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ABSTRACT 

 

 

Coastal bridges are exposed to multiple hazardous conditions including the corrosive 

environment, strong winds, storm surges and waves, abutment scour, possible vessel 

collisions and so forth. All these factors deteriorate the bridges, reduce their load-carrying 

capacities and even cause the bridges to collapse. A well-known catastrophic example is the 

I-35 Bridge that collapsed in Minneapolis during the summer of 2007. Therefore, accurate 

integrity evaluation and damage diagnosis of bridges will significantly enhance public safety 

and the nation's economic development.  

This research project proposes a novel data-driven framework to implement damage 

diagnosis (damage localization and quantification) for coastal bridges. Pattern recognition 

through supervised machine learning methods is conducted to identify the damage. Different 

machine learning methods have been tried and evaluated. The Artificial Neural Networks 

(ANNs) approach has been demonstrated accurate and efficient and thus adopted in the 

framework. To reduce the computational cost, a two-step diagnosis strategy is used in the 

framework where damage localization is conducted in the first step through classification and 

damage quantification is carried out in the second step through classification\regression. 

Damage sensitive features including the normalized modal frequencies variation, mode 

shapes variation and modal curvatures are extracted to train the model. The established 

framework was examined on a Finite Element (FE) model of a 3-span reinforced concrete 

bridge. It is found that single/multiple damage location presence in the bridge girder and the 

pier can be detected and quantified with high accuracy. In addition, bridge scour can also be 

quantified well.   
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IMPLEMENTATION STATEMENT 

The research conducted in this project is exploratory in nature. The PI’s idea to establish a 

data-driven framework for structural health monitoring has been investigated and verified. 

Results indicated that pattern recognition through the supervised machine learning methods 

can localize and quantify the structural damage efficiently and accurately. In addition to its 

application to bridges, the verified approach can be potentially applied to a large range of 

engineering structures for damage diagnosis.  

 

Since the presented work is essentially numerical study, further experimental research will be 

implemented through lab tests. As the outcomes of the project, two journal papers based on 

the research results are being prepared and will be submitted soon. Structural condition 

monitoring actually consists of two steps: damage diagnosis and damage prognosis. The 

presented research is essentially the first step for damage prognosis where the focus is to 

evaluate the structural security and predict the remaining useful life. As the first step of the 

PI’s research plan, the obtained results from this project will be incorporated as the 

preliminary results in a more comprehensive proposal which is under development.            
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INTRODUCTION 

A large number of bridges in Louisiana and the United States are working in coastal areas 

with multiple hazardous effects causing cumulative damage to bridges. To preserve the 

structural integrity and security, it is required that bridges in the United States be inspected 

and rated every two years. Currently, this is implemented using visual inspection techniques 

largely. The procedure however is slow and not quantifiable. In addition, the approach cannot 

provide visual data for inaccessible portions of bridges. Hence, it is possible that there will be 

damage going undetected during an inspection, which might cause bridge to collapse when 

the undetected damage on load-carrying members is beyond the critical level. A well-known 

catastrophic example is the I-35 Bridge that collapsed in Minneapolis during the summer of 

2007, see Figure 1. 

              
                  (a) Before collapse                                            (b) After collapse 

Figure 1 

Minneapolis I-35W bridge before and after collapse 

(Source: https://en.wikipedia.org/wiki/I-35W_Mississippi_River_bridge) 

To overcome the drawbacks of the traditional visual inspection methodology, quantifiable 

and continuous approaches to bridge damage monitoring have been proposed and studied by 

researchers in the community of structural health monitoring (SHM). Basically, the SHM can 

be implemented using a model- or a data-based approach [1]. Model-based approaches are 

commonly based on a Finite Element (FE) model representing the structure of interest. The 

basic idea is that once an initial FE model is created, measured data from the real structure is 

used to update the structural matrices (mass, stiffness and damping) such that the updated 

model can more accurately represent the real structure. Based on the updated model, damage 

detection, localization and quantification can be conducted through solving an inverse 

problem using measured data from the structure under test. This method has attracted a great 

deal of effort in research and demonstrated effective for damage identification [2, 3]. 

However, the model-based method is challenged by the fact that the inverse problem is often 

ill-posed and requires careful regularization [4, 5]. In addition, this method is susceptible to 

https://en.wikipedia.org/wiki/I-35W_Mississippi_River_bridge


 

the uncertainty of the measurements and the structures.  

As an alternative, the data-based approach which is statistical in nature implements the 

diagnosis of SHM through pattern recognition rather than the physics law of the model. 

Machine learning algorithms are well developed to implement the pattern recognition. The 

learning process is to establish the relationship between some features and the damaged state 

of the structure [1]. Learning naturally falls into two categories: unsupervised learning and 

supervised learning. Unsupervised learning refers to the case where the training data is not 

labelled and only the intrinsic relationships within the data can be learnt. Supervised learning 

refers to the case where the training data is acquired from multiple classes and labels for the 

classes are known. While implementing this approach, the possible damage states are 

labelled and associated with the features extracted from the measured data. In comparison 

with the model-based approaches, data-based approaches can avoid the issues due to reverse 

modelling in the model-based approaches. Further, uncertainty of the measured data and the 

structures is automatically accommodated.  

