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ABSTRACT 

The reduction of capacity caused by the deterioration of materials and the increasing traffic 

volumes have raised serious safety concerns for field bridges. The main objective of this 

project is to develop a strategy for truck characterization and develop a methodology for 

performance assessment of the instrumented bridge. To achieve the research objective, a 

methodology is developed including three parts: (1) bridge condition assessment based on 

strain monitoring where the Bayesian theory is used to predict live load effect based on 

monitored strains, (2) framework for bridge condition assessment where the measured and 

predicted strains are compared with the developed service and capacity envelopes, and (3) 

live load monitoring using the current instrumentation system where a strategy to identify 

vehicle information is explored. Using the developed methodology, condition assessment of 

the I-10 Twin Span Bridge is conducted. It is found that the bridge is safe and performing as 

designed. Nevertheless, results also indicate that the exterior girders under the slow lane 

could be overstressed in the future. The developed methodology can be adopted for long-

term performance assessment for other field bridges in order to more accurately account for 

the traffic effects, which can help reduce the uncertainty and achieve more reliable condition 

assessment of bridges for bridge maintenance decision-making. 
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IMPLEMENTATION STATEMENT 

The findings from this study provide insight into the performance of the instrumented field 

bridge under site specific live loads. Based on the condition assessment results, the I-10 Twin 

Span Bridge is currently safe and performing as designed. Nevertheless, results also indicate 

that the exterior girders under the slow lane could be overstressed in the future. The 

developed methodology can be adopted for long-term performance assessment for other field 

bridges in order to more accurately account for the traffic effects, which can help reduce the 

uncertainty and achieve more reliable condition assessment of bridges for bridge 

maintenance decision-making. 
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INTRODUCTION 

Overloaded trucks often cause serious damage and safety threats to bridges. Compared to the 

standard design traffic/live loads in the design specifications such as AASHTO HL 93 [1], 

the actual characteristics of overloaded trucks, such as truck weight and types, are very 

difficult to be predicted or defined in advance because they are site specific. Therefore, it is 

important to investigate the characteristics of overloaded trucks and their actual impact on 

bridges that were typically designed against the standard design traffic loads. 

Bridge condition assessment and live load capacity evaluation are the principal components 

of the Federal Highway Administration’s (FHWA) National Bridge Inspection Program 

(NBIP). The objective of the NBIP program is to more accurately evaluate bridge capacity in 

order to ensure the safety of traveling public. Accurate bridge load rating is also an important 

factor for decision-making regarding bridge rehabilitation/replacement, load posting, and 

overload truck permitting. 

The American Association of State Highway and Transportation Officials (AASHTO) 

published the first edition of Manual for Bridge Evaluation (MBE) in 2008 to ensure the 

safety and serviceability of highway bridges. Louisiana Department of Transportation and 

Development (DOTD) implemented the MBE Load and Resistant Factor Rating (LRFR) 

methodology in 2009. The intent of LRFR is to be consistent with Load and Resistance 

Factor Design (LRFD) Specifications using a reliability-based philosophy and to extend the 

provisions of the LRFD Specifications to the areas of inspection, load rating, posting, and 

permitting of existing bridges [1]. In the LRFR methodology, structural performance is 

measured in terms of the reliability index, β. Though the LRFD specifications have been 

calibrated to provide a more uniform and acceptable level of safety and reliability, the 

application of reliability theory to bridge load rating is much more complex than the 

application of these principles in design due to site-specific conditions and time-dependent 

variations of existing bridges in service. In general, the bridge reliability index decreases 

with time due to deterioration, accident, fatigue and growing traffic. For a specific bridge, 

knowledge of the in situ traffic data, performance data, and material and dimension data will 

greatly reduce the uncertainties. Incorporating those data into bridge load rating will greatly 

increase the reliability index β and extend the operational life of bridges.  

To establish a site-specific database for bridge evaluation and future bridge design, DOTD 

established a long-term health monitoring system at the I-10 Twin Span Bridge. As stated in 

the Request for Proposal (RFP), DOTD, through its contractor Geocomp Corporation, has 

installed a comprehensive health monitoring system at Pier M19 of the eastbound lanes. The 



 

  

 

 

 

   

 

   

  

bridge is instrumented from deck to piles to capture bridge response (both substructure and 

superstructure) to live loads. The purpose of this instrumentation is to perform structural 

health monitoring (SHM) of the bridge during normal and regular traffic events as well as 

during extreme events, overloads, wave surges or ship collision. The proposed study is to 

provide field data-based supports to DOTD to fully implement the health monitoring system 

and determine the effects of traffic loads on instrumented components of the structure. In 

addition to instrumentations for structural response such as strains, an OSMOS weigh-in-

motion (WIM) system has been installed adjacent to M19 to collect live load information, as 

shown in Figure 1(a) [2].  The OSMOS’ WIM uses optical extensometers that are placed 

vertically nearby the bearings to measure the dynamic deformations caused by the impact of 

crossing traffic (Figure 1 (b)). This dynamic impact measurement is then used to weigh the 

traffic. The OSMOS monitoring station connected to the optical sensors collects and 

processes the signal to computerize the monitoring through its dashboard displays. The entire 

system is configured online to monitor real-time load data. The on-site monitoring station can 

synchronize the sensors and video information and upload it to an offsite server for real-time 

data processing (Figure 1(c)). 

(a) Location of optic extensometers for WIM (b) Optical extensometer for WIM 

(c) Schematic view of OSMOS WIM sensor system 

Figure 1 

Overall layout of WIM system 
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By fully utilizing these instrumentations and field data resources, this project can be further 

used to develop a methodology to accurately evaluate the bridge reliability/safety based on 

the in-situ WIM data, live load testing data, long-term health monitoring data, and refined 

finite element models. To serve this purpose, the researchers of this proposed research 

project must have expertise in a deep understanding of bridge field instrumentation and 

testing, statistically characterizing and presenting the data in a useful and convenient format, 

and carrying out bridge performance evaluation and rating. The end goal will be to achieve a 

precise continuous real-time load rating which in turn will be used for load permitting and 

bridge maintenance. Therefore, the results of the proposed research will be directly 

implemented into the DOTD practice of bridge design and capacity rating, which is of great 

significance to the DOTD. 

3 





 

 

 

 

 

OBJECTIVE 

The objectives of this project are the following: 

1. Develop a data interface tool for data processing. 

2. Develop a strategy for truck characterization. 

3. Determine the effects of traffic loads on the instrumented components of the bridge. 

4. Develop a methodology for performance assessment of the instrumented bridge. 

5 





 

 

  

  

  

    

  

   

 

   

 

SCOPE 

The bridge selected for this study is the new I-10 Twin Span Bridge (TSB) located in 

southern Louisiana. The bridge was instrumented with strain gages for both the 

superstructure and the substructure. The main effort of this research is to validate the bridge 

performance monitoring system that is capable of capturing the live load information and its 

effects on the performance of the instrumented bridge components, through developing data 

interface tools. The tasks of this research includes literature review, assessing the existing 

instrumentation, collecting and processing data, analyzing data, developing a methodology to 

assess the performance of the bridge, and prediction of the future performance of the bridge 

using the developed strategy. 

7 





 

 

   

 

   

   

    

   

     

     

        

 

   

 

  

 

   

  

 

     

 

 

   

     

  

     

METHODOLOGY 

The methodology developed in the present study includes three parts: (1) bridge condition 

assessment based on strain monitoring where the Bayesian theory is used to predict live load 

effect based on monitored strains, (2) framework for bridge condition assessment where the 

measured and predicted strains are compared with the developed service and capacity 

envelopes, and (3) live load monitoring using the current instrumentation system where a 

strategy to identify vehicle information is explored. 

Bridge Condition Assessment Based on Strain Monitoring 

Bayesian Method for Extreme Value Analysis 

Modeling of Extreme Data. For a sequence of independent and identically (i.i.d.) 

distributed random variables (𝑋1, 𝑋2, … , 𝑋𝑛) whose cumulative distribution function (CDF) is 

𝐹(𝑥), let 𝑀𝑛 = 𝑀𝑎𝑥(𝑋1, 𝑋2, … , 𝑋𝑛) and the CDF of 𝑀𝑛 can then be expressed as: 

1 2( ) ( ) ( , ,..., ) ( )
n

n

M n nF x P M x P X x X x X x F x       (1) 

Based on the Fisher-Tippett-Gnedenko theorem, if there exists a sequence of real numbers 

(𝑎𝑛, 𝑏𝑛) with 𝑎𝑛 > 0 such that 

lim ( ) ( )n n

n
n

M b
P x G x

a


  (2) 

where, 𝐺(𝑥) is a non-degenerate distribution function, then 𝐺(𝑥) must be in the form of the 

generalized extreme value (GEV) distribution whose CDF can be written as [3]: 

1/

( ) exp 1

k
x

G x k




 
   

     
    

(3) 

where, k is the shape parameter; σ is the scale parameter; and µ is the location parameter. The 

GEV distribution contains three types of extreme value distributions depending on the value 

of the shape parameter: (1) when k>0, G(x) corresponds to the heavy-tailed (Fréchet) 

distribution; (2) when k<0, G(x) corresponds to the short-tailed (Weibull) distribution; and 

(3) when k approaches to 0, G(x) corresponds to the light-tailed (Gumbel) distribution. 

In order to model the extreme traffic LEs using the extreme value theory, the maximum 

traffic LEs are assumed to be i.i.d. The maximum traffic LEs are obtained using the block 

maxima method where the observation is divided into non-overlapping time intervals 
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(blocks) of equal length and then the maximum traffic LE in each block is extracted. Based 

on the extreme value theory, the block maxima will converge to the GEV distribution. 

In extreme value analysis, the future extreme is predicted by computing the return level 

corresponding to a certain return period. Under the i.i.d. assumption, the return level 

corresponding to a certain return period has an equal probability of exceedance in any block. 

Therefore, the return level can be calculated as the quantile of the GEV distribution: 

ln 1 1

k

RL

t
x

k T




    
        

    

(4) 

where, t is the block length and T is the return period. The reliability of the prediction is 

affected by the block length because the return level is usually obtained at the tail region of 

the distribution where the distribution is typically less accurate. For example, if the block 

length is chosen as one day, then the 50-year return level corresponds to approximately 

0.9999452 quantile of the distribution of the daily maximum LE, which would require very 

high precision of the daily maximum LE distribution. From this perspective, increasing the 

block length will make the prediction more reliable. Meanwhile, the data sample size should 

also be considered when choosing the block length as an overly large block length would 

render the effective data size too small. Besides, the reliability of long-term predictions needs 

to be taken into consideration during the decision making process. 

For a conventional extreme value analysis, the block maxima data is first fitted to the GEV 

distribution and the point estimates of the distribution parameters are obtained using the 

maximum likelihood estimation (MLE). Then, the prediction can be made by computing the 

return levels using equation (4). 

Bayesian Inference. Based on the Bayes theorem, the posterior distribution of the 

parameters to be inferred can be written as: 

( | ) ( )
( | )

( | ) ( )

L p
p

L p d




 


  

x
x

x
(5) 

where, 𝜽 is the parameters to be inferred; 𝑝(𝜽|𝒙) is the posterior distribution; x is the data; 

𝑝(𝜽) is the prior distribution of the parameters; and 𝐿(𝜽|𝒙) is the likelihood function that can 

be expressed as: 

10 



 

 

     

 

 

  

 

  

 

 

 

 

 

   

  

  

 

 

 

  

 

 

  

   

 

  

  

1

( | ) ( | )
tN

i

i

L p x


 x (6) 

where, 𝑥𝑖 is the value for the ith observation and Nt is the number of observations. 

In Bayesian statistics, the prior distribution represents the prior knowledge of the parameters 

and it is independent from the existing observations. Generally speaking, the prior 

distribution can be classified into two types, i.e., the informative prior and the non-

informative prior. The informative prior is specified based on the prior knowledge that is 

usually obtained from the previous studies and the knowledge of experts. A well-specified 

informative prior can help reduce the uncertainty of parameters and lead to more efficient 

Markov Chain Monte Carlo (MCMC) sampling. Nevertheless, the prior knowledge may be 

difficult to express in terms of probability distributions and it often contains a certain degree 

of subjectivity. The non-informative prior, on the other hand, is adopted when little or no 

prior knowledge of the parameters is known. The non-informative prior usually features a flat 

distribution to represent the lack of knowledge. For example, a uniform distribution with a 

wide support or a normal distribution with a large variance is commonly used as the non-

informative prior. In addition, it is noted that there exist conjugate priors for some 

distribution families. The use of conjugate priors is convenient as it avoids using the MCMC 

sampling. However, the conjugate prior is not available for the GEV distribution [4]. 

In the present study, it is very difficult to elicit informative priors because the traffic LEs of 

bridges are highly site-specific due to the different traffic characteristics and bridge 

behaviors. Therefore, the non-informative prior is selected as the prior distribution. Three 

independent uniform distributions with wide supports are specified as the prior distribution 

as: 

( ) ( ) ( ) ( )p p k p p  (7) 

where, 𝑝(𝑘), 𝑝(𝜎), and 𝑝(𝜇) are the prior distributions for the shape, scale, and location 

parameters, respectively. It should be noted that although the prior distributions are 

independent for each parameter, the obtained posterior distributions for each parameter will 

be dependent after the inference. 

Markov Chain Monte Carlo (MCMC) Sampling. The denominator in equation (5) 

is a multi-dimensional integral that depends only on the data and its evaluation is often 

difficult. Nevertheless, the evaluation of this integral is usually not necessary since it can be 

treated as a normalizing constant and the posterior distribution can be written as: 

11 



 

 

 

  

  

      

 

  

    

   

 

     

 

 

   

 

    

 

 

   

 

( | ) ( | ) ( )p L p  x x (8) 

The MCMC sampling can be used to directly sample from the posterior distribution using 

equation (8). In this study, the Metropolis-within-Gibbs (MG) sampler is adopted. The 

sampling procedures are described as follows: 

1. Assigning initial values to the parameters: 𝜽(𝟎) = [𝑘(0) 𝜎(0) 𝜇(0)]𝑇 where k, 𝜎, and  𝜇 are 

the shape, scale, and location parameters of the GEV distribution, respectively; 

2. For i=1:N (N=the number of iterations), first generate a candidate value for the shape 

parameter, 𝑘∗ , from the normal proposal distribution conditional on 𝑘(𝑖−1), i.e., 

𝑘∗~ 𝐽(𝑘∗|𝑘(𝑖−1)) = 𝑁(𝑘(𝑖−1), 𝑠𝑘) where 𝑠𝑘 is the scale of the proposal distribution. Then, 

calculate the acceptance ratio for 𝑘∗ as: 

   

     

1 1*

1 1 1

( | , , )

( | , , )

i i

i i i

f k

f k

 


 

 

  


x

x
(9) 

where, 𝑓(𝑘| 𝜎(𝑖−1), 𝜇(𝑖−1), 𝒙) is the non-normalized full conditional distribution of the shape 

parameter that is expressed as the product between the likelihood function and the prior 

distribution of the shape parameter as: 

              1 1 1 1 1 1

1

( | , , ) ( | , , ) , , |
tN

i i i i i i

i

i

f k L k p x k p k     
     



 x x (10) 

Then, sample u from the uniform distribution 𝑈(0,1); if u<min(1, 𝜏), accept 𝑘∗ , i.e., 𝑘(𝑖) = 

𝑘∗ ; otherwise, reject 𝑘∗ , i.e., 𝑘(𝑖) = 𝑘(𝑖−1); 

3. Generate a candidate value for the scale parameter, 𝜎∗ , from the normal proposal 

distribution conditional on 𝜎(𝑖−1), i.e., 𝜎∗~ 𝐽(𝜎∗|𝜎(𝑖−1)) = 𝑁(𝜎(𝑖−1), 𝑠𝜎) where 𝑠𝜎 is the 

scale of the proposal distribution. Then, calculate the acceptance ratio for 𝜎∗ as: 

   

     

1*

1 1

( | , , )

( | , , )

i i

i i i

f k

f k

 


 



 


x

x
(11) 

Similarly, 𝑓(𝜎|𝑘(𝑖), 𝜇(𝑖−1), 𝒙) is the non-normalized full conditional distribution of the scale 

parameter that is expressed as: 

          1 1

1

( | , , ) , , |
tN

i i i i

i

i

f k p x k p    
 



x (12) 
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Then, sample u from the uniform distribution 𝑈(0,1); if u<min(1, 𝜏), accept 𝜎∗ , i.e., 𝜎(𝑖) = 

𝜎∗ ; otherwise, reject 𝜎∗ , i.e., 𝜎(𝑖) = 𝜎(𝑖−1); 

4. Generate a candidate value for the location parameter, 𝜇∗ , from the normal proposal 

distribution conditional on 𝜇(𝑖−1), i.e., 𝜇∗~ 𝐽(𝜇∗|𝜇(𝑖−1)) = 𝑁(𝜇(𝑖−1), 𝑠𝜇) where 𝑠𝜇 is the 

scale of the proposal distribution. Then, calculate the acceptance ratio for 𝜇∗ as: 

   

     

*

1

( | , , )

( | , , )

i i

i i i

f k

f k

 


 



x

x
(13) 

Similarly, 𝑓(𝜇|𝑘(𝑖), 𝜎(𝑖), 𝒙) is the non-normalized full conditional distribution of the location 

parameter that is expressed as: 

          
1

( | , , ) , , |
tN

i i i i

i

i

f k p x k p    


x (14) 

Then, sample u from the uniform distribution 𝑈(0,1); if u<min(1, 𝜏), accept 𝜇∗ , i.e., 𝜇(𝑖) = 

𝜇∗ ; otherwise, reject 𝜇∗ , i.e., 𝜇(𝑖) = 𝜇(𝑖−1); 

5. Repeat step 2 to 4 until i reaches N. 

Following the above procedures, the parameter values generated by the MG sampler will 

asymptotically converge to the target distribution after a sufficient number of iterations. 

