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Abstract 

The Trip Generation Manual published by the Institute of Traffic Engineers (ITE) is 

widely used to estimate trip generation of individual land uses. However, its trip rates 

are based on data collected over six decades and predominantly from sites in suburban 

areas. The result is vehicle trips tend to be overestimated in urban areas where transit 

is prevalent and pedestrian trips more frequent. In general, it is believed that the “built 

environment” surrounding a site has a significant impact on trip generation. To test 

this hypothesis, manual counts of trip generation were conducted at a sample of strip 

malls with varying surrounding population density, land use diversity, and traffic 

intensity, and regression analysis conducted to determine the impact of surrounding 

conditions on trip rates. It was found they reduced the root-mean-square-error of trip 

rates of strip malls in Louisiana by 36 percent compared to those estimated from the 

ITE trip equation. Different technologies were tested to automate counting of trip ends 

at land use sites; the use of image recognition from video recordings was found to be 

the most successful with 90 percent accuracy.  
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Implementation Statement 

The research conducted in this study has led to identifying modification factors for the 

Institute of Transportation Engineer (ITE) trip rates for strip malls and has also identified 

an automated means of collecting trip data for individual land uses in general. The DOTD 

can use the automated data collection procedure to develop modification factors to ITE 

trip rates for different land uses in different settings in Louisiana. The study has also 

demonstrated the use of GIS as an interface between the user and the data needed to 

estimate trip rates for a particular land use in a particular location. While the GIS system 

only accommodates a single land use at the moment, as more land uses are surveyed and 

new modification factors identified, the convenience of the GIS interface will be an 

important feature of the process. 
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Introduction 

Background 

The Institute of Transportation Engineers (ITE) has published trip generation rates of 

different land uses from studies conducted in the U.S. over the past 50-60 years. Over 

time, observations from new studies have been added and land uses have been 

disaggregated into finer land use categories. However, this has generally not resulted in 

more accurate estimates of trip generation rates at individual locations. The reason is that 

observed trip rates vary considerably from study to study. An example of this is shown in 

Figure 1. It is extracted from the ITE Trip Generation Manual (8th edition) and shows the 

results from 40 different sites where the number of trip ends during the peak hour 

between 4 and 6 pm per 1,000 square feet of supermarket floor area were measured [1]. 

As shown, observed trip rates at individual sites range from roughly 5 to 20 trip ends per 

hour per 1000 square feet of floor area.  Observed values are shown as crosses in the 

diagram. Their dispersion around the fitted line (solid line in diagram) illustrates the 

variation in the data. A measure of the variation around the fitted line is the Coefficient of 

Determination, R-squared, which, in this case, shows 69 percent of the variation in the 

number of trip ends is captured by the fitted line.  

The inability of the ITE trip generation rates to depict trip rates accurately at individual 

locations has long been recognized [1], [2], [3]. Even in the user guide of the ITE Trip 

Generation Manual, the suggestion is made that users must take care in using average 

values and may want to use local characteristics of a site to adjust average trip rates to a 

specific location [4]. In addition, since the trip rates published in the ITE Trip Generation 

Manual are mainly from data collected at suburban locations, the impact of public 

transportation, ridesharing, or pedestrian-friendly conditions often found in an urban 

environment, have largely been ignored [4]. To support this argument, a review of past 

ITE trip rate errors shown in Table 1 shows that overestimation is more common than 

underestimation, and errors in urban areas are generally larger than in suburban areas [2]. 

Mixed land use developments (i.e., where more than two land uses are present on the 

same site) are becoming increasingly popular among property developers, and they are 

also one of the land uses for which the DOTD has experienced inflated trip rate estimates 

in the past. There is a corresponding increase in research related to the trip generation 

rates of this land use [5], [6], [7], [8].  
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Figure 1. Observed trip generation at supermarkets  
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Table 1. ITE trip rate errors 

   



Literature Review 

Factors Affecting ITE Trip Rates 

There has been considerable research in the area of amending or adjusting ITE trip 

generation rates in the past 20 years. Two identifiable thrusts are the inclusion of the built 

environment (i.e., nature and intensity of surrounding land use and transportation service) 

in the adjustment of trip rates; and attention to mixed use developments and how they 

alter trip rates from single land uses as a result of multiple visits among the land uses at a 

mixed-use development. 

One of the main impacts the built environment has on trip rates is that auto trips tend to 

be overestimated in urban/downtown areas in large cities where non-vehicle modes have 

a noticeable share of the trips [9]. This is because much of the data on which the ITE trip 

rates are based were collected in suburban areas where most travel is conducted by 

automobile [2]. Thus, while the trip generation of a site in terms of person trips may 

remain the same, vehicle trip generation using ITE rates are typically overestimated in 

areas such as urban centers, mixed use developments (MXD), and transit-oriented 

development (TOD) areas. To respond to this limitation, the 10th edition of the ITE Trip 

Generation Manual has provided new urban and person-based trip data for the first time 

[10].  

One study that identified adjustments to the ITE trip rates was the study conducted under 

the supervision of the Planning Department of the City and County of San Francisco in 

2002 [11]. It produced a look-up table of trip rates for different land uses. It was based, 

among other sources, on data collected from the 15,000 household MTC 2000 Bay Area 

Travel Survey in nine counties in the San Francisco Bay Area [11]. It recommended 

adjustments to ITE trip generation rates based on variables such as density and proximity 

to rail or ferry transit (within ½ mile, between ½ and 1 mile, beyond 1 mile) and urban 

context (urban area, high-suburban area, low-suburban area and rural area) [12].  

The Trip Rate Information Computer System (TRICS) in the U.K. provides a similar trip 

estimation service as the ITE Trip Generation Manual does in the U.S. However, it uses a 

context-sensitive method to estimate both vehicular and multi-modal trip rates for a 

variety of land use types [13]. The system is sensitive to the location of the site (edge of 
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town, town center, suburban area, etc.) and surrounding land use (retail zone, residential 

zone, high street, etc.) [13].  

Regarding the study of mixed-use developments, the U.S. Environmental Protection 

Agency (EPA) has developed a new dataset and methodology in cooperation with ITE 

called MXD, which specifically addresses trip generation at mixed use developments 

[14]. The method was developed by studying the trip-generation impacts of mixed-use 

developments at 239 multiuse sites in six metropolitan areas. The required data were 

collected from various resources, such as household travel surveys and GIS databases, to 

create consistent land use and travel measures [11]. They tried to identify the design and 

other context characteristics of smart growth areas that engender walking, biking, and 

transit use as well as to identify the number of internally-generated trips. Knowing the 

geographic, demographic, and land use characteristics of an area surrounding a planned 

development, the EPA MXD model is able to estimate the share of walk and transit trips 

as well as daily vehicle miles of travel that will be generated by the development. In 

2010, the EPA-SANDAG method was introduced as a result of the EPA MXD method 

being adapted for use in the San Diego region located in California [15]. 

TRB’s National Cooperative Highway Research Program (NCHRP) launched a study, 

NCHRP Project 8-51, to estimate internal trips generated at mixed use development 

(MXD) sites. The method includes a classification system to identify internal trips at 

MXDs and, subsequently, the reduction in ITE rates based on internal capture levels [16]. 

Although the NCHRP 8-51 procedure is based on the ITE procedure, the proximity of 

interacting land uses, plus both A.M. and P.M. peak periods, are incorporated in the 

procedures. Estimation errors at MXDs reportedly decrease by approximately 50 percent 

from ITE-based methods when applying this method [16]. The final report of this project 

has been published as NCHRP Report 684 [16]. 

Several studies have been conducted on the impact of the built environment on trip rates 

at Portland State University by Clifton et al. [1]. They investigated the effect of the urban 

context on trip generation rates across three land uses (convenience stores, high-turnover 

restaurants, and drinking establishments) by surveying 78 establishments located in a 

variety of settings such as suburban and city centers. Vehicle trip rates were obtained 

manually using site visitor surveys as well as exiting and entering person and vehicle 

counts. The results were compared with the ITE trip rates and urban context adjustment 

models were produced incorporating built environment factors. They found the adjusted 

models improved vehicle trip rate estimates for convenience markets and drinking places 



   

 

—  17  — 

 

in comparison with the ITE methodology, while no improvement was achieved for the 

high turnover restaurant land use category. Currans and Clifton (2015) also investigated 

the possibility of using Household Travel Surveys to adjust the ITE trip rates [3]. 

Schneider et.al (2015) developed two linear regression models for morning and afternoon 

peak hour to adjust ITE vehicle trip estimates across 50 smart growth areas in California 

[4]. Adjusted R squares of nearly 0.3 and 0.29 resulted for the morning and afternoon 

peak hour models. The models are appropriate to be used for “single land uses in several 

common categories, such as office, mid- to high-density residential, restaurant, and 

coffee/donut shop” and are suitable for planning level analysis. 

The built environment is described in several terms. One description is that it includes the 

following Ds: development, density, diversity, design, destination accessibility, distance 

to transit, development scale, demand management, and demographics. Demographics, 

and some of the other factors listed above, are expected to capture the socioeconomic 

characteristics of individual sites [5]. Table 2 lists the built environment factors employed 

in different studies across the U.S. as reported in the literature. 

Cervero et al (1997) introduced the original three Ds of density, diversity and design as 

the main categories of built environment (BE) characteristics [6], [7]. As a result of their 

survey on the influence of these three BE factors on travel behavior, it was revealed that 

the triune BE measures have a strong relationship with travel behavior by the negative 

influence they have on household VMT, but a positive impact on non-auto mode choice 

when non-commute trips are considered [6]. Moreover, the strong relationship of VMT 

and trip length with destination accessibility has been confirmed [5]. 

In urban studies, urban density is usually measured by population, employment, building 

floor area, housing units, and average lot building coverage per unit area. Also, activity 

density is defined as the aggregation of population and employment variables per areal 

unit [5] . The activity density affects mode choice considerably [8]. It is shown that an 

inverse relationship exists between density and vehicle trips [9]. The reason lies in the 

correlation among built environment measures. For example, an increase in population 

density also increases the diversity of land uses due to the economic opportunities dense 

regions offer in satisfying the various needs of the population. Because of the high value 

of land in dense regions, dense population and traffic congestion, environmental pollution  
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Table 2. Candidate measures affecting trip generation rates 

Measures Factors Variables 

  

Built 

environ- 

ment 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Density Housing density 

Population and/or employment density 

Diversity Land-use mix 

Non-residential land use 

Percent single-family housing units 

Retail employment 

Design 

(vehicle 

activity) 

Total intersection density (per square mile) 

4-way intersection density 

Average block size including median block perimeter 

(miles), median block area (acres) 

Average street widths 

Number of lanes 

AADT 

Average building setback 

Pedestrian and bicycle facilities 

Destination 

accessibility 

Regional (distance to CBD) 

Local (distance from home to the closest store) 

Job accessibility by auto 

Job accessibility by transit 

Distance to 

Transit 

Transit route density or number of transit corridors 

Distance between transit stops 

Number of stations per unit area 

Demand 

management 

Parking provided per service population 

Percent of site area covered by surface parking 

Demo-

graphics 

Socio-

economic 

controls 

Person/neighborhood paired by household size, 

occupation, income, race, gender, age of neighborhood, 

dwelling type (housing type), (rapid) transit service, 

roadway network, topography, regional location, number 

of children and some others [16] 

Lowest/ highest income household dropped from sample 

Neighborhood auto ownership levels 
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of automobiles and many other reasons, dense urban regions enjoy the greatest share of 

quality transit, public transit facilities, pedestrian walkways, and cycling routes. 

According to Ewing and Cervero (2001), the aggregate elasticity of density and vehicle 

trips was calculated at about -0.05, meaning a one percent increment in the density of an 

area will result in approximately 0.05 percent reduction in vehicle trips [9]. 

Diversity is defined as the presence of different land uses in a specific area. This factor is 

usually measured as the percentage of commercial land use to total land area, or the 

percentage of employment to total population [10], [9]. With increasing diversity in an 

area, origins and destinations come closer together which results in a decrease in trip 

length and travel time for both work and shopping trips [11]. The literature also suggests 

that an increase in diversity increases walking trips, and mixed-use development can 

cause a reduction in single-occupant commuting [12], [11] . Transit developments are 

also supported by diverse areas. Consequently, vehicle trip generation studies have 

observed that diverse areas tend to have reductions in vehicle trip generation [10]. 

Design addresses street network features varying from a grid network located in dense 

urban areas to curved streets, loops, and cul-de-sacs in low density suburban areas. To 

characterize street networks and their impact on travel, the following factors are usually 

considered; street connectivity, directness of routing, block sizes, sidewalk continuity, 

and several other factors [9]. These factors have been classified into two main categories: 

macro-scale and micro-scale features reflecting neighborhood and immediate 

environmental characteristics.  Macro-scale measures represent the street network 

connectivity through average block size, intersection density, and some other sub-factors, 

while micro-scale features reflect the walkability of neighborhoods through pedestrian 

amenities [10].  

The impact of transportation network design on travel behavior has been demonstrated in 

several studies [6], [13], [14]. The network characteristics influence not only travel times 

by different modes, but also travel decisions. Moreover, the noticeable impact of urban 

design and transportation infrastructure on neighborhood auto ownership levels and 

distance driven for neighborhoods has been demonstrated in three case studies in 

Chicago, Los Angeles, and San Francisco [15]. According to Ewing et al. (2001), the 

aggregate elasticity of street network density and vehicle trips was calculated at about      

-0.05 [9]. 
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According to Ewing and Cervero (2001), destination accessibility is defined as the ease 

of access to a destination at a local or regional scale [9]. Local accessibility is defined as 

the distance between home and the closest store, while regional accessibility is 

considered as the distance to the central business district or the number of jobs that can be 

accessed to them within a given travel time [5]. Based on analysis, trip length is clearly 

affected by destination accessibility [16]. 

As Ewing and Cervero (2010) have observed, transit accessibility not only affects mode 

share by increasing the possibility of using transit, but it also stimulates the non-

motorized mode share [5]. Dense and diverse areas near a transit station usually provide 

better regional accessibility and more local opportunities. These factors provide a suitable 

context for the idea of trip chaining by walking to nearby stores and then using a transit 

station. Thus, vehicle trips and VMT would be decreased by being closer to transit [16]. 

Supporting their conclusion, a 15,000-household travel survey conducted by the 

Metropolitan Transportation Commission in San Francisco observed the travel behavior 

of residents living at different distances to rail stops and ferry terminals to be different. 

They classified the households into three discrete groups based on their distance to the 

transit stations (within a half-mile, between half and one mile, and beyond one mile) and 

found that using transit is four times higher for the residents living in a half-mile to the 

station in comparison with the others living further away. Additionally, within a half mile, 

walking was twice and cycling was three times as likely as for those living further away. 

Furthermore, 42 percent of daily trips of residents living and working within a half mile 

of transit or ferry stations were conducted by non-automobile mode share and also a third 

of the aforementioned households had no vehicles.  

According to Handy (2015), the ITE methodology has caused overestimation of 48 

percent for mixed-use sites and 94 percent overestimation for infill sites [17]. Another 

study found that well-supported transit-oriented developments (TODs) normally have 

between 30 and 50 percent less vehicle trip-generation than comparable suburban, 

vehicle-oriented areas [18]. According to Ewing et al. (2017) in a study of five US case 

studies, TODs create remarkably less demand for parking and driving in comparison with 

ITE estimates [19]. They conclude that vehicle trip generation rates and peak parking 

demand in TODs are approximately half of ITE estimates. Surprisingly, the majority of 

trips were found to be conducted with non-vehicle modes and only one quarter of all trips 

were conducted using vehicles [19]. 
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Data Collection Procedures 

Local trip data required for site-specific trip generation studies are typically collected 

manually. The most common manual approaches are either on-site observation or video 

recording, followed by analysis of the video data in the office, with the latter being much 

more popular due to safety and comfort concerns associated with on-site observation. 

However, low visibility due to poor lighting, low camera resolution, or adverse weather 

conditions can make recovering data from video images difficult. There is also the 

possibility that a vehicle passing through an entrance/exit can obscure other vehicles from 

view. Another issue is property managers do not usually allow on-site surveys and may 

even oppose the installation of traffic counters or video cameras in driveways leading to a 

facility [20]. One solution is to mount the camera in the road reserve.  

Automated data collection for land use trip generation has been limited to using a 

handheld tablet to conduct intercept surveys and pneumatic tubes to count vehicles [8], 

[4]. Although a wide range of automatic devices are available for vehicle counting in 

different areas of transportation, they are not well developed for site-specific trip 

generation studies, their effectiveness has not been widely researched, and most devices 

are used for detecting rather than counting [21]. 

One alternative approach has been to use past household travel surveys. Currans and 

Clifton (2015) used data from the National Household Travel Surveys (NHTS) to collect 

travel-related information of a sample of households to adjust ITE trip generation rates 

for eight general land-use categories [3]. By disaggregating NHTS trips into trip ends and 

knowing the trip purpose of each trip, trips were translated into trips exiting and entering 

a particular land use by a specific mode, with a known number of occupants, at a stated 

time. These data, along with the built environment characteristics of the areas 

surrounding the trip ends, provide sufficient input to develop contextual mode share and 

vehicle occupancy adjustment models that can be applied directly to ITE trip generation 

estimates. Similarly, NCHRP Report 758 (2013) provides adjustment factors for ITE trip 

generation rates for infill developments through the development of mode share and 

vehicle occupancy factors extracted from NHTS [22]. 

Although using the NHTS releases analysts from the burdensome task of data collection, 

it is accompanied by several limitations. First, the HTS data do not include information 

on the size of the land use attracting trip ends. Given that the magnitude of land use 

(expressed as square feet of floor area, number of employees, number of rooms, etc.) is 
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the main variable used in estimating ITE trip generation rates, this is a serious 

shortcoming. Second, trip purpose is not a definitive description of a land use. For 

example, “shopping” can encompass a wide array of land uses. This results in the method 

only being able to estimate the trip generation of broad land-use categories whereas the 

need is to estimate the trip generation of specific land uses.  

