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including asphalt concrete (AC) overlay and chip seal were analyzed with and without moisture-

induced damage. The study also developed a decision-making tool to identify top-down, bottom-up,

and cement treated (CT) reflective cracking in in-service flexible pavements using Convolutional

Neural Networks (CNN) model and Artificial Neural Networks (ANN). The developed CNN model

was found to achieve an accuracy of 93.8% and 91.0% in the testing and validation phases,

respectively. The ANN based decision-making tool achieved an overall accuracy of 92% indicating

its effectiveness in cross-checking the prediction from the CNN model.
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Measurements from the Rolling Wheel Deflectometer (RWD) were evaluated to identify pavement 

sections that may suffer from stripping damage. Statistical and ANN models that used RWD 

measured deflections and pavement characteristics were developed to predict the probability of 

stripping damage in the tested sections. A regression-based classification tree was also developed that 

is easy to interpret and is convenient for highway agencies for preliminary stripping evaluation. A 

moisture detection protocol was also developed based on GPR measurements as a noninvasive and 

continuous evaluation technique to detect moisture damages in flexible pavements. A novel GPR-

based indicator, known as the Accumulating In-layer Peaks (AIP), was introduced to detect stripping 

damage in asphalt pavements. The AIP predicted accuracies for stripped and non-stripped sections 

were 82% and 96%, respectively, indicating its effectiveness to detect AC stripping damage in 

flexible pavements. 

The study also evaluated the effects of AC stripping damage on the performance and cost-

effectiveness of chip seal and AC overlays in pavement maintenance and rehabilitation. Results 

showed that for chip seal, moisture damage negatively affected the performance of the sections 

especially for low traffic volumes. For AC overlays, moisture-induced damage significantly affected 

the long-term pavement performance at all traffic levels. On average, moisture-induced damage 

decreased the extension in pavement service life and cost-effectiveness by 4.6 years and 0.5%, 

respectively. 

The study also employed CNN to classify pavement sections into different International Roughness 

Index (IRI) categories and to predict IRI values using Three-Dimensional (3D) pavement images. The 

developed CNN model classified pavement sections according to their roughness conditions with an 

accuracy of 93.4% and 89.6% in the training and validation stages, respectively.  In addition, a CNN 

model was developed for the prediction of IRI values from 3D pavement images. The model yielded 

accurate predictions with a coefficient of determination (R2) of 0.985 and an average error of 5.9%. 
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Abstract 

The main objective of this study was to develop non-destructive field-testing methods to 

identify moisture damage and to classify surface cracking in flexible pavements as top-

down or bottom-up cracking. In addition, the effect of moisture damage on the 

performance and cost-effectiveness of asphalt concrete (AC) overlay and chip seal was 

evaluated. The study also developed a model to predict pavement roughness conditions 

based on digital images of pavement surface. A Convolutional Neural Networks (CNN) 

model and a decision-making tool using Artificial Neural Networks (ANN) were 

developed to identify top-down, bottom-up, and cement-treated (CT) reflective cracking 

in in-service flexible pavements. The CNN model was developed by modifying a pre-

trained network, which was fitted, tested, and validated using 350 pavement images. 

Input variables for the ANN model were pavement age, asphalt concrete (AC) thickness, 

annual average daily traffic (AADT), type of base, crack orientation, and crack location. 

The developed CNN model was found to achieve an accuracy of 93.8% and 91.0% in the 

testing and validation phases, respectively. The ANN-based decision-making tool 

achieved an overall accuracy of 92% indicating its effectiveness in cross-checking the 

prediction from the CNN model in crack identification and classification. 

The present study also evaluated the use of deflection measurements of a Traffic Speed 

Deflection Device (TSDD), namely the Rolling Wheel Deflectometer (RWD), to identify 

pavement sections that may suffer from stripping and moisture damage. Statistical and 

ANN models that use RWD measured deflections, pavement characteristics, and 

performance data as inputs were developed to predict the probability of stripping damage 

in in-service pavements. A regression-based classification tree was developed based on 

the available dataset that is easy to interpret and is convenient for highway agencies for 

preliminary stripping evaluation. A moisture detection protocol was also developed based 

on Ground Penetrating Radar (GPR) measurements as a noninvasive and continuous 

evaluation technique that can be used to detect AC stripping damage in flexible 

pavements. A Finite-Difference Time-Domain-(FDTD)-based simulation program was 

used to study the propagation of GPR signals in a stripped pavement. Based on this 

analysis, a novel GPR-based indicator, known as the Accumulating In-layer Peaks (AIP), 

was introduced to detect stripping damage in asphalt pavements. The AIP predicted 

accuracies for stripped and non-stripped sections were 82% and 96%, respectively, 

indicating its effectiveness to detect AC stripping damage in flexible pavements. The 
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analysis and developed methods developed in the study may be used for stripping 

damage detection and as an additional benefit of TSDD and GPR.  