Nevertheless, the initial portion of the Markov Chain may not be a true realization from the 

target distribution because initial values of parameters have a significant influence on the 

initial portion. Therefore, in order to minimize the influence of the initial values, the initial 

portion of the Markov Chain is usually discarded and only the stabilized portion of the chain 

is used as the realization from the target distribution. The discarded portion is known as the 

burn-in period. Furthermore, the scale of the proposal distribution is a critical parameter that 

affects the sampling efficiency. On the one hand, if the scale is too small, then almost all 

proposed values will be accepted and the chain will move very slowly. On the other hand, if 

the scale is too large, then most proposed values will be rejected and the chain will hardly 

move at all. Both cases will cause the chain to mix poorly, leading to inefficient sampling. 

Thus, in order to achieve efficient sampling, the MG sampler needs to be tuned to obtain the 

optimal acceptance rate. For one-dimensional normal proposal distribution, the optimal 

acceptance rate was found to be approximately 0.44 [5]. 
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Posterior Predictive Distribution. The ultimate goal of the extreme value analysis is 

the prediction of future extremes. In Bayesian statistics, the posterior predictive distribution 

is defined as: 

 | ( , | )p y p y d x θ x θ (15) 

where, y is the future outcome to be predicted. Since the future outcome is independent from 

the existing observations, the posterior predictive distribution can be rewritten based on the 

Bayes rule as: 

( | ) ( | ) ( | )p y p y p d    x x (16) 

where, 𝑝(𝑦|𝜽) is the GEV distribution and 𝑝(𝜽|𝒙) is the posterior distribution. Essentially, 

the posterior predictive distribution accounts for the parameter uncertainties by integrating 

the GEV distribution over all possible values of parameters specified by the posterior 

distribution. In fact, if the parameters are considered deterministic, then equation (16) 

becomes: 

 | ( | )p y p yx θ (17) 

which is simply the case of the conventional method where point estimates of the parameters 

are adopted. Therefore, compared with the conventional method, the Bayesian method is able 

to incorporate the uncertainties inherent in the parameters into the prediction and provides 

more reliable estimate of future outcomes. 

Framework for Bridge Condition Assessment 

The objective of bridge condition assessment is to evaluate the performance of the bridge and 

check if the bridge can safely carry the operational loading. In order to achieve this objective, 

the response of the bridge needs to be measured first. Recent years have seen an increasing 

attention on the structural condition assessment via monitoring and the development of 

sensing technologies has facilitated the instrumentation of SHM systems. In SHM systems, 

sensors are installed at critical locations of the bridge to measure the typical responses such 

as the strain and acceleration. For bridge condition assessment, the maximum strain 

responses are probably the most important data since they can be used to determine the safety 

reserve of structural components [6]. In addition, while the measured responses of the bridge 

can be used to assess the current condition of the bridge, the bridge is designed to last for its 

design life and thus the future extreme responses of the bridge also need to be obtained to 
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assess the condition of the bridge during its remaining life. In this study, a framework of 

bridge condition assessment is proposed to evaluate the bridge condition at two levels. The 

flow chart for the proposed framework of bridge condition assessment is shown in Figure 2. 

Figure 2 

Flow chart of the framework for bridge condition assessment 

After the measured and predicted bridge responses are obtained, they will be compared with 

the response envelops in order to determine the condition of the bridge. Two sets of response 

envelop are developed for two different loading levels. The first level is the ultimate loading 

level. The set of response envelops corresponding to this level reflects the capacity of the 

bridge that is determined based on the design codes and is thus named the design capacity 

envelop. The design capacity envelop should not be exceeded by the bridge response. 

Otherwise, the bridge will be severely damaged or even collapse. In this case, the bridge is 

considered unsafe and actions should be taken to repair and strengthen the bridge. 

However, the design capacity of the bridge is usually considerably larger than the bridge 

response under the normal operational loading. This is because the bridge design capacity is 

determined for extreme loading conditions and bridge design codes are inevitably 

conservative due to the simplifications made during the design process and the requirement 

of covering a wide range of bridges. Therefore, comparing the bridge response with the 

design capacity envelops cannot reflect the expected bridge performance under the normal 

operational loading. 
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In order to see if the bridge under the assessment is performing as designed, another set of 

LE envelops, i.e., service LE envelop is developed. To determine the service loading 

envelop, the three-dimensional (3D) finite element (FE) model of the bridge is constructed. 

The 3D FE model can more accurately reflect the bridge behavior because it is specific to the 

bridge under the assessment and it avoids the design simplifications by the code by 

considering the spatial behavior of the bridge. By applying the design loading on the 3D FE 

model of the bridge, the set of service LE envelops can be obtained. The set of service LE 

envelops will be closer to the measured bridge response than the design capacity envelops 

and it can be used to evaluate the in-service performance of the bridge. If the bridge response 

is within the service loading envelops, then we can conclude that the bridge is performing as 

designed. Otherwise, the bridge is believed to be overstressed, which could either indicate 

that there exist structural damages or that the operational loading level is higher than 

expected. In this case, a bridge inspection is recommended to determine whether a repair is 

necessary. 

Live Load Monitoring Using the Current Instrumentation System 

Identification of the Vehicle’s Longitudinal Position 

Wavelet Theory. Fourier analysis allows the frequency information being extracted 

from the signal presented in the time domain. However, the time information is lost during 

the Fourier transformation (FT), i.e., it gives no information on the time occurrence of certain 

frequency components of the signal. In this sense, Fourier analysis is only suitable for 

stationary signals or cases where the time information is not of interest. To overcome this 

drawback, short-time Fourier analysis (STFT) was proposed [7]. The idea of the STFT is to 

divide the signal into many intervals and the signal in each small interval is assumed to be 

stationary. In this case, FT can be carried out at each time interval and a time-frequency 

representation of the signal can be obtained. However, the STFT is still not the perfect 

solution to analyze non-stationary signals since it has a fixed resolution, i.e., a satisfactory 

resolution with respect to both time and frequency cannot be achieved at the same time. 

Wavelet transformation was then developed on this basis to provide a multi-resolution 

analysis of the signal. The idea of the wavelet transformation is to expand the signal in terms 

of wavelets which are generated from dilations and translations with respect to the wavelet 

function that is compactly supported. An important feature of the wavelet transformation is 

that the width of the window can be changed to adapt to different frequency components of 

the signal. Therefore, wavelet analysis is very effective in analyzing non-stationary signals. 

The continuous wavelet transformation (CWT) of a signal is defined as: 
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1
(a,b) (t) ( )

t b
W s dt

aa
 






  (18) 

where, a is the scaling factor; b is the shifting factor; (t)s is the signal as a function of time; 

and (t) is the so-called mother wavelet that must satisfy the following criterion: 

2

( )

dw

 








  (19) 

where, ( ) 


is the Fourier transformation of (t) . This is known as the admissibility 

condition which implies (0) 0


 . If we define , (t)a b as: 

,

1
(t) ( )a b

t b

aa
 


 (20) 

then equation (18) can be rewritten as the inner product of the signal (t)s and , (t)a b as: 

,(a, b) (t) (t)a bW s dt 



  (21) 

In terms of the application in the identification of vehicle axles, the presence or absence of a 

vehicle axle will cause a sudden change of the slope of the strain signal. While this abrupt 

change is very difficult to directly observe, a wavelet analysis may be able to amplify these 

slope discontinuities in the form of sharp peaks in the transformed signal. In the present 

study, the Morlet wavelet is used to conduct the CWT after comparing the performance with 

several alternatives such as the reverse biorthogonal wavelets and Daubechies wavelets. The 

Morlet wavelet can be considered as a modulated Gaussian wave formation. It has a good 

locality property in both the time and frequency domains. Technically, the Morlet wavelet is 

complex-valued. However, in many applications, only the real part is used. The complex 

version is more well-known as the Gabor wavelet. The wavelet function for the Morlet 

wavelet is given as: 

2

2(t) e cos(5 t)
t




 (22) 

Identification of the Vehicle’s Transverse Position 

In the Moses’s algorithm, the error function was defined as the squared difference between 

the predicated and the measured total responses of the beam-slab bridge [8]: 
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(23) 

2

, ,

1 1 1

( )
T n n

p m

i k i k

k i i

E M M
  

   

where, n is the number of girder; T is the number of scans; 
,

m

i kM is the measured bending 

moment for the ith girder at time instant k; and 
,

p

i kM is the predicted bending moment for the 

ith girder at time instant k and can be calculated using the influence line concept: 

, , ,M
N

p

i k j i j k

j

A IL  (24) 

where, Aj is the axle weight of the jth axle; N is the number of axles of the vehicle; and , ,i j kIL

is the influence line ordinate for the ith girder corresponding to the position of the jth axle at 

time instant k. Essentially, the bridge was treated as a 1D beam and the transverse position 

(TP) of the vehicle was not considered. The error function given by equation (23) is not 

suitable for the identification of the vehicle’s TP in that the total response of the bridge is not 

very sensitive to the TP of the vehicle. Nevertheless, the response of an individual girder is 

sensitive to the vehicle’s TP. 

Generally speaking, for a bridge with n parallel measurement stations in the transverse 

direction, the error function for the mth measurement station can be expressed as: 

2

, ,

1

( )
T

p m

m m k m k

k

E M M


  (25) 

where, 
,

p

m kM can be more accurately calculated using the influence surface concept than the 

influence line concept in equation (24) as: 

, , ,M ( ) 
N

p

m k j m j k

j

A IS TP (26) 

where, , , ( )m j kIS TP is the influence surface ordinate for the mth measurement station 

corresponding to the transverse position of the vehicle at TP and the longitudinal position of 

jth axle at time instant k. Essentially, 
,

p

m kM becomes a function of both the axle weights and 

the TP when the influence surface concept is adopted. 

To identify the TP of the vehicle, a series of values for the TP covering all possible positions 

where the vehicle may present is first assumed and for each assumed TP, the measured 

response of the mth station is used to identify a set of axle weights corresponding to this TP 
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by using the least-squares method to minimize equation (25), i.e., the mth measurement 

station can be thought of as the weighing station in the proposed algorithm. Due to the 

response sensitivity of the weighing station to the TP of the vehicle, the obtained sets of axle 

weights will vary with different assumed TPs. Mathematically, the different sets of axle 

weights obtained are all solutions to the least-squares problem, i.e., all solutions can 

reproduce the measured response for the weighing station. However, only the solution 

corresponding to the true TP of the vehicle has physical meanings. In other words, only the 

set of axle weights identified at the true TP can reproduce the measured responses for all 

other measurement stations. Thus, if the assumed TP of the vehicle is not the true one, the set 

of axle weights identified from the weighing station will be either over- or underestimated 

and thus cannot simultaneously reproduce the measured responses for all other measurement 

stations, based on which the following error function can be defined: 
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p m
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

 
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where, n is the number of measurement stations; 
,

m

i kM and 
,

p

i kM are the measured and the 

(27) 

predicted responses for the ith non-weighing station at time instant k, respectively; and 

i=1,…,m-1, m+1,…n (totally n-1), i.e., the error of the mth measurement station (the 

weighing station) is excluded here. By substituting all solutions into equation (27), the value 

of the error function for each assumed TP can be calculated and the true TP of the vehicle 

will be the one that minimizes equation (27). The reason for not considering the error of the 

mth measurement station, i.e., the weighing station, in equation (27) is that although the 

measured and the predicted responses should match for the weighing station for all possible 

TPs, there still exist small errors caused by factors other than the vehicle’s TP such as the 

dynamic effect and the measurement noise. Therefore, the error of the weighing station is 

excluded from equation (27) in order to reduce the unintended errors. 

Identification of the Vehicle’s Axle Weight and GVW 

The error function for the total number of step T is defined as: 

2

1

( )
T

p m

k k

k

E M M


  (28) 

To minimize the error function, the least-squares method is used. The partial derivative with 

respect to the axle weight is set to zero: 
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 
  
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 (29) 

which leads to the following equation upon rearrangement and substitution: 

,( ) ,( ) ,( )

1 1 1
i j j

T N T
m

i i k C j k C k j k C

k i k

A I I M I  

  

  (30) 

Define: 

(31) 
,( ) ,( )

1

[ ]
i j

T

ij i k C j k C

k

F F I I 


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,( )

1

[ ]
j

T
m

j k j k C

k

M M M I 



  (32) 

equation (30) can then be written in a matrix form as: 

FA M (33) 

Thus, the axle weight and gross vehicle weight (GVW) can be calculated as: 

(34) 

(35) 

1A F M

1

N

i

i

GVW A



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DISCUSSION OF RESULTS 

Condition Assessment of the I-10 Twin Span Bridge 

Bridge and Instrumentation Description 

The bridge selected for the case study is the new I-10 Twin Span Bridge (TSB) located in 

southern Louisiana. Being a vital part of the Interstate 10, the new TSB crosses the Lake 

Pontchartrain connecting Slidell and New Orleans. The new TSB was built after the original 

span suffered extensive damages from Hurricane Katrina in 2005. The strong storm surge 

brought by the hurricane lifted many precast segments off their piers as shown in Figure 3. 

Although one span was repaired shortly after the catastrophic hurricane, the original bridge 

was deemed too vulnerable to storm surges and it was decided that a new bridge with higher 

capacity to withstand extreme events such as hurricanes needs to be built to replace the 

existing bridge. The construction of the new TSB started in 2006 and was completed in 2011. 

It was the largest public work project in Louisiana history. 

(a) (b) 

Figure 3 

Damaged original twin span and the new Twin Span: (a) original twin span bridge damaged by 

Hurricane Katrina; (b) the new I-10 Twin Span bridge 

The new TSB, constructed entirely using high performance concrete, is approximately 

8690.5-m long and consists of two parallel spans, the Westbound and the Eastbound, each 

with three 3.66 m. traffic lanes and two 3.66-m shoulders on two sides, allowing for a fifty 

percent increase of traffic volume. The bridge has an elevation of 9.14 m (6.40 m higher than 

the original span) and a high-rise span of 24.38 m for navigations. The superstructures of the 

bridge include units of continuous concrete spans and a three-span continuous steel-

composite bridge for the high-rise span. Each span consists of six identical girders with equal 

spacing of 3.28 m. A structural monitoring system (SHM) was installed on the M19 pier of 

the Eastbound, the pier south of the marine traffic underpass, and the two spans supported by 
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the pier. In this study, the data collected from the superstructure instrumentation were used. 

Figure 4 (a) shows the longitudinal profile of the instrumented spans. Strain sensors were 

installed on each girder of both spans at the mid-span. Figure 4 (b) and (c) show the sensor 

layouts on the cross-sections of the instrumented spans. 

(a) 

ShoulderTraffic Lane 1Shoulder Traffic Lane 2 Traffic Lane 3

S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1

(b) 

ShoulderTraffic Lane 1Shoulder Traffic Lane 2 Traffic Lane 3

C6 C5 C4 C3 C2 C1

(c) 

(d) 

Figure 4 

Instrumentation of the I-10 Twin Span Bridge; (a) longitudinal profile of instrumented spans; 

(b) sensor layout of the steel span (with traffic flow at mid-span); (c) sensor layout of the 

concrete span (with traffic flow at mid-span); (d) M19 pier 
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Analysis of Monitoring Data 

Figure 5 (a) shows the sample time history of the measured strain response of S4 for one day 

from 0:00 to 24:00. The measured strain response of the bridge consists of temperature-

induced and traffic-induced components. The variation of the temperature results in material 

deformations and causes the strain to vary slowly with time. The effect of traffic is more 

transient and thus causes peaks in the strain response as shown in Figure 5 (a). While the 

temperature-induced strain could be significant, its contribution to the stress is insignificant 

because the expansion joints of the bridge allow free movement in the longitudinal direction. 

For the selected bridge, the traffic loading causes the bending of the bridge and the traffic-

induced strain is the main contribution of the stress. Thus, in order to obtain the stress 

response of the bridge, the traffic-induced strain responses need to be extracted from the 

measured strain response. This can be done by using the multi-resolution wavelet 

decomposition. Through wavelet decomposition, the signal is decomposed at multiple levels 

of resolution. At each level, the signal is divided into approximation coefficients and detail 

coefficients. The approximation coefficients contain the low-frequency components of the 

signal which correspond to temperature-induced strains. Thus, the traffic-induced strain can 

be obtained by subtracting the measured response with the temperature-induced strains. 