Wi-Fi and Bluetooth Scanners 

Wi-Fi and Bluetooth detectors are being used with increasing frequency in transportation. 

They are commonly used to measure travel time, vehicle delay, and occupancy [23]. Wi-

Fi and Bluetooth data have also been used in demand estimation (i.e., predicting Origin-

Destination (OD) matrices), obviating the need to conduct travel surveys and roadside 

traffic counts [6].  

By using triangulation or locating the nearest cell tower, Call Detail Records (CDR) track 

trajectories of individual devices through space. Activities and travel modes are inferred 

by the amount of time spent at a location or the speed and interruptions of movement of 

individual trajectories of devices. Wi-Fi and Bluetooth trajectory data are also used to 

identify travel patterns and behavior. Travel patterns are usually identified by 

classification of homogeneous clusters based on the mode of travel, route choice, time of 

day, trip duration, as well as origins and destinations that can be estimated using Wi-Fi 

and Bluetooth data [24]. Wi-Fi and Bluetooth trajectory data have also been widely used 

to count, monitor, and track people to estimate pedestrian density, flow, and even wait 

time at transit stations [25]. Kalatian and Farooq distinguished different modes of 

walking, biking, and driving using Wi-Fi data by training decision tree-based and Deep 

Neural Network algorithms to achieve an 86 percent accuracy of correctly estimating 

observed behavior [26].  

Video Camera 

Video camera recording of activity on a facility provides an alternative to live on-site 

observation. It has the advantage of being able to review events in detail by rewinding the 

recording, using slow motion, and conducting the count in the comfort and safety of an 

office versus being out in the field. However, the labor-intensive task of manually 

counting vehicles still remains, unless a means of automating the counting process can be 
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found. With video imaging, the possibility exists to automate counting by applying 

computer-based image detection.  

The first step in image detection is to identify an object within the entire screen by using, 

for example, the background subtraction method which separates moving objects from 

the background of an image by noting pixel change. The next step is tracking detected 

objects from frame to frame using different trackers such as the Kalman box tracker. 

Unfortunately, most of these traditional object detection models are slow, cannot classify 

vehicles, and have low levels of accuracy. However, some neural network object 

detection models have been developed recently, are quicker and more accurate.  

Currently, there are three popular modern object detection models available; Faster R-

CNN, SSD, and YOLO (You Only Look Once) [27]. They are all neural-network based 

models that have been pre-trained to detect a few default objects. They can be operated 

on OpenCV (an open platform containing a library of computer vision algorithms). Any 

programming language can be used at the desired interface of the models, but C++ and 

Python are the most popular.  

YOLO is the most effective and popular object detection model in current use. In the 

beginning of its application, YOLO divides an input image into a 13 x 13 grid of cells. 

Each cell then predicts a number of bounding boxes in the image, where each bounding 

box represents a potential object. An algorithm estimates the probability that each 

bounding box contains a valid object. The acceptance of a bounding box for further 

processing depends on whether the probability exceeds a threshold value. Threshold 

value ranges between 0 and 1 and are used to filter out bounding boxes that are unlikely 

to contain a valid object. For example, a threshold value of 0.25 means that bounding 

boxes with probability values less than 0.25 are eliminated. 

An object detection program performs two activities: object detection and object 

recognition. Object detection involves determining whether objects are present in an 

image. The input of an object detector is the whole image, and the output is the class label 

and the probability a valid object is present. Object recognition involves identifying the 

type and location of an object in an image. Sub-regions of an image are used to establish 

the position of an object. The object recognition algorithm looks for the object in the 

image and identifies the boundaries of the object in a bounding box.  The bounding box 

describes the height, width, and dimensions of a detected object.  
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Objective 

The goal of this study was to obtain more accurate trip generation estimates of land uses 

in Louisiana than those obtained from the ITE Trip Generation Manual. This was 

achieved by pursuing two specific objectives: 

1. Identify what factors, in addition to floor area, influence trip generation at 

individual land uses in Louisiana.  

2. Investigate whether there are viable alternative ways of collecting trip generation 

data at land-use sites in place of the current method of manual counting. 
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Scope 

The scope of this project is limited to determining the trip rate adjustment factors to the 

ITE trip generation rates for strip malls in the parishes of Lafayette, West Baton Rouge, 

East Baton Rouge, Livingston, Ascension, and Tangipahoa in Louisiana. The adjustment 

factors depend on the built environment characteristics of the area surrounding a strip 

mall, and these characteristics are captured from census data built into a GIS that is used 

to estimate the adjustment factors for any potential site in the area. The study also 

includes identifying, testing, and evaluating alternative means of automated trip 

generation detection with a view to measuring the trip generation rates of other land uses 

cost-effectively. 
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Methodology 

Approach 

Past studies have shown that the built environment, demographics, and transportation 

service all affect trip generation rates [3], [5]. The approach adopted in this research was 

to select variables available in secondary databases that reflect these features, incorporate 

these variables in a GIS, and then use the GIS as the medium of enquiry to identify 

adjustment factors to ITE trip generation rates for a particular site. This has been 

accomplished in this study for strip malls but could be repeated for any other land use 

provided trip rate observations are made. Since manual counting trip rates at individual 

sites is labor intensive, this study also investigated automated means of observing trip 

counts to individual locations. The method by which each of these objectives was 

accomplished is described below. 

Identifying Trip Rate Adjustment Factors 

One of the first tasks was to identify a particular land use to demonstrate the process of 

establishing adjustment factors to the ITE trip generation rates. After consultation with 

the Project Review Committee, strip malls were identified as a land use where trips 

appeared to be overestimated when using ITE trip generation rates in Louisiana. Strip 

malls were subsequently chosen for study in this project. Strip malls appear as Land Use 

814, Specialty Retail Center, in the ITE Trip Generation Manual. The ITE trip generation 

rates for this land use are based on only 4 past studies. The average trip ends per day on a 

weekday are estimated by the linear equation: trips/day = 37.66 + 42.78(floor area), with 

floor areas being the total floor area of the mall measured in 1000s of square feet. A 

typical strip mall is shown in Figure 2. They are often located adjacent to arterial roads.  

From the literature review, the factors in Table 2 were identified as contributing to the 

deviation of trip rates at individual sites from the values estimated in the ITE Trip 

Generation Manual. The three Ds of density, diversity, and design are considered the 

main contributors to trip rate deviation from ITE values [6]. To keep the process  

manageable by not including too many factors, and to ensure that the chosen factors 

could be meaningfully represented by variables commonly available in secondary data 
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sets, the three factors of density, diversity, and design were chosen to demonstrate the 

process of establishing adjustment factors to the ITE trip generation rates in this study. 

Figure 2. Typical strip mall  

 

 

Identifying Secondary Data Sources 

Considering the factors of density, diversity, and design, as built environment 

characteristics that affect trip generation, it was necessary to identify sources that can 

provide any of the variables in Table 2 that represent these factors. Variables in secondary 

data bases were sought that measure, or are closely associated with, the impact that the 

chosen factors of density, diversity, and design have on trip rates for that land use. For 

example, residential density of the catchment area surrounding the site could be used to 

measure the impact of density, while diversity could be measured by the amount of retail 

employment immediately surrounding the site. ADT of the adjacent street could be used 

to measure the impact of design. Different variables could be used depending on the 

strength of their association with the factor in question, their availability, and the land use 

being investigated.  
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Potential sources of data for use in this task are the U.S. Census and other federal and 

state agencies. Data sources used in this study are shown in Table 3. The data were used 

to obtain variables describing density, diversity, and design. Density can be measured 

either in terms of residential density (population per square mile) or residential and 

employment density combined. Land use diversity was measured by jobs to workers ratio 

(i.e., number of jobs to the resident workers of an area). Design was first measured by the 

road characteristics of the adjoining street with an entrance to the strip mall. Average 

Daily Trips (ADT), number of through lanes, urban/rural designation and shoulder 

availability were considered. However, road density within a half-mile radius of the strip 

was ultimately used. 

Table 3. Secondary data sources used in study 

Database Name Database Address Data Features 

TIGER/Line® - 

Geography - U.S. 

Census Bureau 

https://www.census.gov/ge

o/maps-data/data/tiger-

line.html 

Geographical data at different 

geographical levels 

American FactFinder - 

Census Bureau 

https://factfinder.census.go

v/faces/nav/jsf/pages/index

.xhtml 

American Community Survey 

(ACS) 2015 (5-year estimate) 

is used for demographic 

information such as total 

population and median income. 

Urban/rural designation of 

roads 

OnTheMap - U.S. 

Census Bureau 

https://onthemap.ces.censu

s.gov/ 

2015 Number of jobs and 

resident workers data for jobs 

to workers calculation 

Louisiana Department 

of Transportation and 

Development 

http://wwwapps.dotd.la.go

v/engineering/tatv/ 

2016 ADT 

 

Highway Performance 

Monitoring System 

(HPMS) 

https://www.fhwa.dot.gov/

policyinformation/hpms/sh

apefiles.cfm 

HPMS 2016 and 2017 ADT 

estimates 

 

Google Maps https://www.google.com/ 

maps 

Number of through lanes and 

shoulder availability 
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Preparing the GIS Database 

After establishing the sample frame including the name and address of each strip mall in 

the study area, all the sites were geocoded into an ArcGIS program. Tiger-line shapefiles, 

demographic data, and job and traffic data (from the aforementioned databases) were 

loaded into ArcGIS software. The BE characteristics of all potential strip malls were 

calculated in a half-mile buffer zone around each site. A half-mile radius buffer zone was 

chosen as the area impacting a business as this is a common assumption in urban 

geography [4], [28], [29]. 

Demographic data were extracted from the 2015 ACS (American Community Survey) 5-

year estimates at Block Group level across the study area. Using the common Geo-ID 

field of Tiger files and demographic data, demographic tables were joined to the 

geographic features in ArcMap. By having the total population of half-mile buffer zones 

and the area of the buffers, population density was calculated for all strip malls. Median 

income was similarly calculated in a half-mile buffer zone around strip malls. 

In order to calculate land-use diversity around strip malls, the OnTheMap website was 

used. Although it was possible to use census data directly, the OnTheMap website 

provides an easy and user-friendly environment to download the number of resident 

workers (Home) as well as the number of available jobs (Work) in any area in the 

country. It is also possible to define different buffer zones around any location as well as 

selecting census data year, job types (all jobs, primary jobs, private jobs), labor market 

segment (by NAICS industry sector, race, ethnicity, educational attainment, sex, worker 

age, and monthly earning). All jobs, as well as the number of resident workers, were 

calculated in half-mile buffer zones around strip malls. The data were extracted in excel 

spreadsheets separately and were added to ArcMap. Then they were joined to the 

previous shapefile containing population and income data. By having the total jobs and 

total resident workers in the half-mile buffer zone around each strip mall, land-use 

diversity was expressed as the jobs to worker ratio (JWR). A value of JWR greater than 1 

indicates an area where commercial, office, and industrial land uses are responsible for 

more jobs than those produced by local housing. In contrast, an area with low 

commercial, office, and industrial activity relative to residential land use will have a low 

JWR and a low diversity as it will be predominantly housing. Thus, the higher the JWR, 

the greater the mix of land uses and, therefore, the more diverse the land uses. 
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The traffic volume of the main road beside strip malls and road density in half-mile 

buffer zones around strip malls were two candidate variables to measure the impact of 

design of the street network on vehicle-trip generation rates of strip malls. Annual 

Average Daily Traffic (AADT) from different sources and various aspects of road density 

were investigated in this study. If insufficient data is available for the counts to be annual 

averages, the distinction is sometimes made by referring to counts of less than a year as 

Average Daily Traffic (ADT). Although DOTD provides ADT estimates for the entire 

state, such data were not available for all roads adjacent to the strip malls in the study. 

Therefore, the unknown ADT values of strip malls in the sample frame were imputed by 

establishing homogeneous road classes in the sample frame as well as the DOTD ADT 

database. The number of through lanes, shoulder availability, and the urban/rural 

designation of roads were the criteria to establish homogeneous groups. For all strip 

malls, these three variables were manually provided. Google Earth was used to identify 

the number of through lanes and shoulder availability, while the pre-calculated population 

density of half-mile buffer zones around strip malls allowed the identification of the 

urban/rural designation of the roads. Buffers with a population density of 1,000 people 

per square mile or less were considered rural roads, while those with more than 1,000 

people per square mile were considered as urban roads. Likewise, all ADT points of the 

study area were characterized in terms of number of through lanes, shoulder availability, 

and urban/rural designation manually. In the next step, ADT values for the main roads of 

strip malls with unknown ADT values were imputed by obtaining the average value of all 

ADT points with similar characteristics (number of through lanes, shoulder availability 

and urban/rural designation) located in the same parish as the subject roads. 

The Highway Performance Monitoring System (HPMS) also provides ADT estimates as 

a part of Vehicle Miles Traveled (VMT) estimates. By having permanent stations of 

traffic counts as well as temporary stations, the state’s comprehensive traffic count 

program provides ADT estimates on almost all the links of the network. The latest 

versions of the HPMS ADT estimates, that is 2016 and 2017 estimates, were downloaded 

from the HPMS Geospatial Database and were added to the ArcMap workspace. 

Although very few links had no HPMS ADT estimates, for those cases with missing data, 

imputed ADT values from the above approach were assigned to such roads. 

Road densities in half-mile buffer zones around strip malls were calculated using two 

road network databases, Tiger Lines and the DOTD transportation network database. 

Although it is known that the DOTD database provides more accurate and comprehensive 
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network information compared to the Tiger Lines, calculating one measure (network 

density) from these two databases allows us to compare them and have a tangible 

understanding of their differences. To calculate road density, network shapefiles were 

intersected with the buffer layer of strip malls in ArcMap. After that, the sum of the 

length of roads inside the buffers were calculated and divided by the area of the buffers. 

Thus, network density around each strip mall was calculated. Due to the functional class 

availability for all links in the network in the DOTD database, it was also possible to 

evaluate the impact of road density of each road class within the buffer area. Hence, road 

densities of different functional classes were calculated for the sample frame separately. 

Eight different road functional classes can be found in this database: controlled access 

highway (code 1), secondary highway or major connecting road (code 2), local 

connecting road (code 3), local road (code 4), ramp (code 5), 4WD (code 6), ferry route 

(code 7), and tunnel (code 8). 

Survey Site Selection 

Values of variables describing the density, diversity, and design within a half-mile radius 

of each strip mall in the sample frame were calculated using the GIS system described 

above. The midpoint on each variable was determined and used to divide the sites into  

“high” and “low” categories on each variable. The sample frame was then stratified into 

eight (23) categories based on the high and low values of the variable values describing 

the density, diversity, and design of each site. Following this, 5 sites were randomly 

sampled from each category in the sample frame. Table 4 shows the number of selected 

strip malls in each parish by category. The first, second, and third digits of each category 

refers to the high (code 1) or low (code 2) values of residential density, JWR ratio, and 

the DOTD 2016 ADT counts on the adjoining road. Strip malls with more than 1,000 

people per sq. mile residential density were considered as areas of high population 

density, while areas with less than 1,000 people per sq. mile were considered to have low 

population density. Buffer zones with a JWR value greater than 1.25 were considered 

areas of high land use diversity, and areas with lower values to be areas of low land use 

diversity. This value was used to ensure first, enough jobs for resident workers, and 

second, a job surplus of at least 25 percent, so that non-resident workers are entering the 

zone for the purpose of employment. The average DOTD 2016 ADT value of 19,412 

vehicles per day among the sites in the sample frame, divided the strip malls into high 

and low traffic design categories if they had more or less ADT values than the reference 
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value. Figure 3 shows the randomly selected strip malls in the Baton Rouge area by 

category. Figure 4 shows the spatial distribution of the 40 randomly selected strip malls 

across the entire study area. Figure 4 shows the study area as well as the strip malls 

surveyed in this study. Dots are used to show strip malls on the map. 

Table 4. Randomly selected survey sites 

Category Parish Total 

EBR Lafayette WBR Ascension Livingston Tangipahoa 

111  2 2 0 0 0 1 5 

212  2 0 1 0 1 1 5 

211 2 0 1 1 1 0 5 

222 1 0 0 2 1 1 5 

121 3 1 1 0 0 0 5 

221 1 0 1 2 1 0 5 

122 2 1 0 2 0 0 5 

112 1 0 0 2 0 2 5 

Total 14 4 4 9 4 5 40 

 

Figure 3. Strip malls in East Baton Rouge Parish by category 
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Figure 4. All selected sites by location 

 

Conducting Manual Traffic Counts  

Other studies that have investigated the difference between ITE trip generation rates and 

those observed at individual sites have typically relied on fieldworkers to count vehicle 

trip ends manually by time period at the individual locations. This is because it is often 

difficult to isolate trips to specific land uses unless it is a stand-alone land use, which has 

its own access and egress roads on which traffic counts can be conducted. In this study, 

the PRC was consulted regarding the time period for which ITE trip rates are most often 

used in assessing a site development application. They indicated they most often require 

trip rates during the morning and afternoon periods of peak hour traffic on the adjacent 

street. Since peak hour travel on adjacent streets can vary by location, survey times were 

adjusted to include both morning and evening peaks by conducting counts from 8 am on 

the first day, to 6 pm on the second day.  

In conducting manual counting of vehicle trip ends, a fieldworker can either observe 

vehicles at the site or record vehicle movement on a video camera, or cameras, and then 

analyze the video footage in the office later. The latter procedure was adopted in this 

study for convenience and safety. 



   

 

—  34  — 

 

Office Preparation 

In order for the fieldwork of a survey to be conducted efficiently, planning must be 

conducted in advance. This involves preparing a checklist of instruments, scheduling the 

fieldwork for each site, and assigning tasks among the fieldworkers. A checklist defines 

the list of instruments required to conduct the survey. A typical checklist is shown in 

Table 5. 