While the data-based approaches are advantageous over the model-based approaches in many 

aspect, the lack of data from the structures in both undamaged and damaged states, especially 

data from large-scale and high value structures, challenges the application of this approach. 

To address this limitation, the present research project explored the idea to integrate the 

model-updating technique with the data based approach. The basic idea is to have an accurate 

updated FE model. Data from damaged and undamaged states of the structure can be 

generated numerically to train the machine learning algorithm. Since the mode is updated, 

the numerical data can be regarded to be reliable for training purses.  
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OBJECTIVE 

The objective of this study is to investigate the data-based approaches for damage diagnosis 

of bridges and other structures. The proposed new approach is different from other 

approaches that have been reported in the literature. In the proposed approach, numerical 

models generate massive data corresponding to undamaged and damaged states for training. 

Different machine learning methods have been tested and the artificial neural networks 

(ANNs) approach is finally selected and demonstrated to be accurate and efficient.  
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SCOPE 

The proposed data-driven approach for damage diagnosis of bridges has the potential to be 

applied to a large range of structural and mechanical structures. Examples of such 

applications include high rise buildings, energy infrastructures, aerospace structures and so 

forth. The research conducted in this project is primarily focused on numerical study which 

will be extended and verified in the next step. In this study, only the ANNs classification and 

regression method is used for damage localization and quantification. In fact, other machine 

learning methods, like reinforcement learning, deep learning and other approaches are 

expected to perform similarly well or better. This will be investigated in the next step of the 

research. 
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LITERATURE REVIEW 

The general data-based approach for damage diagnosis can be implemented through four 

procedures [1]: (1) operational evaluation, (2) data acquisition, (3) feature selection and (4) 

pattern recognition for feature discrimination. Since the present project focuses on (3) and 

(4), a brief literature review is presented here regarding feature extraction and pattern 

recognition.   

Feature Extraction for SHM 

To efficiently locate and quantify the structural damage through pattern recognition, 

extraction of a damage-sensitive feature which is some quantity that can be used to indicate 

damage is of critical important. Identifying features that can accurately distinguish a 

damaged structure from an undamaged one is the primary topic of SHM [6]. If good features 

are selected, the pattern recognition for damage diagnosis can be performed accurately and 

quickly. Otherwise, the process becomes inefficient. The following subsections will present a 

review on some appropriate features.  

Modal property features 

Damage localization and quantification on the basis of vibration signals has been developed 

for many years [7-11].  

Initially, researchers tried to use measured natural frequencies for damage localization since 

the technique was not good enough to identify the mode shapes with acceptable accuracy. 

However, this approach is limited because that the information provided by natural 

frequencies is insufficient and it is possible that the damage is located incorrectly when just 

using natural frequencies. For symmetrical structures, damage at symmetric locations can’t 

be differentiated since the changes in natural frequency are exactly the same. 

As mode shape measurement technique advances, many researchers have exerted their efforts 

to the area of damage detection using mode shape information [12-14]. It was proved that the 

ratio of frequency changes in two modes due to localized damage is only a function of the 

damage location and not the damage extent [15]. In addition, the normalized frequency 

change ratio (NFCR) was also a function only of the damage location [16]. The fractional 

frequency change (FFC) for the ith mode is expressed as 

FFC ui di
i

ui

f f

f


                                                                (1) 

where uif  and dif  are the frequencies of the ith mode of the structure in undamaged and 

damaged states respectively.  

The NFCR for the ith mode is defined as: 
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i
i p

jj
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
                                                                (2) 

where p  is the number of modes with measured natural frequencies.  

It is worth to note that all the above parameters are derived from natural frequencies and 

therefore cannot discriminate between two symmetric damage locations. A combined 

damage signature index (DSI) consisting of both mode shapes and frequencies were proposed 

in [17]. It was found that the index DSI depends on damage location only, not on extent. The 

DSI is defined as the ratio of change in modal vector to change in modal eigenvalue, namely, 

     
   

2 2

ui di

i

ui dif f






Φ Φ
DSI                                                               (3) 

where  uiΦ  and  diΦ  are the modal vector values of the ith mode in undamaged and 

damaged states respectively. They can be incomplete. When only a few modal vector values 

at K locations are obtained, the vector 
iDSI comprises K entries. If only one modal value is 

available, 
iDSI reduces to a scalar quantity. 

Transmissibility function features 

Chen et al. first proposed transmissibility function as a feature for damage detection in 1994 

[18], since when the transmissibility function has been widely used for structural damage 

detection and characterization [19-20]. Experimental studies validated the efficiency of 

transmissibility function for damage detection [21-23] and localization [24] 

 Damage detection taking transmissibility function as the features mainly use three novelty 

detection methods, i.e., auto-associative neural networks, outlier analysis, and kernel density 

estimation; while damage localization primarily uses the artificial neural network (ANN). In 

addition to its high sensitivity to damage, the transmissibility function necessitates no 

measure of the excitation. 