In this study, the Symlets wavelet is used and the temperature-induced strain is successfully 

separated from the measured response at 14-level decomposition as can be seen from Figure 5 

(a). Figure 5 (b) shows the traffic-induced strain response extracted as the difference between 

the measured and temperature-induced strains. It can be seen that the distribution of peaks is 

more concentrated from 8:00 to 18:00 because the traffic is denser at daytimes. 
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Figure 5 

Sample time history of strain response at S4: (a) measured and temperature-induced strains; 

(b) traffic-induced strain 

Prediction of Extreme Traffic LEs 

The daily maximum strain responses are obtained from 65 days of monitoring data and the 

Bayesian method is used to predict the future maximum traffic load effects (LEs). For 

demonstration purposes, the prediction of the maximum positive strains of S4 is used as an 

example to illustrate the estimation procedures. Figure 6 shows the normalized histogram for 

the daily maxima of positive strains of S4 and the corresponding GEV fit. The MLE 

estimates of the shape, scale, and location parameters are obtained as -0.077, 15.91, and 

102.93, respectively. 
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Figure 6 

Normalized histogram of daily maxima of S4 and the corresponding GEV fit 
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Under the Bayesian framework, each distribution parameter is treated as a random variable 

and the posterior distribution of parameters can be obtained using the MCMC sampler. The 

MG sampler was first tuned to obtain the optimal acceptance rate and then 100,000 iterations 

were performed to ensure the prediction accuracy. Figure 7 shows the trace plots of 

parameters. It can be seen that the chain converged very quickly and that the chain mixed 

well. The burn-in period is chosen as 1,000, i.e., the first 1,000 iterations were discarded to 

ensure that the samples are generated from the true posterior distribution. Figure 8 shows the 

marginal posterior distributions using the kernel density estimation (KDE). From Figure 8, 

significant uncertainty of the parameters is observed, which is expected because of a 

relatively small sample size. Compared with the conventional method, the Bayesian method 

is able to quantify the uncertainty of parameters in terms of posterior distributions. In fact, it 

can be seen from Figure 8 that the modes of the marginal posterior distributions of shape, 

scale, and location parameters are roughly estimated as -0.08, 16, and 103, respectively, 

which are very close to the MLE estimates. This is because the uniform prior is adopted and 

the posterior distribution is essentially the normalized likelihood function. Furthermore, the 

uncertainty of return levels can be subsequently quantified using the obtained posterior 

distribution of parameters. For each set of GEV parameters obtained using the MG sampler, 

the corresponding T-year return level is calculated using equation (4) and thus the 

distribution of the T-year return levels can be obtained. Figure 9 shows the distribution of the 

5-year and 75-year return levels of S4 using KDE. It can be seen that the distribution of the 

75-year return level has longer tails than that of the 5-year return level, indicating that the 

extreme loadings are more likely to occur for longer return periods. The distribution of return 

levels can be used for reliability analysis. 
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Figure 7 

Trace plots of GEV parameters 
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Figure 8 

Marginal posterior distributions of the GEV distribution parameters: (a) shape parameter; (b) 

scale parameter; (c) location parameter 

Figure 9 

Distribution of 5-year and 75-year return levels of S4 
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Finally, the future maximum LEs are predicted using the posterior predictive distribution. 

Following the previously described procedures, the posterior predictive distribution is 

obtained. Figure 10 shows the predictive distribution using the KDE as well as the fitted 

GEV distribution. It can be seen that the predictive distribution has a wider spread than the 

fitted GEV distribution. This is because the uncertainty inherent in the parameters was 

included in the predictive distribution. The Bayesian estimate of future maximum LEs are 

obtained by evaluating the quantiles of the predictive distribution. Figure 11 plots the 

variation of the predicted maximum strains of S4 with respect to the return period obtained 

using both the Bayesian and conventional methods. From Figure 11, it can be seen that the 

predicted response using the Bayesian method is significantly higher than that of the 

conventional method and that the difference between the two increases as the return period 

increases. This is because there exists significant uncertainty of parameter as observed from 

Figure 8. In this case, ignoring the uncertainty may lead to significant underestimation of the 

prediction and thus the Bayesian method is able to provide more reliable predictions than the 

conventional method. 
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Figure 10 

Predictive distribution and fitted GEV distribution of S4 
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Figure 11 

Prediction of maximum LEs of S4 

The same procedures are conducted for each sensor of the steel and concrete span. The 

predicted maximum strains are transferred to the stresses by multiplying the modulus of 

elasticity of materials assuming that the bridge is operating in elastic stage. Table 1 and Table 

2 summarize the predicted maximum stresses for the steel and concrete span at 5 years (the 

rating period) and 75 years (the design life of structures). These values will later be used for 

the condition assessment of the bridge. 

Table 1 

Prediction results for the steel span using Bayesian method 

Sensor 

Number 

5-year maximum stresses 
(MPa) 

75-year maximum stress 
(MPa) 

Positive Negative Positive Negative 
S1 48.86 -13.13 106.49 -20.95 
S2 64.36 -21.85 108.99 -31.57 
S3 46.88 -19.43 74.05 -32.83 
S4 46.01 -17.97 68.01 -26.93 
S5 27.44 -11.37 30.16 -13.58 
S6 25.72 -10.90 27.85 -13.09 
S7 21.24 -9.17 24.11 -11.94 
S8 25.84 -10.99 29.86 -13.65 
S9 18.02 -8.64 24.68 -12.56 
S10 23.74 -10.38 30.75 -13.59 
S11 37.32 -11.95 60.69 -16.01 
S12 37.05 -13.75 56.11 -18.65 
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Table 2 

Prediction results for the concrete span using Bayesian method 

Sensor 

Number 

5-year maximum stresses 
(MPa) 

75-year maximum stress 
(MPa) 

Positive Negative Positive Negative 
C1 3.96 -0.71 7.12 -0.79 
C2 3.49 -0.67 4.96 -0.75 
C3 2.67 -0.67 3.50 -0.85 
C4 2.33 -0.64 2.99 -0.79 
C5 2.28 -0.67 3.39 -0.86 
C6 3.02 -0.75 5.04 -0.96 

(a) (b) 

Figure 12 

Variation of measured and predicted maximum stresses with respect to sensor locations: (a) 

steel span; (b) concrete span 

Figure 12 plots the variation of measured and predicted maximum stresses with respect to the 

sensor location. It can be seen that the measured stresses generally decrease as the sensor 

number increases. This is because most heavy trucks travel on the slow lane (Lane 3 shown 

in Figure 4) and the girders close to the slow lane experience higher LEs.  Moreover, it was 

observed that the maximum positive and negative stresses of the steel span have a similar 

trend of variation while this is not the case for the concrete span. The reason for this is that 

the maximum positive and negative stresses of the steel span are mostly caused by the same 

truck events and thus they have similar shapes of distribution. However, the maximum 

positive and negative stresses of the concrete span are usually caused by different truck 

events. Figure 13 shows the typical stress responses of the concrete span. It can be seen that 

although the concrete span was designed to be continuous, the negative stress induced by the 

truck before it enters the instrumented span is almost negligible. Instead, the free vibration of 

the bridge after the truck left the span can induce significant negative stresses. This is 
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probably because the natural frequency of the concrete span, which is identified to be about 3 

Hz as will be shown later, is close to the typical frequencies of highway vehicles. The 

matching of frequencies could lead to quasi-resonance and cause significant vibrations of the 

bridge [9]. In addition, the occurrence of the free vibration also requires the absence of heavy 

trucks on the span. Therefore, the causes of positive and negative stresses are different for the 

concrete span, leading to different trends of variation. 

Figure 13 

Typical stress responses of the concrete span at sensor C2 

Furthermore, it can be seen from Figure 12 that the predicted maximum stresses of exterior 

girders tend to increase faster with the increase of the return period than those of interior 

girders because the maximum stress distributions of exterior girders have heavy upper tails. 

For example, Figure 14 shows the distribution of the maximum positive stresses for S2 on the 

exterior girder and S5 on the interior girder. It can be seen that the distribution for S2 is 

obviously right skewed with a long upper tail while the distribution of maximum LEs for S5 

is left skewed with a much shorter upper tail. For the GEV distribution, the tail behavior is 

the governed by the shape parameter. A larger shape parameter results in a longer upper tail 

and thus higher return levels. The marginal posterior distributions of shape parameters for S2 

and S5 are shown in Figure 15. It can be seen that the shape parameters of S2 are mostly 

positive while the shape parameter of S5 are negative. Consequently, the increasing rate of 

predicted maximum stresses of exterior girders will be higher than that of interior girders. 
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(a)                                    (b) 

Figure 14 

Distribution of daily maximum LEs: (a) S2; (b) S5 

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

Shape parameter

P
o
s
te

ri
o
r 

d
e
n
s
it
y

-0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1
0

1

2

3

4

5

6

7

8

Shape parameter

P
o
s
te

ri
o
r 

d
e
n
s
it
y

(a) (b) 

Figure 15 

Marginal posterior distributions of shape parameters: (a) S2; (b) S5 

In fact, the upper tail of the maximum stress distributions of exterior girders is caused by 

cases where trucks were traveling on or close to the shoulder. These cases produce 

significantly higher stresses in exterior girders but their occurrences are less frequent than 

trucks traveling on Lane 3, which causes the distribution to be right skewed with heavy upper 

tails. This also indicates that the daily maximum stress of some sensors is not identically 

distributed. In other words, the distribution of daily maximum stresses is a mixed 

distribution. Caprani et al. adopted the composite distribution statistics (CDS) approach to 

account for the mixture of loading events [10]. In the CDS approach, the maximum LEs are 

classified based on their event types and the maximum LEs of each event type are fitted to 

the GEV distribution. The composite distribution is then formulated based on the GEV 

distributions of each event type. However, it is very difficult to always identify the event 

types in practice and the data collected for some extreme event types may not be sufficient 
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[11]. Therefore, it may not be practical to use the CDS approach in reality. The Bayesian 

method can be seen as a compromise between the CDS approach and the conventional 

approach in that although it does not classify data based on event types, it recognizes and 

considers the uncertainty in distribution parameters and thus provides more reasonable 

predictions than the conventional method. 

It should be mentioned that the prediction of future maximum stresses was made based on 

only 65 daily maximum stresses and thus the accuracy of the prediction for longer return 

periods such as 75 years need to be taken into consideration when using the prediction 

results. When more data becomes available in the future, it should be included to update the 

prediction. In this case, the uncertainty of parameters will be reduced and the posterior 

distribution will become more concentrated. Consequently, the prediction using the Bayesian 

method will approach that using the conventional method. Nevertheless, as more data is 

obtained, the block length should also be increased to obtain more reliable predictions as 

discussed before. Thus, there will always exist certain levels of uncertainties that need to be 

accounted for using the Bayesian method. 

Bridge Condition Assessment 

Using on the measured and prediction results, the condition of the bridge will be assessed 

based on the previously proposed framework. First, the design capacity envelops needs to be 

developed. The bridge was designed according to the AASHTO LRFD specification [1]. The 

design live load is specified as the HL-93 including a design truck or design tandem and 

design lane load. The design live load is distributed to girders using the distribution factors. 

For the bridge under assessment, the design calculation shows that the exterior girder 

controls and the factored live load moments are given in Table 3. The section properties were 

also calculated and listed in Table 3. Assuming that the bridge is perfectly designed, the 

design live load capacity can be evaluated as: 

M

S
  (36) 

where, M is the design live load moment and S is the section modulus. Using equation (36), 

the design live load capacities of the steel and concrete span are calculated and given in Table 

3. 
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Table 3 

Calculation of design live load capacity of the steel and concrete span 

Section properties 
Factored LL Design LL 

Moment Distance Section 
Span moment capacity 

of inertia to N.A. modulus 
(kN-m) (MPa)

(m4) (m) (m3) 
Positive 

12919.25 180.31 
moment Steel 

0.13189 1.8407 0.071652 
span Negative 

-3278.01 -45.75 
moment 
Positive 

6941.17 12.72 
moment Concrete 0.81568 1.4942 0.545898 

span Negative 
-1607.69 -2.95 

moment 

In order to obtain the service LE envelops, the FE models were constructed according to the 

bridge design plans using the ANSYS FE package. For the steel span, the concrete deck was 

modeled using solid elements and the steel girders were modeled using shell elements. The 

K-shaped cross frames at the supports and intermediate locations were modeled using 3D 

beam elements with defined cross-sections. The concrete span is modeled entirely using solid 

elements. Figure 16 shows the FE models of the bridge. The FE models were preliminarily 

calibrated using the natural frequencies identified from the strain responses. Figure 17 shows 

the amplitude spectra of the traffic-induced strain responses of one day. It can be seen that 

three frequencies can be identified for the steel span while only one frequency can be 

identified for the concrete span. To calibrate the FE models, the elastic moduli of materials 

are adjusted to match the identified natural frequencies. Table 4 gives the as-design and 

calibrated values of the elastic moduli. The calibrated parameters can serve as better 

indicators of the bridge behavior than the as-design parameters. Nevertheless, it should be 

mentioned that a more refined calibration of FE models should be conducted if a load test 

using known trucks was conducted. Using the calibrated FE models, the design lanes are 

positioned to obtain the maximum LEs. Multiple presence factors are applied to account for 

the probability of simultaneous occurrence. For the exterior girders, three design lanes and 

two design lanes were found to cause the maximum LEs for the steel span and concrete 

spans, respectively. For the interior girders, three design lanes were found to cause the 

maximum LEs for both spans. The obtained design capacity envelops and service LE 

envelops for the steel and concrete spans are summarized in Table 5 and Table 6, 

respectively. The measured maximum stresses are also given. It can be seen that the service 

LE envelops are significantly smaller than the design capacity envelops. This is because the 

FE models more accurately reflect the bridge behavior as discussed before. 
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(a) (b) 

Figure 16 

FE models of the bridge: (a) the steel span; (b) the concrete span 
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Figure 17 

Amplitude spectra of strain responses: (a) the steel span; (b) the concrete span 

Table 4 

FE model calibration parameters 

Parameters 
As-design 

value (MPa) 
Calibrated 

value (MPa) 

Steel 

Elastic modulus of 

concrete deck 
34169 38500 

Span Elastic modulus of 

steel girders 
204774 201000 

Concrete 

Elastic modulus of 

concrete deck 
34169 41300 

Span Elastic modulus of 

concrete girders 
41145 47400 
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Table 5 

Maximum measured stress and LE envelops for the steel span 

Sensor 

Number 

Measured maximum 

stress (MPa) 
Service performance 

envelop (MPa) 
Design LL capacity 

envelop (MPa) 
Positive Negative Positive Negative Positive Negative 

S1 17.63 -8.06 70.58 -18.78 180.31 -45.75 
S2 33.07 -13.87 72.63 -19.09 180.31 -45.75 
S3 31.34 -11.75 62.52 -18.25 180.31 -45.75 
S4 33.05 -12.29 64.68 -18.59 180.31 -45.75 
S5 25.31 -9.47 54.59 -17.98 180.31 -45.75 
S6 23.57 -9.20 56.61 -18.29 180.31 -45.75 
S7 18.57 -7.24 56.61 -18.29 180.31 -45.75 
S8 22.57 -9.56 54.59 -17.98 180.31 -45.75 
S9 13.22 -6.42 64.68 -18.59 180.31 -45.75 
S10 18.27 -8.03 62.52 -18.25 180.31 -45.75 
S11 20.99 -9.49 72.63 -19.09 180.31 -45.75 
S12 23.17 -10.79 70.58 -18.78 180.31 -45.75 

Table 6 

Maximum measured stress and LE envelops for the concrete span 

Sensor 

Number 

Measured maximum 

stress (MPa) 
Service performance 

envelop (MPa) 
Design LL capacity 

envelop (MPa) 
Positive Negative Positive Negative Positive Negative 

C1 2.09 -0.649 6.88 -1.46 12.72 -2.95 
C2 2.73 -0.551 5.90 -1.22 12.72 -2.95 
C3 2.00 -0.549 4.93 -0.94 12.72 -2.95 
C4 1.17 -0.263 4.93 -0.94 12.72 -2.95 
C5 1.86 -0.446 5.90 -1.22 12.72 -2.95 
C6 1.65 -0.476 6.88 -1.46 12.72 -2.95 

In order to assess the current condition of the bridge, Figure 18 plots the measured maximum 

stresses and response envelops for the steel and concrete spans. It can be seen that the 

measured maximum stresses of both spans are below the service LE and design capacity 

envelops, indicating that the bridge is safe and performing as designed under the current 

condition. Also, it can be seen that the safety reserve of the bridge is quite large under the 

current condition.  
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(a)       (b) 

Figure 18 

Assessment of current condition: (a) steel span; (b) concrete span 

Furthermore, in order to assess the future condition of the bridge, the predicted maximum 

stresses and response envelops are plotted in Figure 19 and Figure 20 for the steel and 

concrete spans, respectively. It can be seen from Figure 19 (a) and Figure 20 (a) that the 5-

year maximum stresses of both spans are generally below the response envelops, indicating 

that the bridge will be safe and performing as designed in the next five years. For the 75-year 

condition, it was observed from Figure 19 (b) and Figure 20 (b) that the maximum stresses of 

sensors were below the design capacity envelop. However, it was found that the maximum 

stresses of certain sensors exceeded the service LE envelops, suggesting that the bridge may 

be overstressed in the future. These sensors were installed on the exterior girders under the 

right shoulder for both spans and the interior girder under the Lane 3 for the steel span. In 

practice, these girders also experience the largest traffic LEs due to their close vicinity to the 

heavy truck traffic. In addition, it can be seen that the bridge still has sufficient safety 

reserves even at 75 years from now. The information provided by the assessment can be used 

for the load rating of the bridge. 
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(a)       (b) 

Figure 19 

Assessment of future condition for the steel span: (a) 5-year; (b) 75-year 

(a)       (b) 

Figure 20 

Assessment of future condition for the concrete span: (a) 5-year; (b) 75-year 

Live Load Monitoring through Nothing-on-road BWIM 

Numerical Simulation 

Vehicle Model. In the present study, three typical highway trucks with different 

numbers of axles are adopted. Table 7 lists the axle configurations of these trucks. The width 

of all trucks is set as 2.5 m. In the simulation, the truck is modeled as spring-dashpot 

systems. The vehicle body (tractor or trailer) is represented by a rigid body with a mass and 

three degrees of freedom (DOFs), i.e., the vertical displacement, the pitching rotation, and 

the rolling rotation. The connection between the tractor and the trailer is modeled as a pinned 

connection, i.e., the tractor and the trailer have equal vertical displacement at the connection. 