Table 5. Checklist for fieldwork 

Instrument Name  Number 

required (no’s) 

Check 

yes no 

Camera       

Fully charged battery       

Traffic boxes       

Plastic pole       

Steel pole       

Steel angle       

Metal straps       

Wheel measurer       

Hammer       

Drill       

Safety vest       

 

The schedule of fieldwork defines a time plan for sites, which includes the survey day 

and departure time of a survey team from the office for each site.  For a typical survey 

day, the number of sites for surveying was selected based on the required number of 

instruments and the distance of sites from the office. A single site was selected for a 

survey day when the site required the installation of all the available instruments, because 

the site had numerous entrances and exits. Similarly, a group of sites was selected for a 

survey day when the available instruments were sufficient to cover all entrances and 

exits. Selecting a group of sites for a survey day also took into account the distance 

between sites as well as the distance from the sites to the office, since all instruments had 

to be installed before 8 am. The departing time from the office was selected based on the 

distances of sites from the office and the number of sites served.  
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Work distribution is the assignment of survey work among the team members. 

Assignment of duties to individual workers in advance ensures smooth and efficient 

execution of the fieldwork. In this project, before each survey day, work was distributed 

among the team members. A team member was assigned to charging camera batteries and 

checking the availability of instruments before the survey day. On the survey day, the 

same person was responsible for ensuring all required instruments were loaded on the 

vehicle. Fieldworkers were assigned different duties at the site. For example, some 

members were responsible for finding suitable locations for camera installation, and some 

were responsible for installing and retrieving the cameras. After the survey, an individual 

was responsible for downloading video data from the cameras and uploading them to the 

server.     

Execution of Fieldwork 

The fieldwork was conducted according to the survey plan prepared at the office. On a 

survey day, the first task of the survey team was to load the instruments in the vehicle 

according to the checklist. It was found that it takes about 30 minutes to load the 

instruments in the vehicle. When the team reached a survey site, the first task was to find 

suitable locations for installation of the cameras. In selecting the actual location of a 

camera, the team preferred an existing pole, i.e., electricity or telephone pole, because the 

existing pole gives better support to the camera. When there was no existing pole, steel 

angles were used to support a 2-in. diameter camera pole. Two steel angles were driven 

into the ground on either side of the camera pole and then secured with clamps. The 

average mounting height of the cameras was 10 ft. because it was found this height 

generally prevents a vehicle in a closer lane obscuring the view of a vehicle in the next 

lane. 

A few factors were checked during the camera installation. First, the charge level of the 

camera batteries was checked. Second, the clarity of the camera lenses was checked to 

ensure a clear video recording. Third, a real-time clock (for example, a smartphone clock) 

was shown in front of each video camera so that it could record the time. The purpose of 

this task was to find the difference between the camera clock and the real-time clock. 

This time difference was adjusted when manual and automated counting were conducted. 

Last, the installation angle of the camera was checked so that the camera covered a full 

view of the entrance or exit. An attempt was made to avoid including a view of adjacent 

roads as much as possible because vehicle movement on those roads confuse the manual 
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and automated counting process. A typical view obtained by a correctly mounted camera 

is shown in Figure 5. 

 Figure 5. Typical view of a camera screen and clock 

 

Retrieval of cameras was conducted after 6 pm on the day following installation. While 

retrieving the cameras, it was checked whether the cameras had successfully saved all the 

video data. A check was conducted to ensure that all the instruments were retrieved and 

loaded in the vehicle. 

When the survey team reached the office, video data from the retrieved cameras were 

downloaded on the computer and then uploaded to the server. Batteries of all cameras 

were left to charge overnight. Last, a check was performed for the availability of 

instruments for the next survey day. 

Data Storage 

Accessibility, capacity of storage, and safety were considered for selecting data storage. 

In this study, a considerable volume of video data was collected from the survey, and 

multiple individuals were involved in manual counting. So, it was considered necessary 

that multiple individuals have access to the server simultaneously. At the same time, it 

was necessary to store the data safely. Thus, the server of the Intelligent Transportation 

System (ITS) at Louisiana Transportation Research Center (LTRC) was used for storing 

the data, which is secured, has a large capacity, and is accessible by multiple people at the 
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same time. However, after downloading the video data from the cameras to the server, a 

copy of the data was also stored on an external hard drive for added security. 

Counting Vehicles 

A few rules were established regarding the manual count. First, it was decided to count 

vehicles in 5-minute intervals because it allows counts to be aggregated in any multiple 

of 5 minutes. Second, arrivals and departures were defined as the front of a vehicle 

passing a reference line on the access road. The numbers of arriving and departing 

vehicles were counted separately for each entrance or exit. Vehicles were classified into 

six classes: car, motorcycle, cycle, pedestrian, transit, and others. A spreadsheet template, 

as shown in Table 6, was used to record all manual counts. 

Table 6. Sample manual counting sheet 

Site name 

Date of survey: 

Camera details: 

No of Entrances: 

Time 

Start 

(hr:mi

n:sec) 

Time 

End 

(hr:mi

n:sec) 

Entry details Exit details 

Counts in every 5-min. interval Counts in every 5-min. interval 

Car Motor

cycle 

Cycl

e 

Pedes

trian 

Tra

nsit 

Oth

ers 

Car Motor

cycle 

Cycl

e 

Pedes

trian 

Tra

nsit 

Oth

ers 

8:00:

00 

8:04:

59 

                        

8:05:

00 

8:09:

59 

                        

8:10:

00 

8:14:

59 

                        

8:15:

00 

8:19:

59 

                        

-- --                         

17:55

:00 

17:59

:59 

                        

Estimation of Error in Manual Counting 

Different types of error may occur while conducting manual counts. These are classified 

as: total count error, classification error, and interval error. In manual counting, ground 
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truth counts are not known, so it is difficult to estimate error. However, if repeated 

counting produces the same result, that value is considered the true number in this study. 

Thus, the error is considered to be the difference between the first count and the repeated 

counts.  In this research, a few sites were randomly selected to conduct repeated counts to 

estimate error in manual counting. 

Individual observations of count error are the difference between the repeated count and 

the first count in a time interval at a site. A measure of the average error in a time interval 

can be expressed by the root mean square error (RMSE) statistic. It will produce the 

average error experienced in the time interval in which the counts are reported (e.g., 15 

minutes, 1 hour). However, because the count numbers are sometimes unknown it is 

sometimes difficult to interpret the results where error is reported in the number of 

vehicles. It is generally easier to interpret the results when they are expressed as a 

percentage (i.e., a relative measure rather than the absolute measure of RMSE), so the use 

of percent root mean square error (%RMSE) is recommended. Percent root mean square 

error (%RMSE) of the total count can be estimated from the following formula: 

 %𝑅𝑀𝑆𝐸 =
√∑ (

𝑁𝑎,𝑘,𝑖−𝑁𝑐,𝑘,𝑖
𝑁𝑎,𝑘,𝑖

)
2

𝐼,𝐾
𝑖,𝑘

𝐼 ×𝐾
× 100   (1) 

where,  

i = a time interval. 

I = total number of time intervals. 

k = a site. 

K = total number of sites. 

Na,k,i = actual count of vehicles at site k in time interval i. 

Nc,k,i = counted vehicles at site k in time interval i. 

Classification error: The classification error defines the difference between the actual 

classified counts and the counted vehicles for a particular vehicle class. A classification 

error occurs due to the placement of a count in a different vehicle class. Classification 

error will increase with an increase in vehicle classes because more vehicle classes result 

in lower counts in each class. The following formula can be used to estimate the percent 

RMSE of classification counts. 
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 %𝑅𝑀𝑆𝐸 =
√∑ ((

∑𝑣
𝑉 (𝑁𝑎,𝑘,𝑖,𝑣−𝑁𝑐,𝑘,𝑖,𝑣)

𝑁𝑎,𝑘,𝑖
))

2

𝐼,𝐾
𝑖,𝑘

𝐼 ×𝐾
× 100   (2) 

where,  

i = a time interval. 

I = total number of time intervals. 

k = a site. 

K = total number of sites. 

v = a vehicle class; 

V = total vehicle classes;  

Na,k,i,v  = actual count of vehicles at site k in time interval i for vehicle class v; 

Nc,k,i,v = counted vehicles at site k in time interval i for vehicle class v; and 

Na,k,i = actual count of vehicles at site k in time interval i. 

Interval error: Interval error occurs due to placement of a count in a different time 

interval than the one to which it belongs. Interval errors result in double counting because 

an error in one interval requires that there be an error in another. Equation (3) can be used 

to calculate the percent RMSE of interval counts. 

 %𝑅𝑀𝑆𝐸 =
√∑ (

𝑛 

𝑁𝑎,𝑘,𝑖
)

2
𝐼,𝐾
𝑖,𝑘

𝐼 ×𝐾
× 100  (3) 

where,  

i = a time interval. 

I = total number of time intervals. 

k = a site. 

K = total number of sites. 

n = the number of misreported vehicles at site k at time interval i which actually belong to 

time interval (i+1); and   

Na,k,i  = actual count of vehicles at site k in time interval i. 

Automated Counting 

Three alternative devices were tested to automate trip-end counting in this study: an 

infrared sensor, a video camera, and an instrument capable of detecting Bluetooth and 

Wi-Fi signals in its proximity. 
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The Pyro-Box Eco-counter 

The infrared sensor, marketed as the Pyro-Box Eco-counter, uses changes in infrared 

radiation to detect passing objects. It is typically used to count pedestrians and cyclists 

with a human body providing a change in infrared radiation in the field of detection. Two 

models are available, one with a range of detection of 4 meters and one with a range of 

detection of 15 meters. Detection occurs in a directed beam. In tests on campus at LSU, 

the sensor was found to produce pedestrian counts with 91 percent accuracy amidst 

counts ranging from 10 to 53 pedestrians per 15-minute period. Because the walkway 

was 10 ft. wide at the point of observation, some pedestrians were hidden from view if 

they were walking perfectly abreast of someone closer to the device at the time of 

detection (this is called occlusion). Ideally, the sensor should be used where single-file 

movement occurs and a fixed object is on the far side of the path to block detection 

beyond the path. The test site on the LSU campus is shown in Figure 6. The figure shows 

a walking path with two light posts near to the path on LSU campus. The Pyro-Box is 

mounted at about 50 cm. height at the light post on the right side of the figure and is 

faced toward the light post on the left side of the figure so as to cover the walking path. 

Figure 6. Pyro-Box test site 
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The Pyro-Box was considered when the observation of visitors to a strip mall were 

considered in contrast to vehicles. The thought was that parties of visitors could be 

identified and associated with a vehicle. However, it was found that it is difficult to 

observe pedestrians amidst cars and other obstructions, and that stationary pedestrians—

as would occur if they stopped to chat or look in a shop window—were difficult to count 

accurately. In addition, the Pyro-Box operates best when there is a wall or some other 

fixed object the beam can terminate at. For this reason, the Pyro-Box was not investigated 

further as a means of automated counting of visitors to a strip mall.   

Video Camera 

Selection of Cameras 

The cameras were selected based on the resolution, battery life, and weather factors. The 

resolution of a camera is an important factor that controls the success of automated and 

manual counting. One of the objectives of this research was to use pre-recorded videos 

for automated counting. Here, the success of automated counting depends on the quality 

of the video, as determined by the resolution of the camera. Good quality video increases 

the accuracy of manual counts because it enables individuals to recognize and report 

counts confidently. So, in this study, the minimum resolution of the cameras was 

considered as 480 pixels (frame size 480 x 640 pixels), which ensured a good quality 

video. Battery life was selected based on the duration of the survey. Since this project 

required to record videos continuously for two days, the minimum battery life of the 

cameras was selected to be a minimum of 40 hours. The weather factors were also 

considered for the selection of the camera. It was ensured that the cameras were able to 

operate in bad weather, for example, rain and fog.  

Three types of cameras were selected in this research primarily for their properties but 

also due to their availability from other prior projects conducted by LTRC. The 

configurations of these cameras are shown in Table 7.  
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Table 7. Configuration of the selected cameras 

Camera Name Scout Video collection Counting Camera CountCam2 Traffic 

Recorder 

Manufacturer Miovision CountCam CountingCars 

Resolution (pixels) 640 480 x 640 480 x 640 

Storage (GB) 64 GB and 

extendable 

Extendable 64 GB SDXC internal 

storage 

Duration of recording 

(hrs) 

64 Adjustable 50 

Video format .mp4 .mp4 .mp4 

Display (inch) 5.5 6.5 Connectable to smart 

phone 

Battery life (hrs) 72 48 50 

Waterproof yes yes yes 

Operation temperature 

(0F) 

-40 to 140   Withstands summer 

heat and winter cold 

Installation time 

(minutes) 

5 5 5 

 

Develop Algorithms   

To detect objects in the video, it was necessary to select a deep-learning object detector, 

based on neural network artificial intelligence. After considering a number of candidate 

softwares the YOLO version 3 was selected for vehicle counting in this project. It was 

considered to be fast, accurate, and easier to work with than other versions of YOLO and 

also superior to other possible software. YOLO v3 was applied with the TensorFlow and 

Open CV libraries for vehicle detection and counting. Algorithms to apply YOLO were 

also required, which were programmed in Python. 

The required packages for this conversion were TensorFlow 18.0, NumPy, OpenCV 

Python, and TQDM. TensorFlow is a deep learning library used for different applications, 

such as neural network applications. NumPy is a package of routines in Python which 

support many mathematical functions on multidimensional arrays. OpenCV (open-source 

computer vision library) is an open-source library used in computer vision applications. 

TQDM is a progress bar library which provides useful routines for nested loops. 
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Conversion of the YOLO Weight File to TensorFlow API 

In this section, the YOLO weight file was converted to Tensorflow API using a few 

packages. The goal of the research was to use the Python programming language for the 

convenience of coding and implementation. Since the algorithms of the YOLO weight 

file are written in C/C++ programming language, it cannot be directly implemented using 

the Python programming language. One of the ways to implement it using python is 

applying Tensorflow architecture. In that case, the YOLO weight file has to be converted 

in Tensorflow architecture. So, in this research, the YOLO weight file was converted to 

Tensorflow architecture to implement it using Python programming language. The 

required packages for this conversion were TensorFlow 18.0, Numpy, OpenCV Python, 

and TQDM. First, the YOLO weight file was downloaded from the official YOLO 

website (pjreddie.com), which is opensource. Then, the path of the downloaded YOLO 

weight file was placed in the command prompt (a command-line interpreter in windows 

operating system) to convert the YOLO weight file to the TensorFlow format. This 

converted weight file was later used for vehicle detection. 

Processing the Data 

All video files need to be processed before uploading them to the program. First, a check 

is made to ensure that all the video files are in mp4 format; otherwise, they are converted 

to mp4 format. Second, if there are multiple video files, they are joined to make a single 

video file because the program cannot process multiple files at a time. Third, the 

unnecessary portions of the video files, i.e., the portions before 8 am and after 6 pm are 

trimmed. This pre-processing of video files can be conducted using any video editing 

software. In this research, Avidemux (a free video editing software) was used for 

processing video files. 

Detection of Vehicles 

In this section, the program draws reference lines, detects vehicles, and tracks the 

detected vehicles frame by frame. OpenCV captures and displays the first frame of the 

video file. A typical first frame of this study is shown in Figure 7. Note that with the 

camera in a fixed position, all frames of the video will have the same appearance, apart 

from objects that move through the frames.  
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Figure 7. The first frame of video 

  

Next, the program allows the user to select two points on the displayed first frame, which 

are the starting and ending point of a reference line. These two points are drawn by the 

first and second left click of the mouse. The reference line drawn in this section is called 

the “midline.”  A typical reference midline is shown as the yellow line in Figure 8. Two 

additional lines are then defined as the “right line” and the “left line.” These are used to 

define the direction of motion of an object that crosses the midline. These two lines are 

generated by the software parallel to the midline. They are the white lines shown in 

Figure 8. 
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Figure 8. Reference lines drawn in the program interface 

 

Each video frame is converted to a common size of 128 x 128 pixels for processing. 

When YOLO detects an object, it draws a rectangular box around the detected object. The 

outputs of a processed image are rectangular bounding boxes and the score of those 

boxes. The score means a confidence level for a detected object, i.e., how confident 

YOLO is that the box contains a valid object. This value lies in the range of 0 to 1. The 

higher the score value, the higher the confidence that the object is indeed an object of 

interest. 

The bounding boxes are processed using a controlling factor that is a threshold value (a 

factor to screen out bounding boxes with low confidence levels). In this research, a 

threshold value of 0.2 was used, which means that bounding boxes having a score value 

higher than 0.2 are accepted for further processing. Those that have values below 0.2 are 

eliminated.  

Tracking Vehicles 

In this step, the sorted bounding boxes are tracked frame by frame. Since a video file 

consists of thousands of frames, an object has to be tracked from one frame to another to 

determine its direction of movement. In this study, KalmanBoxTracker was used for the 

tracking process. The tracker compares the current frame with the immediate previous 

frame using the pixel variance of the frame. When it finds a similarity in pixel values, it 

updates the object (i.e., bounding box) and memorizes it for consideration in the next 

frame. Then, it compares the updated frame to the next frame. The tracker titles each 
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tracked bounding box by a numeric value such as 1, 2, 3, etc. In this way, the tracker 

tracks an object from frame to frame. 

Rectangles are drawn around each tracked object on the computer screen as shown in 

Figure 9. Another purpose of drawing rectangles is to establish a small line in the center 

of each rectangle, which is used to count vehicles as described in greater detail below. A 

typical center line is shown in Figure 9 as marked by the red color arrow. The tracked 

rectangles are observed for vehicle counting. 

Figure 9. Small line in the center of a rectangle 

 

The program provides counts in spreadsheet, which contains the number of arriving and 

departing vehicles in a particular time interval. The counting speed of YOLO is different 

from the real-time clock. But this research requires counting vehicles in a time interval in 

real-time. So, at first, the program evaluates the number of frames in the provided time 

interval, for example, a 5-minute time interval. After that, the program calculates the time 

required to process a single frame. Then, it evaluates the time required to process all the 

frames in that time interval and considers the time as real-time interval. 

