inches 12-20 inches >20 inches 
Expected storm surge <5 ft.  5-10 ft. 10-15 ft.  >15 ft. 

 
The first attribute, evacuation ordered, referred to whether an evacuation order had been 
issued or not.  In Louisiana, beside the possibility of no evacuation order being issued, there 
are three types of evacuation orders that can be issued.  The first, a precautionary evacuation 
order, is also referred to as a voluntary evacuation order and is meant to convey that persons 
in the area can decide for themselves whether to evacuate or not.  The second level is where 
evacuation is recommended, while the third level is where evacuation is mandatory and 
inhabitants are no longer expected to exercise their own discretion.  Storm advisories are 
issued by the National Hurricane Center and pertain to geographic areas which are 
designated as “hurricane watch” areas when hurricane landfall is within 36 hours, and  
“hurricane warning” areas when the storm is within 24 hours of landfall.  The other attributes 
in Table 1 are self-explanatory with the exception of the sectors, which describe the direction 
from which the storm is approaching.  Sectors 1 through 4 refer to quadrants ranging from an 
approach due east of New Orleans for sector 1 to an approach from the southwest for sector 
4.  The survey was supposed to be an orthogonal fractional factorial design that accounted for 
main effect only.  Therefore, no interactions were assumed to exist.  Thirty-two scenarios 
were created using different combinations of the conditions shown in Table 1.  Eight 
different respondent sets were created from the 32 scenarios with each scenario being used 
twice.  Each respondent set had eight scenarios, and each respondent was asked to answer 
one respondent set. 
 

During initial data preparation, households with missing data were deleted first.  Among the 
eight respondent sets, the minimum number of remaining households was 63.  To retain 
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orthogonality in the SP design, the number of households in each respondent set must be the 
same, and, therefore, excess households were deleted randomly to establish 63 households in 
each respondent set.  As a result, each respondent set had 63*8=504 valid answers.  Then 
data from all the eight respondent sets were joined together, resulting in 504*8=4032 valid 
answers when all respondent sets were combined.  The dataset was next split into two in the 
ratio 75 percent and 25 percent for model estimation and validation respectively.  Each 
dataset was transformed to have multiple rows of data with each row representing a time 
interval, as described in the transformation of the Andrew data earlier.  Last, two additional 
variables were added to the datasets.  They were the flooding potential of the households and 
their housing types.  The total number of time intervals for this data was seven, and the 
lengths of the time intervals were unequal.  A detailed discussion of data preparation and 
analysis is presented in the model structure and estimation section.  
 

Data Enhancement 
 

The original Andrew and Floyd datasets only had static variables and lacked the dynamic 
information regarding the hurricane and policy decisions made by the authorities during the 
onset of the storm.  Using supplemental information from a variety of sources, the data were 
enhanced by adding hurricane advisory information (time and location of hurricane watches 
and hurricane warnings), characteristics of the hurricane (the forward speed, intensity, and 
location of the storm), and the distance from the storm to each household at every time 
interval.  Most of the information was obtained from the National Hurricane Center. 

 
It is known that the timing and the type of an evacuation order play an important role in the 
evacuation decision [46].  However, for Hurricane Andrew, this critical information was not 
available from many of the local authorities from whom the data were collected.  The only 
information that was available for these cases was whether a household perceived receiving 
an evacuation order, as reported in the survey.  No time was associated with the answer to the 
question, and, as a result, the evacuation order was treated as a static variable in this dataset, 
although it would normally be an important time-dependent variable.  However, the 
evacuation order information for Hurricane Floyd was complete and evacuation order was 
treated as a time-dependent variable.  Table 2 shows a hypothetical example of the 
information that was added to the dataset for enhancement. 
 

Table 2   
Example hurricane information added to enhance the dataset 

Date/Time Longitude (W) Latitude (N) Wind Speed (mph) Stage/Category Evacuation Order 
6:00 67 25.6 70 Tropical storm No 

12:00 68.3 25.8 90 Category 1 Recommended 
18:00 69.7 25.7 100 Category 2 Mandatory 
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METHODOLOGY 

 
 

Overview of Survival Analysis 
 

Survival Analysis is a statistical procedure that analyzes time-to-event data.  Thus, it is often 
used to model the time to events, such as the onset of a disease, remission of breast cancer 
(medicine), the lifetime of electronic devices (engineering), felon’s time to parole 
(criminology), duration of first marriage (sociology), length of newspaper or magazine 
subscription (marketing), etc. [45].  Survival analysis is sometimes also referred to as 
duration analysis. 

 
In survival analysis, censoring is an important concept.  A censored observation is an 
observation for which the exact time to the event is unknown because the event is not 
observed during the period of observation.  There are various kinds of censoring, including, 
left, right, and interval censoring.  Right censoring is the most common.  It occurs when the 
only information about the subject under observation is that the subject has not yet 
experienced the event at the time observation ceases.  This occurs when a subject under 
observation withdraws from the experiment before the event occurs, or the experiment itself 
concludes before the subject experiences the event.  Left censoring occurs when the subject 
under observation has already experienced the event before the subject is observed in the 
study.  Interval censoring occurs when the subject under observation is only known to have 
experienced the event in a certain time interval, but the actual time of the event is unknown.  
If censoring occurs, only partial information about a subject’s experience of the event under 
study is available.  A unique feature of survival analysis is that it can use such incomplete 
information in the analysis. 

 
When the event times of more than two subjects occur at the same time, or when two or more 
closed event times are grouped into the same intervals, it is a tie.  Tied data are common and 
provisions are made to take account of such occurrences in the formulation of survival 
analysis models, as explained later. 

 
Review of Survival Analysis in Transportation  
Survival analysis began its application in the transportation field in the late 1980’s.  Initial 
studies focused on accident and safety issues and automobile ownership.  Hensher and 
Mannering [47] provided a review of the use of survival analysis in transportation up to the 
early 1990’s.  Niemeier and Morita [48] studied the duration of trip-making activities by men 
and women.  Bhat [49,50] studied factors affecting shopping activity duration during the trip 
returning home from work.  Bhat [50] applied the approach by Han and Hausman [51] to 
estimate both the covariates’ effects and the baseline hazard parameters simultaneously while 
taking the effects of unobservable heterogeneity into account.  Yee and Niemeier [52] 
applied the Cox proportional hazards model to the Puget Sound Transportation Panel data to 
analyze durations of several non-work activities.   
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There have been several applications of survival analysis to study the dynamic effects of 
travel demand.  Mannering and Hamed [53] studied the duration that travelers delay their 
departure from work to avoid congestion.  Hamed and Mannering [54] studied home-stay 
duration between trip generation activities.  Both studies applied the parametric Weibull 
model.  Mannering et al. [55] also studied the home-stay duration problem with the Cox 
model.  However, none of the studies used time-dependent covariates, and no published 
applications of survival analysis in developing a dynamic travel demand model for hurricane 
evacuation were found.  A brief overview of the basic functions used in survival analysis is 
given next. 

 
Basic Functions Used in Survival Analysis 
There are three important functions used in survival analysis.  They are the survival function 
S(t), the hazard function h(t), and cumulative hazard function H(t).  The survival function is 
the basic relationship employed in describing time-to-event phenomena.  It is the probability 
of a case surviving beyond time t, as defined in the following expression: 

 
)()( tTPtS >= .                                                                                                        (3) 

 
The survival function is a non-increasing function with a value of one when time is zero and 
zero when time is infinity.  The graph of S(t) is called the survival curve.  A steep survival 
curve represents low survival rate or short survival time; a gradual or flat curve represents a 
high survival rate or long survival time. 

 
Another fundamental quantity is the hazard function.  It is also known as the conditional 
failure rate in reliability, the force of mortality in demography, and the age-specific failure 
rate in epidemiology [56].  The hazard function is defined as:  
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An easy way to understand the meaning of h(t) is to recognize that h(t)Δt is the approximate 
probability of failure during a small time interval Δt, provided the individual has survived to 
time t.  It can take any non-zero values.  The relationships between S(t) and h(t) can be given 
as [57]: 
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where f(t) is the probability density function and can be calculated with
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where H(t) is the cumulative hazard.  The relationship can be easily discretized to 
accommodate the situation when time is not considered continuous.  Figure 2 plots examples 
of the Weibull survival functions and the Weibull hazard functions.  Note that unlike the 
survival function, which has a maximum value of one because it is defined as a probability, 
the value of hazard rate can take any positive number. 
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Figure 2   

Weibull survival functions S(t) and Weibull hazard functions h(t) 
 
Cox Proportional Hazards Regression Model 
Survival analysis can be performed using non-parametric, semi-parametric, or parametric 
models.  Non-parametric models use the Kaplan-Meier estimator [58] or life-table analysis 
of existing data to estimate the survival function.  These models are oftentimes used to 
compare similar groups of time-to-event data to determine, for example, whether there is a 
difference among different treatments.  However, nonparametric models cannot be used to 
estimate the effect of explanatory variables explicitly.  They are applicable only to right 
censored data [57].  

 
There may be situations in which the survival time distribution has a known parametric form, 
for example, from previous studies. In this case the use of parametric models may be 
justified.  Some of the important parametric models include exponential, Weibull, gamma, 
log normal, log logistic, etc., as described by Meeker and Escobar [57].   They also discuss 
the advantages of using parametric models. 

 
If the survival distribution is unknown and it is desirable to analyze the impact of associated 
information (sometimes referred to as covariates, explanatory variables, or independent 
variables) on survival, then semi-parametric models are the form of models to use.  This 
would be the situation in modeling travel demand for hurricane evacuation, where the interest 
is to know what variables influence the decision to evacuate or not evacuate and when 
evacuation will take place, if at all.  Such variables may be socioeconomic, demographic, or 
psychological characteristics of the population, or they may be related to the characteristics 
of the hurricane or the characteristics of the location of the home of evacuees.   
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The most popular form of semi-parametric models is the Cox proportional hazards regression 
model [59].  There are two important reasons for the popularity of the Cox model.  First, no 
particular probability distribution needs to be chosen to represent survival times.  If the Cox 
model is used when the hazard function is from a known distribution, statistical efficiency 
will be lost with higher standard errors.  However, it has been suggested that the loss of 
efficiency is not a serious issue [60].  Second, it is relatively easy to incorporate time-
dependent covariates in the model [61].  

 
The basic Cox regression model without time-dependent covariates can be written as: 
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where ho(t) is the non-negative baseline hazard function of the underlying survival 
distribution when all the x variables have values of zero, β ’s are regression coefficients, p is 
the number of covariates in the model, xij is the value of jth explanatory variable for subject i, 
and h(t|xi) is the hazard for subject i taking into account the influence of the covariates xij.  

 
A key feature of the Cox model is that when all the covariates are fixed, the hazard rates of 
two individuals with distinct values of x are proportional, that is: 
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Note that in equation 9 the baseline hazards are canceled out, and the hazard ratio of two 
subjects does not rely on the baseline hazards at all but depends entirely on the relative 
magnitude of their covariate values. 
 
Partial Likelihood Function 
Maximum Likelihood Estimation (MLE) is generally used in survival estimation.  MLE 
produces estimators that are consistent, asymptotically efficient, and asymptotically normal 
[62].  Different types of censoring schemes have different likelihood functions.  Klein and 
Moeschberger [56] give a complete description of functional forms for different types of 
censoring.  The likelihood function for the proportional hazards model depends on the 
parameters’β s, the baseline hazard, and the survivorship functions.  However, Cox [59] 
proposed a “partial likelihood function” that depends only on the unknown parameters’β s. 
The partial likelihood function )(βL  without ties is given by: 
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where R(ti) is the set for all subjects who have not yet experienced the event at time ti yet, 
and D is the total number of event times. 

 
Partial Likelihood Function for Tied Data 
Equation 10 is only valid for data without ties.  Consequently, equation 10 needs to be 
modified if tied data are present.  There are several techniques to handle tied data, including 
the Breslow, Efron, EXACT, and DISCRETE methods [61,63].  The Breslow and Efron 
methods are approximations to the EXACT method. In general, Efron’s approximation is 
always superior to that of Breslow; the last two methods produce true partial likelihood 
estimates but need a substantial amount of computing time for large datasets with many ties.  
All four options give similar results when ties are few, and they give identical results when 
ties are not present. 

 
Time-Dependent Covariates 
So far, the covariates discussed are all fixed-time variables.  That is, their values are fixed at 
the start of the study and do not change throughout the study.  However, there are situations 
where the values of certain covariates are time-dependent.  An example in hurricane 
evacuation would be the distance to the storm, which varies as the hurricane approaches.  
This dynamic variable is intuitively believed to play an important role in people’s evacuation 
decision.  The Cox model can be easily extended to include time-dependent covariates.  All 
that needs to be done is to change the xij variable in equations 8 through 10 into xij(t), 
although this involves a considerable increase in the computational effort.  

  
Estimation of Baseline Hazard 
Because of the structure of the Cox model, it is imperative to have a good estimate of the 
baseline hazard ho(t) in order to make any accurate predictions.  It is easier to estimate the 
cumulative baseline hazard Ho(t) first and then calculate the baseline hazard.  The cumulative 
baseline hazard can be estimated with the Breslow estimator: 
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where di is the number of events in the time interval ti.  After estimating the cumulative 
baseline hazard )(ˆ tHo , the baseline hazard )(ˆ tho can be easily calculated by taking the 

derivative of )(ˆ tHo .  For this study, the hazards are assumed stable for each time interval.  As 

a result, the baseline hazard )(ˆ tho  for each time interval is calculated by simply taking the 

difference of the cumulative hazard )(ˆ tHo between the previous time interval and the current 
time interval.  A problem with this estimation of baseline hazard is that there is no statistical 
test for its goodness-of-fit. 

 
Residuals 
There are several useful residuals in the Cox model to aid the modeling.  They are the 
martingale, the score, and the Schoenfeld residuals.  Let Ni(t) indicate whether the ith subject 
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has experienced the event, and let Yi(t) indicate that subject i is under observation at a time 
just before time t.  Then, the martingale residual iM̂ for subject i is defined as: 
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Normally people are more interested in the martingale residuals when time ∞=t .  The score 
residual Lij for the ith subject on the jth covariate is defined as: 
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where )(tx j is defined as: 

 
∑ ∑

∑
∑

= =

=

=

==
n

i

p

j
ijji

p

j
ijjin

i
iijij

xtY

xtY
wwtxwtx

1 1

1

1
i

)exp()(

)exp()(
   :bygiven  is  and     ),()(

β

β
.                (14) 

 
The Schoenfeld residual is defined for each event time k on the jth covariate as: 
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Each one of the residuals plays an important role in examining some aspect of the model fit.  
The martingale residual can be used to test the functional form of the covariates; the score 
residual can be used to assess individual influence on the coefficients estimated and for 
robust variance estimation; and the Schoenfeld residual can be used to test for proportional 
hazards conditions.  

 
The Proportional Hazards Assumption 
An important assumption of the Cox model is proportional hazards.  Equation 9 shows that 
for those fixed-time covariates, the hazards ratio for any two subjects is independent of time. 
This assumption applies to fixed-time covariates only. 

 

The proportional hazards assumption can be tested with the scaled Schoenfeld residual and 
will be discussed later.  If the proportional hazards assumption is violated, Therneau and 
Grambsch [63] summarize several remedies including stratification, partitioning the time 
axis, using time-dependent covariates, and using alternative models.  In the case of 
stratification, a covariate with non-proportional effects can be incorporated into the model as 
a stratification factor instead of a regressor.  This will eliminate non-proportionality, although 
the effect of the covariate can no longer be explicitly modeled.  If the proportional hazards 
assumption holds for different periods of the study time, then, for each time period, the Cox 
model can be applied separately.  A third alternative is to introduce an additional time-
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dependent covariate into the model so that the time-varying impact of a covariate can be 
accounted for by the new time-dependent covariate.  The last alternative is to use a different 
model.  For example, an additive hazards model may be more appropriate for the data.  

 
The Piecewise Exponential Model 
One characteristic of the Cox proportional hazards model is that the baseline hazard is 
conditioned out, and only the impact of the covariates are estimated by maximizing the 
partial likelihood.  No functional form of the hazard has to be specified, making the Cox 
model very flexible.  On the other extreme, the parametric models have to specify the 
functional form of the hazard function.  However, when the hazard function is of interest, as 
in this study, it is usually estimated with the Breslow estimator (Equation 11).  This estimate 
lacks the ability to test hypotheses about the shape of the hazard function.  The Piecewise 
Exponential model is a model that is in between the two extremes.  It has the flexibility of the 
Cox model and the ability to statistically test the hazard function.  

 
It is well known that if the survival time is exponentially distributed, the hazard function is a 
constant.  In the Piecewise Exponential model, time is divided into intervals.  The hazard in 
each interval is assumed to be constant but can vary across intervals.  Let I denote the total 
number of intervals, and a0, a1,…,ai-1, ai,…,aI as cutpoints of intervals, with a0 = 0, and aI 
= ∞ .  The hazard can be written as: 
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where hi can be considered the baseline hazard, which is the hazard when all the covariates 
are zero, x andβ are vectors of the covariates and corresponding parameters.  Taking 
logarithms on both sides of the equation, it becomes: 
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where the intercept iα = ln(hi), can vary from one interval to another.  However, if a new 
intercept α , and an additional variable T, which is a categorical variable that represents the 
time intervals, are introduced, then: 
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as a result, 
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where Ti’s are the dummy variables introduced for the categorical covariate T, and 'iγ s are 
the corresponding parameters.  Now the baseline hazard hi can be expressed as: 
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Overview of Sequential Choice Model 
 
Review of Sequential Choice Model in Transportation 
The application of logistic regression in transportation started in the mid 1960’s, modeling 
binary choice of travel mode [64-66].  In the early 1970’s, research focused on mode choice 
models with more than two alternatives using the multinomial logit model (MNL) and 
applications to other travel related choices, such as trip frequency, car ownership, and 
housing. Ben-Akiva and Lerman [67] provided a detailed review.  Recently, the ordered 
logistic model has been used extensively in transportation-related studies [68-72], although 
most of the applications used the proportional-odds-type model instead of the continuation-
ratio model, as described shortly. 

 
Amemiya [73] first described the sequential probit and logit models for ordered discrete 
alternatives.  Kahn and Morimune [74] used a sequential logit model to explain the number 
of employment spells a worker experienced in 1966.  Heckman and Willis [75] used a 
similar sequential concept to analyze sequential labor force participation by married women. 
 They went further to explore the heterogeneity among women if the independent and 
identical distribution (IID) assumption of the disturbances was not present.  Ben-Akiva and 
Lerman also gave a brief review of the application of the sequential model based on the 
method of random utility.  They noted the applications of this model to represent a 
household’s trip generation by Hendrickson and Sheffi [76] and Sheffi [77] to search for a 
residence by Hall [78] and to predict the frequency of tours instead of one-way trips by Daly 
and Zwam [79].  However, none of these models supported time-dependent covariates, 
which are essential for studying dynamic travel demand with this kind of model. 

 
The applications of the sequential choice model in transportation focused on the outcome of 
choices made as a result of the sequential decision making and not on the temporal 
distribution of the sequential choice.  For example, in the application of trip generation 
modeling, the number of trips made was the focus of the study.  However, in our study of 
hurricane evacuation, the sequential model not only gives the probability of evacuation 
(travel demand) but also when that evacuation travel is generated.  This enables the study of 
dynamics of hurricane evacuation travel demand, i.e., how people make evacuation choices 
as time progresses and their environment changes.  The final product of this application is a 
dynamic travel demand model. 

 
The Multinomial Logit Model 
The Multinomial Logit Model (MNL) and its variations have been used extensively in 
transportation for the last several decades to model discrete choices.  The terms logistic 
model and logit model can be used interchangeably.  The MNL model is typically suitable 
for nominal choices (i.e., distinguished by name) as, for example, in the choice among travel 
modes, such as auto and transit.  As implied by the name, the choices modeled are multiple 
(more than two), mutually exclusive, discrete choices.  The MNL model can be derived by 
the random utility theory.  It requires that the choices are independent of each other.  The 
logit model is mathematically flexible and easy to use.  
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The Ordered Logit Model 
The Independently Identically Distributed (IID) assumption of the error terms in the MNL 
model requires that modeled choices must be distinct or the Independence from Irrelevant 
Alternatives (IIA) property that results from violation of that assumption will distort the 
model’s predictions.  Alternatively, more complex models, such as nested logit or mixed 
logit, can be used to overcome this difficulty.  However, when ordinal choices are modeled 
(i.e., choices in which order among the alternatives is significant), the order may impose 
some dependence among alternatives and models that are explicitly constructed to handle 
such ordered choices as necessary.   

 
There are different models to choose from in the ordered logistic model depending on what 
outcomes are being compared.  Agresti [80] describes the three most commonly used 
models: the adjacent-category model, the continuation-ratio model, and the proportional odds 
model.  The adjacent-category model compares each outcome to the next larger outcome.  
The model is expressed in the logit form as: 
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where P(Y = i) is the probability of choosing alternative i, x is a (p x 1) vector of covariates, 

iβ  is a (p x 1) vector of parameters, and iα  are scalar parameters, which are to be estimated. 
 The continuation-ratio model compares each outcome to all higher outcomes (or, 
alternatively, to all lower outcomes).  The logit is of the form: 
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where P(Y > i) is the probability of the decision maker choosing outcomes higher than i.  The 
proportional odds model compares the probability of an equal or smaller outcome to the 
probability of a larger outcome.  The logit is of the form: 
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where P(Y ≤  i) is the probability of the decision maker choosing outcomes lower or equal to 
i.  In all three models, if it is assumed that iβ does not change over i, then there is a common 
vector of slope parameterβ  but different constant terms, namely: 

 βx'i += αlogit                                                                                                      (23) 
 
The proportional odds ordered logit model has been used in several transportation 
applications in the past [55,71,72].  It is presented in terms of a latent (unobserved) variable 
framework by Greene [62] as described later in this section. 
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The Random Utility Sequential Choice Paradigm 
Ordered outcomes considered in the past display a subtle difference.  In one case, ordered 
outcomes are described as a ranking without any linking or sequence of choices implied 
among the outcomes.  Examples of this kind of ordering are choices among grades of 
gasoline (regular, super, and premium), choice of level of employment (part-time or full-
time), whether to purchase cheap, medium-priced, or expensive theater tickets, number of 
days vacation to take, or size of home to buy.  The other type of ordered outcome considered 
is where the choice of an outcome implies that all earlier outcomes in the ordering had to be 
considered first.  This occurs, for example, when a family considers having another child, a 
household considers purchasing an additional vehicle, or an individual is choosing a 
university for graduate study.  If trip generation is seen as a sequence of decisions of whether 
or not to make an additional trip, then trip generation is also an example of this specific type 
of ordered choice.  Ordered choices of this type are more aptly termed sequential choice 
since higher categories of outcome can only be reached by proceeding through each lower 
category of outcome in a sequence of binary choices.   

 
Sequential ordered choice occurs in dynamic travel demand modeling of evacuation.  If time 
is discretized into time intervals, then, in time interval I, a household has the binary choice to 
evacuate or not evacuate, provided the decision to not evacuate was made in all earlier 
choices.  If the choice in time interval i is not to evacuate, then the household faces the same 
binary choice in time interval i+1 and so on until either a decision to evacuate is made, or the 
end of the analysis period is reached with no decision to evacuate being made.  Amemiya 
[73] described a model that can handle such sequential decisions based on random utility 
theory.  Fahrmeir and Tutz [81] derive a similar model based on latent regression.   

