LTRC On-Going Project: ROLLER COMPACTED CONCRETE OVER SOIL CEMENT UNDER ACCELERATED LOADING

Preliminary Test Section Results

Zhong Wu, Ph.D., P.E.

Outline

- In Situ Testing during the Construction
- Monitoring and Accelerated Loading of RCC Pavement Sections - Section 4 Results

Introduction

\square Six full-scale, RCC-surfaced pavement test sections were constructed at the PRF of LTRC

■ Each section: 71.7-ft long and 13-ft wide
\square The RCC sections will be accelerated-loaded to a failure by a vehicle load simulator device called ATLaS 30, under a natural, southern Louisiana weather and subgrade condition.

Constructed RCC Test Sections

Section 2

Section 4
Section 5

4"RCC
$8.5^{\prime \prime}$ Soli Cement Base
10" Cement Treated Subgrade
Existing Subgrade

Section 3

Objectives

(1) to determine the structural performance and load carrying capacity of thin RCC surfaced pavements
(2) to determine the applicability of using a thin RCC surfaced pavement structure (with cement treated or stabilized base) as a design option for low- and highvolume pavement design in Louisiana

RCC Sections 1-3 (with 12" cement treated base)

- Design alternative for those low-volume roads having significantly heavy truck traffic

RCC Sections 4-6 (8.5" soil cement+ treated subgrade)

- Design alternative for high-volume roads using a treated subgrade layer

Saw-Cutting Joints

- 1.5 " deep, 20 -ft interval for 8 " RCC
$\square 1$ " deep, $15-\mathrm{ft}$ interval for 6 "RCC
- 0.5 " deep, $10-\mathrm{ft}$ interval for 4 "RCC

Walking Profiler

RCC Surface Texture and Friction

Finished RCC Surfaces (FWD Tests)

FWD to determine the as-built RCC pavements structure properties, eg. Layer moduli, structure number/layer coefficient.

FWD Backcalculated Layer Moduli

Section 1

$8 " R C C+8.5 \mathrm{SC}$
$\mathrm{E}_{\text {RCC }}=3767 \mathrm{ksi}$
$\mathrm{E}_{\text {base }}=418 \mathrm{ksi}$
$\mathrm{E}_{\text {sub }}=31 \mathrm{ksi}$

Section 4

Section 2

Section 5

Section 3

$4 " \mathrm{RCC}+8.5 \mathrm{SC}$
$\mathrm{E}_{\mathrm{RcC}}=4384 \mathrm{ksi}$
$\mathrm{E}_{\text {base }}=305 \mathrm{ksi}$
$\mathrm{E}_{\text {sub }}=26 \mathrm{ksi}$

Section 6

Those backcalculated results consistent with FWD deflections obtained from individual layers

Prediction of Structural Number (SN)

Monitoring and Accelerated Loading of RCC Pavement Sections

Instrumentation Layout

JDMDs will be used over edges of transverse saw-cut joints

- Instrumentation Installation

Pressure Cell \& Asphalt Strain gage

Levelling Pressure Cell

Asphalt Strain gage \& Concrete Strain Gage

Installation of Moisture gage

Protecting the Cables

Installation of Thermo-probe

Accelerated Pavement Testing - ATLaS30

Dual-tire load, 130psi
Load: up to 30 kips
Speed: 4~6 mph
Bi-directional loading Effective length: 42-ft About 10,000 passes/day

Accelerated Pavement Testing (contd..)

\square Loading sequence
Up to 30,000 lbs

$8{ }^{*} \mathrm{RCC}$	$6^{*} \mathrm{RCC}$	$4^{* \prime} \mathrm{RCC}$
12" Cement Treated Base	12" Cement Treated Base	12" Cement Treated Base
6.5" new soil subgrade	6.5' new soil subgrade	6.5"new subgrade soil
Existing Subgrade	Existing Subgrade	Existing Subgrade

Section 1
Section 2

Accelerated Loading Testing

- Started on Section 4

8 " RCC
$8.5^{\prime \prime}$ Soli Cement Base
10 " Cement Treated Subgrade
Existing Subgrade

$9,000 \mathrm{lb}$

- Roughly 70,000 reps. for each load level,
- About 53,000 reps under 25-kip due to pumping occurred.

Loads vs. Number of Load Repetitions (KENPave + PCC/RCC Fatigue Equations)

Load	Fatigue	Section 1	Section 2	Section 3	Section 4	Section 5	Section 6
(kips)	Model	8" RCC	6 FRCC	$4{ }^{\text {" RCC }}$	$8{ }^{\prime \prime} \mathrm{RCC}$	6 FRCC	4 " RCC
9	PCC	unlimited	unlimited	136,000	unlimited	unlimited	420,000
	RCC	95 millions	640,000	13,000	115 millions	8 millions	27,000
16	PCC	unlimited	12 millions	202	unlimited	unlimited	765
	RCC	6.5 millions	124,000	33	9.3 million	220,000	113
20	PCC	unlimited	65,000	2	unlimited	145,000	6
	RCC	960,000	7,000	0	1.5 million	14,500	1
25	PCC	unlimited	46,000	1	unlimited	12,250	1
	RCC	168,000	600	0	284,000	1,500	0

- PCC Equation

For $S R$ between 0.45 and $0.55 \quad N_{f}=\left(\frac{4.2577}{S R-0.4325}\right)^{3.268}$
For $S R>0.55 \log N_{f}=11.737-12.077(S R)$

- RCC-PAVE Equation

$$
\log N_{f}=10.25476-11.1872(S R)
$$

Cracking and Pumping

- After 53,000 repetitions of 25-kip load, Section 4 developed both transverse and longitudinal cracking;
\square Joint pumping also observed under heavily raining weather, >3 in. rainfall overnight

Pumping at Joint

Question?

Whether or not this should be considered as the test section failure is under further investigation:

- the estimated ESAL ≈ 10.9 millions
- the total damage $>100 \%$ when $\mathrm{MR}=612 \mathrm{psi}$
- the total damage $\approx 41 \%$ when $\mathrm{MR}=800 \mathrm{psi}$

Now the ATLaS has moved to section 5 continuous testing.