Algorithm for Counting Vehicles 

When a vehicle passes through an access road to a facility, the rectangles and the small 

line at the center of the rectangle (i.e., the center-line) passes the mid, left, and right lines. 

Depending on the sequence of the intersection of the “center-line” with the “midline” and 

the left and right lines, the direction of the vehicle is recorded. For example, when the 
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centerline at the center of the rectangle intersects the left line first (i.e., the parallel line, 

drawn on the left side of the midline), the program deduces the vehicle has come from the 

left side. Afterward, when it intersects the midline, the program confirms that the vehicle 

has come from the left side and considers it as a count. The function counts the vehicles 

which come from the left side and right side, respectively, and are used to distinguish 

arrivals and departures.  

Bluetooth and Wi-Fi Signal Detection Devices 

Background 

The rationale behind using a device that detects Bluetooth and Wi-Fi signals as a means 

of counting vehicle trips to a land use evolved from an earlier study conducted for LTRC 

involving the use of Bluetooth signals to estimate travel time [23]. It was found in that 

study that there was a close correlation between the number of devices sending out 

Bluetooth signals at a location and the volume of traffic on the road at that point. This 

seemed a logical result, and the question then arose whether the same device could be 

used to estimate visits to a particular site. If a close correlation could be found between 

Bluetooth and Wi-Fi signals and traffic to a land use, then deploying such devices to 

individual land use sites would provide automated trip data that heretofore required 

manual counting. 

Selection of Devices 

Several products were reviewed before deciding on a product called TrafficBox from the 

SMATS Company (https://www.smatstraffic.com). It is capable of detecting Bluetooth 

and Wi-Fi signals and recording the Media Access Control (MAC) address of each device 

whose signal reaches it. The TrafficBox records Wi-Fi and Bluetooth MAC addresses of 

Wi-Fi and Bluetooth signal sender devices located in its detection zone. The TrafficBox 

data can be exported in excel format (csv file) and include the fingerprint (MAC Address 

records), the detection type (Wi-Fi or Bluetooth), detection signal strength (RSSI value) 

and detection date and time.  

The TrafficBox offers four different scanners, Bluetooth Classic Discovery Mode, 

Bluetooth Classic Paired Mode, Bluetooth Low-Energy (LE) Discovery Mode, and Wi-Fi 

signals. The company suggests different scanner combinations with the highest 

compatibility; Wi-Fi & Bluetooth Paired Mode, Bluetooth Paired Mode-Bluetooth 
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Classic, and Bluetooth Paired Mode-Bluetooth Low Energy. Table 8 shows some 

examples of the devices can be detected by these scanners. In this experiment, the 

combination of Wi-Fi and paired Bluetooth scanners was used because of the high 

compatibility of a Wi-Fi scanner with the Bluetooth scanner that detects Bluetooth signals 

from paired devices. However, two other Bluetooth modes – Bluetooth Low Energy 

(BTL) and Bluetooth Classic (BLC) Scanners – are available that are better when used in 

Bluetooth-only experiments. 

Table 8. TrafficBox scanner 

Bluetooth Classic 

Discovery Mode 

Bluetooth Low Energy 

Discovery Mode 

Bluetooth Classic Paired 

Mode 

Wi-Fi 

Car GPS units. 

 

 Audio systems (if 

they are not paired 

with the driver’s 

headset or any other 

devices) 

 

Very unlikely to 

detect cell phones as 

Bluetooth becomes 

discoverable only 

when the Bluetooth 

setting menu is open  

Fitness gadgets 

 

 Smart watches 

 

Can detect Bluetooth 

devices that are not 

already paired and 

does not need to have 

an open setting menu 

for detection 

Detects if any two 

Bluetooth devices are 

paired and connected 

Any type of Wi-Fi 

communication can 

be detected regardless 

of being connected to 

the internet or not. 

Detection zones vary depending on antenna type, indoor vs outdoor environments, 

surrounding objects, and Received Signal Strength Indicator (RSSI value) of the signal-

emitting device. Two antennas with different detection zone patterns are available: 

directional and omni-directional antennas. The omni-directional antennas have a circular 

detection zone while the directional antennas provide a stronger detection pattern in front 

of the device compared to the back. Directional antennas were used in this study. The 

slope, vegetation and surrounding environment all affect the detection zone when a 

device is set up in an outdoor environment. Our experiment with this device in different 

locations and at different heights confirms the dynamic detection zone in accordance with 

the surrounding environment. Figure 10 illustrates the results of a detection zone 
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experiment of a TrafficBox with directional Wi-Fi and Bluetooth antennas set at a three-

meter height above the street. The figure includes three images. The top image shows the 

LSU Student Union and the location of the TrafficBox when the experiment was 

conducted. The bottom right image shows the detection zone of one side of the 

TrafficBox, and the bottom left image shows the TrafficBox detection zone of the other 

side of the TrafficBox. In both images at the bottom, semi-circular detection zones can be 

seen for both sides of the device. 

Figure 10. Detection zone experiment  

 

Gray dotted lines are walking paths from the farthest open space toward the device. 

Yellow points indicate the simultaneous detection of Bluetooth and Wi-Fi signals at the 

same location in less than 5 seconds. Red points represent the location of Bluetooth 

detections and black points represents the location of Wi-Fi detections. Both detection 

zones confirm that Bluetooth signals usually have a larger detection zone than Wi-Fi. In 

the lower left diagram in Figure 10, the furthest Bluetooth detection is at 223 m. and the 

closest is at 70 m. from the TrafficBox. The furthest Wi-Fi detection point occurred at 

202 meters and the closest at 0 meters from the TrafficBox. The experiment shown in the 

diagram on the lower right-hand side of Figure 10 involved facing the other side of 
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scanners toward the walking area. In this case, the furthest and closest Bluetooth were at 

260 m. and 86 m., and the furthest and closest Wi-Fi detections were at 174 m. and 4 m. 

meters from the TrafficBox. This shows that there was little difference in the detection 

zones in front and behind the directional antennas in this case. 

To adjust the detection zone of the TrafficBox, lead or aluminum can be used to block 

electromagnetic signals entering the sides of the TrafficBox covered by these metals. 

Because aluminum is lighter and cheaper than lead, we tested the use of multiple layers 

of aluminum foil behind the device. We found Wi-Fi signals could be blocked using thick 

layers of aluminum foil, but Bluetooth signals could not be blocked. However, the results 

of the test were not definitive because microwave signals such as Wi-Fi and Bluetooth 

signals can reflect off surfaces to move in different directions [30]. Thus, a device behind 

a TrafficBox with a shielded back, can still be detected if its signal is reflected off a 

surface in front of the TrafficBox. The result is that TrafficBoxes detect in roughly 

circular patterns, even with directional antennas. 

Signal Strength 

The Received Signal Strength Indicator (RSSI) is a measure of the strength of a signal 

from a device measured in decibels. RSSI values typically range between -30 and -100, 

with -30 being the strongest signal. Devices have vastly different signal strengths. RSSI 

values have been used to estimate the distance of a device from a scanner [31], [32], [33]  

However, we found RSSI values to be a poor indicator of distance given the wide range 

of signal strengths among devices and the relatively weak decline in signal strength with 

distance. As an illustration, Figure 11 shows the results of an experiment that was 

conducted testing the impact of distance on signal strength. A TrafficBox was located 3m 

above the ground and 2 mobile phones of different brands (Sony and Samsung) were 

used in detection mode for both Wi-Fi and Bluetooth. The phones were moved from 

beside the TrafficBox to more than 400 meters distance radially in different directions in 

a circle around the device. In each radial trajectory, fieldworkers halted at regular 

intervals for 10 seconds and noted their GPS location. The Sony phone was detected by 

the Wi-Fi scanner 68 times and by the Bluetooth scanner 119 times. In contrast, the 

Samsung phone was detected by the Wi-Fi scanner 70 times and by the Bluetooth scanner 

twice. This disparity between devices and between scanners, and even differences among 

TrafficBoxes with the same settings, was observed throughout the study.  
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Figure 11. RSSI as a function of distance 

 

Data Storage 

In a TrafficBox detections are recorded as MAC (Media Access Control) addresses stored 

in the “fingerprint” column of a csv file. Wi-Fi MAC addresses are recorded as a 12-digit 

hexadecimal number including all 6 bytes of the MAC address. Bluetooth MAC 

addresses are recorded as the last 3 bytes of a MAC address or the last 6-digit 

hexadecimal number. The “Detection Type” column in the file produced by the 

TrafficBox also differentiates between Wi-Fi and Bluetooth MAC addresses by giving 

them a value of 2 for Wi-Fi or 3 for Bluetooth. The GPS inside the TrafficBox allows the 

setting of local time automatically although it does not allow for Daylight Savings Time. 

The TrafficBox can be set to commence recording detections by date and time. 

In the setting panel on the TrafficBox, MAC Hashing, Ignore Random MAC addresses, 

Ignore MAC Interval, and Probe Request affect data quality and eliminate privacy 

concerns. The MAC Hashing option stores detected MAC addresses in a modified form 

thereby eliminating the possibility of tracking a detection to a specific device. The Ignore 

Random MAC addresses option identifies devices using MAC Address Randomization 
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(MAR) and avoids recording a device multiple times. MAR replaces the unique MAC 

address of a device with randomly generated values in order to avoid being tracked by 

Wi-Fi detection technologies. Therefore, Wi-Fi devices using MAR will be detected and 

stored only by their first detection. The Ignore MAC Interval setting saves memory space 

and battery life by not recording repeated observations of the same device more 

frequently than a specified time period. In this study, the Ignore MAC Interval was set at 

5 seconds so that a device was not recorded more frequently than at 5-second intervals. 

The Probe Request is a filtering tool to detect a particular type of Wi-Fi MAC address 

only. It can be set to capture cell phones with Wi-Fi turned on and searching for an access 

point and removes devices that are connected to the internet. Although it can remove 

computers and residents in the detection area, it will also exclude workers and visitors 

using free Wi-Fi at the mall. Therefore, Probe Request was not used in this study and 

undesired devices were filtered out using another filtering procedure described in the 

analysis section in detail. 

Signal Frequency 

Although there is no control over the time and frequency of communications between the 

TrafficBox and target devices, our experiments suggest a 1- to 2-minute time gap 

between repeated detections of eligible devices that are not currently in use (e.g., when a 

cell phone screen is off and Wi-Fi is disconnected but it is in searching mode). Eligible 

devices that are in use (e.g., when a person is listening to music using a Bluetooth-

connected headphone) have a 1-30 second time gap in their communications with the 

TrafficBox. The time variation of communication is due to variations in the vendor. 

Although it is not possible to identify whether Wi-Fi and Bluetooth MAC addresses are 

coming from the same device, it is possible to identify the vendors of Wi-Fi and 

Bluetooth MAC addresses using freely available MAC address Look Up programs and 

websites such as Arul's Utilities (https://aruljohn.com/mac/3464A9639CFC). Although 

MAC address Look Up programs increase our understanding of the detection patterns of 

different devices, it is not practical when MAC Hashing is used. Since some vendors 

specifically produce non-portable hardware such as desktops, MAC address Look Up 

programs can be helpful in increasing an analyst’s understanding of the detection patterns 

of different device types. 
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Battery Life 

The battery life of the TrafficBoxes was observed to be about 16 hours to 34 hours. Since 

the TrafficBoxes purchased in this study cannot be programmed to turn on and off at 

specific times and there are difficulties associated with commuting to survey sites 

multiple times to turn TrafficBoxes on and off, we allowed the TrafficBoxes to run from 8 

am on the first survey day until the battery ran out on the second day. In general, 

TrafficBox data are available for the first day of survey at all survey sites and recorded 

data till 12 pm to 3 pm in different locations on the second day of the survey.  

Identifying Relevant Detections 

Since the RSSI value was found to be an unreliable indicator of the distance in this study, 

we tested the idea of identifying trips to an individual land use (e.g., strip mall) from Wi-

Fi and Bluetooth data by putting two TrafficBoxes a certain distance from the farthest 

corners of the strip mall in a way that the detection areas of the TrafficBoxes would 

overlap the strip mall area. Thus, vehicle trips to the strip mall would be identified by 

being detected by both TrafficBoxes no more than a certain amount of time apart. 

 To implement this idea, two TrafficBoxes were located 200 meters from the two furthest 

corners of a strip mall as shown in Figure 12. The strip mall is shown by a black 

rectangle at the site. The two TBs are shown as red triangles in the diagram. Their 

detection zones, assumed to be 200 meters, are shown by yellow circles. As can be seen, 

the strip mall falls within the joint detection area. The 200-meter detection radius was 

chosen as the typical upper limit of Wi-Fi and Bluetooth devices so that any detected visit 

of the same device by both TrafficBoxes would likely represent a visit of that device to 

the joint detection area (i.e., the strip mall). Devices with smaller detection radii would 

not be jointly detected and thus would not be counted, while those with larger detection 

radii would allow joint detections in an area extending either side of the mall. Further 

qualifications on the use of this approach are addressed in the following sections.  
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Figure 12. Overlap identifying strip mall visits 

 

Removing Static Devices  

Because TrafficBoxes record all the Wi-Fi and Bluetooth devices in the detection zone, 

static devices at the site such as laptops and desktop computers paired with smart 

watches, headsets, and other devices will be recorded as well. These static devices need 

to be excluded from the data, since they do not belong to the visitors/customers. 

Subsequently, all devices that recorded continuously for 7 hours or more out of the 10 

hours data collection time period on each day (from 8 am to 6 pm) were removed. This 

value was chosen as the result of a trial and error procedure to identify the most suitable 

time period for removing static devices at the site while not excluding devices carried by 

workers. 

Identifying and Removing Through Traffic 

Because TrafficBoxes were located beside the road, all Bluetooth and Wi-Fi MAC 

addresses of vehicles and their passengers passing by on the adjacent road, and even on 

surrounding roads are likely to be recorded. To remove these records, passing vehicles are 

defined as MAC addresses observed by both TrafficBoxes without a break of more than 

two minutes. Two minutes is assumed to be the shortest time required for a person to 

enter a store, conduct their business, and then emerge from the store again. As verified 

earlier, when the TrafficBoxes are mounted outside a building, they are able to record a 

MAC address of an emitting device in open space but observations cease whenever the 

device is carried into a building. As none of the passing vehicles are entering any 
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building, they are recorded roughly every 5 seconds with the 5-second MAC ignore 

setting in operation. Therefore, their continuous observation identifies them as devices in 

passing vehicles and they are removed from the data. 

Identifying Devices Visiting a Mall 

In this step, all MAC addresses that have at least one visit (i.e., at least a two-minute 

break in a series of MAC address detections) are identified as ones visiting the mall. For 

such series of records, the very first record of the device is when the device enters the 

detection zone of an individual TrafficBox (coded as 1). After that, at least every 5 

seconds the device is recorded (coded as 0), until the visit of a business starts as signified 

by at least a two-minute break in detections. The last record of these detections is coded 

as an entry to the mall. If only one visit happens, the person comes out after at least two 

minutes and the first detection after the visit is coded as a departure. After the departure 

record, the device is recorded (code 0) at least every 5 seconds till it gets out of the 

detection zone (code 3). Theoretically, in the case of visits to multiple stores in one strip 

mall, the “entry” will be the last detection before the first visit and “departure” will be the 

first detection after the last visit. However, it does not always happen precisely this way 

in practice. Sometimes, only one TrafficBox will pick up the signal when the person 

exits. Sometimes, only one TrafficBox will have detected the entry. So, there are times 

when we have a device detected by one TrafficBox only on entry, and both detect on exit, 

sometimes when both TrafficBoxes detect on entry, but only one on exit, and sometimes 

when both record both entry and exit.  

Identifying Common Visits Recorded by Both TrafficBoxes 

The next step identifies all the visits recorded by TrafficBoxes in terms of entries and 

departures and the time they happen. However, these visits might happen anywhere in the 

detection zone of the TrafficBoxes. In order to end up with visits to the overlapped area 

only, the first step is to select the visits that are recorded by both TrafficBoxes. In fact, if 

someone visits a land use in the detection zone of one of the TrafficBoxes (either of 

them) and passes the detection zones of both TrafficBoxes, this visit can be identified as a 

non-overlapped area visit, because the 2-minute gap or visit is recorded by only one of 

the TrafficBoxes. Figures 13 and 14 show all the possible visits at the site that are not 

recorded by both TrafficBoxes and therefore are removed from the data. Black arrows 

show the direction of movement. Figure 13 shows two TrafficBoxes and their detection 

zones. It shows that there was a visit in the detection zone of the TrafficBox located on 
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the right side of the figure, but no visit in the detection zone of the TrafficBox on the left 

side. The converse situation is shown in Figure 14. 

Figure 13. A visit to the right TB’s detection zone  

 

Figure 14. A visit to the left TB’s detection zone 

 

 

The other issue that might raise here is the possibility of both TrafficBoxes recording a 

visit, but the device is in fact visiting two separate land uses outside the common area as 

shown in Figure 15. The strip mall is shown by a black rectangle at the site. Two 

TrafficBoxes are located at 200 meters distant from the furthest corner of the mall and are 

shown with red triangles. Their detection zones are shown with yellow circles. The joint 
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detection area covers the strip mall. A vehicle conducts a visit first in the detection zone 

of the left side TrafficBox, then passes by the target strip mall and then makes a second 

visit in the detection zone of the right side TrafficBox. Such trips are not frequent but 

they can be identified by checking the time of the visit recorded at each TrafficBox. Trips 

to the common area have more or less the same visit time recorded by both TrafficBoxes, 

while visits out of the common area, but recorded by both TrafficBoxes, have different 

visiting times.  

