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ABSTRACT 

Although 40% of all crashes in Louisiana are on local roads, local road safety improvement 

programs have not received the attention needed to reduce crashes. Local road crash 

countermeasures are an important part of the overall efforts to reduce crashes and their 

severity in Louisiana. The efforts to develop a local road safety program are hampered by the 

lack of appropriate risk assessment that enables local agencies to reduce crashes using low 

cost countermeasures.  This paper provides a methodology that can be used by local agencies 

to deploy countermeasures based on a risk assessment and optimization to meet a fixed 

budget. First, a statistical model is presented to assess the risk of local road segments taking 

into account AADT and geometric features of the road segment or intersection. Secondly, 

low cost countermeasures are recommended for individual road segments and costs for 

improvements are assessed. Thirdly, a score which allows the ranking of road projects is 

developed for each road segment. This score incorporates the risk associated with the 

observed number of crashes, the benefits of improvements, and the total cost of a project. 

Finally, guidelines for a local road safety improvement program are presented to allow local 

agencies to institute procedures for a systematic system-wide road improvement 

methodology. The deliverables include an Excel application that uses OLAP to obtain a 

ranking of candidates for road improvements. This application makes use of crash data, 

engineering features, and AADT to compute empirical Bayes (EB) estimates and tail 

probabilities for each road segment and intersection. Road segments and intersections with a 

tail probability below 5% are selected as candidates for countermeasures. These candidates 

are evaluated using Google Earth, countermeasures are suggested, and costs and benefits of 

the countermeasures are obtained using published information. The resulting road 

improvement projects are then ranked using multi criteria DEA including costs, benefits and 

crash risks. 
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IMPLEMENTATION STATEMENT 

This project includes an Excel application that was applied to local roads of two parishes in 

Louisiana. The application requires either access to the LSU domain or access via a virtual 

private network (vpn) to get access to the databases used for this project. The application can 

be applied to other parishes as well as information becomes available. The full 

implementation for the local roads in the state of Louisiana requires similar information as 

available for state routes.  These road features included lane and shoulder width, curves, 

driveway density, and intersection features such as turn lane and traffic controls. Since there 

are no predefined road segments for local roads, segments of approximately 500 feet are 

recommended.  Also crashes need to be map spotted to the intersections or road segments. 

After this information has been collected the program can be easily implemented for other 

parishes. 
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INTRODUCTION 

Local roads make up 73% of all road miles in Louisiana and experience 40% of the 160,000 

yearly crashes on Louisiana roads. Over the past five years, 951 fatal crashes, over 92,000 

injury crashes, and over 242,000 property damage-only crashes occurred on local roads. The 

total cost for these crashes added up to over $10 billion, over the five years. Louisiana has 

one of the highest insurance premiums of all 50 states, and is also one of the ten worst states 

in regard to safety performance. To improve these matters, Louisiana has launched an 

ambitious Strategic Highway Safety Plan aiming at zero deaths, with the interim goal of 

reducing traffic fatalities and serious injuries by 50% by 2030. The accomplishment of such 

tall objectives calls for effective crash countermeasures in all aspects, including reducing the 

number of crashes taking place on local roads. Thus, local road crash countermeasures are an 

important part of the overall efforts to reduce crashes in Louisiana and their impact on lives, 

health, and the economy. 

 
 
Currently, no local road improvement program takes into account the risk at road segments 

or intersections based on average annual daily travel (AADT) and geometric design features.  

In order to develop a safety improvement program for local roads, several obstacles must be 

overcome. Among them are: lack of available information on clearly marked road segments 

through mile posts, the average daily travel for clearly identifiable road segments, clearly 

marked crash location (i.e., GPS coordinates), and a road inventory database that allows easy 

linkage to the crash database. Local agencies responsible for maintaining these roads often 

lack the resources to analyze crash frequencies or to identify locations in need of safety 

improvements, and many lack the funds necessary to make major improvements to the roads. 

To enable local agencies to identify high-risk crash locations, estimate costs for safety 

improvements, and recommend low-cost solutions to implement safety measures within the 

constraints of the information available, a process is needed that incorporates all necessary 

steps to implement low cost improvements successfully. 

 
 
Other states have investigated potential solutions that will allow local agencies to perform 

crash data analysis and implement engineering solutions. For example, in Illinois, Jo et al., 

developed software that integrates maps and crash data in order to illustrate patterns and 

facilitate analysis of crashes by local agencies [1]. There is also an ongoing project at North 

Dakota State University with the goal to improve local road safety by Vachal and Johnson 

[2]. In a more general context, Sohn has applied quality functions to local roads in order to 

analyze crash data in Korea [3]. While local police stations are responsible for traffic 
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accident management, crash data are housed and analyzed centrally in Korea. Sohn models 

different locations in the jurisdiction of a given police station in terms of the “quality of 

service” that customers (i.e., traffic participants) receive at those locations [3].  

 

Transportation agencies must consider both safety and security when allocating funds to 

potential road improvement projects [4]. Due to the fact that resources are often scarce, it is 

important to locate projects where intervention would be most beneficial. Comparative 

evaluation of locations requires a systematic approach, beginning with a standardized 

definition for classifying locations by hazard concerns, followed by a theoretically sound 

approach to statistically identity these locations. There are multiple methods of doing this, 

each with differing data and resource requirements. This report provides a detailed discussion 

of each available method, as well as each method's applicability to certain types of situations. 



 

OBJECTIVE 

The objective of this research project is to develop inexpensive crash countermeasures for 

local roads in the state of Louisiana. The current state-of-the-art approach to roadway safety 

and intersection safety prescribes an evaluation of the relevant roadway segments or 

intersection based on a Safety Performance Function (SPF). The purpose of an SPF is to 

gauge the safety of a given section of roadway compared to other roads with the same traffic 

volume (AADT) so that problem locations and problem areas may be identified. However, 

not all jurisdictions use an SPF when analyzing their crashes. Additionally, data constraints 

sometimes make it impossible to develop a proper SPF. This report will present the current 

state of the literature on safety performance functions and address the following questions: 

What are the advantages of using a Safety Performance Function over other types of methods 

to identify the top percentage (p%) of problem locations or problem areas that should be 

investigated further? The p% may be between 5% or 10% depending on the resource 

availability. What characteristics make for a “good" Safety Performance Function? How do 

other approaches to developing or calibrating a Safety Performance Function differ from 

each other and what are the benefits and data/resource requirements associated with each 

approach? These questions will be discussed specifically in the context of local roads and the 

challenges an analyst faces when examining local roads in Louisiana.   
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SCOPE 

The scope of the project includes countermeasures for local roads in two parishes, Lafourche 

and Terrebonne. The project includes road segments and intersections. Intersections of local 

roads with state routes are not included because they are maintained by LADOTD. 
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METHODOLOGY 

The literature review is laid out as follows: Section 1 presents a discussion of different ways 

to define what constitutes a hazardous location in the context of traffic safety. Section 2 

provides some general background on identifying hazardous locations, while Section 3 

specifically addresses safety performance functions. Section 4 provides the details of 

parametric statistical models used to fit crash data in order to estimate safety performance, 

and Section 5 pays special attention to the Empirical Bayes approach of identifying 

hazardous locations and provides estimates for the Empirical Bayes. Section 6 identifies 

inexpensive countermeasures that will be proposed for selected hazardous locations. Section 

7 provides an overview of Multi Criteria Decision Making models that will be used for 

ranking the locations according to several criteria including risk, cost, and benefits. Section 8 

provides conclusions from the literature search and sets the stage for the methodology 

applied in the spreadsheet application provided as a result of this study. Section 9 describes 

the data collection including crash data, road information, and exposure measured by average 

annual daily travel (AADT). Section 10 provides a low cost solution for ranking sites. 

 

1. Defining Hazardous Locations 
 

The ultimate goal of this project is to develop inexpensive crash countermeasures for local 

road locations selected for their safety concerns, relative to other similar locations. A 

location’s safety level classification considers basic factors like the expected number of 

crashes, measures of exposure, and road design features. However, the previous literature on 

identifying and ranking hazardous locations has not always been in agreement regarding how 

to define or even what terminology to use, when explaining hazardous road locations. 

Terminology used includes “black spots,” “hot spots,” and “sites with promise,” among other 

variations on the same [5],[6],[7].These terms are fairly vague and tend to be used quite 

loosely throughout the literature, without any clarification or distinction among them as to 

what should designate a particular road section hazardous [8]. Given the lack of clear 

difference, the researchers use the above terms interchangeably throughout this report. As 

addressed in more detail in Section 5, it is not possible to identify black spots by statistically 

analyzing crash data alone; researchers believe that site visits and engineering evaluations are 

necessary to conclude that a pre-screened location is truly a black spot. The term “top p% of 

crash locations that warrant further investigation” is preferred. 
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The question of what exactly constitutes a black spot, a hot spot, or a site with promise is 

partly a philosophic one. For example, researchers can observe a relatively large number of 

crashes on interstate highways, compared to smaller city streets. However, the number of 

vehicles that pass over a certain road segment on an interstate highway is large, and therefore 

the risk of each individual being involved in a crash is low. On a small city street, there might 

be fewer crashes observed; however, due to the lower number of average daily traffic, the 

risk of each individual traffic participant being involved in a crash is higher than on 

interstates. In this example, which road deserves more attention and should have priority in 

terms of safety improvements? On one hand, one could argue that reducing the total number 

of accidents is a reasonable goal, as it will provide the largest benefit in terms of the total 

number of lives saved or injuries prevented. On the other hand, this approach might neglect 

some of the riskiest road sections in the traffic network. 

 
 
Regardless of how one defines a “safe” or “unsafe” location, in practice, this distinction is 

never a truly binary one. Safety is a continuum where “safe” and “unsafe” sites are located 

alongside one another [5]. The analyst is therefore required to exercise careful judgment in 

order to make a distinction between the two on a practical level. It is difficult to find a single 

measure that reflects risk appropriately, even on a continuum. There is not one single 

criterion that is able to incorporate the wide array of individuals' hazard perceptions, based 

on the available data of crash reports. Some may consider a road to be hazardous if there are 

too many crashes, or too many injury crashes, or too many fatal crashes, or the crash rate is 

too high, or the percentage of fatal crashes to all crashes is too high; some safety 

professionals consider the case of too many run-off road crashes, or too many side impact 

crashes, and so on. Clearly, a benchmark to determine what constitutes “too many” is needed. 

One approach of obtaining benchmarks is to develop statistical models for crash counts.  

Elvik  used the previous work of Hauer, Kononov, et al.  and Persaud and Lyon  to categorize 

the different definitions of black spots into three groups:  

 

 Numerical definitions,  

 Statistical definitions 

 Model-based definitions [9] [10] [11]. 

 

A numerical definition is straightforward. If the number of crashes at a particular location 

exceeds a certain threshold, then that location is considered a black spot. This definition also 

encompasses accident rate definitions, i.e., defining as a black spot all locations where the 

number of crashes per certain number of vehicles exceeds a predefined threshold level. Some 

European countries employ this type of definition in the analysis of their crash data and some 
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academic studies use this definition as well. For example, Morency and Cloutier, who studied 

injury crashes involving pedestrians in the city of Montreal, Canada considered a location 

where there were at least eight pedestrian victims within a 5-year period [9] [12]. The 

current practice of identifying black spots in Flanders, Belgium, is similar, but takes into 

account the severity of the recorded crashes: a weighting scheme based on the severity of the 

crashes observed at a given location is implemented. Severe injuries receive three times more 

weight than crashes involving no injuries, and fatal crashes receive five times more weight 

[13]. Clearly, the selection of weights associated with the levels of severity influence which 

locations are identified as black spots [14]. 

 
 
The data requirements for this method are comparatively low. The number of crashes at 

different locations is needed, along with any other characteristic of the crash or of the road 

that will be used in possible weighting schemes or other adjustments. The way that the 

threshold levels are defined often depends on resources. When there are more resources 

available, then the engineering team will be able to visit more sites and evaluate potential 

improvements; therefore, the required number of crashes or the crash rate to be observed at 

any location in order for that location to be considered for further evaluation will be smaller. 

 
 
Statistical definitions make reference to a “normal” number of accidents or a “normal” rate of 

accidents for a type of location. A statistical definition of a black spot will take into 

consideration the number of accidents that will normally be observed for a particular road 

section, given its characteristics. Statistically significant departures from this norm identify 

black spots. This approach will often rely on a distributional assumption; for example, that 

the number of crashes is Poisson distributed. Comparing observed crash counts to a certain 

critical percentile of the assumed distribution is fairly straightforward. Note that emphasis 

must be placed on the term “statistically significant.” Simply observing a higher number of 

crashes than an expected value or above the mean of an assumed distribution is not sufficient 

to identify a hazardous location. By the very definition of an expected value, there must be 

some locations where higher crash counts will be observed.  

 
 
Statistical models are often formulated in order to calculate the expected number of accidents 

for a location, conditional on the characteristics of the roadway and the traffic observed at 

that location. A safety performance function falls under this approach. Models have the 

strictest data requirements for identifying black spots, since there must be ample quality data 

available to formulate a statistical model. Both data regarding the crashes and their locations, 
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as well as covariate data, are needed to estimate or calibrate a model. Using statistical models 

allows the analyst to consider many local risk factors in evaluating locations. 

 
 
Elvik proposed the following generic definition of a black spot: “A road accident black spot 

is any location that has a higher expected number of accidents than other similar locations, 

as results of local risk factors” [9]. There are several important things to note here. First, the 

researchers were primarily concerned with the expected number of crashes, not the observed 

number. This was so that random variations in the data would not result in a location being 

wrongfully declared a black spot. The researchers were interested in picking up on systematic 

variations between crash locations and therefore the expected number of crashes was of 

primary importance. Secondly, the expected number of crashes at different locations should 

be compared to similar locations in order to identify black spots. The implications of these 

provisions are not trivial. It allowed for locations that exhibited fewer total crashes than other 

sites to be deemed less safe.  The final point, again, ascertains that the increased number of 

crashes was systematic and not idiosyncratic. In the end, it was only worthwhile to identify 

black spots so that appropriate engineering measures may be implemented to improve the 

safety of the location. Obviously, it is only possible to evaluate and implement engineering 

measures when a particular potential for improvement can be identified. Most of the time, the 

statistical identification of black spots cannot draw conclusions regarding the particular local 

risk factor that contributed to the elevated number of crashes. Rather, it is only able to 

identify that a certain location should be evaluated further, possibly by means of site visits. 

 

2. Identifying Hazardous Locations - General Approaches 

 

Crash data can come in various forms and formats. Any analysis of data strongly depends on 

how the data were collected, and conversely, the type of analysis one is expected to perform 

with them depends on how the data are collected. The following will provide a brief 

discussion of how some jurisdictions following the numerical definition or the statistical 

definition of black spots identify black spots, and what type of data they require to do so. 

Then, it will be discussed in more detail the data requirements to estimate a safety 

performance function.  

 

Identifying Black Spots without Models 

Hungary uses a sliding window definition of a black spot. If there is a section of road that 

does not exceed 100 meters in length, and along that section there are more than four 
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accidents observed in a three year period, then that section is identified as a black spot. One 

can think of this approach as a window of a certain width (100 meters in Hungary's case) that 

slides along each road segment of the road network to be examined. If a certain number of 

crashes within a certain time period (four crashes within five years, in Hungary's case) are 

visible in the window, then the location of the window is identified as a hazardous location. 

This is a simple numerical definition and other characteristics of the roadway and potential 

traffic patterns are not considered. The four “allowable” accidents are an absolute measure 

and no attempt is made to calculate an expected number of crashes of a given section given 

the road's characteristics.  

 
 
Applying a sliding window technique does not necessarily imply the analyst is bound to use a 

simple numerical definition of black spots. Other countries, such as Austria, Denmark, 

Norway, and Portugal, use some variation of a sliding window technique to identify black-

spots, but at the same time consider a “normal level of safety” for certain roadway elements 

before designating a location as hazardous [9]. Moreover, sliding windows may be only the 

first stage to conducting a more sophisticated analysis. For example, Hamidi, Fontaine, and 

Demetksy combined a sliding window approach with a statistical model-based identification 

method in the discussion of their network screening procedures [15]. Possibly, with only the 

simplest of cases in mind, the discussion found in Elvik, Sorensen, and Sorensen and Elvik  

nonetheless discourages analysts from using a sliding window approach to identifying black 

spots [9], [16], [5]. The researchers could not, however, find any argument against using 

sliding windows in combination with different approaches to black spot identification.  

 

Statistical Models in Hazardous Location Identification 

In some sense, the Highway Safety Manual (HSM) allows an evaluation of crash locations 

without having to specify a model [17]. Data regarding specific locations were simply 

converted into a calibration factor by looking up values in a table, and then an expected 

number of crashes is obtained for those characteristics. While this relieves the analyst of the 

burden of specifying his or her own model, the HSM still does implicitly use a model-based 

approach. The only difference is that in the HSM, the models have already been estimated by 

previous literature and the results are presented as “plug-in” estimators to the analysts. Of 

course, there is no guarantee that the models estimated to form the basis of the HSM are 

compatible with the data at hand, or if one should expect to arrive at very different results in 

a particular locality that is analyzed. One important thing to consider in the context of 

Louisiana roads, specifically, is that it is possible that no data from Louisiana were included 

in development of the Safety Performance Function (SPF) in the HSM. Also, the SPF in the 
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HSM was developed for base conditions, i.e., standard width of the road and other 

engineering factors. The expected number of crashes at a specific location is then obtained by 

multiplying the SPF function with the crash modification factors. The assumption for this 

modeling is that the crash modification factors are valid for Louisiana and no interaction 

between factors exists. Also, when an SPF function is calibrated for a state, one must keep in 

mind that if some factors are not available, then the calibration constant may be severely 

biased. For instance, if the driveway density is not available for Louisiana roads then the 

calibration constant may be inflated, depending on how many roads with high driveway 

density are included in the sample.  

 
 
It has been noted that it is of primary importance to control for the specific characteristics of 

a location when deciding whether that location should be considered extraordinarily 

hazardous. The issue of philosophy has been highlighted before in this report. Regardless of 

philosophical viewpoints, it is instructive to calculate the expected number of crashes at 

given locations. An SPF is a mathematical function that models the expected number of 

crashes at a particular location using average annual daily travel (AADT). Yet, it is important 

to be careful about how to interpret the results of an SPF estimation or calibration exercise. 

 
 
It is not enough to calculate the expected number of crashes or the expected crash rate at a 

given location, and then observe whether the actual number or rate of crashes is higher. 