The study also evaluated the effects of asphalt concrete (AC) stripping damage on the 

performance and cost-effectiveness of chip seal and AC overlays in pavement 

maintenance and rehabilitation. Pavement sections were categorized according to traffic 

volume and pavement conditions prior to treatment (PCI-). The average deterioration rate 

(ADR), extension in pavement service life (∆PSL), increase in average pavement 

condition (PI), and cost-effectiveness (CE) were compared for stripped and non-stripped 

sections. Results showed that for chip seal, moisture damage negatively affected the 

performance of the sections with PCI-<80 and low traffic volumes. For sections with 

PCI->80, similar deterioration rates were observed for stripped and non-stripped sections. 

For AC overlays, moisture-induced damage significantly affected the long-term pavement 

performance at all traffic levels. On average, moisture-induced damage decreased ∆PSL, 

PI, and CE of AC overlays by 4.6 years, 23%, and 0.5%, respectively. 

The study employed Convolutional Neural Networks (CNN) to classify pavement 

sections into different International Roughness Index (IRI) categories and to predict IRI 

values by analyzing the captured features in three-dimensional (3D) pavement images. In 

addition, the effectiveness of ANN-based pattern recognition and Multinomial Logistic 

(MNL) regression models to categorize the roughness conditions of pavement sections 

was investigated. A pre-existing CNN model was trained and was validated using 850 3D 

pavement surface images. In addition, 1,142 test observations including IRI 

measurements and distress data were used to develop the ANN-based pattern recognition 

and MNL models. The developed CNN model classified pavement sections according to 

their roughness conditions with an accuracy of 93.4% and 89.6% in the training and 

validation stages, respectively. However, the accuracy of both the ANN and MNL models 

was only 58%. In addition, a CNN model was developed for the prediction of IRI values 

from 3D pavement images. The model yielded accurate predictions with a coefficient of 

determination (R2) of 0.985 and an average error of 5.9%. 
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Implementation Statement 

Based on the results of this project, the following implementation recommendations are 

provided: 

• A windows-based application was developed based on validated CNN- and ANN-

based models.  This tool should be implemented to allow the PMS section in DOTD 

to classify surface cracks as top-down, bottom-up, and cement-treated reflective 

cracks.  The developed tool should only be used for classification of a single crack 

pattern in a given image during the early stages of development.  It should not be 

used for high levels of cracking. 

• The developed GPR-based indicator, known as the Accumulating In-layer Peaks 

(AIP), should be implemented to detect AC stripping damage in asphalt pavements 

based on GPR measurements. 

• Pavement-underlying conditions including AC stripping damage should be taken into 

consideration in PMS decision and treatment selection processes.  Furthermore, 

moisture damage should be effectively corrected before the application of 

maintenance or rehabilitation strategies for more durable pavements and optimum use 

of available funds. 

• An image-based CNN model was developed to predict the IRI value of the pavement 

section based on surface images. The developed model, which accurately predicted 

the IRI values, provides numerous implementation opportunities into PMS activities. 

The developed model may also be incorporated to predict pavement surface 

roughness using camera-captured pavement images during the pavement evaluation 

phase. 
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Introduction 

Moisture damage is a significant distress that affects the overall performance of asphalt 

pavements in Louisiana. The effect of moisture-induced damage on asphalt pavements is 

manifested in the roadway through stripping and poor durability of the mixes. Moisture-

induced damage in pavements has detrimental consequences on the long-term 

performance, durability, and user safety.  

To ensure adequate long-term pavement performance against moisture damage, methods 

of early detection and repair are critically needed as moisture damage only appears at the 

surface after detrimental damage has already progressed in the underlying pavement 

layers. The conventional method to detect AC stripping and moisture damage is through 

core extraction, which is destructive, time-consuming, and is rarely conducted. Therefore, 

moisture-induced damage is rarely addressed during pavement preservation activities, 

which may result in loss of state funds due to unsatisfactory performance after repair. 

Ground Penetrating Radar (GPR) and Falling Weight Deflectometer (FWD) are 

nondestructive evaluation (NDE) techniques, which have been applied to assess as-built 

conditions and to evaluate pavement damage and deterioration that develop over time. 

They can also be used to measure layer thicknesses and to detect moisture-induced 

damage in pavements [1]. 