Figure 15. Two visits out of overlapped area recorded by both TrafficBoxes  

 

 

Although it is rare that a person visits two businesses that are closest right and left 

neighbors of the desired strip mall, we consider the most extreme case here to make sure 

all the undesired records are eliminated. Assuming Figure 16 shows a person visiting 

closest neighbors of the desired strip mall (but out of common area of the two 

TrafficBoxes) and is recorded by both TrafficBoxes. If a person starts a visit at the 

business A at time X, it takes at least 3 minutes and fourteen seconds after X to start the 

second visit at business B. It is the sum of 2 minutes visit at business A, 30 seconds 

walking time from business A to the person’s car and exiting the parking area, at least 14 

seconds driving between the two businesses (average speed of 30 mi/h and 200 meter 

distance between businesses) and another 30 seconds of parking inside of the second 

business parking area and walking inside business B. Therefore, only the visits recorded 
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by two TrafficBoxes that are less than 194 seconds apart from each other are assumed to 

belong to the common area and desired strip mall. 

Figure 16. Visits to businesses closest to either end of the joint detection area 

 

 

Identifying Entries and Exits 

After identifying entries and departures common to both TrafficBoxes of visits to a strip 

mall, final entry and exit times for each device/MAC Address are selected out of two 

entries and two departures recorded by the two TrafficBoxes. The two entries under 

consideration are the last records of a specific device right before the first visit recorded 

by each device, while the departures are the first detections after the last visit (in case of 

multiple visits at strip malls) recorded by the TrafficBoxes. Therefore, four records of 

each MAC address (entry and departure of TrafficBox no. 1 and entry and exit of 

TrafficBox no. 2) are produced. Final “entry” record of that MAC address is considered 

the latest record of entries by both TrafficBoxes, while its “exit” from the mall is 

considered as the earliest record of departures recorded by both TrafficBoxes. 

Classifying Entries and Exits into 60-Minute Intervals 

After identifying the entry and exit for each MAC address recorded by both TrafficBoxes 

in the overlapping area of the strip mall, they are sorted by recorded time. The number of 
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combined Wi-Fi and Bluetooth entry, exit, and total detections by time interval are 

established. In this case a time interval of one hour was chosen since it provided a 

balance between the number of detections in each time interval and the number of 

intervals.  

Establishing Adjustment Factors 

Adjustment factors to be applied to the ITE trip generation trip rates in Louisiana were 

identified by first using the data collected at the 40 strip malls to identify the relationship 

between trip generation at strip malls in Louisiana and the expanded set of factors 

hypothesized to contribute to trip generation. That is, a regression model was estimated 

that related the observed trip generation at strip malls to the floor area of each mall, 

population density and land use diversity within a half-mile radius of the site, and the 

intensity of traffic on the adjacent road. Once this regression model was established, the 

difference between it and the equation in the ITE Trip Generation Manual was identified 

as the adjustment factor. To illustrate: 

Say the new equation is: 𝑁𝑒𝑤 𝑡𝑟𝑖𝑝 𝑟𝑎𝑡𝑒 = 𝑎 + 𝑏(𝑓𝑙𝑜𝑜𝑟𝑎𝑟𝑒𝑎) + 𝑐(𝑑𝑒𝑛𝑠𝑖𝑡𝑦) +

𝑑(𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) + 𝑒(𝑡𝑟𝑎𝑓𝑓𝑖𝑐)  

Hypothetically, if the ITE trip rate equation for strip malls is: 𝐼𝑇𝐸 𝑡𝑟𝑖𝑝 𝑟𝑎𝑡𝑒 = 𝑓 +

𝑔(𝑓𝑙𝑜𝑜𝑟𝑎𝑟𝑒𝑎) 

Then the adjustment factor is: 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 = (𝑎 − 𝑓) + (𝑏 − 𝑔)(𝑓𝑙𝑜𝑜𝑟𝑎𝑟𝑒𝑎) +

𝑐(𝑑𝑒𝑛𝑠𝑖𝑡𝑦) + 𝑑(𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) + 𝑒(𝑓𝑙𝑜𝑜𝑟𝑎𝑟𝑒𝑎)  

GIS Interface 

Creation of a Web Map for the ITE Trip Rates in Louisiana 

Using the ArcGIS Online service from ESRI, a web map of the study area was created 

with the purpose of disseminating the modified trip generation estimates and allowing 

access to the data on which the estimates are based, in a convenient manner. The web 

map illustrates the results of the modified trip rates in the study area of this project 

specifically. Figure 17 shows the home page of ArcGIS accessed from www.arcgis.com. 
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Figure 17. ArcGIS home page 

 

Access  

The web map titled the “ITE trip rates in Louisiana” can be accessed from the link: 

https://www.arcgis.com and by searching for: ITE, Trip rates, Louisiana (the keywords 

need to be typed in the top right corner to search ArcGIS Online). Below will appear the 

title: “ITE trip rates in Louisiana” as shown in Figure 18. By clicking on the title of the 

map, the map information page is seen. From there, by clicking on the map it can be 

opened in Map Viewer. Results from application of the program to the study area of this 

project are shown in the next chapter on Analysis and Results.  
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Figure 18. Accessing the modified trip generation rates 
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Analysis and Results 

Data Analysis 

Manual Counting  

Forty strip malls were surveyed for two consecutive days from 8 am to 6 pm. Vehicle 

trips were counted by direction for every five-minute interval. After verifying the 

accuracy of the manual counts by conducting re-counts of random sites, seven out of 80 

survey days with undesirable weather conditions (heavy rain) and incomplete video 

records (due to battery loss and similar issues) were identified and excluded from the 

whole day data. These seven days all belong to the second day of the site surveys. Data 

from the remaining 73 survey days of the 40 sites were incorporated into an Excel sheet 

along with the ground truth total trips for the whole day. However, three sites out of the 

seven omitted sites have complete data on the PM peak period (4 to 6 pm), so they were 

included in the data file used to conduct the afternoon peak period analysis.  

According to the ITE Trip Generation User’s Guide (8th edition), if traffic counts by 

time on the adjoining road are not available to allow the identification of the peak hour, it 

may be assumed that the hour in which the maximum number of trips to the sites occurs 

is the peak hour on the adjoining road. Because the number of trips were available in 

each 5-minute period between 4 pm and 6 pm in this study, the peak hour trips were 

calculated as the maximum number of trips to the site in 12 consecutive 5-minute counts 

between 4 pm and 6 pm for each day.  

The results of the manual counts are shown in Table 9. Trip rates in the table are the 

number of trips per 1000 sq. ft. of gross floor area of the strip mall at each site. The 

average daily trip rate for all observations in the table (all sites, both days) is 40.82. This 

coincides closely with the fixed value of 42.78 in the 8th edition ITE Trip Generation 

Manual, but the observed variation in trip rates in the table show just how much is not 

captured by the ITE value. The standard deviation of the observed daily trip rates in Table 

9. Total vehicle trip counts and trip rates of the survey sites is 26.08 trips per day, which 

is high, but it must be recalled that the sites were chosen to specifically provide a wide 

variation in three of the conditions thought to influence trip generation, namely 

residential density, land use diversity, and traffic intensity. Whether these three conditions 
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are responsible for all the variation observed is the subject of investigation later in the 

report. 

Table 9. Total vehicle trip counts and trip rates of the survey sites 

Site No. 

First 

Day 

Total 

Trips 

First 

Day PM 

Peak 

Hour 

Trips 

First 

Day Trip 

Rates 

First 

Day PM 

Peak 

Hour 

Trip 

Rates  

Second 

Day 

Total 

Trips 

Second 

Day PM 

Peak 

Hour 

Trips 

Second 

Day Trip 

Rates 

Second 

Day PM 

Peak 

Hour 

Trip 

Rates  

1 595 88 34.34 5.08 540 88 31.17 5.08 

2 369 41 13.28 1.48 455 43 16.38 1.55 

3 1054 105 102.51 10.21 1227 136 119.33 13.23 

4 599 75 40.55 5.08 588 73 39.8 4.94 

5 390 36 39.92 3.68 - - - - 

6 460 70 66.5 10.12 521 62 75.32 8.96 

7 373 38 20.25 2.06 325 29 17.64 1.57 

8 1137 188 59.06 9.76 1235 209 64.15 10.86 

9 350 54 54.99 8.48 323 56 50.75 8.8 

10 549 78 27.07 3.85 649 118 32 5.82 

11 336 54 23.09 3.71 407 80 27.97 5.5 

12 789 87 31.69 3.49 933 128 37.48 5.14 

13 693 71 44.23 4.53 733 68 46.79 4.34 

14 377 65 17.1 2.95 405 67 18.37 3.04 

15 700 85 120.42 14.62 581 55 99.95 9.46 

16 178 15 25.16 2.12 220 25 31.1 3.53 

17 276 29 19.81 2.08 224 44 16.08 3.16 

18 302 58 37.81 7.26 - - - - 

19 664 116 32.84 5.74 716 136 35.42 6.73 

20 280 37 28 3.7 417 81 41.7 8.1 

21 405 61 21.68 3.27 453 81 24.25 4.34 

22 660 94 60.16 8.57 653 75 59.53 6.84 

23 345 49 14.33 2.03 - - - - 

24 734 124 60.92 10.29 787 133 65.32 11.04 

25 386 73 30.03 5.68 524 93 40.77 7.24 

26 150 16 23.83 2.54 118 11 18.75 1.75 

27 422 75 17.14 3.05 453 48 18.4 1.95 

28 306 52 36.82 6.26 307 42 36.94 5.05 

29 283 38 21.61 2.9 203 23 15.5 1.76 
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Site No. 

First 

Day 

Total 

Trips 

First 

Day PM 

Peak 

Hour 

Trips 

First 

Day Trip 

Rates 

First 

Day PM 

Peak 

Hour 

Trip 

Rates  

Second 

Day 

Total 

Trips 

Second 

Day PM 

Peak 

Hour 

Trips 

Second 

Day Trip 

Rates 

Second 

Day PM 

Peak 

Hour 

Trip 

Rates  

30 621 93 88.65 13.28 653 103 93.22 14.7 

31 143 13 18.77 1.71 - - - - 

32 300 66 34.34 7.55 - 35 - 4.01 

33 235 40 22.42 3.82 904 28 86.24 2.67 

34 943 141 24.27 3.63 - 105 - 2.7 

35 286 69 25.77 6.22 904 47 81.44 4.23 

36 67 8 6.62 0.79 115 7 11.36 0.69 

37 1055 115 39.27 4.28 949 115 35.33 4.28 

38 720 70 68.19 6.63 639 66 60.52 6.25 

39 481 89 21.26 3.93 - 50 - 2.21 

40 666 90 28.12 3.8 667 81 28.16 3.42 

 

The vehicle counts, and subsequently the trip rates, are reasonably consistent between 

day 1 and day 2 in most cases, but some sites (e.g., sites 33 and 35) show a dramatic 

change between the days. This may be due to a special event on one of the days but 

considering such events are not likely to be known by the survey administrator in 

advance, the possibility of daily variations must be taken into consideration when 

designing the survey. One possibility may be to extend the counting period to identify 

outliers  

Time Taken to Conduct Manual Counts 

Conducting manual counts from pre-recorded videos in real-time is time-consuming. 

However, the ability of media players to speed up or slow down playback can save time. 

For example, the VLC media player has the ability to increase the playback speed up to 

16 times. 

In this study, six individuals conducted the manual counts. Their reported time for an 

hour video count is shown in Figure 19. From the figure, it can be observed that the 

average time taken to count one hour of recorded vehicle movement is 21 minutes. The 

individuals conducting the manual counting reported difficulty in maintaining 

concentration after looking at a particular point (i.e., reference line) on the computer 
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screen for a long time. They reported that after counting continuously for about an hour, 

they had to take a rest. If this break is taken into consideration, then the average counting 

time for one hour of recording is probably on the order of 30 minutes. The quality of 

videos also controls the duration of manual counting. Low quality videos result in 

extended counting time because individuals cannot increase the playback speed without 

running the risk of failing to recognize all the vehicles.  

Figure 19. Manual counting time 

      

Error in Manual Counting 

As mentioned in the Methodology chapter, there is no actual ground value to estimate 

errors of manual counting. But, errors can be estimated by conducting repeated counts 

and accepting them as actual counts. If the first repeated count is the same as the first 

count, it is considered confirmation that the first count was accurate. But, if the repeated 

count is different from the first count, conducting a second repeated counting is required. 

Since repeated counts cost double time and money, it is necessary to limit repeated 

counting to a few sites. In this study, five sites were randomly selected for repeated 

counting. Different people were selected to conduct the repeated counts from the first. 

Sites selected for repeated manual counting are shown in Table 10. 
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Table 10. Selected sites to measure error in manual counting 

Site No  Site Name 

1 6031 Siegen Ln, 70809 

12 702 N Lobdell Hwy Suite 9, Port Allen, LA 70767 

21 12240 Coursey Blvd, 70816 

31 4404 Moss St, Lafayette, LA 70507 

39 13091 Airline Hwy, Gonzales, LA 70737 

Error in Daily Counts 

First and repeated counts of daily entry, exit, and total vehicle trips at individual sites are 

shown in Table 11 for day 1 and Table 12 for day 2. Percent error is shown for each site 

for entry, exit, and total counts for day 1 and day 2 separately. Reviewing the errors in the 

tables shows under-counting is the dominant form of error. Over-counting occurs in only 

three cases: exit count of site 1 for day 1, exit count of site 21 for day 1, and entry count 

of site 31 for day 1. The magnitude of over-counting error also appears to be smaller than 

under-counting error from the results in Table 11 and Table 12. The potential reasons for 

under-counting from those who conducted the counting were reportedly poor visibility on 

the video screen, high speed of entering vehicles, and one vehicle obscuring the view of 

another at the point of observation.  

Table 11. Daily count error for day 1 

Site 

No. 

Entry Exit Total 

First Repeat Error 

(%) 

First Repeat Error 

(%) 

First Repeat Error 

(%) 

1 306 309 1.0 289 287 -0.7 595 596 0.2 

12 405 410 1.2 384 387 0.8 789 797 1.0 

21 221 224 1.4 184 181 -1.7 405 405 0.0 

31 76 75 -1.3 67 68 1.5 143 143 0.0 

39 251 254 1.2 230 232 0.9 481 486 1.0 
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Table 12. Daily count error for day 2 

Site 

No. 

Entry Exit Total 

First Repeat Error 

(%) 

First Repeat Error 

(%) 

First Repeat Error 

(%) 

1 284 288 1.4 256 259 1.2 540 547 1.3 

12 481 487 1.2 452 454 0.4 933 941 0.9 

21 246 247 0.4 207 209 1.0 453 456 0.7 

31 59 59 0.0 52 53 1.9 111 112 0.9 

39 261 264 1.1 237 239 0.8 498 503 1.0 

To get an overall estimate of the error in manual counts, percent root mean square errors 

(%RMSEs) of the total counts were calculated using formula (1) as shown in the 

methodology section. The percent RMSE for day 1 was found to be 0.65 percent and for 

day 2 was found to be 0.96 percent. The estimated RMSE of total counts error was found 

to be 0.82 percent. 

Classification Error 

The classified first counts were compared with the classified repeated counts to estimate 

classification error. The classification error in vehicle number, repeated counts, and error 

for day 1 is shown in Table 13 and for day 2 in Table 14. Classification errors of first, 

repeated, and total counts were estimated for day 1 and day 2 individually for each site. 

Table 13. Daily classification count error for day 1 

Site No Entry   Exit Total 

Error 

(Nos) 

Repeated 

Counts 

Error 

(%) 

Error 

(Nos) 

Repeated 

Counts 

Error 

(%) 

Error 

(Nos) 

Repeated 

Counts 

Error 

(%) 

1 3 309 1.0 4 287 1.4 7 596 1.2 

12 3 410 0.8 6 387 1.6 9 797 1.1 

21 2 224 0.9 1 181 0.6 3 405 0.7 

31 1 75 1.4 0 68 0.0 1 143 0.7 

39 4 254 1.6 2 232 0.9 6 486 1.2 
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Table 14. Daily classification count error for day 2 

Site No Entry   Exit Total 

Error 

(Nos) 

Repeated 

Counts 

Error 

(%) 

Error 

(Nos) 

Repeated 

Counts 

Error 

(%) 

Error 

(Nos) 

Repeated 

Counts 

Error 

(%) 

1 2 288 0.7 4 259 1.5 6 547 1.1 

12 9 487 1.8 3 454 0.7 12 941 1.3 

21 3 247 1.2 4 209 1.9 7 456 1.5 

31 0 59 0.0 1 53 1.9 1 112 0.9 

39 2 264 0.8 3 239 1.3 5 503 1.0 

The percent RMSE of classification counts was calculated according to equation (2) in 

the methodology section. The estimated RMSE of day 1 was found to be 1.02 percent and 

for day 2 was 1.18 percent. Total classification RMSE was found to be 1.10 percent. 

Interval Error 

Interval error occurs when a vehicle is counted in an incorrect time interval. In this 

research, a 5-minute interval was considered for counting. The probability of an interval 

error increases as the interval time decreases, i.e., the probability of an interval error 

when using 5-minute intervals is higher than when using 15-minute intervals. When 

interval time is decreased, counting has to be conducted in more subdivisions that 

increases the probability of errors.   

In this study, interval error was calculated by comparing the first counts with the repeated 

counts. Table 15 shows the interval error in vehicle number, repeated counts, and error for 

day 1 and Table 16 shows the same data for day 2. 

