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Abstract—Deep convolutional features learned from a large-
scale labeled dataset, contain substantial representations which
could be effectively used in a new domain. Despite the fact that
generic features achieved good results in many visual tasks, fine-
tuning is required for pretrained deep CNN models to be more
effective and achieve state-of-the-art performance. Undoubtedly,
the backpropagation algorithm, known as a time and resource
consuming process, adopts for that purpose to fine-tune the
millions of parameters with a significant amounts of labeled data.
This paper is dedicated to propose a pipeline framework integrat-
ing Hopfield Associative Memory as memory bank, to eliminate
the backpropagation while utilizing off-the-shelf features on new
domain. Due to simply finding worthwhile memory patterns,
clustering as an unsupervised learning approach used for comput-
ing retrieved feature maps (patterns) consists in memory bank.
Our proposed method has achieved empirical performance over
previously published results on multiple benchmark datasets.

Index Terms—Deep Convolutional Features, CNN Transfer,
Hopfield Associative Memory, Non-Backpropagation

I. INTRODUCTION

Recent advances in the Convolutional Neural Networks

(CNN) has given rise to powerful techniques for solving a

variety of problems in Computer Vision [1]–[3], especially

on image classification and segmentation, visual tracking,

etc. It is common that the features pooled from the CNN

models indicate the advanced and complex descriptors com-

pared to previously handcrafted ones [4]. As along with deep

learning arises, transfer learning acquired great success and

performance in the aspect of research and industry fields, it

possessed a vital role for attaining good feature representations

from the pretrained CNN model. Due to finding the target

large-scale dataset is very hard and almost infeasible for

obtaining robust representations in some domains, the CNN

model pretrained on the large-scale dataset (e.g. ImageNet

[5]) has achieved competitive effectiveness on other related

domains after finetuning, which its images do not have much

different in context with that in the pretrained dataset. In this

paper, we deployed the pretrained CNN model in our pipeline

framework, for feature extraction in classification task.
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Among all previous literatures [6], [7] demonstrating the

ability and prevalent in CNN transfer for classification, our

work differs and devotes in two aspects. First, the pretrained

CNN need to finetune the parameters on the new dataset

to ensure the model has better accuracy. But finetunes the

millions of parameters trained on large-scale dataset through

back propagation, it suffers time and resource consuming. In

this work, we made initial effort, using associative memory,

for eliminating the back propagation while keeping good

performance upon classification on new large-scale dataset.

It once retrained, though tested on other different relevant

datasets, it showed good resistant to the variance and also

obtained competitive performance even without retraining.

Second, due to the small dataset or less data, overfitting

issue is easier occur [8]. In some cases one usually adopts

linear classifier, e.g. Support Vector Machine (SVM), on the

top of network instead, which has achieved state-of-the-art

performance as the advances of normal SVM outperforms well

on small dataset, but it suffers from the training complexity of

the large dataset [9], [10]. Some recent studies made efforts

on improving SVM on large-scale dataset, but our novel

framework based on memory bank exhibits good traits with

respect to mitigating all that aspects simultaneously while

obtains competitive accuracy.

In our this work, we integrated Hopfield Associative Mem-

ory, a recurrent artificial neural network, as memory bank to

store patterns for classification pipeline. Recently some studies

[11], [12] demonstrates the potential of neural associative

memory in pattern recognition and the robust its to adversarial

inputs, and yet it still have not been used in deep learning.

We investigated and devoted our initial effort on this area.

As shown in Fig. 1, the framework utilized pretrained CNN

classification model to extract feature maps from the input

images, then compute the centers of feature maps as stored

patterns feeding to memory bank (Hopfield Network) to infer

the test image class.

To the best of our knowledge, this is the first work

integrating memory bank, taking full advances of artificial

neural network, for classification in CNN model paradigm.



We summarize our contributions as below:

• Introduced the notion of memory bank in CNN classifi-

cation model, which its patterns used for recognizing the

test images and its class label.

• Selected a recurrent artificial neural network, Hopfield

Network, as memory bank, then combined it with the

pretrained CNN model. We proposed a novel pipeline

framework for classification problem.

• Utilized unsupervised learning approach in memory for

computing centers of feature maps, which stored as core

patterns. We speculate that multiple centers adopted to

represent well the intra-class variance in the memory.

The paper is organized as follows. In Section II, we will

present the related work briefly. The pipeline framework archi-

tecture and Hopfield Network will be discussed in Section III,

the classification algorithm is provided. We will demonstrate

the experimental results in Section IV and the conclusions

presented in Section V.