 
Amemiya’s model can be illustrated using the random utility principle in the context of 
hurricane evacuation.  Let Uc

i denote the utility of a household to not evacuate in the time 
interval i, and let Us

i denote the utility of the household to evacuate in time interval i, where 
the superscripts c and s stand for “continue” and “stop”.  If in any time interval the utility to 
evacuate is greater than the utility to not evacuate, i.e., c

i
s
i UU ≥ , then the household will 

evacuate in that time interval.  Because the utilities are random variables, then P(Y = i), the 
probability of the household evacuating in time interval i can be expressed as: 
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where P(i) s is the conditional probability that the utility of a household to evacuate is greater 
than the utility of the household to not evacuate in time interval i, provided that the 
household has not already evacuated and P(i) c is the conditional probability that the utility of 
a household to not evacuate is greater than the utility of the household to evacuate in time 
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interval i, provided that the household has not already evacuated.  The derivation requires 
that s

i
c
i UU −  are independent among time intervals.  As a result, the probability to evacuate 

in any time interval i is the product of i independent conditional probabilities, the first of 
which are the conditional probabilities to not evacuate in time intervals 1 through i-1, and the 
last of which is the conditional probability to evacuate in time interval i.  The derivation also 
recognizes that ,1)()( =+ cs iPiP  i.e., the total conditional probability to evacuate and not to 
evacuate in each time interval is one.   

 
Assume that each of the random utilities c

iU  and s
iU is composed of a systematic component 

β'x , which represents the impact of explanatory variables, and a disturbance (also referred 
to as error term) ε , i.e., εβ += 'xU .  Also, assume that the utility differences s

i
c
i UU −  are 

independently logistic distributed (which is equivalent to assuming that c
iU  and s

iU are IID 
Gumbel distributed) for each time interval, then the conditional probability P(i) s/c of a 
household evacuating in time interval I, provided it has not evacuated yet, can be expressed 
as a binary logit model [67]: 
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The standard MNL model assumes that the differences in the disturbances between 
alternatives are independent and identical logistic variants.  However, in this sequential 
model, it is the marginal utilities, s

i
c
i UU − that are assumed to be independent and identical 

logistic variants because the alternatives are represented by successive choices over time.  
Sheffi [77] provides justification for the independency among the utility differences 

s
i

c
i UU − ,  although the independency is derived by assuming the distributions of the utilities 

are multivariate normal.  Based on the special structure of equation 24, this sequential model 
can be solved using the existing binary logit estimation.  Each binary logit is treated as a 
separate observation.  Ben-Akiva and Lerman [67] pointed out that this model is not based 
on the assumption of global utility maximization; the decision maker stops when the first 
local optimum is reached.  It can be proved that the total probability to evacuate over all 
intervals does not exceed one. 
 
The Latent Variable Sequential Choice Paradigm 
The sequential choice model can also be derived from the latent variable framework, where it 
is assumed that the observable outcome variable Y is a categorized version of a latent 
continuous variable U.  Let the latent variable ii xU εβ +−= ' , where i represents the outcome 
categories (i =1, 2 …), iε  is a random variable with distribution F, and x andβ  are vectors 
defined as before. Note that, if necessary, it can be assumed thatβ  varies with i and 
becomes iβ , although it is not considered the case here.  Let iα denote the threshold parameter 
for the outcome category i.  The response mechanism is specified by: 

 



 

 32 

 iiU          ifonly  and if             iY      given    iY α≤≥= .                                      (26) 
 

Take hurricane evacuation as an example.  If in time interval 1, the latent variable is smaller 
or equal to the threshold 1α , i.e., 11 α≤U , then the household evacuates in time interval 1, 
and Y = 1; if not, then 11 α>U , the process continues into time interval 2.  If 22 α≤U , then 
the household evacuates in time interval 2, and Y = 2; if not, then 22 α>U , the process 
continues into time interval 3 and so on.  Only the final resulting category is observable.  As 
a result, the conditional probability of the household evacuating in time interval i, if the 
household has not yet evacuated, becomes: 
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where i represents the time interval in which a household evacuates.  This conditional 
probability is also known as discrete-time hazard which represents the hazard of evacuation 
in time interval i.  If the conditional probabilities are independent of each other, then the 
unconditional probability of the household evacuating in time interval i is given by: 
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It is obvious that equations 24 and 28 have the same model structure, although equation 24 is 
derived from the random utility method, and equation 28 is based on a latent variable 
concept.  

 
If F is chosen as the standard logistic distribution F(x) = 1 / (1+ e-x), the conditional 
probability becomes: 
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This model is the equivalent to Agresti’s continuation-ratio model (Equation 21) when iβ  is 
assumed to be equal across the alternatives.  This can be derived by: 
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Equation 29 has the same model structure as equation 25.  Both are conditional binary logit 
models.  If F the is standard smallest extreme value (SEV) distributed, then 

)]exp(exp[1)( xxF −−= , and the model becomes: 
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 )]'exp(exp[1)|( βα xiYiYP i +−−=≥= .                                                           (31) 
 
Equation 31 can be transformed into the so-called complementary log-log model: 

 
 xiPiP i ')]|log(log[ βα +=≥=− .                                                                       (32) 
 

The properties of this model will be discussed shortly. 
 
Model Estimation 
From equations 24 and 28, the probability of a household evacuating in time interval i, P(Y = 
i) is the product of i independent binary choices, the first i-1 choices being not to evacuate 
and the ith to evacuate.  Because of this special structure, this sequential model can be 
estimated using existing methods for binary choice models.  
 
One intuitive method is to apply the continuation-ratio logistic model concept given in 
equation 21 to estimate the parameters of each individual binary choice model (the 
conditional probability).  Then, the unconditional probability of evacuating in each time 
interval for every household can be calculated based on equations 24 or 28.  To do this, the 
data must be arranged in the following way.  For time interval 1, the outcomes of those who 
evacuate in this interval are coded as 1; all those who do not evacuate in the interval are 
coded as 0, and the parameters of a binary logistic model for time interval 1 are estimated.  
For time interval 2; data for those who evacuate in the previous time interval are excluded.  
The outcomes of those who evacuate in time interval 2 are coded as 1; all of those who do 
not evacuate in time interval 2 are coded as 0.  Then the parameters of a binary logistic 
model for time interval 2 are estimated.  This procedure is repeated for every time interval.  
However, there are several drawbacks to this method.  First, multiple models have to be 
estimated, involving more data manipulation and modeling effort.  Second, there is less data 
to estimate the parameters in the later intervals, resulting in less reliable estimation of the 
parameters.  This is because as households evacuate in earlier intervals, there are fewer and 
fewer households remaining.  Third, restrictions such as equal parameters for different time 
intervals, which might be a valid option, cannot be applied.  As a result, the predictions 
beyond the scope of the observed time intervals cannot be obtained.  
 
There is an alternative method to estimate this model that allows the consideration of all 
binary choices simultaneously and avoids the disadvantages just mentioned.  Let Pn(Y = i) 
denote the probability that household n evacuates in time interval i. The likelihood function 
is 
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If equation 28 (or similarly equation 24) is substituted into this likelihood function, then: 
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This likelihood requires the estimation of a binary model with a pooled dataset constructed in 
the following way.  Each individual binary choice made at consecutive time intervals for the 
same household is treated as an independent observation.  If a household evacuates in time 
interval i, that household will have i rows in the dataset, along with all the covariates of that 
household for each time interval respectively.  The outcome variables for the first i-1 rows of 
each household will be coded as 0 for not evacuating. But the outcome variable for the ith 
row of the household will be coded as 1 for evacuating.  For example, if a household 
evacuates in time interval 3, then there will be three rows of data with the outcome variable 
coded as 0 for the first 2 intervals and 1 for the third interval.  After pooling the data, existing 
software can be used for binary choice models to estimate the parameter vectorβ  and iα .  
Such estimation implicitly assumes that the coefficients of the conditional probabilities are 
the same for all time intervals.  Finally, the unconditional probability of evacuation at each 
time interval for each individual household will be calculated using equations 24 or 28.  One 
extra benefit of this format is that time-dependent variables can be easily accommodated. 
 
A concern that arises is the validity of the analysis of multiple records for each subject. Two 
issues are involved here.  The first one is about the accuracy of the estimated variance of 
parameters.  It is well known that if observations are from the same subject, in this case the 
same household, the estimated variance of parameters will be smaller than what it should be. 
 As a result, the statistics for inference will be inflated.  However, this should not be a 
problem in this case because the likelihood function factors into a distinct term for each 
subject.  Nevertheless, when the data are for multiple events for each subject, this will be a 
problem [82].  The second issue is the potential correlation among the error terms.  From 
equation 24, the assumption that the error term ε is independent among the alternatives (i.e., 
whether to evacuate or not) in any one time period is not difficult to justify as the alternatives 
are distinctly different.  However, if the conditional binary logit model, Ps in equation 25, is 
not estimated on observations from each time period separately but on observations from all 
time intervals collectively, as is suggested here, then repeated observations of the same 
household will occur in the estimation dataset, and the potential exists for correlation among 
the error terms.  The extent that characteristics of the household affect the decision to 
evacuate or not shows that the potential for correlation among observations of the same 
household exists.  However, the greater impact on the evacuation decision is expected from 
characteristics of the storm, which change over time and are unrelated to households (e.g., 
proximity of the storm or wind speed).   

 
Stated-Preference Data and Technique 

 
Next, the stated preference technique, the advantages and disadvantages of stated choice vs. 
revealed choice data, and fractional factorial design will be briefly discussed.  This review is 
primarily based on the book of Louviere et al. [83]. 
 
Stated Preference Data 
There are basically two kinds of data collected in a travel survey.  The first kind is the 
traditional revealed preference (RP) data, where data are collected on what a respondent 
actually did.  However, there are situations where RP data are not available or not 
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appropriate for the purpose of this study.  An alternative is stated preference (SP) data, where 
a respondent states what he/she would do under certain conditions.  Examples of such 
situations are abundant.  To study the impact of introducing a new product, such as a new 
light rail transit system, which has new attributes or features, people have to rely on SP data 
since RP data are simply not available.  Sometimes variables in the RP data are highly 
collinear, making it difficult to identify the impact that these variables have on the behavior 
in question.  In addition, RP data are sometimes difficult to obtain because the behavior 
under study relates to a rare event, such as a hurricane.  Both RP and SP data are consistent 
with the random utility theory that is the basis of the discrete choice model. 
 
A Comparison between RP and SP Data 
RP data are generally restricted in helping to understand people’s choices within the current 
scope of a product.  However, SP data can extend our understanding beyond the existing 
scope into areas of interest but where no observed behavior is available.  Louviere et al. [83] 
compared the features of the two types of data and they are listed in Table 3. 
 

Table 3   
Comparison between RP and SP data 

RP data SP data 
Depicts the world as it is now Describes hypothetical contexts and conditions 
Possesses inherent relationships between variables Controlled relationships between attributes 
Can only observe on existing alternative Can include multiple hypothetical choice alternatives 
Embodies market and personal constraints on the 
decision maker 

Cannot easily represent changes in market and personal 
constraints effectively 

Has high reliability and face validity Reliable when respondents understand questions and 
are committed to responding realistically to questions 

Yields one observation per respondent per time Yields multiple observations per respondent per time 
 
To take advantage of both RP and SP data, RP and SP can be combined in the analysis.  SP 
data can often provide more robust parameter estimates (and hence increase confidence in the 
parameter estimates) than RP-based models.  On the other hand, RP data can provide more 
realistic estimates of market shares.  To combine the RP and SP data, they have to be from 
the same respondents. 
 
In the study of hurricane evacuation, the SP technique can play an important role because of 
the following characteristics of RP hurricane data: 

 
1. Many of the variables describing hurricane evacuation are highly correlated.  For 

example, the distance to the storm and the time when an evacuation order is issued or the 
forward speed of the storm and flooding potential are highly correlated variables. 

2. Lack of variable variability.  For example, in a particular hurricane, the category and 
forward speed of a storm may change little during the study period.  Conclusions from a 
study on RP data from a category 3 hurricane cannot be applied to a category 4 or 5 
hurricane with certainty. 

3. Data is collected from only one hurricane at a time.  
4. Hurricanes are relatively rare events and, therefore, make planning the collection of RP 

data difficult and the availability of the data uncertain. 
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The Design of an SP Survey 
Unlike RP data, from which the variable levels are recorded as the way they are, SP data are 
generated by a systematic and planned experimental design process.  In the experimental 
design, variables, their levels, and the combinations of variable levels (called profiles) are 
carefully designed to test the respondents’ preferences or choices.  Factorial designs are 
widely used in experimental design.  In a factorial design, each level of each variable is 
combined with every level of all other variables.  Such a design is a complete enumeration if 
all possible combinations of variable levels are achieved - hence the name complete factorial. 
A complete factorial design makes it possible to estimate all possible effects.  In addition, all 
the effects of interest are independent (orthogonal).  In other words, model parameters can be 
estimated independently of one another.  However, the number of combinations in a 
complete factorial increases dramatically with the number of variables and the levels used.  
As a result, fractional factorial designs are introduced for large, complicated problems.  A 
fractional factorial design includes only a subset of all possible combinations of variable 
levels, which is important to the study.   
 
There are two kinds of effects: main effect and interaction effect.  A main effect is the impact 
of different levels of a variable.  An interaction between two or more variables occurs when 
the effect of a variable level depends on the levels of other variables.  For linear models, 
Dawes and Corrigan [84] estimated that main effects typically account for 70 percent to 90 
percent of explained variances; two-way interactions typically account for 5 percent to 15 
percent of explained variances; and the rest of variances are explained by higher order 
interaction.  In order to reduce the size of a design, a fractional factorial design selects a 
subset of the complete factorial so that certain effects of interest can be estimated efficiently. 
 It is usually assumed that high order interactions do not exist.  This might result in a loss of 
statistical information and, hence, biased and misleading model estimates. 
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MODEL STRUCTURE AND ESTIMATION 
 
 

Survival Model Estimation with Southwest Louisiana (Andrew) Data 
 

From the overview in the previous section, survival analysis seems to be a suitable tool to 
model dynamic travel demand for hurricane evacuation.  As a hurricane approaches, a 
household repeatedly evaluates the risk and makes a decision whether to evacuate or not.  If 
the decision to evacuate is considered the event under study, the conditions facing 
households in each time interval is considered the covariates in the procedure, and the 
survival function is considered the probability that a household has not evacuated, then 
survival analysis can be used to estimate the probability of a household evacuating in each 
time interval leading up to storm landfall.  If a household does not eventually evacuate, it is 
considered a right censored observation.  The impacts of explanatory variables can be 
accounted for using the Cox Proportional Hazards Model or Piecewise Exponential model 
with time-dependent variables.  The baseline hazard for the Cox model can be estimated with 
the Breslow estimator.   
 
A Cox model was first estimated.  SPSS 10.0 was used in the early stage of modeling, 
especially during the stepwise forward selection of covariates and interactions among the 
static variables; however, S-Plus 6.1 was used as the major software package for survival 
analysis thereafter, especially for analyzing time-dependent covariates.  Efron’s method was 
used in model estimation.  Then a Piecewise Exponential model was estimated. 
 
The Cox Proportional Hazards Model 
 
The Basic Cox Models.  Using the Andrew data, a stepwise forward selection process was 
conducted to find the covariates and their interactions in the Cox model.  The six variables 
that had levels of significance greater than 5 percent in the Cox model are listed in Table 4. 

 
Table 4   

Covariates in the Cox survival model 
Covariate Definition 

dist A function of distance to the storm at time t. 
orderper 1 if the household perceived receiving an evacuation order, 0 otherwise. 

flood 1 if the residence is very likely to be flooded, 0 otherwise. 
mobile 1 if a mobile home, 0 otherwise. 
hurtrisk 1 if a serious risk of being hurt is perceived, 0 otherwise. 
protect 1 if consider staying home enables to better protect property, 0 otherwise. 

 
Among the selected covariates, dist is the only time-dependent variable.  Distance is not 
expected to have a linear impact on evacuation because a change of 100 miles when a 
hurricane is 1,000 miles away will have a very different impact on a person’s decision to 
evacuate or not than when the hurricane is only, say, 300 miles away.  The natural logarithm 
of distance is used to represent that effect.  However, once the distance of a hurricane to a 
household is within a minimum distance or reaches a certain threshold, dmin, it will be too 
dangerous to evacuate.  At this stage, the change of distance should no longer have an impact 
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on evacuation.  From analysis of the data it was found that an appropriate value for dmin was 
94 miles.  As a result, following the transformed value of distance, dist(t), was chosen:   
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For the data used in this study, other time-dependent variables such as TOD (a variable 
representing time-of-day, which will be formally defined later) and hurricane speed have the 
same values for every household for each time interval.  As a result, their coefficients cannot 
be estimated because of the structure of the partial likelihood function.  A detailed 
explanation is given later.  This is the same for a hurricane watch, which was issued at the 
same time for all the households.  While the hurricane warning did vary among the 
observations, the coefficient estimated for a hurricane warning was found to be negative, 
meaning people are less likely to evacuate if a hurricane warning is issued.  Such a result is 
counter-intuitive, and it was, therefore, dropped from the model.  No interactions among the 
covariates were found to be significant.  Table 5 lists the estimated coefficients and the 
statistics of the two final models.  Model 1 includes predictable variables only, and model 2 
includes perceptions from households as well.  The last row gives the likelihood ratio index 
for the two models. 

 
Table 5   

Summary results of the Cox survival models 

Covariate 
Model 1 Model 2 

β  se( β ) p-value β  se( β ) p-value 
dist -0.436 0.219 0.046 -0.768 0.239 0.001 

orderper 0.537 0.207 0.010 0.467 0.219 0.003 
flood 0.676 0.212 0.002 0.724 0.229 0.002 

mobile 1.568 0.208 0.000 1.261 0.234 0.000 
hurtrisk - - - 0.861 0.229 0.000 
protect - - - -0.895 0.219 0.000 
LL(0) -645.2 -575.9 
LL( β ) -608.6 -518.8 

-2[LL(0) - LL( β )] 73.2 114.2 
2ρ  0.057 0.100 

There are multiple ways to measure the logit model goodness-of-fit (GOF).  The likelihood 
ratio test is the most widely used statistic for testing GOF.  It is defined as -2[(LL(0)-LL( β )], 
where LL(0) is the likelihood value when no parameters were included in the model, and 
LL( β ) is the likelihood value when all the explanatory variables are included in the mode.  
This statistic is Chi-square distributed; the degree of freedom is the number of explanatory 
variables in the model.  The likelihood ratio test is used to test the null hypothesis that all the 
parameters estimated are zero.  Ben-Akiva and Lerman [67] recommend also using the log 
likelihood ratio index 2ρ , which is defined as )0(/)]()0([ LLLLLL β− .  It is a GOF measure 
that estimates the proportion of the initial log likelihood explained by the model.  2ρ  is best 
suited in comparing different model specifications for the same dataset.  This index is widely 
used in transportation.  
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The likelihood index tests were 73.2 and 114.2 with degree of freedom values equal to four 
and six for models 1 and 2, respectively.  The p-values were 0.000, rejecting the null 
hypotheses that all the explanatory variables in each of the models were zero.  From Table 5, 
all coefficients from model 1 have p-values significant at five percent level, while model 2 
has a larger likelihood ratio index 2ρ and better p-values across the board than model 1.  The 
inclusion of two static covariates hurtrisk and protect in model 2 clearly improves the 2ρ .  
But these two variables are subjective and difficult to get in practical applications.  
Therefore, model 1 is the preferred model.  In general, all the coefficients of covariates have 
the correct signs, and their values are reasonable.  From Table 5, of the four covariates in the 
model, covariate mobile has the largest coefficient, implying that households living in mobile 
homes are nearly five times (e1.568) more likely to evacuate than people not living in mobile 
homes.  Covariate flood also plays a significant role.  If a household lives in a location that is 
very likely to be flooded, then such a household is twice (e0.676) as likely to evacuate as a 
household not in a flood area.  The impact of the perceived evacuation order is similar in 
magnitude to that of flood.  Ideally, covariate orderper should have been treated as a time-
dependent variable; instead, it is treated as a static variable because no dynamic information 
was available for it.  Past studies have shown that the coefficients of a covariate can vary 
greatly depending on whether the covariate is treated as a static or a time-dependent variable 
[85].  Covariate dist is the only time-dependent covariate in the model, and the negative 
coefficient means that the nearer the storm, the more likely a household would evacuate.  
From the dataset used for this model, the values of dist ranges from zero to severn and the 
hazards ratio between the two extremes of dist is 21 (e0.436*7), making dist the most influential 
covariate in the model.    
 
Using the residuals discussed in the methodology section, model 1 was further tested on the 
functional form, proportionality, heterogeneity, and existence of outlier [86].  The test results 
indicated that the functional forms for the continuous variables were correct; the proportional 
hazards assumption upheld; and there were no heterogeneity and outliers.    
 
Baseline Hazards.  As mentioned earlier, the cumulative baseline hazards can be estimated 
by the Breslow estimator (equation 11).  The resulting cumulative baseline hazards, the 
baseline hazards, and baseline survival for each time interval are given in Table 6.  Figure 3 
plots of baseline survival and baseline hazards.   
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Figure 3   

Baseline hazards and baseline survival of the Cox model 
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Table 6   
Baseline hazards and baseline survival of the Cox model 

Time Cumulative Baseline Baseline Hazard Baseline Survival 
1 0.029 0.029 0.936 
2 0.071 0.043 0.848 
3 0.227 0.155 0.593 
4 0.255 0.028 0.556 
5 0.255 0.000 0.556 
6 0.452 0.197 0.354 
7 0.679 0.227 0.210 
8 0.783 0.104 0.165 
9 0.818 0.036 0.152 

10 1.008 0.189 0.098 
11 1.363 0.355 0.043 
12 1.398 0.035 0.040 

     
 
Model Goodness-of-Fit.  Because of the complexity of survival analysis, there is no simple 
measure of GOF as in linear regression analysis or other estimation procedures.  In addition 
to the likelihood ratio index 2ρ , which is a good index for comparing models with different 
specifications, there are other methods to assess the GOF of survival analysis.  Cox-Snell 
Residuals [87] can provide a graphic representation of the GOF of a Cox model.  The Cox-
Snell residuals ri are defined as: 
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where ri  is the Cox-Snell residual for individual i who evacuated in time interval ti with 
covariate values xij(ti); jβ  is the coefficient estimated for the Cox model; and n is the number 

of subjects under observation. )(ˆ
0 ii tH is the Breslow estimator of the cumulative hazard 

defined by equation 11.  If the Cox model is correct and the estimated coefficients are close 
to the true values of the coefficients, then ri should behave approximately as a random 
sample from a unit exponential distribution [56,88].  To produce the graphic, first the Cox-
Snell residuals (ri) are calculated, and it is determined if the corresponding subject evacuated 
or not; next, the Nelson-Aalen estimate of the cumulative hazard of ri is obtained with the 
data, then, the cumulative hazard against the Cox-Snell residuals is plotted.  The resulting 
plot should follow the 45o straight line from the origin if the Cox model is appropriate. 
 
The Nelson-Aalen estimator just mentioned is defined as [56]: 
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where di is the number of events in time interval i, and Yi is the number of individuals at risk 
at time ti. 
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Applying this test to the model estimated in this study, the results shown in Figure 4 were 
obtained.  In the figure, one set of results was plotted against each observation and the other 
against each subject.  Generally, the curve centers on the 45o line for most of the points 
except in the tail, where the number of observations is sparse, and the distances from the 45o 
line become larger.  Overall, the model fit seems reasonable.  However, Allison [61] 
mentions that this method of the GOF test is not sensitive to differences in model fit.  He 
gives the GOF plots of two models, both of which are close to the 45o line.  However, based 
on the likelihood ratio test, one model fits well, and the other model ought to be rejected.   
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Figure 4   
The Cox model GOF 

 
GrØnnesby and Borgan [89] proposed an overall GOF test for the Cox model.  May and 
Hosmer [90] extended this test and showed that by adding group indicator variables to the 
model and testing the hypothesis that the coefficients of the new variables are zero via the 
score test; their method is algebraically identical to that of GrØnnesby and Borgan.  However, 
the May and Hosmer method not only simplifies the calculation of the test but also makes it 
possible to compare observed events and model predicted events within each group.  The 

grouping is based on the risk score ∑
=

=
p

j
ijji xr

1
.β  All the observations are sorted by the risk 

score and grouped into G groups.  Each group is assigned a number, and this group number 
becomes a new categorical variable.  The new variable is added as an additional covariate to 
the existing model with group 1 as the reference group.  If the coefficients of the new 
covariate are not zero by the score test or the likelihood ratio test, then the model fit is 
rejected.  May and Hosmer [90] also suggest using a 2 by G table with the observed and 
predicted numbers of events for each group to summarize the model fit.  A z-score can be 
formed by dividing the difference between the observed and expected number of events by 
the square root of the expected number of events.  For large values of means in the cells, the 
z-score is, approximately, normally distributed. 
 