Although some authors do take this approach, it is conceptually problematic and likely to 

result in the identification of more sites requiring further engineering evaluation than is 

feasible for any given agency (e.g., [18]). In fact, by definition of an expectation, it is 

necessary for some observed values to fall above the expectation as well as for some to fall 

below.  

 

3. Identifying Hazardous Locations - Safety Performance Functions 

 

Minimum Data Requirements for SPF Estimation 

Sorensen lists several data prerequisites that must be available to the analyst in order to 

perform a state-of-the-art analysis of black spots: 

 Locality  
 Accident type 
 Severity 
 Time 
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 Road elements and the surrounding environment 
 Circumstances and vehicles involved 
 Records must have an acceptable level of reporting [16]. 
 

Locality is, naturally, of prime importance. The analyst must be able to clearly identify 

precisely where the crash occurred in order to assign the crash to a specific road segment or 

intersection. The way this is defined strongly depends on the crash report data at hand. For 

example, mileposts along state routes and interstate highways, street names and distances to 

intersections, or GPS information may all be used to precisely pinpoint the accident. Some 

agencies, for example the German police, use large wall-maps and colored pins on which 

crashes are continuously recorded as they occur [9]. 

 
 
Accident type refers to whether the crash was a head-on collision, a rear-end crash, 

sideswipe, etc. This information is necessary for successful black spot management, yet is 

only of minor importance when estimating a safety performance function. Severity is not 

actually used directly in the identification process [16]. However, many newer methods that 

attempt to account for the correlation structure of the different severities observed in crashes 

make extensive use of this, e.g., [19], [20]. A detailed discussion of these approaches follows 

in Section 4.  

 
 
All of the above listed items are certainly necessary to successfully manage black spots. The 

researchers propose that the following prerequisite not listed by Sorensen deserves some 

attention in this context: A measure of exposure must be available [16]. In general, this 

means that Annual Average Daily Traffic must be available. Though this is often not 

explicitly outlined in practice, the variables that will be included in the specification of a 

safety performance function should have a solid theoretical foundation [21]. As identified by 

previous literature, exposure is the most important factor to include [22], [11], [9], [23]. 

Elvik asserts that inadequate, incomplete, and erroneous data on exposure are major 

weaknesses of current accident prediction models [9]. The fact that exposure is of utmost 

importance is not surprising; while there are some proposed remedies to estimating safety 

performance functions when traffic volume is measured with error in general, the most 

sophisticated techniques cannot be applied when the data are simply not available [23]. 

 

Missing Data 

One of the major problems to overcome in any statistical analysis of crash data is missing 

data. There are two different scenarios: Either, the data on crashes are incomplete, or data on 
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covariates are not fully available. These two situations have different technical implications, 

as well as different approaches to remedy them. 

 
 
There are few papers that explicitly discuss data shortcomings and the way in which those 

shortcomings were overcome. Abdel-Aty and Pande reported that when they used three lanes 

of traffic, which they planned to analyze separately, there were rarely valid data available for 

all three lanes simultaneously [24]. The data collected here were the number of vehicles, as 

well as their speeds for certain time intervals. The authors chose to use an average of the 

valid data for a location and assign this value to all lanes in that location. They justify this 

decision by noting that most of the crashes they analyzed were rear-end crashes and therefore 

lateral variation between the lanes was not of primary importance. Assigning averages is a 

very crude measure, but it is nonetheless a valid option when the nature of the missing data 

and the problem at hand allows it. For instance, most models use average annual daily travel 

for a road or highway; even so, the traffic varies substantially from month to month, from 

day to day, and even hour to hour. Thus, two roads with the same average annual daily travel 

are considered to have the same exposure, even though one road may have rush hour traffic 

while the other may not. More complicated methods, such as the imputation techniques 

developed by Zhang and Liu for dynamic traffic control systems, are likely too complex to 

implement for comparatively simple applications such as black spot identification [25]. 

 
 
Missing crashes are another data issue to contend with. The police must be called to the 

scene of a crash for a record of the crash to exist. While it is reasonable to assume that very 

severe accidents (especially fatal crashes) will result in the involvement of police, for crashes 

that are less severe, the probability of having a crash report is decreased. Individuals are 

reluctant to get insurance companies and the police involved when the damage and injury are 

minor, or when the involved parties are not insured and, therefore, prefer to settle matters 

between themselves. Louisiana requires all motorists to be covered by valid liability 

insurance, yet non-compliance with this requirement in Louisiana is notorious. 

 
 
This is a well-known problem, the extent of which has been widely studied (e.g., [26], [27], 

[28], [29], [30], [31)].  These studies have focused mainly on differential reporting by crash 

severity or by the type of traffic participant involved (pedestrians, cyclists, etc.). It is likely, 

however, that there is some differential reporting in terms of local vs. state, or federal roads, 

as well, possibly as a result of a significant correlation of typical state/federal road 

characteristics and severity-potential. Speeds on local roads are often slower, compared to 
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interstate routes or state roads. Thus, any crash that might occur is likely to result in less 

damage, and is, therefore, less likely to be reported. 

 
 
While the literature cited above is concerned with identifying the discrepancy between crash 

reports and actual crashes, they all use hospital records linked to police records to identify 

this discrepancy. Those crashes that did not result in a hospital visit by at least one of the 

involved parties are never picked up by this methodology. In addition, there is no existing 

literature, of which the researchers are aware, that proposes a solution to the problem of 

missing accident records when attempting to identify hazardous locations or estimate safety 

performance functions. This is not an issue specific to local roads. 

 
 
Lack of clear road segmentation is another issue that is entirely different in terms of issues 

that arise due to it. Generally, it is assumed that there is some sort of natural segmentation 

present in road data; i.e., that roads can be broken up into different segments where 

geometric characteristics do not vary within a segments. This may not always be present, and 

especially in the context of local roads in Louisiana, there is no unifying system, such as mile 

posts, that would allow appropriate segments to be created by the analyst. Indeed, most road 

segments are identified by name, rather than by numeric identifiers: e.g., “Main St between 

4th and 5th.'' Since the length of the road segment cannot directly be inferred from such a 

descriptor, the analyst must calculate or measure it. If the segment is straight, then the length 

can be calculated from the GPS coordinates of the end points. The GPS coordinates are easily 

obtainable from the Internet (e.g., Google Earth) and the distance between the coordinates 

can then be calculated using standard distance formulas.  

 

Calibration vs. Estimation 

The data requirements to estimate a Safety Performance Function are generally higher than 

the data requirements to calibrate a model. This is primarily an issue at the intensive margin. 

One needs data on many locations to reliably estimate a model with many different 

characteristics between locations. There is, of course, no golden number of observations that 

needs to be achieved, but the number of locations for which a local jurisdiction can produce 

data may be not enough in most cases. In order to be able to effectively analyze crashes, data 

on as many engineering features of the crash location as possible, as well as all circumstances 

of the crash itself, are needed. The issue here is regarding a mere quantity of crashes needed 

to make SPF estimation reliable. 
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Since calibration relies on the coefficients of previous estimations, it is a viable alternative 

when jurisdictions are small and unable to estimate their own SPF. The HSM follows this 

approach, and its advantages and potential problems apply to local roads as well. A hybrid 

method of the two is also possible by first estimating a baseline model for a base condition 

using only AADT to model crashes, then using the crash modification factors (CMF) 

provided by the HSM to adjust for further local engineering features.  

 
 
The more factors researchers were able to include, the more accurate the predicted crash 

count. So the researchers wished to include all available crash modification factors; however, 

it should be made aware that crash modification factors are estimates with a limited 

precision. Some crash modification factors have higher precision than others. Unfortunately, 

little is known about the precision of multiple factors when they are combined. If the SPF is 

estimated along with the crash modification factors, then the estimate of the variance will 

include the variation due to these factors. When a SPF from the HSM is calibrated and 

CMF’s from the HSM are used then there is no simple way of computing a variance of the 

expected number of crashes. This is important for both the Empirical Bayes analysis as well 

as for classical hypothesis testing.  

 

4. Safety Performance Function Estimations - Parametric Models 

 

Poisson-Gamma Mixture Models (Negative Binomial Models) 

Negative Binomial Models are very common in analysis of crash data. In fact, they are 

probably the most used specification in the recent literature. While the Negative Binomial 

distribution has its own interpretation, as the number of successful outcomes in a series of 

Bernoulli trials until a predetermined, non-random number of consecutive failures occurs, in 

the context of Negative Binomial regressions models, it is often derived as a Poisson-Gamma 

mixture model. Its properties, then, are very similar to that of the Poisson regression model, 

but it overcomes the restriction of equi-dispersion that is imposed in Poisson models. This 

allows for greater flexibility and applicability to different datasets, while retaining the 

positive characteristics that make Poisson-based models a preferred specification in integer 

response data problems. 

 
 
The Poisson distribution has been used to model count data since the late 19th century. It has 

the important restriction, however, that the mean of the distribution is equal to the variance. 

This restriction on the variance is also called “equi-dispersion,” and in order to overcome it, 
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the researchers could model the mean of the distribution by using a gamma distribution with 

one additional parameter to be estimated, as the gamma distribution actually has two 

parameters, which are restricted to equal the reciprocal of each other. These result in a 

Negative Binomial model and due to its derivation in this context, the model is sometimes 

called a Poisson-Gamma mixture model. 

 

Derivation of the Negative Binomial Model 

The following is a brief discussion of the derivation of the Negative Binomial Model. A more 

detailed discussion can be found in Hilbe  [32]. Let 

ܲሾY	 ൌ 	 y୧	|	x୧ሿ 	ൌ
ୣ୶୮ሺି஛౟ሻ஛౟

౯౟

୻ሺଵା௬೔ሻ
		 (1) 

 

denote the probability of  ݕ௜ ൌ 0, 1, 2, …, crashes at a location i, given specified vector of 

covariate xi describing exposure and engineering features. The researchers specify the mean 

of the distribution by the equation 

 

௜ߣ ൌ exp	ሺݔ௜
ᇱߚሻ	 (2) 

 

where, ݔ௜ is a vector of covariates. In this standard Poisson model, the researchers obtain the 

conditional mean and conditional variance for the number of crashes at location i as  

 

௜ሿݔ|௜ݕሾܧ ൌ ௜ሻݔ|௜ݕሺݎܽݒ ൌ 	  ௜ (3)ߣ

 

Among others, Greene and Cameron and Trivedi proceeded to derive the Negative Binomial 

model by introducing latent heterogeneity into the specification of the conditional mean [33], 

[34]:  

 

,௜ݔ|௜ݕሾܧ ߳௜ሿ ൌ expሺx୧ߚ ൅ ߳௜ሻ ൌ expሺݔ௜ߚሻ expሺ߳௜ሻ (4) 

 

Assuming that expሺ߳ሻ is Gamma distributed with mean 1 and variance ିߠଵ, the researchers 

can integrate expሺ߳ሻ out of the joint distribution and obtain 

 

ܲሾܻ ൌ ௜ሿݔ|௜ݕ ൌ 	
୻ሺఏା௬೔ሻ

୻ሺଵା௬೔ሻ୻ሺఏሻ
ቀ ఏ

ఏାఒ೔
ቁ
ఏ
ቀ ఒ೔
ఏା	ఒ೔

ቁ
௬೔

 (4) 

 

This results in the model no longer being equi-dispersed, but rather over-dispersed with 
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௜ሿݔ|௜ݕሾܧ ൌ  ௜ (5)ߣ

 

௜ሻݔ|௜ݕሺݎܽݒ ൌ ௜ߣ ൅
ఒ೔
మ

ఏ
 (6) 

 

Since ߠ determines how much the variance will exceed the mean, ߠ is also called the “over-

dispersion parameter.” In fact, as ߠ → 0,  the more the data will seem to be over-dispersed, 

and as ߠ → ∞ the model will again approach the Poisson specification and be equi-dispersed. 

Some authors  prefer to specify the over-dispersion parameter as the inverse of ߠ, say 

ߙ ൌ  While it is generally accepted that crash data are over-dispersed, it is possible .[32]ߠ/1

to perform a statistical test for over-dispersion. Cameron  first developed a method that 

involves only simple least-squares regressions to test whether the over-dispersion parameter 

  .is statistically significantly different from 0 [35] (in this specification ,ߙ)

 
 
In this simplest form of a Negative Binomial model, the over-dispersion parameter will not 

vary from site to site, but is fixed for all locations i = 1,2,3,4,…. Hardin and Hilbe, as well as 

Greene  suggest that the over-dispersion parameter itself could be modeled, for example as 

௜ߙ ൌ exp	ሺݖ௜ߜሻ [36], [37]. Here the covariates z can contain, though not necessarily, the 

same variables as are contained in the vector of covariates x to model the mean. Lord and 

Park  called this the Generalized Negative Binomial (GNB) model and investigated whether 

a better goodness-of-fit to the data may be obtained by using this GNB model compared to 

the traditional Negative Binomial specification [38]. Their conclusion was that the GNB 

does indeed provide better statistical properties and they suggested that, specifically in 

models where only traffic flow data are available, this specification outperformed the 

traditional Negative Binomial specification. El-Basyouny and Sayed  used a very similar 

setup that they call the “Modified Negative Binomial” model [39]. They found little 

difference in the performance of the traditional Negative Binomial model and the modified 

version. However, they do suggest that as the data become more over-dispersed, the benefits 

of using the modified Negative Binomial model are expected to become clearer.  

 
 
Some data are characterized by “excess zeros.” This means that there were many locations 

that had no crashes during the time of observations. The distributional assumptions of either 

the Poisson model or the Negative Binomial model and its variants support “zero-

observations;” in fact, both distributions require that some locations are observed that did not 

record any crashes. There is no clear threshold of what constitutes “too many” cases of zero 

crashes, but there are some techniques that the analyst is able to consider when a problem of 



  

19 
 

this nature observed. These models are called Zero Inflated models and they exist for both 

the Poisson specification, as well as the Negative Binomial specification [37]. 

 
 
While Zero Inflated models are useful and valid in many contexts, there are several strong 

arguments against using those models in crash data analysis. Lord, Washington, and Ivan 

argued that carefully selecting the time/space scales for analysis, obtaining better or more 

data as explanatory variables, as well as introducing latent heterogeneity terms in standard, is 

preferred [40]. The authors argued that while providing a better statistical fit to the data, 

there are severe logical fallacies in applying Zero Inflated models to crash data, as one 

implicit assumption will be that certain locations are inherently safe. Statistical goodness of 

fit is not the prime criterion when specifying safety performance functions, as potential over-

fitting can lead to dangerous and misleading conclusions. Lord, Washington, and Ivan  

provided some intuitive illustrations of the implicit assumptions one must entertain when 

estimating Zero Inflated models [41]. The title of their work, “Many zeros does not mean 

zero inflation,” succinctly sums up the issue [42].  

 
 
In the particular case of local roads in Louisiana, the problem is likely on the opposite end of 

the spectrum. Excess zeros or simply many zeros only arise when a true inventory of road 

segments is available, and there are many road segments without crashes. If such road 

inventory does not exist, then the road segments are likely to include only those sites where 

some crashes were observed. Those roads segments or intersections that had no crashes 

during the time frame of the analysis will not be included in the data. If road segment and 

traffic characteristics are not readily available and must be compiled, then they will be 

compiled for only those sections that the analyst knows about: those where at least one crash 

occurred. In essence, this is a zero-truncated model, which technically violates the 

distributional assumptions of the Negative Binomial (as well as the Poisson) regression 

model. In order to alleviate this problem, some researchers employ a zero-truncated Poisson 

regression model [3]. A zero-truncated Negative Binomial model exists as well and is readily 

available in standard statistical software; however, the researchers could not find any 

research study in traffic safety or in related fields that makes use of the truncated negative 

binomial specification. 

 

Negative Binomial Models in the Literature 

While in crash analysis the Negative Binomial specification is most often used in the context 

of an Empirical Bayesian Analysis (to be discussed in a following section), there are some 
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papers that make use of the direct Negative Binomial specification or one of its variants.  

For example, some used Poisson regressions and Negative Binomial regressions to 

investigate whether the coefficients in the model differ for various crash types [43]. It is 

reasonable to presume that the impact of an increase in traffic density is different in head-on 

collisions compared to rear-end collisions. The study found that there were large differences 

in the size of the coefficients of annual average daily traffic, the presence of turning lanes, 

the number of driveways, and other geometric road design features.  

 
 
Hadi et al. investigated cross section designs using Negative Binomial regression [44]. They 

also tested for over-dispersion and concluded that indeed the dispersion parameter is 

statistically different from indicating a Poisson model using their data. Others used a 

Negative Binomial model to arrive at their concept of “level of service of safety” [18]. 

 
 
Zhang, Ye, and Lord proposed a bootstrap method to improve the estimation of the over-

dispersion parameter [45]. They conducted Monte Carlo simulations to show that estimation 

of the over-dispersion parameter can be improved by using a bootstrap resampling method 

combined with maximum likelihood estimation whenever the sample size is small and the 

sample means are low. Applying the same method to un-signalized intersections in Toronto, 

Canada, validated the simulation results. While not the immediate focus of the study, Chang 

[46]  used a Negative Binomial specification as a benchmark to evaluate the performance of 

an Artificial Neural Network as an alternative method for analyzing accident frequencies.  

 

Common Sources of Error 

There are several issues and potential sources of problems when trying to fit a safety 

performance function to data. Elvik proposed three common forms of error: 

 Omitted-variable bias 

 Co-linearity between explanatory variables 

 Incorrect specification of the functional relationship between outcomes and 

covariates used in the model [9]. 

Omitted variables in developed models create a bias in predicted crashes for all locations. 

This bias also occurs in the calibration coefficients when variables are omitted.  This bias has 

been analyzed and a general consensus on which factors to include seems to exist [9]. Still, 

in practice the question of what to include in the model is not a theoretical one, but is rather 

dictated by the availability of data [5]. At a minimum, well defined road segments, a measure 



  

21 
 

of exposure and some engineering features must be available in order to conduct any kind of 

analysis. For instance the HSM specifies which factors are required for the calibration of the 

SPFs provided in the HSM and which factors are desirable. Most research that the 

researchers surveyed has been concerned with finding ways to analyze or correct problems 

that occur due to incorrect specification of the functional relationship between outcomes and 

covariates used in the model.  

 
 

Multivariate Models 
While the Poisson-Gamma model is certainly the most popular of the Poisson mixture 

models, there have been several attempts made to refine its approach or to tailor the analysis 

to a very specific problem at hand. Specifically, it is unclear how to treat the issue of 

different accident severities in the negative binomial framework, so some analysts have 

modeled the accident severity categories separately instead of pooling them together. 