II. RELATED WORK

Deep learning attracted a lot of world-wide efforts spanned

from academic research to real-world industry applications,

as its incredible success since been achieved on large-scale

data by a superior margin substantially [13]. Varieties of

deep learning models then proposed and the accuracy been

improved time after time. Its powerful in recognition have

already surpassed human-level performance [14], [15]. Deep

features learned from the pretrained model have showed many

significances and possessed state-of-the-art performance in

vision related tasks. No doubt deep features reusing becomes

a trend as it is, boosted the performance properties in many

cutting-edge domains, many research works [16], [17] ap-

peared in this hot area, for image classification, segmentation,

object detection, etc.

Though deep learning as a supervised approach attained

competitive accuracy and performance with amounts of la-

beled data, but in the real world, obtaining more labeled data is

very expensive and impractical at some extents. Unsupervised

learning is getting rapidly attention in machine learning era

since it learned from unlabeled data [18]. With small labeled

data, one can combine the labeled and unlabeled data in a

semi-supervised learning approach [19]. In the typical setting

of computer vision, attentions has gained from world wide

researchers to utilize that address the image classification

related problems. K-means as a popular clustering approach

in unsupervised learning, its widely use can be found in many

works, in deep learning [20]–[22].

Hopfield Associative Memory [23], as a recurrent neural

network, has adopted in our framework for its concise me-

chanics simulating human brain activities based on energy

function as well as its previous successful performance in

pattern recognition and its robust to adversarial inputs [11],

[12]. However, other types of auto-associative memory could

also be considered in our framework utilized as memory bank.

The CapsNet architecture has been proposed recently which

designed in an innovative way [24]. It based on the conception

of capsules. The base layers of its network convert image

pixels intensities to activities as input for the primary capsules,

which are the lowest level of multi-dimensional entities in the

length of the vectors. The DigitCaps layer indicates presence

of an instance of each class, for calculating the classication

loss. In our pipeline framework, core patterns adopted instead,

which are the instances of class, and memory patterns repre-

sented in the vectors retrieved from our pipeline framework. In

computing classication loss, both used the euclidean distance

for minimizing. Utilizing the whole vector for an explicit

representation of the pose of the feature also can be found

in the early work [25]. It demonstrated its competitive to

deal with variations using the whole vector of instantiation

parameters from simple separated capsules. More recently, in

vision recognition a probabilistic generative model proposed

[26] and it introduced a hierarchical model named Recursive

Cortical Network(RCN), it handles the recognition, segmenta-

tion, and reasoning in an unified way and it modeled objects

as a combination of contours and surfaces. But differently in

our pipeline framework we simply used the uniformed way to

learn the features taking the fully advantages of the pretrained

CNN model.

III. PROPOSED METHOD

In this section, we present the overview of our proposed

method, then next we demonstrate the Memory Bank used in

our pipeline framework. The core patterns selection and the

Hopfield network described in Section III-C and Section III-D.

A. Overview

The pipeline framework is designated to integrate the as-

sociative memory with CNN model to eliminate the back-

propagation process, while achieves and retains state-of-the-art

performance. The overall architecture illustrated in Fig.1. As

shown from the figure, we utilize the pretrained CNN model

for feature embeddings extraction, here the ResNet-50 [27],

is pretrained on ImageNet [5], adopted for the framework

basement as its competitive classification performance. The

features our framework extracted from pool5 (of ResNet-50)

before the dense layers, utilized as the representations of the

input images. During the training phase, the framework calcu-

late the class-specific features set, which is a set of all images

features, then the core patterns subsequently computed, we

address the details of this procedure in Section III-C. The set of

core patterns stored in memory bank, which is the memory of

Hofield Network. During testing stage, we extracted features

of each test image from pool5, and then based on Hopfield

network to compute patterns from input features, we find its

associated core pattern in memory bank and return its label

for the test image, more details demonstrated in III-E.

B. Memory Bank

We proposed the notion of memory bank for storing the

patterns, which used in the architecture. It is simply as a

collection of all core patterns. Hopfield network applied on

memory bank, for the purpose of retrieving patterns during test



Fig. 1. Overview of Pipeline Framework Architecture

stage and storing patterns during training stage. Given training

images of n classes, m images for class ni which denotes

the i-th class, have pi ={p1i , p2i ,...,pmi } memory patterns,

each memory pattern computed from the features f pooled

from pool5 in the pretrained CNN model. Core patterns then

calculated among sets of memory patterns, details presented

in the next subsection.

C. Core Patterns Selection

In the memory bank, we have set of patterns pi, which

denotes the set of patterns for i-th class, the core pat-

terns selection process simply utilize K-means, an unsuper-

vised clustering approach, for calculating the cluster centers

ci ={c
1

i ,c2i ,...,cki | k∈1,2,...,m}, as core patterns for each set pi,

by computing Euclidean distance. Then the core pattern sets

c spanned overall classes obtained through above and further

utilized for Hopfield network. However, after training stage, all

core patterns have achieved, these core patterns in the memory

bank served as the candidates for Hopfield network to retrieve.