When applying this test to model 1, all the observations were grouped into eight groups.  
With the first group as the reference group, seven indicator covariates were added to the 
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model.  The value of the resulting score test statistic was nine with seven degrees of freedom, 
resulting in a p-value of 0.353.  Thus the score test could not reject the null hypothesis that 
the model fits at the five percent level of significance. 
 
The two by eight table is presented in Table 7.  The observed and expected numbers of 
evacuation, z-score tests and p-values, are listed for each of the eight groups.  The p-values 
show no evidence of rejecting model fit for each of the groups. 
 

Table 7   
The Cox model GOF by group 

Group Observed Expected z score p-value 
1 2 1.73 0.21 0.83 
2 2 1.97 0.02 0.98 
3 10 9.23 0.25 0.80 
4 4 7.05 -1.15 0.25 
5 17 20.1 -0.7 0.48 
6 16 15.1 0.21 0.84 
7 24 19.5 1.02 0.31 
8 41 41.2 -0.04 0.97 

 
Arjas [91] suggested plotting the cumulative observed number of events versus the 
cumulative expected number of events for non-censored subjects, and Hosmer and 
Lemeshow [92] suggested plotting each of the G groups to assess model fit.  If the Cox 
model is appropriate, then the points should be around the 45o line from the origin.  Figure 5 
shows the plots for each of the eight groups.  The dotted lines are the 45o lines from the 
origin.  For groups 1 and 2, the difference is large because there are only two observed cases 
for each group.  The difference for group 4 is also large, since the number of observed cases 
is only four.  For the rest of the groups, it seems that the points do follow the 45o line.  Figure 
6 shows the plot that combines all eight groups together.  The overall fit is good. As a result, 
it is reasonable to say that the model does fit well.  From the above analysis, it can be 
conclude that the Cox model developed in this study (model 1 in Table 5) has a good overall 
GOF. 
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Figure 5   

Expected vs. observed cumulative count for each group 
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Figure 6   

Expected vs. observed cumulative count for all groups of the Cox model 
 
The Piecewise Exponential Model                                                             
In this section, the Andrew data was applied to estimate a Piecewise Exponential model.  The 
parameter estimation of the Piecewise Exponential model was carried out using parametric 
regression models of survival analysis through the use of maximum likelihood [61].  Three 
models were tested with the Andrew data.  In addition to the four variables used in the Cox 
model, the first model included the time interval as a covariate; the second model included 
time-of-day (TOD); and the third model included both.  The first model is superior to the 
second one.  Multiple collinearities occurred in the third model.  As a result, the first model 
was selected.  The summary model results are presented in Table 8. 
 
Since an intercept was estimated in the model, the likelihood ratio test becomes -2[LL(C) - 
LL( β )] instead of -2[LL(0) - LL(β )], and the degrees of freedom becomes the number of 
explanatory variables minus one.  LL(C) is the value of the likelihood function when only the 
alternative-specific constant (ASC) is included in the mode.   The model had a likelihood 
ratio value of 320.8 with 15 degrees of freedom.  The p-value was 0.000, rejecting the null 
hypothesis that all the explanatory variables except for the ASC were zero.  Since there were 
12 time intervals, 11 dummy variables were used.  Time interval 12 is the reference variable. 
The high coefficient value for interval(5) causes the hazard for time interval 5 to be zero.  
This conforms to the fact that there was no evacuation in time interval 5 from the dataset.  
Overall this variable is very significant.  This model has a very high likelihood ratio index 
value of 0.276, which indicates a very good model fit.  
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Table 8   
Summary results of the Piecewise Exponential model 

Covariate 
Piecewise Exponential Model 

β  se( β ) p-value 
dist -0.422 0.220 0.055 

orderper 0.529 0.206 0.010 
flood 0.676 0.211 0.001 

mobile 1.469 0.207 0.000 
intercept -2.584 0.828 0.002 

Interval(11 dummies)    
Interval(1) -0.187 1.214 0.878 
Interval(2) 0.200 1.130 0.860 
Interval(3) 1.474 1 0.140 
Interval(4) -0.218 1.170 0.852 
Interval(5) -22.184 40788.530 1.000 
Interval(6) 1.695 0.918 0.065 
Interval(7) 1.843 0.880 0.036 
Interval(8) 1.082 0.879 0.218 
Interval(9) 0.031 0.950 0.974 

Interval(10) 1.656 0.736 0.024 
Interval(11) 2.217 0.635 0.001 

LL(C) -580.4  
LL( β ) -420 

-2[LL(C) - LL( β )] 320.8 
2ρ  0.276 

 
The hazard for each time interval can be calculated with equation 19.  First, the sum of the 
intercept and the coefficient of each time interval are calculated, and then the exponential of 
each sum is the corresponding hazard for that time interval.  For example, the hazard for time 
interval one is e(-2.5841-0.1870) = 0.06260.  Table 9 lists hazard rates for each of the 12 time 
intervals.  
 

Table 9   
Hazard rates for 12 time intervals from the Piecewise Exponential model 

Interval 1 2 3 4 5 6 7 8 9 10 11 12 
Hazard 0.063 0.092 0.330 0.061 0.000 0.411 0.477 0.223 0.078 0.395 0.693 0.075 

 
Sequential Model Estimation with Southwest Louisiana (Andrew) Data 

  
In the sequential choice paradigm as discussed in the methodology section, a household faces 
a series of binary choices for each time interval as conditions of the hurricane change until 
the decision to evacuate is reached, or the hurricane makes landfall.  The probability of 
evacuation in each time interval is the product of the conditional probability to evacuate in 
the current time interval and the conditional probabilities not to evacuate in all previous time 
intervals.  The impact of explanatory variables can be accommodated in the conditional 
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binary choice models.  Next, the Andrew data are used to estimate two sequential choice 
models, one sequential logit model and one sequential complementary log-log model. 
 
Model Estimation 
A stepwise forward selection process was conducted to find the covariates and their 
interactions. The eight variables that had levels of significance greater than five percent are 
listed in Table 10.                                                                                              

Table 10   
Covariates in the sequential model from the Andrew data 

Covariate Definition 
dist A function of distance to the storm at time t.  Same as in survival analysis. 

TOD Time-of-day, 0 for night (reference), 1 for morning, and 2 for afternoon.  Two dummy variables. 
speed Forward speed of the hurricane (miles/hour). 

orderper 1 if the household perceived receiving an evacuation order, 0 otherwise. 
flood 1 if the residence is believed very likely to be flooded, 0 otherwise. 

mobile 1 if a mobile home, 0 otherwise. 
hurtrisk 1 if a serious risk of being hurt is perceived, 0 otherwise. 
protect 1 if consider staying home enables to better protect property, 0 otherwise. 

 
Two more dynamic variables, TOD and speed, were selected in addition to the variables 
identified in the survival analysis (Table 4).  For TOD, morning was from 6 a.m. to 12 p.m., 
afternoon was from 12 p.m. to 6 p.m., and night was from 6 p.m. to 6 a.m.  Speed was the 
forward speed of the hurricane (in miles/hour) in the past time interval.  No interactions 
among the covariates (both static and dynamic) were found to be significant. TOD and speed 
had the same values for every household in each time interval.  As a result, their impacts 
could not be estimated in the Cox model because of the structure of the partial likelihood 
function.  However, this is not a problem with the sequential models.  Each covariate was 
treated as an alternate-specific variable because none of them vary across the two choices (to 
evacuate or not to evacuate) in a time interval.  As a result, it is specified that the covariates 
only appear in the choice to evacuate, and the choice of not to evacuate is the reference 
choice without any variables and an alternative-specific constant. 
 
The parameters for hurtrisk and protect were significant, and inclusion of these variables in 
the models clearly improved the model fit.  But these two variables were subjective and 
difficult to estimate in practical applications, as discussed previously.  Therefore, they were 
eliminated from the models. 
 
One advantage of the logistic and complementary log-log models is that the time interval can 
be treated explicitly as a covariate.  It can be included either as a continuous variable or a 
categorical variable.  Both were tested in this study.  When time was modeled as a 
continuous variable, a strong correlation existed between time intervals and dist.  Between 
the two, dist was preferred.  If time was modeled as a categorical variable and represented by 
a set of dummy variables, the net effect was to make the alternative-specific constants, iα  
vary across alternatives.  However, it was found that the parameters for time during night 
times (between 6 p.m. to 6 a.m.) were not significantly different from each other, and there 
were strong correlations among categories of time intervals and TOD.  If a time interval was 
used instead of TOD, the model would get a better goodness-of-fit, and the difference 
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between the observed and model predicted probabilities were smaller.  However, TOD was 
considered a better covariate than time interval and was preferred in the model.  The 
inclusion of TOD also served to make the alternative-specific constant, i

'α  vary across some 
time intervals, although not for every time interval, for example when time was in the model 
as a covariate. 
 
The models to be estimated were the conditional probability models with logistic and 
extreme minimal-value distributions, although the models used for predictions were the 
unconditional probability models.  The slope parameters, β  were assumed to be the same 
across time intervals.  Table 11 gives the estimated parameters and the statistics of the two 
models.  The p-values in the table are the probabilities of the Wald test for the parameters to 
be zero.  The last row gives the likelihood ratio index for the two models. 
 

Table 11   
Summary results of the sequential models with the Andrew data 

Covariate 
Logit model Complementary log-log model 

β  se( β ) p-value β  se( β ) p-value 
intercept -2.8238 0.9123 0.002 -2.9294 0.853 0.000 

dist -0.7995 0.1144 0.000 -0.7305 0.0997 0.000 
TOD(1) 1.4512 0.3096 0.000 1.4142 0.3009 0.000 
TOD(2) 2.0244 0.2811 0.000 1.9468 0.2698 0.000 
speed 0.1463 0.0691 0.034 0.1326 0.066 0.045 

orderper 0.5401 0.218 0.013 0.4842 0.2047 0.018 
flood 0.7809 0.2276 0.001 0.6917 0.2123 0.001 

mobile 1.6496 0.2293 0.000 1.502 0.2058 0.000 
LL(C) -580.4  -580.4  
LL( β ) -420.0 -421.0  

-2[LL(C) - LL( β )] 320.8 318.8 
2ρ  0.276 0.275 

 
The likelihood ratio test had values of 320.8 and 318.8 with a degree of freedom of seven for 
the logit model and the complementary log-log model, respectively.  The p-values were 
0.000, rejecting the null hypotheses that the explanatory variables, except for the ASC 
estimated for each of the models, were zero.  In general, all the coefficients of covariates for 
both models have the right signs, and their values are reasonable.  They have p-values 
significant at five percent level.  Each model has a high likelihood ratio index (0.276 for the 
logit model and 0.275 for the complementary log-log model), indicating good GOF.  The 
coefficients from the two models are very close, with the largest percent difference being 
about eleven percent for the estimates of the coefficient of flood.  Among all the covariates in 
the model, TOD has the largest absolute parameters.  It has a major impact on when people 
evacuate.  A more detailed discussion on this will be presented next.  Mobile has the second 
largest coefficient, implying that households living in mobile homes are over five times 
(e1.65=5.2) as likely to evacuate as people not living in mobile homes.  Flood also plays a 
significant role.  Households living in a flood-prone area are more than twice (e0.78=2.2) as 
likely to evacuate as people not living in a flood-prone area. The impact of a perceived 
evacuation order is next to that of flood.  For the same reason discussed in the subsection on 
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the basic Cox models earlier, the covariate orderper was treated as a static variable in the 
model.  Households that receive an evacuation order are 1.7 times (e0.54=1.7) as likely to 
evacuate as people who do not receive an evacuation order.  Covariate dist is a dynamic 
continuous variable in the model, and the negative coefficient means that the nearer the 
storm, the more likely a household will evacuate.  From the dataset used for this model, the 
values of dist ranged from zero to seven and the odds ratio between the two extremes of dist 
was 270 (e0.8*7=270.4), making dist the most influential covariate in the model.  Compared to 
the survival models, an additional dynamic variable was included in this sequential model.  
This variable was the forward speed of the hurricane.  The faster the forward speed, the more 
likely a household is to evacuate.  Note that the discussion above applies to the conditional 
binary model not the unconditional sequential model. 
 
The Sequential Logit Model GOF 
In addition to the log likelihood ratio and log likelihood ratio index tests, the Hosmer-
Lemeshow test [93,94] provides a convenient way to assess a binary logit model GOF and is 
available on most popular statistical software.  The Hosmer-Lemeshow test organizes 
subjects into g groups based on the values of the estimated probabilities [95].  For example, 
if g =10, there will be 10 groups and the grouping cutpoints are based on percentiles.  There 
will be two rows for every group, one for outcome=1 and one for outcome=0.  The Hosmer-
Lemeshow statistic Ĉ  is obtained by calculating the Pearson Chi-square statistic from the g 
by two table of observed and model estimated expected frequencies and is given by: 
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where nk is the total number of subjects in the kth group, ok is the number of choices that are 
Y=1 in the kth group, kπ  is the average estimated probability in the kth group, and Ĉ  is chi-

square distributed with g-2 degrees of freedom.  A large Ĉ  will result in a small p-value, 
meaning an inferior GOF.  Usually, if the p-value is smaller than 0.05, the null hypothesis, 
the model fits the data well, will be rejected.  The appropriateness of the p-value depends on 
the assumption of m-asymptotics, which means the estimated expected frequencies in each 
cell have to be large when the total number of samples becomes large.  A rule-of-thumb is 
that the frequency is no smaller than five.  Furthermore the number of groups g should not be 
smaller than six.  
 
The contingency table for the binary logistic model from SPSS output for the Hosmer and 
Lemeshow test had the number of groups g=10.  The Hosmer and Lemeshow statistic was 
7.309 with eight degrees of freedom.  The p-value was 0.504.  This indicates that the null 
hypothesis, the model fits well, should not be rejected.  
 
However, the expected frequencies in several groups were below five (another was on the 
border line).  Regrouping is needed so that each group would have sufficient large 
frequencies and the number of groups should be at least six.  Low frequency groups were 
combined, and other groups were kept intact.  The new contingency table is given in Table 
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12.  The Hosmer and Lemeshow statistic was 4.439 with five degrees of freedom.  The p-
value was 0.488. As a result, the null hypothesis, the model fits well, is not rejected.  

 
Table 12   

Contingency table for g=7 with the Andrew data 

Group 
Evacuate=0 Evacuate=1 

Total 
Observed Expected Observed Expected 

1 1381 1380 7 7.9 1388 
2 333 333 5 4.9 338 
3 334 331 4 6.7 338 
4 329 329 10 9.9 339 
5 326 325 13 14.3 339 
6 309 317 30 22.3 339 
7 262 259 47 50.1 309 

 
Sequential Model Estimation with South Carolina (Floyd) Data 

 
In this subsection, the sequential logit and complementary log-log models were estimated 
with the Floyd data from South Carolina. 

Preliminary Data Analysis 
The data were first reviewed to check for any errors or inconsistencies that may be present in 
the data.  One serious flaw that was discovered in the data was that a large number of 
evacuations were recorded for the 24th hour (midnight) and only a few for the 12th hour (mid-
day noon).  Figure 7(a) shows the frequency distribution of evacuation by time of day.  The 
excess evacuations at the 24th hour were identified by observing the reported evacuations in 
the 23rd and 1st hours.  The abnormality is obvious.  It was probably caused by the wording in 
the questionnaire that described a.m. as “morning/or midnight until noon” and p.m. as 
“afternoon/evening or noon until midnight.”  Households were randomly selected from the 
24th hour and moved to the 12th hour until the proportion between the two was consistent 
with the observations in the hours surrounding them.  Figure 7(b) shows the frequency after 
the redistribution. 
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Figure 7   
Floyd Evacuation frequency distribution by hour of day 
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Model Estimation 
A stepwise forward selection process was conducted to find the covariates and their 
interactions in the models.  Finally, six covariates were selected, as listed in Table 13.  
Variables hurtrisk and protect were not included in the model. 
 

Table 13   
List of covariates in the sequential model with the Floyd data 

Covariate Definition 
gammadist Transformation of distance, with gamma distribution. 

TOD Time-of-day.  0 for night (reference), 1 for early morning, 2 for midday, and 3 for late 
afternoon.  Three dummy variables. 

speed Speed of the hurricane (miles/hour). 

dynaorder Dynamic evacuation order. 1 for voluntary, 2 for mandatory, and 0 for none.   Two 
dummy variables. 

flood 1 if the residence is in category 3 risk zone or above, 0 otherwise. 
mobile 1 if the residence is a mobile home, 0 otherwise. 

 
The definitions of the covariates are not exactly the same as those in the Andrew data.  Time-
of-day (TOD) is defined as a categorical variable with four levels: early morning (6 a.m. to 9 
a.m.), mid-day (10 a.m. to 3 p.m.), late afternoon (4 p.m. to 7 p.m.), and night (8 p.m. to 5 
a.m.).  The definition of flood is no longer the perceived risk of flooding, but rather a more 
objective measure defined by risk zones from the planning authority (in South Carolina risk 
zones are classified into four categories: risk zones one through four, with increasing risk of 
flooding as the category increased from one through four).  A unique feature of this dataset is 
that evacuation order can be treated as a time-dependent variable.  At time interval 28, a 
voluntary evacuation order was issued to all the households in the survey; at time interval 31, 
a mandatory evacuation order was issued.  Another difference lies in the treatment of 
distance.  When modeling Andrew, a logarithm form of distance was used.  Past experience 
and preliminary analysis show that the functional form for distance should not be linear.  It is 
reasonable to believe that when the hurricane is far away, its impact on evacuation is very 
small, i.e., few people will evacuate; if the hurricane is too close, people will not evacuate 
because it will be too dangerous.  However, those impacts are not symmetric, as the values of 
distance change.  The impact when distance is far away changes gradually; when that impact 
reaches a peak, it will decrease faster.  It is believed that the shape of the gamma distribution 
density function represents such behavior well.  Therefore, distance was transformed with a 
gamma distribution density function in this application.  The new variable was named 
gammadist.  The gamma distribution density function is: 
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where x is the value at which one wants to evaluate the distribution, α >0 is the shape 
parameter, β >0 is the scale parameter, and Γ(x) is the gamma function.  When α >1 the 
gamma density distribution is asymmetric, with longer tails to the right.  Figure 8 plots 
gammadist for different shape and scale parameters with x = distance/100. 
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Figure 8   

gammadist with different parameters 
 
This transformation gives different weights for different values of distance.  If the frequency 
distribution of evacuation by distance for the Floyd data is plotted, the peak lies between 400 
and 500 miles (see the transferability study subsection later for detailed discussion).  
Intuitively, this information provides some guidance for choosing the parameters.  A wide 
variety of parameter combinations were tested in the modeling effort.  The models’ Hosmer 
and Lemeshow GOF tests were used to eliminate the models with the parameter 
combinations that result in rejecting the null hypothesis that the binary logit models fit the 
data well.  However, a good Hosmer and Lemeshow GOF test only indicates that a good 
binary logit model is fitted.  The overall performance of the sequential model, i.e., the model 
prediction vs. observation, as well as the balance of covariates that go into the model, should 
also be considered when selecting parameters for the transformation.  Table 14 presents some 
summary information.   
 

Table 14   
Sequential model GOF for parameter combinations 

No. 
Gamma distribution Parameters Hosmer and Lemeshow GOF Test Sequential Logit Model GOF

Shape Scale 2χ  df Significance 2ρ  % Error RMSE 
1 2 3 14.832 8 0.062 - - - 
2 3 2 5.106 8 0.746 - - - 
3 6 1 6.144 8 0.631 - - - 
4 5 1 6.973 8 0.540 0.198 -2.00% 2.68 
5 7 0.7 7.481 8 0.486 0.197 -3.30% 2.79 
6 8 0.6 8.641 8 0.373 0.197 -2.00% 2.79 
7 9 0.5 9.995 8 0.265 0.198 -2.00% 2.75 
 

 
The first part of the table (columns 2 and 3) gives the shape and scale parameters of the 
gamma distribution.  The second part of the table (columns 4 through 6) gives the Hosmer 
and Lemeshow GOF test, including: the Chi-square statistic, degrees of freedom, and level of 
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significance.  The third part of the table (columns 7 through 9) gives the sequential model 
GOF, including: likelihood ratio index, percent error, and RMSE of total prediction versus 
observation.  For combination 1, the Hosmer and Lemeshow Chi-square statistic was 14.832 
with eight degrees of freedom, which equaled a low level of significance of 6.2 percent.  This 
indicated that the estimated binary logit model did not fit well.  Combinations 2 and 3 did 
have good Hosmer and Lemeshow GOF tests, indicating good fit between the binary logit 
model and the data.  However, in the model estimated with combination 2, wind speed 
(covariate speed), which is a very important preferred variable to be included in the model, 
was not significant; in the model estimated with combination 3, gammadist, which is another 
very important preferred variable to be included in the model, was not significant.  As a 
result, combinations 1 through 3 had to be eliminated.  Combinations 4 through 7 all had 
good Hosmer and Lemeshow GOF test statistics. Moreover, each of the models estimated 
with the corresponding parameter combinations from 4 through 7 included important 
variables, such as wind speed and distance, although the parameter of wind speed in 
combination 4 was on the borderline with a level of significance at 0.061, a value that can 
still be tolerated.  Other than that, the GOF tests of the sequential model were reasonably 
good and very similar among combinations 4 through 7.  Based on the above analysis, for 
combinations 4 through 7, all the estimated binary logit models had good Hosmer and 
Lemeshow GOF test statistics; all the sequential model GOF tests were good; and all the 
models included the variables that are believed to be important for hurricane evacuation 
study.  The transformations with parameter combinations 4 through 7 are plotted in Figure 9. 
As can be seen, they tend to have a very similar mode but only differ in variance slightly. 
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Figure 9   

Searching for appropriate parameters for gammadist 
 

Figure 10 plots the predicted evacuations from models for parameter combinations 4 through 
7 with the validation data.  The figure shows that the model predictions are almost identical.  
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Figure 10   

Model predictions for different gamma parameters 
 
Figure 11 presents a comparison of the coefficients from the models with the above 
parameter combinations.  The coefficients are very stable for all the covariates except for 
those of gammadist and, of course, the intercepts (i.e., the constants).  This shows that the 
rest of the model is relatively unaffected by the alternative gamma distributions of distance 
tested, and, therefore, any one of the alternatives would be acceptable with regard to the 
impact of the other covariates on the outcome. 
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Figure 11   

Comparing coefficients among the models with the Floyd data 
  

The RMSEs of the models are very close, with values ranging from 2.68 to 2.79.  Based on 
all the above analyses, it is decided to use combination 6, which has shape=8 and scale=0.6.  
Table 15 gives the model summary results for both logistic and complementary models.   
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Table 15   
Summary results of the two sequential models with the Floyd data 

Covariate 
Logit Complementary Log-Log 

β  se( β ) p-value β  se( β ) p-value 
intercept -10.108 0.891 0.000 -9.962 0.871 0.000 

gammadistance 4.139 1.012 0.000 4.077 0.989 0.000 
TOD(1) 1.353 0.171 0.000 1.336 0.169 0.000 
TOD(2) 2.221 0.143 0.000 2.181 0.140 0.000 
TOD(3) 1.610 0.156 0.000 1.588 0.153 0.000 

dyanorder(1) 1.917 0.193 0.000 1.903 0.189 0.000 
dyanorder(2) 2.181 0.213 0.000 2.148 0.209 0.000 

flood 0.558 0.078 0.000 0.538 0.075 0.000 
mobile 0.263 0.132 0.047 0.249 0.128 0.051 
speed 0.017 0.006 0.006 0.017 0.006 0.007 
LL(C) -3871 -3871 
LL( β ) -3110 -3110 

-2[LL(C) - LL( β )] 1522 1522 
2ρ  0.197 0.197 

 
In general, all the coefficients of covariates have the right signs, and their values are 
reasonable.  The likelihood ratio index is almost 0.2, indicating good model fit.  The 
coefficients of this model for TOD and flood are close to those from the sequential model 
based on the Andrew data (Table 11).  The values of the three dummy variables for TOD 
indicate the smallest amount of evacuation at night, an increase in the morning, the highest at 
mid-day, and then a decrease in the afternoon again, but still higher than in the morning.  
TOD has the second largest absolute parameters after gammadistance.  The large parameter 
for gammadistance is due to the fact that the values of gammadistance are much smaller than 
the original values of distance without the transformation or with the logarithm 
transformation.  The parameters for the dynamic variable dynaorder are also much larger 
than their static counterpart from the Andrew model.  This change has been confirmed by 
other research [85].  However, the impact of mobile is much smaller than those found from 
the sequential Andrew model.  Note that the sequential Andrew model selected the forward 
speed of the hurricane as a covariate, while this model selected hurricane speed instead.   