Transmissibility function is obtained by taking the ratio of the system’s input spectra and 

output spectra: 

 
 

2

2

( 1) det( )
( )

( ) ( 1) det

k i
k

k i ik
ij k k j

j
jk

K Mx
T

x K M
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

 





   
 

   

                                       (4) 

Modal curvature features 

Pandey et al. [25] for the first time proposed to use the modal curvature for damage 

detection. The modal curvature can be calculated using Eq. (5).  
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h

  
                                                            (5) 

Where 
iv  is the mode shape amplitude at the thi  point; h is the distance between two 

successive measured locations. 

Abdel et al. [26] used the modal curvature to detect bridge damage and obtained promising 

results. However, modal curvature works well for lower mode shape while higher modal 

curvature might produce false damage indication. Therefore, the low modal curvatures are 

good features for damage identification.  

Pattern Recognition for Damage Diagnosis 

Pattern recognition for damage diagnosis is to apply an algorithm to decide the damage state 

on the basis of the given feature input. Two basic types of algorithm can be used for this 

purpose in a supervised learning manner: classification and regression.   

Multi-class classification 

Multi-class classification has been widely used for damage detection and localization by 

taking the damage condition and damage location combinations as the target categories for 

classification. Multi-class classification treats the cases with multiple damage locations as 

exclusive category labels. This approach of labelling omits the interconnection between two 

damage cases that contain common damage locations. For example, the case with damage 

locations A, B, and C and that with A and B must share common characteristics that help 

detection the common damage locations (A and B) and discern the distinct location (C). As 

will be demonstrated in the examples below, neglecting the relation between damage cases, 

multi-label classification necessitates more instances to obtain an acceptable accuracy, and 

thus has lower damage detection efficiency.   

Binary classification 

Binary classification classifies the elements of a given set into two groups using a 

classification rule. Binary classification can be used for damage detection on the structural 

scale or with respect to a certain location on a structure, by making a decision about whether 

a structure possesses certain properties or characteristics. Binary classification reduces the 

multi-label classification problem as it decomposes the classification task into multiple 

independent problems with binary classification labels [27-28]. 

For damage detection and localization, binary classification trains all the instances for each 

possible damage location separately setting the damage condition at that location (damaged 

or not) as the target label, and finally integrates the classification results for all the damage 

locations to formulate a model for multi-label classification decision making. However, 



 

binary classification, by separating classes with multiple labels, fail to take into account the 

correlation between the instance’s labels and weakens the system’s expressive power. [29] 

Multi-label classification 

Multi-label classification problems widely exist in the real world problem solutions. For 

instance, a movie may possess the characteristics labelling it into more than one categories, 

such as western and action. The multi-label learning problem represented each example  an 

instance with a set of labels, aims at generating a label set that categorize the example with 

an acceptable accuracy. 

Intuitively, multi-label learning deals with ambiguous objects possessing multiple semantic 

meanings simultaneously.  Zhang and Zhou proposed the InsDif (instance differentiation) 

method to solve the multi-label learning problem by considering the ambiguity of objects in 

the input space (instance space) [30] 

It is assumed that an object belongs to several semantic classes simultaneously due to the 

diverse information contained in the object. This method represents the ambiguous objects 

using a bag of instances instead of a single instance, where each instance in the bag explicitly 

reflects some information contained in the object from a certain aspect and produces more 

effective solution to the multi-label classification problem. 

Regression 

Regression used in this study refers to the statistic regression using machine learning method 

to quantify the damage severity at all the possible damage locations. The target is a vector 

containing the damage extents. This method necessitates high computational capacity, though 

it fulfills the objectives of damage detection, damage localization, and damage quantification 

using one operation of regression analysis.  
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METHODOLOGY 

On basis of the literature review, the traditional machine learning methods including the 

support vector machine (SVM), the logistic regression (LR) and the artificial neural networks 

(ANNs) (as shown in Figure 2) are tested first and then the ANNs method will be selected to 

implement the pattern recognition. To reduce the computational cost, a two-step strategy of 

damage diagnosis is proposed. In the first step, training data are generated from all the 

possible combination of different damage locations. Here the number of damages considered 

are 1, 2 and 3. Once the number and locations of the damage is determined in the first step, a 

second pattern recognition/regression is conducted to quantify each of the damage in step 2. 

This two-step strategy is illustrated in Figure 3 

 

 

Figure 2 

Neural network configuration 

The proposed machine learning framework for damage diagnosis is first tested on an 8 

degrees-of-freedom (8DOF) lumped mass system representing a simplified structural or 

mechanical system. Then a real bridge model of a 3-span reinforced concrete bridge is used 

to examine the efficiency and accuracy of the proposed framework. Detailed procedures and 

results with respect to the two scenarios are presented next. 