However, this neglects the important fact that the count or the rate of different types of 

accidents may be correlated. Therefore, several attempts have been made to model the crash 

count or the crash rate jointly with crash severity. The model structure allows for unspecified 

correlation between the severity and counts/crash rate that will be estimated as well and will 

overall lead to more reliable point estimates [19]. The favorite specification of such 

multivariate models in the literature is the Multivariate Poisson model, or the multivariate 

Poisson-lognormal mixture model. 

 
 
Ma and Kockelman  used a Gibbs sampler to estimate a multivariate Poisson model for 

highway crashes in Washington [47]. They compared parameter estimates and goodness of 

fit of the model with a set of independent Poisson regressions and concluded that their 

multivariate Poisson model has promise. The authors also proposed that a multivariate 

Negative Binomial Model could be applied to this problem, as was previously developed in 

the context of budget constrained activity demand analysis by Kockelman in order to allow 

for a more flexible treatment of over-dispersion [48]. 

 
 
A more frequently used multivariate model is the multivariate Poisson-Lognormal mixture 

regression model. Examples of this include Park and Lord who modeled crash frequency and 

severity in a simultaneous framework, as well as Ma, Kockelman, and Damien, and Aguero-

Valverde and Jovanis, who modeled crash counts and severity simultaneously [19], [49], 

[20] . El-Basyouny and Sayed  provided a detailed analysis of the performance of the 

multivariate Poisson-lognormal mixture model [50]. Their results indicated that the estimates 
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of additional Poisson dispersion parameters were considerably smaller in the multivariate 

Poisson-lognormal mixture model compared to univariate models. They concluded that using 

the multivariate specification increases precision, and that this improvement in precision is 

mainly due to the fact that correlations between latent variables in the reduced form of low-

severity and high-severity crashes are accounted for. 

 
 
The issue with their models is the tradeoff between data quality and the level of dis-

aggregation that is useful in an analysis. When the data are very noisy, then there is little use 

in breaking the individual observations up into increasingly smaller units, as the signal to 

noise ratio deteriorates. This may be counteracted by attempting to perform a type of site 

aggregation [15]. In the context of local roads, however, there is likely not a sufficient 

number of sites available to the analyst to perform such an aggregation. Moreover, as 

identification of hazardous locations was the goal of the estimations, aggregating sites 

distinctly misses the point of what the researchers tried to accomplish.  

 
 
While, as noted above, there have been a number of academic studies regarding the joint 

modeling of crash counts and severities, the use of these models is limited in practice. 

Typically, analysts perform separate estimations or calibrations by severity level, or they 

completely disregard crash severities for much of the analysis [1], [17]. 

 
 

5. Empirical Bayesian Analysis 

 

Bayesian and Frequentist methods have always been on opposite ends of the statistical 

philosophical spectrum [51], [52], and [53]. In transportation safety research, arguments for 

or against Bayesian or Frequentist approaches have not been rooted in philosophy. 

Interestingly, there have been many arguments for the Bayesian approach that base their 

reasoning on comparing predictive power and goodness of fit of a particular model, after 

conducting Monte Carlo Simulations. This approach is problematic, as will be discussed later 

in this report. First, the researchers provide a general description of Bayesian data analysis, 

as well as some details of the commonly used methods in the context of roadway and 

intersection safety.  

 
 
Bayesian data analysis in general consists of the following three steps (for more detail, see 

[54]). 
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1. Setting up a full probability model. The analyst specifies a joint probability 

distribution for all observable and latent quantities in a problem. To this effect, the 

analyst will make use of the current state of knowledge regarding the problem and 

should also be conscious of the details of the data collection process. 

2. Conditioning on observed data. This means calculating the conditional probability 

distribution of the latent quantities under study, conditional on the observed data. 

3. Examining the model fit and interpreting the obtained posterior distribution. Also the 

sensitivity of the results to the modeling assumptions made during Step 1 should be 

examined. 

The above is fairly generic, so this report will discuss in some more detail the specific 

models that have been applied to crash data analysis. First to be described and discussed will 

be the Empirical Bayes Approach, since several authors have identified it as the preferred 

method of estimating safety performance functions [9], [16], [5], [55]. Then, will be 

discussed some full Bayesian approaches. The latter are often highly complex models that 

require a significant amount of mathematics in their derivation; some of them are also 

associated with significant computing and programming effort. This report will, therefore, 

concentrate more detailed discussion of those models that are more commonly used in safety 

engineering practice and those approaches that will provide a reasonable balance between 

model complexity and model performance.  

 

Empirical Bayesian Analysis has been the recommended method for conducting before-after 

observational studies [55]. This is due to the fact that it minimizes issues regarding 

regression to the mean. “Regression to the mean” is a term used to indicate that a particularly 

high number of observed crashes at a certain location may be the result of random statistical 

variation, and is not attributable to any location-specific issues with the roadway or 

intersection design. If the number of observed crashes is high due to random statistical 

variation, then the researchers would expect the number of crashes in the following period of 

observation to be lower. The converse applies, as well. In the context of before-after studies, 

particular sites may have been selected for treatment exactly because they exhibited high 

crash counts or a high crash rate. In the after period, the researchers would therefore expect 

the number of crashes to decrease. This decrease may falsely be attributed to the treatment of 

the site, and may not take into account random statistical variation. The Empirical Bayes 

method attempts to correct for precisely this effect. 

 

The researchers will briefly summarize the derivation of the Empirical Bayes approach [56]. 

A tutorial that introduces the practitioner to Empirical Bayesian analysis of crash data, as 
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well as further examples can be found in [10].  Casella provided a short and highly intuitive 

introduction to general Empirical Bayes data analysis [52].  

 

The Bayes Theorem states that the conditional probability of the expected value  given 

observed values y is proportional to the conditional probability of y given times the prior 

distribution of  

ሻݕ|ߣሺ݌ ∝ ݂ሺߣ|ݕሻ ൈ ݃ሺߣሻ (7) 

In the end, the goal is to obtain a good estimate of the mean of the data generating process of 

the data; i.e., the researchers are interested in the expected value ߣመሺݕሻ. Assuming a Mean 

Squared Loss Function, the Bayesian Estimator of the quantity of interest is the expected 

value of ߣ conditional on y; i.e.,  ߣመሺݕሻ ൌ ׬ ߣ ⋅ ߣሻ݀ݕ|ߣሺ݌ ൌ  ሿ. This is very intuitive. Theݕ|ߣሾܧ

best estimate for the expected values of y is that value that has the highest probability of 

being the mean of the data generating process for y, conditional on the values of y that was 

observed. Some assumptions regarding the probability densities are necessary to derive this 

equation. For this example, assume that the likelihood and the prior density are Gaussian, i.e., 

then 

ߣ|ݕ ∼ ܰሺߣ, ߣ			݀݊ܽ			ଶሻߪ ∼ ܰሺߤ,  ଶሻ (8)ߦ

where, ܰሺ⋅,⋅ሻ indicates the Gaussian probability density function. The ߪଶ is within sample 

variance and ߦଶ is the between sample variance. With the proper substitutions for the mean 

and the variance, plug this function in place of ݂ሺ⋅ሻ and ݃ሺ⋅ሻ from the Bayes equation (7). It 

is now easy to show that ݌ሺݕ|ߣሻ is actually still a Gaussian probability density, though with 

different means and variance. 

ݕ|ߣ ∼ ܰ ቀఙ
మఓା	కమ௬ത

ఙమା	కమ
, ఙ

మకమ

ఙమାకమ
ቁ (9) 

And therefore, 

ത஻௔௬௘௦௜௔௡ݕ ൌ ሻݕ෡ሺ	ߣ ൌ ሻሿݕ|ߣሺ݌ሾܧ ൌ ఙమఓା	కమ௬ത

ఙమାకమ
 (10) 

Or, after rearranging, the more familiar form: 

ത஻௔௬௘௦௜௔௡ݕ ൌ ఙమ

ఙమାకమ
ߤ ൅ కమ

ఙమାకమ
തݕ ൌ ߤ߱ ൅ ሺ1 െ ߱ሻݕത  (11) 
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The Empirical Bayes estimate is, therefore, a weighted average of the overall mean and the 

sample mean ݕത, with the weights the fraction of the within-sample variance and between-

sample variance. The larger the between sample variance, the more weight is given to the 

individual sample mean. While this simple example was provided using the Gaussian 

distribution, a very similar result will be obtained when using different distributions and the 

characteristic appearance as a weighted average is preserved. Most common in traffic crash 

analysis is a Poisson distribution with a Gamma-distributed prior. This is closely related to 

the Negative Binomial regression model outlined in the previous section and is, therefore, 

favored by traffic safety analysts. The Gamma distribution is a conjugate prior to the Poisson 

distribution, and using Li as the section length the within-sample variance is  

ଶߪ ൌ  ௜ (12)ܮመߣ

and the between-sample variance is:  

ଶߦ ൌ
൫ఒ෡௅೔൯

మ

ఏ௅೔
 (13) 

Therefore, the equation obtained through substitution is: 

ത஻௔௬௘௦௜௔௡ݕ ൌ ଵ

ଵାഊ
෡

ഇ

መߣ ൅ ቆ1 െ ଵ

ଵାഊ
෡

ഇ

ቇ  ത (14)ݕ

where, ߠ is the over-dispersion parameter estimated for the negative binomial regression. 

Note, again, that some authors prefer to use ߙ ൌ  ଵ in their specifications. For this purposeିߠ	

it is essential that the over-dispersion parameter is estimated per unit length for road 

segments (for example, over-dispersion per mile), and it is essential that the length units 

between crashes and the over-dispersion parameter are compatible [55]. Intersections do not 

technically have a length and therefore the length is taken to be unity. Moreover, in most 

studies the over-dispersion parameter is taken to be fixed. As discussed earlier and again later 

in this section, this need not be the case. The estimate ߣመ is the regression estimate for the 

specific AADT and road characteristics. If an SPF is not available, the within and between 

sample variance can be estimated directly from the sample.  

 

Empirical Bayes Estimates 

Hauer suggested using the method of sample moments for estimating population parameters 

of the distribution. The moment estimators for the within and between sample variances are  
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ොଶߪ ൌ തܺ (15) 

and 

መଶߦ ൌ ଶݏ െ തܺ (16) 

respectively [57]. That is, since the variance is equal to the mean in the Poisson case, the 

within sample variance (and the overall mean) is best estimated by the overall sample mean 

and the between sample variance is best estimated by the sample variance minus the sample 

mean. Since these estimates come directly from observed data, they are increasingly accurate 

as sample sizes increase. Alternatively, it is possible to use the maximum likelihood 

estimates for ߣመ and ݇ obtained from the model using the relationship in the analysis; compare 

both methods for estimating the mean and variance and also compare the Empirical Bayes 

estimates therein produced.   

 

In addition to providing Empirical Bayes estimates, a tail probability using the estimates can 

also be calculated. This tail probability provides a way to rank highway segments with 

different AADT and engineering features. This tail probability is calculated using the 

(posterior) distribution of the Empirical Bayes with parameters 

ଵߚ ൌ 	
EB

VAR(EB)
 (17) 

and 

ଵߙ ൌ ଵߚ	 ∙ EB (18) 

Then the tail probability is calculated as 

׬
ఉభఒഀభషభ௘షഁభഊ

୻ሺఈభሻ

ఓෝ
଴  (19) ߣ݀

Using a particular cut-off for this tail–probability value, the analyst can narrow down his or 

her list of sections that may need attention, as well as rank them, regardless of their 

characteristics. Again, ߙ and ߚ in the above equations can be determined using the method of 

moments (MME) or maximum likelihood estimates (MLE). 

  
There are several assumptions that must be satisfied in order for the Empirical Bayes 

approach to be valid. The most important one is probably that there must not be a significant 

time trend in the data. This is relevant, for example, when admitting that the demographic 
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characteristics of a location's typical driver might change. Suppose, for example, that over 

time there are more mature drivers in an area and teenagers move out, little by little. Then, 

there is an inherent trend in the expected value of crashes that occur in that area. If one 

considers five years of crash data in order to arrive at the estimate of the expected value, then 

the weighting scheme will result in a systematic overstatement of the expected value by the 

Empirical Bayes estimate.  

 

In addition to before-after studies, the Empirical Bayes specification is also used to identify 

black spots. The identification of black spots also has the potential to be influenced by 

regression to the mean; therefore, it is not only useful to take into consideration the condition 

of the geometric road features and traffic volume, but also the inherent randomness of crash 

counts. In essence, the expectation of the crashes is modeled as a negative binomial model 

and combined as a weighted average with the average crash count of that location in order to 

assess the level of safety at that particular location.  

 

Empirical Bayesian Analysis and Local Roads 

Some researchers conclude that the Empirical Bayes Method is preferred over all other 

methods [6], [9]. Indeed, using the Empirical Bayes approach is the current standard practice 

for traffic safety professionals. With the introduction of the Highway Safety Manual, the 

Empirical Bayes was attempted to be made more accessible to a larger number of traffic 

engineers and states’ Departments of Transportation. 

 

In the specific context of local road safety performance functions, Jo et al.,  in their data 

analysis software for local agencies in Illinois, first developed a safety performance function 

using Negative Binomial regression, and then used the Empirical Bayes procedure to arrive 

at the estimated number of crashes at each segment or intersection [1]. They estimated a 

Negative Binomial model for all crashes of a particular severity type (they included only 

fatal, major injury, and moderate injury crashes) for a particular peer group of roads. A peer 

group was a 12-category system of functional classes. The coefficients of the covariates, as 

well as the estimated dispersion parameter per mile of roadway length were stored in a 

database. The local agencies were then able to input their own data for a particular roadway 

into a provided computer program and an Empirical Bayes adjustment was performed in 

order to assess the safety performance of the local road in comparison to other similar roads. 
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In Virginia, Hamidi, Fontaine, and Demetksy, provided a more macroscopic perspective by 

aggregating together sites into sections of intermediate length for analysis [15]. The authors 

understood site aggregation to mean that road segments that are geographically adjacent and 

have identical characteristics in terms of traffic density and geometric design features are 

combined. This means that noise in the calibration/estimation process of those aggregated 

sites will be reduced, compared to using a larger number of smaller segments. They 

compared different SPF specifications for those aggregated sites with respect to applicability 

and performance specifically in Virginia. For site prioritization, the authors used a sliding 

window approach that calibrates the SPF at each sliding window location, and then applied 

an Empirical Bayes correction. The excess crash frequency for each site was then calculated 

by site, as well as by site-mile, and the top 5% of a ranked list of excess crash frequencies 

identified. This is a combination of many different methods and approaches to black spot 

identification. Still, the Empirical Bayes component in Hamidi, Fontaine, and Demetksy's 

analysis was considered to be very important [15]. 

 

In terms of data constraints, Hamidi, Fontaine, and Demetksy provided some degree of 

discussion; however, since the roads considered in this study were part of the primary system 

in Virginia, it appears that a good road inventory system was present [15]. Still, the main 

discussion centered around the practice of matching crashes from a crash database to existing 

road inventories. Primary road numbers were available and were used to match crashes in a 

certain area. Due to the aggregation of sites, no sub-segment details (such as mile-posts) were 

considered in the analysis. Data requirements at the aggregated sites were also very broad; as 

they only used the length of the particular segments and AADT in their analysis [15]. Since 

the site data were aggregated, all the characteristics of the crashes aggregated together must 

be constant within the level of aggregation.  

 

Other researchers explore Hilbe’s Generalize Negative Binomial model in the context of 

traffic data [32], [39], [58]. The generalized model allows the variance function to be made 

conditional on parameters as well by means of modeling the over-dispersion parameter. This 

certainly has implications for Empirical Bayesian analysis, as the weights for the Empirical 

Bayes formula make use of the variance of the estimate in their theoretical derivation and 

explicitly involve the over-dispersion parameter. Lord and Park  investigated exactly those 

implications and found that statistical properties of the estimates can be much improved 

using the Generalized Negative Binomial formulation [38]. While Lord and Park used a 

sample of roads from California in their analysis, the researchers were unable to find an 

application that used a generalized approach to crash data analysis in practice for the purpose 
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of identifying black spots [38]. Despite its merits, the discussion of generalized negative 

binomial models seems to be restricted to academic papers and has not yet made its way into 

safety engineering practice. 

 

Empirical Bayes Data Needs 

There are no data needs per se that are imposed by the Empirical Bayes method itself. The 

constraint is the availability of good quality data that will allow the analyst to estimate (or 

calibrate) the expected number of crashes of similar locations that is to be entered into the 

weighted average formula of the Empirical Bayes estimator. The same is true for the variance 

of the estimate that is used in the weights themselves.  

 

If the estimated number of crashes at similar locations is not a very good estimate, its 

variance will be large, and the Empirical Bayes procedure will account for this. However, in 

order to even run the Negative Binomial regression model that is recommended for crash 

data, or to calibrate a SPF, the researchers must, at least, have the section length, as well as 

the (Annual) Average Daily Traffic for road segments, and for intersection data, the 

researchers must have (1) major road AADT and (2), minor road AADT. Moreover, it will be 

necessary to be able to divide the road segments into different function classes. Finally, it is 

necessary to be able to link all accidents that occurred on a road segment back to that road 

segment. 

 

All of the discussion regarding the data needs for Negative Binomial regression models 

applies in this context as well. While the Empirical Bayes procedure does alleviate some 

problems that may arise regarding regression to the mean, it does not solve any problems that 

arise due to data quality issues. 

 

Statistical Evaluation of SPF - Classical Analysis 

There has been some literature suggesting that Bayesian methods are a preferred approach to 

identify hazardous locations; however, the comparisons that are entertained by those papers 

are not always the appropriate ones. Elvik, for example, compares Empirical Bayesian 

methods to sliding window approaches and other numerical definitions of black spots [9]. 

Others base their conclusions on Monte Carlo Experiments where, by assumption, they have 

chosen a correct functional specification [6]. Although the Bayesian Approaches to 

evaluating a fitted safety performance function are popular, some arguments for using a 

Bayesian approach are not solid from a statistical viewpoint. The more valid comparison is to 
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compare the Bayesian approach with classical hypothesis tests of whether an observed value 

is statistically significantly different from the mean of the distribution.  

