Evacuation Planning, Improvements, and Studies

Chester Wilmot, Ph.D., P.E.
Louisiana Transportation Research Center and
Louisiana State University

Hazards in the region

Tsunamis

Wildfires

Tornados

Hurricane paths 2005-2009

Evacuating from a hurricane

Photo Source: Yi-Chang Chiu, University of Arizona

Recent History in Louisiana

- Prior to Hurricane Georges in 2000, there was no regional traffic management plan in LA
- No "designated" evacuation routes outside urban areas
- 1st plan was developed in 2000 and included contraflow in New Orleans
- Used for the first time in 2004 for Hurricane Ivan with questionable results
- "Revised plan" was developed in 2004-2005 and implemented for the first time for Hurricane Katrina
- Evacuation was quite effective for those with the desire and means to evacuate
- Plans for the evacuation of low-mobility populations were obviously "lacking"

New Orleans Contraflow Initiation Point

Hurricane Ivan Evacuation - Interstate 10 (west of New Orleans)

Problems Identified in Ivan

- An over-reliance on the westward movement of traffic
- Confluence congestion created by the confluence of major evacuation routes in Baton Rouge, Hammond, Lafayette, Covington, and Slidell
- Inefficient loading of contraflow in New Orleans
- Inability to access up-to-date traffic information and provide timely and accurate traveler information to evacuees

Total Traffic Volumes for Evacuation WB I-10 at Loyola Dr 09/13/04 - 09/15/04

Proposed Solutions

- Maximize the available routes out of the New Orleans area
- Improve the loading of contraflow segments in New Orleans
- Minimize or eliminate the congestion in Baton Rouge
- Access up-to-date traffic information and provide timely and accurate traveler information to evacuees

New Orleans Alternatives

<u>Scenario</u>	12h volume at max. flow	Evacuees moved	Increase over no-c/f	
Ivan w/o contraflow	49,464 veh	123,660 people		
Ivan w/contraflow	67,224 veh	168,060 people	<i>35.9%</i>	
I-10/I-610 Loading Plan	97,572 veh	243,930 people	97.3%	

Baton Rouge Alternatives

<u>Location</u>	<u>Ivan – Speed</u>	Flow Rate	w/Contraflow	Speed	Flow Rate
1-12 (bef. interchange)	16 mph	2,834 vph		56 mph	5,422 vph
I-110 (MS River Bridge) I-110 (aft. interchange)	28 mph	4,029 vph		22 mph	4,399 vph
I-110 (aft. interchange)	48 mph	2,067 vph		55 mph	3,701 vph

The Plan and Its Effects

Duration of Evacuation Volume

Effect of Contraflow on Traffic Volume

Hurricane evacuation modeling

Risk, actions, and evacuation behavior very time sensitive, so dynamic modeling necessary

Evacuation - a set of discrete choices

 P_t = momentary probability of evacuating in time period t

Momentary evacuation decision P_t

- P_t = f(current conditions)
- Current conditions include:
 - Storm intensity
 - Storm location
 - Storm speed
 - Type of dwelling
 - Risk of flooding
 - Administrative decisions (e.g. type and timing of evacuate orders, initiation and termination of contraflow)

Entire evacuation decision

Model estimated on S.C. data

Voluntary Evacuation Orders at Same Time on Different Days

S.C. model applied in Louisiana

Wind speed diagram of hurricane Floyd

Evacuation destinations

Variables in destination choice model

- Dynamic values of:
 - Travel time from origin to destination in previous time interval
 - Remaining accommodation available in each destination zone in previous time interval
 - Predicted path of storm at time t
 - Ethnic similarity between origin and destination zones
 - MSA in destination zone?

Trip length frequency distribution

Observed and predicted O-D

Observed and predicted traffic

Modeling Route Choice

• Factors:

- Shortest path
- Familiarity with route
- Services available (gas stations, rest areas)
- Safety of route (predicted path of storm at time of route choice)
- Facility class (freeway, arterial)

Applications

- New Orleans
 - Testing the benefit of adaptive evacuation plans
- Southern Louisiana (planned)
 - Estimating traffic volumes for different storm scenarios and administrative decisions (e.g. contraflow, staged evacuation, selective evacuation, modified evacuation plans, road closing criteria)

New data collection approach

- Hypothetical storms and administrative actions presented audio-visually in a DVD
- Each storm presented in 4 time-based scenarios
- Respondents state whether they would evacuate or not in each scenario
- Each respondent subjected to 3 storms