The Texas Department of Transportation investigated the ability of GPR to detect 

stripping in asphalt pavement layers [2]. Scullion and Rmeili successfully detected 

stripping in asphalt pavement layers using GPR when the deterioration was at a moderate 

to severe level. The study found that asphalt pavement sections with stripping had higher 

moisture contents, higher air voids, or both, which resulted in an anomalous increase in 

the dielectric constants of the stripped layers. The authors also noted that intermittent 

negative peaks within the surface layer in a GPR scan is typically an indication of the 

presence of AC stripping in asphalt pavement layers. 

Hammons et al. developed an asphalt pavement survey protocol using GPR, Infra-Red 

(IR), Seismic, and FWD to effectively detect stripping in in-service pavements [3]. The 

study introduced a Stripping Index (SI) to quantitatively evaluate the potential locations 

and extent of AC stripping. SI ranges from zero to three, where zero represents good 

condition and three represents severe stripping. When the estimated SI values were 

compared with the actual core conditions, the study found that the GPR predicted 

stripping with 77% accuracy. The study further attempted to correlate stripping 
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predictions from GPR with adjusted seismic and elastic modulus values, but no 

significant relationship could be found. 
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Literature Review 

Pavement Cracking and Machine Learning 

Pavement distress detection and quantification is an essential step in managing road 

networks and planning for effective rehabilitation and maintenance strategies. The 

accurate and up-to-date assessment of pavement conditions is necessary to predict future 

deterioration rates and to plan for effective preventive maintenance and rehabilitation 

strategies. State departments of transportation (DOTs) in the United States are routinely 

using pavement condition evaluation as an integral part of Pavement Management 

System (PMS) to provide detailed information of pavement serviceability. Computer 

vision and machine learning techniques were successfully implemented on devices such 

as Roadware’s Automatic Road Analyzer (ARAN) system, and Road Measurement Data 

Acquisition System (ROMDAS) to automate the road survey. In Louisiana, the pavement 

network is surveyed biennially using the ARAN system to collect pavement surface 

conditions. The ARAN vehicle is equipped with cameras, lasers, sensors, and computers 

to collect high definition digital images of pavement right of way and pavement surfaces 

identifying major pavement distresses such as rutting, cracking, faulting, and 

macrotexture for both the primary and secondary travel directions [4].  

Until recently, pavement cracking was assumed to initiate at the bottom of the asphalt 

concrete (AC) layer and propagate upwards to the surface, i.e., bottom-up crack. The loss 

in structural support due to excessive loading conditions, inadequate design and 

construction, and pavement distresses such as stripping are the major causes of bottom-up 

cracking. In the past two decades, the opposite mode of crack initiation and propagation 

(top-down) gained significant attention amongst researchers and pavement practitioners. 

The literature suggests that longitudinal top-down cracks usually appear in the wheel 

paths due to high surface horizontal tensile stresses from tire loads while other forms of 

longitudinal cracks are usually bottom-up. Until now, the field characterization of these 

cracks has not been well established as compared to fatigue cracking, which initiates at 

the bottom of the AC layer. The accurate and up-to-date detection and characterization of 

pavement surface cracks would help highway agencies and state DOTs set up a more 

accurate schedule and budget for repair of these cracks.  

The recent advancements in image acquisition and processing and machine learning 

techniques have proven image-based technology as a promising tool to assess flexible 
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pavements in terms of surface cracking. Recently, Convolutional Neural Network (CNN) 

models have been efficiently implemented in pavement crack classification with minimal 

image processing. CNN is a type of Artificial Neural Network (ANN), which uses images 

as inputs to extract the target features as outputs for classification [5]. The architecture of 

CNN is typically structured with convolutional, pooling, and fully connected layers that 

can analyze the shape change complexity of the pavement cracks [5, 6].  

In this study, a novel method of automatic pavement crack identification is proposed 

based on the successful application of CNN. The proposed approach uses processed 

pavement images as inputs in a pre-trained CNN model known as AlexNet. Furthermore, 

a decision-making tool was developed using ANN as a secondary screening tool and to 

cross-validate the image-based classification results obtained from the CNN model. The 

tool used six different variables namely pavement age, base type, AC thickness, annual 

average daily traffic (AADT) crack orientation, and crack location to classify the crack 

type in the pavement surface.  

Top-down Cracking in Flexible Pavements   

In the past, pavement cracking was assumed to initiate at the bottom of the AC layer and 

propagate upwards to the surface, i.e., bottom-up crack. Yet, the opposite mode of crack 

initiation and propagation gained a significant attention amongst researchers and 

pavement practitioners in the past two decades. Literature suggest that the longitudinal 

top-down cracks usually appear at wheel paths due to high surface horizontal tensile 

stresses due to tire loads while other forms of longitudinal cracks are usually bottom-up. 