 
Goodness-of-Fit 
Both models had likelihood ratio test values of 1522, with nine degrees of freedom.  The p-
values are 0.000, rejecting the null hypotheses that all the explanatory variables except for 
the ASCs were zero.  The binary logit model has a log likelihood ratio index 2ρ =0.197.  The 
contingency table for the binary logit model can also be calculated from the standard 
software package output for the Hosmer and Lemeshow test where the number of groups is 
g=10.  The Hosmer and Lemeshow statistic is 8.641 with eight degrees of freedom.  The p-
value is 0.373. This shows that the null hypothesis, the binary logit model fits, should not be 
rejected. If the first three groups are aggregated so that each cell will have evacuation 
frequencies equal to at least five, as is normally done, the Chi-square is 2.251 with six 
degrees of freedom and the p-value is 0.895, which indicates that the same conclusion about 
the model GOF should be reached, as was done earlier, but with greater confidence.  The 
contingency table without regrouping is given in Table 16. 
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Table 16   
Contingency table for g=10 with the Floyd data 

Group Not Evacuated Evacuated Total 
Observed Expected Observed Expected

1 4877 4875 0 2 4877 
2 4876 4873 1 4 4877 
3 4864 4868 9 5 4873 
4 4870 4872 11 9 4881 
5 4830 4829 12 13 4842 
6 4852 4856 25 21 4877 
7 4846 4844 35 37 4881 
8 4808 4804 68 72 4876 
9 4698 4694 176 180 4874 

10 4497 4502 412 407 4909 
 

Sequential Model Estimation with Stated-Preference (New Orleans) Data 
 
Preliminary Analysis and Preparation of Stated Preference Data 
Based on the experimental design discussed in the description of the data section, eight 
respondent sets were created, each of which had eight profiles.  Each respondent was 
presented with all the profiles in one set and was asked whether he or she would evacuate; if 
the answer was yes, then the respondent was asked to choose one of the following times in 
which he or she would evacuate: 
 
1. 0-2 hours, 
2. 2-4 hours, 
3. 4-6 hours, 
4. 6-12 hours, 
5. 12-24 hours, 
6. 1-2 days, and 
7. More than 2 days. 

 
Since a respondent was presented with multiple scenarios, it was a concern that they may 
have had difficulty in responding to the different variable level combinations (profiles or 
scenarios) in a meaningful way.  To test whether respondents were sensitive to the different 
profiles, the responses from all the 32 profiles were studied.  To present the analysis clearly, 
eight profiles were randomly selected from the 32 profiles and their responses were plotted 
by the stated time interval of evacuation, as shown in Figure 12. 
 
Each colored line represents the stated evacuation distribution by time for each profile.  
Clearly, people did respond to different profiles differently as evidenced by the spread of the 
evacuation response in the diagram.  However, it seemed that all the curves had similar 
trends. Evacuations were the highest in time interval 1, then decreased during time intervals 2 
through 4, reached another peak in time interval 5, and lastly, decreased again.  If the data 
were presented somewhat differently, the trends became more obvious.  Figure 13 plots the 
stated evacuation for each time interval by profile for all 32 profiles, and Table 17 
summarizes the percent evacuation distribution by time interval.   
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Figure 12   
Stated evacuation distribution by time interval 

 
It could be found that:  1). People were more likely to choose to evacuate in time interval 1, 
which was to evacuate almost immediately.  The evacuation percentage in time interval 1 
was 29.5 percent.  2). The next most popular time in which to evacuate were time intervals 2 
and 5, which was from 2 to 4 hours and from 12 to 24 hours.  Since the survey was 
conducted during the day, this may reflect the preference of people to evacuate during 
daylight rather than at night.  3). People were least likely to choose to evacuate in time 
interval 7, which was more than two days later. This seems intuitively correct because if 
someone has decided to evacuate, it is rare that the decision would relate to an intended 
evacuation more than two days later.  If evacuation would only be necessary in two or more 
days, a respondent is more likely to defer the decision, knowing that more information is 
likely to be available at a later date. 
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Figure 13  

Stated evacuation distribution by profile 
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Table 17   
Stated evacuation percentage by time interval 

Time Interval 1 2 3 4 5 6 7 
% Evacuation 29.5% 16.7% 11.8% 14.0% 16.9% 9.6% 1.5% 

 
The choice of model time interval is dictated by people’s stated choices of evacuation, which 
are the seven time intervals discussed above.  Note that non-equal time intervals are present 
here. During data preparation, every effort had been made to maintain orthogonality.  A 
respondent was deleted if there were any missing or invalid answers.  The number of valid 
respondents of each respondent set was selected to be the minimum number of valid 
respondents among the eight sets, which was 63.  As a result, the number of total valid 
respondents was 504, resulting in a total of 4032 valid choices.  Each of the valid choices had 
a row of data in the dataset.  Each row was then expanded into multiple rows.  The number of 
expansion was determined by the time interval in which the respondent chose to evacuate.  
Each expanded row had its own variable levels corresponding to the time interval.  For 
example, if a respondent chose to evacuate in time interval 5, then this correspondent had 
five rows of data in the dataset.  Row one had the variable levels for time interval 1 for that 
respondent.  Usually, those variable levels were the same for all the rows for the same 
correspondent except for dynamic variables, which had different values for different time 
intervals.  For this study, the only dynamic variable that could reasonably be inferred for 
different time intervals was the time to expected landfall (which was named landfall).  All 
other variables were treated as static variables, although, by nature, they are dynamic 
variables.  
 
The way landfall for each time interval was calculated was constrained by the structure of the 
questions presented to the respondent and the answers from the respondent.  There were four 
levels for the variable, time to expected landfall: less than 12 hours, between 12 and 24 
hours, between 1 and 2 days, and more than 2 days.  Presented with one of the levels, along 
with combinations of other variable levels, a respondent chose if he or she would evacuate.  
If evacuation was chosen, he or she would choose one of the seven time intervals for 
evacuation.  Based on such information, the dynamic landfall values, up until the stated 
evacuation time interval, can be calculated with approximation.  Table 18 shows the first step 
to calculate the dynamic values for landfall. 
 
An example would help to explain the process.  Suppose the values of landfall for a 
respondent with ID=1 is calculated whose stated choice is not to evacuate.  Then the values 
for time intervals 1 through 7 need to be calculated.  If the respondent’s stated choice is to 
evacuate, no matter what interval he or she chose, the calculation would be included in this 
extreme case that calculates values for all time intervals.  The respondent was presented with 
a profile that had an initial landfall shown in the column titled Initial Landfall.  The next two 
columns give estimated values of the range of dynamic landfall for each time interval.  Then 
the following column approximates the ranges into more general categories.  For the four 
levels of initial landfall values, Table 19 yields six levels of values for the dynamic variable 
landfall.  It is obvious that the estimates of landfall were only approximations.  Sometimes 
subjective judgment was involved. 
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Table 18   
First step to calculate dynamic landfall with the SP data 

ID Interval 
Initial Landfall  Dynamic Landfall Initial Landfall Dynamic Landfall 

Hour Hour Hour Approximation Hour Hour Hour Approximation

1 1 <12 (<12)-(0-2) <10-12 0.5 day 24-48 (24-48)-(0-2) 24-46 1-2 day 

1 2 <12 (<12)-(2-4) <8-10 0.5 day 24-48 (24-48)-(2-4) 22-44 1-2 day 

1 3 <12 (<12)-(4-5) <7-8 hours 24-48 (24-48)-(4-6) 20-42 1-2 day 

1 4 <12 (<12)-(6-12) <6 hours 24-48 (24-48)-(6-12) 18-36 1-2 day 

1 5 <12 (<12)-(12-24) 0 0 24-48 (24-48)-(12-24) 24-Dec .5-1 day 

1 6 <12 (<12)-(24-48) 0 0 24-48 (24-48)-(24-48) 0 0 

1 7 <12 (<12)-(48+) 0 0 24-48 (24-48)-(48+) 0 0 

1 1 12-24 (12-24)-(0-2) 12-22 0.5-1 day 48+ (48+)-(0-2) 46-48 2 days 

1 2 12-24 (12-24)-(2-4) 10-20 0.5-1 day 48+ (48+)-(2-4) 44-46 2 days 

1 3 12-24 (12-24)-(4-6) 8-18 0.5-1 day 48+ (48+)-(4-6) 42-44 2 days 

1 4 12-24 (12-24)-(6-12) 6-12 0.5 day 48+ (48+)-(6-12) 36-42 1-2 day 

1 5 12-24 (12-24)-(12-24) 0 0 48+ (48+)-(12-24) 24-36 1-2 day 

1 6 12-24 (12-24)-(24-48) 0 0 48+ (48+)-(24-48) 0-24 1-2 day 

1 7 12-24 (12-24)-(48+) 0 0 48+ (48+)-(48+) 0 0 

 
Table 19   

Calculated categories for dynamic variable landfall with the SP data 
Landfall 2 days or more 1-2 day 0.5-1 day Half A Day Several Hours Immediately 
Coding 0 1 2 3 4 5 

 
In the models estimated previously, mobile and flood were two important covariates in the 
models.  However, for this SP data, there were very few (actually 11) respondents who lived 
in mobile homes.  Therefore, mobile was not included in the covariate list.  The information 
about covariate flood came from two sources.  One fourth of the respondents were asked if 
their homes were previously flooded or not, while the rest of the respondents were asked if 
their homes were flood-prone.  To make use of such information, the two were combined 
into a single composite variable, compflood.  
 
The preliminary data analysis discovered some serious flaws in the design and are listed 
below: 

1. The variable levels of expected rainfall and expected maximum wind speed were identical 
for every profile.  

2. A complete range of variable levels of expected rainfall and expected maximum winds 
did not appear in the profiles.  Only three levels (instead of four) appeared in the design. 

3. The frequencies of variable levels for expected storm surge and direction of storm 
approach were not identical. 

 
Problem 1 resulted in an inability to distinguish the effects between expected rainfall and 
expected maximum wind speed.  Problem 2 resulted in the inability to estimate the effect of 
the missing level.  Problem 3 destroyed the orthogonality among variable effects.  As a 
result, some compromise had to be made for model analysis.  Because of problems 1 and 2, a 
new combined variable, wind&rainfall, was created and defined in Table 20. 
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Table 20   
Definition of the new variable wind&rainfall 

New Compound Variate Original Variables 
wind&rainfall Expected Maximum Wind Expected Rainfall 

0 Less than 100 mph Less than 5 inches 
1 100-130 mph 5-12 inches 
- 130-150 mph 12-20 inches 
3 More than 150 mph More than 20 inches 

 
Stated Preference Model Estimation 
Estimating a satisfactory model from this SP data was a challenge.  Because of the 
correlations among many variables, the use of factors needed to be balanced.  After testing 
for numerous model specifications, a final model was selected.  Six variables were found to 
be significant at the five percent level.  Among the original 10 variables from Table 1, one of 
the variables that was not significant was level of storm advisory, which includes hurricane 
watch and warning.  This confirms the findings of other studies of hurricane evacuation [46] 
where storm advisories were not found to be significantly influential in evacuation behavior 
because hurricane advisories usually cover too broad an area.  Direction of storm approach 
was also found to have no significant in the model.  This was a variable that was specially 
included for New Orleans because of its unique geographical location (it is surrounded by 
water from three directions).  However, it appears as if the respondents were not aware of 
any significant difference to their personal safety depending on the direction the storm 
approached from.  The width, or size, of the storm was also not found to be significant. This 
is not entirely unexpected since the size of the storm merely indicates that more people 
would be affected, but individuals are not affected by the size of the storm other than the 
increased potential for flooding that large storms produce.  For the variable “expected 
intensification of storm” it was found that only the coefficient for the medium level of 
intensification was significant.  Such a result is counter-intuitive because common sense 
indicates that the higher the expected intensification, the more people are likely to evacuate.  
Because of this irregularity, this variable was not included in the model.  It was found that 
only the highest level of expected storm surge (more than 15 feet) had a significant impact on 
evacuation.  As a result, this variable was regrouped into two levels.  There was a regrouping 
for the categories for the dynamic variable landfall.  Instead of having six categories, as in 
Table 19, landfall was finally regrouped into four categories.  The definitions and levels of 
the variables retained in the model are listed in Table 21.   
 

Table 21   
Variables in the model with the SP data 

Variable Definition 
compflood A composite dummy variable. 1 if home is flood prone, 0 otherwise.  

order Evacuation order. 0 if no order, 1 if precautionary, 2 if voluntary, and 3 if mandatory. 

landfall Expected time to landfall. Dynamic variable. 0 if more than 1 day, 1 if 0.5-1 day, 2 if half a 
day, 3 if within several hours. 

distance Distance from expected landfall. 0 if more than 100 miles, 1 if 50-100 miles, 2 if 10-50 miles, 
and 3 if less than 10 miles. 

wind&rainfall Defined in Table 20. 
surge Expected storm surge. 1 if more than 15 feet, 0 otherwise. 
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Note that the meaning of distance in this SP dataset is different from the two RP datasets.  In 
the SP dataset, it was defined as the distance of the household from the expected location of 
landfall. It was a static variable. However, in the Andrew and Floyd datasets, it was defined 
as the distance of the household from the center of the storm.  This latter distance was a 
dynamic variable.  Dummy coding was used for all the variables because they were all 
categorical variables.   
 
The models estimated were the conditional probability models (the binary logistic and 
complementary log-log models), although the models used for prediction were the 
unconditional probability models.  In model estimation, level 0 was the reference category.  
The slope parameters, β , were assumed to be the same across all time intervals.  Table 22 
gives the estimated parameters and the statistics of the two models with the 75 percent 
estimation data.  The p-values in the table were the probabilities of the Wald test for the 
parameters to be zero. The last row gives the likelihood ratio index for the two models.  
 

Table 22   
Summary results of the models with the SP data 

Covariate 
Logistic Complementary log-log 

β  se( β ) p-value β  se( β ) p-value 
(Intercept) -3.85 0.098 0 -3.8 0.093 0.000 
compflood 0.256 0.047 0 0.236 0.044 0.000 

order1 0.512 0.072 0 0.483 0.068 0.000 
order2 0.620 0.071 0.000 0.583 0.066 0.000 
order3 0.955 0.070 0.000 0.881 0.065 0.000 

landfallcat1 0.211 0.064 0.001 0.190 0.058 0.001 
landfallcat2 0.374 0.068 0.000 0.343 0.062 0.000 
landfallcat3 -0.114 0.060 0.056 -0.104 0.056 0.063 

distance1 0.159 0.067 0.017 0.150 0.062 0.016 
distance2 0.178 0.069 0.010 0.154 0.064 0.016 
distance3 0.239 0.067 0.000 0.216 0.063 0.001 

wind&rainfall1 0.626 0.076 0.000 0.598 0.073 0.000 
wind&rainfall3 1.296 0.066 0.000 1.216 0.063 0.000 

surge 0.227 0.051 0.000 0.209 0.047 0.000 
LL(C) 6904.3 6904.3 
LL( β ) 6475.7 6477.2 

2ρ  0.062 0.062 

 
Goodness-of-Fit 
The binary logit model has a log likelihood ratio index 2ρ =0.062.  The contingency table for 
the Hosmer-Lemeshow test is given in Table 23.  The Hosmer-Lemeshow statistic is 18.197 
with eight degrees of freedom.  The level of significance is 0.02, which rejects the null 
hypothesis that our estimated model fits the data well.  Another important GOF test is to 
compare the sequential model predicted evacuation using the validation data with the actual 
observation, which will be discussed in the analysis and discussion section. 
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Table 23   
Contingency table for g=10 with the SP data 

Group Not Evacuate Evacuated Total 
Observed Expected Observed Expected

1 1858 1851 53 60 1911 
2 1810 1817 99 92 1909 
3 1905 1906 131 130 2036 
4 1762 1721 104 145 1866 
5 1848 1859 197 186 2045 
6 1752 1771 228 209 1980 
7 1684 1693 271 262 1955 
8 1548 1558 328 318 1876 
9 1581 1584 404 401 1985 

10 1218 1207 419 430 1637 
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ANALYSIS AND DISCUSSION 
 
 

In this section, a series of analyses of the models estimated in the previous section were 
conducted.  First, each model was discussed separately, analyzing the model predictions 
versus observations, covariate effects, and issues that were specific to different types of 
models.  Then, comparisons among the methodologies were made to find the best method to 
model dynamic hurricane evacuation travel demand.  
 

The Cox Survival Analysis Model with Southwest Louisiana (Andrew) Data 
 
Model Prediction 
Perhaps the most important criterion in assessing a model is to study the model prediction 
with real data.  This is usually conducted by comparing the observed and model predicted 
evacuation for each time interval on a separate dataset in which evacuation decisions are 
known.  This process is also referred to as model validation.  The aggregation technique in 
this study was complete enumeration of all households.  Fifteen percent of the data were 
retained for this purpose.  However, after eliminating the observations with missing 
covariates values, there were only 57 subjects in the dataset with 20 evacuations, making the 
total number of observations 684 (i.e., information from 57 respondents over 12 time 
periods).  As a result, there were too few cases to compare for each time interval.  To solve 
this problem the model predictions from the 15 percent sample were scaled up to match the 
number in the 100 percent sample and compared, in each time interval, with the observed 
evacuation for all subjects.  The factor used to scale up the model predictions from the 15 
percent sample was the ratio of the number of subjects in the 100 percent sample over the 
number of subjects in the 15 percent dataset.  After eliminating those households with 
missing information for the covariates used in the model, the 100% sample had 350 
households, out of which 124 were evacuees.   
 
The application of the Cox model to the Andrew data involved calculating the hazard rate 
with equation 8 for each subject in the dataset, utilizing the baseline hazard from Table 6, the 
coefficients estimated from the Cox model (model 1 in table 5), and the covariate values 
from the 15 percent dataset.  Following this, the individual hazard function was integrated to 
calculate the cumulative hazard; then the survival functions of each individual were 
calculated using equation 7.  The probability of evacuation for each subject in each time 
interval of six hours was then calculated from the difference in the survival rates of adjacent 
time intervals.  Finally, the probabilities were added up by time interval and compared to the 
observed number of evacuations for each time interval.  Table 24 gives the final results. 
 

Table 24   
Observed vs. the Cox model predicted evacuation with Andrew validation data 

Time Interval 1 2 3 4 5 6 7 8 9 10 11 12 Total 
Observed 3 5 11 2 0 19 20 6 3 17 33 5 124 
Predicted 2.6 3.9 14.0 2.5 0.0 18.1 19.6 8.9 3.3 18.6 35.1 4.8 131.3 
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The RMSE and percent RMSE of the observed vs. predicted evacuations are 1.5 and 19.7 
percent respectively.  Figure 14 plots the relationship between the observed and the model 
predicted evacuation for each time interval.  It seems that the model prediction is very close 
to the actual observation.  
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Figure 14   

Observed vs. the Cox model predicted evacuation with Andrew validation data  
 
The Impact of Time-of-Day 
Figure 14 gives the number of evacuations for each time interval of six hours for three days.  
Obviously, there are patterns to uncover from it.  The graph shows that people are least likely 
to evacuate during nighttime (time intervals 1, 4, 5, 8, 9, and 12), there are more evacuations 
in the morning (time intervals 2, 6, and 10), and people are most likely to evacuate in the 
afternoon (time intervals 3, 7, and 11).  However, it is not possible to incorporate a time-of-
day or a day-night variable explicitly in the Cox model.  This can be explained by an 
example.  Suppose a time-of-day dummy variable TOD is introduced with 1 for daytime and 
0 for nighttime.  TOD is a categorical time-dependent covariate.  To simplify the example, it 
is further assumed that TOD is the only covariate in the model, and no ties are present.  If the 
corresponding coefficient for TOD is TODβ , the partial likelihood function in equation 10 
could be written as [61]: 
 

∏∏∏ ∑ ==
β

β

=
∈

ββ

β

+
=

+
=

+

D

i i

D

i i
tTOD

tTODD

i
tRj

tTODtTOD

tTOD

nne
e

ee
e

iiTOD

iiTOD

i

ijTODiiTOD

iiTOD

11
)(

)(

1
)(

)()(

)(

1
1

)1(
,                      (40) 

 

where i is the household that evacuates in time interval ti , and ni is the number of households 
that are still in the risk set R(ti) at time ti in addition to household i.  The derivation uses the 
relationship that TODi(ti)=TODj(ti); the time of day for a particular time interval is the same 
for all individuals.  The coefficient TODβ  cancels out in the partial likelihood function, and, 
therefore, the time-of-day effect could not be estimated in the model.  For the same reason, 
the impact of some storm specific characteristics such as intensity, speed, category, and in 
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some situations even evacuation order, cannot be estimated explicitly by the Cox model if 
they are common to all respondents. 
 
Joint Impact of Covariates 
To assess the model performance, the joint covariate impacts were analyzed in this 
subsection.  Eight scenarios representing different covariate combinations were considered, 
and the model predictions for different scenarios were discussed.  First, a high-risk household 
was defined as a household that lives in a mobile home (mobile=1) and is considered very 
likely to be flooded (flood=1) during a hurricane, and a low-risk household was defined as a 
household that does not live in a mobile home (mobile=0) and is not very likely to be flooded 
(flood=0).  A distant storm is defined as dist=7, which is about 1200 miles from the 
household; a close storm is dist=0, which is within 100 miles of the household.  Table 25 
gives the definitions of the eight scenarios. The numbers in the parenthesis are the relative 
hazards of the respective scenarios.  The relative hazard is the part of the hazard function 
excluding the baseline hazard (Equation 8).  It can be calculated using ∑ )exp( ijj xβ  with 
appropriate values of the coefficients and covariates.  Keep in mind that the product of the 
hazard and the time interval is the probability of a household to evacuate in that time interval 
provided the household has not evacuated yet.  With the same baseline hazard, the relative 
hazard represents the relative propensity to evacuation for the time interval. 
 