 

The classical approach also starts with estimating a Safety Performance Function based on 

the Negative Binomial Model. But instead of using the expected value from the SPF as part 

of a weighting scheme, a statistical test is performed to determine if the observed value is 

significantly different from the expected value from the SPF. There are many different 

suitable statistical tests that may be used to test whether the difference of the observed and 

the expected value is significant. Since the distributional assumptions and low means do not 

satisfy the criteria necessary for a standard t-test, it may be useful to consider non-parametric 

tests in this case. Note that critical value will vary with section length and all the covariates 

included in the model. Using a classical approach is subject to the same assumptions as used 

for the Empirical Bayesian analysis.   

 

6. Inexpensive Countermeasures 
 

The serious traffic crash problems on local roads (mainly rural) have been recognized in 

recent years. The Federal Highway Administration (FHWA) has been leading the way to 

establish programs and funds to improve local roadway safety as part of their Highway 

Safety Improvement Program (HSIP). In their Local Road Resources CD, FHWA provides 

all practical information and guidance to agencies responsible for roadway safety [59]. In 

addition to FHWA, Minnesota has also been at the forefront of promoting roadway safety of 

rural highways. The Center for Excellence in Rural Safety (CERS) at the University of 

Minnesota facilitates research, training, and outreach activities related to rural transportation 

safety [60].  

 

The information regarding low cost crash countermeasures from various sources including 

FHWA and CERS can be summarized into four different topics:  

1. targeted areas;  

2. specific countermeasures;  

3. observed benefits;  

4. selection guideline [61]. 
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Targeted Areas 

All 4E areas have been documented as important in reducing the number of crashes and crash 

impact. Because low traffic local roads are often designed to a lesser standard than state and 

US highways with more traffic volume, engineering countermeasures are mostly used to 

make local roadways more forgiving. Enforcement and education are also considered 

important in changing unsafe travel behavior. Also, higher fatality rates at local rural roads 

call for a quick emergency response to crashes to increase the chance of survival in crashes. 

 

Specific Countermeasure 

The majority of the concrete crash countermeasures are from roadway engineering, which 

has been documented by different reports targeting crashes at different locations. For 

instance, to reduce the number of run-off-roadway crashes at a horizontal curve (one of the 

most common type of crashes on rural roads), the following low cost countermeasures have 

been widely used on local roads including those in Louisiana: provide advance warning 

signage, add chevrons along the curve, add embedded pavement markings and enhanced 

curve delineation, and add roadside reflectors to delineate curves. Crash countermeasures in 

targeting bad driving behavior on rural local roads include: developing safety policy directed 

at driver distraction, seat belt and alcohol enforcement campaigns in rural areas, focusing on 

increasing perception of risk, and using technologies such as speed monitors fitted to vehicles 

driven by teens in rural areas that are too isolated to police effectively.  

 

Observed Benefits 

The effectiveness of low cost crash countermeasures have been evaluated in both qualitative 

and quantitative terms by several studies, most of them led by FHWA [61], [62], [63], [64], 

[65], [66], [67], [68], [69],[70], [71], [72].  The quantitative evaluation demonstrates the 

reduction in crashes through the observational before-and-after studies. Due to the difficulties 

in obtaining the cost information, very few studies mention the cost and benefit ratio 

information even though C/B analysis has been very much promoted in roadway safety.  

 
 
Selection Guideline 

When selecting a countermeasure, the following issues need to be considered:  

Technically feasible – Is the countermeasure feasible for the particular location? Does it 

comply with existing guidelines and/or standards? 
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Advantageous Cost/Benefit – Does the benefit of the countermeasure outweigh the costs? 

Are there more cost‐effective strategies to consider? 

Affordable and Practical – Considering the identified problem, is the countermeasure 

practical? Can it be funded? 

Acceptable – Will the public accept the countermeasure politically and within the 

community? Will there be educational needs for the public? 

Legal – Is the countermeasure legal to use? For example, speed limits are regularly revised 
without proper authorization, and STOP signs are used without meeting the appropriate 
MUTCD warrants [73]. 
 

7. Multi Criteria Decision Making 
 

A highway improvement project consists of the countermeasures applied to a specific site, 

i.e., a road segment or intersection. Usually at each site, different types of countermeasures 

described above are possible with different costs of implementation and benefits in terms of 

crash cost reduction. While there are crash-reduction factors that have been developed by 

researchers for most of the countermeasures considered in this project, cost estimates for 

improvements are time consuming and may require costly engineering analysis. Therefore, in 

practice, only a small number of sites are considered for improvement. Given a limited 

budget, the question arises how to rank the projects according to costs, benefits, and risks. 

This leads to a multi-criteria decision problem. Solutions to this multi-criteria decision-

making problem will be reviewed in this section.  

 
 
A number of studies concentrate on the cost-benefit analysis of certain projects using various 

outcome measures. One study applied an incremental cost–benefit analysis approach toward 

highway projects [74]. Another analyzed the reduction in the expected number of accidents 

due to highway improvements [75]. Others considered the effect of improvements on the 

severity of accidents; evaluated the safety impacts of highway projects using various 

measures; and estimated the effectiveness of projects in reducing crashes [76], [77], [78].  

 
 
The above cited articles deal with the evaluation of single projects. Transportation 

departments have fixed budgets, and so they are only able to fund a limited number of road 

improvement projects each year. To find an optimum selection of projects, Melachrinoudis 

and Kozanidis applied a mixed integer knapsack solution to the selection of projects by 
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maximizing the total reduction in the expected number of accidents under a fixed budget 

constraint [79]. Since most decisions on project selection involve immediate costs but 

benefits occur in the future, Brown applied dynamic programming to obtain a set of projects 

which provide an optimum solution which take into consideration present costs but benefits 

over several years into the future [80]. 

 

While most previous research articles examining the selection of public projects use cost-

benefit analysis, there are a few notable exceptions. Norese and Viale used a multi-criteria 

sorting procedure to support public decisions [81]. Yedla and Shrestha suggested a selection 

method for environmentally sustainable transport systems [82] and Hinloopen et al. applied 

cardinal and ordinal judgment criteria to the planning of public transport systems [83]. 

Recently, Odeck used the Data Envelopment Analysis (DEA) approach for measuring target 

performance for traffic safety and Tudela et al. compared  a cost-benefit analysis with multi-

criteria decision methods for transportation projects [84], [85].  

 

Recently, Ghorbani and Rabbani published a new multi-objective algorithm for the project 

selection problem [86]. Two objective functions have been considered to maximize total 

expected benefit of selected projects and minimize the variation of allotted resources. 

Kozanidis solved a knapsack problem with two objectives: profit and equity. The second 

objective minimizes the maximum difference between the resource amounts allocated to any 

two sets of activities [87]. Zongzhi et al. developed a heuristic approach for system-wide 

highway project selection to achieve maximal total benefits [88]. Teng et al.  published an 

empirical study of the budget allocations in northern Taiwan [89].  

 
 
Although the literature of multi-criteria ranking and selection methods is very rich, the 

majority of those methods are not applicable to this situation because it requires user input in 

most cases. Instead, the researchers propose the use of Data Envelopment Analysis (DEA) 

which is based on preference weights without user input. DEA was first developed by Farrell 

and consolidated by Charnes et al. as a non-parametric procedure that compares decision 

units using performance indicators [90], [91].  The DEA method has been applied for 

ranking in several different areas (see, e.g., [92], which contains a list of over 1500 

references). Recent extensions and applications include a matrix-type network DEA 

algorithm and its application for the performance measurement of a transportation network 

[93], [94]. 

 



  

34 
 

In DEA, the preference weights are calculated by linear programming, an optimization 

method which can easily be applied to evaluate and rank thousands of projects. DEA is an 

extreme point method; i.e., it compares each project to all other projects with weights 

calculated to be the most favorable for the particular project being evaluated. This is the 

major advantage of this goal because it ensures that none of those projects, which may be 

advantageous in any one of the important criteria (or in any weighted combination of the 

criteria), are ranked low. Only those projects that are not preferable for any weighted 

combination of the criteria are at the bottom of the ranking. 

 

In DEA, the efficiency of a project is the weighted output over weighted input. The objective 

of the DEA is to identify projects that produce the largest values of outputs by consuming the 

least amount of inputs. For instance, the input would be the cost of the project, and the output 

would be the gain in safety which can be measured by the crash cost reduction. Let s be the 

number of different output criteria, m be the number of input criteria used, and N be the 

number of different projects. Consider a specific project k = 1, 2, … , N, where Rik  represents 

the measure of the ith output criterion (i = 1, 2, …, s) and Vjk  represents the measure of the 

jth input criterion (j = 1, 2, …, m) for project k. The efficiency of project k is measured as the 

weighted sum of outputs over the weighted sum of inputs (as in productivity measures) 
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By using DEA, the researchers attempted to find optimal weights, ujk, and vik, for each project 

that maximizes the project efficiency,  Ekk,  by comparing each project, k , with all other 

projects subject to the restriction such that the weights are nonnegative and all Ekn ≤1 for 

n=1, 2, …, N.  For each project, k, the above optimization problem can be described as the 

equivalent linear programming problem 
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with Ekk defined in (13). The efficiency of a project, the E*
k value, is the DEA efficiency 

measure for project k. There are two basic cases: 

 E*
k = 1 project k is efficient (Pareto-optimal project), and 

 E*
k < 1 project k is not efficient; it is dominated by other project(s). 

  

To illustrate this concept, consider two output criteria, such as the odds for a crash count and 

the percentage of injury crashes at each road segment. For two criteria, the idea of DEA can 

be shown in a graph.  In Figure 1, the points A, P, and B represent the road segments. The 

line y2-A-B-x2 is the efficient envelope. Any road segment that has a weighted average of 

the two criterions inside the envelope is not as efficient as the points on the envelope. The 

road segment P has an efficiency computed as the distance OP divided by the distance OD.  

 

  

Figure 1  
DEA example 

Note that higher efficiency of a project in this context means better selection for safety 

improvement. Based on the DEA method of (14), for each project, the researchers calculate 

the HEk = E*
k value. This is considered as the Efficiency Measure of project k.  The literature 

mentions the potential disadvantages in using DEA ranking, such as too many efficient 

projects, the sensitivity of the selection of the projects included in the list of projects, and the 

data estimation error.    
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The method of combining the DEA ranking with Multi-Criteria Decision Making has been 

used for different applications. For instance, Golany combined interactive, multiple-objective 

linear programming with DEA; Stewart compared the concepts of efficiency and Pareto 

Optimality in DEA and MCDM [95], [96]. Furthermore, Belton and Stewart stated that 

MCDM is generally applied to ex-ante problem areas where data is not readily available, 

such as in the case of future technologies [97]. DEA, on the other hand, provides an ex post 

analysis of the past as a basis to learn. Since project selection case is based primarily on 

existing statistical data related to such areas as accident risk, cost, and benefits the DEA 

ranking gives valuable information for selecting the future improvement projects.   

 

The advantage of this methodology is that it can be applied to project selections in which (1) 

tens of projects are to be selected out of hundreds of potential projects pre-selected from 

thousands of potential projects and (2) the selection is based on multi-criteria objectives 

which require no user input information regarding the weights or pairwise comparison of the 

projects.   

 

8. Summary and Conclusion from Literature Review 
 

In this study, the researchers reviewed the existing literature on the identification of black 

spots (among other considerations) and identified a procedure that will allow analysts to 

identify black spots on local rural roads. The researchers presented a detailed review of the 

available methods and each of the requirements for all of the methods and concluded that 

estimating the number of crashes in an Empirical Bayesian framework based on the Negative 

Binomial Statistical model is the preferred approach to determine expected crash counts for 

highway sections and intersections.  However, the researchers will not use the terminology 

“black spots” or “abnormal locations,” as they do not wish to imply that statistics can 

determine which locations have safety hazards.  Statistics can only rank the crash locations 

according to some established criteria and select the top p% for further investigation for 

safety hazards.  The point of using the SPF and crash modification factors in the modeling is 

to discriminate between crash locations with different exposure levels and engineering 

features, and to take this into account when computing expected crash counts for locations. 

The regression model provides a better predicted crash count than the average crash count for 

this location because it uses information from all locations. Provided that the model is 

appropriate for the data analyzed, a regression line is usually a better predictor for the true 

mean crash count at a location than the average crash count at the location, assuming that the 

regression modeling is done simultaneously for exposure and crash modification factors. In 
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the HSM’s two-stage approach the SPF is “calibrated” and multiplied with the CMF’s, it is 

impossible to guarantee that the estimate is superior to the actual average, as it is not clear 

that these are valid assumptions for a given location in the first place. For instance, 

interactions between factors are ignored and the factors are assumed independent. Another 

issue is the standard error for the CMFs which can be considerable. For point estimation, the 

standard errors are often ignored.  However, when the objective is to identify the top p%, 

then the standard errors of the CMFs cannot be ignored. It is well recognized by researchers 

that obtaining the combined standard error for multiple CMFs poses an unsolved problem.   

 

The best estimate is obtained from a model that simultaneously estimates all factors and 

provides a total variance estimate as well. However, for local roads, much of the information 

needed for building a comprehensive regression model is not available. Thus, until more 

information is available the researchers recommend a simpler approach to modeling the crash 

counts. This approach is based on the fact that the expected crash counts are neither very 

sensitive to small change in exposure, nor to small changes to engineering features. Thus the 

researchers will discretize all factors including AADT, road width, and shoulder width, and 

then group road segments and intersections with the same features into classes of similar 

locations. For each of these classes, the researchers rank the expected crash count by average 

and EB to obtain the top p% of locations. Provided there are enough locations in each class, 

the researchers will also be able to compute a tail probability and odds for exceeding a 

certain crash count, given certain road features and exposure levels. While the expected crash 

counts should not be compared across classes, the odds can be used to rank all expected crash 

counts. This is because the odds are independent of the magnitude of the average. The odds 

of winning in a lottery, for example, do not depend on the payout. Put another way, if the 

odds for observing a certain crash count at a location (A) are one to a million and at another 

location (B) the odds for the same crash count are one in one hundred thousand then this 

crash count for location (A) is a rarer event for this road segment with the specific features 

and exposure level than for location (B). Thus, the odds can be used to compare locations, 

regardless of what engineering features and level of exposure these locations have.   

 
 

Note that this modeling does not use a regression model because the researchers do not have 

enough data to build a comprehensive model for the local road system. Once the data exist 

for enough parishes, a comprehensive model may be developed and used to compute 

expected crash counts and odds based on these crash counts. At the present time, the 

researchers propose to use a negative binomial model for each class of locations.  For the 
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computations of the EB and the tail probability, the researchers follow the steps outlined in 

Section 5.  

 

The procedure for determining the top p% of locations that warrant further analysis can be 

summarized as follows:  

1. Obtain observed average crash frequency for each location for 3 to 5 years. The 

researchers should be aware that the more years they choose, the more likely it is that a 

trend in the crash counts is present, which violates the model assumptions. This implies 

that neither the simple average nor the EB average will be a good estimate of the current 

true mean crash count. 

2. Select a certain class of road segments, i.e., those with the same exposure and geometric 

features. For instance, 12 feet lane, 6 feet shoulder, approximately 5000 AADT, straight 

road, no driveways.  

3. Determine the expected crash frequency for each road segment in a class using the 

Empirical Bayes method outlined in Section 5.  

4. For all locations, compute tail probabilities or odds for each expected crash count based 

on the distribution of the EB estimate from the NB model for given AADT and geometric 

features as outlined in Section 5. Note that the tail probability will vary with section 

length and all the covariates in the model.  

5. Select a percentage p of highest expected crash locations to be investigated based on the 

available resources. In most cases, a p of 5% may be appropriate. Note that the top p% is 

not based on the crash count itself but the computed tail probability. If the tail probability 

for the EB estimate is less than p%, the location is selected. Odds are often preferred to 

tail probabilities may be used instead.  

6. Select top p% locations from each class based on the tail probability.   

7. Investigate the top p% crash locations and determine inexpensive countermeasures and 

their cost.   

8. Use DEA to rank p% from all classes of crash locations with respect to odds, costs, and 

benefits. Instead of DEA, the cost benefits ratio can be used since it is only slightly less 

efficient than the DEA.  
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The previously listed steps provide a straightforward procedure that lends itself to clear step-

by-step instruction documentation, including examples and “walk-through” guidance to help 

local agencies analyze their crash data and evaluate the safety of local roads. 

 

 
9. Data 

 

The study attempted to build models for predicting crash counts based on the road 

characteristics and traffic volume. Thus, data for use in the models must be available. The 

staff of the Highway Safety Research Group (HSRG) contacted several local agencies 

without success in securing information about AADT and geometric features of road 

segments. It seems that local agencies lack the resources to maintain a comprehensive 

database that has both AADT and geometric features listed. Thus the research group decided 

to develop a database for two pilot parishes and demonstrate the feasibility of the approach. 

 
  
The two pilot areas are Terrebonne Parish and Lafourche Parish. Houma is located in 

Terrebonne Parish and Thibodaux is located in Lafourche Parish. The two areas are suitable 

for a pilot study because they contain a balance of locally maintained roads in urban and 

suburban areas, as well as locally maintained rural roads. 

 
 
The first part of this document described the need for specific data when attempting to 

identify black spots. In this part, the researchers discuss how those needs were addressed in 

the two chosen pilot parishes. The researchers developed a general approach that can be 

applied to any location in Louisiana. The first subsection describes how the researchers 

determined the location of all local roads in the state and how an index to uniquely identify 

each of those segments was developed. Next, the researchers discuss how the geometric road 

characteristics were associated with those defined road segments, as well as how the AADT 

is identified on each of the road segments.  

 
 
Road Grid 

The road grid was taken from the Tiger Shape Files of the US Census Bureau. From all the 

line segments, the researchers subset those line segments identified as roads. At this point, 

the researchers could not make the distinction between local roads and other types of roads. 

While the names of most roads are also included in the raw Tiger Shape file, it was not 

immediately clear whether a named road is state-maintained or a local responsibility.  
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The roads in the raw data were stored as a collection of latitude and longitude coordinates. A 

collection of such pairs had a unique identifier and when connecting the coordinate spots 

with a line, the road was traced. Each road segment was uniquely identified between each 

intersection, or from the point where it starts. For example, Highland Road in Baton Rouge 

was not identified as one single road, but rather was divided into sub-sections defined by the 

intersection points along the road.  

 
 
The researchers calculated a new road grid for use in this study, dividing all the road 

segments into 500 ft. sub-segments whenever possible. A large number of sub segments 

remained with a length of less than 500 ft. This was unavoidable due to the remainder left 

over when dividing into 500 ft. segments and the overall length is not evenly divisible by 

500. For example, a 1250 ft segment would be divided into three parts: two sub-segments 

with length 500, and one sub-segment with a length of 250ft. This is important for the 

calculation of the Empirical Bayes estimate because the risk exposure should be equal 

between locations to produce a correct estimate of safety performance. The researchers 

continued to treat intersections separately from road segments; when dividing the road grid 

into 500 ft. segments, those segments never traversed intersections. The details of the 

calculation of the Road Grid and the algorithm used can be found in the Technical Appendix. 