Figure 1 presents pavement surface and a core with top-down cracking in a flexible 

pavement.  

Three main stages of crack propagation have been described by Svasidisant et al. (2002). 

The single short longitudinal cracks appear just outside the wheel path in the pavement 

surface in the first stage. In the second stage, sister cracks develop parallel to and within 

0.3 to 1.0 meters from the original cracks and the short longitudinal cracks in the 

pavement surface grow longer. Over time, the cracking reaches a third stage where the 

parallel longitudinal cracks get connected via short transverse cracks [7].  

Myers et al. also reported that the surface cracks initiate just outside the wheel path and 

the cracks propagate to depths ranging from just under the top surface to the full depth of 

the asphalt concrete layer. The authors considered a wide range of AC thicknesses in their 

study, which ranged from 50 to 200 mm (2 to 8 in.). The time frame for the initiation of 
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the surface cracking was reported to be five to ten years following construction. These 

cracks were observed to appear as longitudinal with widths of about 3 to 4 mm (0.12 to 

0.16 in.), which decreased as the crack penetrated the AC layer. The total crack depths 

were noted to range from about 25 mm (1 in.) from the pavement surface to the entire 

depth of the AC layer [8], see Figure 1. 

Figure 1.  (a) Longitudinal crack in wheel path and (b) field core 

 (a) 

 (b) 

Stuart et al. reported that transverse bottom-up cracking starts in the wheel path area [9]. 

The location of these cracking was noted to be the outer edges of the wheel paths where 

the pavement surface has a high curvature. The authors also assessed the effect of 
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temperature on cracking; fatigue cracks were smaller at 28°C than at 19 and 10°C. This 

indicates that crack initiation and propagation vary with the pavement temperature.  

The time period for the appearance of surface cracking has been reported to vary from 

one to ten years after construction. Svasidisant et al. (2002) observed that surface 

cracking penetrated through the entire depth of the AC layers in a 15-year-old pavement 

built with a rubblized base. However, surface cracks propagated through the full depth of 

the surface layers but only 50% and 20% propagated through the intermediate and base 

layers, respectively, in 9 to 10 years old pavements with the similar base structure [7]. 

A study conducted for the Washington State Department of Transportation reported that 

thick asphalt concrete was also susceptible to top-down cracking [10]. The authors 

concluded that top-down cracking would randomly stretch, especially for asphalt layers 

with thicknesses surpassing 6 to 7 in. The number of years before TDC occurred varied 

from 1 to 5 years (Japan), 3 to 5 years (France), 5 to 10 years (Florida) and up to 10 years 

for the UK. Uhlmeyer et al. noted that top-down cracking occurred typically 3 to 8 years 

following construction in pavement sections that satisfied structural requirements and 

were designed for acceptable equivalent single-axle loads. 

In the past 25 years, there has been an alarming increase of pavement distress related to 

top-down cracking in the longitudinal wheel path of asphalt pavements. Currently, TDC 

is a major asphalt pavement distress in Florida, Washington, Colorado, Louisiana, 

Michigan, and other states, as well as in many countries abroad. It has been a topic of 

frequent and continuing discussion between researchers worldwide, mostly focused on 

the roles of binder aging, segregation, thermal gradient within the surface asphalt layer in 

causing this distress. The cracking distress is further accelerated because of wheel loads 

and contact stresses. TDC identification in the field and consideration in pavement design 

methods are problematic compared to fatigue cracking that is assumed to initiate from the 

bottom of the AC layers. Maintenance and rehabilitation programming for pavement asset 

management at the network-level can benefit tremendously if TDC evaluation is feasible 

as a part of network-level condition surveys. 

Louisiana Pavement Management System  

In Louisiana, the pavement network is surveyed every two years to assess pavement 

surface conditions. The Automatic Road Analyzer (ARAN), which is equipped with 

computers, lasers, cameras, and sensors to capture and store high definition digital 

images of pavement right of way and surface conditions in both the primary and 
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secondary travel directions, is used. The control sections are divided into log miles in 

order to provide a reference location system to the distress data for all pavements. The 

control section log mile (CSLM) is a location reference method used for defining where 

treatment projects are located in the field. The distress data are collected and reported for 

every 1/10th of a mile [4]. The cracks are identified by types of distresses, which are 

categorized in terms of severity as low, medium, and high and labelled with green, 

yellow, and red colors, respectively [11]. The primary direction or direction 1 indicates 

South to North and West to East and the secondary direction or direction 2 indicates 

North to South and East to West (see Figure 2). 