Table 25   
Eight scenarios and their relative hazards analyzed with the Cox model 

Type of household No evacuation order issued Evacuation order issued 
Storm distant Storm close Storm distant Storm close 

Low-risk household 1 (0.047) 2  (1.000) 3 (0.081) 4 (1.711) 
High-risk household 5 (0.446) 6 (9.431) 7 (0.763) 8 (16.140) 

 
Scenario 1, the reference scenario, is a low-risk household that does not receive an 
evacuation order (orderper=0), and the hurricane is far away (dist=7; about 1200 miles).  
The resulting relative hazard is 0.047.  Scenario 2 is the same low-risk household, as in 
scenario 1, but the hurricane landfall is imminent (dist=0; less than 100 miles).  Its resulting 
relative hazard is 1, and the relative hazards ratio is 21.  Thus, the hazard of evacuation is 
about 22 times as high in scenario 2 as in scenario 1 because of the change of distance.  
Similarly, comparisons between scenarios 3 and 4, 5 and 6, and 7 and 8 reveal the impact of 
storm distance (distant and close) on the relative hazards of both low-risk and high-risk 
households with and without an evacuation order, resulting in ratios of about 21, which 
indicates that facing a close storm, households are 21 times more likely to evacuate than 
when facing a distant storm.  Comparisons between scenarios 5 and 1, 6 and 2, 7 and 3, and 8 
and 4 reveal the impact of household risk type on the relative hazards of facing distant or 
close storms, with and without an evacuation order, resulting in relative hazard ratios of 
about nine, indicating that high-risk households are nine times more likely to evacuate than 
low-risk households.  Comparisons between scenarios 3 and 1, 4 and 2, 7 and 5, and 8 and 6 
reveal the impact of an evacuation order on the relative hazards of both high-risk and low-
risk households facing distant and close storms, resulting in relative hazard ratios of about 
1.7, which indicates that households receiving an evacuation order are 1.7 times more likely 
to evacuate than households of same risk-level not receiving an evacuation order.  Many 
other comparisons can also reveal useful insights on different covariate impacts that are not 
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covered by the above comparisons.  A final comparison was made between the two extremes, 
which are scenarios 1 and 8.  Scenario 8 is the worst-case scenario, which is a high-risk 
household facing a close storm and receiving an evacuation order, as compared to a low-risk 
household facing a distant storm and not receiving an evacuation order.  The ratio of relative 
hazards is 343, indicating that the household in scenario 8 is more than 300 times morelikely 
to evacuate than a household in scenario 1.  The 3-dimensional diagram in Figure 15 presents 
the relative hazards for each of the eight scenarios.   
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Figure 15   

Relative hazards for eight scenarios with the Cox model 
 

From the above analysis, it seems that the Cox survival model can provide predictions of the 
different impacts of the covariates on the models that are intuitively correct. 

 
The Impact of Baseline Hazard 
The baseline hazard becomes an important aspect of the Cox model when people are not only 
interested in studying the impacts of covariates, but they want to predict evacuation under 
different conditions.  There are procedures that permit the estimation of the baseline hazard 
and the coefficients of covariates simultaneously from a single likelihood function [50,51].  
However, most studies use the Cox model to estimate the model coefficients and, if 
necessary, estimate the baseline hazard, usually with the method mentioned in the 
methodology section.  One important feature of the Cox model is the separation of the 
baseline hazard and the coefficients, i.e., the Cox model is a relative model and the 
coefficients can be estimated without the knowledge of the baseline hazard.   
 
In the Cox model estimation, the model likelihood ratio index ρ2 was only 0.06, a value that does 
not indicate a good model fit by common experience.  However, the model did provide very good 
predictions with RMSE and percent RMSE values of 1.5 and 19.7 percent respectively.  This might 
be attributed to the way the baseline hazard was calculated in this study.  In equation 11, the 
baseline cumulative hazard is calculated using the Breslow estimator, utilizing not only the 
estimated coefficients and the covariates values but the number of events di in each time interval.  
The consequence of this is that errors incurred in the estimation of the Cox model might be partly 
compensated for in the calculation of the baseline hazard.  The estimation errors referred to could 
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include the omission and mis-specification of covariates, mis-specification of functional forms, 
and errors in the estimation of the coefficients.  However, there is no statistical test available to 
measure the GOF of the baseline hazard estimated with the Breslow estimator. 
 
In practice, the baseline hazard may be difficult to predict.  In addition, it will be more 
difficult to make predictions for time intervals beyond those that are covered by the existing 
data.  More study is needed to find the ways to estimate the baseline hazard for conditions 
beyond those encountered in the estimation data. 

 
The Sequential Model with Southwest Louisiana (Andrew) Data 

 
Model Prediction 
The sequential logit model GOF measures how the binary logit model fits the transformed 
dataset.  However, the real model of interest in is the sequential model that is derived from 
the series of binary models and is used to estimate dynamic travel demand.  The model 
validation is conducted next.  The aggregation technique used in this study was complete 
enumeration of all households.  Fifteen percent of the Andrew data were retained for this 
purpose.  However, for the same reason explained earlier in this section, for each time 
interval, the observed evacuation for all the subjects was compared with the factored model 
predicted evacuation based on the 15 percent data.  The probability of evacuation for each 
household in each time interval was first calculated.  Then the probabilities were added up by 
time interval and compared to the observed number of evacuations for each time interval.  
Table 26 gives the observed and model predicted evacuations for all time intervals.  Figure 
16 plots the data in Table 26.  
 

Table 26   
Observed vs. sequential logit model predicted with the Andrew validation data 

Interval 1 2 3 4 5 6 7 8 9 10 11 12 Total
Observed 3 5 11 2 0 19 20 6 3 17 33 5 124 
Predicted 1.5 9.9 14.5 2.4 2.9 14.7 24.9 4 3.7 15.6 28.7 5.6 128.5
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Figure 16   

Observed vs. sequential logit model predicted evacuation with Andrew validation data  
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The model clearly reproduces the observed evacuation pattern.  The total predicted 
evacuations over all time intervals are 128.5.  This prediction is very close to the observed 
value of 124. The relative error is only 3.63 percent.  If evaluated at the time interval level, 
the RMSE is 3.09, and the percent RMSE is 37.10 percent.  The percent RMSE does not 
include the errors from time interval 5 because the observed value is zero.  Therefore, the real 
percent RMSE is somewhat higher.  Some intervals have very high relative errors, especially 
for intervals 1 and 2, with nearly 100 percent and 50 percent relative errors because the 
observed number of evacuations in those intervals is small.  The rest of the intervals have 
relative errors between 10 percent and 35 percent.  The maximum absolute error is smaller 
than five for every time interval. 

 
The Impact of TOD 
Figure 16 gives the probability of evacuation for each time interval of six hours for three 
days.  Obviously, evacuation varies with time-of-day.  To study its impact, the probabilities 
of evacuation for both a low-risk and a high-risk household with an evacuation order from 
two models were calculated.  One model included TOD as a covariate, and the other did not.  
Table 27 gives the values used in the calculation for distance and forward speed of the 
hurricane for each time interval.  These values were actual values taken from a household in 
the Andrew data.  Figure 17 presents the results. 
 

Table 27   
Values of distance and forward speed in analyzing covariate impacts 

Time Interval 1 2 3 4 5 6 7 8 9 10 11 12 
Distance (mile) 1182 1096 1004 911 815 713 607 500 398 305 218 146 

Speed (mph) 12.0 12.5 13.0 13.5 14.0 14.5 15.0 16.0 17.0 18.0 19.0 20.0 
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Figure 17   

Impact of TOD using sequential logit model from Andrew 
 
On the bottom of the figure, the time intervals are marked by different line types to denote 
night, morning, and afternoon.  The thick dark line (e.g., during time intervals 1 and 4) 
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depicts the time between 6.00 p.m. and 6.00 a.m., the medium thickness line depicts the 
period between 6.00 a.m. and 12.00 p.m., and the thin line depicts the period between 12.00 
p.m. and 6.00 p.m.  The graph shows that people are least likely to evacuate at night, that the 
number of evacuations tends to increase in the morning, and people are most likely to 
evacuate in the afternoon. Considering the high-risk and low-risk households with an 
evacuation order, the plots without TOD only show a general trend of how the evacuation 
probabilities change as the hurricane approaches.  The low-risk household has an increasing 
trend, and the high-risk household has a decreasing trend.  This suggests that the high-risk 
households who have been issued an evacuation order tend to evacuate early, and the low-
risk households who were issued an evacuation order tend to evacuate late.  However, the 
plots with TOD display the significant impact of time-of-day.  They show low evacuation 
probability at nighttime, higher probability in the morning, and highest probability in the 
afternoon.  The response curve with time-of-day impact is very different from the typical 
quick, medium, and slow response curves currently used to estimate the time of evacuation, 
which do not show time-of-day variation.  
 
Joint Covariate Impacts 
In this section of the analysis on joint covariate impacts, an approach that is somewhat 
different from the analysis for the Cox model was taken.  Instead of comparing the relative 
hazards of different scenarios, as was done earlier, the actual evacuation probabilities for 
each time interval were calculated.  Four scenarios were considered, as listed in Table 28.  
Scenario 1 is a low-risk household who does not receive an evacuation order (orderper=0).  
Scenario 2 is the same low-risk household as scenario 1, but the household receives an 
evacuation order (orderper=1).  Scenarios 3 and 4 are a high-risk household without and with 
an evacuation order, respectively. 
 

Table 28   
Four scenarios analyzed with the Andrew sequential logit model 
Types of household No evacuation order issued Evacuation order issued 
Low-risk household 1 2 
High-risk household 3 4 

 
Based on the information from Tables 27 and 28, the sequential logit model estimated from 
the Andrew data (model 1 in Table 11) was applied to calculate the probabilities of 
evacuation for every scenario in each time interval.  The results are plotted in Figure 18.  
 
The diagram clearly shows that the probability of evacuation is much smaller for low-risk 
households than for high-risk households (scenarios 1 and 2 vs. scenarios 3 and 4), 
particularly when the storm is still far away.  Low-risk households evacuate essentially only 
on the last day.  High-risk households evacuate much earlier, with an evacuation order 
further accelerating the evacuation process.  In fact, it appears that high-risk households that 
receive an evacuation order may evacuate so early that relatively few of them remain to 
evacuate on the last day.  This is exactly the opposite of the three other scenarios shown in 
Figure 18, particularly the low-risk households (scenarios 1 and 2), where the greatest 
proportion of evacuees wait until the last day to evacuate.  High-risk households tend to live 
near water or low-lying areas and, therefore, probably have longer evacuation distances.  As 
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a result, they are the first ones to evacuate once an evacuation order is received.  Without an 
evacuation order, the same household would tend to wait and see how the situation evolves. 
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Figure 18   

Probability of evacuation for four scenarios with the Andrew sequential logit model 
 

The sum of probabilities for all the time intervals for each household is the probability of that 
household to evacuate during a hurricane.  The difference between the sum of probabilities 
for the high-risk household with and without an evacuation order (98.0 percent and 92.1 
percent) is smaller than that for the low-risk household (31.7 percent and 23.7 percent).  This 
suggests that the impact of an evacuation order is more significant for low-risk households 
than for the high-risk households.  The high-risk households tend to evacuate with or without 
evacuation orders under the same conditions. 
  

The Sequential Model with South Carolina (Floyd) Data 
 

In this subsection, the sequential logit model estimated from the Floyd data was discussed in 
detail.  The model predictions and observations from the validation dataset were first studied 
at both aggregate and zonal levels.  Then, the impacts of time-of-day, evacuation order, 
distance, wind speed, and forward speed, as well as the risk levels of households, were 
analyzed. The discussions serve to demonstrate that the sequential logit model, estimated 
with a different but richer dataset from a different storm than Hurricane Andrew, can be used 
to study a variety of covariate impacts and policy conditions.  The analysis indicated the 
broad capability and the robustness of the sequential logit model.  The model produced 
plausible predictions although the results were difficult to verify in many cases. 
 
Overall Model Prediction 
As mentioned earlier, the original Floyd dataset was divided into model estimation and 
validation parts with a 75 percent -25 percent split, respectively.  The sequential logit model 
estimated on the 75 percent subset (Table 15) was applied to the 25 percent subset.  Table 29 
presents the results of the model predictions and observations for each of the 48 time 
intervals.  It was a four-day evacuation and each time interval was two hours.  Figure 19 
plots the model validation results based on the information in Table 29.   
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Table 29   

Observations vs. sequential logit model predictions with the Floyd data 
Time Observed Predicted Time Observed Predicted Time Observed Predicted Time Observed Predicted

1 0 0.14 13 0 0.30 25 0 0.48 37 1 2.90 
2 0 0.14 14 1 0.34 26 0 0.51 38 2 2.77 
3 0 0.14 15 2 0.34 27 2 0.53 39 4 2.36 
4 1 0.58 16 1 1.35 28 4 13.70 40 12 7.99 
5 0 0.61 17 2 1.39 29 12 12.77 41 14 6.44 
6 1 1.45 18 0 3.38 30 29 27.97 42 15 11.32 
7 1 1.51 19 2 3.45 31 35 32.57 43 10 9.18 
8 3 1.61 20 3 3.47 32 25 29.43 44 6 7.04 
9 1 0.93 21 2 1.99 33 26 16.13 45 3 3.27 

10 0 1.13 22 1 2.02 34 11 15.76 46 3 2.90 
11 0 0.27 23 0 0.43 35 6 3.14 47 1 0.56 
12 0 0.27 24 1 0.44 36 2 3.08 48 1 0.56 

0

10

20

30

40

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Time Interval

N
um

be
r o

f E
va

cu
at

io
ns

observation
prediction

 
Figure 19   

Observed vs. sequential logit model predicted evacuations using Floyd validation data 
 

Note that evacuation patterns in the figure are quite different from those with the Andrew 
data (Figure 14).  The Andrew data were from a three-day evacuation with time intervals of 
six hours and three TOD categories, and evacuation increased from day one through day 
three.  Figure 19 presents a four-day evacuation with time intervals of two hours and four 
TOD categories, and evacuation peaked on the third day.  The sequential logit model has the 
ability to accommodate such differences. 
 
The total observed and model predicted evacuations are almost identical.  The observed total 
evacuation is 246, while the model predicted 241, with a relative error of –2.0 percent and a 
RMSE of 2.79.  The model overestimates evacuation for the first three days with values of 
1.8 (25.7 percent), 3.9 (26.0 percent), and 4.1 (2.7 percent), respectively and underestimates 
evacuation for the fourth day, with 14.7 evacuations (-20.5%).  The model predicts the third 
day extremely well when most evacuations took place.  One noticeable difference is at time 
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interval 28, (third day, 6 and 7 a.m.) where the model overestimates evacuation by about 10.  
The overestimation is due to the fact that a voluntary evacuation order was issued at this time 
interval, and the model predicts an immediate increase of evacuation, while in reality, people 
probably needed some time to digest the information and to prepare for the evacuation.  This 
is confirmed by the very accurate prediction for the next time interval, which is interval 29, 
when the model predicts 12.8 evacuations compared to the observed value of 12.  The 
irregularities between intervals 33 and 35 and intervals 40 and 42 were caused by two 
factors.  The first factor was the change of TOD in those two periods, and the second factor 
was the weight the gamma distribution transformation put on the values of distance in those 
two periods.  Intervals 33 and 34 were in the afternoon, while interval 35 was at night.  There 
was a decrease of the utility to evacuate because of the change of TOD from afternoon to 
night.  Furthermore, the distance in interval 34 had a slightly higher weight than in interval 
33 but was almost the same as in interval 35 by the transformation.  Therefore, the utility to 
evacuate in interval 34 was almost the same as in interval 33 but much higher than in interval 
35.  As a result, the predicted number of evacuations in interval 33 was almost the same as in 
interval 34 (16.13 versus 15.76) and much higher than in interval 35 (15.76 versus 3.14).  A 
similar explanation applies to the irregularity between intervals 40 and 42.  In general, the 
model reproduces the observed evacuation satisfactorily.   

 
Zonal Model Prediction 
Another very important test of the model is to not only compare the model predictions 
against the total number of evacuations but also at more disaggregate levels, such as the 
number of evacuations from individual hurricane evacuation zones.  The Andrew dataset has 
too few observations for this purpose.  However, the Floyd dataset was much larger and 
provided an opportunity to do so.  Three relatively large zones were created based on the 
available geographic information of the households.  Figure 20 shows the geographic 
locations of the zones and the actual track of Hurricane Floyd. 
 

 
Figure 20   

Three zones and Floyd’s track 
 

Zone one is Beaufort, in the southern region of South Carolina, including the coastal counties 
of Beaufort, Jasper, and Colleton; zone two is Charleston, which includes the counties of 
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Charleston, Dorchester, and Berkeley; and zone three is Myrtle Beach, in the northern region 
of South Carolina, including the counties of Horry, Georgetown, Williamsburg, and Marion.  
This zonal configuration, which grouped areas with different characteristics, such as coastal 
and non-coastal areas, into the same zone, was the result of lacking more appropriate 
geographic information in the dataset.  Figure 21 presents the observed and model predicted 
evacuations for each zone with the 25 percent validation data. 
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Figure 21   

Observed vs. sequential model predicted zonal evacuations using Floyd validation data 
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The zonal level predictions in Figure 21 do not fit the observations as well as the overall 
prediction in Figure 19.  For Beaufort and Charleston, the model under-predicts evacuation, 
with relative errors of 21.9 percent and 11.6 percent.  For Myrtle Beach, the model over-
predicts by 35.6 percent.  However, in general the predictions do capture the daily variations 
and the time-of-day impacts.  Table 30 presents the total observed and model predicted 
results for the three zones.  
 

Table 30   
Observed vs. predicted evacuations for three zones 

Zone Observed Predicted % Error RMSE 
Beaufort 88 68.8 -21.9% 1.46 

Charleston 90 79.6 -11.6% 1.76 
Myrtle Beach 68 92.2 35.6% 1.93 

Total 246 241.0 -2.0% 2.79 
 

The Impact of TOD 
In this subsection, the importance of including TOD in the model in studying hurricane 
evacuation is demonstrated but from a different perspective.  The impact of the models with 
and without TOD was discussed in terms of model predictions and observations using the 25 
percent validation data.  Two models were compared.  The first one was the sequential logit 
model estimated from the 75 percent dataset identified in Table 15, which included TOD as a 
covariate; the second one was the sequential logit model estimated from the same 75 percent 
dataset excluding TOD as a covariate.  Table 31 presents the summary results of the two 
models. 
 

Table 31   
Summary results of the sequential models with and without TOD using 75% Floyd data 

Covariate Sequential Logit Model with TOD Sequential Logit Model without TOD 
 β  se( β ) p-value β  se( β ) p-value 

intercept -10.108 0.891 0.000 -8.562 0.857 0.000 
gammadistance 4.139 1.012 0.000 1.804 0.873 0.041 

TOD(1) 1.353 0.171 0.000 - - - 
TOD(2) 2.221 0.143 0.000 - - - 
TOD(3) 1.610 0.156 0.000 - - - 

dyanorder(1) 1.917 0.193 0.000 2.628 0.156 0.000 
dyanorder(2) 2.181 0.213 0.000 2.662 0.194 0.000 

flood 0.558 0.078 0.000 0.577 0.076 0.000 
mobile 0.263 0.132 0.047 0.292 0.130 0.025 
speed 0.017 0.006 0.006 0.016 0.006 0.009 
LL(C) -3871 -3871 
LL( β ) -3110 -3297 

2ρ  0.197 0.148 
 

Without TOD, the likelihood ratio index reduced significantly from 0.197 to 0.148, indicating 
that the model excluding TOD is inferior to the one including TOD.  The coefficients are 
very close for the two models except for those of distance and the alternative-specific 
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constants.  Figure 22 plots the observed and model predicted evacuations from the 25 percent 
Floyd validation dataset.  
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Figure 22   

Predictions from sequential logit models with and without TOD with the Floyd data 
 

From Figure 22, the model including TOD produces a very accurate prediction of evacuation. 
However, the model excluding TOD gives a very erroneous prediction for each time interval, 
although the total number of predicted evacuations are very close to the number of observed 
evacuations (the model including TOD predicts 241, the model excluding TOD predicts 240, 
and the observed evacuations are 246).  The model without TOD predicts a slow and steady 
increase in the number of evacuations, until interval 28, when a voluntary evacuation order 
was issued and there is a huge increase in the number of evacuations.  Then, the model 
predicts a decrease of evacuation at a steady but more rapid rate.  The model without TOD 
shows no time-of-day variations in evacuation, and the RMSE for this model is 5.85.  In 
contrast, the model with TOD accurately reproduced the observed evacuation pattern.  It has 
a RMSE value of 2.79, which is a reduction of 52.4 percent in RMSE.  
 
The analysis demonstrated that when TOD is excluded, the sequential logit model’s 
prediction on the total percentage of evacuations, which is equivalent to the participation rate 
used in current practice, is accurate.  However, evacuation predictions for each time interval 
are erroneous.  Oppositely, the inclusion of TOD not only increases the GOF and the 
explanatory power of the model, but it also enables the model to give an accurate prediction 
of evacuations for each time interval as well as total evacuation.  

 
The Impact of Evacuation Orders 
This subsection discusses the impact of evacuation orders. The study demonstrated that the 
sequential logit model with evacuation order as a dynamic variable not only enhances the 
model performance, but it also meets the need of local officials for policy analysis in terms of 
the type and timing of evacuation orders. 
 
Three studies were conducted to explore the impact of the type and timing of evacuation 
orders.  The first studied the impact of a voluntary and a mandatory evacuation order issued 
at the same time of day and the combination of them in the same day; the second studied the 
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impact of voluntary evacuation orders issued at the same time but on different days; and the 
last studied the impact of voluntary evacuation orders at different times of the day.  
 
Table 32 gives the values of distance used in the analysis.  They are actual values of distance 
from a household in the Floyd data.  The values of hurricane wind speed were assumed to be 
120 miles per hour, which is the speed of a category 3 hurricane.  The evacuation 
probabilities were calculated for a high-risk household. 

 
Table 32   

Values of distance from a household in the Floyd data 
Time 

Interval 
Distance 

(mile) 
Time 

Interval 
Distance 

(mile) 
Time 

Interval 
Distance 

(mile) 
Time 

Interval 
Distance 

(mile) 
1 1129 13 878 25 625 37 344 
2 1106 14 859 26 602 38 329 
3 1084 15 839 27 584 39 285 
4 1070 16 812 28 565 40 273 
5 1056 17 786 29 555 41 250 
6 1044 18 761 30 535 42 222 
7 1011 19 742 31 515 43 194 
8 981 20 733 32 495 44 161 
9 954 21 701 33 461 45 133 

10 940 22 692 34 431 46 107 
11 921 23 667 35 416 47 93 
12 898 24 653 36 373 48 91 

 
Figure 23 plots the predicted evacuation probabilities with a voluntary evacuation order 
issued at time interval 28 (6 to 7 a.m. of the third day), a mandatory evacuation order issued 
at time interval 28, and with combined voluntary and mandatory evacuation orders issued at 
time intervals 28 and 31 (12 p.m. to 1 p.m.), respectively, which was the case for the Floyd 
data.  A curve without evacuation order is also plotted as a reference.  Table 33 gives the 
total probability of evacuation for each condition. 
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Figure 23   

Impact of evacuation order type with the Floyd sequential logit model 
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Table 33   
Total evacuation probability for different types of evacuation orders 

Order No Order Voluntary at 28 Mandatory at 28 Voluntary at 28 and Mandatory at 31
Probability 20.3% 62.7% 71.2% 69.7% 

 
All of the curves are the same before any evacuation orders were issued at interval 28 and are 
presented by one color.  The evacuation orders increase the total probability of evacuation 
significantly from 20.3 percent to 60 percent -70 percent, depending on the type and timing 
of the orders.  There are only moderate differences among the total probabilities of 
evacuation for voluntary and mandatory evacuation orders that are issued at time interval 28. 
 The mandatory evacuation order has a larger coefficient (2.181 from Table 15) than that of 
the voluntary (1.917 from Table 15), hence a larger impact on evacuation.  However, there is 
no significant difference between the probabilities of a mandatory order at time interval 28 
and that of a voluntary order at time interval 28 followed by a mandatory order at time 
interval 31.  In terms of the shapes, there is no significant difference among the curves for the 
following day, except for the day the evacuation orders were issued.  Two conclusions can be 
observed from the above analysis:   
 
1. It is the issuance of an evacuation order that has the primary impact, not the type of order 

(voluntary or mandatory), although the latter does have a somewhat stronger impact; and  
2. A mandatory order following a voluntary order has a very limited impact. 
 