Evacuation departure times

Vehicles used

No. of vehs.	Reported (%)	Stated (%)
1	58	<i>67</i>
2	33	29
3	5	3
≥ 4	4	1

Type of refuge

Туре	Reported (%)	Stated (%)
Friend/relative	52	49
Hotel/motel	37	43
Public shelter	1	1
Workplace	1	1
Other	9	6

Planned future use of model system

- Run on variety of storms
 - Storm intensity, path, speed, surge
- Apply alternative administrative strategies
 - Vary the type and timing of evacuation orders, vary initiation and termination times of contraflow, test staged and selective evacuation plans, modify evacuation plans, and institute network changes
- Identify best administrative strategy for each storm and store solutions for later retrieval

Evacuation and Climate Change

- Climate change may generate more severe storms
- Modeling permits vicarious exploration of alternatives aimed at establishing effective, efficient, and safe evacuation plans
- Your "Forever Open Road" is a road designed for resilience; we address the best operation of that road in crisis situations
- Thank you for your attention!

SPECIAL REPORT 294

SPECIAL RE

The F of Tra in Em Evac

NATIONAL COOPERATIVE **HIGHWAY** RESEARCH **PROGRAM**

John L. Renne, Thomas W Todd Litma Transit in Emergency

Evacuation

Transportation's Role in **Emergency Evacuation and Reentry**

A Synthesis of Highway Practice

TRANSPORTATION RESEARCH BOARD

Produced by the Unit

http://www.trb.org/

Summary and Conclusion

- Evacuation plans in place to handle traffic and transportation needs
- Opportunity to provide better and smarter solutions based on analysis and planning
- Modeling has great potential to improve evacuation plans

Photo Source: Lt. John Denholm Harris Co. (TX) Sheriff's Office

earthquakes

Hurricane intensity

Hurricane paths 2000-2009

Evacuation Basics

- TEMPORAL AND SPATIAL
- Hazard Characteristics
 - Scale (how "big?" -> How far to evacuate), Amount of advanced notice, Shelter-in-place options
- Evacuee Characteristics
 - Who are they? Where are they? How many? How mobile? Behavior (if/when will they leave?), What are their needs?
- Transportation Resources
 - Modes, Highway Transit, Traffic Control, Traffic Management
- Communication, Communication, Communication
 - To/from, Across and between all levels, jurisdictions, agencies, and evacuees, Need for situational awareness

"Low Mobility" Evacuees

- Individuals without personal transportation, elderly, infirm, tourists, economically disadvantaged, prisoners, homeless, etc.
- How many persons fit these description?
- Where are they located?
- Who are they and what are there needs? medicine, oxygen, dialysis, etc.
- Who is responsible for them if they are unable to take of themselves?
- Where do they go? How do they come back?

Evacuee Categorization

Problems of Low Mobility Evacuation Planning

- Existing traffic/transportation simulation systems are not created to model evacuation conditions
 - Scale (e.g., number of vehicles)
 - Scope (e.g. duration, geographic area)
- Existing models do not permit the modeling and simulation of multiple modes of transportation simultaneously
- Most models are not able to give analysts the MOE's they'd like or decision-makers the answers to questions they pose
- Limited understanding and development of underlying behaviors of evacuation travel for different evacuee and mode types

Problems of Modeling Evacuation Transportation Plans

- Existing traffic/transportation simulation systems are not created to model evacuation conditions
 - Scale (e.g., number of vehicles)
 - Scope (e.g. duration, geographic area)
- Existing models do not permit the modeling and simulation of multiple modes of transportation simultaneously
- Most models are not able to give analysts the MOE's they'd like or decision-makers the answers to questions they pose

Recognized Limitations

- Existing traffic/transportation simulation systems are not created to model evacuation conditions
 - Scale (e.g., number of vehicles)
 - Scope (e.g. duration, geographic area)
- Existing models do not permit the modeling and simulation of multiple modes of transportation simultaneously
- Most models are not able to give analysts the MOE's they'd like or decision-makers the answers to questions they pose
- Limited understanding and development of underlying behaviors of evacuation travel for different evacuee and mode types

Current Research

- Application of the TRANSIMS system
- Can be used to model very large geographical regions and large numbers of travelers
- Effort and expertise required to code and run
- Issues of verification, validation, and calibration
- Hardware and software requirements
- History, experience, and acceptance within the professional transportation community
- Not developed for the purpose of evacuation

