Air Content in Louisiana "Several Points for Future Discussion"

Tyson D. Rupnow, Ph.D., P.E. Concrete Research Engineer

Overview

- □ Background
- □ Air Types
- □ Why Use
- □ Mix Designs
- Discussion Points
- Other States Specifications
- □ Future Direction
- Questions

Background

- □ Air in concrete is a standard practice
 - Helps protect the paste from freezing and thawing damage
 - Increases yield
 - Increased workability
 - Decreased segregation and bleeding
 - Decreases strength
- □ Air is 'cheap'

Background

- Older pavements did not have air entrainment in them
- Use of tallow and other grinding aids provided paste protection
- □Some of these pavements are still in use today
 - Some are over 100 years old in the worst case scenario environments

Air Types

- □ Vinsol resins
- □ Non-vinsol resins
 - aka synthetic air entraining agents
 - Detergents, salts of sulfonated lignin, fatty acids, etc.
- □ Air entraining cement
 - i.e. the air entrainer is ground with the clinker during manufacture

Why Use?

- □ Increase yield
- □ Increase workability
- Decrease or eliminate segregation or bleeding
- Increased resistance to freezing and thawing

Mixture Designs

- □ Air constitutes 4-8% volume in air entrained concrete
- ☐ Air constitutes o-3% volume in non-air entrained concrete

In order for freeze thaw damage to occur, the pavement temperature must be below 17°F for 5 hours AND be above 90% saturation

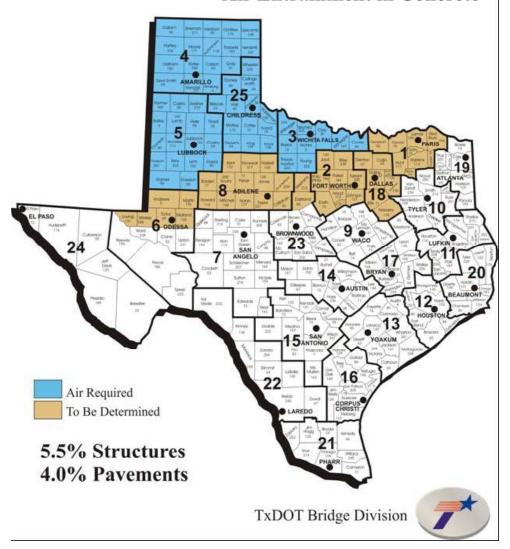
Discussion Points

☐ Three questions:

- Do our pavements reach the critical temperature?
- 2. Do our bridge decks reach the critical temperature?
- If they do reach that temperature, are they sufficiently saturated to cause damage?

Other States Specifications

- □ Texas
- □ Florida


Texas Specifications

- □ Recent major overhaul
 - Air is required unless noted on plans
 - Can waive according to map on next slide

Texas Specifications

Texas Specifications

- Overhauled the specifications for two major reasons
 - Concrete is not cold enough for the required length of time with sufficient moisture present
 - Compatibility issues with the ever increasing complexity of concrete
- Contractors can still add air for workability, but testing will not be required

Florida Specifications

- □ Air entrainment of concrete is not required
- Acceptable air content range is 1 to 6% if air entraining agent is added

Where Do We Go From Here?

- □ Combination of FL and TX specifications?
- □ Adapt Texas specifications to our state?
- Adapt Florida specifications to our state?

Pros and Cons

- □ Pros
 - Decreased cement contents to achieve similar strengths
 - Decreased chance for incompatibilities
 - Reduced cost of doing business
 - Capitalism determines the amount of air for any particular project

- □ Cons
 - Potential for increased bleeding and segregation
 - Backlash from admixture companies
 - Decreased yield
 - Decreased workability

Food for Thought

City	Year	Record Low	Average Low
Baton Rouge	1989	9	40
Lake Charles	1989	11	41
New Orleans	1889	7	43
Shreveport	1930	-2	36

Future Direction

- □ LTRC is looking into this topic very closely
- Also looking at current specifications with the construction and materials divisions of DOTD
- □ More widely accepted that one would think

Questions