Figure 2. Primary (direction 1) and secondary (direction 2) directions for data collection [11] 

 

A Structure Query Language (SQL) enterprise database used by Deighton Transportation 

Infrastructure Management System (DTIMS) is used to store the data, which are 

available to the end user via iVision (Video Log view linked to pavement condition data), 

and the DOTD Pavement Management Intranet Web Portal [12]. A web application with 

a Geographical Information System (GIS) interface known as “intranet version of 

DOTD’s PMS” shown in Figure 3, allows the end user to access the desirable data 

collected from the survey. 
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Figure 3. DOTD pavement management page 

 

Image-Based Crack Identification Method   

Early efforts in developing crack extraction algorithms were focused in statistical 

intensity thresholding approaches. Till date, this technique has been used by many 

researchers due to its simplicity and efficacy. Maser (1987) proposed a threshold-based 

segmentation for image analysis by enhancing the image using histogram equalization 

[13]. Li et al. employed a combination of image histogram and projection histogram to 

separate non-distress objects such as road markings, oils, and tire marks from major 

distresses on flexible pavements [14]. Koutsopoulos and Downey reported that the 

regression-based histogram method provided the best results compared to three other 

intensity thresholding methods, which included the Otsu’s method [15], relaxation 

method, and the Kittler’s method [16]. The authors developed image enhancement, 

segmentation, and distress classification algorithms to address different distress types in 

flexible pavements. A different approach was suggested for image binarization, which 

assigned a value of 0 to 3 to each pixel based on its probability of belonging to the object 

[17].  

Georgopoulos et al. developed an algorithm and used a software “APDIS” to 

automatically identify the type, extent, and severity of pavement cracks [18]. Xu and 
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Huang developed an algorithm based on “grid cell” analysis, which divided the pavement 

into small cells where a cell is classified as a crack or non-crack based on its statistical 

characteristics [19]. Wu et al. developed a crack recognition and segmentation algorithm 

known as MorphLink-C; the algorithm consisted of two processes; (a) using 

morphological dilation transform to group crack fragments and (b) using thinning 

transform to connect the fragments [20]. 

Wavelet transforms, edge detection, and texture analysis are three widely used techniques 

in pavement crack detection [21]. Zhou et al. used wavelet transform to separate road 

distresses into high-amplitude wavelet coefficients and pavement noise to low-amplitude 

wavelet coefficients before applying statistical functions to detect and segment cracks 

[22]. Ying and Salari proposed a beamlet transform based technique that can be used to 

extract linear features such as cracks in pavement after application of an image 

enhancement algorithm [23]. A method based on 2D wavelet continuous wavelet 

transform was applied to detect pavement cracks by Subirats et al. [24]. Multiscale 

complex coefficient maps were used before the application of an algorithm to search 

wavelet coefficient maximal values and their propagation through the scales for crack 

detection. Yet, the wavelet transform techniques have limitations in detecting high 

curvature or low continuity cracks [21].  

In edge detection techniques, algorithms are applied to search and detect edges (defined 

as sharp intensity transitions) without any inputs or human interference. Abdel-Qader et 

al. used bidimensional empirical mode decomposition (BEMD) smoothing method to 

remove noise and applied sobel edge detection technique to detect surface cracks [25]. 

The sobel edge detection technique was observed to produce better results for images 

with less irregularities and noise [26]. Maode et al. employed morphological operation 

tools to detect, extract and fill the crack edges. The procedure consisted of the application 

of morphological gradient operator with morphological closing operator after the use of 

median filter to smooth and enhance pavement image [27]. The texture analysis 

techniques employ crack extraction algorithms to separate cracks from highly textured 

pavements.  

Song et al. presented an algorithm based on Wigner distribution to segment cracks from 

complex textured background. This model was adjudged highly effective and better than 

Fourier-based crack detector in terms of locality and discriminatory power [28]. In a 

study by Hu and Zhao, a gray-scale and rotation invariant operator known as the local 

binary pattern (LBP) was used for texture classification and crack detection [29]. Despite 

the advancements in various image processing techniques, researchers still encounter 
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various challenges in image processing due to texture inhomogeneity of pavement 

aggregate, random non-crack background noises, spots and stains, oils, road markings 

and so forth. These challenges demand further advancement in image preprocessing and 

thresholding techniques to accurately assess surface pavement conditions. 