    

Crashes 

The researchers used five years of data for all crashes occurring within the two parishes from 

2005-2009. A large number of crashes reported in the HSRG’s LACrash system had 

geographic identifiers associated with the records. Many records, however, were missing 

geographic location information, or the researchers determined that the provided latitude and 

longitude information to be inaccurate. Since the precise location of the crashes is highly 

important in the identification of black spots, and the only way to match crashes to the 

calculated road grid is by using geographic location indicators, the researchers had to ensure 

that every single crash was spotted correctly. 

 
 
For this reason, the researchers used the crash report,  narratives, and diagrams provided by 

the investigating officer of the crash to determine the exact location of the crash. The 

researchers did this for all crashes within the noted five-year period indicated to have 

occurred on local roads. The researchers spotted the crashes, regardless of whether or not the 

report contained latitude and longitude information, to ensure that the locations were 
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determined accurately. A total of 5,760 crashes were identified in Terrebonne and Lafourche 

Parishes. The researchers attempted to match all of those crashes in this study.  

  

Matching Crashes with Road Segments 

The researchers programmatically matched crash locations (points) with road segments 

(lines) on the newly calculated road grid. The researchers identified matches using an 

algorithm that minimizes the cross track distance of the crash point from the vector that 

describes the road segment. The precise procedure is described in the Technical Appendix. 

The researchers were able to match 5,597 out of 5,760 with road segments of the calculated 

grid. This means 97.2% of all crashes could be matched to a road location.  

 

Intersections 

Intersections and Road Segments should be treated separately. This is easily accomplished in 

the data by examining the end points of the individual road segments; however, the definition 

of an intersection should be broader than just including strictly those line segment ends that 

touch. For example, when considering roads that are divided by a median, where the 

opposing directions of travel appear as two separate segments, it should not be considered as 

two different intersections. For this reason, the researchers used a tolerance of 75 feet to 

programmatically identify intersections.  
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Figure 2  
Example of intersection identification 

 

Identifying Curves  

One important characteristic of road segments to note is the curvature of the road. This is 

especially important for rural road segments with a relatively high speed limit. In this case, a 

curve may be the underlying cause of accidents, so it makes sense that the researchers would 

want to take into account whether or not a location is located in a curve in determining the 

safety performance of that location.  

 
 
The researchers developed a way to identify programmatically whether a road segment is 

part of a curve or whether it is a straight line. The researchers did not identify the degree of 

the curvature or the radius of the curve, but rather a dummy variable indicator that takes the 

value of 1 when a road segment is part of a curve and 0 when otherwise, which would also be 

useful for later analysis. The researchers calculated the directional heading (bearing) for 

every sub-segment of the road grid. Next, moving along the sub-segments of a road from one 
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intersection to the next intersection point, the researchers calculated the moving standard 

deviation of the calculated heading using a sliding window of 5 sub-segments. 

 
  
The researchers experimented with a variety of sizes of sliding windows and determined that 

a 5 window moving standard deviation provided the best performance. The researchers chose 

a moving standard deviation because there is a lot of variation in the number of sub-segments 

that make up a road segment. Individual sub-segments are straight lines themselves, and so 

many small sub-segments with varying headings are indicative of a curve. Using a moving 

standard deviation identifies multiple collections of sub-segments within a road segment that 

may be considered curves. If the road is perfectly straight, then the sub-segments that make 

up the road will all have the same heading and the standard deviation will be zero. On the 

other hand, if there is a curve in the road, then the sub-segments that make up the road will 

have different headings as the researchers move along the road. This means that the standard 

deviation will be positive.  

 
 

There is no direct interpretation or units of measurement that are associated with the 

calculated moving standard deviation of the heading. After examining the calculated moving 

standard deviations, the researchers observed that the distribution of that statistic was 

bimodal. There were many segments that were straight and had a very small standard 

deviation.  After a careful calibration exercise, the researchers were confident that if the 

natural logarithm of the moving standard deviation of a particular segment exceeded the 50th 

percentile of the distribution of all log moving standard deviations, then this indicates a 

curve.  

 
 
This method works better for rural areas than city streets. Curves in the road are much more 

important on rural roads, as well as a determining crash factor, particularly on higher-speed 

rural roads, so the method is still suitable for the purpose of this study. On city streets, the 

individual line segments tend to be much shorter and the variation in the heading much 

higher in spots that would normally not be identified as curves. See Figure 3 below for an 

example of how the researchers identified curves. The black line segments are regular road 

segments that are not considered to be part of a curve. The pink line segments in the figure 

below indicate road sub-segments that the algorithm determined to be a part of a curve.  
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Figure 3 

 Example of curve identification 

 

Other Road Characteristics and Design Features 

Collecting the characteristics of the individual roads was the most time consuming task of 

this project. Since site visits to each of the locations would have been too expensive and time 

intensive, the researchers made use of Google Earth satellite images, as well as Google Street 

View.  

 

First is a list of features that the previous literature has identified as being important factors 

to consider when estimating the safety performance of road segments and intersections. At 

the same time, the researchers considered which characteristics were able to be observed or 
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measured using Google Earth or Google StreetView. The researchers developed the 

following list of items based on the information collected: 

For Road Segments (non-intersections): 

 Number of Lanes 

 Type of Center Striping 

 Divided Street / One Way Indicator 

 Narrow or Regular Lane Width indicator 

 Shoulder type (Full, half, no shoulder) 

 Speed Limit 

 On-street Parking indicator 

 Number of Driveways along segment 

 Ditch indicator 

 

In addition to the above, the researchers collected the following information for intersections: 

 Signaling type (Traffic light, stop sign, none, etc.) 

 Protected left turn indicator 

 Turning restrictions (No left turn allowed, no right turn allowed) 

 “No Right on Red” restriction 

 Presence of designated turn lanes 

 

Using the calculated road grid described above, the researchers developed a database 

application that allowed data collectors to navigate to the locations of the road segments 

using a browser window running Google Earth. Using information from the satellite pictures, 

as well as the street view feature, the data collectors filled in forms with the data required for 

analysis. See Figure 4 for a screenshot of the program used.    

 

The researchers were able to collect most of the above features for all segments on the road 

grid. For some rural locations in Lafourche Parish, Google Street View was unavailable, 

making the collection of information on intersections difficult. While the researchers were 

sometimes able to determine the presence of turn lanes or similar features from the satellite 

picture alone, it was not possible to collect all pieces of information. In this case, the data 

collector indicated that the Google data provided insufficient detail to complete all fields.  
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Figure 4 
 Example of road characteristics spotting program 

 

Average Annual daily Travel (AADT) 

The Highway Safety Manual identifies AADT as one of the most important factors to 

consider when estimating the safety performance of a road segment or intersection.   Note, 

however, that the predicted crash frequency as a function of AADT is a fairly flat function. 

Predicted crash frequencies do not change very much across wide ranges of AADT. 

 

The researchers obtained Traffic Counts from the South Central Planning Development 

Commission (SCPDC). The SCPDC referred the researchers to their website to access to 

traffic counts that are maintained by a third party vendor. The researchers attempted to 

contact the vendor to discuss access to the traffic count data, but received no response to any 

inquiries. Therefore, the researchers had a student worker manually extract traffic count data 

from the website, a time-intensive exercise. Local parish or city officials attempting to 

identify black spots are likely to have better access to traffic count data.   
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Figure 5  
Example of AADT measures 

 

Traffic counts are collected at locations identified using latitude and longitude, which is a 

single point. As the researchers were particularly interested in the entire segment on the road 

grid with a particular AADT, they had to calculate the closest road segment to a particular 

count location and assigned the observed AADT to that segment. This was done in the same 

way that crashes were assigned to a particular segment (described above). This gave AADT 

for only a few segments on the grid and it was necessary to manually match additional 

segments.  

 

Since Predicted Crash Frequencies do not vary a great deal for wide ranges of AADT, AADT 

was divided into 4 different categories:  

 Category 1: AADT = 0—1000  

 Category 2: AADT = 1001—2500  
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 Category 3: AADT = 2501—5000 

 Category 4: AADT = 5001+ 

 

The manual matching and estimating of AADT was performed by mapping the observed 

traffic counts, categories, and road segments and judging whether the AADT on adjacent 

road segments would likely be in the same category as a nearby count. Since the researchers 

were not using the continuous measure of AADT, but rather the categorical measure, this 

method of estimating AADT categories is not likely to cause any significant measurement 

error.  

 

10. Using Microsoft Excel Application for Site Ranking 

 

This section presents an application developed using Microsoft Excel 2010 as the 

development platform aimed at providing an analyst or highway engineer with a tool for 

identifying and investigating potentially hazardous sections of highway.  This application 

provides a quick and easy way to select a type of highway section, see all similar sections 

along with the number of crashes and mean estimates, rank the sections, and finally provide 

the user with a way to further investigate particular sections. One over-arching theme of this 

project was to provide effective and inexpensive tools for analysts. Thus, this application was 

developed to be used on the desktop and utilizes only Excel 2010 and Google Earth (free 

edition) on the user’s end. What follows is a very brief and non-technical description of the 

underlying data architecture and a discussion on how the application uses this data and 

interacts with Google Earth to provide visual data. 

 
Underlying Data Architecture 

The data used by the application is exactly the same data that is used for developing 

regression models. How the researchers prepare it is slightly different. The goal is to provide 

users with a flexible method for choosing highway section attributes when analyzing the 

crash counts. To facilitate this, the researchers utilize the features of online analytical 

processing (OLAP). OLAP are basically a collection of indexes that help perform some pre-

aggregation of data and enable quick recall. OLAP cubes, the result of applying a set of 

dimensions to a collection of measures, provide very fast aggregation and slicing of data. 

Simply put, the researchers can quickly identify highway sections and their associated 

measures while providing plenty of flexibility for selecting highway section attributes. The 

researchers developed an OLAP cube including the available highway section attributes as 
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dimensions and the crash count, Empirical Bayes Estimate, and tail probability as measures. 

In some cases, the researchers also performed some bucketing of continuous variables to 

make selection easier. An example of this is providing classes of shoulder width constructed 

by looking at two foot increments. The researchers justify this grouping and subsequent “loss 

of information” by noting that even in the regression models provided by the HSM, there is 

little to no change in the estimated crash count for such small changes in shoulder width. The 

same holds true for many of the other variables, like pavement width and AADT. The classes 

were all selected based on careful consideration of how the grouping would affect the mean 

estimates. The cube used by the application resides on a server at the HSRG in an effort to 

minimize the required resources on the client machine.  

 
While the OLAP cube provides a method for high incident highway section identification, it 

is not very well suited to returning relational data. The cube is optimized for aggregation, so 

the researchers must also query the underlying relational database that holds complete crash 

information in order to provide the analyst with crash details, once a section has been 

identified for further analysis. A situation may arise where the analyst has identified a section 

with a high number of crashes relative to similar sections. Then, drilling down to the crashes 

on this section, he or she may find that the overwhelming majority of these are side-impact 

crashes. This information may point to a problem with the traffic control configuration or 

other roadside hazards that are contributing to these crashes, so providing granular crash-

level data is also important. This data has already been collected at the HSRG so its inclusion 

is rather easy to implement.  

 

 Application Overview 

When implementing this analysis tool, the researchers selected Microsoft Excel for several 

reasons: 

 Excel has the ability to connect directly to OLAP cubes and relational sources and 

provides an easy to use drag-and-drop cube browser interface. This eliminates the 

need to develop custom software to interact with the cube. 

 Excel supports custom programming using macros and Visual Basic for Applications.  

 Single licensing costs for Excel are relatively low and most users are likely to have it 

on their computer.  

 

Google Earth was chosen because it is a free application that provides some basic tools for 

analyzing spatial data.  
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The steps can be summarized as follows:  

1. Determine a collection of highway attribute settings to be investigated. 

2. Select the settings in the application. This will provide a list of sections 

with these settings along with their respective crash frequencies and 

Empirical Bayes estimate. 

3. Use the built-in capabilities of the application to map the crashes in 

Google Earth. 

4. Use Google Earth to further investigate the section and identify potentially 

hazardous aspects of the section that can be addressed. 

 

Opening the application also starts Excel, as shown in Figure 6. There are a few main 

regions. Along the top of the program is a custom ribbon. Ribbons were introduced to 

Microsoft Office applications in the 2007 release. They replace the standard drop down 

menus typically found across the top of an application. Using a Custom Ribbon UI Editor, 

the researchers are able to create a new ribbon and add custom elements such as buttons, text 

fields, etc.  

 

 

Figure 6   
Microsoft Excel black spot analysis application ribbons 

 
 
In the spreadsheet field area under the “Factor Selection Heading” five factors are listed: 

Intersection, Driveway Density, AADT Class, Divided Street, and Alignment. To the right in 

column B, there is the filter that permits the selection of various settings. Both the filters and 

the filter values are chosen by the user. In the example shown on Figure 7, the following road 

features are selected: Intersection, Driveways, AADT equal or below 2000, lane width 

standard 12 ft, No Divided Street and Straight for alignment.  The pivot table data are located 

under the filter area. For this use, the highway section ID numbers, their associated crash 

counts, the EB estimate, the tail probability p, and associated odds are listed. The odds are 
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computed as (1-p)/p. For instance, consider the intersection with ID=9205020201. The odds 

of 20,125 indicate that there is a one in 20,125 chance to observe an expected crash count of 

4.06 among intersections with straight undivided 12 ft lanes where driveways are present and 

the AADT is equal or below 2000.  

 

 

Figure 7 
Microsoft Excel black spot analysis example 

 

Note that the sections are ranked in descending order according to their EB estimate.  Those 

sections at the top of the list may be good candidates for further investigation provided the 

tail probability is smaller than the cutoff value. As the factor settings, e.g. AADT, lane width 

etc., are changed, the sheet updates to reflect the new highway sections and their crash 

counts, EB estimates, tail probabilities and odds. This allows the analyst to first choose the 

type of highway sections he or she wants to investigate.   

 
 
Note that the factors in the factor setting grid can be changed using the pivot table field 

shown in Figure 8. The pivot field list is used to control which elements are included in the 
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factor settings. Currently in the filter area, only Intersection, Driveway Density, AADT 

Class, Divided Street, Alignment are being considered and so those are listed factor selection 

area mentioned above.  But the user may add or delete any fields in the list. 

 

 

 
Figure 8 

Pivot table fields 

 

Figure 9 shows some of the fields that could be selected, such as left turn lane, no left turn, 

no right on red, etc. To facilitate the evaluation of this crash location, the researchers provide 

an easy way to show the crashes for a given section in Google Earth. This functionality 

resides in the “Black Spot Analysis” ribbon. 
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Figure 9 

Optional fields 
 

 

The quickest way to map the crashes is to click on a highway section ID and press the “Map 

Selected Section” button in the ribbon as shown in Figure 10. When the button is pressed, a 

macro written into the worksheet is initialized. This macro uses the selected highway section 

ID to retrieve all crashes associated with it from the underlying relational database. The 

macro first creates a kml file (i.e., a file that Google Earth uses to store information about 

points). As the crashes are read from the database, information about them is saved to the 

kml file. Saving this data in the kml file allows it to be viewed once the locations are loaded 

into Google Earth. Some examples of data elements include the date, day of week, time of 

day, collision type, etc. Similarly, crash related elements are written to a second worksheet in 

the excel application labeled ‘Crash Details.’ This gives a list and attributes of the crashes so 

that the analyst can see the crash data in a tabular form. The macro finishes by making a call 

to the operating system to open the kml file. This loads the kml file in Google Earth (or the 

client’s computer’s default kml file viewer) and zooms in to display the mapped crashes.  
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Figure 10 
Selected road segment/intersection 

 

Figure 11 below shows the crashes displayed in Google Earth and the information associated 

with a selected crash.
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Figure 11 

Google Earth picture for selected intersection 
 
 
With the crashes shown in Google Earth, the user can see properties related to the highway. 

Selecting any crash in the upper left panel pulls up its properties. Google Earth also allows 

the user to view aerial images through time. Usually, there will be an image corresponding to 

the year the crash occurred. This gives a better context for conditions surrounding the crash, 

particularly if some aspects of the section have been changed over time. Clicking on one of 

the pins that identify the crashes provides short description of the crash, such as aggressive 

driving and alcohol, as shown in Figure 12. 
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Figure 12  
Detailed information for selected crash 

 
 
Google Street View allows the analyst to obtain a view of the intersection (shown in Figure 

13). The view can be used to assess any road hazards or suggest any particular road 

improvements. Note that Google Earth allows to view the intersection from different 

directions.  

 

 
Figure 13 

Intersection view 
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There are additional buttons in the ribbon (Figure 14) to control which crashes are mapped. 

These give the user the option to only see crashes that involved factors like aggressive, 

distracted, drivers under the influence, commercial motor vehicles, drivers that left the 

roadway (departure), or crashes that occurred at intersections. It should be noted here that 

any combinations of these properties can be used as well.  

 

Figure 14  
Options for selecting types of crashes 

 
 

Hence with only a few clicks an analyst can quickly compare crash counts on similar 

highway sections and identify those that stand out. He or she can also employ Google Earth’s 

capabilities to get specific characteristics of the highway section and possible identify factors 

that contribute to the abnormal crash count.  	
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DISCUSSION OF RESULTS 

Selection of Factor Level Settings 

 
This analysis included Terrebonne and Lafourche parishes. All crashes were map spotted and 

all factor levels (such as driveways, lane width, etc.) of the roads segments and intersections 

were recorded in a database using Google Earth. The AADT was obtained from websites. 

Table 1 shows the factors and levels for each factor that were collected. However, for many 

of the factors, the levels could not be identified for every road segment. For instance, the 

speed limit was only identified when a sign was visible on Google Earth.  
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Table 1 

Factors and factor levels 

Factors Levels 
Number of 
Levels

Intersection 
levels* 

Non 
Intersections 
Levels*

AADT 
0-2000, 2001-5000, 
5000+, unknown 4 3 3 

Alignment Straight, curve 2 X 2 
Center Striping Yes, No 2 X X 
Ditch Yes, No 2 X X 
Divided Street Yes, No 2 2 2 
Driveway Density Driveway, No Driveway 2 X 2 
Lane Width 12ft+, <12ft 2 X X 
Shoulder Width Yes, No 2 X X 
Speed Limits 35, 45, 55, 65, 70 5 X X 
Street Parking Yes, No 2 X X 
Strictly Residential Yes, No 2 X X 
Left Turn lane Yes, No 2 2   
Protected Left Turn Yes, No 2 2   
No Left Turn Yes, No 2 X   
No  Right on Red Yes, No 2 X   
No Right Turn Yes, No 2 X   
No Straight Yes, No 2 X   
Right Turn Lane Yes, No 2 2   
Signaling Yes, No 2 X   
Total Number of 
Combinations     48 24 

*The X indicates possible level and a number indicates the actual levels analyzed. 
 