Each wheel is represented by a lumped mass with one DOF, i.e., the vertical displacement. 
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For example, the analytical model of Truck 2 is shown in Figure 21 where ZV and Za 

represent the vertical displacement of the vehicle body and the tire, respectively; 𝜽𝑽 

represents the pitching rotation of the vehicle body; ∅𝑽 represents the rolling rotation of the 

vehicle body; Ku and Kl represent the stiffness of the suspension system and the tire, 

respectively; Cu and Cl represent the damping of the suspension system and the tire, 

respectively. 

Table 7 

Axle configurations of truck models 

Axle spacing 
Truck Number of 

Number axles First to Second to Third to Fourth to 

second (m) third (m) fourth (m) fifth (m) 

1 2 6.25 N.A. N.A. N.A. 

 

   

  

    

 

 

  

  

 

 

 

 

    

       

      

      

      

  

   

 

  

 

   

  

  

2 3 4.27 4.27 N.A. N.A. 
3 3 4.94 1.40 N.A. N.A. 
4 5 8.00 5.00 2.00 5.00 

Figure 21 

Analytical model of the adopted truck 

Bridge Model. In the numerical study, a simply supported beam-slab bridge is 

adopted. As a good representative of highway bridges, the selected bridge was designed 

according to the AASHTO LRFD specification and is 24.38-m long and 10.67-m wide [1]. 

The bridge consists of five identical I-girders and three diaphragms located at the two ends 

and the mid-span of the bridge. Figure 22 shows the cross section of the bridge. The bridge is 

modeled with the ANSYS software using solid elements (with three translational DOFs at 

each node) to predict the dynamic characteristics including the natural frequencies and mode 

shapes. The finite element (FE) model of the bridge is shown in Figure 23. Modal analysis 
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shows that the bridge has a fundamental frequency of 3.46 Hz corresponding to the first 

bending mode. 

Figure 22 

Cross section of the bridge used in the simulation 

Figure 23 

Finite element model of the bridge used in the simulation 

Vehicle-bridge Interaction. In the present study, a coupled approach is used to solve 

the vehicle-bridge interaction problem [12]. The equations of motion for the vehicle and 

bridge can be written in matrix forms as: 

            v v v v v v G vM d C d K d F F   

          b b b b b b bM d C d K d F  

(37) 

(38) 

where  vM ,  vC , and  vK are the mass, damping, and stiffness matrices of the vehicle, 

respectively;  bM ,  bC , and  bK are the mass, damping, and stiffness matrices of the 

bridge, respectively;  vd and  bd are the displacement vector of the vehicle and bridge, 
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respectively;  GF are the gravity force vector of the vehicle; and  vF and  bF are the 

wheel-road contact force vectors acting on the vehicle and bridge, respectively. 

Based on the displacement relationship and interaction force relationship at the contact 

points, the two equations of motion above can be combined into a coupled equation: 

b b b b b v b b b b v b b rb b

v v b v v b v v b r Gv v

M C C C K K K d Fd d

M C C K K d F Fd d

    

  

                 
              

               
(39) 

where b bC  , b vC  , v bC  , b bK  , b vK  , v bK  , b rF  , and b rF  are the interaction-related terms 

caused by the contact forces. As the vehicle travels through the bridge, the positions of 

contact points change and so do the contact forces. Therefore, the interaction-related terms 

are time-dependent terms which will change as the vehicle moves across the bridge. 

In order to reduce the size of the matrices and save calculation efforts, the modal 

superposition technique is adopted and thus the bridge displacement vector  bd in equation 

(38) can be expressed as: 

            1 2 1 2

T

b m m b bd            (40) 

where m is the total number of modes considered for the bridge;  i and i are the ith 

mode shape of the bridge and the ith generalized modal coordinate, respectively. If each 

mode shape is normalized such that      1
T

i b iM   and      2T

i b i iK    , and the 

damping matrix  bC in equation (38) is assumed to be equal to  2 i i bM where i and i

are the natural circular frequency and the percentage of the critical damping of the ith mode 

of the bridge, respectively, then equation (39) can be simplified as: 

2

2 T T
b i i b b b b b b v b

v v b b v vv

T T T
bi b b b b b b v b b r

vv b b v v r G

I ω η I Φ C Φ Φ C

M C Φ C dd

ξω I Φ K Φ Φ K Φ F

dK Φ K F F

  



  

 

       
     

        

     
     

    

(41) 

The coupled equation (41) contains only the mechanical parameters of vehicles and the 

modal properties of the bridge. Consequently, the computation cost of solving the coupled 

equations was considerably reduced. A computer program was developed in the MATLAB 

environment to solve equation (41) in the time domain using the fourth-order Runge-Kutta 
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method. After obtaining the displacement responses of the bridge { }bd , the strain responses 

can then be calculated by: 

{ } [ ]{ }bB d  (42) 

where, [ ]B is the strain-displacement relationship matrix assembled with the x, y, and z 

derivatives of the element shape functions. 

Calibration of the Influence Surface. In the numerical study, five measurement 

stations (S1, S2, S3, S4, and S5) are selected at the bottom of the five girders (G1, G2, G3, 

G4, and G5) at the mid-span of the bridge. The longitudinal strains at these measurement 

stations were recorded. Figure 24 shows the locations of the measurement stations. The 

vehicle’s TP is defined as the distance from the right wheels of the vehicle to the right end of 

the bridge’s cross section as illustrated in Figure 24. In order to generate the influence 

surface, Truck 2 is used as the calibration truck. A series of TPs ranging from 0.6096 m to 

7.62 m with an interval of 0.1524 m is considered in the calibration. These positions cover all 

cases of the vehicle traveling within the two traffic lanes and bridge shoulders as shown in 

Figure 24. For each TP, Truck 2 is set to pass the bridge and the bridge response obtained 

from the simulation is used to extract the influence line corresponding to that TP using the 

inverse method. The influence ordinates at positions in-between these TPs were obtained 

using linear interpolations. Figure 25 shows the contour plots of the numerically calibrated 

influence surface for S2 and S5. It can be seen that the maximum value of the influence 

surface occurs around positions where the axle load is directly applied above the location of 

the measurement station. 

Figure 24 

Location of the measurement stations and traffic lanes 
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Figure 25 

Contour plots of numerically calibrated influence surfaces: (a) S2; (b) S5 (unit: microstrain) 

Simulation Results 

Axle Detection. In the numerical simulation, each of the four highway trucks are set 

to cross the bridge at three constant speeds, i.e., 10 m/s, 20 m/s and 30 m/s in lane 2 and 

Figure 24 shows the transverse position of the vehicle on the bridge. In a commercial BWIM 

system, five weighing sensors would be installed underneath the five girders at the mid-span 

to measure the global responses of the bridge, i.e., longitudinal strain responses, and at least 

four free-of-axle-detector (FAD) sensors (two for each lane) would be installed underneath 

the bridge slab to identify the vehicle axles. In this study, as an attempt to achieve the NOR 

BWIM without FAD sensors, the strain signal of the weighing sensor installed on the girder 

directly beneath the vehicle trajectory, i.e., Girder 4, is used for the axle identification. 

Figure 26 shows the typical time histories of the strain response of Girder 4 corresponding to 

Trucks 2 and 4 traveling at 20 m/s and 10 m/s under a smooth road surface, respectively. A 

sampling frequency of 200 Hz is used. From the strain response histories, it can be seen that 

there is no obvious information on the presence of vehicle axles. This is understandable since 

the longitudinal strain responses of girders are the global responses of the bridge and they are 

not sensitive to the presence of axle loads. Nevertheless, as discussed before, the details of 

the original strain signals still contain the information of vehicle axles. Therefore, a CWT is 

conducted on the strain signals and the results are presented in Figure 26. The plotted wavelet 

coefficients are chosen at the scale of 14. As can be seen, the transformed signals have 

several pronounced peaks. These sharp peaks correspond to vehicle axles entering or exiting 

the bridge. For the three-axle truck, i.e., Truck 2, the first three peaks correspond to the three 

axles entering the bridge and the last three peaks correspond to the three axles exiting the 

bridge. Again, the same feature was also observed for the transformed signal for Truck 4, i.e., 

the five-axle truck. 
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Since the span length of the bridge is already known, the vehicle speed can be calculated 

from the time difference between each vehicle axle entering and exiting the bridge. Once the 

vehicle speed is known, the time difference between vehicle axles can be used to obtain the 

axle spacing of the truck. For the signals shown in Figure 26, the velocity and two axle 

spacing of Truck 2 were calculated as 19.85 m/s, 4.22 m and 4.27 m, respectively, and the 

velocity and four axle spacing of Truck 4 were calculated as 9.92 m/s, 7.96 m, 4.94 m, 1.99 

m and 4.94 m, respectively. Compared to the true values given in Table 7, the identified 

results are found to be very accurate. 

Figure 26 

Typical strain signals and corresponding wavelet transformations at scale of 14: (a) Truck 2 (3-

axle) traveling at 20 m/s and (b) Truck 4 (5-axle) traveling at 10 m/s 

The identification results for all considered cases are tabulated in Table 8. To better examine 

the accuracy of identification, the identification error is defined as: 
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Identification Error 100%iden true

true

P P

P


  (43) 

where, Piden and Ptrue are the identified parameter and the true parameter, respectively. Using 

this definition, the identification errors were calculated and the results are given in Table 9. 

Table 8 

Identified results using wavelet transformation 

Identified results 
Axle 

Truck 

number 
Number of 

axles Velocity 
spacing 
First to 

Axle 

spacing 
Axle 

spacing 
Axle 

spacing 
(m/s) 

second 
Second to Third to fourth to 

(m) 
third (m) fourth (m) fifth (m) 

1 2 9.93 6.21 N.A. N.A. N.A. 
2 3 9.92 4.24 4.22 N.A. N.A. 
3 3 9.93 4.86 1.42 N.A. N.A. 
4 5 9.92 7.96 4.94 1.99 4.94 
1 2 19.86 6.21 N.A. N.A. N.A. 
2 3 19.85 4.22 4.27 N.A. N.A. 
3 3 19.85 4.67 1.64 N.A. N.A. 
4 5 19.89 7.96 5.07 1.94 4.92 
1 2 29.92 6.28 N.A. N.A. N.A. 
2 3 29.92 4.19 4.34 N.A. N.A. 
3 3 29.86 6.19 2.76 N.A. N.A. 
4 5 29.88 7.92 4.48 2.39 4.78 

Table 9 

Identification errors using wavelet transformation 

Identification errors (%) 
Vehicle 

Truck Number 
speed 

number of axles 
(m/s) 

Velocity 

Axle Axle Axle Axle 

spacing spacing spacing spacing 
First to Second to Third to forth to 

second third forth fifth 
1 2 10 0.70 0.64 N.A. N.A. N.A. 
2 3 10 0.80 0.70 1.17 N.A. N.A. 
3 3 10 0.70 1.62 1.43 N.A. N.A. 
4 5 10 0.80 0.50 1.20 0.50 1.20 
1 2 20 0.70 0.64 N.A. N.A. N.A. 
2 3 20 0.75 1.17 0.00 N.A. N.A. 
3 3 20 0.75 5.47 17.1 N.A. N.A. 
4 5 20 0.55 0.50 1.40 3.00 1.60 
1 2 30 0.27 0.48 N.A. N.A. N.A. 
2 3 30 0.27 1.87 1.64 N.A. N.A. 
3 3 30 0.47 25.3 97.1 N.A. N.A. 
4 5 30 0.40 1.00 10.4 19.5 4.40 
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From Table 9, it can be seen that a satisfactory accuracy was achieved with most errors well 

below two percent. However, it was found that there are several cases with large 

identification errors and that these large errors seem to occur at high vehicle speeds. For 

example, for Truck 3 traveling at 30 m/s, the maximum error of axle spacing reaches 97.1 

percent, indicating a failure of identification. The reason for these large errors is that some 

high-frequency information of the signal is lost due to the relatively low sampling frequency 

as the vehicle travels at a high speed. It will be shown in the next section that once the 

sampling frequency is increased; these errors will considerably decrease. 

The successful axle identification using bridge global responses has significant implications 

since the vehicle speed and axle spacing can be identified using only the weighing sensors. In 

the real application, the use of this advanced axle detection technique will reduce the number 

of sensors to be installed and thus the cost of BWIM systems. Furthermore, since the 

identification principle of this technique does not impose any restrictions on bridge types as 

in the case of FAD applications, it could potentially help extend the application of the BWIM 

technology to different types of bridges. 

Effect of Sampling Frequency. As mentioned earlier, some large errors occurred 

due to the relatively low sampling frequency. To investigate the effect of sampling frequency 

on the identification accuracy, two sampling frequencies, i.e., 200 Hz and 500 Hz, are used to 

record the strain response for Truck 3 traveling at 30 m/s. Figure 27 shows the transformed 

signals under the two sampling frequencies. It should be mentioned that with the increase of 

sampling frequency, the scale of wavelet coefficients used for identification is reduced to 4. 

From Figure 27, it can be clearly seen that the peaks in the transformed signal corresponding 

to the sampling frequency of 500 Hz are much sharper than the one corresponding to the 

sampling frequency of 200 Hz. As a result, the identified vehicle speed and the two axle 

spacing using the sampling frequency of 500 Hz changed to 30.25 m/s, 4.95 m and 1.42 m, 

respectively, and corresponding identification errors for the two axle spacing were reduced 

from 25.3% and 97.1% to 0.20% and 1.43%, respectively. For other cases with relatively 

large errors, it was also found that increasing the sampling frequency considerably reduced 

the identification errors. 
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Figure 27 

Wavelet transformations of signals for Truck 3 traveling at 30 m/s: (a) sampling frequency of 

200 Hz; (b) sampling frequency of 500 Hz 

Essentially, increasing the sampling frequency sharpens the peaks in the transformed signal, 

which, in turn, increases the accuracy of identification. However, higher sampling frequency 

would also substantially increase the amount of data and its processing time. Therefore, an 

appropriate sampling frequency should be determined based on the maximum vehicle speed 

of interest. In addition, this example also demonstrates that the wavelet analysis is capable of 

identifying closely-spaced axles which can be difficult sometimes for the FAD techniques 

[13]. 

Effect of Road Surface Condition. A road profile is usually represented by a zero-

mean stationary stochastic process that can be expressed by a power spectral density (PSD) 

function. In this study, a modified PSD function was used [12]: 

   
2

0 1 2

0

  ( )
n

n n n n n
n

 



 
   

 
(44) 

where, n is the spatial frequency (cycle/m); 0n is the discontinuity frequency of 0.5 

(cycle/m);  0n is the roughness coefficient (m3/cycle); and 1n and 2n are the lower and 

upper cut-off frequencies, respectively. The International Organization for Standardization 

classified the road surface condition into several categories depending on different values of 

roughness coefficients [14]. In the present study, according to ISO specifications, the 
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k kn

1n 2n n

1n 2n

roughness coefficients of 5×10−6, 20×10−6, 80×10−6, and 256×10−6 m3/cycle were used for 

very good, good, average, and poor road surface conditions, respectively [14]. 

The road surface elevation can then be generated by an inverse Fourier transformation as: 

 
1

2 ( ) cos(2 )
N

k k k

k

r x n n n x  


   (45) 

where, is the random phase angle uniformly distributed between 0 and 2; is the wave 

number (cycle/m); N is the number of frequencies between and ; and is the 

frequency interval between and . 

In order to examine the effect of road surface roughness on the identification accuracy, Truck 

2 is set to travel at 20 m/s under four different surface conditions, i.e., very good, good, 

average, and poor road surface conditions and the sampling frequency is chosen to be 500 

Hz. The wavelet transformations of the strain signals at the scale of 4 are presented in Figure 

28. It can be seen that as the road roughness increases, the peaks used to identify the axles 

become less pronounced as there appears to have many other “noise” peaks. These other 

“noise” peaks are caused by the dynamic effect of the vehicle-bridge interaction. As the road 

surface condition worsens, these “noise” peaks become more pronounced, making the 

identification more difficult. Nevertheless, under very good and good surface conditions, the 

identification is still effective, as the identification errors were calculated to be below one 

percent. However, as road surface condition further deteriorates, the identification becomes 

infeasible since it is difficult to distinguish the peaks due to vehicle axles from other “noise” 

peaks caused by the dynamic effect. 
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Figure 28 

Wavelet transformations of signals under different road surface conditions 

In some previous studies on the bridge dynamic behaviors, a low-pass filter was often 

employed to remove the dynamic effect of the response [12]. However, in the case of axle 

identifications using wavelet analysis, low-pass filtering is not a solution, since the high 

frequency components of the signal contain the useful information used to identify the 

vehicle axles. Namely, low-pass filtering will also filter out the useful information. 

Nonetheless, it should be pointed out that, a smooth road condition is a prerequisite to 

achieve a satisfactory identification accuracy for most existing BWIM technologies such as 

those using Moses’s algorithm [8]. Therefore, the fact that the axle identification using 

wavelet analysis is limited to good bridge surface conditions does not really impede the 

implementation of modern commercial BWIM systems whose basic framework is the 

Moses’s algorithm [8]. Naturally, a new methodology that can work well under rough road 

surface conditions, and at the same time can eliminate the axle detection sensors, is very 

desirable. 

Effect of Measurement Noise. While the results above can be very accurate for good 

road surface conditions, they are obtained in the ideal situation. In real practice, the obtained 

signals are usually contaminated by measurement noises induced by the environmental 

changes and electric devices used for data acquisition. Thus, it is necessary to examine the 

effect of measurement noise on the identification accuracy. For this purpose, different levels 

of Gaussian white noise are added to the original strain signal obtained when Truck 2 travels 

at 20 m/s under sampling frequencies of 500 Hz and 200 Hz. As mentioned before, the scale 
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of the wavelet coefficients for the two frequencies are 4 and 14, respectively. Figure 29 

shows the wavelet transformations of the original signal and polluted signals under four 

different signal-to-noise ratios (SNRs) of 100, 50, 20 and 10. 