Table 15. Daily interval count error for day 1 

Site No Entry   Exit Total 

Error 

(Nos) 

Repeated 

Counts 

Error 

(%) 

Error 

(Nos) 

Repeated 

Counts 

Error 

(%) 

Error 

(Nos) 

Repeated 

Counts 

Error 

(%) 

1 3 309 1.0 4 287 1.4 7 596 1.2 

12 3 410 0.7 5 387 1.3 8 797 1.0 

21 2 224 0.9 4 181 2.2 6 405 1.5 

31 2 75 2.7 0 68 0.0 2 143 1.4 

39 4 254 1.6 1 232 0.4 5 486 1.0 
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Table 16. Daily interval count error for day 2 

Site No Entry   Exit Total 

Error 

(Nos) 

Repeated 

Counts 

Error 

(%) 

Error 

(Nos) 

Repeated 

Counts 

Error 

(%) 

Error 

(Nos) 

Repeated 

Counts 

Error 

(%) 

1 4 288 1.4 3 259 1.2 7 547 1.3 

12 4 487 0.8 9 454 2.0 13 941 1.4 

21 5 247 2.0 2 209 1.0 7 456 1.5 

31 1 59 1.7 0 53 0.0 1 112 0.9 

39 3 264 1.1 6 239 2.5 9 503 1.8 

Equation (3), as shown in the methodology section, was used to estimate the percent 

RMSE of interval counts. RMSE of interval counts were found to be 1.23 percent for day 

1 and 1.40 percent for day 2. The total interval RMSE was found to be 1.31 percent.   

Fieldworker Feedback on Manual Count Error  

In this study, the individuals who conducted manual counts reported some potential 

reasons for the errors in counts as follows: 

 Due to a manual increase in frames per second in a media player, the chance of 

failure to recognize vehicles increases and is the main reason for total, 

classification, and interval error. 

 It is hard to report vehicles for the videos which are recorded in the evening, 

heavy rain, or fog because, in these times, the quality of the video image is low.  

 Raindrops obscure the camera lens, which makes a dark video frame, and 

individuals fail to report vehicles. 

 Sometimes a queue of vehicles arrives and departs at the same time. In that case, 

the probability of error rises. 

General Observations on Manual Counting 

In the case of total error, it was observed that underestimation of counts is the most 

frequent scenario because individuals generally miss reporting vehicles. Overestimation 

of counts happens when a queue or a group of vehicles arrives or departs at high speed. 

Classification and interval errors do not have any effect on the total counts. Interval errors 

occur between the end and start of an interval causing an overcount in one interval and an 

undercount in the other, so they are not very important. Total and classification counts are 
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the only counts generally considered in practice. Total counts are usually used to 

calculate daily trips. Interval counts are used to estimate peak hour volume or expanded 

traffic counts. 

Automated Counting 

Automated counting was investigated in this study as a possible way to avoid the labor-

intensive practice of manual counting when establishing the trip generation of a land use. 

If automated counting can reduce manual effort sufficiently, local trip rates could more 

easily be established, sample size could be increased, and more land uses analyzed. 

After reviewing different technologies potentially capable of automated counting, two 

were selected for further testing: video imaging and Bluetooth and Wi-Fi signal detection. 

The results of their application and evaluation is reported in the following sections. 

Image Detection from Video Recordings  

The analysis of images from video recordings was conducted in accordance with the 

method described in the Methodology section of this report. The effort involved in 

applying the method is the effort to install and retrieve video cameras at each site, and 

then to convert video images to counts. Automation only affects the second activity. In 

this study, each site took approximately 12 man-hours including recounts to validate the 

survey results. Processing the video by computer took approximately 2 man-hours per 

site including file preparation, program execution, and documenting the output using the 

system listed below:  

Processor: Intel(R) Core (TM)i7-8750CPU @ 2.20 GHz 2.21 GHz 

RAM: 2.7 GHz, 16.0 GB 

GPU: NVIDIA GeForce GTX 1060, 6GB 

On this platform, it was found that an hour of video takes 1.4 to 1.5 hours to process. It is 

recommended to use a high configuration computer for processing videos. A GPU of 

2060 and graphics more than 6 GB are recommended for the processing.  
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Analyzing Video Files 

In this study, all the videos were in mp4 format and did not require any format 

conversion. Videos were joined to form a ten-hour video. The unnecessary parts of videos 

were trimmed using the Avidmux software (an open-source video editing software). 

Then, the video file, file name, and time interval were provided to process the video. 

In this section, analysis of pre-recorded videos by computer algorithms is reported on. 

They are used to automate the count of the entry and exit of vehicles to a site. Because 

computer processing of the video files took approximately 1.5 times the recording time, a 

sample of sites were randomly selected from the 40 sites to conduct automated counting.  

The automated counting results from 10 randomly selected sites are shown in Table 17. 

Table 17. Automated counting data in vehicles per day 

Site No Day 1 Day 2 

Entry Exit Entry Exit 

1 295 269 268 235 

3 481 485 571 564 

5 172 168 164 162 

11 154 145 182 181 

15 335 331 281 264 

18 114 124 112 131 

21 212 164 229 184 

23 162 145 121 112 

28 145 134 132 124 

32 134 124 118 109 

 

Accuracy Evaluation 

Automated counts were compared with manual counts to estimate the accuracy of the 

automated counting.  The accuracy of daily entry, exit, and total counts of individual sites 

for day 1 are shown in Table 18 and day 2 in Table 19. 
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Table 18. Accuracy of automated counts for day 1 

Site 

No 

Entry Exit Total 

Manual Autom

ated 

Accuracy 

(%) 

Manual Autom

ated 

Accuracy 

(%) 

Manua

l 

Auto

mated 

Accuracy 

(%) 

1 309 295 95.47 287 269 93.73 596 564 94.63 

3 526 481 91.44 528 485 91.86 1054 966 91.65 

5 196 172 87.76 194 168 86.6 390 340 87.18 

11 172 154 89.53 164 145 88.41 336 299 88.99 

15 354 335 94.63 346 331 95.66 700 666 95.14 

18 149 114 76.51 153 124 81.05 302 238 78.81 

21 224 212 94.64 181 164 90.61 405 376 92.84 

23 180 162 90 165 145 87.88 345 307 88.99 

28 162 145 89.51 144 134 93.06 306 279 91.18 

32 159 134 84.28 141 124 87.94 300 258 86 

Table 19. Accuracy of automated counting for day 2 

Site 

No 

Entry Exit Total 

Manual Autom

ated 

Accuracy 

(%) 

Manual Autom

ated 

Accuracy 

(%) 

Manua

l 

Auto

mated 

Accuracy 

(%) 

1 288 268 93.06 259 235 90.73 547 503 91.96 

3 617 571 92.54 610 564 92.46 1227 1135 92.5 

5 194 164 84.54 186 162 87.1 380 326 85.79 

11 207 182 87.92 200 181 90.5 407 363 89.19 

15 297 281 94.61 284 264 92.96 581 545 93.8 

18 142 112 78.87 145 131 90.34 287 243 84.67 

21 247 229 92.71 209 184 88.04 456 413 90.57 

23 132 121 91.67 124 112 90.32 256 233 91.02 

28 158 132 83.54 149 124 83.22 307 256 83.39 

32 129 118 91.47 114 109 95.61 243 227 93.42 

Manual counts were considered as the true data to calculate the accuracy of the 

automated counting. The minimum and maximum accuracy of entry and exit counts were 

found to be 76.51 percent and 95.66 percent. The minimum and maximum total accuracy 

of individual sites were found to be 78.81 percent and 95.14 percent. The estimated 

accuracy of all sites was 89.57 percent.  

A two-tailed paired t-test was performed to evaluate the similarity between manual and 

automated counts. When it is required to know the similarity between two variables of the 
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same subject, a paired t-test is conducted. In this research, manual and automated 

counting was performed on 10 sites. So, manual and automated counts can be considered 

as two variables, and a site can be considered as the same subject of interest. It is required 

to know the difference in the observations of manual and automated counts which can be 

greater, smaller, or equal to zero. So, a two-tailed paired t-test was selected to perform in 

this study. 

A few assumptions were considered for this test. It was assumed that the independent 

variable (i.e., a site) consists of two related groups (i.e., manual and automated counts), 

there are no significant outliers in the differences between manual and automated counts, 

and the distribution of differences between manual and automated counts shows an 

approximate normal distribution.  

The following hypotheses were considered: 

𝐻0: 𝑁𝑎𝑖 = 𝑁𝑚𝑖∀ 𝑖 

𝐻𝐴: 𝑁𝑎𝑖 ≠ 𝑁𝑚𝑖∀ 𝑖 

𝑤ℎ𝑒𝑟𝑒, 

𝑁𝑎𝑖 = 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑 𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑖𝑙𝑦 𝑐𝑜𝑢𝑛𝑡 𝑎𝑡 𝑠𝑖𝑡𝑒 𝑖 

𝑁𝑚𝑖 = 𝑚𝑎𝑛𝑢𝑎𝑙 𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑖𝑙𝑦 𝑐𝑜𝑢𝑛𝑡 𝑎𝑡 𝑠𝑖𝑡𝑒 𝑖  

A paired t-test was conducted for two cases for day 1 and day 2 individually. In the first 

case, the t-test was conducted for the difference between manual and automated counts. 

However, since there is a consistent trend to undercount, a second case was considered 

where the mean difference is subtracted from the difference. That is, in the second case, 

the test was conducted for the adjusted difference between manual and automated counts, 

where the adjustment was performed by the mean of the difference (manual – automated 

+ mean). In effect, this is recognizing the consistent tendency for the automated counts to 

be undercounted and adjusting for it. The test results are shown in Table 20, Table 21, 

Table 22, and Table 23. 
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Table 20. Paired t-test for manual minus automated counts for day 1 

Mean 44.10 

Standard deviation 18.91 

Standard Error of the Estimate (S.E.E.) 5.98 

t-statistic 7.37 

95% Confidence Interval 30.57 57.63 

Table 21. Paired t-test adjusted for the mean for day 1 

Mean -0.60 

Standard deviation 18.91 

Standard Error of the Estimate (S.E.E.) 5.98 

t-statistic -0.10 

95% Confidence Interval -14.13 12.93 

Table 22. Paired t-test for manual minus automated counts for day 2 

Mean 44.70 

Standard deviation 20.38 

Standard Error of the Estimate (S.E.E.) 6.44 

t-statistic 6.94 

95% Confidence Interval 30.12 59.28 

Table 23. Paired t-test adjusted for the mean for day 2 

Mean -2.84E-15 

Standard deviation 20.38 

Standard Error of the Estimate (S.E.E.) 6.44 

t-statistic -4.41E-16 

95% Confidence Interval -14.58 14.58 

In the case of the difference between manual and automated counts as shown in Table 20 

and Table 22, the null hypothesis is rejected for both day 1 and day 2. So, in this case, it 

is observed that the manual and automated counts are significantly different from each 

other. However, in the case of the adjusted difference between manual and automated 

counts, i.e., Table 21 and Table 23, the null hypothesis could not be rejected. So, when 

the tendency of automated counts to be undercounted is taken into effect, no discernible 

difference between manual counts and automated counts was observed in this study. 
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One of the assumptions of the two tailed paired t-test is that data shows a normal 

distribution so a normality test was conducted on the data. In this case, the manual and 

automated counting data for day 1 and day 2 were analyzed separately. It was found that 

only the data for manual counting from day 1 showed a normal distribution, while all 

other data did not. However, looking at the results above, evidence to reject the null 

hypothesis for the data in Table 20 and Table 22, and lack of evidence to reject it for data 

in Table 21 and Table 23, is so strong in each case that the failure of the data to display a 

normal distribution is unlikely to disqualify the finding that while a significant difference 

exists in the raw counts, if the consistent trend of video to undercount is taken into 

account, no significant difference exists.  

Potential Reasons for the Error  

The potential reasons for error in automated counts are as follows. In the case of a 

parking lot, the arrival speed of a vehicle is generally higher than the departure speed. 

Figure 20 explains the scenario clearly. Here, vehicles leave the major road and take a 

right turn to enter the entrance of the parking lot, where they do not need to wait for any 

traffic signal or queue. But when vehicles depart from the parking lot, they have to wait 

for a gap in the major road, which causes a lower speed for departing vehicles. This 

program sometimes fails to count vehicles that have a high speed. The reason behind this 

is when vehicles arrive at high speed, the program does not get time to count because it 

appears in the frame for too short a time. For this reason, the error for arriving vehicles is 

higher than for departing vehicles.  
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 Figure 20. Arrival and departure speed comparison 

 

The camera angle is a major reason for reducing the accuracy of counts. When the 

camera is close to the entrance, i.e., the vehicle appears large and covers most of the 

frame, the program fails to count those vehicles. Moreover, when vehicles appear large, 

some parts of the vehicle are out of the frame, which makes it difficult for the program to 

detect the image as a vehicle. In Figure 21, the camera is very close to the entrance, and it 

does not cover the whole view of the entrance. As a result, the UPS vehicle appears large 

and some parts of the vehicle are out of the frame. Although most of the time the program 

can detect and count large vehicles, it is not the ideal view of the frame for automated 

counting.    



   

 

—  77  — 

 

 Figure 21. Unsuitable camera angle and view 

 

Visibility is an important factor that controls the quality of the video. Low visibility 

results in poor video quality. Rain, low light, evening recording, and cloudy weather 

causes low visibility. Raindrops obscure the camera lenses and result in a bad quality of 

video recording. In this case, the program cannot count accurately. When two vehicles 

arrive and depart at a time, one vehicle overlaps another. In this case, the program cannot 

detect the overlapped vehicle and counts only one vehicle. 

Bluetooth and Wi-Fi Vehicle Detection 

Field Experience 

TrafficBox data can be exported in Excel format (CVS file) and include information on 

fingerprint (MAC Address records), detection type (Wi-Fi or Bluetooth), Received Signal 

Strength Indicator (RSSI) value, and detection date and time. An example of the output 

file from a TrafficBox is shown in Figure 22. Create-time is the recorded time in seconds 

from a reference date. According to the TrafficBox manual and our experiments with 

TrafficBoxes, the detection zone can vary depending on the antenna type, indoor versus 

outdoor environments, surrounding objects, and the signal strength of target devices. 
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Figure 22. TrafficBox recorded data 

 

To expedite the data collection phase in a reasonable period of the project, four 

TrafficBoxes were purchased from the SMATS Company and were labeled TB#1 to 

TB#4. The first pair of TrafficBoxes (TB#1 and TB#2) were purchased a few months 

before the second pair. Five second Ignore MAC Interval was set on the TrafficBoxes to 

save memory space and battery life by not recording repeated MAC Addresses during the 

next five seconds after the first detection of a unique address (also referred to as a 

fingerprint). All the TrafficBoxes had a battery life of about 31 hours.  

Correlation Between TrafficBox Detections and Vehicle Counts 

A random sample of 6 strip malls were selected to compare the number of Bluetooth and 

Wi-Fi detections with manual counts of vehicles at each site. The count of detections and 

vehicle counts were made at the hourly level over the two days of observation at each 

site, resulting in up to 20 pairs of counts at each site if counts were conducted for the full 

10 hours on each day. Table 24 shows the results of the comparison. As can be seen, 

correlation coefficients vary between 0.62 and 0.97 for the “combined” category 

representing total vehicle trip ends at each site. The detection ratio (i.e., the ratio of total 

Wi-Fi and Bluetooth detections divided by total vehicle trips) are the lowest at sites A 

(0.95) and E (0.81) causing 5.6 percent and 19.1 percent underestimation by the method. 

However, the detection ratio ranges between 1.5 and 2.87 in the remaining sites, leading 

to 49.67 percent to 187 percent overestimation. Also, the detection ratio for “in” and 

“out” categories are close, which suggests that almost the same number of entering 

devices remained detectable when leaving the site. Except in the first hour of the 
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detection period, the detection ratio remained almost steady by time of day at each site. In 

addition, the correlation coefficients are always higher in the “out” category compared 

with the “in” category, suggesting the method is a very strong predictor of leaving 

vehicles (other than for site F). The correlation coefficients are above 0.81 compared to 

the entries (ranging from 0.43 to 0.89). 

 Table 24. Correlation coefficient and detection ratio of the random sample 

 Correlation Coefficient 
Detection Ratio 

(Automated/Manual) 

Over/ 

underestimates 

Sites In Out Combined In Out Combined  

A 0.89 0.94 0.97 0.91 0.98 0.95 -5.60% 

B 0.8 0.93 0.94 2.67 3.11 2.87 187% 

C 0.72 0.87 0.92 1.41 1.6 1.5 49.67 

D 0.67 0.81 0.76 2.1 1.94 2.02 101.80% 

E 0.49 0.81 0.75 0.76 0.86 0.81 -19.10% 

F 0.43 0.59 0.62 1.97 1.63 1.79 79.33% 

 

In Table 24, the correlation coefficients for combined in and out movements at the first 

three sites (i.e., A, B, and C) are high (above 0.92), but the other three sites (i.e., D, E, 

and F) have only moderate correlation coefficients (0.62 to 0.76). An attempt was made 

to identify which factors affect the quality of the predictions, by looking for factors that 

differed between the two groups of sites. Built-environment (BE) factors were 

investigated as a possible influence. The influence of variations in population density, 

land-use diversity, traffic volume on the adjacent road, and business types at each site 

were investigated. Residential density was determined from dividing the residential 

population by the size of catchment area around the strip malls (expressed in population 

within a 0.5-mile radius of the site). The jobs to resident workers ratio (JWR meaning the 

ratio of number of jobs to number of resident workers within a 0.5-mile radius of the site) 

was used as a measure of land use diversity. HPMS ADT 2016 counts were used as a 

measure of traffic volume on adjacent streets to the sites. Business types of the sites were 

collected form Google Popular Times data. The results are shown in Table 25. 

Analyzing the results in Table 25, residential density is very high in the first group of 

sites (above 1400 people within a 0.5- mile radius of the sites) except site A. However, 

the second group has much lower residential density (below 720 people within a 0.5-mile 
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radius of the sites). As expected, land use diversity is much lower in the first group 

compared to the second group (except site F). Because the detection zones are dynamic 

and may increase to larger radii for some devices with stronger signals, the joint detection 

area may include visits to surrounding land uses, which becomes problematic for sites 

with high land use diversity. It seems that the lower correlation coefficients of the second 

group may be due to higher land use diversity. However, there are two exceptions. Site A 

with low residential density and relatively high land use diversity had the best estimates 

in the first group. Site F with low residential density and low land use diversity had the 

least accuracy in the second group. These show that there must be other factors affecting 

the quality of the estimates beyond residential density and land use diversity around the 

sites. 