 

Figure 3 

Flowchart of the data-driven damage diagnosis framework 
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RESULTS AND DISCUSSIONS 

Damage diagnosis of an eight DOF lumped mass system 

Model description 

This section performs damage diagnosis with respect to a generic structure represented by an 

8-DOF system containing eight lumped masses, nine connecting springs, and nine connecting 

dampers, as shown in Figure 4. Table 1 lists the non-dimensional values of the masses, 

spring, and damping coefficients that are assigned to the model. 

 

Figure 4 

Configuration of the eight-DOF lumped mass system 

Table 1 

Mechanical properties of the eight-DOF model 

Item I II III IV V VI VII VIII IX 

M 1 2 3 4 2 2 1 3 - 

C 20 20 20 20 20 20 20 20 20 

K 10000 10000 10000 10000 10000 10000 10000 10000 10000 

A preliminary study 

In the beginning, it is unclear about the selection of good damage-sensitive features, an 

appropriate learning method and suitable external loading conditions. Hence, a preliminary 

study is conducted for the 8-DOF system with selected damage severity and positions. Table 

2 shows the damage conditions for this preliminary study 

Table 2 

Damage conditions indicated by spring stiffness reduction 

Damage 

condition 
Case 1 Case 2 Case 3 

DC I 2% on k1 10% on k1 50% on k1 

DC II 2% on k2 10% on k2 50% on k2 

DC III 2% on k3 10% on k3 50% on k3 

DC IV 10% on k1 and 50% on k2 

DC V 10% on k2 and 50% on k3 
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Three loading conditions, i.e. harmonic loading, impact loading and white noise excitations 

are utilized. The transmissibility function is initially extracted as the input feature. A total 

number of 18 cases are considered herein with different loading masses (LM) and masses for 

the transmissibility function calculation (TM1 and TM2). As an evaluation index, Precision, 

Recall and F-score are the primary parameters ranging from 0 to 1 often used to evaluate the 

accuracy of the algorithm. Detailed definition of the three parameters are not presented here. 

Generally the closer the parameter value is to 1, the more accurate predictions are provided.   

Table 3 lists the identification result corresponding to the 18 cases as described above. In 

Table 3, the parameter minVal refers to the minimal value of the Precision, Recall and F-

score calculated in each of the cases. The results indicate that the impact loading has best 

performance for damage identification, white noise excitation has intermediate performance 

and the harmonic loading has the least.  

Figure 5 shows the confusion matrix of classification using support vector machines with a 

ten-fold cross validation. It shows that except Class 2, i.e., the first damage condition, all the 

instances belonging to other classes are classified right with al recall of 100%. The average 

recall is 97.65%; the average precision is 97.94%; the average f-score is 98.04%. 

Figure 6 tabulates the confusion matrix of classification using logistic regression with a ten-

fold cross validation. It shows that except Class 2, i.e., the first damage condition, all the 

instances belonging to other classes are classified right with al recall of 100%. The average 

recall is 95.07%; the average precision is 95.73%; the average f-score is 94.98%.  

Figure 7 tabulates the confusion matrix of classification using neural networks with a ten-

fold cross validation. It shows that except Class 2, i.e., the first damage condition, all the 

instances belonging to other classes are classified right with al recall of 100%. The average 

recall is 96.82%; the average precision is 97.30%; the average f-score is 97.95%. 
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Table 3 

Results of damage localization in the preliminary study 

 

 

Figure 5 

Confusion matrix of classification using support vector machines 

ID LM TM1 TM2 
minVal>0.7 minVal>0.8 minVal>0.9 minVal>0.95 

H I W H I W H I W H I W 

1 1 1 2             

2 1 1 5             

3 1 1 8             

4 1 4 5             

5 1 4 8             

6 1 7 8             

7 4 1 2             

8 4 1 5             

9 4 1 8             

10 4 4 5             

11 4 4 8             

12 4 7 8             

13 7 1 2             

14 7 1 5             

15 7 1 8             

16 7 4 5             

17 7 4 8             

18 7 7 8             



  

 

15 

 

Figure 6 

Confusion matrix of classification using logistic regression 

 

Figure 7 

Confusion matrix of classification using neural networks 

A general study 

On the basis of the preliminary study, the neural networks method is selected as a primary 

learning method. Impact loading applied at the middle mass (mass 4 or mass 5) is adopted.  

As mentioned before, the scenarios corresponding to single damage, two damage and three 

damage are studied. Therefore, to consider all the possible combinations of different damage 

number and locations, a total number of 129 ( 1 2 3

9 9 9C C C  ) classes are labelled and 

associated with the extracted damage-sensitive features. 

Feature extraction 

Damage is introduced through reducing the spring stiffness at the specific location. The 
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features used in this project include the normalized frequency and mode shape variations as 

defined in Eqns. (2) and (3). The input vector to the neural networks consists of combined 

modal parameters which is formulated as: 

          1 2 1 2Input NFCR NFCR ...NFCR ...m nNDSI NDSI NDSI                              (5) 

where NFCRi (i = 1, 2,..., m) is the NFCR defined in Eq. (2), and NDSIi (i = 1, 2,…, n) is the 

normalized DSI defined as 

1

( )
( )

( )

i
i n

jj

DSI k
NDSI k

DSI k





                                                        (6) 

It is noted that the input vector defined in Eqn. (5) possesses the following attributes: (i) with 

the first-order approximation, the parameters of the input vector are only dependent on 

damage location and independent of damage extent; (ii) the input parameters can be derived 

using an arbitrary number of modal vector values, even with only one modal value available. 