From Figure 29 (a), it can be seen that under the sampling frequency of 500 Hz, the peaks 

induced by the vehicle axles quickly get submerged by the noise as the noise level increases, 

making the identification impossible. This suggests that the identification method is sensitive 

to the measurement noise. The main reason for this is that the information of vehicle axles is 

reflected by very delicate changes in the original signal. Therefore, it becomes very difficult 

to separate this information from the measurement noises even through de-noising techniques 

that allow the preservation of certain features of the original signal, such as median filter and 

wavelet de-noising. 
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Figure 29 

Wavelet transformations of signals under different levels of noise: (a) sampling frequency of 

500 Hz; (b) sampling frequency of 200 Hz 

Nevertheless, it was also noticed from Figure 29 (b) that as the sampling frequency decreases 

to 200 Hz, the peaks induced by the vehicle axles tend to get submerged more slowly than 

the previous case, i.e., the identification becomes less susceptible to the noise under a lower 

sampling frequency. This is because while the scale of the noise remains the same, the scale 

of the peaks increased due to the lower sampling frequency. From this perspective, 

increasing the sampling frequency, though it sharpens the peaks induced by the vehicle axles, 

it does not necessarily increase the identification accuracy. Therefore, the choice of an 

optimal sampling frequency should take into consideration the maximum vehicle speed of 

interest as well as the level of noise. 

2D BWIM Algorithm 

Numerical simulations were conducted on the simply supported beam-slab bridge. Seven 

loading cases were considered with each case corresponding to the vehicle traveling at a 

different TP based on the location of traffic lanes. As shown in Figure 24, two traffic lanes, 

each with a width of 3.67 m, were designed for the bridge. The first three loading cases 

correspond to the vehicle traveling at the center of Lane 1, the vehicle’s right wheel traveling 

at the right side of Lane 1, and the vehicle’s left wheel traveling at the left side of the Lane 1. 

The second three cases correspond to the same vehicle layout as the first three cases but in 

Lane 2. Case 7 corresponds to a special case where the vehicle travels at the center of the 

bridge. Table 10 summarizes the description of the seven loading cases. In the following 

study, the vehicle is set to travel at a constant speed of 10 m/s under a smooth road surface 

profile unless otherwise specified in the parametric study. 
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Table 10 

Description of loading cases considered in the simulation 

Case Number Traveling Lane Transverse position, x (m) 
1 Lane 1 1.676 
2 Lane 1 2.286 
3 Lane 1 2.896 
4 Lane 2 5.334 
5 Lane 2 5.944 
6 Lane 2 6.553 
7 Lane 1 and Lane 2 4.115 

To identify the TP of the vehicle, the measurement station of the largest response is first used 

to calculate the set of axle weights for an assumed TP. Then, the obtained set of axle weights 

are used to predict the responses for other measurement stations using the calibrated 

influence surface and the results are substituted into equation (27) to calculate the value of 

the error function at the assumed TP. The same procedure is repeated for all possible TPs and 

the one that gives the minimum value of the error function is identified as the true TP of the 

vehicle. For example, Figure 30 shows the variation of the error function with the possible 

TPs for Case 2 with Truck 4 and Case 4 with Truck 1. It can be seen that the minimum value 

of the error function is achieved at a specific TP. In Figure 30 (a) and (b), the two TPs that 

minimize the error function are 2.286 m and 5.334 m, respectively, corresponding to the true 

TPs of the vehicle for the two cases. It should be noted that the reason for not plotting all 

possible TPs in Figure 30 is that the values of the error function at positions far away from 

the true TP is so large that plotting them in the figure would make it difficult to visually 

identify the minimum value of the error function. 

Figure 30 

Variation of the error function with respect to the possible TPs of the vehicle: (a) Case 2 with 

Truck 4; (b) Case 4 with Truck 1 
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To better illustrate the identification principle, Figure 31 plots the simulated responses and 

the reconstructed responses obtained using the axle weights identified at different TPs of 

different measurement stations under Case 2 with Truck 4. Only the responses corresponding 

to the true TP and two other assumed TPs are plotted for visualization purposes. For Case 2, 

Girder 5 had the largest response. Therefore, S5 was selected as the weighing station. It can 

be seen from Figure 31 (e) that the reconstructed responses corresponding to different TPs 

uniformly match the simulated response very well for S5, i.e., the weighing station. 

However, this is not the case for other measurement stations. As can be seen from Figure 31, 

the degree of match between the simulated and reconstructed responses gradually decreases 

as the location of the measurement station gets further away from S5 with the exception of 

the reconstructed responses obtained using the axle weights identified at the true TP. This is 

because if the assumed TP is not the true one, the axle weights will either be over- or 

underestimated depending on the assumed TP in order to match the simulated response of S5, 

which in turn causes a mismatch between the simulated and reconstructed responses for other 

measurement stations. In other words, only the axle weights identified at the true TP will be 

able to achieve a good match between the simulated and reconstructed responses for all 

measurement stations. 
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Figure 31 

Simulated and reconstructed bridge responses of different measurement stations for Case 2 

with Truck 4: (a) S1; (b) S2; (c) S3; (d) S4; (e) S5 
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The proposed algorithm was implemented for all seven loading cases using the three 

highway trucks, i.e., Trucks 1, 2 and 4 shown in Table 7. The identification results are given 

in Table 11 with the identified values of vehicle weights rounded to one decimal place. To 

better examine the identification accuracy, the identification error is defined as: 

 100%iden true

true

P P
Identification Error

P


  (46) 

where, Piden and Ptrue are the identified parameter and the true parameter, respectively. Using 

this definition, the identification errors of the vehicle’s TP, axle weights and gross vehicle 

weight (GVW) were calculated and the results are given in Table 12. It should be mentioned 

that the errors were calculated using the identified values before the rounding. In order to 

compare the identification accuracy between the proposed algorithm and the 1D Moses’s 

algorithm, the identification was also conducted using the Moses’s algorithm and the 

identification errors are also given in Table 12. It should be noted that for the Moses’s 

algorithm, the axle weights are identified using the total response of the bridge and in this 

case, the influence lines under the vehicle traveling at the center of the bridge were used to 

predict the total response of the bridge. 

Table 11 

Identification results using the proposed algorithm 

Case 
Number 

Truck 

Number 

Identified 

TP of the 
vehicle (m) 

First 

axle 

Identified vehicle weights (kN) 
Second Third Fourth Fifth 

axle axle axle axle 
GVW 

1 1.676 125.9 145.9 N.A. N.A. N.A. 271.8 
1 2 1.676 35.5 141.9 142.3 N.A. N.A. 319.7 

4 1.676 125.8 178.3 106.7 117.7 161.9 690.4 
1 2.286 125.9 145.9 N.A. N.A. N.A. 271.8 

2 2 2.286 35.5 141.9 142.3 N.A. N.A. 319.7 
4 2.286 125.8 178.6 105.1 119.5 161.5 690.5 
1 2.896 125.9 145.9 N.A. N.A. N.A. 271.8 

3 2 2.896 35.6 141.9 142.3 N.A. N.A. 319.8 
4 2.896 125.8 179.2 102.2 122.6 160.8 690.6 
1 5.334 125.9 145.9 N.A. N.A. N.A. 271.8 

4 2 5.334 35.6 141.9 142.3 N.A. N.A. 319.8 
4 5.334 125.8 179.2 102.5 122.3 160.8 690.6 
1 5.944 125.9 145.9 N.A. N.A. N.A. 271.8 

5 2 5.944 35.5 141.9 142.3 N.A. N.A. 319.7 
4 5.944 125.8 178.6 105.3 119.3 161.6 690.6 
1 6.553 125.9 145.9 N.A. N.A. N.A. 271.8 

6 2 6.553 35.5 141.9 142.3 N.A. N.A. 319.7 
4 6.553 125.8 178.3 106.8 117.6 162.0 690.5 
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1 4.115 126.0 146.0 N.A. N.A. N.A. 272.0 
7 2 4.115 35.5 142.0 142.2 N.A. N.A. 319.7 

4 4.115 125.6 179.8 102.6 121.1 161.5 690.6 
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Table 12 

Comparison of identification errors between the Moses’s algorithm and the proposed algorithm 

Case 

Number 
Truck 

Number 1st 

axle 

Moses’s algorithm (%) 
2nd 3rd 4th 5th 

axle axle axle axle 
GVW TP 

1st 

axle 

Proposed algorithm (%) 
2nd 3rd 4th 5th 

axle axle axle axle 
GVW 

1 4.12 5.39 N.A. N.A. N.A. 4.80 0.00 0.21 0.00 N.A. N.A. N.A. 0.10 
1 2 19.5 2.19 8.91 N.A. N.A. 5.16 0.00 0.08 0.04 0.02 N.A. N.A. 0.00 

4 3.86 5.55 4.38 2.85 6.96 4.92 0.00 0.36 0.78 2.74 2.10 0.46 0.11 
1 2.71 3.85 N.A. N.A. N.A. 3.32 0.00 0.22 0.00 N.A. N.A. N.A. 0.10 

2 2 10.4 0.56 5.74 N.A. N.A. 3.46 0.00 0.11 0.05 0.03 N.A. N.A. 0.01 
4 2.20 4.09 0.94 5.60 4.16 3.27 0.00 0.39 0.58 1.17 0.63 0.21 0.11 
1 1.73 2.09 N.A. N.A. N.A. 1.92 0.00 0.22 0.02 N.A. N.A. N.A. 0.09 

3 2 9.34 1.54 3.83 N.A. N.A. 2.06 0.00 0.20 0.09 0.05 N.A. N.A. 0.01 
4 1.09 2.71 2.61 4.72 2.33 1.87 0.00 0.43 0.26 1.62 2.01 0.27 0.10 
1 0.05 1.01 N.A. N.A. N.A. 0.52 0.00 0.22 0.01 N.A. N.A. N.A. 0.09 

4 2 6.72 2.98 2.71 N.A. N.A. 0.63 0.00 0.19 0.08 0.05 N.A. N.A. 0.01 
4 0.53 1.40 5.09 4.07 1.05 0.46 0.00 0.42 0.30 1.30 1.70 0.22 0.10 
1 0.52 2.72 N.A. N.A. N.A. 1.70 0.00 0.21 0.00 N.A. N.A. N.A. 0.10 

5 2 7.42 2.43 4.66 N.A. N.A. 1.82 0.00 0.11 0.05 0.03 N.A. N.A. 0.01 
4 0.28 2.60 3.94 4.87 2.81 1.64 0.00 0.38 0.60 1.35 0.80 0.24 0.11 
1 2.04 4.62 N.A. N.A. N.A. 3.43 0.00 0.21 0.00 N.A. N.A. N.A. 0.10 

6 2 18.5 4.63 8.61 N.A. N.A. 3.83 0.00 0.08 0.04 0.02 N.A. N.A. 0.00 
4 2.16 4.35 2.36 1.43 6.26 3.59 0.00 0.36 0.79 2.80 2.16 0.47 0.12 
1 0.24 0.01 N.A. N.A. N.A. 0.11 0.00 0.24 0.10 N.A. N.A. N.A. 0.16 

7 2 0.10 0.04 0.03 N.A. N.A. 0.01 0.00 0.09 0.03 0.02 N.A. N.A. 0.00 
4 0.78 0.91 8.43 7.44 1.03 0.12 0.00 0.54 0.08 1.20 0.75 0.19 0.09 

From Table 12, it can be seen that the proposed algorithm successfully identified the true TPs of the vehicle for all cases. For the axle 

weights and GVW, most errors are within one percent, indicating a very accurate identification. Slightly larger errors were observed 

for the third and fourth axles of Truck 4. This is because the third and fourth axles of Truck 4 are closely spaced at a distance of two 
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meters and it has been found that accurately identifying the weights of closely spaced axles is 

very difficult [15,16]. Actually, closely spaced axles forming an axle group are usually 

identified as a single axle in practice. In the case of the Moses’s algorithm, the identification 

errors of axle weights and GVW seem to be related with the TP of the vehicle. The errors 

appear to decrease as the TP gets closer to the center of the bridge, i.e., the TP corresponding 

to which the influence lines were selected to predict the total response of the bridge. As a 

matter of fact, accurate identification of axle weights and GVW was achieved using the 

Moses’s algorithm for Case 7 in which the vehicle was located at the center of the bridge. 

Nevertheless, the identification errors using the Moses’s algorithm are generally much higher 

than those using the proposed algorithm. This suggests that the TP of the vehicle has a 

significant influence on the identification accuracy. From this perspective, the vehicle’s TP 

should be considered in the identification of axle weights. Therefore, an algorithm that is able 

to identify the vehicle’s TP such as the proposed one should be able to improve the 

identification accuracy compared with the 1D Moses’s algorithm in practice. 

Effect of Road Surface Condition. In order to examine the effect of the road surface 

condition on the identification accuracy, Truck 4 was set to travel under four different road 

surface conditions: very good, good, average, and poor conditions; the identification was 

conducted under Case 5. The identification errors are summarized in Table 13. It can be seen 

that although the identification of the GVW remains accurate, the identification errors of axle 

weights increases significantly as the road surface condition worsens. This is because the 

dynamic effect of the vehicle was induced by the road surface roughness, which causes the 

simulated response to deviate from the predicted response obtained using the influence 

surface, resulting in larger identification errors. In fact, the accurate identification of axle 

weights under rough surface conditions remains a challenging issue to modern commercial 

BWIM systems. Usually, a good road surface condition is the prerequisite of achieving 

satisfactory identification accuracy [17]. Nevertheless, the vehicle’s TP was successfully 

identified regardless of the road surface conditions used, implying that the proposed 

algorithm is robust in identifying the TP of the vehicle. 
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Table 13 

Identification errors for Case 5 with Truck 4 traveling under different road surface conditions 

Road Axle weights (%) 
GVW 

surface 
condition 

TP (%) First 

axle 
Second Third Fourth 

axle axle axle 
Fifth 

axle 
(%) 

Smooth 0.00 0.38 0.60 1.35 0.80 0.24 0.11 
Very good 0.00 1.71 4.33 28.39 22.95 3.00 0.16 

Good 0.00 2.46 7.30 47.87 39.17 5.47 0.21 
Average 0.00 3.94 13.23 86.83 71.62 10.42 0.30 

Poor 0.00 6.30 22.58 148.3 122.8 18.21 0.45 

In order to reduce the influence of the road roughness, a low-pass filter can be applied to 

remove the dynamic effect. Based on trial and error, a cut-off frequency of 1.5 Hz was 

chosen for the low-pass filter as this frequency can effectively remove the dynamic 

components of the response and leave the static components intact. Table 14 gives the 

identification errors after the simulated responses were filtered. Comparing Table 14 with 

Table 13, it was found that the identification accuracy was considerably improved after the 

application of the low-pass filter. In addition, it is interesting to note that the identification 

errors for the third and fourth axles under the smooth surface condition actually increased 

after the filtering probably because the low-pass filtering blurred the distinction between the 

effects of the closely spaced axles, which are reflected in the high-frequency components of 

the response [15]. For this reason, it was suggested that the low-pass filtering only be used 

for bridges with high fundamental frequencies [15]. Nevertheless, the low-pass filter is able 

to improve the identification accuracy overall in the present study. 

Table 14 

Identification errors for Case 5 with Truck 4 traveling under different road surface conditions 

using filtered responses 

Road Axle weights (%) 
GVW 

surface 
condition 

TP (%) First 

axle 
Second Third Fourth 

axle axle axle 
Fifth 

axle 
(%) 

Smooth 0.00 0.16 1.47 6.08 4.43 0.65 0.12 
Very good 0.00 0.78 1.10 8.19 6.67 0.79 0.11 

Good 0.00 0.80 1.33 9.57 8.03 1.12 0.10 
Average 0.00 0.83 1.79 12.32 10.74 1.77 0.08 

Poor 0.00 0.87 2.47 16.49 14.88 2.78 0.06 

Additionally, it is conceivable that the measurement noise will also have an impact on the 

identification accuracy and the effect of the measurement noise is, to some degree, similar to 

that of the road surface roughness in a way that they all cause deviations to the measured 
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static response. Similarly, a low-pass filter can be used to remove the high-frequency noise 

and thus improve the identification accuracy. For the sake of simplicity, the effect of the 

measurement noise on the identification accuracy is not further discussed here. 

Effect of Vehicle Speed. In order to determine the effect of the vehicle speed on the 

identification accuracy, Truck 2 was set to travel at six different speeds ranging from 5 m/s to 

30 m/s with an interval of 5 m/s. The identification was conducted under Case 2. The 

identification errors are given in Table 15. It can be seen that the TP of the vehicle was 

successfully identified for all considered speeds and that most identification errors for axle 

weights and GVW are within one percent. Moreover, vehicle traveling at speeds higher than 

10 m/s appears to cause slightly larger errors in the identified axle weights. This is because 

higher speeds induced the dynamic effect of the vehicle while this effect is basically 

negligible for the vehicle traveling at lower speeds. However, the dynamic effect does not 

necessarily become more evident as the vehicle speed increases. In fact, the largest errors 

occur at the vehicle speed of 15 m/s. A possible explanation for this is that the excitation 

frequency of the vehicle at this speed approached the fundamental frequency of the bridge, 

which led to the resonant vibration of the bridge. The excitation frequency of the vehicle may 

be calculated using the following equation [18]: 

   ( 1,2,3, )ex

v

v
f n n

L
   (47) 

where, v is the vehicle speed; Lv is the vehicle’s axle spacing which is uniformly 4.27 m for 

Truck 2; and fex is the excitation frequency of the vehicle. When the vehicle speed is 15 m/s, 

the excitation frequency is calculated to be 3.51 Hz, which is very close to the fundamental 

frequency of the bridge of 3.46 Hz. Therefore, the larger identification errors at this speed 

may be contributed to the stronger dynamic effect caused by the resonance. Nevertheless, 

accurate identification was achieved for various vehicle speeds, indicating that the vehicle 

speed does not have a significant influence on the identification accuracy. 