 
The more factors that are chosen, the more combinations there are that will have to be 

evaluated. Using all factors would lead to many combinations to consider. Many of these 

combinations of factor levels would not have enough data to allow an analysis. For instance, 

not all road segments have speed limit information. Table 2 shows the total number of 

combinations of levels for intersections and for road segments analyzed.   

 
 

Table 2 
Number of combinations investigated  

 Number of levels selected for analysis 
Intersection 48
Roadway Segment 24
Total 72
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Selection of Road Segments and Intersections 
 
 
The choices of levels included in the analysis were based on the available information for the 

factor levels. There were very few road segments and intersections with 0-2000 AADT. Thus 

this group was combined with 2000-5000. Table 6 of Appendix B gives the 48 combinations 

chosen for analysis. For instance, Section Level 1 combination of the intersections includes 

AADT of 0-5000, no left-turn lane, undivided street, no protected left turn, and no right turn 

lane. For all other factors, all levels were included.  For instance, a specific lane was not 

chosen because there was no difference between the levels of this factor. There were 89 

intersections for the chosen combination. Twenty-two had 1-5 crashes and three intersections 

had 6-10 crashes. Six of these sections had tail probabilities below 5% and thus were 

analyzed on Google Earth. Out of the 4,821 intersections, there were 30 intersections that had 

probabilities below 5% and thus were analyzed through Google Earth to identify 

countermeasures.  

 
 
Table 7 of Appendix B shows similar information for non-intersection road segments. The 

factors included are AADT, alignment, divided street, and driveway density. These 24 

combinations had 13,382 road segments, of which 42 road segments had tail probabilities 

below 5%. Six of the selected sections do not have a clear Google Street view.  

  

 
Selecting Countermeasures 

 
 
The potential countermeasures for each of these 30 intersections and 36 roadway segments 

are selected based on the analysis of Google Street view snapshots. One drawback in this 

process is that most of the Google Street views were captured in 2008.  Thus, some of the 

issues identified may have already been corrected. The selected road segment/intersection 

should be visited to identify the correct status of the road segment.  

 

Crash Modification Factor (CMF)  
The Federal Highway Administration’s guideline ‘ Low-cost Safety Enhancements for Stop 

Controlled and Signalized Intersections’ is followed to select the inexpensive safety 

countermeasures for Louisiana. From the recently published Highway Safety Manual (HSM), 

the countermeasures are divided into three major groups:  
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1. Countermeasures with CMF value 

2. Countermeasures with no CMF value 

3. Treatments with unknown crash effects [61], [68].  

 
 
Some of the potential countermeasures used in the study do have associated CMF values.  

These countermeasures are marked as countermeasures with ‘No CMF value.’ The potential 

countermeasures for both intersections and roadway segments are shown in Appendix B. 

 

Cost Estimation 
The evaluation of the cost of the countermeasure is important to enable a ranking of projects. 

The local cost data are taken from several local agencies. Some package prices of the 

countermeasure installation are considered from the Louisiana Road Safety Program (LRSP) 

data. The estimated range of the costs is shown in Appendix B along the available CMF 

values. 

 

Ranking of Projects 
After completion of selection of countermeasures, costs, and CMF’s, the following measures 

are considered as criteria for ranking the countermeasure projects: 

 
• Cost measure is the expected cost of implementing a possible low-cost 

countermeasure at the road segment or intersection. 

 

• Benefit measure is the expected reduction in crashes estimated as (1 – CMF) * EB, 

where CMF is the Crash Modification Factor of the countermeasures and EB is the 

Empirical Bayes estimate of the expected  number of crashes at a site. 

 

• Risk measure (hazard) is based on the tail probability estimate at the site. The odds 

for the expected value is (1-p)/p where p is the tail probability. To smooth the 

large differences of the odds, the researchers applied a logarithmic transformation 

log2(odds). 

 
 

The ranking should take into consideration for all three measures the cost, benefits, and risk. 

If only the costs of the countermeasures were selected for ranking, then high benefits of 

countermeasures would be neglected and sites with high expected crash counts and benefits 

could be ranked low.  If the benefit were the only ranking criterion, the cost efficiency would 
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suffer. The reason for including a risk measure is to avoid high risk road segments ranking 

low if only costs and benefits were to be considered. Taking into consideration only costs and 

monetary benefits could bias road improvement project selection toward sites with a high 

volume of traffic. While this seems sensible from a cost perspective, it is unacceptable from a 

standpoint of safety. There are many situations where the public does not accept decisions 

based solely on a cost-benefit analysis due to a perception of an unacceptable risk. Public 

projects such as road safety improvements require careful consideration of other objectives 

besides cost and benefits. Therefore, the researchers propose that a measure of risk (hazard) 

for a road segment be included into the cost benefit analysis. 

 

By combining cost, benefit, and risk measures, a multi-criteria ranking method based on the 

Data Envelopment Analysis (DEA) procedure is suggested, which applies weights to the 

different criteria without user input. The preference weights are calculated by linear 

programming, a method which can easily be applied to evaluate and rank thousands of sites. 

The DEA is an extreme point method; i.e., it compares each location to all other locations 

with weights calculated to be the most favorable for the particular location being evaluated. 

 

In DEA, the efficiency of the project is the weighted output over weighted input.  The 

objective of the DEA is to identify the projects that produce the largest values of outputs by 

consuming the least amount of inputs. In this case, the input is the cost of the project. The 

researchers select two output measures. One is the benefit that is measured by the expected 

crash reduction. The other output is the risk that is measured by the proposed risk (hazard) 

measure for a road segment. Overall, the suggested ranking provides a good compromise 

between obtaining a large benefit in crash cost reduction and including more projects on high 

risk road segments.   

 

The result of applying the DEA multi-criteria ranking method is compared with the other 

ranking criteria in the summary tables and graphs below.  The researchers compare the 

results of the five alternative ranking methods. For the comparison, the researchers selected 

different available budgets (arbitrarily selected values for illustration) and serve as the total 

cost limit for that particular budget. The researchers evaluate each ranking for each budget 

limit according to the following measures:  

 

• Cumulated Benefit (CB) expresses the total improvement in Benefit measure that 

is the expected reduction in crashes estimated as (1 – CMF) * EB, defined earlier. 
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The higher the CB the better is the selection for benefit of crash reduction. 

 

• Cumulated risk avoided (CR) expresses the total hazard avoided, the odd values 

the researchers applied to a logarithmic transformation, and the risk measure is 

log2(odds) as discussed earlier. The higher the CR, the better the selection for risk 

improvement. 

 
 

The results of the DEA ranking for the 30 intersections and 36 road segments are 

summarized in Table 3 and Table 4. For each measure, Figure 15 and 16 show a comparison 

of the different rankings methods. The Cumulated Risk avoided (CR) and the Cumulated 

Benefit (CB) for each ranking method is expressed as a percentage of the optimal DEA 

ranking. The higher the percent for a ranking, the closer is it is to the best performing DEA 

ranking. The researchers note that the ranking based on benefits/costs is very close to the 

optimal ranking obtained using DEA. Although the DEA provides a slightly better ranking, 

the ranking based on the benefit/cost ratio may be used in most practical cases because it is 

easier to obtain.   

 
 

Table 3  
Comparison of the benefit and risk improvement  

for the different ranking methods for 30 intersection sites 
Cost criterion Benefit criterion Crash Count Risk criterion DEA criterion Benefit/Cost crit. 

Total cost 
limit ($) 

Cumul. 
Benefit 

Cumul. 
risk 
avoided 

Cumul. 
Benefit 

Cumul. 
risk 
avoided 

Cumul. 
Benefit 

Cumul. 
risk 
avoided 

Cumul. 
Benefit 

Cumul. 
risk 
avoided 

Cumul. 
Benefit 

Cumul. 
risk 
avoided 

Cumul. 
Benefit 

Cumul. 
risk 
avoided 

5,000 14 134 14 172 14 172 14 172 25 176 25 177 

10,000 23 237 33 321 28 248 17 272 42 390 39 348 

15,000 28 283 42 416 31 348 22 345 54 528 50 465 

20,000 42 346 53 534 40 403 29 414 61 622 61 622 

25,000 50 406 56 634 50 543 42 608 68 679 66 655 

30,000 57 507 61 702 59 671 47 670 73 723 72 704 

35,000 64 605 64 733 65 750 58 753 77 766 77 766 

 

 

 

 

 



  

65 
 

 

 

Figure 15 
Comparison of benefit and risk improvement  

 
 

Table 4 
 Comparison of the benefit and risk improvement 

 Cost criterion Benefit criterion Crash Count 
i

Risk criterion DEA criterion Benefit/Cost crit. 

Total cost 
limit ($) 

Cumul. 
Benefit 

Cumul. 
risk 
avoided 

Cumul. 
Benefit 

Cumul. 
risk 
avoided 

Cumul. 
Benefit

Cumul. 
risk 
avoided

Cumul. 
Benefit

Cumul. 
risk 
avoided 

Cumul. 
Benefit

Cumul. 
risk 
avoided 

Cumul. 
Benefit 

Cumul. risk 
avoided 

20,000 13 188 28 296 28 296 28 296 31 304 31 304 

40,000 18 257 43 441 44 478 46 513 50 557 50 536 

60,000 35 498 54 563 54 612 53 633 58 647 58 647 

80,000 58 673 59 632 60 717 61 762 68 794 68 794 

100,000 64 732 70 768 68 827 69 862 73 860 73 860 

120,000 77 928 78 918 77 931 76 934 77 928 77 918 
 

 
It is apparent from Figures 15 and 16 that the DEA provides the optimal ranking and the 

benefits/costs is the second best ranking. The figures also show how the crash count alone 

does not provide an optimal reduction in risk and increase in benefits. 
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Figure 16 
 Comparison of benefit and risk improvement for  

different ranking methods for road segments 
 
 
The complete DEA ranking of the 66 sites is provided in Appendix B (Tables 6 and 7). These 

tables also provide the crash counts, EB estimate, benefits computed as  (1-CMF)*EB, costs 

for the improvements, tail probability, log odds, DEA efficiencies, road name, 

countermeasures, and the CMF’s for the individual and combined countermeasures. It should 

be noted that some of the road segments and intersections with high crash counts and high 

risk are ranked lower than other road segments/intersection with lower crash counts and risks 

because of the differences in costs. If costs are not an issue, then the road 

segments/intersections may be ranked according to risks and benefits only. The researchers 

also note that the benefits were calculated using a fixed cost for all crashes not differentiating 

between fatal, injury and PDO crashes. Weighting benefits by crash severity would require 

separate EB estimates for each severity. Also, the benefits would be more sensitive to the 

occurrence of fatalities at a crash site and would thus result in ranking highest all the sites 

with fatal crashes. Since fatalities are relatively rare among all crashes (0.4%) the ranking 

would be greatly affected by random single fatality events which may not be related to road 

hazard but instead driver behavior, such as alcohol use and not wearing a seat belt. Thus the 

researchers opted against weighting the benefits by crash costs of the severity of a crash.  
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CONCLUSIONS 
 
 
This report developed a procedure for identifying candidates for crash countermeasures, 

selecting inexpensive crash countermeasures, providing costs and benefits of 

countermeasures, and ranking the projects using costs, benefits, and crash risks for local 

Louisiana roads. The deliverables include an Excel application that uses OLAP to obtain a 

ranking of candidates for road improvements. This application makes use of crash data, 

engineering features, and AADT to compute EB estimates and tail probabilities for each road 

segment and intersection. Road segments and intersections with a tail probability below 5% 

are selected as candidates for countermeasures. These candidates are evaluated using Google 

Earth, countermeasures are suggested, and costs and benefits of the countermeasures are 

obtained using published information. The resulting road improvement projects are then 

ranked using multi criteria DEA including costs, benefits and crash risks.  

 
 
While the procedure was able to identify 30 intersections and 36 road segments in two 

Louisiana Parishes that are candidates for improvement and for which countermeasures were 

identified, several issues were encountered that impacted the development of the procedure. 

 
1. The procedure relies on data that were not readily available.  

a. There is no database of a road inventory for local roads that could be used to 

obtain engineering features of the roads. Thus, the time consuming task 

included identifying road features on Google Earth for 36,000 road segments. 

These road features included lane and shoulder width, curves, driveway 

density, and intersection features such as turn lane and traffic controls.  

b. There is no complete database for AADT on local roads available. AADT is 

published sporadically on websites. While the AADT may be collected by 

many local agencies, it was not made available to the researchers. The AADT 

used in this project was obtained from a variety of websites and AADT was 

estimated for roads without available AADT.  

c. While using Google Earth has the advantage of saving time by not having to 

travel to the sites, the disadvantage is that the views may be a year old or older 

depending on the area. Thus the candidates for road improvement may include 

road segments and intersection that have been changed already.  

d. The crash data used were from 2005 to 2009 and thus crash patterns may have 

changed already in the past three years.  While the crash data were readily 

available, the exact locations for crashes on local roads are often not available. 
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Thus all crash locations were map spotted to obtain reliable GPS information 

of the locations.    

 
2. Statistical modeling of hazardous locations.  

a. Because of the lack of data, an SPF was not developed. To develop an SPF, 

exposure data and engineering features are needed. The AADT were not 

sufficient for estimating an SPF for local roads.  

b. Ranking of the top p% requires the computation of the tail probability. The 

Negative Binomial distribution used in this report requires an estimate of the 

mean and the variance. While the mean may be obtained from an SPF 

multiplied by known CMFs, the variance of this product is not readily 

available. Therefore, the approach used in this project was to discretize all 

factors (road features) and AADT and create classes of road 

segments/intersections with similar engineering features and exposure levels 

(AADT).  

 
3. Countermeasures 

a. The countermeasures chosen were limited to engineering. Many engineering 

countermeasures have costs and crash reduction factors associated with them. 

Therefore, these costs and crash reduction factors can be used in an initial 

ranking of projects.  

b. Education and enforcement countermeasures should also play an important 

role in the evaluation of sites. Thus the engineering countermeasures alone 

may not lead to a desired reduction in crashes. Specifically, sites with crash 

reductions that are judged unsatisfactory should be evaluated with respect to 

human factors. For instance, the location of bars or other places frequented by 

young drivers may be affecting crashes. 

c. The countermeasures suggested through the proposed procedure should not be 

used as the final decision, but only as an initial guideline to obtain a ranking 

of many sites. As mentioned earlier, the Google Earth street view may not 

reflect the current features.  

 
 
Although the project had to overcome considerable data issues which accounted for much of 

the time and resources used in this project, the procedure and Excel application is rather 

robust with respect to identifying candidates for countermeasures. Although the researchers 

suggest training for engineers to use this application, the procedures are easy to follow and 

the results are straightforward.    
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The process developed in the project serves as the basis of a local road safety improvement 

program which allows local agencies with guidelines and procedures for a systematic system-

wide road improvement methodology. Such a safety improvement program includes the 

following steps: 

 
1.  Prepare local road inventory for the agency. Divide roads into segments of nearly 

equal length and obtain road engineering features including the following elements: 
 

Table 5 
Engineering features and settings 

 

2. Obtain an inventory of AADT. AADT is necessary to determine exposure levels. 

AADT may be classified as <2000, 2000-5000, and >5000.  

3. Obtain crash information and assure correct GPS location information is available for 

each crash.   

4. Select road features and AADT class to obtain ranking of crash sites. 

5. Select all locations with less than 5% tail probability and create a list of road 

segments and intersections that are candidates for countermeasures.   

6. Obtain information on the selected sites from Google Earth to identify potential road 

hazards.  

7. Identify initial countermeasures, costs of countermeasures, and benefits using 

available CMFs.  

8. Rank sites using DEA. The benefits/cost ratio may be used as an approximate 

measure.  

9. This ranked list serves as a baseline for the road improvement program.  The program 

should include a detailed investigation of the sites through a site visit and the 

determination of other factors that could affect the road safety of the sites but is not 

Factor Road segment of 500 feet Intersection 
Lane Width <12ft. , 12ft. >12ft. <12ft. , 12ft. >12ft. 
Shoulder none, <6ft., >=6ft. none, <6ft., >=6ft. 
Alignment Curve or straight Curve or straight 
Divided street yes, no yes, no 
Driveways yes, no yes, no 
Left turn lane  yes, no 
Protected left turn  yes, no 
Right turn lane  yes, no 
Signal  light, type of sign 
Speed 25, 30, 35, 45 55, 60 25, 30, 35, 45 55, 60 
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easily obtained from Google Earth.  Such factors may include, but are not limited to, 

presence of schools, bars, restaurants, entertainment establishments, etc.  Speed 

related issues may be obtained from crash data or police agencies that do speed 

enforcement. 

10. Specifically, sites where the benefits of initial countermeasures are not large enough 

to reduce the number of crashes to an acceptable level should be investigated for 

other factors not obtained from Google Earth.   

 

The above steps serve as a guideline to institute a systematic system-wide road improvement 

program. This program should also include resources available to implement 

countermeasures, collaboration with enforcement agencies, the Louisiana DOTD, and the 

Louisiana Highway Safety Commission to determine a plan for implementing the 

countermeasures in engineering, education and enforcement.  

 

   



  

71 
 

RECOMMENDATIONS 
 
 
There are several recommendations that can be derived from this project. While we 

recommend that the project be continued by including other parishes, there are prerequisites 

that need to be addressed first. The main prerequisites include: 

 

1. Create a database for local road sections and features in parishes. 

 

Before a system-wide local road improvement program can be implemented, a road 

inventory must be available. Many larger agencies may have information on road features but 

this information is often not readily available for analysis because it is not stored in one 

accessible database. The research team contacted many agencies to obtain road inventories 

without success.  Either the data are not electronically stored by the agencies or they are 

stored in different formats that cannot be easily retrieved. It was also difficult to determine 

who has the responsibility of storing and the authority over these data. Although it is difficult 

to imagine how road improvements could be managed without knowledge of the engineering 

features at a local level, the researchers were not able to obtain these road features for local 

roads. Efforts should be made to obtain an inventory for local roads on a state-wide basis. 