Dynamics modeling 

Within each damage case, an impact load is applied to a specific mass (e.g. mass 5) and the 

free vibration response is processed using an out-put only method [33] to extract the modal 

frequencies and mode shapes.  As an illustration, results of the single damage case are 

illustrated here and other results are presented in the Appendix.   

Figure 8 shows the displacement of Mass 5 under the impact load under undamaged and 

damaged conditions. Figure 9 and Figure 10 show the decomposed modal response under 

damaged and undamaged conditions.  One can see that the out-put only algorithm can 

satisfactorily decompose the response of mass 5 into each of the modes. Figure 11 and Figure 

12 show the response spectrum under damaged and undamaged conditions. Figure 13 shows 

the comparison of the normalized mode shape between the undamaged and damaged cases. 

Table 4 lists the modal frequencies of the undamaged and damaged structure. One can find in 

Figure 13 and Table 4 that a single damage at spring 5 can cause significant variations of the 

natural frequency and the mode shapes.   
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Figure 8 

Displacement time history of mass 5 in undamaged and damaged conditions 

 

Figure 9 

Modal responses of mass 5 in undamaged conditions 
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Figure 10 

Modal responses in damaged conditions (single damage at spring 5) 

 

Figure 11 

Modal response spectra in undamaged conditions 
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Figure 12 

Modal response spectra in damaged conditions (single damage at spring 5) 

 

Figure 13 

Normalized modal shape comparison between undamaged and damaged conditions 
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Table 4 

Modal frequencies of undamaged and damaged systems (Unit: Hz) 

Mode ID 1 2 3 4 5 6 7 8 

undamaged 3.4 7.5 10.1 12.2 14.6 16.4 19.7 21.4 

damaged 3.3 3.3 3.3 10.1 10.6 14.7 15.8 20.2 

Patter recognition 

The multi-class classification, binary classification and multi-label classification methods are 

evaluated here in this section.  

Multi-class classification 

Figure 14shows the classification result using the multi-class classification approach with 

100 data points for each damage case. It can be seen that with 100 samples for each case, the 

classification results are satisfactory for the single damage case (class ID from 1 to 9). 

However, for around 20% of the damage cases, the identification result is not that 

satisfactory for a damage detection purpose, with many of the f-scores below 0.8.  

In comparison, when the number of data points used to train the model increases to 1000, the 

classification results are improved significantly with most f-scores above 0.9 as shown in 

Figure 15 

F-score of multi-class classification using 1000 data points for each class 

. 

 

Figure 14 

F-score of multi-class classification using 100 data points for each class 
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Figure 15 

F-score of multi-class classification using 1000 data points for each class 

Binary classification  

As this numerical simulation considers the cases with at most three damage locations, most 

of the springs are not damaged in most cases. For example, the first spring is damage in 37 of 

the total 129 cases. As is expected, the binary classification has better classification results 

for the “No-damage” category for each location, which are demonstrated in Figure 16 and 

Figure 17.  

 

Figure 16 

F-score of binary classification using 100 data points 
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Figure 17 

F-score of binary classification using 1000 data points 

Multi-label classification 

Table 5 and Table 6 illustrates the results of the multi-label classification using the instance 

differentiation method, and that from the integration of the binary classification results. In 

Table 5 and Table 6, Hamming loss is defined as the portion of instances having the output 

hypothesis different from the targets. One error evaluates how many times none of the 

predicted instance labels lies in the target class. The coverage measure denotes the average 

number of instances covering all the target labels. Average precision evaluates the average 

fraction of instance labels with the correct prediction. Ranking loss measures the average 

portion of instance labels that are ranked incorrectly [34].  

It can be seen that with only 50 repeats the average precision can reach 0.9005 using multi-

label classification, and that the multi-label classification results are much better than that of 

the binary classification. 

Table 5 

Results of multi-label classification using the instance differentiation method 

Evaluation 

criterion 

Number of repeats 

10 30 50 100 

Hamming loss 0.1606 0.1073 0.0939 0.0400 

One-error 0.1163 0.0729 0.0504 0.1000 

Coverage 3.3760 2.8031 2.6163 0.1000 

Ranking loss 0.1445 0.0818 0.0604 0.0125 

Average 

precision 

0.8267 

0.8818 0.9005 

0.9500 
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Table 6 

Integration of binary classification results 

Evaluation 

criterion 

Number of repeats 

100 1000 

Hamming loss 0.14 0.11 

One-error 0.05 0.02 

Coverage 3.76 3.44 

Ranking loss 0.37 0.30 

Average 

precision 0.81 0.85 

 

Damage severity quantification 

One damage location 

Figure 18 and Figure 19 show the results of damage severity regression for the one-damage-

location case using the neural networks method. This method applied a ten-fold cross 

validation to train the network and yield an average of the regression. Figure 18 illustrates the 

instances of errors of the regression results for the test data set. It is evident that more than 

90% of data has a regression error within the range [-0.003 +0.003], which is negligible 

compared with the target damage severities, indicating a high quality of regression. Figure 19 

shows the network outputs with respect to target damage severities for the test data sets. It is 

evident that the fit is reasonably good, with an R-value above 0.99. 