When test image feed to the network, its corresponding core

pattern restored through memory bank and then its associated

class subsequently be determined.

D. Hopfield Network

The Hopfield associative memory is a single layer of fully

connected recurrent neural network, shown in Fig.2. It stimu-

lates the storing and retrieving process in our human brain. The

neurons in Hopfield network can be updated in asynchronous

or synchronous. For asynchronous, a neuron gets update in

random or fixed order once its weighted input sum calculated,

while in synchronous, all neurons get updated at same time.

Given a network with N neurons, the weighted input sum of

a neuron known as local field can be described as follows,

ξi =
N
∑

j=1

wijxj (1)

where i, j ∈ 1, 2, ..., N , the synaptic weight wij is for the

connection weight of i-th and j-th input. xj is the state of

j-th input. The state of the entire network can be represented

by a vector v = [x1, x2, ..., xN ]. For each input pattern ϕ has

N dimensions which represented by N neurons in Hopfield

network.

The Hopfield network memorize the core patterns z denote

as ϕ1, ϕ2, ..., ϕz during training stage, and retrieve the stored

patterns in test stage. Hebbian learning used for memorizing

the patterns in Hopfield network, specifically, determine the

synaptic weights wij , which is given by

wij =

{

1

N

∑

z ϕz,iϕz,j i 6= j

0 i = j
(2)

note that the weight connection of i-th and j-th neuron is

symmetric, which wij = wji.

For retrieving purpose, suppose we have the test pattern

ϕtest, then xi is the state of the i-th element in test pattern,

denotes as ϕtest,i and i = 1, 2, ..., N . Then all the elements

in state vector v update over the network asynchronously as

described by the following,

xi(t+ 1) = sign(

N
∑

j=1

wij xj (t)) (3)



Fig. 2. Hopfield network structure.

where xj(t) is the state of the j-th neuron at time t. The update

changes in the direction of reducing the network energy, once

the energy of the network minimized, all the states become

stable and retain unchanged, the final stable network states

denotes as vs obtained. Following (1) the energy Ei for neuron

i can be described as belows,

Ei = −
1

2
ξixi (4)

Then the energy for the entire network [28] can be computed

by the following,

E (v) =
N
∑

i=1

Ei = −
1

2

N
∑

i=1

N
∑

j=1

wijxixj (5)

Even the test pattern is incomplete or broken, Hopfield

network can still retrieve the corresponding stored pattern from

the memory due to its intrinsic of error-correcting and noise-

resilience property. The network is guaranteed to converge to

stable states, once the energy of the network has minimized

and reached the energy minimum or attractor basin, the asso-

ciated final states in the network then represented as memory

patterns in response to the test pattern.

E. Problem Formulation

We utilized Hopfield network as associative memory to

store and retrieve patterns and its details explained in the

previous section. In classification problem, when obtained the

retrieved pattern, the associated class with it then attained

and computed. The problem therefore transforms to the class

match problem, and the corresponding algorithm have been

implemented.

The patterns memorized in the Hopfield network as de-

scribed can be simply treated as the weight matrix [29] and

the (2) can be transformed by using matrix product, which is

given by

W =
1

N

∑

z

ϕT

zϕz −MI (6)

where ϕT

z is the transpose of the vector ϕz then matrix product

calculated and W is the weight matrix. In the network there

is no self connections so that the synaptic weight wii = 0 and

I in (6) denotes the identity matrix.

So that we can obtain the retrieved pattern by matching the

test pattern with the stored patterns through computing and

comparing similarities among their weight matrix, Euclidean

distance can be calculated for the similarity as follows,

Diff(T, S) =

√

√

√

√

n
∑

i=1

n
∑

j=1

(Tij − Sij)2 (7)

where T and S are weight matrix for test pattern and stored

pattern, n is the dimensions of the weight matrix. Then

compute the retrieved pattern can be formulated as belows,

argmini Diff(T, Si) (8)

where Si is the i-th stored pattern, then the one which has

the smallest difference with the test pattern is represented

as retrieved pattern. The class label of the test pattern is

subsequently identified.

The algorithm implemented for classification is presented

in Alg. 1. For each test pattern t in test data, the algorithm

computes the difference between t and stored patterns Si in

each class following formula (7), and find the stored pattern

Ri which has the minimum difference in its class. Lastly all

the stored patterns Rk over k classes obtained and following

formula (8), the smallest difference pattern acquired with its

associated class label l, and eventually returned l as the result

of classification.

Algorithm 1: Classification Algorithm

Input : Test pattern t;

1 Stored patterns {Si}
z
i=1

in each class Ck.

Output: Class label set l.

