LTRC On-Going Project: ROLLER COMPACTED CONCRETE OVER SOIL CEMENT UNDER ACCELERATED LOADING

Preliminary Test Section Results

Zhong Wu, Ph.D., P.E.

LTRC RCC Showcase, Baton Rouge, LA

July 8, 2014

Outline

In Situ Testing during the Construction

Monitoring and Accelerated Loading of RCC
 Pavement Sections – Section 4 Results

Introduction

- Six full-scale, RCC-surfaced pavement test sections were constructed at the PRF of LTRC
 Each section: 71.7-ft long and 13-ft wide
- The RCC sections will be accelerated-loaded to a failure by a vehicle load simulator device called *ATLaS 30*, under a natural, southern Louisiana weather and subgrade condition.

Constructed RCC Test Sections

Section 4

Section 5

Objectives

 to determine the structural performance and load carrying capacity of thin RCC surfaced pavements
 to determine the applicability of using a thin RCC surfaced pavement structure (with cement treated or stabilized base) as a design option for low- and highvolume pavement design in Louisiana

RCC Sections 1-3 (with 12" cement treated base) - Design alternative for those low-volume roads having significantly heavy truck traffic

RCC Sections 4-6 (8.5" soil cement+ treated subgrade) - Design alternative for high-volume roads using a treated subgrade layer

Saw-Cutting Joints

1.5" deep, 20-ft interval for 8"RCC
1" deep, 15-ft interval for 6"RCC
0.5" deep, 10-ft interval for 4"RCC

Walking Profiler

RCC Surface Texture and Friction

Dynamic friction Tester for Friction

Sand Patch Test for Macro-texture

もわらい

ection 3

	Average	322	0.32	0.63	*
ection 1	Section 6	167.5	0.28	0.43	
and the state	Section 5	122.2	0.42	0.39	
	Section 4	190.1	0.3	0.36	
	Section 3	622.7	0.22	0.89	
~ .	Section 2	469.7	0.4	0.72	
the second se					

IRI (in/mile)

359.5

DFT20

0.3

Sections

Section 1

Section

MTD (mm)

0.99

SEARCH CENTER

Finished RCC Surfaces (FWD Tests)

FWD to determine the as-built RCC pavements structure properties, eg. Layer moduli, structure number/layer coefficient.

FWD Backcalculated Layer Moduli

Those backcalculated results consistent with FWD deflections obtained from individual layers

Prediction of Structural Number (SN)

ARCHCE

Monitoring and Accelerated Loading of RCC Pavement Sections

Instrumentation Layout

ARCHCE

JDMDs will be used over edges of transverse saw-cut joints

Instrumentation Installation

Pressure Cell & Asphalt Strain gage

Asphalt Strain gage & Concrete Strain Gage

Protecting the Cables

Levelling Pressure Cell

Installation of Moisture gage

Installation of Thermo-probe

Accelerated Pavement Testing - ATLaS30

Dual-tire load, 130psi Load: up to 30 kips Speed: 4~6 mph Bi-directional loading Effective length: 42-ft About 10,000 passes/day

Accelerated Pavement Testing (contd..)

□ Loading sequence

Up to 30,000 lbs

Accelerated Loading Testing

- Started on Section 4

- Roughly 70,000 reps. for each load level,
- About 53,000 reps under 25-kip due to pumping occurred.

Loads vs. Number of Load Repetitions (KENPave + PCC/RCC Fatigue Equations)

Load	Fatigue	Section 1	Section 2	Section 3	Section 4	Section 5	Section 6
(kips)	Model	8" RCC	6" RCC	4" RCC	8" RCC	6" RCC	4" RCC
9	PCC	unlimited	unlimited	136,000	unlimited	unlimited	420,000
	RCC	95 millions	640,000	13,000	115 millions	8 millions	27,000
16	PCC	unlimited	12 millions	202	unlimited	unlimited	765
	RCC	6.5 millions	124,000	33	9.3 million	220,000	113
20	PCC	unlimited	65,000	2	unlimited	145,000	6
	RCC	960,000	7,000	0	1.5 million	14,500	1
25	PCC	unlimited	46,000	1	unlimited	12,250	1
	RCC	168,000	600	0	284,000	1,500	0

PCC Equation

For *SR* between 0.45 and 0.55
$$N_f = \left(\frac{4.2577}{SR - 0.4325}\right)^{3.268}$$

For $SR > 0.55 \log N_f = 11.737 - 12.077(SR)$

□ **RCC-PAVE** Equation

 $\log N_f = 10.25476 - 11.1872 (SR)$

Cracking and Pumping

- After 53,000 repetitions

 of 25-kip load, Section 4
 developed both
 transverse and
 longitudinal cracking;
- Joint pumping also
 observed under heavily
 raining weather, > 3 in.
 rainfall overnight

Pumping at Joint

Question?

Whether or not this should be considered as the test section failure is under further investigation:

- the estimated ESAL ≈ 10.9 millions
- the total damage > 100% when MR=612psi
- the total damage $\approx 41\%$ when MR=800psi

Now the ATLaS has moved to section 5 continuous testing.