Latest Advancements in Image-Based Crack Detection Techniques.  In recent years, 

significant improvements were achieved in crack recognition, classification, and 

characterization approaches that use computer vision techniques. These techniques are 

considered as promising approaches to assess pavement surface conditions in terms of 

cracking by analyzing captured pavement images. Koch et al. noted in their review the 

increasing use of high-level computer vision techniques such as neural models and 

support vector machines (SVM) with image processing in segmentation, classification, 

and feature extraction of pavement cracks [30]. Moussa and Hussain used SVM to 

classify surface cracks as transverse, longitudinal, block, and alligator cracking after the 

images were segmented using graph cut segmentation procedure [31]. Nguyen et al. 

combined Conditional Texture Anisotropy (CTA) method of crack segmentation with 

multi-layer perceptron neural network to classify the detected defects as cracks and joints 

[32].  

Mokhtari et al. compared four computer-vision based crack detection systems: artificial 

neural network (ANN), k-nearest neighbor, decision tress, and adaptive neuro-fuzzy 

inference system (ANFIS). ANN and ANFIS methods were observed to be more accurate 

in terms of prediction, computation time, and stability of the results and classifiers’ 

performance [33].  

Deep Learning (DL) based computer vision approaches have gained significant interests 

amongst pavement researchers in recent years, particularly for distress classification. The 

four main DL architectures are Restricted Boltzman Machines (RBMs), Deep Belief 

Networks (DBNs), Autoencoder (AE), and Deep Convolutional Neural Networks 

(DCCNs or Deep ConvNets) [34]. The DCCNs are typically composed of convolutional, 

pooling and fully-connected layers.  A filter bank, which is a set of weights, connects 

units in the feature maps of convolutional layers to local patches in the feature maps of 

the input data.  The pooling layer units receive the maximum of a local patch of units in 

one feature map and also reduce the resolution of feature maps to select the spatial 

invariance.  The fully connected layers are similar to traditional multi-layer perceptron in 

which all units in the feature maps are concatenated together in the form of a vector [6]. 

Figure 4 illustrates the feature map generation with the convolutional operator [35]. The 

convolutional layer consists of convolution filters and generates the same number of 
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feature maps as that of filters. The pooling layers, however, contain a stationary filter 

such that the convolution areas do not overlap. The pooling layer reduces the image size 

to improve computational efficiency and avoid data overfitting. An illustration of pooling 

operation is presented in Figure 4 [35]. 

Figure 4. (a) Convolutional operator, (b) max pooling operator [35] 

 (a) 

 (b) 

Zhang et al. developed an automatic crack detection DCNN based on manually-annotated 

image patches as inputs [36]. The dataset consisted of 500 pavement images of size 

3264x2448 collected using a smart phone. The collected pavement images were sampled 

to generate one million three-channel (RGB) 99*99 pixel image patches; 640,000 

samples were used for training, 160,000 samples were used for validation, and 200,000 

samples were used for testing. The developed solution classified the crack and non-crack 

pixels referred to as positive and negative patches respectively based on a ConvNet 

trained in square image patches. The training process was amplified using the rectified 

linear units (ReLU) activation function. Figure 5 illustrates the architecture of the 

proposed DCNN [36]. 
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Figure 5. Architecture of proposed DCNN [36] 

 

Elisenbach et al. developed a convolutional neural network for road crack detection and 

named it as RCD net, which used the same four-block ConvNet developed by Zhang et 

al. [37]. The German Asphalt Pavement Distress (GAPs) dataset was introduced as an 

attempt to create a standard benchmarking pavement distress dataset for DL applications 

[38]. A DL approach, known as ASINVOS, which consisted of eight convolutional 

layers, three max-pooling layers, and three fully-connected layers, was implemented to 

study the regularization effects on the generalization ability of DCNN.  The proposed 

approach was observed to outperform the traditional distress detection approaches with 

higher generalization ability [37]. Maeda et al. used object detection CNN for automatic 

road distress detection. The images for the proposed approach were acquired using a 

smartphone installed in a moving vehicle. The authors also developed a mobile 

application that captures 600x600 pixels road images by a smartphone mounted on a car 

[39].  

Fan et al. proposed an automated crack detection procedure based on structural prediction 

using CNN. The CNN was modeled as a multi-label classification problem, which 

consisted of four convolutional layers, two max-pooling layers, and three fully-connected 

layers. The overall pavement condition was presented by probability map obtained by 

summing the center patch structure predictions of the trained CNN applied on all pixels. 

The proposed method was observed to be more accurate as compared with other existing 

methods of crack detection [40]. The CNN used by the authors is illustrated in Figure 6. 