Table 25. Built environment characteristics of the random sample 

Sites 
Manual Automated 

Combined 

R 

Population 

Density 
JWR 

HPMS 

ADT 

2016 
In Out combined In Out combined 

A 358 304 662 282 261 543 0.97 666 1.65 15,200 

B 154 132 286 411 410 821 0.94 1485.29 0.31 3,500 

C 159 141 300 224 225 449 0.92 1752.52 0.23 24,992 

D 354 346 700 628 501 1129 0.76 410.11 5.89 4,200 

E 201 176 377 153 152 305 0.75 440.86 7.62 26,200 

F 87 92 179 90 82 172 0.62 715.8 0.51 17,300 

 

By increasing the traffic volume on the adjacent streets that are in view of the scanners, it 

may be possible to miss detecting some devices visiting the site because the capacity of 

the scanners may be exceeded due to a high volume of passing vehicles, which may 

affect the quality of the predictions. It was thought that the 5-second ignore MAC interval 

setting could worsen the situation at busy sites. However, this was found not to be true. 

As can be seen from Table 25, site F with the least vehicle trip ends (179) and relatively 

low traffic volume (17,300 vehicles per day) has the worst performance, while site A with 

the second highest vehicle trip ends (662) and almost the same level of traffic volume 

(15,200 vehicles per day) has the highest coefficient of correlation. Also, Table 25 shows 

the same level of traffic volumes in both groups, showing that traffic volume seems to 

have no effect on model performance by itself. 

The type of businesses in the sites is another factor that may affect the results. If a site 

includes businesses that have more or less the same visiting time, the method performs 
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the best. Here, we found that 75 minutes is the best threshold for a visit at the strip mall 

land-use category that is consistent with the conventional business types of this land-use 

category. For example, site A has eight businesses including two boutiques, two 

restaurants, two beauty salons, a coffee shop, and an eye care center. Site B includes a 

restaurant, two bars, a beauty salon, a coffee shop, and a vaporizer store. Site C has a real 

estate agency, beauty salon, and restaurants. Since the duration of visits of these 

businesses are close to each other, they could be captured well by the 75-minute 

threshold. However, if businesses with much higher and inconsistent durations of visit 

time are located at a strip mall, such as physical therapy at site F, and a healthcare clinic, 

art school, and dance academy at site E, the model performance drops. Site D includes a 

beauty salon, a postal store, a liquor store, and a cell phone store with less than 75 

minutes visiting duration, so it seems the only reason for having 0.76 correlation 

coefficient value is due to the extension of the joint detection area and the inference from 

its surrounding land uses. 

Another issue here is that the method identifies a MAC address with less than a 75-

minute gap in its consecutive detection as a visit. It is unable to screen out vehicles 

passing by the desired site more than twice under the 75-minute threshold, unless we 

deploy two additional TBs beside the road before and after the land use. This way MAC 

addresses that passed the site more than once within less than the 75-minute interval will 

be screened out.  

Regression Analysis 

Regression analysis was conducted to determine local trip rates that include the impact of 

floor area, density, diversity, and traffic. Daily and peak-hour manual counts at the 40 

survey sites serve as the dependent variable in this analysis, while floor area, density, 

diversity, and traffic, and floor area at each site are the independent variables. The 

purpose of the analysis is to determine whether the built environment factors such as 

density, diversity, and traffic have a significant impact on trip rates, and to develop 

locally-estimated trip rates that can be used to modify ITE trip rates. 

Data 

The data used in the regression analysis is shown in Table 26.  
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Table 26. Contextual data of survey sites 

Site number Floor area (1,000 sq.ft.) Road Density Worker + res.den 

(1000) 

JWR 

1 17.33 0.98 5.10 13.30 

2 27.78 0.00 1.88 13.60 

3 10.28 0.53 5.58 2.10 

4 14.77 1.33 8.03 16.70 

5 9.77 0.00 3.42 8.41 

6 6.92 1.00 0.44 4.81 

7 18.42 2.07 2.48 3.58 

8 19.25 2.56 1.73 18.60 

9 6.37 0.16 0.54 1.38 

10 20.28 1.57 1.82 1.65 

11 14.55 0.99 1.91 2.07 

12 24.89 2.51 1.94 16.70 

13 15.67 0.89 3.28 36.90 

14 22.04 1.92 1.86 7.62 

15 5.81 2.08 2.16 5.89 

16 7.08 1.41 1.07 0.50 

17 13.93 1.45 1.06 0.40 

18 7.99 0.00 1.13 0.31 

19 20.22 2.44 1.67 0.83 

20 10.00 1.19 0.85 0.38 

21 18.68 0.00 4.91 1.10 

22 10.97 3.90 2.71 0.41 

23 24.08 0.77 2.06 0.97 

24 12.05 2.50 4.30 0.14 

25 12.85 0.00 5.59 0.54 

26 6.30 0.00 7.54 1.06 

27 24.62 2.03 0.79 0.45 

28 8.31 1.03 1.75 0.94 

29 13.09 1.98 0.47 0.16 

30 7.01 1.45 1.20 0.20 

31 7.62 1.30 1.39 0.20 

32 8.74 1.74 1.99 0.23 

33 10.48 0.00 4.96 0.50 

34 38.85 1.37 4.69 0.68 

35 11.10 1.53 1.72 0.31 
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Site number Floor area (1,000 sq.ft.) Road Density Worker + res.den 

(1000) 

JWR 

36 10.12 0.00 5.08 2.46 

37 26.86 2.48 5.18 8.25 

38 10.56 0.90 10.58 2.99 

39 22.63 0.51 2.13 3.87 

40 23.69 0.00 3.31 1.82 

Correlation Analysis  

 

Table 27 shows Pearson correlation between independent variables as well as the 

dependent variable. According to the table, whole day total trips have a moderately 

positive relationship with gross floor area (0.39), JWR (0.38), local connecting road 

density (0.38), and combined worker and residential density (0.22), where the numbers in 

parentheses are the correlation values. Also, these four variables are not strongly 

correlated with each other and, therefore, are good candidate variables for inclusion in the 

regression model. Median income is strongly correlated with residential density and is 

not strongly correlated with daily trips. Therefore, it was excluded from the regression 

equation estimated in the next section. 

Table 27. Correlation of selected BE measures for whole day data 
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Average 

Whole Day 

Trips 

1             

Area 0.39 1            

Residential 

Density 
0.03 -0.07 1           

Combined 

Worker and 

Residential 

Density 

0.22 0.01 0.79 1          

JWR 0.38 0.24 -0.3 0.11 1         

2016 

DOTD 

AADT 

0.09 0.17 0.04 0.16 0.3 1        
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2016 

HPMS 

AADT 

-0.07 0.04 0.08 0.17 0.12 0.2 1       

Road 

Density 
-0.02 -0.25 0.66 0.69 -0.06 0.05 -0.04 1      

Controlled 

Access 

Highway 

Density 

-0.07 -0.04 -0.22 -0.07 0.37 0.03 -0.1 0.21 1     

Major 

Connecting 

Road 

Density 

-0.06 0.2 0.06 0.19 0.07 0.08 0.24 0.19 -0.17 1    

Local 

connecting 

road density 

0.38 0.14 -0.32 -0.27 0.05 0.07 -0.22 -0.13 0.01 -0.34 1   

Local Road 

Density 
-0.11 -0.35 0.83 0.75 -0.32 -0.02 0.05 0.86 -0.19 0.14 -0.34 1  

Ramp 

Density 
-0.01 -0.07 -0.18 -0.07 0.35 0.03 -0.12 0.31 0.89 -0.2 0.2 -0.1 1 

 

A similar situation was found among the PM peak hour trips. Table 28 shows that local 

connecting road density, area, and JWR with 0.42, 0.38, and 0.25 correlation values with 

PM peak hour trips are good candidate variables for inclusion in a regression model 

estimating PM peak hour trips. The candidate variables also have low correlation with 

each other (< 0.23) thus minimizing multicollinearity in the regression model. All the 

variables are defined previously. 
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Table 28. Correlation of selected BE measures for PM peak hour data 
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Average 

Whole Day 

Trips 

1.00             

Area 0.38 1.00            

Residential 

Density 
-0.03 -0.07 1.00           

Combined 

Worker and 

Residential 

Density 

0.05 0.02 0.78 1.00          

JWR 0.25 0.23 -0.30 0.11 1.00         

2016 

DOTD 

AADT 

0.07 0.17 0.05 0.18 0.30 1.00        

2016 

HPMS 

AADT 

0.20 0.16 -0.03 0.21 0.28 0.36 1.00       

Road 

Density 
-0.16 -0.24 0.66 0.69 -0.06 0.07 -0.03 1.00      

Controlled 

Access 

Highway 

Density 

-0.16 -0.04 -0.22 -0.07 0.37 0.02 0.08 0.20 1.00     

Major 

Connecting 

Road 

Density 

-0.16 0.22 0.03 0.17 0.07 0.09 0.17 0.17 -0.17 1.00    

Local 

connecting 

road density 

0.42 0.15 -0.34 -0.28 0.06 0.04 -0.03 -0.15 0.02 -0.34 1.00   

Local Road 

Density 
-0.19 -0.34 0.84 0.75 -0.33 0.00 -0.07 0.86 -0.19 0.11 -0.35 1.00  

Ramp 

Density 
-0.12 -0.07 -0.19 -0.07 0.36 0.02 0.05 0.31 0.89 -0.19 0.20 -0.11 1.00 

 

Model Estimation 

Multiple linear regression analysis was conducted on whole day (8 am-6 pm) and PM 

peak hour (the hour in which the maximum number of trips to the strip mall occurred) 

survey data. In the analysis, variables measuring area, density, diversity, and traffic are 
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used as independent variables. Since different variables can be used in this role, the most 

important ones are evaluated here and the best combination identified. Two density 

measures (i.e., residential density and combined worker and residential density), a 

diversity measure (i.e., jobs to resident workers ratio), and five design measures (i.e., 

DOTD 2016 ADT, HPMS 2016 ADT, road density, road density by functional classes, 

and local connecting road density) resulted in ten different combinations of the BE 

factors. To compare the performance of different BE combinations, goodness of fit 

measures such as The Multiple Coefficient of Determination (R2), standard error (SE), 

mean square error (MSE), model significance level (Significance F), and significance 

level of independent variables (t statistic and p-value) were used. From the estimation 

results of different combinations of independent variables shown in Table 29, the model 

that had the best R2, standard error, mean square error, and significance level for the 

whole day analysis was the last model shown in the table using combined workers and 

residential density, JWR, and local connecting road density as the BE factors. Moreover, 

this combination of the BE factors has the highest significance level of the coefficients of 

the independent variables in a regression model. Table 30 shows the resulting whole day 

contextual trip generation model for the strip malls. 

Table 29. Whole day model comparison of different BE combinations 

Population Density 

Land 

Use 

Diversity 

Design (Network Characteristics) 

R2 SE MSE 
Significance 

F 
Residential 

Density 

Workers & 

Residential 

Density 

JWR 

LA 

DOTD 

2016 

AADT 

HPMS 

2016 

AADT 

Road 

Density 

Road 

Density 

by 

Functional 

Class 

Local 

Connecting 

Road 

Density 

        0.28 238.8 57039.5 1.20E-04 

        0.30 235.4 55421.6 4.85E-05 

        0.30 235.4 55421.6 1.40E-04 

        0.28 239.6 57415.6 6.20E-06 

        0.42 212.8 45295.4 1.25E-07 

        0.41 217.4 47282.1 7.58E-05 

        0.30 237.1 56203.2 2.60E-05 

        0.32 233.1 54351.4 8.40E-05 

        0.29 237.4 56383.9 3.90E-06 

        0.43 211.1 44584.9 0.74E-07 
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Table 30. Estimation of whole day regression equation 

Regression Statistics 

Multiple R 0.66 

R Square 0.43 

Adjusted R Square 0.40 

Standard Error 211.15 

Observations 73 

Table 31. Coefficients of whole day regression equation 

 Coefficients 
Standard 

Error 
t Stat P-value Lower 95% Upper 95% 

Intercept 67.77 73.47 0.92 0.36 -78.84 214.38 

Area (1,000 sq. ft.) 10.25 3.40 3.01 0.00 3.47 17.04 

Combined Worker & 

Residential Density 

(1,000 persons) 

33.78 11.15 3.03 0.00 11.53 56.03 

JWR Ratio 9.21 3.41 2.70 0.01 2.41 16.00 

Local Connecting Road 

Density 
115.25 27.61 4.17 0.00 60.15 170.35 

 

The coefficients of the independent variables in the model are all statistically significant 

at the 95 percent level of significance (t-statistic above 2) with the exception of the 

constant. The model explains 43 percent of whole day trip variations in the data.  

Equation 4 shows the trip generation model for whole day analysis. 

 𝑇 = 67.77 + 10.25𝑥1 + 33.78𝑥2 + 9.21𝑥3 + 115.25𝑥4  (4) 

where, 

𝑇 = estimated trip ends per day at a strip mall with characteristics 𝑥1 − 𝑥4 

𝑥1= gross floor area (in units of 1,000 square feet) 

𝑥2 = combined worker and residential density (in 1000’s of persons within 0.5-mile 

radius of the site) 
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𝑥3 = JWR ratio (ratio of number of jobs to number of resident workers within 0.5-mile 

radius of the site) 

𝑥4 = local connecting road density (measured as miles of road within 0.5-mile radius of 

the site) 

Likewise, Table 32 shows the results of different combinations of independent variables 

for the PM peak hour. Considering all the factors (R2, SE, MSE, etc.), Table 34 reports 

the best fit for the PM peak hour data being a model specification that includes area, 

residential density, JWR, and local connecting road density as the independent variables. 

Table 32. PM peak hour model comparison of different BE combinations 

 

  

Population Density 

Land 

Use 

Diversity 

Design (Network Characteristics) 

R2 SE MSE 
Sig. 

F 
Residential 

Density 

Workers & 

Residential 

Density 

JWR 

LA 

DOTD 

2016 

AADT 

HPMS 

2016 

AADT 

Road 

Density 

Road 

Density 

by 

Functional 

Class 

Local 

Connecting 

Road 

Density 

        0.15 71.20 5069.98 0.02 

        0.16 71.01 5041.79 0.02 

        0.17 70.70 4998.56 0.01 

        0.39 62.40 3894.29 
6.4E

-05 

        0.33 32.98 1087.63 
6.6E

-06 

        0.15 71.30 5084.22 0.02 

        0.16 71.08 5052.53 0.02 

        0.16 70.88 5023.27 0.02 

        0.38 62.80 3943.33 
9.01

E-05 

        0.32 33.26 1106.54 
1.2E

-05 
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Table 33. Estimation of PM peak hour regression equation 

Regression Statistics 

Multiple R 0.58 

R Square 0.33 

Adjusted R Square 0.30 

Standard Error 32.98 

Observations 76 

Table 34. Coefficients of PM peak hour regression equation 

 Coefficients 
Standard 

Error 
t Stat P-value Lower 95% Upper 95% 

Intercept 12.04 11.78 1.02 0.31 -11.45 35.53 

Area (1,000 Sq. ft.) 1.50 0.53 2.85 0.01 0.45 2.54 

Residential Density 

(1,000 in 0.5 mile 

radius) 

5.57 3.04 1.83 0.07 -0.48 11.62 

JWR 1.13 0.55 2.04 0.05 0.03 2.23 

Local Connecting Road 

Density 
17.84 4.32 4.13 0.00 9.22 26.46 

 

According to the PM peak hour regression outcomes, the p-value is much smaller than 

the standard rejection region of 0.05 and the large values of the test statistics show the 

statistical significance of the coefficients of the independent variables at the 95 percent 

level of significance, with the exception of the constant and residential density. The 

model explains 33 percent of PM peak hour trip variations in the data. Equation 5 shows 

the estimated trip generation model for the PM peak hour. 

 𝑇 = 12.04 + 1.50𝑥1 + 5.57𝑥2 + 1.13𝑥3 + 17.84𝑥4 (5) 

where, 

𝑇 = estimated trip ends per hour during the peak at a strip mall with characteristics 𝑥1 −

𝑥4 

𝑥1= gross floor area (in units of 1,000 square feet of the site) 
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𝑥2 = residential density (in 1000’s of populations within 0.5-mile radius of the site) 

𝑥3 = JWR ratio (ratio of number of jobs to number of resident workers within 0.5-mile 

radius of the site) 

𝑥4 = local connecting road density (measured as miles of road within 0.5-mile radius of 

the site) 

Testing for Autocorrelation, Multicollinearity, and Heteroscedasticity 

To ensure that the models described in the previous paragraphs abide by the Gaussian 

assumptions on which linear regression is based, the models are tested for 

autocorrelation, multicollinearity, and heteroscedasticity. 

Autocorrelation  

Autocorrelation or serial correlation refers to the existence of correlation between error 

terms of observations in a regression model. The Durbin-Watson (DW) statistic is often 

used to check for autocorrelation in linear regression models. The DW statistic varies 

between zero and 4 representing positive and negative correlation among consecutive 

observations at either end. A DW value of 2 means no autocorrelation exists in the data. 

As shown in Table 35 and Table 36, DW values of 2.40 and 2.35 for whole day and PM 

peak hour analyses show very low levels of autocorrelation in this data set. 
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Table 35. Autocorrelation results for whole day analysis 

Ordinary Least Squares Estimates 

SSE 3080098.26 DFE 68 

MSE 45296 Root MSE 212.83 

SBC 1006.07 AIC 994.61 

MAE 160.60 AICC 995.51 

MAPE 47.15 HQC 999.18 

Durbin-Watson 2.40 Total R-Square 0.42 

Durbin-Watson Statistics 

Order DW Pr < DW  Pr > DW 

1 2.40 0.96 0.043 

(Note: Pr < DW is the p-value for testing positive autocorrelation, and Pr > DW is the p-

value for testing negative autocorrelation.) 