This inventory should be made easily accessible to engineers and researchers.   

 

2. Create a database of AADT for local roads of parishes and cities. 

 

The AADT for local roads is not available on a system-wide level. There are sporadic AADT 

values published on websites, but these cover only main routes. Local agencies may have 

additional AADT numbers but they are not readily available. Effort should be made to create 

system-wide AADT counts for local roads. Without AADT, no safety program can be 

established that takes into consideration exposure levels.  The missing AADT can then be 

estimated through various algorithms. This database should be readily available to all 

engineers and researchers.  

 

3. Increase number of local agencies that provide electronic crash records with GPS 

information.  

 

The third element for a successful local safety program is the availability of crash records 

with GPS information. This will allow the identification of hazardous locations. Without the 

location information, no effective road safety program can be established.  
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Once these three databases have been established, the application provided with this report 

can be used to rank crash sites and determine countermeasures.  
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ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

AASHTO  American Association of State Highway and Transportation  

                                    Officials 

cm   centimeter(s)  

FHWA   Federal Highway Administration 

ft.   foot (feet) 

in.   inch(es) 

LADOTD   Louisiana Department of Transportation and Development 

LTRC   Louisiana Transportation Research Center 

lb.   pound(s) 

m   meter(s) 

AADT   Average Annual Daily Travel 

OLAP    Online analytical processing   

EB   Empirical Bayes Estimate 

PDO   Property damage only 

DEA   Data Envelope Analysis 

SPF   Safety Performance Function 

NegBin  Negative Binomial 

CMF   Crash Modification Factor 

LSU   Louisiana State University 
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APPENDIX A 

Calculating Distances and Matching Points with Line Segments 
 

This appendix describes the algorithms and formulas that were used to implement the 

procedures described in the report above.  

 
 
Calculating Distances between Coordinates 

It is possible to implement some of the procedures using off-the-shelf GIS programs, such as 

ArcGIS. The researchers did not use such programs and provide documentation for 

everything done in the most general terms possible. Analysts will therefore be able to follow 

the suggestions or alter the procedures to their own specification with a large degree of 

flexibility.   

The researchers use an implementation of the Haversine formula for distance calculations 

because it remains very well-conditioned and computationally stable at small distances and is 

therefore suitable for the problem. The researchers calculate distances, ݀, using the formula1 

d ൌ ݎ ⋅ 2 ⋅ atan2൫√ܽ, √1 െ ܽ൯ 

ܽ ൌ sinଶ
latଶ െ latଵ

2
൅ cos latଵ ⋅ cos latଶ ⋅ sinଶ

lonଶ െ lonଵ
2

 

The researchers use a radius of ݎ ൌ 20,902,231 ft. for all of the calculations. 

Headings are calculated such that 

ଵଶߠ ൌ atan2ሺsinሺlonଶ െ lonଵሻ ⋅ cos latଶ 	 , 	cos latଵ ⋅ sin latଶ െ sin latଶ ⋅ cos latଶ
⋅ cosሺlonଶ െ lonଵሻሻ 

In order to re-segment the road grid into 500 ft. sub-segments, the researchers move along 

each road from intersection to intersection and, given a set of starting coordinates and initial 

heading, calculating the coordinates of the end point after moving 500 ft. using the following 

formulas.  

                                                 
1 See Sinnott, R.W. (1984). “Virtues of the Haversine.” Sky and Telescope, Vol. 68:2 for a derivation of the 
formula. 
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latଶ ൌ latଵ ൅
݀
ݎ
cos 	ߠ

lonଶ ൌ mod ൬lon1 ൅
݀
ݎ
sin ߠ cos latଵ⁄ ൅ ,ߨ ൰	ߨ2 –  ߨ

where, ݀ is the distance moved (i.e., 500 ft.) and ݎ is again the radius of the earth. 

 
 
Matching Points with Line Segments 

Crash locations and traffic count locations are identified as points with geographic 

coordinates. The road grid used in this study is described by a set of geographic coordinates 

that, when connected, form a set of line segments. In order to match crash locations or 

AADT count locations with correct road segment, proceed as follows: 

1. Calculate the distance between the crash location and every end point of all road 

segments. Keep only those segments for which at least one of the endpoints has a 

distance that is less than 500 feet. 

2. For each of the remaining segments, calculate the cross track distance2 of the point 0 

from the vector described by the segments using the formula 

 

଴ܦܶܥ ൌ asinሺsin
݀ଵ଴
ݎ
	sinሺߠଵ଴ െ ଵଶሻሻߠ ∗ 	ݎ

 

3. Where, the subscript 0 indicates the crash location and subscripts 1 and 2 index the 

end points of the remaining road segments after step 1. Positive numbers indicate 

that the point lies to the right of the track, negative numbers indicate that the point 

lies to the left of the track.  

4. Calculate the distance along track using the distances calculated in step one and the 

cross track distances from step two. The formula used is 

 

௔௟௢௡௚ܦ ൌ asinሺ
ඥsinଶ ଵ଴ܦ െ sinଶ ଴ܦܶܥ

cos 		଴ܦܶܥ
ሻ	

 

This is the distance from the endpoint 1 along the course to the other endpoint 2 to 

the point abeam 0. 

                                                 
2 This is sometimes also called “cross track error” when used to describe how far airplanes are off course, for 
example.  
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5. Keep only those segments for which the following is true: (1) the along track 

distance of point 0 from endpoint 1 is less than the distance of point 0 to endpoint 1. 

AND (2) the along track distance of point 0 from endpoint 2 is less than the distance 

of point 0 to endpoint 2.  

 

6. If there is more than one segment remaining from step 4, then out of the resulting 

segments, pick the one that has the smallest absolute cross track error and use it as 

the match. 

 

7. If the absolute cross track error is less than 75 ft., then calculate the “meeting 

coordinates” along the track (the point along 1 toward 2 that is abeam point 0) and 

keep it. 

 

8. If can’t find segment closer than 75 ft., then ignore that crash. 
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APPENDIX B 
Tables for Countermeasures and Estimated Costs 

 
Table 6 

Section levels and intersections analyzed 

 

No. of  Sections with

crashes for 5 years 

(2005‐2009)

Sections selected 

based on Tail 

Prob. Values

No. of Sections 

analyzed

Sect.

Level

AADT 

Class

Left 

Turn 

Lane

Divided 

St.

Protected 

Left 

Turn

Right 

Turn 

Lane

No. of

Sections

1‐5

Crashes

6‐10

Crashes

11 or 

above

crashes

1‐5

Crashes

6‐10

Crashes

11 or 

above

crashes

1‐5

Crashes

6‐10

Crashes

11 or 

above

crashes

1 0‐5,000 No No No No 89 22 3 0 3 3 0 3 3 0

2 0‐5,000 Yes Yes Yes Yes 0 0 0 0 0 0 0 0 0 0

3 0‐5,000 No Yes No No 12 2 0 0 0 0 0 0 0 0

4 0‐5,000 No No No Yes 0 0 0 0 0 0 0 0 0 0

5 0‐5,000 No No Yes No 2 1 0 0 0 0 0 0 0 0

6 0‐5,000 Yes No No No 0 0 0 0 0 0 0 0 0 0

7 0‐5,000 No Yes Yes Yes 0 0 0 0 0 0 0 0 0 0

8 0‐5,000 Yes Yes No Yes 0 0 0 0 0 0 0 0 0 0

9 0‐5,000 Yes Yes Yes No 0 0 0 0 0 0 0 0 0 0

10 0‐5,000 Yes No Yes Yes 0 0 0 0 0 0 0 0 0 0

11 0‐5,000 No Yes Yes No 2 1 0 1 0 0 1 0 0 1

12 0‐5,000 Yes No No Yes 0 0 0 0 0 0 0 0 0 0

13 0‐5,000 No No Yes Yes 0 0 0 0 0 0 0 0 0 0

14 0‐5,000 No Yes No Yes 0 0 0 0 0 0 0 0 0 0

15 0‐5,000 Yes Yes No No 0 0 0 0 0 0 0 0 0 0

16 0‐5,000 Yes No Yes No 2 1 0 0 0 0 0 0 0 0

17 5,000+ No No No No 25 9 0 0 1 0 0 1 0 0

18 5,000+ Yes Yes Yes Yes 0 0 0 0 0 0 0 0 0 0

19 5,000+ No Yes No No 6 2 0 0 0 0 0 0 0 0

20 5,000+ No No No Yes 3 1 0 0 0 0 0 0 0 0

21 5,000+ No No Yes No 0 0 0 0 0 0 0 0 0 0

22 5,000+ Yes No No No 0 0 0 0 0 0 0 0 0 0

23 5,000+ No Yes Yes Yes 0 0 0 0 0 0 0 0 0 0

24 5,000+ Yes Yes No Yes 0 0 0 0 0 0 0 0 0 0

25 5,000+ Yes Yes Yes No 0 0 0 0 0 0 0 0 0 0

26 5,000+ Yes No Yes Yes 0 0 0 0 0 0 0 0 0 0

27 5,000+ No Yes Yes No 0 0 0 0 0 0 0 0 0 0

28 5,000+ Yes No No Yes 1 1 0 0 0 0 0 0 0 0

29 5,000+ No No Yes Yes 0 0 0 0 0 0 0 0 0 0

30 5,000+ No Yes No Yes 0 0 0 0 0 0 0 0 0 0

31 5,000+ Yes Yes No No 1 1 0 0 0 0 0 0 0 0

32 5,000+ Yes No Yes No 3 0 0 0 0 0 0 0 0 0

33 Unknown No No No No 3,882 236 10 4 50 10 4 0 5 4

34 Unknown Yes Yes Yes Yes 9 0 0 0 0 0 0 0 0 0

35 Unknown No Yes No No 490 23 1 0 6 1 0 0 1 0

36 Unknown No No No Yes 23 3 0 0 1 0 0 1 0 0

37 Unknown No No Yes No 55 12 3 0 3 3 0 1 3 0

38 Unknown Yes No No No 21 3 0 0 0 0 0 0 0 0

39 Unknown No Yes Yes Yes 2 0 0 0 0 0 0 0 0 0

40 Unknown Yes Yes No Yes 8 3 0 0 1 0 0 1 0 0

41 Unknown Yes Yes Yes No 18 0 2 1 0 0 1 0 0 1

42 Unknown Yes No Yes Yes 31 6 1 0 1 1 0 0 1 0

43 Unknown No Yes Yes No 15 5 0 0 0 0 0 0 0 0

44 Unknown Yes No No Yes 9 2 0 1 0 0 1 1 0 1

45 Unknown No No Yes Yes 1 0 0 0 0 0 0 0 0 0

46 Unknown No Yes No Yes 17 1 0 0 1 0 0 0 0 0

47 Unknown Yes Yes No No 29 0 0 0 0 0 0 0 0 0

48 Unknown Yes No Yes No 65 12 1 0 5 1 0 1 1 0

Total 4,821 347 21 7 72 19 7 9 14 7
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Table 7 
Matrix of roadway segment levels and crash information 

  No. of Sections with
crashes for 5 years 

(2005‐2009) 

Sections selected
based on Tail 
Prob. Values 

No. of Sections 
analyzed 

Se
ct
. L
ev
el
 

A
A
D
T 
C
la
ss
 

Le
ft
 

Tu
rn
 L
an
e 

D
iv
id
ed

 S
t.
 

P
ro
te
ct
ed

 

Le
ft
 T
u
rn
 

R
ig
h
t 

Tu
rn
 L
an
e 

N
o
. o
f 
Se
ct
io
n
s  Crashes Crashes Crashes 

1‐5  6‐10 

11 or
above  1‐

5 
6‐
10 

11 or
above  1‐

5 
6‐
10 

11 or 
above 

1  0‐5,000  No  No  No  No  89 22 3 0 3 3 0 3  3  0 

2  0‐5,000  Yes  Yes  Yes  Yes  0 0 0 0 0 0 0 0  0  0 

3  0‐5,000  No  Yes  No  No  12 2 0 0 0 0 0 0  0  0 

4  0‐5,000  No  No  No  Yes  0 0 0 0 0 0 0 0  0  0 

5  0‐5,000  No  No  Yes  No  2 1 0 0 0 0 0 0  0  0 

6  0‐5,000  Yes  No  No  No  0 0 0 0 0 0 0 0  0  0 

7  0‐5,000  No  Yes  Yes  Yes  0 0 0 0 0 0 0 0  0  0 

8  0‐5,000  Yes  Yes  No  Yes  0 0 0 0 0 0 0 0  0  0 

9  0‐5,000  Yes  Yes  Yes  No  0 0 0 0 0 0 0 0  0  0 

10  0‐5,000  Yes  No  Yes  Yes  0 0 0 0 0 0 0 0  0  0 

11  0‐5,000  No  Yes  Yes  No  2 1 0 1 0 0 1 0  0  1 

12  0‐5,000  Yes  No  No  Yes  0 0 0 0 0 0 0 0  0  0 

13  0‐5,000  No  No  Yes  Yes  0 0 0 0 0 0 0 0  0  0 

14  0‐5,000  No  Yes  No  Yes  0 0 0 0 0 0 0 0  0  0 

15  0‐5,000  Yes  Yes  No  No  0 0 0 0 0 0 0 0  0  0 

16  0‐5,000  Yes  No  Yes  No  2 1 0 0 0 0 0 0  0  0 

17  5,000+  No  No  No  No  25 9 0 0 1 0 0 1  0  0 

18  5,000+  Yes  Yes  Yes  Yes  0 0 0 0 0 0 0 0  0  0 

19  5,000+  No  Yes  No  No  6 2 0 0 0 0 0 0  0  0 

20  5,000+  No  No  No  Yes  3 1 0 0 0 0 0 0  0  0 

21  5,000+  No  No  Yes  No  0 0 0 0 0 0 0 0  0  0 

22  5,000+  Yes  No  No  No  0 0 0 0 0 0 0 0  0  0 

23  5,000+  No  Yes  Yes  Yes  0 0 0 0 0 0 0 0  0  0 

24  5,000+  Yes  Yes  No  Yes  0 0 0 0 0 0 0 0  0  0 

25  5,000+  Yes  Yes  Yes  No  0 0 0 0 0 0 0 0  0  0 

26  5,000+  Yes  No  Yes  Yes  0 0 0 0 0 0 0 0  0  0 

27  5,000+  No  Yes  Yes  No  0 0 0 0 0 0 0 0  0  0 

28  5,000+  Yes  No  No  Yes  1 1 0 0 0 0 0 0  0  0 

29  5,000+  No  No  Yes  Yes  0 0 0 0 0 0 0 0  0  0 

30  5,000+  No  Yes  No  Yes  0 0 0 0 0 0 0 0  0  0 

31  5,000+  Yes  Yes  No  No  1 1 0 0 0 0 0 0  0  0 

32  5,000+  Yes  No  Yes  No  3 0 0 0 0 0 0 0  0  0 

33  Unk  No  No  No  No  3882 236 10 4 50 10 4 0  5  4 

34  Unk  Yes  Yes  Yes  Yes  9 0 0 0 0 0 0 0  0  0 

35  Unk  No  Yes  No  No  490 23 1 0 6 1 0 0  1  0 

36  Unk  No  No  No  Yes  23 3 0 0 1 0 0 1  0  0 

37  Unk  No  No  Yes  No  55 12 3 0 3 3 0 1  3  0 

38  Unk  Yes  No  No  No  21 3 0 0 0 0 0 0  0  0 

39  Unk  No  Yes  Yes  Yes  2 0 0 0 0 0 0 0  0  0 

40  Unk  Yes  Yes  No  Yes  8 3 0 0 1 0 0 1  0  0 

41  Unk  Yes  Yes  Yes  No  18 0 2 1 0 0 1 0  0  1 

42  Unk  Yes  No  Yes  Yes  31 6 1 0 1 1 0 0  1  0 

43  Unk  No  Yes  Yes  No  15 5 0 0 0 0 0 0  0  0 

44  Unk  Yes  No  No  Yes  9 2 0 1 1 0 1 1  0  1 

45  Unk  No  No  Yes  Yes  1 0 0 0 0 0 0 0  0  0 

46  Unk  No  Yes  No  Yes  17 1 0 0 1 0 0 0  0  0 

47  Unk  Yes  Yes  No  No  29 0 0 0 0 0 0 0  0  0 

48  Unk  Yes  No  Yes  No  65 12 1 0 5 1 0 1  1  0 

          
Total 

4821  347  21  7  73  19  7  9  14  7 
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Table 8  
Countermeasures, potential CMF values, and estimated costs for intersections 

 

 
 
 
 
 

Section

DEA 
rank

Crash 
Count

EB 
(1-

CMF)  
*EB

Cost 
avrg.

Tail 
Prob.

log2   
(odd) DEA 

Eff.

Road Name Countermeasure CMF1 CMF2 CMF3 CMF4 CMF

9206901201 1 4 2.7 0.8 75 0.10% 10 1.0
Prospect Blvd./ LA 
24

1) Revise signal t iming for yellow and 
all‐red intervals 0.7 0.70

9205225001 2 4 3.0 0.9 75 1.75% 6 1.0
Industrial Blvd./ LA 
661

1) Revise signal t iming for yellow and 
all‐red intervals 0.7 0.70

9206887203 3 5 2.9 0.9 125 0.34% 8 0.6
Saint Charles 
St./Valhi Blvd.

1) Revise signal t iming for yellow and 
all‐red intervals
2) Regulate minimum spacing of 
driveway (No CMF value)

0.70 0.70

9205093503 4 10 8.2 3.3 800 0.00% 48 0.5
Suthon 
Ave./Elizabeth St.

1) Improve visibility of intersections by 
providing enhanced sign and pavement 
markings, 
2) Regulate minimum spacing of 
driveway (No CMF value)

0.60 0.60

9206942802 5 25 23.9 7.2 1500 0.00% 69 0.4
Bayou Gardens Blvd./ 
Alma St.

1) Revise signal t iming for yellow and 
all‐red intervals,
2) Advane 'Signal Ahead' sign (No CMF 
Value),
3) Regulate minimum spacing of 
driveway (No CMF value)

0.7  0.70

9205337001 6 16 14.9 4.5 900 0.00% 28 0.4
East Main St./East 
Woodlawn Ranch 
Rd/Little Caillou Rd.