Evacuation Traffic Simulation

- Has proven value
- Permits bottlenecks to be identified and potential solutions to be analyzed before they become problems
- Gives quantitative MOE results to decision-makers
- Allows effects of alternative strategies and adverse conditions to be assessed without consequence

Evacuation Modeling Spectrum

From: "Structuring Modeling and Simulation Analyses for Evacuation Planning and Operations"

By: Hardy, Wunderlich, Bunchand, and Smith

Recognized Limitations

- Existing traffic/transportation simulation systems are not created to model evacuation conditions
 - Scale (e.g., number of vehicles)
 - Scope (e.g. duration, geographic area)
- Existing models do not permit the modeling and simulation of multiple modes of transportation simultaneously
- Most models are not able to give analysts the MOE's they'd like or decision-makers the answers to questions they pose
- Limited understanding and development of underlying behaviors of evacuation travel for different evacuee and mode types

Assisted Evacuations

- Evacuation planning has historically been targeted at persons with personal vehicles
- A substantial percentage of potential vulnerable populations do not have personal vehicles
- Plans to evacuate "carless" populations in many locations have been created relatively recently or are currently in development
- There have been few actual activations to gain knowledge and experience, nor tests, drills or simulations to evaluate potential weakness and needs

TRANSIMS System

- Incorporates aspects of planning and operations
- Model large geographical regions and large numbers of travelers
- Model populations, travel activities, routing, and analyses it with a microsimulator
- Open source and available
- Effort and expertise required to code and run
- Issues of verification, validation, and calibration
- Hardware and software requirements
- History, experience, and acceptance within the professional transportation community
- Not developed for the purpose of evacuation

TRANSIMS Structure

Network Input

 Structure and characteristics of the transportation network (control, capacity, etc.) and activity locations

Population Synthesizer

Creates a disaggregate synthetic population based on aggregate census zonal information

Activity Generator

Travel surveys or observation of past evacuations

Router

- Spatial and temporal travel behavior and route assignments

Microsimulator

 Tracks and compiles movements and statistics of each agent (vehciles & peds)

Visualizer

3rd party developer Balfour Technologies Inc.

LSU Study - Approach

- Step 1 Network development
- Step 2 "Base Model" validation and calibration based on 2005 Katrina evacuation
- Step 3 Code "New" New Orleans multimodal plan
- Step 4 "Base Model" validation and calibration based on 2005 Katrina evacuation
- Step 5 Code and test alternative plans and ideas

Jefferson Parish Bus Routes

Evacuation Pick-Up Locations

SENIOR CENTER LOCATIONS

- Arthur Mondy Center
 Newton Avenue, Algiers
- Kingsley House
 1600 Constance Street,
 Lower Garden District
- Central City Senior Center2020 Philip Street, Central City
- Mater Dolorosa
 Carrollton Ave, Carrollton

GENERAL POPULATION

- Smith Library Bus Stop 6300 Canal Blvd., Lakeview
- Palmer Park
 Claiborne and S. Carrollton,
 West Carrollton
- 7. McMain High School 5712 S. Claiborne Ave, Broadmoor
- 8. Lyons Community Center 624 Louisiana Ave, Irish Channel
- 9. Dryades YMCA 1924 Philip Street, Central City
- 10. Warren Easton High School 3019 Canal Street, Treme
- 11. Municipal Auditorium 801 N. Rampart, 7th Ward
- 12. O. Perry Walker High School 2832 General Meyer, Algiers
- 13. Stallings Community Center 4300 St. Claude, Bywater
- 14. Sanchez Center Caffin & N. Claiborne, Lower 9th Ward
- 15. Gentilly Mall Parking Lot Chef Menteur & Press Dr., Gentilly
- 16. Walgreen's Lake Forest & Read Blvd, NO East
- 17. Mary Queen of Vietnam 14001 Dwyer, New Orleans East

Study Questions

- Proof-of-Concept Can TRANSIMS be used for evacuation analysis? Are its results reasonable?
- Develop a variety and range of hazard-response scenarios
- How many buses might be needed under various scenarios? What routes should they take?
- Potential to estimate the number of location of evacuees
- Examine the potential of alternate plans

Network Link 58296 (DOTD Station 54 -- 2 miles W of US 51/I-55 Jct)

Westbound I-10 Traffic Speed

US 190 WESTBOUND Denham Springs@Amite River Bridge