Table 36. Autocorrelation results for PM peak hour analysis 

Ordinary Least Squares Estimates 

SSE 80588.898 DFE 71 

MSE 1135 Root MSE 33.69 

SBC 766.77 AIC 755.12 

MAE 25.97 AICC 755.98 

MAPE 65.39 HQC 759.78 

Durbin-Watson 2.35 Total R-Square 0.306 

Durbin-Watson Statistics 

Order DW Pr < DW Pr > DW 

1 2.35 0.93 0.0705 

Multicollinearity 

Multicollinearity refers to high correlation between independent variables included in the 

model. The Variance Inflation Factor (VIF) is often used to measure multicollinearity in 

regression analysis. The VIF measures the number of times the variance of the estimated 

dependent variable is increased by the existence of collinearity (correlation) among 

independent variables in the model. The VIF varies between 1 (indicating no collinearity 

among the independent variables) to infinity when all independent variables are collinear. 

Generally, if the VIF is above 10, multicollinearity in a linear regression model is 

considered excessive and remedial action must be taken [34]. Table 37 shows the 
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collinearity diagnostics for the whole day and Table 38 for the PM peak hour data. As can 

be seen from the table, the VIF values are well below 10 for all independent variables 

included in the models, which means there is not a significant level of multicollinearity 

among the independent variables in the model. 

Table 37. Multicollinearity test for whole day data 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 

Standard 

Error 
t Value Pr > |t| 

Variance 

Inflation 

Intercept 1 67.77 73.47 0.92 0.36 0 

Area 1 10.25 3.40 3.01 0.00 1.08 

Residential & 

Workers 

Density 

1 33.78 11.15 3.03 0.00 1.10 

JWR 1 9.21 3.41 2.70 0.01 1.07 

Local 

Connecting 

Road Density 

1 115.25 27.61 4.17 <.0001 1.11 

Table 38. Multicollinearity test for PM peak hour data 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 

Standard 

Error 
t Value Pr > |t| 

Variance 

Inflation 

Intercept 1 12.04 11.78 1.02 0.31 0.00 

Area 1 1.50 0.53 2.85 0.01 1.08 

Residential 

Density 
1 5.57 3.04 1.83 0.07 1.25 

JWR 1 1.13 0.55 2.04 0.05 1.17 

Local 

Connecting 

Road Density 

1 17.84 4.32 4.13 <.0001 1.16 
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Heteroscedasticity 

Heteroscedasticity refers to inconsistency in the variation of residuals across values of the 

independent variables and should be treated in an OLS regression model as it decreases 

the precision of the estimates. Two common tests used in testing for heteroscedasticity, 

namely the Breusch-Pagan and White tests, were applied to the whole day and PM peak 

hour data. The Breusch-Pagan test checks for linear forms of heteroscedasticity, while the 

White test is used to test non-linear forms of heteroscedasticity in the data. They test the 

null hypothesis that the variance of the error terms is invariant across values of the 

independent variables. As shown in Table 39 and Table 40, the p-value (the probability of 

falsely rejecting the null hypothesis) for all the test-statistics are above the alpha level of 

0.05. Therefore, whole day and PM peak hour data meet the homoscedasticity condition 

of linear regression models. 

Table 39. Heteroscedasticity test on whole day data 

Heteroscedasticity Test 

Equation Test Statistic DF Pr>ChiSq 

Trips White’s test 15.83 14 0.32 

 Breusch-Pagan 3.03 4 0.55 

 

Table 40. Heteroscedasticity test on PM peak hour data 

Heteroscedasticity Test 

Equation Test Statistic DF Pr>ChiSq 

Trips White’s test 23.92 14 0.05 

 Breusch-Pagan 4.44 4 0.35 
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Using the data in Table 26 and the ITE and Contextual models for daily trips in equations 

(6) and (4) respectively, the performance of the models can be assessed by comparing 

their predictions against the ground counts. The results of such a comparison is shown in 

Table 41 where the overall performance of each model is measured in terms of the 

percent root mean square error of the predicted counts from the ground counts. The 

percent root mean square error of the ITE model is 111 percent versus 71 percent for the 

model that includes the contextual factors. Thus, adding the density, diversity, and traffic 

intensity surrounding a site to estimation of the trip generation of a strip mall in this 

study, reduced the average error of predictions from 111 percent to 71 percent, a 36 

percent reduction in error. While this is a substantial reduction in error, the magnitude of 

error still remaining shows that there are significant remaining factors influencing trip 

generation that have not been captured in this analysis. 

Table 41. Comparison of ITE model and model including contextual factors 

Site number Ground count ITE model Contextual daily model 

1 567.50 779.04 653.12 

2 412.00 1226.09 541.28 

3 1140.50 477.44 442.06 

4 593.50 669.52 797.51 

5 390.00 455.62 360.90 

6 490.50 333.70 313.11 

7 349.00 825.67 611.89 

8 1186.00 861.18 789.87 

9 336.50 310.17 182.45 

10 599.00 905.24 533.26 

11 371.50 660.11 414.59 

12 861.00 1102.45 831.51 

13 713.00 708.02 781.61 

14 391.00 980.53 647.97 

15 640.50 286.21 494.25 

16 199.00 340.54 343.59 

17 250.00 633.59 417.16 

18 302.00 379.47 190.69 

19 690.00 902.67 620.29 

20 348.50 465.46 339.63 

21 429.00 836.79 435.23 
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Site number Ground count ITE model Contextual daily model 

22 656.50 506.96 725.01 

23 345.00 1067.80 481.85 

24 760.50 553.16 625.95 

25 455.00 587.38 393.29 

26 134.00 307.17 396.81 

27 437.50 1090.90 584.91 

28 306.50 393.16 339.43 

29 243.00 597.65 447.49 

30 637.00 337.55 349.11 

31 143.00 363.64 344.50 

32 271.50 411.56 427.23 

33 235.00 485.99 347.34 

34 923.50 1699.66 788.57 

35 286.00 512.52 418.83 

36 91.00 470.59 365.76 

37 1002.00 1186.73 879.87 

38 679.50 489.42 664.67 

39 481.00 1005.77 466.10 

40 666.50 1051.12 439.17 

%RMSE 111 71 

Adjustment Factors 

The eighth edition of the ITE Trip Generation Manual estimates whole day trip 

generation at a strip mall from the following formula: 

 𝑇 = 37.66 + 42.78𝑥1 (6) 

where, 

𝑇 = estimated trip ends per day at a strip mall with a gross floor area of 𝑥1 

𝑥1= gross floor area of strip mall (in units of 1,000 square feet) 

Under the assumption that the gross floor area used in this study is the same as the area 

used by ITE, subtracting equation (6) from the equation which included built 

environment factors in the formulation (i.e., equation (4)), produces an adjustment factor 
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for daily ITE trips. That is, ITE trip estimates can be adjusted to reflect local conditions, 

including built environment characteristics of the area, by applying this adjustment factor 

to the trip generation estimates from ITE. The adjustment factor for whole day trips is 

shown in equation 7. 

 𝐴𝐹𝑑𝑎𝑦 = 30.11 − 32.53𝑥1 + 33.78𝑥2 + 9.21𝑥3 + 115.25𝑥4 (7) 

where, 

𝐴𝐹𝑑𝑎𝑦 = Adjustment factor for whole day trip estimates from ITE 

𝑥1= gross floor area (in units of 1,000 square feet of the site) 

𝑥2= combined worker and residential density (in 1000’s of population within 0.5-mile 

radius of the site) 

𝑥3= JWR ratio (ratio of number of jobs to number of resident workers within 0.5-mile 

radius of the site) 

𝑥4= local connecting road density (measured as miles of road within 0.5-mile radius of 

the site) 

The eighth edition of the ITE Trip Generation Handbook estimates afternoon peak hour 

trip generation equation from the following formula:  

 𝑇 = 21.48 + 2.40𝑥1 (8) 

where, 

𝑇 = estimated peak hour trip ends at a strip mall with a gross floor area of 𝑥1 

𝑥1= gross floor area of strip mall (in units of 1000 square feet) 

By subtracting equation 8 from the equation 5 for peak-hour trips, an adjustment factor 

for ITE peak-hour trips can be established in the same manner as established for whole 

day trips above. ITE trip estimates can be adjusted to reflect local conditions by applying 

the adjustment factor shown in equation 9. 

 𝐴𝐹𝑝𝑒𝑎𝑘 ℎ𝑜𝑢𝑟 = −9.44 − 0.9𝑥1 + 5.57𝑥2 + 1.13𝑥3 + 17.84𝑥4 (9) 
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where, 

𝐴𝐹𝑝𝑒𝑎𝑘 ℎ𝑜𝑢𝑟 = Adjustment factor for peak hour trip estimates from ITE 

𝑥1 = gross floor area (in units of 1,000 square feet of the site) 

𝑥2 = residential density (in 1000’s of population within 0.5-mile radius of the site) 

𝑥3 = JWR ratio (ratio of number of jobs to number of resident workers within 0.5-mile 

radius of the site) 

𝑥4 = local connecting road density (measured as miles of road within 0.5-mile radius of 

the site) 

To get an idea of the magnitude of the adjustment factors above, consider the strip mall at 

site 1 which has a floor area of 17,330 square ft., a residential density of 1,500, jobs to 

worker ratio (JWR) of 13.30, and 2 miles of connecting road: 

From equation (7): 𝐴𝐹𝑑𝑎𝑦 = 30.11 − 32.53(17.33) + 33.78(1.5) +

9.21(13.3) + 115.25(2) = −130 

That is, the ITE trip rate must be reduced by 130 vehicles per day from its estimate of 

(37.66+42.78(17.33)) = 779 vehicles per day, according to the adjustment factor equation 

developed in this study. Considering the manual count for site 1 was 567.5 vehicles per 

day (see Table 41), reducing the ITE estimate of 779 to 649 is an improvement but it does 

not compensate entirely. 

GIS System 

The GIS system employed in this study is ArcGIS Online as described in the 

Methodology section. It allows access to a GIS application via the web to any user 

authorized by the developer of an application. Access is via the ESRI website as 

described in the Methodology. 

Content   

The following geospatial data have been added to the specific ArcGIS Online map 

prepared for this project: a data layer presenting a study area of six parishes in Louisiana 
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and 40 sites with the 0.5-mile buffers with observed and estimated trip rates. The online 

map is shown in Figure 23. The side panel is the table of contents for the map. There are 

three entries in the Contents: the basemap (“Topographic”), 40 sites used in the project, 

and the study area of 6 parishes in the Louisiana data layer. 

Figure 23. Map of study area 

 

Pop-up Box  

A pop-up window has been configured for the 40 sites with estimated and observed trip 

rates” data layer so that clicking on any site brings in the pop-up attributes associated 

with this site. Site attributes such as the address of the site, job-to-worker ratio, site ID, 

and population density, are shown in the pop-up window (see Figure 24).  
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Figure 24. Pop-up box showing individual site features 

 

Attributes  

Attributes have been configured by selecting the fields to be displayed and giving more 

descriptive names. When a user clicks on the Show Table icon in the Contents, a table 

appears on the screen showing the attributes of all sites in detail. The table is closed by 

clicking on the X in the top right-hand corner of the table. The attribute table is shown in 

Figure 25. 
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Figure 25. Attribute table 

 

Labels  

For this web map, we set a visible range for labels so the labels will not be visible unless 

a user zooms in to a certain point. A label showing estimated trip rates (trips/day) of each 

site appears on the map; the labels only show when a user/viewer zooms in further. There 

are several ways a user can zoom in: using the + button; by double-clicking, or by using 

the mouse scroll button. Labels are shown in Figure 26. 

Zooming in to a metropolitan area (1:320,000 scale) brings in labels showing estimated 

trip rates (trips/day) of each site appearing on the map. In order to keep the map 

uncluttered and readable, the map presents only the data that is relevant to the user at a 

certain scale. The labels (showing estimated trip rates measured as trips/day) disappear 

when zooming further out. 
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Figure 26. Site labels 
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Conclusions 

The objectives of this study were, first, to identify what factors beyond floor area 

influence trip generation at land use sites in Louisiana, and, second, to investigate 

alternative ways of collecting trip generation data in place of the current labor-intensive 

method of manual counting. 

In addressing the first objective of the study, it was decided to count the trips to a sample 

of strip malls in Louisiana and then estimate the impact the contextual characteristics of 

these sites had on trip making. Contextual factors considered included residential density, 

land use diversity, traffic intensity, and household income in the area surrounding the 

sites. Household income was highly correlated with residential density and was omitted 

from further consideration. The results show that models of trip generation containing 

contextual factors reduce the percent root mean square error by 36 percent from that 

obtained by using the trip generation estimates from the ITE Trip Generation Manual. 

However, although the model containing contextual factors improves the estimates, it 

only explains about one half of the trip variation in the data. Determining other factors 

that influence trip generation rates should be the subject of future research. 

The survey found that manual counts can have errors of approximately one percent. It 

was also found that the average trip rate observed in the survey was 40.82 trips/day/1,000 

square ft. of gross leasable area compared to 42.78 in the ITE Trip Generation Manual. 

However, the observed trip rates at the 40 sites in the survey showed a standard deviation 

of 26.08 trips/day/1,000 square ft. of gross leasable area, indicating there are large 

variations in trip rates from site to site. As indicated in the previous paragraph, only some 

of that variation is captured by the contextual factors of density, diversity, and traffic 

intensity. 

The possibility that the number of Wi-Fi and Bluetooth detections at a site may reflect the 

number of visits to a site was investigated in this study. The notion was that if there is a 

close correlation between trip ends and Wi-Fi and Bluetooth detections, then trip ends 

could be inferred by observing the number of Wi-Fi and Bluetooth detections. Because 

detections could take place automatically, the potential was there to automate the 

counting of visits to a site. 
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Analyzing Wi-Fi and Bluetooth data in six strip malls showed correlations of combined 

Wi-Fi and Bluetooth counts with manual vehicle counts, which varied from 0.92 to 0.97 

in areas with low land use diversity to 0.62 to 0.76 in highly diverse areas. There are two 

potential reasons for this result. First, in highly diverse areas the joint detection area may 

increase due to the presence of devices with strong signals at surrounding land uses. 

Therefore, interference from other land uses will decrease the correlation between 

automated and actual counts. Second, the inability of the method to screen out vehicles 

passing by the desired site more than twice within the 75-minute threshold is more likely 

to occur in diverse areas because of the multiple opportunities to satisfy the purpose of a 

trip in that environment. This situation can be remedied by deploying two additional 

TrafficBoxes beside the road before and after the land use to identify such vehicles but 

was not implemented in this study. These two possible reasons for a change in the 

relationship between trip ends and Wi-Fi and Bluetooth detections should be the subject 

of future research. 

The investigation of image processing of video recorded traffic movement on access to 

strip malls, produced promising results. Overall, the processing of video imagery to 

estimate the entry and exits of vehicles at land use sites produces estimates that are 

roughly 90 percent of the actual vehicle counts. Of great significance in this finding, 

however, is that this error is exclusively the result of undercounting. In fact, among all 

the observations of daily trip generation estimates at the 40 sites over two days, the range 

of estimates from video image detections ranged from 78.8 to 95.4 percent of the ground 

counts. Undercounting is due to poor quality images (e.g. adverse weather, poor light), 

vehicles passing through the observation area too quickly, or a vehicle in the closer lane 

obscuring the presence of a vehicle in the next lane. If observations in bad weather or 

poor light are excluded and an effort is made to limit the source of undercounting, much 

better accuracy could be achieved. It should also be noted that the Wi-Fi and Bluetooth 

detection method is not subject to these problems. 

Overall, image processing of video data is the best way to replace manual counting with 

an automated process. However, it still requires that the camera be installed in the field 

and retrieved when observation is complete. With cameras with long battery life, or 

camera batteries supplemented with solar panels, observation periods could be extended 

making installation and retrieval a smaller portion of the total cost. 

To be able to use secondary data to estimate trip generation, thereby eliminating the need 

for any fieldwork, would be a great improvement on current methods. One of the data 
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sources encountered in this study that possibly has the potential to achieve that is the 

business profile data in Google Maps. It shows the number of customers by hour of the 

day seven days a week at individual businesses. Information is not available for all 

businesses and the diagram showing the customer numbers is not annotated so it is 

difficult to identify actual numbers. However, there is a rough scale and by looking at 

different businesses, the scale can be roughly interpreted. The type of each business is 

specified along with other information such as opening and closing times. Seeing this is a 

large dataset, the question is whether it could be used to estimate the trip generation of 

individual businesses together with the interaction they may impose on each other due to 

being in close proximity to each other. This topic is suggested for future research. 

Adjustment factors to the ITE trip generation rates have been developed for daily and 

afternoon peak hour periods. They provide estimates that are, overall, 36 percent more 

accurate than the ITE estimate. The adjustment factors have been incorporated into a GIS 

system that uses census data to estimate the values of the contextual factors at a site, and 

then uses this information to adjust the ITE estimates to improved values.  
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Recommendations 

The following recommendations are made based on the conclusions of this study: 

1. Use video camera footage and image detection technology developed in this study 

to estimate trip generation rates of land uses for which ITE estimates appear 

suspect for conditions in Louisiana. Extend the period of observation to at least 

one week to maximize data collection, minimize installation and retrieval time, 

and observe fluctuation in traffic over the week. Keep a record of time spent in 

conducting this activity so that a cost comparison can be made between this 

method and the conventional method of estimating trip rates through manual 

counts. 

2. Investigate whether secondary data sources exist which can serve as input data to 

a process that can be used to estimate trip production at any individual land use. 
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Acronyms, Abbreviations, and Symbols 

Term Description 

AASHTO 

BE 

American Association of State Highway and Transportation Officials 

Built environment 

cm 

DOTD 

centimeter(s)  

Louisiana Department of Transportation and Development 

FHWA Federal Highway Administration 

ft. foot (feet) 

in. 

ITE 

inch(es) 

Institute of Traffic Engineers  

LTRC Louisiana Transportation Research Center 

lb. pound(s) 

M. 

TB 

YOLO 

meter(s) 

TrafficBox 

You Only Look Once 
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