 

 

 

Figure 18 

Errors of damage severity regression using neural network (one damage location) 
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Figure 19 

Plots of regressions for the targets and outputs of the test data (one damage location) 

Two damage location 

Figure 20 and Figure 21 show the results of damage severity regression for the two-damage-

location case using the neural networks method. Similar to the one-damage-location cases, 

most instances have a regression error below 0.01. The plot of regression of the target and 

output for the test data set has an R of 0.98916. The main reason for the lower quality of 

damage severity quantification for the two-damage-location cases is that the regression target 

in this case is a two-element vector indicating the damage severity at each of the damage 

locations. 

 

 

 

Figure 20 

Errors of damage severity regression using neural network (two damage location) 
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Figure 21 

Plots of regressions for the targets and outputs of the test data (two damage location) 

Three damage location 

Figure 22 and Figure 23show the results of damage severity regression for the three-damage-

location case using the neural networks method. Similar to the one-damage-location and two-

damage-locations cases, most instances have a regression error below 0.02. The plot of 

regression of the target and output for the test data set has an R of 0.98317. The main reason 

for the lower quality of damage severity quantification for the three-damage-location cases is 

that the regression target in this case is a three-element vector indicating the damage severity 

at each of the damage locations. 

 

 

 

Figure 22 

Errors of damage severity regression using neural network (three damage location) 
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Figure 23 

Plots of regressions for the targets and outputs of the test data (three damage location) 

Damage diagnosis of a three-span reinforced concrete bridge  

On the basis of the damage diagnosis study regarding the 8-DOF structure, bridge damage 

diagnosis is conducted in this section with respect to the bridge girders, the piers, and the 

foundation (scour).   

Model description 

The bridge used in this project is a concrete rigid frame bridge with a span layout of 103 + 

180 +103 m, see Figure 24. Figure 25 delineates the damage introduction and sensor 

installation on the bridge girders. This numerical study quantifies the damage using the 

reduction of material modulus of elasticity by a certain ratio. Damage can happen at the 

girder-column joints and the span centers. For simplicity, this numerical simulation 

introduces only damage weakening the bending stiffness in the elevation plane. The sensors 

installed at the joints and the locations of multiples of quarter spans can detection the 

variation of vertical position and rotation in the elevation plane, when the bridge is under 

dynamic loading. Figure 26 shows the impact loading at the quarter mid-span on the bridge 

girder. As shown in Figure 27, a Finite Element (FE) model was created using ANSYS. 

Beam 4 element was used in the model.    

 

Figure 24 

The layout of the rigid frame bridge model 
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Figure 25 

Damage introduction and sensor placement (sensor locations are numbered from 1 to 

13 from left to right) 

 

Figure 26 

Impact load applied at a quarter position of the mid-span on the bridge  

 

Figure 27 

The finite element model of bridge 

Dynamic response 

Dynamic response and the extracted features from the response corresponding to a two 

damage case (damage @ location 3 and 6) are illustrated here as a representative. Figure 

28Figure 28 

Mid-span displacement time history in undamaged and damaged conditions shows the mid-

span displacement under impact load under the undamaged and damaged conditions. Figure 

29 and Figure 30 show the decomposed modal response under undamaged and damaged 

conditions. Figure 31 and Figure 32 show the response spectrum under undamaged and 

damaged conditions. Figure 33 shows the comparison of normalized mode shape between the 

undamaged and damaged case. Figure 34 shows the comparison of the modal curvature 

between the undamaged and damaged case. Table 7 lists the modal frequencies of the 

undamaged and damaged structure. One can find in Figure 33, Figure 34 and Table 7 that 

two damage locations @ 3 and 6 can cause significant variations of the natural frequency the 

mode shapes and the modal curvature. 
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Figure 28 

Mid-span displacement time history in undamaged and damaged conditions  

 

Figure 29 

 Bridge modal responses in undamaged conditions 
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Figure 30 

Bridge modal responses under impact load in damaged conditions 

 

Figure 31 

Bridge modal response spectra under impact load in undamaged condition 



 

30 

 

 

Figure 32 

Bridge modal response spectra under impact load with two damage locations  

 

 

Figure 33 

Normalized mode shape comparison between undamaged and damaged conditions 
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Figure 34 

Modal curvature comparison between undamaged and damaged conditions 

Table 7 

Extracted frequencies of the undamaged and damaged bridge (Unit: Hz) 

Mode ID 1 2 3 4 5 6 7 8 9 10 11 12 

undamaged 1.0 1.7 2.7 1.1 2.1 2.1 3.9 5.7 3.9 4.6 4.6 5.7 

damaged 0.9 1.7 2.0 2.6 1.1 3.9 3.9 3.9 3.9 4.4 8.3 7.4 

Girder damage detection and localization 

 

Figure 35 

F-score of multi-class classification using 100 data points 
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Figure 35 lists the f-scores of multi-class classification for damage detection. A total number 

of 63 cases including 7 cases for single damage location, 21 for two damage location, and 35 

for three damage location. It is found in Figure 35 that the f-scores are above 0.95 for all the 

classes, indicating a high quality of damage detection and localization for the bridge 

structure. 