Table 15 

Identification errors for Case 2 with Truck 2 traveling at different vehicle speeds 

Axle weights (%) Vehicle speed GVW 
TP (%) 

(m/s) (%)First axle Second axle Third axle 
5 0.00 0.02 0.01 0.00 0.00 

10 0.00 0.11 0.05 0.03 0.01 
15 0.00 1.56 0.66 0.39 0.05 
20 0.00 0.38 0.15 0.08 0.01 
25 0.00 1.01 0.46 0.28 0.04 
30 0.00 0.37 0.19 0.13 0.01 
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Effect of Vehicle Width. In the present study, the truck used to calibrate the 

influence surface has a width of 2.5 m. However, the vehicle width varies between different 

vehicles in practice and it is conceivable that this variation will result in identification errors. 

Nevertheless, it has been found that the variation of the width of commercial trucks is very 

small. The survey by Berard and Bourion showed that the mean width of heavy trucks is 

2.52 m with approximately ninety percent of the widths falling within the range from 2.5 m 

to 2.6 m [19]. Furthermore, according to the latest Federal Size Regulations for Commercial 

Motor Vehicles, the maximum width of commercial trucks is established at 2.6 m [20]. 

To examine the effect of the vehicle width on the identification accuracy, a series of vehicle 

widths ranging from 2.3 m to 2.7 m with an interval of 0.1 m was set for Truck 2. The 

identification was conducted under Case 6 and the identification errors are summarized in 

Table 16. It can be seen that the TP of the vehicle was successfully identified except for 

vehicle widths of 2.3 m and 2.7 m where a negligible error of 0.02 % was obtained. The 

variation of identification errors of axle weights and GVW with respect to the vehicle width 

is plotted in Figure 32. It can be observed that the identification errors increase as the vehicle 

width deviates from 2.5 m, the original vehicle width that was used in the calibration of the 

influence surface. Nevertheless, even with the varying vehicle width, the identification of 

axle weights and GVW was still accurate with the maximum error within four percent. This 

suggests that the vehicle width will not have a significant effect on the identification 

accuracy in practice. 

Table 16 

Identification errors for Case 6 with Truck 2 using different vehicle widths 

Axle weights (%) 
Vehicle GVW 

TP (%) First Second Third 
width (m) (%)

axle axle axle 
2.3 0.02 2.37 1.98 0.91 1.02 
2.4 0.00 0.53 1.03 0.26 0.28 
2.5 0.00 0.08 0.04 0.02 0.00 
2.6 0.00 0.10 0.86 0.19 0.29 
2.7 0.02 3.41 2.30 0.68 0.95 
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Figure 32 

Variation of identification errors of axle weights and GVW with respect to the vehicle width for 

Case 6 with Truck 2 

Effect of Different Measurement Stations. In previous identifications, the 

measurement station of the largest response was selected as the weighing station while other 

stations were used to identify the TP. In order to investigate the effect of using different 

measurement stations as the weighing station, Truck 2 was set to run under Case 1 and the 

identification was conducted using each measurement station as the weighting station. In this 

case, S5 had the largest response while the responses of S3 and S4 were smaller than that of 

S5 but close. The responses of S1 and S2 were noticeably smaller than those of other 

measurement stations. Table 17 lists the identification errors obtained using different 

weighing stations. It can be seen that the TP of the vehicle was successfully identified 

regardless of the weighing stations selected and that accurate identification of axle weights 

and GVW was achieved with the maximum error within one percent. Nevertheless, the 

identification of axle weights and GVW seems more accurate when S3, S4 and S5, i.e., 

measurement stations underneath the traveling lane, were respectively selected as the 

weighing station. To a certain degree, this implies that using measurement stations of smaller 

responses as the weighing station may lead to larger identification errors of axle weights and 

GVW. As a general rule of thumb, the measurement station of the largest response is 

preferred for the selection of the weighing station in order to facilitate the implementation in 

practice. 
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Table 17 

Identification errors for Case 1 with Truck 2 using different weighing stations 

Axle weights (%) 
Weighing GVW 

TP (%) First Second Third 
stations (%)

axle axle axle 
S1 0.00 0.69 0.30 0.18 0.02 
S2 0.00 0.32 0.14 0.09 0.01 
S3 0.00 0.03 0.01 0.00 0.00 
S4 0.00 0.04 0.02 0.01 0.00 
S5 0.00 0.08 0.04 0.02 0.00 

Verification by a Field Study 

Tested Bridge. In order to verify the effectiveness of the proposed algorithm in 

practice, the proposed algorithm was demonstrated using a previously conducted field test. 

The field test was conducted on a beam-slab bridge in 2006. The tested bridge is located over 

Cypress Bayou in District 61, on LA 408 East, Louisiana. The bridge has three simply 

supported spans and all three spans have an identical length of 16.764 m with zero skew 

angles as shown in Figure 33. The bridge consists of seven AASHTO Type-II prestressed 

concrete girders with a center-to-center spacing of 2.13 m. The girders are supported by 

rubber bearings at both ends of the bridge. For each span, three intermediate diaphragms are 

located at the mid-span and the two ends of the bridge, separated from the bridge deck. The 

cross section and the lane arrangement of the bridge are shown in Figure 34. 

The third span of the bridge was instrumented. Seven strain gauges were installed at the 

bottom of the seven girders to measure the longitudinal strains. These strain gages were 

installed 0.305 m away from the mid-span of the bridge in order to avoid stress 

concentrations caused by the diaphragms placed at the mid-span. Therefore, a total of seven 

measurement stations (S1, S2, S3, S4, S5, S6, and S7) were selected corresponding to the 

seven girders G1, G2, G3, G4, G5, G6, and G7. 

Figure 33 

Longitudinal profile of the tested bridge 
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Figure 34 

Cross section and lane arrangement of the tested bridge 

Test Vehicle. In the field test, a dump truck with a single front axle and a rear two-

axle group as shown in Figure 35 was used as the test vehicle. The static loads for the first, 

second, and third axles of the test truck are 80.0 kN, 95.6 kN, and 95.6 kN, respectively. The 

axle spacing between the first axle and the center of the rear axle group is 6.25 m, and the 

distance between the two rear axles is 1.2 m. The width of the test vehicle is 2.41 m. Chan 

and O’Conner found that the axles within a group can be replaced by a single axle acting at 

the center of the group if the axles within the group are closely spaced [21]. Therefore, the 

two rear axles of the test truck are replaced by one equivalent axle in order to simply the 

identification in this study. 

Figure 35 

The test vehicle 

64 



 

   

 

   

  

 

 

 

 

  

 

 
 

 
  

 
  

    

   

   

    

   

    

  

   

 

Field Calibration of Influence Surface. Six testing cases (three static and three 

dynamic tests) were considered in the field testing. A brief description of the testing cases is 

given in Table 18. Detailed testing setups can be found in Reference [22]. The first three 

cases correspond to the static testing with three different TPs of the vehicle. The responses 

obtained from these three cases were used to calibrate the influence surface as the dynamic 

effect was very small during the static testing. For each TP, the corresponding influence line 

was calculated from the measured bridge response using the method proposed by O’Brien et 

al. [23]. Previous experimental studies found that a cubic spline function is suitable for the 

interpolation of influence ordinates at positions in-between the measured TPs in field 

calibrations [15, 24]. Therefore, a spline interpolation was adopted in the current study to 

form a continuous influence surface using the field calibrated influence lines obtained at 

different TPs. Figure 36 shows the contour plots of the field calibrated influence surfaces for 

S4 and S6. 

Table 18 

Description of testing cases 

Case number 
Testing 

type 
Traveling Lane 

Transverse position 

(m) 
Velocity (m/s) 

Case 1 static Shoulder 0.914 2.24 

Case 2 static Lane 1 4.420 2.24 

Case 3 static Lane 2 7.798 2.24 

Case 4 dynamic Lane 1 4.420 13.41 

Case 5 dynamic Lane 1 4.420 17.88 

Case 6 dynamic Lane 2 7.798 17.21 

Figure 36 

Contour plots of field calibrated influence surfaces: (a) S4; (b) S6 (unit: microstrain) 

Identification Results. The proposed algorithm was used to identify the TP and axle 

weights of the test truck for all considered cases. For Case 2, Case 4 and Case 5, S5 had the 
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largest response and thus S5 was selected as the weighing station. Similarly, S3 was selected 

as the weighing station for Case 3 and Case 6 while S7 was selected as the weighing station 

for Case 1. Based on the proposed algorithm, the measurement stations other than the 

weighing station will be used to identify the vehicle’s TP. Nevertheless, it was found that in 

each case, the response of the station furthest from the test vehicle is so small that significant 

variations were observed in the response. Thus, the furthest measurement station from the 

test truck was not used for the identification in order to reduce the effect of measurement 

errors. 

The identification results and corresponding errors are shown in Table 19. It can be seen that 

the identification errors for the first three cases, i.e., the static testing cases, are basically 

negligible as expected. For the dynamic testing cases, it was observed that the identification 

errors of the TP are approximately within four percent while the errors of axle weights and 

GVW for most cases are within four percent as well. In fact, the only case where the error of 

axle weights and GVW exceeded four percent is Case 6. This is probably because the vehicle 

speed for Case 6 was not well controlled according to the record. Nevertheless, the 

identification accuracy achieved using the proposed algorithm is acceptable in practice. 

In addition, another approach to examine the identification accuracy is to reconstruct the 

bridge response using the identified TP and axle weights of the vehicle and compare it with 

the measured response. Figure 37 shows the comparison between the measured response and 

the reconstructed response of the weighing station for Case 4 and Case 6. It can be seen that a 

good match between the measured and reconstructed responses is achieved. 

Table 19 

Identification results and corresponding errors 

Case 
Transverse position First axle Second axle GVW 

Number Value Error Value Error Value Error Value Error 
(m) (%) (kN) (%) (kN) (%) (kN) (%) 

Case 1 0.914 0.00 79.8 0.25 191.4 0.08 271.1 0.02 
Case 2 4.420 0.00 79.7 0.33 191.4 0.10 271.1 0.03 
Case 3 7.798 0.00 79.8 0.25 191.3 0.07 271.1 0.02 
Case 4 4.597 4.02 81.7 2.11 185.6 2.92 267.3 1.44 
Case 5 4.343 1.72 77.0 3.71 191.3 0.07 268.3 1.05 
Case 6 7.798 0.00 68.2 14.7 185.8 2.81 254.0 6.33 
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Figure 37 

Comparison between the measured and reconstructed bridge responses of the weighing station: 

(a) Case 4; (b) Case 6 
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CONCLUSIONS 

A framework for assessing the conditions of in-service bridges was proposed. The 

framework uses the monitored live load effect (LE) data to achieve the assessment and the 

prediction of extreme traffic LEs is done using the Bayesian method which provides a 

systematic framework of uncertainty quantifications for extreme value analysis. The 

proposed assessment framework was then used to assess the current and future conditions of 

the I-10 Twin Span Bridge (TSB). The monitored strain responses were first processed using 

the wavelet decomposition to extract the traffic LEs and then the Bayesian method was 

adopted to predict the future maximum traffic LEs of the bridge. The design capacity 

envelops and service LE envelops of the I-10 TSB were developed based on the design 

calculation and the finite element (FE) models of the bridge. 

Furthermore, a nothing-on-road (NOR) bridge weigh-in-motion (BWIM) system is 

developed. The developed NOR BWIM system is able to use only the strain measurements at 

the mid-span of the bridge to achieve the identification of the vehicle weight. Therefore, it 

provides a potential solution to achieve the live load monitoring using the current 

instrumentation of the I-10 TSB. Specifically, the developed BWIM algorithm first uses 

wavelet analysis to detect the vehicle’s axles. Then, it uses the response sensitivity to identify 

the transverse position (TP) of the vehicle. Finally, with the identified vehicle’s position on 

the bridge, the 2D Moses’s algorithm is used to estimate the vehicle’s axle weights. 

Based on the study using the developed methodology, the following conclusions can be 

drawn: 

(1) The Bayesian method provides a systematic framework of uncertainty quantifications for 

extreme value analysis. Compared with the conventional method, the Bayesian method is 

able to quantify the uncertainties of parameters in terms of posterior distributions and 

incorporate the uncertainties into the prediction through the posterior predictive 

distribution; 

(2) The prediction results on the I-10 TSB show that the predicted maximum live LEs 

obtained using the Bayesian method are higher than those obtained using the 

conventional method especially for longer return periods. This difference is caused by the 

uncertainties inherent in the distribution parameters; 

(3) The condition assessment results on the I-10 TSB show that the bridge is performing 

normally under the current condition and that the bridge will be safe during its remaining 
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life from the design perspective except that certain girders close to the slow lane may be 

overstressed in the future (75-year return period); 

(4) Numerical results show that the proposed algorithm can identify the TP and the axle 

weights of vehicles and that considering the vehicle’s TP can significantly improve the 

identification accuracy of axle weights. However, the identification accuracy of axle 

weights decreases significantly as the road surface condition becomes worse; 

(5) Vehicle axle identifications can be achieved through a wavelet analysis of bridge global 

responses. This approach has obvious advantages over existing axle identification 

methods in that it requires fewer sensors. 

70 



 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

RECOMMENDATIONS 

Based on the condition assessment results, the I-10 Twin Span Bridge is currently safe and 

performing as designed. Nevertheless, results also indicate that the exterior girders under the 

slow lane could be overstressed in the future. Thus, it is suggested that the future inspection 

pay special attention to these exterior girders. Furthermore, as the monitoring duration 

increases, the newly obtained data should be processed using the developed software and 

included to update the prediction in order to get more reliable predictions. In addition, when 

the monitoring period becomes sufficiently long, the non-stationarity of the traffic should be 

considered using the proposed method for long-term assessment in order to more accurately 

account for the traffic effects. 

The project was intended to monitor the live load information. However, due to the failure of 

the installed WIM system, live load information cannot be achieved, which motivates the 

development of a nothing-on-road (NOR) bridge weigh-in-motion (BWIM) system in this 

study. Numerical simulation and experimental study on a bridge in Louisiana show that the 

developed NOR BWIM system is able to identify the vehicle speed, axle spacing and weight 

using only the strain sensors installed at the mid-span of the bridge. This suggests that the 

developed NOR BWIM system may provide a potential tool to achieve the live load 

monitoring of the I-10 Twin Span Bridge utilizing the current instrumentation. Nevertheless, 

the implementation of BWIM system requires field test to calibrate the influence surfaces. It 

is thus recommended that a load test be conducted to explore the feasibility of achieving the 

live load monitoring using the current instrumentation of the I-10 Twin Span Bridge. The 

load test can also provide information to calibrate the finite element model of the bridge, 

which can help further reduce the uncertainty and achieve more reliable condition assessment 

of the I-10 Twin Span Bridge. 

71 





 

  

 

 

 

  

  

 

  

 

  

 

  

  

  

  

 

   

  

 

  

  

 

  

  

  

   

   

  

   

  

  

  

  

   

  

  

ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

3D Three-dimensional 

AASHTO American Association of State Highway and Transportation 

Officials 

ANSYS Commercial Finite Element Software 

ASD Allowable Stress Design 

BWIM Bridge weigh-in-motion 

CDF Cumulative distribution function 

CDS Composite distribution statistics 

cm centimeter(s) 

CWT Continuous wavelet transformation 

DOF Degrees of freedom 

DOTD Department of Transportation and Development 

FAD Free-of-axle-detector 

FE Finite Element 

FT Fourier transformation 

FHWA Federal Highway Administration 

FT Fourier transformation 

GEV Generalized extreme value 

GVW Gross vehicle weight 

i.i.d. Independent and identically 

KDE Kernel density estimation 

lb. pound(s) 

LFD Load Factor Design 

LRFD Load and Resistance Factor Design 

LRFR Resistant Factor Rating 

LSU Louisiana State University 

LTRC Louisiana Transportation Research Center 

m meter(s) 

MCMC Markov Chain Monte Carlo 

MBE Manual for Bridge Evaluation 

MG Metropolis-within-Gibbs 

MLE Maximum likelihood estimation 

NBIP National Bridge Inspection Program 

NOR Nothing-on-road 

SHM Structural health monitoring 
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SNR Signal-to-noise ratio 

STFT Short-time Fourier analysis 

TP Transverse position 

TSB Twin Span Bridge 

WIM Weigh-in-motion 
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APPENDIX I 

Review on Bridge Weigh-in-motion Technology 

Overloaded trucks pose serious threats to the safety of the public and transportation systems. 

Vehicle overloading causes accelerated degradation of highway infrastructures [25]. For 

highway bridges, overloaded trucks lead to fatigue damages or even cause the collapse of 

bridges in some extreme cases. Moreover, overloaded vehicles are more likely to cause 

traffic accidents that usually lead to severe casualties. For these reasons, vehicle overweight 

enforcement is critical to the protection of the safety of the public and highway 

infrastructures. The traditional method of enforcement is to use static scales to weigh 

highways trucks (Figure 38). However, this interrupts the traffic and decreases the efficiency 

of the transportation system. In order to overcome these limitations, weigh-in-motion 

technology has been developed to measure the weight of vehicles while they are in motion. 

WIM technology provides an efficient method for overweight enforcement [26]. 

Furthermore, WIM can also be used to implement toll-by-weight method and collect traffic 

information for traffic planning and design. 