The convolutional layers were with kernel of 3 x 3, stride 1 and zero padding and max 

pooling was performed with a stride 2 over a 2 x 2 window. 
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Figure 6. CNN architecture [40] 

 

Wang and Hu employed principal component analysis (PCA) and CNN to classify 

pavement cracks as transverse, longitudinal, and alligator by first detecting cracks by 

segmenting image into grids after applying PCA to analyze the skeleton of the crack [41]. 

The authors used two different scales of grid (32x32, 64x64) for image segmentation. The 

CNN architecture consisted of two convolutional layers, two max-pooling layers, and one 

fully-connected layer. The proposed approach was observed to achieve higher 

classification accuracy; 97.2%, 97.6%, and 90.1%, respectively for longitudinal, 

transverse, and alligator cracks. 

Nhat-Duc et al. conducted a study to compare pavement cracking detection using edge 

detection technique and convolutional neural network (CNN). The edge detection 

technique employed the Canny and Sobel algorithms for image processing and were 

dependent upon the selection of proper threshold parameters for better accuracy. The 

models were trained and validated with 400 images of crack and non-crack labels. Figure 

7 presents the edge detection crack recognition model and CNN model structure, which 

was trained using the MATLAB image processing toolbox. The convolutional operations 

were employed with the 30 number of filters (K). The size of the first, second, third, and 

fourth convolutional layers were 12 x 12, 8 x 8, 5 x 5, and 3 x 3 respectively while the 

size was 6 x 6, 4 x 4, 4 x 4, and 3 x 3 for the four pooling layers. The accuracy of the 

CNN, Sobel algorithm, and Canny algorithm were reported to be 92.1%, 79.9%, and 

76.7%, respectively [35]. 
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Figure 7. (a) Edge detection-based crack recognition model and (b) CNN model structure for crack 

detection [35] 

 

(a) 

 

(b) 

The testing and validation accuracy of DCCNs is usually dependent upon the training 

image dataset. Researchers have recommended to use at least 10,000 images in each class 

for higher classification accuracy using DL based classification [42]. In some cases 

where the acquisition of large dataset is difficult, the use of “off-the-shelf” DCNN 

features of well-established DCNN such as AlexNet, resnet, VGG-16, and GoogLeNet 

have proven to be the best approach in classification; these networks are pre-trained using 

large-scale annotated natural image datasets. This approach, also known as transfer 

learning, enables the learning ability of pre-trained models trained on large datasets to be 

deployed on new domains consisting of smaller-size datasets [34]. Li and Zhao 

successfully implemented AlexNet to detect pavement cracks; the authors modified the 

pre-trained AlexNet with five convolutional layers, three max-pooling layers, and three 

fully connected layers. The dropout and local response normalization techniques were 

implemented, where normalization was followed by the first two pooling layers, and 
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dropout was located after the first two fully connected layers [43]. Figure 8 presents the 

CNN overall architecture. 

Figure 8. Illustration of a CNN’s overall architecture [43] 

 

Artificial Neural Network 

Artificial Neutral Networks (ANNs) are parallel computing schemes that functions 

similar to the mechanism of the human biological nature of neurons and can model 

complex problems. ANNs are widely recognized as effective computational modelling 

tools that can be used to solve engineering problems because of their unique features such 

as non-linearity, noise tolerance in the input data, adaptability with complicated data 

patterns, and data generalization capability. These properties of ANN allow complex data 

fitting and facilitates the model implementation to unlearned data [12]. The generic, 

accurate, and complex mathematical models provide high capability to simulate 

numerical model components and are developed to solve complex engineering problems 

[44]. The learning ability of genetic flexible training algorithm in ANN allows it to make 

decisions based on given inputs [45]. The ANN provide robust models that can be 

continuously updated with new data and are more accurate with large database [46].  

Feed Forward ANN. A feed forward ANN is the most frequently used ANN structure for 

classification problems and regression analysis. It consists of (a) an input layer “i” that is 

typically used to train the model with multiple independent variables, (b) one or more 

hidden or processing layers “j” that adjust and update the weights to process the data, and 

(c) a target layer “k” [45]. The processing units called “neurons” are assigned a “bias” 
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and are connected to each other with each connection that is assigned a “weight.” An 

example of ANN is presented in Figure 9 [12]. 

Figure 9. Example of feed-forward neural network structures [12] 

 

Back Propagation Algorithm. A most common algorithm for error optimization in the 

learning and training phases of ANN is called back-propagation, which calculates the 

weights and biases to match the desired output [12]. Figure 10 illustrates the concept of 

back-propagation algorithm. Equation (1) presents the objective function, which 

calculates the error from the network output. The target of the ANN is to minimize this 

objective function as in a regular optimization problem. 