1) Revise signal t iming for yellow and 
all‐red intervals, 
2) Add advance signal ahead signage (No 
CMF value)

0.70 0.70

9234826501 7 25 24.4 7.3 1500 0.60% 7 0.4
Audubon Ave./LA 
448

1) Revise signal t iming for yellow and 
all‐red intervals,
2) Advane 'Signal Ahead' sign (No CMF 
Value),
3) Regulate minimum spacing of 
driveway (No CMF value)

0.7 0.70

9207015404 8 28 22.9 14.0 4000 0.00% 172 0.3
Frank 
Street/Prospect Blvd.

1) Revise signal t iming for yellow and 
all‐red intervals, 
2) Enhance roadway illumination at 
night, 
3) Provide left  turn lane at major road 
approach,
4) Regulate minimum spacing of 
driveway (No CMF value)

0.70 0.62 0.90 0.39

9205089203 9 9 7.4 3.0 1050 0.00% 42 0.3
New Orleans 
Blvd./6th St.

1) Improve visibility of intersections by 
providing enhanced sign and pavement 
markings, 
2) Install warning signs (No CMF value)

0.60 0.60

9235046501 10 8 6.6 2.6 1050 0.00% 37 0.3
Williams St./Queen 
St.

1) Improve visibility of intersections by 
providing enhanced sign and pavement 
markings, 
2) Install warning signs (No CMF value)

0.60 0.60
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Table 8 
Countermeasures, potential CMF values, and estimated costs for intersections (cont’d) 

 

 
 
 
 
 
 
 
 
 
 

Section

DEA 
rank

Crash 
Count

EB 
(1-

CMF)  
*EB

Cost 
avrg.

Tail 
Prob.

log2   
(odd) DEA 

Eff.

Road Name Countermeasure CMF1 CMF2 CMF3 CMF4 CMF

9205337001 11 16 14.9 4.5 1500 0.00% 28 0.2
East Woodlawn 
Ranch Rd.
/ LA 56

1) Revise signal t iming for yellow and 
all‐red intervals,
2) Advane 'Signal Ahead' sign (No CMF 
Value),
3) Regulate minimum spacing of 
driveway (No CMF value)

0.7 0.70

9205088203 12 14 11.5 4.9 2850 0.00% 73 0.2
6 th Street/Williams 
Avenue

1) Improve visibility of intersections by 
providing enhanced sign and pavement 
markings, 
2) Install flashing beacons

0.60 0.95 0.57

9206820402 13 13 10.7 4.6 2850 0.00% 67 0.2
Beatrice St./East 
Tunnel 
Blvd.

1) Improve visibility of intersections by 
providing enhanced sign and pavement 
markings, 
2) Install flashing beacons, 

0.60 0.95 0.57

9205268701 14 7 5.0 1.5 900 0.00% 17 0.2
Louisiana 
57/Prospect Rd.

1) Revise signal t iming for yellow and 
all‐red intervals, 
2) Add advance signal ahead signage (No 
CMF value)
3) Regulate minimum spacing of 
driveway (No CMF value)

0.70 0.70

9207015501 15 6 4.4 1.3 750 0.06% 11 0.2
Prospect Blvd./Frank 
St.

1) Revise signal t iming for yellow and 
all‐red intervals
2) Regulate minimum spacing of 
driveway (No CMF value)

0.7 0.70

9205103003 16 4 2.9 0.9 550 1.13% 6 0.1
Barrow St./ Belanger 
St.

1) Revise signal t iming for yellow and 
all‐red intervals, 
2) Sign for No right-turn on Red (No 
CMF value), 
3) Remove site obstructions (No CMF 
value)

0.70 0.70

9206830605 17 7 5.5 1.6 1150 0.00% 17 0.1
East Main 
St/Prospect Blvd.

1) Revise signal t iming for yellow and 
all‐red intervals, 
2) Sign for No right-turn on Red (No 
CMF value), 
3) Add advance signal ahead signage (No 
CMF value)

0.70 0.70

9205676005 18 6 4.4 1.3 950 0.06% 11 0.1
Prospect Blvd./ 
Grand 
Caillou Rd. 

1) Revise signal t iming for yellow and 
all‐red intervals
2) Regulate minimum spacing of 
driveway (No CMF value)

0.7 0.70

9206535901 19 6 4.4 1.6 1250 0.06% 11 0.1
St. Louis Canal 
Rd./Bayou 
Gardens Blvd.

1) Revise signal t iming for yellow and 
all‐red intervals
2) Provide left  turn lane at major road 
approach,

0.7 0.9 0.63
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Table 8  
Countermeasures, potential CMF values, and estimated costs for intersections (cont’d) 

 

 

Section

DEA 
rank

Crash 
Count

EB 
(1-

CMF)  
*EB

Cost 
avrg.

Tail 
Prob.

log2   
(odd) DEA 

Eff.

Road Name Countermeasure CMF1 CMF2 CMF3 CMF4 CMF

9206902301 20 6 4.2 1.7 1400 0.03% 12 0.1
Cummins St./Moffet 
Rd.

1) Improve visibility of intersections by 
providing enhanced sign and pavement 
markings, 
2) Install warning signs (No CMF value)
3) Remove site obstructions (No CMF 
value)

0.60 0.60

60458402302 21 4 2.9 1.1 1000 1.13% 6 0.1
Ridgefield Ave./ 
Thompson 
Place

1) Provide Stop bar on minor approaches 
and Pavement marking improvements

0.60 0.60

9207005303 22 5 3.7 1.1 1000 0.88% 7 0.1
Saint Charles St./
Southdown Blvd.

1) Revise signal t iming for yellow and 
all‐red intervals, 
2) Sign for No right-turn on Red (No 
CMF value), 
3) Add advance signal ahead signage (No 
CMF value)

0.70 0.70

62078481006 23 7 5.7 2.5 2850 0.00% 31 0.1
Bowie Rd./Ardoyne 
Dr.

1) Improve visibility of intersections by 
providing enhanced sign and pavement 
markings, 
2) Install flashing beacons, 

0.60 0.95 0.57

9206807001 24 7 5.7 2.5 2850 0.00% 31 0.1
East St./ Daniel 
Turner 
Court

1) Improve visibility of intersections by 
providing enhanced sign and pavement 
markings, 
2) Install flashing beacons, 
3) Regulate minimum spacing of 
driveway (No CMF value)

0.60 0.95 0.57

9205020201 25 6 4.2 1.3 1400 0.03% 12 0.1
Pendleton Dr./ St. 
Charles St./ St. 
Antonio Blvd.

1) Signal and sign improvement,  
2) Regulate minimum spacing of 
driveway (No CMF value), 
3) Remove site obstructions (No CMF 
value)

0.70 0.70

9206901203 26 18 14.7 2.9 10000 0.00% 100 0.1
Gleanmore Ave./ 
Prospect 
Blvd.

1) Convert Stop Control to Signal 
Control,
2) Modify left  turn signal phase, 
3) Provide left  turn lane at major road 
approach
4) Regulate minimum spacing of 
driveway (No CMF value)

0.95 0.90 0.94 0.80

9205097501 27 6 3.3 2.1 2750 0.00% 27 0.1 Canal Street/ High St.

1) Provide Stop bar on minor approaches 
and  
Pavement marking improvements, 
2) Enhance roadway illumination at night

0.60 0.62 0.37

9234668001 28 6 4.2 2.4 3500 0.03% 12 0.1
Bayou Blue Bypass 
Rd./ Burma Rd.

1) Provide left  turn signal phase,
2) Improve roadway illumination at night 
,

0.70 0.62 0.43

9207123702 29 4 2.9 1.7 2500 0.48% 8 0.1 East St./ LA 57

1) Revise signal t iming for yellow and 
all‐red intervals, 
2) Enhance roadway illumination at night 
3) Regulate minimum spacing of 
driveway (No CMF value)
4) Remove site obstructions (No CMF 
value)

0.70 0.62 0.43

9205743701 30 4 2.9 0.2 1150 1.13% 6 0.0
Alma St./ Bayou 
Gardens 
Blvd.

1) Modify left  turn signal phase, 
2) Remove site obstructions (No CMF 
value)

0.94 0.94

<0.01% is shown as 0.00% 



  

94 
 

Table 9 
Countermeasures, potential CMF values, and estimated costs for roadway segments 

Section
DEA 
rank

Crash 
Count

EB 
(1-

CMF)*
EB

Cost 
($)

Tail
Prob.

log2    
(Odds)

DEA 
Eff.

Road Name Countermeasure
CMF
1

CMF
2

CMF
3

CMF

9233021601 1 7 3.5 1.22 400 0.00% 35 1.0 Arms St.
1) Centerline and edgeline 
marking improvement
2) Install rumble strip 

0.76 0.86 0.65

9207043602 2 20 17.5 10.70 3330 0.00% 114 1.0
Bayou 
Gardens 
Blvd

1) Change the width of an 
existing median
2) Install Combination 
Horizontal Alignment/ Advisory 
Speed Signs
3) Install Changeable Accident 
Ahead Warning  Signs

0.8 0.87 0.56 0.39

9206781903 3 20 17.9 9.86 5,000 0.00% 61 0.6
Saint 
Charles St

1) Convert  4 lane undivided to 5 
lane undivided  with a TWLTL

0.45 0.45

9206887002 4 4 3.5 2.15 1575 0.00% 15 0.4
Saint 
Charles St.

1) Change the width of an 
existing median
2) Install Combination 
Horizontal Alignment/ Advisory 
Speed Signs
3) Install Changeable Accident 
Ahead Warning  Signs

0.8 0.87 0.56 0.39

9206884402 5 4 2.0 0.70 600 0.00% 17 0.4
Southdown 
Mandalay 
Rd

1) Centerline and edgeline 
marking improvement
2) Install rumble strip 

0.76 0.86 0.65

9205669702 6 3 1.8 1.08 900 0.01% 14 0.4
Saint 
Charles St.

1) Change the width of an 
existing median
2) Install Combination 
Horizontal Alignment/ Advisory 
Speed Signs
3) Install Changeable Accident 
Ahead Warning  Signs

0.8 0.87 0.56 0.39

9207043603 7 10 8.8 5.36 4725 0.00% 48 0.4
Bayou 
Gardens 
Blvd

1) Change the width of an 
existing median
2) Install Combination 
Horizontal Alignment/ Advisory 
Speed Signs
3) Install Changeable Accident 
Ahead Warning  Signs

0.8 0.87 0.56 0.39

9204953102 8 11 9.7 5.89 5300 0.00% 54 0.3
Westside 
Blvd

1) Change the width of an 
existing median
2) Install Combination 
Horizontal Alignment/ Advisory 
Speed Signs
3) Install Changeable Accident 
Ahead Warning  Signs

0.8 0.87 0.56 0.39

9234076002 9 7 6.3 2.20 2,250 0.01% 13 0.3
Audubon 
Ave.

1) Centerline and edgeline 
marking improvement
2) Install rumble strip 

0.76 0.86 0.65

9207015502 10 23 13.5 7.45 9,000 0.00% 121 0.3
Prospect 
Blvd

1) Convert  4 lane undivided to 5 
lane undivided with a TWLTL

0.45 0.45

60458490002 11 9 5.3 1.85 3,300 0.00% 37 0.2 Williams St.
1) Centerline and edgeline 
marking improvement
2) Install rumble strip 

0.76 0.86 0.65

9235046503 12 7 4.2 1.44 2,600 0.00% 27 0.2 Williams St.
1) Centerline and edgeline 
marking improvement
2) Install rumble strip 

0.76 0.86 0.65
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Table 9  
Countermeasures, potential CMF values, and estimated costs for roadway segments (cont’d) 

 

Section
DEA 
rank

Crash 
Count

EB 
(1-

CMF)*
EB

Cost 
($)

Tail
Prob.

log2    
(Odds)

DEA 
Eff.

Road Name Countermeasure
CMF
1

CMF
2

CMF
3

CMF

9206500803 13 4 3.7 1.27 2,250 2.04% 6 0.2
Industrial 
Blvd

1) Centerline and edgeline 
marking improvement
2) Install rumble strip 

0.76 0.86 0.65

9205257402 14 5 3.0 1.04 2,100 0.00% 18 0.2 Payne St.
1) Centerline and edgeline 
marking improvement
2) Install rumble strip 

0.76 0.86 0.65

9205102802 15 5 3.0 1.04 2,100 0.00% 18 0.2 School St.
1) Centerline and edgeline 
marking improvement
2) Install rumble strip 

0.76 0.86 0.65

9206901202 16 10 5.9 3.26 7,000 0.00% 43 0.1
Prospect 
Blvd

1) Convert 4 lane undivided to 5 
lane undivided 
with a TWLTL

0.45 0.45

9206892902 17 3 2.1 1.30 2850 1.37% 6 0.1
Saint 
Charles St.

1) Change the width of an 
existing median
2) Install Combination 
Horizontal Alignment/ Advisory 
Speed Signs
3) Install Changeable Accident 
Ahead Warning  Signs

0.8 0.87 0.56 0.39

60458490305 18 8 3.9 2.38 5350 0.00% 34 0.1 Brocato Ln

1) Change the width of an 
existing median
2) Install Combination 
Horizontal Alignment/ Advisory 
Speed Signs
3) Install Changeable Accident 
Ahead Warning  Signs

0.8 0.87 0.56 0.39

9205226301 19 7 4.2 1.44 3,300 0.00% 27 0.1
Industrial 
Blvd

1) Centerline and edgeline 
marking improvement
2) Install rumble strip 

0.76 0.86 0.65

9205676004 20 8 4.8 2.61 6,000 0.00% 32 0.1
Prospect 
Blvd

1) Convert 4 lane undivided to 5 
lane undivided with a TWLTL

0.45 0.45

9232873602 21 5 2.9 1.01 2,550 0.00% 26 0.1
Madewood 
Dr

1) Centerline and edgeline 
marking improvement
2) Install rumble strip 

0.76 0.86 0.65

9206916902 22 5 3.0 1.04 2,700 0.00% 18 0.1 Stovall St.
1) Centerline and edgeline 
marking improvement
2) Install rumble strip 

0.76 0.86 0.65

9204953103 23 3 2.6 1.61 4800 0.06% 11 0.1
Westside 
Blvd

1) Change the width of an 
existing median
2) Install Combination 
Horizontal Alignment/ Advisory 
Speed Signs
3) Install Changeable Accident 
Ahead Warning  Signs

0.8 0.87 0.56 0.39

60458490202 24 5 3.0 1.04 3,300 0.00% 18 0.1 Brocate Ln
1) Centerline and edgeline 
marking improvement
2) Install rumble strip 

0.76 0.86 0.65
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Table 9 
Countermeasures, potential CMF values, and estimated costs for roadway segments (cont’d) 

	

Section
DEA 
rank

Crash 
Count

EB 
(1-

CMF)*
EB

Cost 
($)

Tail
Prob.

log2    
(Odds)

DEA 
Eff.

Road Name Countermeasure
CMF
1

CMF
2

CMF
3

CMF

9207003903 25 4 2.7 1.63 5500 0.00% 15 0.1 Mystic Blvd

1) Change the width of an 
existing median
2) Install Combination 
Horizontal Alignment/ Advisory 
Speed Signs
3) Install Changeable Accident 
Ahead Warning  Signs

0.8 0.87 0.56 0.39

9207043604 26 3 2.6 1.61 5500 0.06% 11 0.1
Bayou 
Gardens 
Blvd

1) Change the width of an 
existing median
2) Install Combination 
Horizontal Alignment/ Advisory 
Speed Signs
3) Install Changeable Accident 
Ahead Warning  Signs

0.8 0.87 0.56 0.39

9205337002 27 5 2.5 0.88 3,300 0.00% 23 0.1
E 
Woodlawn 
Ranch Road

1) Centerline and edgeline 
marking improvement
2) Install rumble strip 

0.76 0.86 0.65

9206178906 28 4 2.0 0.70 2,700 0.00% 17 0.1
E 
Woodlawn 
Ranch Road

1) Centerline and edgeline 
marking improvement
2) Install rumble strip 

0.76 0.86 0.65

9233271602 29 4 2.4 0.83 3,300 0.01% 13 0.1 St Louis St.
1) Centerline and edgeline 
marking improvement
2) Install rumble strip 

0.76 0.86 0.65

9205676003 30 7 4.2 2.29 9,000 0.00% 27 0.1
Prospect 
Blvd

1) Convert 4 lane undivided to 5 
lane undivided with a TWLTL

0.45 0.45

9233248204 31 3 1.5 0.52 2,850 0.10% 10 0.1
Triple Oaks 
Dr

1) Centerline and edgeline 
marking improvement
2) Install rumble strip 

0.76 0.86 0.65

9207015403 32 5 3.0 1.65 9,000 0.00% 18 0.1
Prospect 
Blvd

1) Convert 4 lane undivided to 5 
lane undivided with a TWLTL

0.45 0.45

9206756403 33 3 1.5 0.52 3,200 0.10% 10 0.1
Linda Ann 
Ave

1) Centerline and edgeline 
marking improvement
2) Install rumble strip 

0.76 0.86 0.65

9205109502 34 4 1.3 0.44 2,700 1.71% 6 0.1 Gabasse St.
1) Centerline and edgeline 
marking improvement
2) Install rumble strip 

0.76 0.86 0.65

9205874805 35 4 1.3 0.44 2,700 1.71% 6 0.1
Corporate 
Dr.

1) Centerline and edgeline 
marking improvement
2) Install rumble strip 

0.76 0.86 0.65

9206881304 36 3 1.2 0.42 3,000 2.75% 5 0.0
E 
Woodlawn 
Ranch Road

1) Centerline and edgeline 
marking improvement
2) Install rumble strip 

0.76 0.86 0.65

<0.01% is shown as 0.00% 
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APPENDIX C 
 

Example of Data Problems 
 

Crash Coded as Segment Crash but too Close to Intersection 
   

Figure 18 
Google view of Arms St. (Picture Id- 37) 

 
The Tiger file used for the development of road segments does often not delineate the exact 

location of intersections. Thus some road segments were misclassified as non-intersection 

though the Google map revealed that there was an intersection.  Additional quality control 

review is necessary to reduce misclassifications. However, this would require additional 

resources for the project. 

Roadway Segment with no Google Street View (4 Sites Shown Here) 

Some road segments in rural areas do not provide a street view in Google Earth. Some of 

these road segments have very low traffic counts and are not good candidates for road 

improvements and others are recent developments that do not have street views yet. 

 

Figure 17 
Google view of Mystic Blvd. (Picture Id- 12) 

Figure 19 
Google view of Sanders Road (Picture Id- 9) 

Figure 20 
Google view of N J Theriot Road (Picture Id- 36) 
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Figure 22 
Google view of White Rose Dr. (Picture Id- 38)

Figure 21 
Google view of Clendenning Road (Picture Id- 41)