Generally speaking, WIM can be classified into two types including the pavement-based 

WIM and bridge BWIM (BWIM). The pavement-based WIM uses devices installed on the 

road surface such as bending plates, piezoelectric sensors to directly measure the axle force 

of the vehicle when the vehicle axle contacts the device [26]. The technology adopted by 

pavement-based WIM systems is relatively simple. However, since the device of pavement-

based WIM systems is installed on the road surface, it is intrusive to the pavement and has 

poor durability due to the direct exposure to the heavy traffic. Thus, its installation and 

maintenance usually requires traffic closures. Furthermore, the axle force measured by the 

pavement-based WIM is not the static weight of the axle since the axle force is a time-

varying force. Therefore, the errors of estimated vehicle weight could be significant 

especially when the dynamic effect is pronounced [17]. 
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Figure 38 

Weigh stations on the highway 

The concept of BWIM was first proposed by Moses in 1979 [8]. BWIM uses an 

instrumented bridge as the weighing scale to estimate the vehicle weight using the measured 

responses of bridges. The BWIM has many advantages over the pavement-based WIM. 

Firstly, the BWIM uses sensors installed underneath the bridge. Thus, the BWIM has better 

durability and its installation does not interrupt the traffic. Furthermore, the measurement 

period of BWIM is usually significantly longer, which allows the dynamic effect to be 

filtered out and the static weight of the vehicle to be obtained. In addition, the BWIM also 

has the advantages of being non-intrusive and portable, making it an ideal replacement for 

pavement-based WIM. Figure 39 shows the framework of BWIM. In addition to the 

traditional application to overweight enforcement, recent studies have explored its potential 

application in fields such as SHM and bridge condition assessment. 

Figure 39 

The framework of BWIM and its applications 

This paper presents a comprehensive review of BWIM technology and its applications. The 

identification methodology is first reviewed and the instrumentation of the BWIM system is 

introduced focusing on its portability of application. Then, the applications of BWIM are 

discussed including the overweight enforcement, toll-by-weight, structural health monitoring 

and bridge condition assessment. Meanwhile, much effort is made to identify the remaining 

issues in the application of BWIM technology and the corresponding future research is 

proposed. 
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BWIM Algorithm 

Different methods have been proposed to identify the vehicle weight in BWIM including the 

Moses’s algorithm, the influence area method, the reaction force method, and move force 

identification (MFI) method. Among these algorithms, the Moses’s algorithm is commonly 

adopted for modern commercial BWIM systems due to its easy implementation and 

acceptable accuracy. 

Moses’s Algorithm. Moses  proposed the first BWIM algorithm for a beam-slab 

bridge [8]. For this type of bridge, the measured bending moment at time step k can be 

obtained by summing the individual bending moment of each girder: 

G
m

k i i

i

M ES  (48) 

where, G is the total number of girders; E is the modulus of elasticity; iS is the section 

modulus of the ith girder; i is the measured strain in the ith girder. Meanwhile, the predicted 

bending moment at time step k can be obtained using the influence line concept as: 
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where, N is the number of axles; iA is the weight of the ith axle; ,( )ii k CI  is the influence 

ordinate at the position of the ith axle; Di is the distance between the first axle and ith axle; Ci 

is the number of scans corresponding to Di; f is the sampling frequency of the BWIM system; 

v is the vehicle speed which is assumed to be a constant as the vehicle travels on the bridge. 

The error function for the total number of step T is defined as: 
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To minimize the error function, the least-square method is used. The partial derivative with 

respect to the axle weight is set to zero: 
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which leads to the following equation upon rearrangement and substitution: 
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(55) 

equation (53) can then be written in a matrix form as: 

FA M (56) 

Thus, the axle weight and gross vehicle weight (GVW) can be calculated as: 

(57) 1A F M

1

N

i

i

GVW A


 (58) 

Calibration of BWIM Systems. For the Moses’s algorithm, the accuracy of the 

influence line is critical for the BWIM system to achieve an accurate identification. When 

Moses first proposed the BWIM concept, the theoretical influence line of a simply-supported 

beam was adopted [8]. However, the theoretical influence line cannot accurately predict the 

real behavior of the bridge. To reduce the errors caused by the difference between the 

theoretical and true influence lines, O’Brien et al. presented a method to generate the 

influence line from direct measurements [23]. By using the least-square method, the error 

function defined in equation (51) is minimized with respect to the influence ordinate while 

the axle weights of the calibration vehicle are already known and thus the measured response 

of a load effect is converted into the influence line of that effect. This method was verified by 

field tests and was successfully applied in a BWIM system by Zhao et al. [27]. However, it 

should be mentioned that this method generates the influence line by connecting discrete 

points instead of producing a smooth curve. In order to generate a continuous influence line, 

some researchers adopted a polynomial function to describe the influence line and the 

optimal coefficients of the polynomial function are determined by minimizing the error 

function [28]. Ieng pointed out that the method proposed by O’Brien et al. is sensitive to 

perturbations and revised the method on a probabilistic basis utilizing the maximum 

likelihood estimation principle, respectively [23, 29]. The revised method takes advantage 

of more signals in the estimation of the influence line and thus reduces the error caused by 

the noise in a specific signal. 
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Accuracy of the Moses’s Algorithm. The accuracy of the Moses’s algorithm is 

affected by several factors. The three most significant factors include the dynamic effect of 

moving vehicles, the transverse position of the vehicle, and the condition of the final system 

equations. First of all, the dynamic effect caused by the moving vehicles reduces the 

accuracy of the Moses’s algorithm. This is because the Moses’s algorithm determines the 

axle weights through minimizing the difference between the measured and predicted bridge 

responses. However, the dynamic effect causes the measured response to deviate from the 

predicted response obtained using the static influence line and thus reduces the accuracy of 

the identified axle weights. From this perspective, the Moses’s algorithm usually requires the 

bridge surface and approach span be in good condition if a satisfactory accuracy is to be 

achieved. Furthermore, the transverse position of the vehicle may also affect the accuracy of 

the Moses’s algorithm. While the transverse position of the vehicle is not considered in the 

original Moses’s algorithm, some researchers have found that ignoring the transverse 

position of the vehicle could lead to significant errors in the identified axle weights in some 

cases [30]. In practice, the errors can be reduced by choosing bridges with fewer lanes. 

However, even if the bridge has only one lane, which is a rare case, the transverse position of 

the vehicle within the lane will still have an influence on the accuracy. Also, another issue 

associated with bridges having more than one lane is that there might be multiple vehicles 

present on the bridge, which makes the identification of individual axle weight difficult. 

Accordingly, some researchers proposed two-dimensional (2D) BWIM algorithms on the 

basis of the Moses’s algorithm to address this issue. Quilligan proposed a 2D BWIM 

algorithm as an extension to the Moses’s algorithm [24]. In the 2D algorithm, the influence 

surface concept is used instead of the influence line. The influence surface represents the 

load effect caused by a unit concentrated load at position (x,y) and the axle weights can be 

found by following the same minimization routine as used in the Moses’s algorithm. 

Theoretically, this would be an ideal solution to account for the effect of the transverse 

position of vehicles. However, the disadvantage of this algorithm is that it requires an 

accurate finite-element (FE) model of the bridge which comes at the cost of complex 

calculations as well as time-consuming calibrations. Alternatively, some researchers 

proposed other methods that modified the original Moses’s algorithm without involving the 

use of influence surface. Zhao et al. proposed a modified 2D Moses’s algorithm [30]. The 

proposed algorithm considered the 2D behavior of the bridge by incorporating the transverse 

distribution of wheel loads on different girders to predict the responses. 

Another common problem encountered when implementing the Moses’s algorithm is that the 

derived system equations are usually ill-conditioned, especially for a rough surface profile 

and vehicles with closely-spaced axles [16]. In this case, the solution of the axle weights 

using the least-square method would be sensitive to the measurement noise. This problem 
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can be resolved by applying the Tikhonov regularization technique to provide bounds to the 

solution. An additional penalty term multiplied by a regularization parameter is added into 

the original minimization formulation to improve the condition of the original system. The 

regularization technique was reported to significantly improve the accuracy of the identified 

axle weights; however, as the vehicle dynamics becomes more noticeable, the convergence 

of the regularized solution becomes slower [16]. Gonzalez et al. proposed a novel BWIM 

algorithm which makes use of strain sensors at multiple longitudinal locations [31]. This 

algorithm allows the ill-conditioned portions of the predicted axle force history to be 

identified and removed before calculating the static axle weights. 

The accuracy of a WIM system is usually defined in a statistical way. COST classified the 

accuracy into different levels as A, B, C and D based on the tolerance of the confidence 

interval for the relative error of the vehicle weight [32]. The level of accuracy determines the 

purposes of the BWIM [32]: (the number in the parenthesis represents the width of the 

confidence interval): 

Class A (5): legal purposes such as enforcement of legal weight limits and other particular 

needs. 

Class B+ (7): enforcement of legal weight limits in particular cases with a special agreement 

of the legal authorities; efficient pre-selection of overloaded axles or vehicles. 

Class B (10): pavement and bridge design, maintenance or evaluation, such as 

aggressiveness evaluation, fatigue damage and lifetime calculations; pre-selection of 

overloaded axles or vehicles. 

Class C (15) or D+(20): Detailed statistical studies, determination of load histograms, and 

accurate classification of vehicles based on the loads; infrastructures studies and fatigue 

assessments. 

Class D (25): Weight indications required for statistical purposes, economical and technical 

studies, standard classification for vehicles according to wide weight classes. 

Instrumentation of BWIM Systems 

An on-site BWIM system usually consists of a data acquisition system, communication 

system, power supply system, and sensors. As an example, Figure 40 shows the components 

of the SiWIM system, a commercially available BWIM system that was originally developed 

within the framework of the WAVE project and has been continuously improved and 

updated over the years [15]. The data collected from the on-site system are processed with 
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software using BWIM algorithms. The results are then presented in a graphic user interface 

(GUI) that is designed for users to visualize the real-time monitoring data. The following 

sections will introduce the typical instrumentation of BWIM systems including the types of 

sensors used in a BWIM system and their installation locations. 

Figure 40 

Components of an SiWIM system: (1) FAD sensors, (2) spider, (3) weighing sensors, (4) cabinet 

and panel, (5) batteries, (6) solar panels, (7) solar panel installation, (8) antenna, (9) camera, 

(10) PDA [30] 

Axle Detection. In a modern BWIM system, axle-detecting sensors are used to 

identify the presence of vehicle axles from which the speed and axle spacing of the vehicle 

can be calculated. Axle detection is an indispensable part of the BWIM system since the 

identified vehicle speed and axle spacing of the vehicle will directly affect the results of the 

axle weight calculation. The traditional instruments for axle detection include tape switches 

and pneumatic tubes. Moses pointed out that traffic switches are easier to incorporate into the 

system while the pneumatic tubes require a pressure sensing device to produce the signal of 

axle passage [8]. The identification of vehicle speed and axle spacing using traditional axle 
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detectors is actually quite simple. Usually, two parallel axle detectors are placed on the road 

surface where the spacing between the two detectors is measured as an input to the system. In 

some cases, where the transverse location of the vehicle needs to be determined, a third 

detector is placed diagonally with a known angle corresponding to the other two detectors. 

Nevertheless, the installation of axle detectors on the pavement usually requires lane closure 

and the poor durability of sensors also diminishes the advantage of the BWIM systems over 

the pavement-based WIM systems. 

To overcome the problems of the traditional axle detection, the FAD algorithm was first 

proposed in the WAVE project [15]. The basic idea of the FAD algorithm is to use FAD 

sensors to replace traditional axle detectors on the road surface. The FAD sensors measure 

the local strain responses and thus they pick up a sharp peak upon each axle passage above 

the sensor location. Typically, two FAD sensors are installed at different longitudinal 

locations on each lane with a known distance. Figure 41 shows some typical signals of FAD 

sensors. The signals were recorded under a five-axle truck passing on the bridge [30]. It can 

be seen that each FAD sensor picked up five peaks corresponding to the five axles. However, 

it should be mentioned that clear peaks in the strain signal may not occur if the wheel load is 

directly applied over the beam [33]. In practice, a correlation function is usually used to 

calculate the vehicle speed. The correlation function is defined as: 

( ) ( )g(t )Corr t f d  




  (59) 

where, f(t) and g(t) are the signals of FAD sensors at two longitudinal locations, respectively. 

To calculate the vehicle speed, the time taken by the vehicle to pass the known distance 

between the two sensors is needed. From equation (59), it can be seen that the correlation 

function will obtain the maximum value when f(t) and g(t+  ) both reach the maxima, i.e., 

picking up the peak corresponding to the same vehicle axle. Since the time difference 

between f(  ) and g(t+  ) is t, the time difference t0 that gives the maximum value of the 

correlation function is the time taken by the same vehicle axle to pass the known distance 

between the two FAD sensors and then the vehicle speed can be easily calculated by using 

the known distance and the time difference t0. Once the vehicle speed is known, the axle 

spacing can be obtained by using the time difference between the peaks in the FAD signals 

[34]. 
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Figure 41 

Typical FAD signals of a five-axle truck crossing [30] 

Although the FAD algorithm resolves the durability problem of the traditional axle detectors, 

it still requires additional sensors, i.e., FAD sensors, only for the purpose of axle detection. 

Furthermore, the FAD algorithm imposes certain restrictions upon the span length and 

superstructure thickness of the selected bridge. Namely, the FAD algorithm is not applicable 

to all types of bridges. As a general rule of thumb, the bridges suitable for the FAD algorithm 

should have the following: (1) a short span or relatively longer span but with transverse 

supports, i.e., secondary members such as transverse cross-beams or stiffeners, to divide the 

bridge into sub-spans because longer spans will have joint contributions of several axles that 

make it difficult to distinguish individual axles; (2) a thin superstructure because a thick 

superstructure will “smear” the peaks induced by the vehicle axles; (3) a smooth road surface 

and approach span since a rough surface condition will cause significant dynamic effects 

which impose additional peaks into the signal [15, 34]. The types of bridges that have 

already been identified as suitable for the FAD algorithm include orthotropic deck bridges, 

short integral bridges with thin slabs (usually 6 to 12 meters long with the slab thickness 

between 40 to 60 centimeters), and beam-slab bridges with secondary members [34]. 

Recently, the concept of a nothing-on-road (NOR) BWIM system was proposed. The goal of 

the NOR BWIM system is to free the use of axle detector on the road surface. While the 

FAD algorithm is one application of the NOR BWIM, a more effective way is to directly 

employ the global strain signal obtained from the weighing sensors to identify the vehicle 

speed and axle spacing. This will be a very attractive feature for future commercial BWIM 

systems since it reduces the number of sensors to be installed and thus the cost of the system, 

making the installation even easier. Besides, it does not impose any restriction on the 

selection of bridges, which helps extend the application of BWIM techniques. However, 

direct identification from the global strain signal is very difficult since it usually does not 

have a sharp peak upon each axle passage. Nevertheless, it has been shown by some 
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researchers that the identification can be achieved through proper signal processing 

techniques such as a wavelet-based analysis, which are suitable to treat non-stationary 

signals. Dunne et al. first proposed using wavelet transformation to identify closely-spaced 

axles from FAD signals [35]. Chatterjee et al. conducted field testing on a culvert and 

adopted the wavelet transformation to analyze the strain signal obtained from vehicle 

crossing [13]. The results show that wavelet techniques can help identify closely-spaced 

axles within a tandem or tridem group which could not be directly identified from the FAD 

signal and reveal the potential of using wavelet techniques to identify vehicle axles from the 

strain signal of weighing sensors. Yu et al. proposed a vehicle axle identification method 

based on the wavelet transformation of the global signal [36]. The numerical results showed 

that this method can provide accurate identification of vehicle axles using only weighing 

sensors. 

In addition, some other methods for axle detections have also been reported. Some 

researchers found that crack openings on the bottom of the concrete slabs are sensitive to 

axle loads and thus they measured the crack displacements to detect the vehicle axles [37]. 

However, this method cannot be generalized since it is only applicable to bridges with crack 

openings. Wall et al. adopted an approach where the change of slope induced by the axle 

passage is used for the axle identification [38]. In an ideal setting, the passage of each axle 

will have a corresponding impulse in the second derivative of the strain signal. However, in 

practice, this approach requires that the strain signal have evident slope discontinuities; in 

other words, the strain signal must show a certain level of sensitivity to the vehicle axles. 

Also, as these slope discontinuities are only subtle changes, this approach may no longer be 

feasible once the measurement noise is introduced in practice. O’Brien et al. proposed a 

novel axle detection strategy using shear strain sensors based on the assumption that each 

axle passage will induce a sudden change of the shear strain [39]. Preliminary FE analyses 

have been carried out on a beam-slab bridge and the interface of the web and the flange is 

recommended for the sensor location. Further work will be continued to assess the feasibility 

of this novel axle detection method. With the recent advances of image processing 

technology, the identification of the vehicle axle configuration has been made possible 

through proper image analysis algorithms and thus a vision-based system utilizing a roadside 

camera was proposed by some researchers as a potential tool for the axle detection [40]. 

Installation Location of Sensors 

The installation location of sensors should account for several factors including the purpose 

of sensors, types of bridges, strain levels, sensitivity to strain variations, etc. In this section, 

the installation location of sensors will be discussed with respect to the two most important 

88 



 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

  

  

 

  

   

 

factors, i.e., the purpose of sensors and types of bridges chosen for installation. In addition, a 

case study with specific sensor layouts on a typical beam-slab bridge is also presented. 