Figure 24 plots the predicted evacuation probabilities with voluntary evacuation orders 
issued at time intervals 5, 17, 29, and 41, which are the late morning times (between 8 and 9 
a.m.) for each of the four days prior to landfall.  A curve without evacuation order is also 
plotted as a reference.  Table 34 gives the total probability of evacuation for each condition. 
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Figure 24   

Impact of voluntary evacuation orders at same time of each day 
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Table 34   
Total evacuation probabilities for voluntary orders at same time of each day 
Order No Order Voluntary at 5 Voluntary at 17 Voluntary at 29 Voluntary at 41 

Probability 20.3% 77.2% 71.5% 61.4% 36.2% 
 
If no evacuation order is issued, the total probability of evacuation is low (20.3 percent).  An 
evacuation order increases the probability significantly (between 36.2 percent and 77.2 
percent).  The earlier an order is issued, the higher the number of people who will evacuate.  
Issuing the order early (for example, at time interval 5) produces a more even distribution of 
evacuees.  This would allow the traffic to be handled more easily.  However, calling an 
evacuation order too early also increases the risk of unnecessary evacuation, a situation local 
officials are very reluctant to do.  On the other hand, issuing the order too late (for example, 
at time interval 41), when the officials have more accurate and stronger evidence of a 
possible hurricane strike, would produce the smallest evacuation period (putting more people 
at risk) and load most of the evacuees onto the network in the last day.  The total 
probabilities of evacuation for the other two scenarios are in between the two extremes 
discussed above. Note that the scenario issuing the order at time interval 29 produces a heavy 
concentration of evacuation on the third day, a situation that may cause potential traffic 
problems. 
 
Figure 25 plots the predicted evacuation probabilities with a voluntary evacuation order 
issued at time intervals 13, 17, 19, and 22, which are between zero midnight or 12 a.m. and 
one a.m., 8 and 9 a.m., 12 and 1 p.m., and 6 and 7 p.m., respectively, on the second day for a 
high-risk household.  A curve without evacuation order is also plotted as a reference.  Table 
35 gives the total probability of evacuation for each condition. 
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Figure 25   

Impact of voluntary evacuation orders at different times of the day 
 

Table 35   
Total evacuation probability for voluntary orders at different times of the day 

Order No Order Voluntary at 13 Voluntary at 17 Voluntary at 19 Voluntary at 22 
Probability 20.3% 72.4% 71.5% 69.4% 65.2% 
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The total probabilities of evacuation do not vary significantly when a voluntary evacuation 
order is issued at different times of the day, although the trend is that the earlier the order, the 
larger the total probabilities.  Although not shown here, the total evacuation probabilities do 
vary somewhat for the day when the orders are issued, even though the differences are small 
for the later days (days 3 and 4).  However, the trend is that the later the order, the larger the 
probabilities for later days (days 3 and 4).  An order at midnight (time interval 13) does not 
produce an increase in the probability of evacuation immediately; the impact does not 
materialize until the night is over.  The same is true for the order in late afternoon. It appears 
that the impact of an order is offset by the arrival of nighttime as evacuees postpone their 
evacuation for early the next morning.  
 
The above analysis showed the important role of the evacuation order in modeling hurricane 
evacuation.  Compared with the current practice of using response curves to distribute 
evacuation trips, which mainly involves the evacuation after the issuance of an evacuation 
order, the sequential logit model has the ability to study the impact of evacuation orders.  
 
The Impact of Distance 
The distance from the storm to the household is determined by the hurricane track and the 
location of the household. Thus, different hurricane tracks would result in different 
evacuation patterns.  To evaluate the evacuees’ responses to distance from the storm, the 
results of three hypothetical hurricane tracks were compared: close, medium, and far, with 
and without a voluntary evacuation order.  The medium scenario used the same distance 
information from Table 32.  The values of distance for close and far scenarios were obtained 
by subtracting and adding 200 miles from the value of distance of the medium scenario for 
each time interval.  If the value of distance was smaller than zero in the calculation, it was set 
to zero.  The evacuation probabilities were calculated for a high-risk household.  For the case 
with a voluntary evacuation order, it was assumed that the order was issued at time interval 
28.  The wind speed of the hurricane was assumed to be constant for all time intervals at 120 
miles per hour.  
 
One problem of the sequential logit model was revealed when the distance data were 
investigated in detail.  It was found that for the close scenario, distance was smaller than 50 
miles from time interval 41 onwards.  It is believed that there exists a limit of distance, under 
which the probability to evacuate should approach zero because when a hurricane is that 
close, a household may face a more serious threat of being caught on the highway during the 
most intense portion of the storm. However, the sequential model still gives a non-zero 
probability even when the distance is zero.  To correct this, the model was forced to generate 
zero probability of evacuation when the distance was within the threshold.  For this analysis, 
it is assumed that the threshold was 50 miles.  Figure 26 plots the evacuation probabilities 
before and after the correction for the close scenario.  The two evacuations were identical 
until time interval 41, when the distance was within the limit.  After that time interval, the 
probabilities were forced to be zero.    
 
Another problem of the model can be revealed when a case where the distance is very far 
away is considered.  No matter how far the hurricane is from a household, the sequential 
model always gives a non-zero probability of evacuation, which is obviously unrealistic.  For 
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example, if 1,000 miles were added to the values of distance in the medium scenario, the model 
still gives an estimate of total probability of 6.4 percent for a low-risk household.  Such a result 
is not reasonable because, in reality, at such a distance the hurricane is not a threat to the 
household at all, and the probability of evacuation should be zero.  Therefore, this model should 
not be used when the hurricane is so far away that it does not present a threat to the household at 
all.  Thus, the model seems to behave appropriately within a window of approximately 1,200 
miles at one extreme and, say, 50-100 miles at the other. 

 
Figure 26   

Before and after correction for the close scenario 
 
The corrected evacuation probabilities of the close scenario, along with those of the medium and 
far scenarios without evacuation orders, are plotted in Figure 27.  Table 36 presents the 
probabilities of evacuation for each day for each scenario. 
 

 
Figure 27   

Impact of distance without evacuation order 
 
The total evacuation probabilities are nearly the same.  However, the evacuation patterns are 
quite different except for the first day, when the hurricanes are still far for all the scenarios.  For 
the far scenario, evacuation probabilities increase day by day as the hurricane approaches, with 
the last day having the largest probability of evacuation; for the medium 

0.000

0.005

0.010

0.015

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

P
ro

ba
bi

lit
y 

of
 E

va
cu

at
io

n

Time Interval

before

after

0.000

0.005

0.010

0.015

0.020

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

P
ro

ba
bi

lit
y 

of
 E

va
cu

at
io

n

Time Interval

close

medium

far



 

 
 

81

scenario, evacuation probability peaks on the third day, with the other three days having 
almost the same probabilities; and for the close scenario, the second day has the highest 
probability of evacuation, a slight drop on the third day, and almost zero probability on the 
fourth day.  The closer the hurricane is, the earlier the household is likely to evacuate.  This 
trend is intensified in the close scenario.  As a result, the evacuation for the close scenario is 
a three-day evacuation instead of a four-day evacuation as for the medium and far scenarios. 

 
Table 36   

Evacuation probability for distance scenarios by day without evacuation orders 
Day Close Medium Far 

1 4.4% 3.8% 3.7% 
2 7.6% 4.6% 3.7% 
3 6.7% 7.9% 4.8% 
4 0.4% 4.0% 8.1% 

Total 19.1% 20.3% 20.3% 
 
 
The above pattern will change, however, when a voluntary evacuation order is issued in time 
interval 28.  The results are plotted in Figure 28, with another close scenario without an 
evacuation order as a reference.  Table 37 presents the total evacuation probabilities for each 
condition. 
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Figure 28   

Impact of distance with voluntary order at 28 
 

Table 37   
Total evacuation probability for the impact of distance with evacuation order 

Distance Close (No Order) Close Medium Far 
Probability 19.1% 47.9% 62.7% 64.9% 

 
The evacuation patterns are the same as the cases without an evacuation order until time 
interval 28, when a voluntary order is issued.  Compared to the close scenario without an 
evacuation order, the probabilities of evacuation increase markedly for each of the 
conditions.  For the close and medium scenarios, the majority of evacuations occur on the 
third day, as compared to the previous cases where evacuations are more evenly distributed 
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among the days.  However, for the far scenario, the evacuation pattern remains the same.  
The probabilities of evacuation increases daily, with the last day being the highest. 
 
In the above analysis, the impacts of distance with and without evacuation orders were 
explored.  The sequential logit model has the ability to predict evacuation behavior under 
different scenarios of change in distance along with other compounding influences, such as 
evacuation orders.  On the contrary, the traditional two-step procedure of combining 
participation rate model with response curves does not have such capability. 
 
The Impact of Hurricane Wind Speed 
In order to evaluate the model’s capability of estimating the impact of hurricane wind speed, 
three scenarios involving a category-2, a category-3, and a category-4 hurricane were 
analyzed.  The scenarios were all analyzed against the backdrop of a high-risk household 
with a voluntary evacuation order issued at time interval 28.  Values of distance were taken 
from Table 32.  Each scenario has constant speed for the 48 time intervals.  The values of 
speed for each scenario are the maximum speed in each of the three categories, i.e., 110, 130, 
and 155 miles per hour.  Figure 29 plots the evacuation probabilities for each scenario.  Table 
38 gives the total evacuation probability for each condition.  
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Figure 29   

Impact of wind speed on evacuation behavior 
 

Table 38   
Total evacuation probability with different hurricane speed 

Hurricane Speed 110 130 155 
Total Probability 56.5% 68.9% 83.0% 

 
In the figure, the evacuation probabilities increase with hurricane speed increases as the 
hurricane approaches.  The higher the speed, the larger the probability to evacuate.  For all 
scenarios, the evacuation probabilities increased sharply at time interval 28 because a 
voluntary evacuation order is issued at that time.  Overall, the third day exhibits the highest 
probability for all three hurricanes. This is due to the combined impact of the evacuation 
order, the value of distance and the speed.    
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The current practice of the two-step procedure in hurricane modeling does not have the 
capability to predict the impact of hurricane speed on evacuation.  Instead, it relies on the 
subject assessment of the analyst. 

 
The Impact of Hurricane Forward Speed 
Although the forward speed of a hurricane is not explicitly a covariate in the sequential logit 
model from the Floyd data, its impact can be analyzed by rearranging the temporal 
distribution of the same hurricane track.  If the distance values were taken from Table 32 as 
our normal scenario, there are 48 time intervals in the normal scenario.  However, if the scale 
of the time intervals is changed, new scenarios with different forward speeds of the hurricane 
can be generated.  Scenario 2 is generated by assuming that the hurricane moves twice as fast 
as the hurricane in the normal scenario.  As a result, the number of time intervals is reduced 
from 48 to 24. In scenario 3 it was assumed the hurricane moves at half the forward speed of 
the normal scenario, and the resulting number of time intervals is increased from 48 to 96.  In 
scenario 4 it is assumed that the hurricane moves at the same pace as the normal scenario in 
the first two day but at half the speed in the last two days as in the normal scenario, and the 
resulting number of time intervals is increased from 48 to 72.  The evacuation probabilities 
were calculated for a high-risk household with a constant hurricane wind speed of 120 miles 
per hour.  Figures 30(a)-(c) plot the evacuation probabilities of each scenario with the normal 
scenario shown in each diagram for comparison purposes.  Table 39 presents the total 
probability of evacuation for each scenario. 
 

Table 39   
Total evacuation probability at different forward speed 

Scenario Normal Twice as fast Twice as slow Twice as slow in last 2 days 
Probability 20.3% 11.5% 37.0% 31.2% 

 
The normal scenario was the hurricane with the same pace as those studied so far.  This 
involved 48 time intervals, in which the model predicted a total evacuation probability of 
20.3 percent over four days of evacuation.  If the hurricane moves twice as fast as in scenario 
2, the hurricane makes landfall in two days instead of four (Figure 30(a)).  The model 
predicts that on the first day, the evacuation patterns would be almost identical for the two 
scenarios.  However, the evacuation pattern changes significantly on the second day.  The 
probability of evacuation is much higher on the second day for the fast scenario, as would be 
expected.  Nonetheless, the total evacuation probability for the fast scenario is a little more 
than half of that of the normal scenario, thereby suggesting that, all else being equal, the 
forward speed of the hurricane has a significant impact on the number of persons evacuating. 
 It is difficult to verify whether this is a reasonable prediction or not since the impact of 
individual characteristics of hurricanes has not been quantified in the past. 
 
If the hurricane moves twice as slow as the normal case (Scenario 3), hurricane landfall 
occurs in eight days instead of four.  In this case, the model predicts evacuation behavior, as 
shown in Figure 30(b).  The peak evacuation day is delayed from the 3rd day to the 6th day.  
The probabilities of evacuation are spread more evenly across the eight days than in the 
normal case, which is expected.  The total probability of evacuation is almost doubled, 
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jumping from 20.3 percent to 37.0 percent.  Again, it is difficult to assess if such a prediction 
is reasonable or not, although it is clearly possible. 
 

  
 (a) 

 
(b) 

 
(c) 

Figure 30   
Impact of hurricane forward speed 
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For the last scenario (Scenario 4), where the hurricane is assumed to move at the same pace 
as in the normal scenario for the first two days and then slow down to half the speed after 
that, the model predictions are shown in Figure 30(c).  Scenarios 3 and 4 have identical 
evacuation patterns for the first two days, which is as expected, but the peak evacuation day 
is delayed from the 3rd to the 4th day in scenario 4.  Total evacuation probability after the first 
two days is doubled, from 11.9 percent to 22.9 percent between scenarios 3 and 4.  These 
responses seem plausible, although there is no way to verify the magnitude of the estimates. 
 
The above analysis demonstrated the flexibility of the sequential logit model.  Hurricane 
forward speed, though not explicitly a covariate in the model, can still be accommodated in 
the model analysis by rearranging the temporal distribution of the hurricane track.  
 
The Impact of Household Risk Levels 
Unlike the participation rate and response cure method currently used to predict hurricane 
evacuation, the sequential logit model is a disaggregate model that takes the characteristics of 
the households into consideration.  The model utilizes, in addition to the dynamic 
information of the storm, the housing type and location of each individual household as 
important factors to assess the probability of the household to evacuate in each time interval. 
In this subsection, it will be demonstrated that the sequential logit model correctly describes 
the evacuation behavior among households of different risk levels.   
 
Table 40 presents four scenarios that were used in the analysis.  Scenario 1 is a low-risk 
household without any evacuation order; scenario 2 is the same low-risk household who 
receives a voluntary evacuation order at time interval 30, which is from 10 to 11 a.m. on the 
third day; scenario 3 is a high-risk household without any evacuation order; and scenario 4 is 
the same high-risk household who receives a voluntary evacuation order at time interval 30.   
 

Table 40   
Four scenarios analyzed with the Floyd sequential logit model 

Household Risk Level  No evacuation order  Voluntary order at time interval 30
Low-Risk Household 1 2 
High-Risk Household 3 4 

 
In addition to the information from Table 40, hurricane wind speed is assumed to be constant 
at 120 mph, which is the speed of a category 3 hurricane.  The values of distance for each of 
the 48 time intervals are the same as in Table 32.  Based on the above information, the 
sequential logit model estimated with the 75 percent Floyd dataset was applied to calculate 
the probabilities for every scenario in each time interval.  The results are plotted in Figure 31. 
The total evacuation probabilities for the scenarios are presented in Table 41. 
 

Table 41   
Total evacuation probabilities by household risk level 

Scenario Scenario 1 Scenario 2 Scenario 3 Scenario 4 
Probability 9.5% 33.7% 20.3% 60.0% 
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Before time interval 30, when a voluntary evacuation order is issued, scenarios 1 and 2, and 
scenarios 3 and 4 have identical evacuation patterns.  As a result, the blue line for scenario 1 
is under the red line for scenario 2, and the green line for scenario 3 is under the pink line.  
During this period, the high-risk households have higher evacuation probability than low-risk 
households.  At time interval 30, the issuing of a voluntary evacuation order increases the 
probability of evacuation markedly for both low-risk and high-risk households, increasing the 
evacuation rate almost five times.  For the same evacuation order, the high-risk and low-risk 
households respond differently (scenario 1 versus 2, and scenario 3 versus 4).  The impact 
seems to be higher among high-risk households than low-risk households.  Such behavior is 
consistent with our understanding of hurricane evacuation since high-risk households are 
generally more responsive to evacuation orders than low-risk households. 
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Figure 31  

Impact of household risk level with the Floyd sequential logit model 
 

The sum of probabilities for all the time intervals for each household is the probability of that 
household to evacuate during a hurricane.  The difference between the sum of probabilities 
for the high-risk household with and without an evacuation order (60.0 percent and 20.3 
percent) is larger than that for the low-risk household (33.7 percent and 9.5 percent).  This 
indicates that the impact of evacuation order is more significant for high-risk households than 
for low-risk households. This conclusion is different from the analysis of the Cox model and 
the sequential logit model estimated from the Andrew data, which conclude that evacuation 
order has the same evacuation impact on low-risk and high-risk households for the Cox 
model and a smaller impact on high-risk households than on low-risk households for the 
sequential logit model estimated from the Andrew data. 
 
The reason for the different conclusions from the three models lies in the different model 
structure and different forms in which the variable evacuation order appeared in the models.  
In the Cox model, the discussion involved only the relative hazards without referencing to 
baseline hazards, hence the analysis was crude at best; in the Andrew model, evacuation 
order was presented as a static variable; while in the Floyd model, evacuation order was 
treated as a dynamic variable, as it ought to be.  It seems that the sequential logit model 
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structure is more appropriate than that of the Cox model, and the dynamic portrayal of an 
evacuation order produces a much more realistic result. 
 
The analysis above demonstrated that the sequential logit model can distinguish the 
household characteristics and correctly predict the evacuation behavior based on the 
distinction; the model performance improves when evacuation order is treated as a dynamic 
variable as it should be.   

 
The Sequential Model with Stated-Choice Data 

 
Model Prediction 
The model used here is the sequential logit model estimated with the New Orleans’s SP data. 
The original dataset was also divided into model estimation and validation parts with a 75-25 
percent split respectively.  There were seven unequal time intervals in the data.  Table 42 
presents the results of the model predictions and stated values based on the 25 percent 
validation data.  Figure 32 plots the model validation results based on Table 42.  The 
horizontal axis is the median of the values in column 2 of the Table. 
 

Table 42   
Predicted and stated evacuations with the SP data 
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Figure 32   

Model predicted vs. stated evacuation with the SP data 
 

Time Interval Time (Hour) Predicted Stated 
1 0-2 125.4 181 
2 2-4 104.0 94 
3 4-6 81.2 60 
4 6-12 74.8 68 
5 12-24 58.5 103 
6 24-48 46.5 49 
7 >48 38.6 9 

Total Evacuation 529 564 
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The model predicted total a evacuation of 529, and the total stated evacuation was 564, 
resulting in a low relative error of only 6.6 percent.  However, the model does not reproduce 
the stated evacuation for most time intervals accurately.  In contrast to the performances of 
the sequential models from the Andrew and Floyd data which accurately reproduced the 
observed evacuation patterns, this sequential logit mode estimated from the New Orleans 
data is inferior.  It is believed that the following are the possible reasons the sequential logit 
model does not accurately predict the evacuation for the New Orleans SP data: 

 
1. Lack of accuracy in estimating the variable landfall, which represents the estimated time 

that the hurricane will make landfall.  Landfall is a dynamic variable in the model.  Its 
role is similar to that of distance in the other models estimated in this study.  However, 
from Table 18, the values for landfall are, at best, approximations.  Many involve 
subjective judgment in their composition.  In some instances, the values of landfall do not 
vary from time interval to time interval.  Moreover, it is unreasonable to expect that 
evacuation can be predicted to within two-hourly intervals, as for intervals 1, 2, and 3, 
when the values of landfall are so roughly estimated. 

2. Compared to the Floyd model, which has four dynamic variables among the six 
covariates, the variable landfall is the only dynamic variable in this model.  As a result, 
the model explains far less variation in the data as characterized by the low log likelihood 
ratio index 2ρ , which is only 0.062 in the model estimated on the New Orleans stated 
preference data (Table 22). 

3. Lack of validity of applying the sequential decision model.  From the way the survey was 
performed, it is obvious that a respondent made up his/her mind concerning if to evacuate 
and, if so, when to evacuate at the very beginning.  This does not conform to the 
sequential decision paradigm, which assumes that a decision maker makes the evacuation 
decision progressively based on the varying conditions of the environment.  The validity 
of applying a sequential decision model to this SP survey is questionable. 

4. Most importantly, there are serious flaws in the survey data as discussed earlier.  From 
Figure 32, it can be seen that most respondents chose to evacuate in time interval 1 
(between 0 and 2 hours), evacuation dropped for time intervals 2 (between 2 to 4 hours), 
3 (between 4 to 6 hours), and 4 (between 6 to 12 hours), peaked again in time interval 5 
(between 12 to 24 hours), and then gradually decreased to nearly zero during time 
intervals 6 to 7.  For most profiles (scenarios) in the New Orleans stated preference 
survey, there was plenty of time between the first time interval and hurricane landfall for 
evacuation even as the hurricane threat intensified during these time periods.  According 
to the sequential decision paradigm, the probabilities of evacuation should increase from 
time interval 1 since time-of-day impact was not considered.  However, for most of the 
profiles, time interval 1 had the highest evacuation.  

5. Another flaw of the survey is revealed if the evacuation responses by profiles that had the 
same variable level for the variable expected landfall is plotted.  Table 43 presents 
responses from the eight profiles of the 75 percent estimation data that had the initial 
expected time-to-landfall time within 12 hours.  Figure 33 plots the total stated 
evacuation. 
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Table 43   
Responses of the profiles with initial time-to-landfall less than 12 hours 
Interval Hour Profile 4 Profile 8 Profile 12 Profile16 Profile 20Profile 24 Profile 28 Profile 32 Total 

1 0-2 11 25 25 9 13 14 13 7 117 
2 2-4 4 8 11 7 9 12 12 1 64 
3 4-6 9 9 9 8 7 7 9 4 62 
4 6-12 4 7 8 4 8 13 16 3 63 
5 12-24 5 13 9 7 8 10 13 3 68 
6 24-48 3 7 6 1 6 7 7 2 39 
7 >48 2 0 1 0 2 3 0 0 8 
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Figure 33   

Stated evacuation for profiles with initial time-to-landfall less than 12 hours 
 

Since the initial time-to-landfall was less than 12 hours, for time interval 4, which was 
between hours 6-12, the hurricane was 0 to 6 hours away, which means the hurricane was 
either about to land or would do so in a few hours.  For time intervals 5 through 7, which 
were more than 12 hours away, the hurricane must have already landed.  However, 27.3 
percent of the evacuations occurred from time intervals 5 through 7.  Between time 
intervals 4 through 7, 42.3 percent of the evacuations occurred.  This observation showed 
that many of the respondents could not logically respond to the questions and give 
meaningful answers. 

6. Lack of time-of-day information.  Another serious flaw of this SP survey is the lack of 
time-of-day information.  From our previous analysis, it is obvious that time-of-day plays 
a very significant role in hurricane evacuation.  In reality, a respondent’s evacuation 
decision will be very different depending on the time-of-day to which it applies.  