Girder Damage quantification 

One damage location 

Figure 36 and Figure 37 show the results of damage severity regression for the one-damage-

location cases using neural networks. Figure 36 illustrates the instances of errors of the 

regression results for the test data set. It is evident that more than 90% of data has a 

regression error within the range [-0.03 +0.03], which is negligible compared with the target 

damage severities, indicating a high quality of regression. Figure 37 shows the network 

outputs with respect to target damage severities for the test data sets. It is evident that the fit 

is reasonably good, with an R above 0.99. 

 

 

Figure 36 

Errors of damage severity regression using neural network (one damage location) 
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Figure 37 

Plots of regressions for the targets and outputs of the test data (one damage location) 

Two damage locations 

Figure 38 and Figure 39 show the results of damage severity regression for the two-damage-

location cases using neural networks. Similar to the one-damage-location cases, most 

instances have a regression error below 0.05. The plot of regression of the target and output 

for the test data set has an R of 0.98916. The main reason for the lower quality of damage 

severity quantification for the two-damage-location cases is that the regression target in this 

case is a two-element vector indicating the damage severity at each of the damage locations. 

 

 

 

Figure 38 

Errors of damage severity regression using neural network (two damage location) 
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Figure 39 

Plots of regressions for the targets and outputs of the test data (two damage location) 

Three damage locations 

Figure 40 and Figure 41 show the results of damage severity regression for the three-damage-

location cases using neural networks. Similar to the one-damage-location cases, most 

instances have a regression error below 0.05. The plot of regression of the target and output 

for the test data set has an R of 0.93279. The main reason for the lower quality of damage 

severity quantification for the three-damage-location cases is that the regression target in this 

case is a three-element vector indicating the damage severity at each of the damage locations. 

 

 

Figure 40 

  Errors of damage severity regression using neural network (three damage location). 
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Figure 41 

Plots of regressions for the targets and outputs of the test data (three damage location).  

Pier damage detection and location 

This section presents the results of damage localization and quantification of the bridge piers. 

It is assumed that there can be at most two piers damaged and the damage always happen at 

the center of the piers. It is worth noting that the pier damage detection and quantification 

uses the bridge modal information extracted from the girder responses. 

Figure 42 lists the f-scores of the ten categories for damage detection, i.e., four for one-

damage-location cases and six for two-damage-location cases. Compared with the girder 

damage detection results, the pier damage detection has low f-scores with all of them below 

0.95 of 90% of them below 0.90. The main reason is that the stiffness reduction on a certain 

pier may not lead to significant alteration of the girder modal properties, especially 

considering the fact that there are four piers supporting the bridge girder and that this 

analysis extracts only a limited number of modes from the girder responses.  
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Figure 42 

  F-score of multi-class classification using data of 100 repeats 

Damage severity quantification 

The damage severity quantification assumes that the damage location has been located via 

classification and estimates the damage ratio using the neural network regression module. 

Figure 43 

Errors of damage severity regression of bridge pier (one damage location) 

 

One damage location 

 

Figure 43 

Errors of damage severity regression of bridge pier (one damage location) 
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Figure 44 

Plots of regressions for the targets and outputs of the test data (one damage location) 

Two damage locations 

 

 

Figure 45 

Errors of damage severity regression (two damage location) 
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Figure 46 

Plots of regressions for the targets and outputs of the test data (one damage location) 

Scour damage quantification 

Scour issues are the most important factor that causes bridges to collapse. More than 1000 

bridges in the United States have collapsed over the past 30 years, with 60% of the failures 

caused by scouring. With an increasing rate of floods and storm in Louisiana coastal area, the 

bridges are suffering from more and more severe scouring conditions.   

Structurally, scour could cause constraint release on the bridge foundations, which has the 

potential to lead to bridge modal property alteration. As a preliminary study, this section 

evaluates the scour severity that is represented by the constraining strength reduction through 

bridge modal property analysis. This analysis assumes that the scour happens on the left 

bridge pier as depicted in Figure 25. 