Purpose of Sensors. Weighing sensors measure the global bending strain caused by 

vehicle loads and thus they are usually installed at locations of most pronounced responses, 

e.g., the mid-span of the bridge. For complex bridge structures, the locations of weighing 

sensors can be determined by a preliminary FE analysis. As for axle-detecting sensors, both 

traditional axle detection and FAD algorithm require two parallel lines of sensors be installed 

with a known distance. However, the differences are the following: (1) traditional axle-

detecting sensors are installed on the road surface while FAD sensors are installed 

underneath the bridge; (2) traditional axle-detecting sensors can be installed at almost any 

location on the bridge; however, the selection of the installation locations for FAD sensors 

depends on the shape of the influence line since the influence line at the location of 

installation needs to present a sharp peak in order for the axle identification. 

Type of Bridges. The sensitivity of strain responses to axle loads differs between 

different bridge types and different measurement locations on a certain bridge, thus the 

specific plan of sensor layouts for each bridge should be determined on a case-by-case basis. 

Nevertheless, based on the existing BWIM practices, the general schemes of sensor layouts 

for some typical bridges are summarized and shown in Table 20. It should be mentioned that 

the reason for requiring only one line of axle-detecting sensors in orthotropic deck bridges is 

that the installed weighing sensors also pick up sharp peaks corresponding to the axle 

passage, namely, the weighing sensors in this case also serve the purpose of axle detection. 

In addition, Brown studied the influence of different installation schemes of FAD sensors on 

the accuracy of axle detections including the longitudinal and transverse locations, and 

installation angles [41]. Based on the signals obtained from a T-beam reinforced concrete 

bridge, it was concluded that FAD sensors should be orientated longitudinally and installed 

close to the beginning or end of the bridge span, ideally directly below the wheel path, in 

order to obtain a clear signal with sharp peaks. The reason for choosing the beginning or end 

of the bridge span is that the bridge is stiffer at these locations and thus more definite peaks 

can be produced, and that the dynamic effects at these stiffer locations are also less 

pronounced, which leads to a cleaner signal. Furthermore, the study also shows that, 

compared to longitudinally-orientated sensors, transversely-orientated sensors provide poor 

signals for axle detection. Besides, it was also found that weighing sensors do not have to be 

installed exactly at the mid-span since any location near the mid-span can provide an 

adequate strain level for weighing purposes. 
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Table 20 
General layout schemes of BWIM sensors for typical bridges types 

Type of bridges 
Location of weighing sensors 

Longitudinal Transverse 
Location of axle-detecting sensors 

Longitudinal Transverse 

Orthotropic 
deck bridges 

Bottom of the 
longitudinal stiffener 

One line of sensors 

at a section away 
from the mid-span 

Bottom of the 

longitudinal stiffener 

Integral slab 

bridges 
Mid-span Bottom of the slab Two lines of 

sensors at two 
Bottom of the slab 

Beam-slab 

bridges 
Bottom of the girder 

sections away from 

the mid-span Bottom of the slab 

Case Study 

In order to give a better illustration on the sensor installation of the BWIM system, a case 

study is presented herein. The case study is chosen from a recent BWIM practice conducted 

in Alabama [30]. The instrumented bridge is a three-span simply-supported concrete multi-

girder bridge. The three spans have an equal length of 12.8 m and the first span was chosen 

for the installation of the BWIM system. The reasons for selecting this bridge are as follows: 

(1) the bridge has a short span and thin superstructure, suggesting that it is suitable for the 

implementation of the FAD algorithm; (2) the short span has higher natural frequencies to 

avoid matching the natural and pseudo frequencies of the vehicle and thus reduces the 

dynamic effect of the moving vehicles; (3) the bridge has a smooth approach and good 

surface condition, which again helps minimize the dynamic effect. 

For the sensor installations, a total of four weighing sensors were installed in a parallel 

manner underneath the girders (one for each girder) and a total of four FAD sensors were 

mounted beneath the concrete slab (two for each lane). The specific sensor layouts are 

presented in Figure 42. It should be noted that the sensors are not installed exactly at the mid-

span because of the diaphragm. 
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Figure 42 

Sensor layouts of a typical BWIM system (cm) [30] 
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Applications of BWIM Technology 

Overweight Enforcement. The traditional method for overweight enforcement uses 

static scales aided with visual pre-selection to weigh highway trucks. However, the use of 

static scales is time-consuming and infeasible for transportation systems with heavy truck 

traffic [42]. The WIM technology is able to identify the truck weight without interrupting the 

traffic, which makes it an ideal tool for overweight enforcement. Nevertheless, the use for 

direct enforcement requires very accurate estimation of vehicle weight. As a prerequisite of 

direct enforcement, the error of the identified vehicle weight should be less than 5% for 95% 

of the results [33]. For pavement-based WIM, the accuracy is affected by many factors 

including the quality of system installation, usage and maintenance, vehicle speed and 

acceleration, road surface condition, tire friction and weather conditions, which makes it 

difficult to satisfy the requirement for direct enforcement [43]. Instead, pavement-based 

WIM can be used for effective pre-selection of overloaded trucks [44]. As shown in Figure 

43, the truck is first weighed on the highway as it vehicles travels at its normal speed. The 

estimated weight of truck is then compared with a preset threshold determined based on the 

distribution of the measured vehicle weight [45]. If the estimated weight exceeds the 

threshold, then the truck may be overloaded and needs to bypass the inspection station to be 

weighed by the static scale. Otherwise, the truck can proceed without inspection. 

Figure 43 

Pre-selection of overloaded trucks using pavement-based WIM [25] 

The BWIM is potentially more accurate than the pavement-WIM since it has longer 

measurement period. The BWIM can be used for direct enforcement provided that the 

selected bridge meets certain requirements such as a relatively short span and good surface 

condition. In addition, another advantage of BWIM for overweight enforcement is that it is 
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invisible to truck drivers. In practice, BWIM has been commonly used for pre-selection of 

overloaded vehicles. However, the application for direct enforcement is still rare. 

Toll-by-weight. In some countries such as China, the toll rate is calculated based on 

the truck weight and thus the accurate estimation of truck weight is critical to the 

implementation of the toll-by-method method [43]. In this case, static weighing is clearly not 

suitable considering the large volume of trucks that need weighing. Instead, pavement-based 

WIM has been used as the primary method for the toll-by-weight method. Figure 44 shows 

the setup of a WIM-based toll booth. Typically, bending plate or piezoelectric cable WIM 

scales are used due to the low costs. However, their accuracy is relatively low. Sometimes, 

multiple weighing is needed, leading to congestions at the toll station. BWIM, on the other 

hand, is potentially more suitable for the toll-by-weight method since it is more accurate than 

pavement-based WIM. However, it does require a bridge suitable for BWIM implementation, 

which, to some degree, limits the application of BWIM for the implementation of the toll-by-

weight method. 

Figure 44 

A typical WIM-based toll booth [43] 

In addition to the above two applications, the BWIM can also be used to simply monitor the 

traffic. The obtained traffic data can be used for traffic planning and the design of pavement 

and bridges, which does not necessarily require very high accuracy of the system [32]. 

Structural Health Monitoring (SHM). The objective of SHM is to determine the 

health condition of the bridge. The damage of the structure can happen due to natural causes 

such as the deterioration of material, corrosion, fatigue cracking or due to human factors such 

as vehicle and vessel impact. The damage due to natural causes is usually progressive while 

the damage due to human factors is usually sudden. The SHM uses the monitored bridge 

response to detect the sudden or progressive damage to the structure. Generally, the SHM 

methods are classified into the four levels [46]: 
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Level 1: identify the presence of the damage. 

Level 2: identify the presence and location of the damage. 

Level 3: identify the damage presence and location, and quantify of the level of damage. 

Level 4: identify the damage presence and location, quantify of the level of damage, and 

predict of the remaining life of structures. 

When structural damage occurs, the structural properties also change correspondingly. 

Therefore, the core of SHM is to find a damage index that is sensitive to the changes in 

structural properties. To do this, numerous damage detection methods have been developed. 

Generally speaking, the damage detection methods can be classified into two types: 

response-based method and model-based method. 

Response-based Methods 

Natural frequency-based Methods. The natural frequency of structures is sensitive 

to structural damages since it is related to the stiffness and mass of the structure. The shift of 

natural frequency may indicate the presence of structural damage. Also, the natural frequency 

of the structures can be easily measured. Thus, the change of natural frequencies is an 

attractive damage index to indicate the presence of structure damage [47]. Furthermore, it 

was shown that the ratio of the change of frequency in two modes is a function of the damage 

location and thus the measurement of a pair of frequencies yield a locus of potential damage 

locations [48, 49]. To identify the location of the damage, the loci of different pairs of modes 

are superimposed and the damage location can be identified as the intersection of the curves 

[49]. However, there are many limitations to natural frequency-based methods. For example, 

it is not sensitive to local damages [50]. Some researchers have found that the shift of natural 

frequency was not significant even though significant loss of stiffness had occurred in real 

structures [51]. Moreover, it was reported that the variation of natural frequency due to 

ambient vibrations and environmental effects could reach 10%, which makes it difficult to 

distinguish the cause of the change in the natural frequency [47]. For these reasons, the 

greatest success of using natural frequency-based methods for damage detection is still in 

laboratory tests using simple structures with single damage locations [52]. 

Mode shape-based Methods. Different methods have been developed to extract the 

mode shapes from the measured bridge responses [53]. The mode shape-based methods are 

based on the assumption that the mode shapes of the structure changes as a result of 

structural damage. Thus, the damage can be detected by comparing the mode shapes of the 

intact and damaged structures [54]. Two indices have been developed to measure the 
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similarity of mode shapes including the MAC (modal assurance criterion) and the COMAC 

(the coordinate modal assurance criterion) [55, 56]. The MAC measures the overall 

similarity of mode shapes. The value of MAC varies from 0 to 1 with 0 being entirely 

dissimilar and 1 being perfect match [47]. A reduction of the MAC indicates the presence of 

damage. The COMAC is the measure of similarity of mode shapes at a point. A low value of 

COMAC at a point indicates the difference of the mode shapes at the point and can thus 

provide information on the potential damage locations [52]. The mode shape-based methods 

are more sensitive to local damages than the frequency-based methods since the mode shapes 

contain the location information. Nevertheless, the mode shape-based methods depend on the 

accurate measurement of mode shapes [47]. The main difficulties lie in a large number of 

sensors required [52], sensitivity to measurement noise [50], and the expansion techniques to 

obtain the mode shapes from incomplete measurements [57]. 

In addition to the direct comparison of mode shapes, the change of mode shape curvature is 

considered to be sensitive the location of the damage and it is usually more pronounced than 

the change of displacement of mode shapes [58-59]. The curvature can be calculated using 

the displacement of the mode shapes. The method based on the change of mode shape 

curvature has been shown to be effective in detecting local damages [60]. However, at higher 

modes, the difference in mode shape curvatures may not be caused by structural damages 

[50]. Usually, only the first few modes are used to extract the curvatures for damage 

detection. Besides, the mode shape curvature is the derivative of mode shape displacement 

and thus it relies even more on the accurate measurement of mode shapes [47]. 

Model-based Methods. Model-based methods use a numerical model of the 

structures to identify structural damages. Initially, the numerical model is calibrated using the 

baseline measurement to reflect the structural behavior at the healthy state. Then, the model 

is updated to reproduce the measured response of the structure and the comparison of the 

updated model and the initially calibrated model can provide information on the damage 

location and extent [61].  Usually, the finite element (FE) model of the structure is 

constructed and FE model updating is conducted to calibrate the model to reflect the 

structural behavior [62]. The model updating involves minimizing an objective function with 

respect to the parameters that represent the structural properties. There have been many 

studies on the model updating and different optimization methods were used. The main 

advantage of the model-based methods is that the identification of the damage location and 

extent is straightforward [63]. However, it heavily relies on a detailed and accurate model of 

the structure which may be difficult to obtain. Furthermore, one common problem of model 

updating is that there are multiple solutions and although a solution can be obtained through 

optimizing the objective function, the obtained solution still may not correspond to the actual 
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damage case. In this case, a visual inspection will be helpful to identify whether the 

identified damage is a false positive. 

Application of BWIM in SHM. A well-calibrated BWIM system should be able to 

accurately identify the vehicle weight. However, if the bridge structure suffered damage, then 

the calibration can no longer reflect the actual behavior of the bridge, which will result in 

identification errors of the vehicle weights. Cantero and Gonzalez proposed a Level 1 

damage-detection method using the relative difference of GVW identified from the BWIM 

and pavement-based WIM as the damage indicator, EBWIM (Figure 45) [64]. It was noted 

that even if the bridge is intact, there still exist errors of GVW identified in both systems due 

to factors other than the damage such as measurement noise. Thus, the EBWIM is averaged 

over a large sample of trucks to compensate for the dispersion of individual trucks. 

Simulation study was conducted to test the effectiveness the proposed method. 1,000 trucks 

were simulated each day and the daily average EBWIM was calculated (Figure 46). The 

average of 25 daily EBWIM, i.e., monthly EBWIM was used to detect the presence of global 

and local damages that were modeled as the loss of stiffness. It was found that the proposed 

damage indicator is sensitive to both global and local damages and that the proposed method 

is robust in detection damages since it is applicable for different road profiles and it allows 

for the intrinsic errors in WIM systems themselves. 

Figure 45 

Concept of WIM-based SHM [64] 

Figure 46 

Daily average EBWIM for different damage cases [64] 
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Cantero et al. proposed a Level 1 damage detection method using the concept of virtual axle 

(VA) [65]. When identifying the axle weight in BWIM, the vehicle was assumed to have a 

weightless axle in addition to its existing axles as shown in Figure 47. This additional axle is 

termed “virtual axle (VA).” It was shown that if there is no change in the influence line of the 

structure, i.e., the structure is intact, the BWIM will estimate the weight of the VA to be zero. 

Otherwise, the estimated weight of the VA will be different than zero, which indicates the 

presence of structural damage. Based on this, a damage index named VA* is defined to 

reflect the weight of the VA relative the GVW identified without the VA. The VA* is 

averaged over a large number of trucks to reduce the influence of errors due the noise and 

dynamic effects. The simulation results indicate that the proposed method is able to detect 

small local damages. However, it should be noted that the proposed method is only 

applicable to statically indeterminate bridges with relatively short span length. 

Figure 47 

Concept of the VA for damage detection [65] 

Carey et al. investigated the possibility of using moving force identification method for 

damage detection of bridges [66]. They found that the axle force history is sensitive to the 

structural damage as shown in Figure 48. However, different vehicles have different 

properties, which results in different axle forces that are not comparable. Thus, the mean axle 

force of a large number of vehicles with the same axle configuration is used as the damage 

indicator. The results show that the proposed method can successfully detect local damages 

and has the potential to provide possible locations of damage. 
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Figure 48 

Inferred axle force for the same vehicle at health and damaged state of the bridge [66] 

Gonzalez and Karoumi  proposed a model-free damage detection method using BWIM and 

machine learning method [67]. The proposed method utilizes the vehicle information 

identified from the BWIM system as input to an artificial neural network (ANN) that is able 

to predict the deck acceleration. Since the ANN is trained to predict the behavior of the 

structure at its healthy state, the different between the predicted acceleration and measured 

acceleration can indicate possible damages of the structure. The framework of the proposed 

method is shown in Figure 49. 

Figure 49 

Framework of the damage detection method proposed by [67] 

Bridge Condition Assessment. Bridge load rating is common practice used to assess 

the in-service condition of bridges. Bridges are typically rated every two to five years 

depending on their conditions. The AASHTO load and resistance factor rating (LRFR) 

specifications define the rating factor as: 
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where,  is the system factor; DL is the deal load; LL is the live load; IM is the impact factor 

or dynamic load allowance; DL is the dead load factor; LL is the live load factor [68]. The 

rating factor reflects the safety reserve of the structure. A rating factor larger than one 

indicates that the bridge has the capacity to carry the live load. Otherwise, the bridge is 

considered to be vulnerable and there is a need for load posting. In order to be consistent to 

LRFD design specification, the live load factor is generally chosen to be 1.75 [1]. However, 

the factor of 1.75 may be overly conservative for some bridges since the design codes need to 

cover a wide range of bridges and there exist significant uncertainties. 

The BWIM system is able to collect the site-specific traffic data and thus can significantly 

reduce the uncertainties for condition assessment. The collected site-specific traffic data can 

be used to calibrate live factor specific for the bridge under assessment, which can help avoid 

unnecessary load posting and increase the efficiency of transportation system. Zhao et al. 

used the data collect by pavement-based WIM and BWIM systems in Alabama to calibrate 

the statewide live load factor [69]. They found that the live load factor specified by the 

LRFR is overly conservative for the economic assessment of bridges. Accordingly, they 

suggest that the ALDOT adopt the state-specific live load factors to improve the load rating 

especially when the LRFP specified load factor results in the bridge to be posted. In addition, 

they also found that different traffic direction and seasonal variation do not have a significant 

effect on the live load factor. Similar works have also been conducted by [70]. 

In addition, when the BWIM data is collected over a relatively long period of time, the 

statistical characteristics of vehicle weight can be obtained and the future vehicle weight can 

be predicted using certain projection methods. The predicted future vehicle weight can be 

used for traffic planning and assessing the condition of the bridge during its remaining life, 

which can provide essential information for bridge management and maintenance. 
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APPENDIX II 

Sample Time History of Sensors 

Figure 50 

Sensor locations for the monitored spans of the I-10 Twin Span Bridge 

Sample time histories of all sensors shown in Figure 50 are plotted below where S=steel, 

C=concrete, G=girder. B=bottom, T=top: 
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Signal issues 

Unknown sharp peaks: 

The peaks duration is much smaller than the peaks caused by truck crossing as can be shown 

from the figure below. 
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