 
Some Words on SP Data 
As discussed in the section on stated-preference data and technique, it is believed that there 
are great potential applications of the SP technique in hurricane evacuation.  Some modeling 
effort was made with the SP data from the New Orleans area in this study, but a good model 
could not be produced with the SP data.  However, this in no way implies that the 
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methodologies of this study are not applicable to SP data.  The failure is due to some serious 
underlying design flaws and problems in the data. 
 

Model Comparison 
 
In this part of the analysis, the two survival analysis models, the Cox model and the 
Piecewise Exponential model, were first compared.  It was then followed by comparison 
between the two sequential models: the sequential logit and the sequential complementary 
log-log model.  Finally, a comparison between the two modeling methodologies was 
presented, and the best model was recommended. 
 
Survival Models: The Cox Model vs. Piecewise Exponential Model 
In order to evaluate the Cox model and the Piecewise Exponential model several 
comparisons were made between the two survival analysis models, including the model 
coefficients, GOF, baseline hazards, and model predictions vs. observations. The summaries 
of the two models are presented in Table 44.  Figure 34 plots the model coefficients.  
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Figure 34   

Comparison of the coefficients of the two survival analysis models 
 

Table 44   
Summary results of the two survival analysis models 

Covariate 
Piecewise Exponential Model The Cox Model 

β  se( β ) p-value β  se( β ) p-value 
dist -0.422 0.220 0.055 -0.436 0.219 0.046 

orderper 0.529 0.206 0.010 0.537 0.207 0.010 
flood 0.676 0.211 0.001 0.676 0.212 0.002 

mobile 1.469 0.207 0.000 1.502 0.208 0.000 
LL(C) -580.4  -645.2  
LL( β ) -420 -608.7  

2ρ  0.276 0.057 

 
The coefficients of the two models are very close, as are the variances and the levels of 
significance of the coefficients.  However, the likelihood ratio indexes are quite different.  
The Cox model has a low value of 0.057, while the Piecewise Exponential model has a high 
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value of 0.276.  This is because the Cox model conditioned out the baseline hazards from its 
partial likelihood function, while the Piecewise Exponential model estimates the baseline 
hazards from within the model.  The baseline hazards from the Piecewise Exponential model 
explain part of the variations in the data, hence increasing the likelihood ratio index.  In 
contrast, the estimation of the baseline hazards has to be made separately for the Cox model, 
through the Breslow estimator in equation 11.  Table 45 presents the baseline hazards of the 
two models, and Figure 35 shows them graphically. 
 

Table 45   
Baseline hazards of the Cox and Piecewise Exponential models 

Interval 1 2 3 4 5 6 7 8 9 10 11 12 
Piecewise 

Exponential 0.063 0.092 0.330 0.061 0.000 0.411 0.477 0.223 0.078 0.395 0.693 0.075 

The Cox 
Model 0.067 0.098 0.358 0.064 0.000 0.454 0.523 0.239 0.083 0.436 0.817 0.082 
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Figure 35   

Comparison of the two baseline hazards 
 
The baseline hazards are very close.  Since the Piecewise Exponential model estimates the 
baseline hazards endogenously, their level of significance can be tested.  However, there is 
no goodness-of-fit measure for the baseline hazards estimated through the Breslow estimator. 
  
The observed and predicted evacuations from the Cox model in Table 24, along with the 
predictions from the Piecewise Exponential model, are listed in Table 46, and Figure 36 
presents them graphically.  The Piecewise Exponential model predictions were calculated 
with the model coefficients (estimated using the Andrew estimation data) listed in table eight, 
along with the Andrew validation data.  The two models produced very similar predictions, 
and the predictions were very close to the observations.  The RMSE and percent RMSE were 
1.50 and 19.7 percent for the Cox model and 1.33 and 18.9 percent for the Piecewise 
Exponential model, respectively.  Both the Cox model and the Piecewise Exponential model 
can accommodate time-dependent variables, and both have been observed to reproduce the 
observed evacuation accurately in this study.  The Cox model is one of the most widely used 
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methods in survival analysis.  As a result, there are many tools to facilitate its application, 
including tests of proportionality, functional form, and heterogeneity, etc.  On the other hand, 
applying and testing the Cox model is a cumbersome process.  In addition, the partial 
likelihood function makes it impossible to estimate dynamic variables such as TOD, which 
have the same value for each household in each time interval but nevertheless plays an 
important role in hurricane evacuation.  Moreover, the estimation of baseline hazards has to 
be done exogenously, giving no statistical test to measure the goodness-of-fit.  In contrast, 
the Piecewise Exponential model is simple to apply.  It can estimate the baseline hazards 
endogenously with measures of goodness-of-fit.  Theoretically, it can accommodate such 
variables as TOD, although in reality the existence of collinearity may complicate the 
problem.  In addition, since the time interval is included in the Piecewise Exponential model 
as a categorical variable (hence introducing I-1 dummy variables, where I is the number of 
time intervals) to produce the estimate of the baseline hazard, it is no longer practical to use 
the Piecewise Exponential model when the number of time intervals becomes large. 
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Figure 36   

Observed vs. model predicted evacuations for the two survival models 
 

Table 46   
Model predicted and observed evacuations for the two survival models 

Interval 1 2 3 4 5 6 7 8 9 10 11 12 Total 

Observed 3 5 11 2 0 19 20 6 3 17 33 5 124 
The Cox 
Model 2.6 3.9 14.0 2.5 0 18.1 19.6 8.9 3.3 18.6 35.1 4.8 131.3 

Piecewise 
Exponential 2.6 3.8 13.5 2.4 0.0 17.3 19.0 8.8 3.3 18.1 32.4 4.8 126.2 

 
Sequential Models: Logit vs. Complementary Log-Log Mode 
It has been demonstrated earlier that the logit model and the complementary log-log model 
are closely related to each other.  They can be derived using the same latent variable 
paradigm with different assumptions about the distribution of the random variable.  The 
former assumes logistic distribution and the latter extreme minimal-value distribution.  These 
two distributions are very similar.  The two sequential models estimated with the Floyd data 
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were first compared, followed by a comparison of the model predictions.  The summary 
results of the two models in Table 15 are copied below and renamed as Table 47.  From the 
table, the two models are almost identical with similar coefficients, variances, and levels of 
significance.  The likelihood ratio indexes are the same.  Figure 37 plots the absolute values 
of their coefficients. The logit model has consistently slightly larger coefficients in 
magnitude, which is usually the case except for the intercepts [61]. 
 

Table 47   
Summary results of the two sequential models with the Floyd data 

Covariate 
Logistic Complementary Log-Log 

β  se( β ) p-value β  se( β ) p-value 
intercept -10.108 0.891 0.000 -9.962 0.871 0.000 

gammadistance 4.139 1.012 0.000 4.077 0.989 0.000 
TOD(1) 1.353 0.171 0.000 1.336 0.169 0.000 
TOD(2) 2.221 0.143 0.000 2.181 0.140 0.000 
TOD(3) 1.610 0.156 0.000 1.588 0.153 0.000 

dyanorder(1) 1.917 0.193 0.000 1.903 0.189 0.000 
dyanorder(2) 2.181 0.213 0.000 2.148 0.209 0.000 

flood 0.558 0.078 0.000 0.538 0.075 0.000 
mobile 0.263 0.132 0.047 0.249 0.128 0.051 
speed 0.017 0.006 0.006 0.017 0.006 0.007 
LL(C) -3871 -3871 
LL( β ) -3110 -3110 

2ρ  0.197 0.197 
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Figure 37   

Coefficients of the two sequential models with the Floyd data 
 

Since the two models are almost identical, predictions from the two models are expected to 
be close too.  Figure 38 plots the observed evacuations and predictions from the two models 
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using the 25 percent Floyd validation data.  The two predictions are so close that the red line, 
the sequential logit model prediction, is almost totally covered by the green line, the 
sequential complementary log-log model prediction.  This is the reason that only the 
sequential logit model from the Floyd data was used in the discussion earlier.   
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Figure 38   

Model predictions from the two sequential models with the Floyd data 
 

Model Comparison between the Survival Models and the Sequential Models 
Based on the analysis of the sequential models and the survival models so far, the following 
advantages of the sequential model over the survival model were found: 
 
1. The sequential model can accommodate all dynamic variables, including such variables 

as distance, time-of-day, and evacuation order.  The Cox model cannot accommodate 
certain dynamic variables, which have the same values for every household for each time 
interval, such as time-of-day and evacuation order, if the order is issued to everyone at 
the same time.  The Piecewise Exponential model theoretically can accommodate all 
dynamic variables, but the existence of collinearity makes it difficult, if not impossible, 
from our experience.  As the number of time intervals becomes larger, the application of 
the Piecewise Exponential model becomes more impractical. 

2. The sequential choice model is simple to use.  The major task involves estimating a 
binary choice model, while the Cox model involves a series of cumbersome procedures. 

3. The sequential model has a sound behavioral basis because it is based on the random 
utility theory, while the survival analysis models are pure statistical procedures. 

 
Therefore, it is believed that the sequential model is superior to the survival analysis models. 
Because the logit model is well known in the transportation community and there are 
generally more statistical packages that support the logit model, the sequential logit model 
seems to be the best method to study dynamic travel demand for hurricane evacuation.  
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Variables in the Model 
 
It is important for the models developed in this study to capture the underlying relationships 
between the dependent variable, the probability of evacuation for each time interval, and the 
independent variables.  This subsection serves to show that our models, especially the 
sequential models, include the major variables that have been proven to play important roles 
in studying hurricane evacuation. 
 
After studying 26 hurricane evacuations, Baker [46] identified the five most important 
variables in hurricane evacuation, as listed in Table 48.  The variables used in this study are 
also listed in the table for comparison. 

 
Table 48   

Variable comparisons 
Baker’s Variables Variables in This Study 

Risk level (hazardousness) of the area Flood 
Action by public authorities Evacuation order 
Housing Mobile 
Prior perception of personal risk Hurtrisk, protect 
Storm-specific threat factors Distance, wind speed, time of day 

 
While the names of the variables between the two groups are different, it is clear that the 
variables used in this study are the cores identified by Baker.  The variables representing 
prior perception of personal risk were found significant in the models but were excluded 
because data for such personal perceptions are difficult to get.  The last variable, the storm-
specific threat factors mentioned by Baker, are represented by distance from the storm, 
hurricane speed, and time-of-day in this study.   
 
In addition to the variables listed in the table, our study of the Andrew and Floyd data 
demonstrated the important role of time-of-day in hurricane evacuation.  For example, the 
Floyd data showed that people are least likely to evacuate at night, more likely to evacuate in 
the morning and in the afternoon, and most likely to evacuate in mid-day.  Concerning the 
impact of time-of-day, Baker [46] stated: “Time of day has not proven to be a significant 
deterrent to whether people evacuate, however.  It does appear that given a choice, many 
people would prefer to leave during the day, but many very successful evacuations have been 
conducted late at night….”  For the Andrew and Floyd data, it might be that evacuation 
orders were issued such that many people had the choice of not evacuating at night.  The 
time-of-day variable, TOD in our model, was estimated under such circumstances.  More 
study is needed to model the second situation Baker mentioned. 
 

Model Transferability and Post-Processing 
 
Model Transferability 
So far, the best model from this study is the sequential logit model based on the Floyd data.  
Among all the modeling methodologies, the sequential model includes the most important 
dynamic variables and produces the most powerful model to study the impact of a variety of 
covariates.  The model not only reproduces evacuation behavior based on validation data, but 
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it also produces reasonable predictions under different conditions.  However, these results are 
based on data from one hurricane.  If a model developed from one hurricane can be applied 
to different situations in terms of hurricane characteristics and geographic locations, then this 
model is transferable.  A model that is transferable probably captures the fundamental 
relationships between the dependent variable and the independent variables; hence, it will 
have broader applications.  McFadden [96] discusses multinomial logit model transferability 
when structure changes in tastes are present.  He points out three kinds of shifts in the model. 
 They are shifts in the alternative-specific constants (ASCs), in the scale of the other 
parameters, and in the relative values of these parameters.  Since the ASCs represent the 
average of error terms in utility, their changes are most responsible for non-transferability.  
The second change, which is the shift in scale, reflects the change of variance of error terms 
caused by the differences in choice population.   Usually, the relative values of parameters 
are more robust; hence, their changes are least important in terms of model transferability.  
As a result, McFadden suggests the following hierarchy for adjustment when transferring a 
model: 
 
1. No adjustment when no data is available. 
2. Adjusting ASCs only if the share of choosing an alternative is available. 
3. Adjusting both ASCs and the scales of other parameters when more than one data points 

are available. 
4. Estimate a new model when adequate new data are available using Bayesian methods to 

incorporate previous information. 
 
The Andrew data were used to test the transferability of the sequential logit model estimated 
from the Floyd data.  Since the two datasets were not completely compatible, some 
modifications were necessary and are described below: 

1. The Floyd data was a four-day evacuation and had 48 time intervals with each time 
interval being two hours long; the Andrew data was a three-day evacuation and originally 
had 12 time intervals with each time interval being six hours long.  To utilize the Floyd 
model, the information for Andrew had to be interpolated into two-hour intervals.  The 
modified Andrew data subsequently had 36 time intervals. 

2. The TOD for the Floyd model had four categories: morning, midday, afternoon, and 
night; the TOD for the Andrew model had three categories: morning, afternoon, and 
night.  To make them compatible, the Floyd dataset was aggregated into three categories, 
the same as Andrew. 

3. The Floyd data had information about evacuation time accurate to every two hours, and 
the Andrew data every 6 hours.  To compare model prediction and observation, the model 
prediction had to be aggregated from every two hours to every six hours. 

4. The Andrew data did not have complete evacuation information for all the parishes, 
which is required by the Floyd model.  Out of the 21 parishes the survey covered, only 11 
parishes had the required information.  As a result, the households without the required 
evacuation information were excluded from the transferability study and 135 households 
remained. 
 

After making the necessary modifications, a new sequential logit model based on the 
modified Floyd data was estimated. The model summary is listed in Table 49.  In this model, 
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speed (i.e., wind speed) is no longer significant at 15 percent level although it does have the 
correct sign.  To be consistent, it is retained in the model.  The binary logit model’s Hosmer 
and Lemeshow GOF statistic is 4.065 with eight degrees of freedom. The p-value is 0.851.  
This shows that the null hypothesis that the binary logit model fits the data well cannot be 
rejected.  The contingency table is given in Table 50.  The first group ought to be combined 
with the second one because it has too few observations.  However, the regrouping would 
reduce the Hosmer and Lemeshow statistic and make it harder to reject the null hypothesis 
that the binary logit model fits the data well. Therefore, it was left unchanged. 
 

Table 49   
Modified Floyd sequential logit model for transferability 

Covariate 
Logit Model 

β  se( β ) p-value 
intercept -8.540 0.790 0.000 

gammadistance 5.247 0.956 0.000 
TOD(1) 1.543 0.136 0.000 
TOD(2) 1.721 0.113 0.000 

dyanorder(1) 1.681 0.187 0.000 
dyanorder(2) 1.998 0.194 0.000 

flood 0.555 0.077 0.000 
mobile 0.267 0.131 0.043 
speed 0.008 0.006 0.154 
LL(C) -7742.2 
LL( β ) -6304.5 

2ρ  0.1857 
 

Table 50   
Contingency table for the modified Floyd model 

Group 
Not Evacuated Evacuated 

Total 
Observed Expected Observed Expected 

1 4874 4874 3 2.9 4877 
2 4875 4876 5 4.2 4880 
3 4866 4867 7 6.2 4873 
4 4843 4845 12 10.1 4855 
5 4869 4865 11 15.5 4880 
6 4841 4842 22 21.3 4863 
7 4844 4844 32 32.2 4876 
8 4784 4782 80 81.8 4864 
9 4679 4695 200 183.8 4879 

10 4543 4529 377 391.5 4920 
 
In this analysis of sequential logit model transferability, the knowledge of the total number of 
evacuations in the Andrew data was used to adjust the ASC in the model to ensure that the 
predicted probability of evacuation equals the observed number.  This is conducted by 
observing the following equation: 
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where E is the total number of observed evacuations, Pn,i is the probability of evacuation for 
household n in time interval i from the model, N is the total number of households, T is the 
total number of time intervals, β s are the model parameters previously estimated, and α  is 
the new ASC which is identified in an iterative solution process. 
 
For this study, the updated ASC was found to be –8.180, an increase from the original value 
of –8.540.  Table 51 lists the model predictions for each of the 36 time intervals.  The same 
information is plotted in Figure 39. 
 

Table 51   
Model prediction for transferability 

Time 
ASC Adjustment 

Time 
ASC Adjustment 

Time 
ASC Adjustment 

Before After Before After Before After 
1 0.08 0.20 13 0.11 0.16 25 1.14 1.33 
2 0.08 0.12 14 0.11 0.16 26 1.19 1.40 
3 0.09 0.13 15 0.11 0.16 27 1.20 1.42 
4 0.43 0.63 16 0.54 0.79 28 5.15 5.94 
5 0.45 0.66 17 2.34 3.29 29 5.00 5.74 
6 0.47 0.69 18 2.43 3.39 30 4.21 4.72 
7 0.59 0.87 19 3.06 4.19 31 4.06 4.44 
8 0.59 0.87 20 3.30 4.46 32 3.30 3.53 
9 0.60 0.88 21 3.60 4.78 33 3.05 3.61 

10 0.11 0.16 22 0.85 0.99 34 0.47 0.56 
11 0.11 0.16 23 0.95 1.10 35 0.47 0.55 
12 0.11 0.16 24 1.05 1.22 36 0.46 0.55 
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Figure 39   

Model predictions before and after adjusting ASC 
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As seen from Figure 39, the impact of increasing the ASC is to increase the evacuation 
probabilities for each of the time intervals, as expected.  To compare the model predictions 
with the observations, the length of time interval needs to be aggregated from two hours to 
six hours.  Table 52 lists the observed and the model predicted evacuations after such 
aggregation before and after adjusting the ASC.  The same information is plotted in Figure 
40. 
 

Table 52   
Model prediction vs. observation for transferability 

Time Interval Observation Prediction 
Before Adjustment After Adjustment 

1 0 0.25 0.45 
2 2 1.35 1.99 
3 8 1.78 2.62 
4 2 0.33 0.48 
5 0 0.33 0.48 
6 4 5.31 7.47 
7 17 9.96 13.44 
8 3 2.85 3.31 
9 1 3.53 4.14 

10 6 14.36 16.4 
11 20 10.41 11.58 
12 1 1.40 1.66 

Total 64 51.86 64.02 
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Figure 40   

Observations and model predictions for transferability 
 

In general, the model without adjustment reproduced the three-day evacuation pattern with 
time-of-day impact.  The model predicted a total evacuation of 52 vs. the observed 64, which 
underestimated the total evacuation by 19.0 percent.  For each of the three days, the model 
underestimated evacuation.  After adjusting the ASC, the model produced the same total 
number of predicted evacuations as the observed.  The RMSE reduced from 5.12 to 4.96.  In 
terms of the sum of evacuations for each day, the modified model improved the prediction 
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for day, one although it still was underestimated.  It did very well for day two but not so well 
for day three.  For the third day, the model reproduced the evacuation pattern relatively well, 
but the timing of the evacuations was offset by one time interval.  More specifically, the 
model’s predictions were one time interval before the observation.  One possible reason for 
such a difference might be due to the weight assigned to distance.  This can be shown in 
Figure 41, which plots the observed evacuation frequency distribution by distance for both 
the Andrew and Floyd data.  The plot for Andrew is the 100 percent Andrew data, while the 
plot for Floyd is the 75 percent random sample for model estimation. 
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Figure 41   

Observed evacuation frequency distribution by distance 
 
From the figure, the Floyd data shows that there are four modes in the distribution.  
However, the second mode is significantly larger than the rest.  This mode peaks when the 
distance is around 450 to 500 miles.  The model is estimated with the weight of distance 
being the largest for this distance range (see Figure 9 for shape=8 and scale=0.6).  On the 
other hand, the Andrew data shows that there are three modes; the first being the largest, and 
the second slightly lower.  For the distance around 450-500 miles, the evacuation frequency 
is among the lowest.  This is because it was nighttime for that distance range and evacuation 
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tends to be the lowest at night.  Having applied the same gamma distribution parameters from 
the Floyd data to the Andrew data, it seems that the distances in the neighborhood of 300 
miles were not given correct weights.  When distance was close to but larger than 300 miles, 
it was over-weighted; when distance was close to but smaller than 300 miles, it was under-
weighted.  The distance around 650-700 miles and 1000 miles was also under-weighted.  As 
a result, the model under-predicts for the first two days, over-predicts at the beginning of the 
third day, and under-predicts the latter part of the third day.  Therefore, to better transfer the 
model, further study of the treatment of distance is needed.   
 
The fact that the two datasets were not completely compatible with each other and had to be 
modified for transferability study may also play a role in reducing the accuracy of model 
transferability.  Instead of transferring the more accurate model estimated from the original 
Floyd data, a new model based on the modified Floyd data was estimated and applied to the 
Andrew data. In the new model, TOD only had three categories, which is contrary to four in 
the model estimated from the original Floyd data.  Reducing the number of categories of 
TOD might hinder the model’s capability to make accurate predictions.  However, it seems 
that the impact of the weight of distance is more prominent. 
 
To modify both the ASC and parameter scale is a more complicated issue.  The non-linearity 
of equation 41 makes it difficult.  Usually when applying multinomial logit models in 
transportation, for example in a mode choice model, some aggregate shares of mode choice 
are readily available.  Such information can be used to update ASCs and/or even a scale 
factor for the rest of the parameters.  However, for hurricane evacuation demand modeling, 
such information is difficult to find.  As a matter of fact, the information used to adjust the 
ASC, which is the total number of evacuations, is part of what is expected of the model.  
Therefore, such an adjustment may not even be possible.  The dilemma is that it is well 
known that the model’s transferability will be improved if updated with some readily 
available local information, but at the current stage it is not even clear what such information 
is.  This issue warrants further study. 
 
Model Post-Processing 
The model estimated through the maximum likelihood function is the binary logit model, not 
the sequential logit model itself.  As a result, the model estimation process does not 
guarantee that the total value of model predicted evacuation for all time intervals for all 
households equals the total observed evacuation.  For example, the sequential model with the 
Andrew data predicted a total evacuation of 128.5, while the total observed evacuation was 
124 (Table 26); for the Floyd data, the model predicted a total evacuation of 241 and the 
observed evacuation was 246, which can be calculated from Table 29.  The same procedure 
described by equation 41 should be used to correct this difference.  Such a post-processing 
procedure not only ensures a valid estimation of the binary logit model but also keeps the 
sequential part of the model balanced with the total prediction and observation.   
 

The Dynamic Models Developed in This Study vs. Models in Current Practice 
 
In this subsection, the dynamic models developed in this study were compared with the 
models that are currently used in hurricane evacuation modeling.  The purpose of the 
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comparison is to demonstrate that the current practice cannot adequately satisfy the demand 
of producing dynamic evacuation predictions, while the dynamic models developed in this 
study can meet the challenge.  Current practice in hurricane evacuation travel demand 
modeling is a two-step process that uses response curves to incorporate the dynamic aspect to 
the static assessment of evacuation demand from the participation rate models.  Two 
comparisons were conducted.  The first comparison was between the model predicted 
evacuation rates from our sequential logit model and those from the PBS & J model [20].  
The data used were the Andrew data.  The second comparison was between the commonly 
used response curves and the observed evacuation curves from the Floyd data. 
 