Dynamic response of the bridge with scour 

Dynamic responses and the extracted features of the pier where the scour occurs are 

illustrated. Figure 47 shows the pier displacement under the impact load with and without 

scour. Figure 48 and Figure 49 show the decomposed modal response with and without 

scour. Figure 50 and Figure 51 show the response spectrum with and without scour. Figure 

52 shows the comparison of normalized mode shape. Figure 53 shows the comparison of the 

modal curvature between the cases with and without scour. One can find in Figure 52 and 

Figure 53 that the scour in the mid pier can cause significant variations of the natural 

frequency the mode shapes and the modal curvature. 
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Figure 47 

Mid-pier displacement time history with and without scour 

 

Figure 48 

Modal responses without scour 
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Figure 49 

Modal responses with scour 

 

Figure 50 
Modal response spectra without scour 
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Figure 51 
Modal response spectra without scour 

 

Figure 52 

Modal shape comparison between with and without scour 
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Figure 53 

Modal curvature comparison between with and without scour 

 

Scour damage quantification 

Figure 54 and Figure 55 show the results of scour damage severity quantification using 

neural network regression. It is indicated that a high regression quality with low magnitudes 

of errors and a high R-value are achieved, signaling that the scour severity can be quantified 

reasonably well using the established NNs method.  

 

 

 

Figure 54 

Errors of damage severity regression using neural network 
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Figure 55 

Plots of regressions for the targets and outputs of the test data
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CONCLUSIONS 

A data-driven framework for coastal bridge damage diagnosis has been established and 

evaluated numerically. Pattern recognition through supervised machine learning methods is 

used for damage diagnosis. To reduce the computational cost, damage localization and 

quantification are implemented in two steps: the first step detects and localizes the damage 

presence using the classification approach and the second step quantifies the damage using 

the classification or the regression approach (both are tried in the project). It is indicated that 

this two-step strategy can efficiently and accurately detect and quantify the damage.   

Normalized modal frequency variation, mode shape variation and modal curvatures are 

extracted and utilized as damage indicative features. It is demonstrated that these extracted 

features can satisfactorily represent the damage presence.  

On the basis of the preliminary study with respect to the 8-DOF generalized system, the 

multi-layer neural networks (NNs) method is shown efficient and accurate and thus selected 

for the framework. Among the multi-class classification, the binary classification and the 

multi-label classification approaches, the multi-label classification approach is proved to be 

the most efficient. In the case of the 8-DOF system, with 100 data points, the F-score of 

multi-label classification is around 0.95 while the multi-class classification approach needs 

around 1000 data points to produce a comparable F-score value. In the case of binary 

classification, the F-score with 1000 data points is around 0.95 for “no damage” while the F-

score is lower than 0.8 for many “damage” cases.  

When the established framework was applied for damage diagnosis of the 3-span reinforced 

concrete bridge, the damage presence in the bridge girders and the piers can be detected and 

quantified well. For damage detection and localization, the F-score is above 0.95 with 100 

data points for each case. For damage quantification, the regression of the output and the 

target has a high R value around 0.98. In addition, the bridge scour can also be quantified 

well.  

To sum, the established framework is promising for damage diagnosis of bridges and also a 

wide range of structural and mechanical structures using a data-driven approach. Since the 

implemented research in this project is exploratory and numerical, further experimental study 

will be performed to verify the established framework.  
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RECOMMENDATIONS 

Damage diagnosis (localization and quantification) is the first step to develop a decision 

making framework for bridge operation management. The final target for bridge condition 

assessment is to implement damage prognosis which predicts the remaining useful life of 

bridges under the current health state (done by damage diagnosis) and a probabilistic future 

loading model. Therefore, based on the results presented in this project, recommendations 

stemming out of this research are summarized as follows: 

(1) A data-driven system for damage diagnosis is used for real bridges, especially those old 

bridges that are probably damaged.  

(2) A full research project needs to be conducted to verify the established framework using 

experimental and filed test data.     

(3) Another full research project needs to be conducted to develop a complete data-driven 

framework for decision-making of bridge management which is capable to include climate 

data (hurricane, storm surges, waves and floods), traffic data and other relevant data.  

(4) A pilot study is recommended to use unmanned aerial vehicle for data acquisition from 

real bridges to apply the established framework.  
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ACRONYMS, ABBREVIATIONS, & SYMBOLS 

 

LTRC  Louisiana Transportation Research Center  

ANN 

DOF 

DSI 

FE 

FFC 

InsDif 

LM 

LR 

NFCR  

SVM 

TM 

Artificial Neural Networks 

Degree of Freedom 

Damage Signature Index  

Finite Element 

Fractional Frequency Change 

Instance Differentiation 

Loading Mass 

logistic regression 

Normalized Frequency Change Ratio 

Support Vector Machine 

Transmissibility Mass 

m   Lumped mass of the system  

H Harmonic excitation 

I Impact load 

W White noise excitation 

k  Stiffness coefficient of the spring 

c  Damping coefficient of the spring 

f   Modal frequency 

   Mode shape 

v  Modal vector amplitude 

h Distance between two successive measurement locations 

''v   Modal curvature 

T  Transmissibility function 

K  Stiffness Matrix 

  Circular frequency 

M  Mass Matrix 
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APPENDIX 

ENGINEERING DRAWINGS OF THE BRIDGE 

 

 

Bridge layout 

 

A-A cross section 
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B-B cross section 

 

 

 

 

 

 

 

 