2 initialize l← ∅ ;

3 for k=1 to n do

4 for i=1 to z do

5 Ri ← Union(i,Diff(t, Ski)) ;

// Compute difference within a

class

6 end

7 Rk ← argmini Ri ;

// Compute minimum within a class

8 end

9 l ∪ {k|argmink Rk};
// set of final class labels

10 if len(l) > 1 then

11 return random choice(l);
12 else

13 return l;

14 end

IV. EXPERIMENT

To better illustrate the performance of our pipeline frame-

work for classification, we conducted empirical experiments



presented in this section, mainly focus on two popular object

classification datasets: Caltech101 [30] and Caltech256 [31].

First demonstrated the details of these datasets and then

we compared the results in two network structures with the

state-of-the-arts. We utilized ResNet-50 and VGG-16 as the

pretrained CNN model in our pipeline framework.

A. Datasets

Caltech101 consists of 9144 images of 101 object cat-

egories and 1 background category. The variety of classes

include faces, animals, camera, etc. The images in the dataset

have varies in the degree of shape and scale. For each

categories it has about 40 to 800 images and most categories

have about 50 images.

Caltech256 containing 30607 images for 256 object cate-

gories and 1 clutter category. It has minimum of 80 images for

each category, compared to Caltech101, Caltech256 is more

complex and challenging due to it has more varieties in the

size, background, etc.

B. Implementation details

In our pipeline framework applied on these datasets in the

experiments, we utilized ResNet-50 [27] and VGG-16 [32] as

pretrained CNN models for features extraction, both models

are pretrained on ImageNet [5]. The experiments mainly

concentrate on the ResNet-50 model due to its state-of-the-art

performance obtained for classification and its competitive fea-

ture representations, but the results based on VGG-16 model

also provided. Both models all have five convolutional blocks

and the features pooled from the pool5, which has 1x1x2048

dimensions and 1x1x256 dimensions in ResNet-50 and VGG-

16, respectively. The input image size for ResNet-50 and

VGG-16 are same at the size of 224x224. For unsupervised

learning on clustering to attain the core patterns, K-means

simply applied on the patterns which are pooled features

from the pretrained CNN model (see section III-C), and the

algorithm implemented for classification provided in section

III-E. The Caltech101 and Caltech256 datasets which the

pretrained CNN models applied on, are divided into 30% for

testing and 70% for training in the experiments. The evaluation

metric we adopted for the performance evaluation of our

pipeline framework is the average of the per-class accuracies

obtained on the datasets.

C. Evaluation

We evaluate the performance of our pipeline framework on

various number of core patterns, recall that the core patterns

are the center patterns computed by K-means. The results

shown in Fig.3 and Fig.4 we reported based on the Caltech101

and Caltech256 datasets from ResNet-50 and VGG-16 models.

It is clear that from Fig.3 the pipeline framework exhibited

good performance and the classification accuracy improved

with the increase in the number of core patterns for each

class, but it reached relatively stable or a slight decrease in

the further, and it also showed similar on Caltech256 dataset

but has more relatively stable after increased at the first.

This validates that multiple core patterns utilized in pipeline

framework is beneficial for performance improvement instead

of one, since unsupervised clustering needed to increase the

number of core patterns to learn varieties of common features

to obtain competitive performance, but the performance would

not have improved if exceeds its varieties, since there is no

information gain yield.

Fig. 3. Impact of number of core patterns per class on Caltech101 dataset.

D. Comparison with state-of-the-art methods

In this section we compared our classification results with

the state-of-the-art methods on Caltech101 and Caltech256

datasets, we showed the comparisons in Table I. The classifiers

for SVM and Softmax in the table are added on the top of the

seven layers fixed model which pretrained on ImageNet dataset

[33] and then retrained on the new corresponding training

datasets.

TABLE I
CLASSIFICATION ACCURACY (%)

Methods Caltech101 Caltech256

SHDL [34] 81.5 -

Image Codes [35] 71.4 35.7

FL+EN [36] 83.2 -

Zeiler-Fergus [33] 86.5 74.2

Shaban [37] 75.1 -

SVM [33] 85.5 71.7

Softmax [33] 85.4 72.6

Ours(VGG-16) 79.1 67.8

Ours(ResNet-50) 87.8 78.0

The classification accuracies our model achieved are 87.8%

on Caltech101 and 78.0% on Caltech256, which outperform

the state-of-the-art methods. In our pipeline framework, even

it adopts only one core pattern per class, the accuracies our

model reported still be competitive, which are 85.9% on

Caltech101 and 75.7% on Caltech256.

V. CONCLUSION

This paper proposed the pipeline framework that used

pretrained CNN model for feature extraction and Hopfield



Fig. 4. Impact of number of core patterns per class on Caltech256 dataset.

network as associative memory for memorizing and retrieving

patterns while K-means based unsupervised learning is used

for core patterns selection. It is also shown in this paper that

the associative memory based classifier achieved the state-of-

the-art performance in classification, and outperforms other

methods simply by the advances in the Hopfield network.
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