Comparing the Evacuation Rates 
Generally, participation rate models use simple relationships, such as means, rates, and 
distributions.  Mei [17] applied the PBS & J model [20] to the Andrew data and gave a 
comparison of model predicted and observed evacuation rates for 12 parishes.  The PBS & J 
model was a participation rate model.  In this section, this information was used to compare 
the predictions from the sequential logit model with the Andrew data.  Note that the Andrew 
sequential logit model is not our best model.  Table 53 presents such comparison.  The 
overall predicted evacuation rates in the table were weighted means of the predictions across 
the 12 parishes.  However, the observed overall evacuation rates were calculated with all 
households, which were 410 for the PBS & J model and 350 for the sequential logit model.  
This difference is due to the fact that some households had missing information that was 
needed by the sequential logit model.  As a result, the observed overall evacuation rates were 
different between the two models.  Therefore, the percent error, which was defined as 
“(estimated value - observed value)/observed value” expressed in percentage, is the 
appropriate criterion for comparison. 
 

Table 53   
Comparing the sequential logit model and PBS & J model 

Parish 
PBS & J Model Sequential Logit Model 

Predicted Observed % Error Predicted Observed % Error 
Cameron 100.0% 100.0% 0.0% 52.4% 100.0% -47.6% 
Calcasieu 65.8% 30.1% 118.0% 25.6% 24.3% 5.3% 

Jefferson Davis 37.2% 14.3% 160.0% 21.5% 14.3% 50.3% 
Vermillion 66.5% 75.0% -11.3% 34.9% 77.8% -55.1% 

Acadia 54.3% 34.6% 56.9% 28.4% 30.4% -6.6% 
Lafayette 14.8% 22.6% -34.5% 28.9% 20.5% 41.0% 

Iberia 98.6% 57.9% 70.0% 39.6% 54.5% -27.3% 
Iberville 44.7% 40.0% 12.0% 38.8% 33.3% 16.5% 

St. Martin 43.6% 73.3% -40.5% 31.4% 44.4% -29.3% 
Terrebonne 100.0% 42.9% 133.0% 51.9% 37.1% 39.9% 

St. Mary 100.0% 90.3% 11.0% 48.8% 91.7% -46.8% 
Assumption 87.7% 40.0% 119.0% 36.7% 25.0% 46.8% 

Overall Evacuation 
Rate 54.0% 42.5% 27.0% 34.3% 35.4% 3.1% 

 
In terms of overall evacuation, the model predicted and observed evacuation rates were 54.0 
percent and 42.5 percent, respectively, for the PBS & J model, compared to 34.3 percent and 
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35.4 percent for the sequential model, respectively.  The PBS & J model had an overall 
percent error of 27.0 percent, which was much larger than 3.1 percent from the sequential 
logit model.  At parish levels, the absolute value of maximum percent errors was 160.0 
percent for the PBS & J model and only 55.0 percent for the sequential logit model.  The 
RMSE was 29.6 percent for the PBS & J model and only 23.9 percent for the sequential logit 
model.  It seems that the sequential logit model outperformed the PBS & J model in terms of 
predicting evacuation rates. 
 
Comparing the Response Curves 
A response curve is the assumed departure time distribution of evacuees, usually expressed 
as the cumulative percentage of evacuees evacuating by time period, and traditionally has 
been assumed to take on a sigmoid shape.  According to how the analyst expects the 
evacuees to respond to an evacuation order, response curves are typically classified as 
“quick,” “medium,” or “slow.”  However, our study revealed a quite different shape of the 
response curve.  In order to make a comparison, the response curves from Figure 1 and the 
observed and the sequential logit model predicted response curves from the 25 percent Floyd 
validation dataset were incorporated into Figure 42. 
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Figure 42   

Floyd evacuation curve and typically used response curves 
 

The 0 hour is time interval 28 in the Floyd model, between 6 a.m. and 7 a.m., when a 
voluntary evacuation order was issued.  At the 6th hour, between 12 p.m. and 1 p.m., a 
mandatory evacuation order was issued.  The assumed response curves are flat at the two 
ends and steep in the middle, indicating only one peak evacuation.  However, the Floyd 
evacuation curve has two steep sections, indicating more than one peak evacuation.  This 
reflects multi-day evacuation and time-of-day impact.  None of the typically assumed 
response curves come close to resembling the shape of the actual Floyd evacuation curve.  
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However, the sequential logit model closely reproduced the observed response curve.  Some 
disadvantages of the current response curve method can be drawn: 
1. The current response curve method usually covers a shorter period of evacuation, for 

example, less than a day after an evacuation order is issued. However, actual evacuation 
may take several days, both before and after an evacuation is issued, as is the case for 
Hurricanes Andrew and Floyd. 

2. The current response curve method takes the time when an evacuation order is issued as 
the reference point (zero hour), i.e., the values of time axis is relative.  It cannot facilitate 
to study if an evacuation order should be issued; if yes, what type and when to issue.  
Neither can it distinguish the impact of a voluntary and a mandatory evacuation order, or 
a combination of both.  

3. Because the values of the time axis are relative to the time that the evacuation order is 
issued, it is impossible for the typically assumed curves to reflect the time-of-day 
variation, as is seen for the Floyd response curve. 

4. The response curve method is a completely separate step that bears no connection with 
the participation rate model.   

5. The selection of the response curve is subjective, reflecting the perception of the analyst 
only.  There is no mechanism to quantitatively analyze the impact of the hurricane 
characteristics, such as hurricane speed, storm track, etc.  It is also an aggregate model 
that does not reflect the evacuation behavior of a household facing the threat of an 
incoming hurricane.  

 
However, nearly all the above problems associated with the response curve method can be 
resolved with the methodologies discussed in this study, especially the sequential choice 
method.  This is demonstrated throughout the analysis in this section. 
 

Application of the Sequential Choice Model to Other Hazards 
 

In this research, the sequential choice model was applied to study dynamic hurricane 
evacuation demand.  Is the sequential choice model applicable to other hazard situations, 
such as nuclear power plant accidents, chemical spills, or even terrorist attack?  To answer 
the question, the sequential choice paradigm used in this study needs to be revisited.  The 
sequential choice considered in this study is based on the assumption that 
 
1. individual household constantly reassess an approaching threat, thereby, incorporating 

sequential assessment as a basic characteristic of the approach; 
2. conditions change over time; and,  
3. people have enough time to assess the risk dynamically and make evacuation decisions 

accordingly. 
 
Take the threat of a hurricane as an example.  Storm advisories are issued by the National 
Hurricane Center showing areas that are at risk within the next 24-36 hours.  Local media 
also provide information on the pending storm and the threat it poses.  As a result, people are 
constantly being kept up to date with information on the hazard and how it is changing over 
time.  For instance, the path of the hurricane may move closer to where the household lives, 
or it may take a different track and move away from the household; the storm may intensify, 
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or the risk of storm surge and subsequent flooding may arise.  Such dynamic information of 
the hurricane is readily available, helping people to assess the risk dynamically and making 
evacuation decisions according to the assessment of the risk.  A hazard like this is an ideal 
candidate to apply the sequential choice model.  On the other hand, in the case of a nuclear 
power plant accident, little warning may be provided; and the hazard may be so immense that 
the  sequential assessment of the hazard, in which the decision to evacuate or not is made in 
each step of the sequence, is no longer applicable.  However, if the authority has a reliable 
warning of an impending accident before the event, and the public is well informed of the 
development of the event such that people can assess the risk from the accident dynamically, 
then it is a sequential decision process, and the sequential choice model can be applied. 
 
From the above analysis, whether or not the sequential choice model can be applied to a 
hazard depends on the specifics of the threat.  If all the three conditions are met, then the 
sequential choice model can be applied. 
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CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 
 
 

Conclusions 
 

The objective of this study was to address two hypotheses.  The first hypothesis was that 
dynamic travel demand models could be developed that reproduce hurricane evacuation 
travel more accurately than conventional methods using evacuation participation rates and 
response curves.  The second hypothesis was that such models could be transferred to 
different locations with different storm and policy conditions.  Based on the study conducted 
in this research, the two hypotheses have been validated and the following conclusions can 
be drawn: 
  
1. It is possible to produce dynamic travel demand models for hurricane evacuation that are 

more accurate than conventional models that use participation rates and response curves 
to estimate dynamic evacuation demand.   
 
The sequential logit model and the participation rate model from PBS & J were compared 
on the Andrew data.  In terms of overall evacuation rates, the sequential logit model 
prediction had a percent error of 3.1 percent, contrasting the 27.0 percent for the PBS & J 
model.  When compared at parish level, the sequential logit model had the maximum 
absolute percent error of 55.0 percent, while the PBS & J model had 160.0 percent; the 
sequential logit model had a RMSE of 23.9 percent, while the PBS & J model 29.6 
percent.  Clearly the sequential logit model outperformed the PBS & J model in terms of 
predicting evacuation rates. 
 
The comparisons of the response curves with the observed curve identified many 
problems associated with the response curve method.  For example, the response curve 
method only covers a relatively short period of time after an evacuation order is issued, 
and the curves are flat at both ends and steep in the middle, indicating one peak 
evacuation in the middle of the evacuation.  If the risk from the hurricane is high and 
evacuation order is issued late, a quick response curve is assumed.  On the other hand, if 
the risk is low and evacuation order is issued early, then a slow response curve is 
assumed.  However, the actual response curves observed from both the Floyd and 
Andrew data show much longer evacuation duration than those of the three typically 
assumed response curves.  In addition, there were also several steep parts in the curve, 
indicating more than one peak evacuation.  The conventional response curve method 
might be applicable to study storms in the past, but the rapid increase of coastal 
population versus relatively unchanged evacuation routes over the past decades [97] 
might make the conventional curve method obsolete.  Hurricane Floyd was a good 
example.  It was a large storm and caused the largest exodus in evacuation history with 
intensive congestion and extended delays.  Other problems with the response curve 
method include being unable to assess the impact of the type and timing of evacuation 
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orders, the subjective selection of a response curve, complete separation from the 
participation rate model, and the model’s inability to include the impact of time-of-day, a 
variable that has been proven to have a strong impact on evacuation behavior.  On the 
other hand, all the above problems can be resolved with the sequential logit model.  This 
was demonstrated throughout the analysis. 
 
Both survival analysis and sequential choice methods can model the behavior of dynamic 
hurricane evacuation travel demand, although the sequential models are superior to the 
survival analysis models because it can include dynamic variables that significantly 
improve the performance of the model.  The two survival models lack the capacity to 
include the time-of-day variable in the models. The Cox model sometimes cannot include 
the variable evacuation order if the order is issued at the same time to all households.  On 
the other hand, the sequential models have this capability.  The inclusion of the time-of-
day variable TOD in the sequential logit model increased the model likelihood index ratio 
from 0.148 to 0.197, decreased the RMSE  from 5.85 to 2.79, resulting in a reduction of 
52.4 percent in RMSE.  Because of the popularity of the logit model, the sequential logit 
model is recommended over the complementary log-log model, although the two models 
have very similar estimated coefficients and produce almost identical predictions. 
 

2. The sequential logit model developed in this study has demonstrated that it can reproduce 
the evacuation behavior observed in different locations and under different storm 
conditions with reasonable accuracy, i.e., the sequential logit model appears transferable. 
The model estimated with Hurricane Floyd data in South Carolina was applied to 
Hurricane Andrew data in southwest Louisiana.  It reproduced the evacuation pattern 
with a RMSE of 4.53, although further study of the treatment of distance is needed.  This 
is because the evacuation distributions by distance were different between Hurricanes 
Andrew and Floyd, but the same gamma distribution parameters were applied to both, 
causing certain values of distance being over weighted and others under weighted.  The 
model was also applied to a set of hypothetical storm conditions to which the model 
estimated plausible results.  For example, in the case of the Floyd data, a voluntary 
evacuation order was issued at time interval 28 followed by a mandatory evacuation 
order at time interval 31.  The model estimation of the probability of evacuation for a 
high-risk household was 69.7 percent.  However, the model predicted a probability of 
evacuation of only 20.3 percent if no evacuation orders were issued, 62.7 percent if a 
voluntary evacuation order was issued at time interval 28, and 71.2 percent if a 
mandatory evacuation order was issued alone at time interval 28.  These results indicated 
that an evacuation order greatly increases the probability of evacuation; the impact of a 
mandatory evacuation order is only marginally larger than that of a voluntary evacuation 
order; and the impact of issuing a mandatory evacuation order is approximately the same 
as the impact of issuing a voluntary evacuation order first followed by a mandatory 
evacuation order.  Another example was the impact of hurricane wind speed.  Three 
different hypothetical values of speed were assumed for Hurricane Floyd, 110, 130, and 
155 miles per hour, which are the maximum speeds of category 2, 3, and 4 hurricanes, 
respectively.  A voluntary evacuation order was assumed to be issued at time interval 28. 
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 The model predicted evacuation probabilities of 56.5 percent, 68.9 percent, and 83.0 
percent respectively for a high-risk household, indicating that as the hurricane speed 
increases, the probability of evacuation increases accordingly.  Other hypothetical storm 
conditions discussed in the analysis included different distance values resulting from 
different hurricane tracks, different forward speed, and different household risk levels.  

 
3. The sequential logit model developed in this study uses readily available and/or easy-to-

get variables in the model, which are also the major variables proven to be important in 
hurricane evacuation.  For example, the characteristics of a household are represented 
only by its housing type (mobile home or not) and the propensity of the home location to 
flooding.  The rest of the variables were either the characteristics of the hurricane, which 
can be obtained from public sources, such as the National Hurricane Center, FEMA, 
NOAA, or similar agencies; or they were variables describing evacuation policy, which 
are at the discretion of emergency officials.  The comparison between the variables used 
in this study with those that were identified important by Baker [46] shows that the 
models in this study capture the major independent variables. 
 
The sequential logit model is easy to use.  Only a binary logit model needs to be 
estimated, and the rest of the calculation can be easily conducted in a spreadsheet.  The 
sequential logit model itself does not need to assume that the binary logit models for each 
time interval are the same.  However, such an assumption greatly reduces the model 
estimation effort and improves the model applicability.   
4.  

Directions for Future Research 
 

During the course of this study, an increased understanding on modeling dynamic travel 
demand for hurricane evacuation was gained, and opportunities for further research were also 
identified. They are discussed below. 
 
Treatment of Distance 
The treatment of distance to the storm and its impact on evacuation behavior warrants further 
study.  Throughout the study, the variable distance played a very important role in modeling 
hurricane evacuation.  A logarithmic transformation was used to represent the impact of 
distance when modeling the Andrew data.  However, for the Floyd data, a gamma 
distribution was used to represent the impact of distance.  The impact of the logarithmic 
transformation is to give more weight to the distance when the hurricane is close and less 
weight when the hurricane is distant.  However, the impact of the gamma distribution is to 
give more weight to distance in the middle.  The weight increases gradually as the value of 
distance decreases when the hurricane approaches; after reaching the peak, the weight begins 
to decrease.  In this study, distance was given the highest weight when its value was between 
400 and 500 miles. It is believed the latter is a better alternative because it better represents 
the evacuation distribution of distance.   
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In addition, there seems to exist an interaction between distance and time-of-day that this 
study could not explore for lack of more extensive data.  This was revealed from the analysis 
of the model transferability from Floyd to Andrew.  It was suggested that the parameter 
selection of the gamma distribution might be different because certain values of distance that 
normally are associated with the maximum evacuation may fall into certain time-of-day that 
results either accentuates or attenuates evacuation more than the impact of distance and time-
of-day on their own.  Interaction between distance and other variables, such as the risk of 
flooding or the issuing of different evacuation orders, may also exist.  Data in which these 
variables varied would be necessary to estimate the interaction effects. 
 
Another issue for future research that is related to distance is determining whether “distance” 
is better described in terms of time to landfall (i.e., how many hours before the storm crosses 
the coastline) rather than the literal distance (i.e., how many miles away) as used in this 
study.  The model estimated from the Andrew data in this study found both distance and 
forward speed of the storm to be significant variables, suggesting that a variable that 
combined them would be significant as well.  However, treating them separately or combined 
would produce different results.  This is because when they are considered separately they 
are considered additive terms in the utility function, and only distance is transformed with a 
non-linear transformation.  It is likely that “time to landfall” would also need to be 
transformed in a similar manner to distance, although the transformation may be different.  
Further investigation of this aspect of the model formulation is needed. 
 
Model transferability 
Only limited transferability analysis was conducted in this study although the initial analysis 
showed encouraging results.  More data that cover a wide range of geographic areas and 
hurricane categories are needed to better explore this subject.  Updating ASCs and/or the 
scale of the parameters based on the aggregate shares of the population or sub-populations 
are something that is readily achievable in a regular multinomial logit model.  However, in a 
sequential logit model, a binary logit model is estimated to best-fit conditions in all time 
intervals, and aggregate shares change for each interval.  Typically, these aggregate shares 
are not readily available like they are in a regular multinomial logit model. For example, in a 
regular multinomial logit mode choice model, the alternative specific constants of a 
transferred model can be updated by merely knowing the aggregate modal share in the area 
to which the model is being transferred.  On the other hand, transferring a dynamic sequential 
logit model to a new area would require share information (the proportion of households 
evacuating) for each time interval, and this is not readily available data unless a special 
survey is conducted.  Even if such information were available, the procedure by which the 
parameters are updated still has to be developed.  
 
The Impact of Time Interval Length 
The impact that the length of the time interval has on the accuracy of dynamic demand 
estimation is unknown.  Intuitively, the shorter the time interval, the more accurate the 
estimate.  However, this will also mean there are more stringent data requirements, and the 
computational effort will be greater.  On the other hand, if the time interval is too long, the 
dynamic aspect of the modeling will be lost.  The optimal length of interval is likely to be a 
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tradeoff between the accuracy of the study, the cost and availability of more detailed data, 
and the purpose of the study (long term, short term, or real time operation).  Moreover, the 
impact of unequal time intervals also needs to be explored.  
 
Model Performance at Evacuation Zone Level 
In this study, the model was tested at parish level.  However, ideally, the model should be 
able to predict the number of evacuations satisfactorily at the level of evacuation zone, which 
is typically much smaller than county level.  Further study is needed to explore how the 
model performs at evacuation zone level. 
 
Testing for State Dependency 
One assumption that was made in the derivation of the sequential choice model was that the 
utility differences among different time intervals were independent, i.e., there is no state 
dependency among time intervals.  This assumption needs to be satisfied to apply the 
sequential choice model.  It is believed that this assumption can be tested by first estimating a 
new model, excluding one or more time intervals, and then testing for the hypothesis that the 
logit model parameters are the same between the new model and the original model.  If 
independent, the hypothesis should not be rejected.  The validity of this idea needs to be 
proved with further statistical derivation. 
 
Detailed Categorization of Flood    
In the use of the Floyd data in this study, households living in an evacuation zone that would 
be flooded with a category 3 storm or above were coded as households who were at risk of 
flooding.  That is, the covariate flood was coded 1 if the household lived in a category 3 flood 
zone or above and 0 otherwise.  However, intuitively, a more detailed categorization of 
households by a variety of factors (e.g., storm category, storm path, and storm surge 
potential) would seem appropriate.  A more detailed definition of flooding potential and its 
impact on the accuracy of modeling evacuation behavior needs to be explored. 
 
Search for Other Variables 
There are other variables that may impact a household’s decision to evacuate or not and were 
not included in this study because they did not appear within the data used.  An example of 
such a variable is the evacuation behavior of a neighbor or the appeals of relatives and 
friends.  Other examples include the manner in which evacuation orders are communicated, 
the content of the message, identification of those areas that will be affected by storm surge, 
and the impact that owning pets has on evacuation behavior. New covariates are to be 
explored and added in the model, provided such data are available. 
   
Using SP Technique and Combining SP and RP Data 
When studying hurricane evacuation, RP data are only available after an area has been hit by 
a storm.  This limits the opportunity to collect RP data.  Added to this is the fact that in an RP 
survey, some variables that would normally play a major role in an evacuation decision may 
not vary much within the storm being observed.  As a result, the impact of such variables 
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cannot be estimated in the model.  On the other hand, an SP survey can be designed to 
investigate the impact of any variable, and it can be conducted at any time.  In addition, a 
small sample of SP data could be useful in model transfer, providing information to update 
the model parameters through Bayesian updating procedures.  It would seem that the 
potential to combine SP and RP data provides the greatest opportunity to develop and 
improve dynamic travel demand models for hurricane evacuation if the advantages of both 
approaches can be used. 
 
Developing Dynamic O-D Table for Hurricane Evacuation 
In hurricane evacuation, people’s destination choice behavior is different from that of daily 
travel.  The traditional gravity-type trip distribution model may not be applicable.  Plus, the 
travel times between O-D pairs will not be constant but will vary from time interval to time 
interval.  As a result, how to transform the dynamic travel demand into a dynamic O-D table 
is the natural challenge that follows.   
 
Including Capacity Restraints to Dynamic Travel Demand 
The models developed in this study have been estimated as if travel demand is insensitive to 
travel supply.  That is, no explicit account has been taken of the capacity of the transportation 
network when estimating demand.  This is a problem inherent in the basic four-step 
procedure developed for urban transportation planning, unless an iterative process is 
instituted to allow a balance to be established between supply and demand.  However, such 
an iterative application of the travel demand and trip assignment process is seldom applied in 
urban transportation, primarily because demand is usually accommodated within the analysis 
periods commonly used in urban transportation planning.  This is not the case in hurricane 
evacuation where evacuation demand may well exceed the capacity of evacuation routes for 
extensive periods of time, causing long delays that can inhibit demand as persons considering 
evacuating are discouraged by road conditions.  Unfortunately, network conditions were not 
included in our model since data on the impact that road conditions have on travel demand 
were not available.  Thus, even though the dynamic demand models developed in this study 
were calibrated on evacuation trips that were actually made, further development is required 
to make this evacuation demand process sensitive to the level of congestion on the 
evacuation routes.   More study is needed to link demand with supply, and perhaps this can 
be achieved by adding an iterative feedback loop from a dynamic traffic assignment 
procedure to the demand estimation process or by adding a variable reflecting level of road 
congestions within the demand model formulation. 
 
Predicting for the Maximum Evacuation 
The model predicted evacuation probability as the sum of the expected values of each 
household, not the maximum values.  In transportation planning it is sometimes appropriate 
to account for the maximum, or near maximum, value as the basis for decision making.  An 
example is the use of the 30th highest hourly volume as the design volume for a highway.  In 
hurricane evacuation where people’s lives are at risk, it may also be appropriate to plan for 
the worst case scenario, i.e., to plan for the situation where the model produces the maximum 
evacuation traffic instead of the mean.  When calculating the conditional probability using 
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the binary logit model, a standard error is available for the prediction.  This makes it possible 
to calculate the confidence band with certain level of confidence.  Hence, the demand that 
can be expected to be exceeded only a certain percentage of the time could be estimated.  
However, the actual probability of evacuation for a household in each time interval is the 
unconditional probabilities calculated with the sequential logit model, which uses the 
conditional binary logit models repeatedly.  As a result, finding the maximum probability of 
evacuation with certain level of confidence is a more complicated problem.  Further study is 
needed to address this problem. 
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ACRONYMS, ABBREVIATIONS, & SYMBOLS 
 
 

Andrew Hurricane Andrew, 1992 
ANN             Artificial Neural Network 
ATIS  Advanced Traveler Information Systems 
ATMS  Advanced Traffic Management Systems 
C Log-Log      Complementary Log-Log 
DTA  Dynamic Traffic Assignment 
FEMA  The Federal Emergency Management Agency 
Floyd  Hurricane Floyd, 1999 
IIA  Independent From Irrelevant Alternatives 
IID  Identically Independently Distributed 
IRZ Immediate Response Zone 
ITS  Intelligent Transportation Systems 
GOF  Goodness-of-fit 
LSU  Louisiana State University 
MLE Maximum Likelihood Estimation 
MNL Multinomial Logit Model 
NOAA National Oceanic and Atmospheric Administration 
O-D Origin-Destination 
PAZ Protective Action Zone 
PZ Precautionary Zone 
RH Rolling Horizon 
RMSE Root-Mean-Square-Error 
RP Revealed Preference 
SP  Stated Preference 
TAZ Traffic Analysis Zone 
TDM Transportation Demand Management 
TOD Time-of-Day 
TODF Time-of-Day Factor 
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