E =  
1

2
 (t − y)2 =

1

2
[t − f(w, b, x)]2   (1) 

Where, E= error function, y = network output, t = target value, w= weights, b= biases, 

and x= independent variables. 
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Figure 10. Backpropagation algorithm [12] 

 

 

ANN Transfer Functions. The output of the network training is provided by different 

activation functions, which are assigned to the weighted input of the neurons. The 

transfer functions or the activation functions are the differentiable non-linear functions, 

which allow the neural network to acquire non-linearity. The logistic sigmoidal function 

(logsig), tan sigmoidal function (tansig), and “hardlim” are three major transfer functions 

used in ANN as shown in Figure 11. The logsig transfer function produces the output 

between “0” and “+1,” tansig produces the output between “-1” and “+1.” The hardlim is 

the most commonly used activation function and produces an output either “0” or “+1,” 

which allows the ANN to perform the classification [12]. 
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Figure 11. ANN transfer functions, (a) logsig, (b) tansig, (c) hardlim [12] 

 

ANN Forward Calculations. The ANN network can be used as a forward calculation 

tool once the desired accuracies are achieved during the training, testing, and validation 

phases. The network assigns proper weights and biases to the connections and neurons, 

which can be used to perform forward calculation on new data sets. Leverington (2012) 

presented the general equation of the forward algorithm [47]. This equation is based on 

ANN with one output variable, one hidden layer variable, and a tan-sigmoid transfer 

function (see Equation 2). 

y = (bK + ∑ tansig(bj + ∑ aiWij)
ni
1

nj

1 Wjk)   (2) 

Where, k= the model output at layer k, nj = number of neurons in the hidden layer, ni = 

number of neurons in the input layer, and ai = the input variables. 
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The input vector is multiplied by the weight matrix (Wij) and the hidden bias vector (bj) 

is added, which computes the inputs to the hidden layer (j) at the first step. Then, the 

outputs of the hidden layer (j) are calculated by using the activation function, which is 

then multiplied by the weight vector (Wjk) and is added to the bias value (bk) to calculate 

the output vector [47]. 

Asphalt Concrete Stripping Failure Mechanism 

Moisture damage can be defined as the reduction of strength and durability of the 

pavement structure due to the effects of moisture [48]. Moisture damage in pavements 

can occur in two primary forms, softening and AC stripping [49]. Softening is the loss in 

strength and stiffness of the asphalt mixture as a result of reduction in cohesion. 

Stripping, on the other hand is related to the loss of adhesion, which causes separation of 

the binder and the aggregate in the pavement surface layer. NCHRP Synthesis 175 

characterized stripping as a three-stage process of reduction in contact angle between the 

asphalt and aggregate surface [50]. The process is illustrated in Figure 12. 
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Figure 12. Schematic of the stripping process [50] 

 

Moisture damage permeates and weakens the mastic and makes the pavement structure 

more susceptible to damage under traffic. Repeated loading in a stripped pavement may 

cause severe cracks, deformation and failure of the pavement. Wearing courses placed 

over stripped flexible pavements are likely to exhibit potholes and raveling due to 

adhesion failure [50]. A wide range of physical processes have been associated as the 

cause of stripping including detachment, displacement, spontaneous emulsification, pore 

pressure etc. These processes are summarized in Table 1. 
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Table 1. Causes of stripping [49] 

Mechanism Description 

Detachment 
It is the separation of an asphalt film from an aggregate surface by a thin 

film of water with no breaks in the film. 

Displacement 

It involves the displacement of asphalt at the aggregate surface through a 

break in the asphalt film. Incomplete aggregate coating, sharp aggregate 

corners or edges, or pinholes originating in the asphalt film may lead 

towards the breaking of the film. 

Spontaneous 

Emulsification 

Spontaneous emulsification is an inverted emulsion of water droplets in 

asphalt cement. The presence of emulsifiers such as clays and asphalt 

additives further aggravate the formation of such emulsions. 

Pore Pressure 

Pore pressure due to entrapped water may lead to distress and it will in turn, 

disrupt the asphalt film from the aggregate surface under repeated traffic 

load or may cause the formation of microcracks in the asphalt mastic. 

Hydraulic Scour 

Hydraulic scour occurs at the pavement surface where stripping results from 

the action of tires on a saturated surface. Water suction into pavement by 

tire action, and subsequent osmosis and pullback processes cause this form 

of damage. 

pH Instability 

Asphalt-aggregate adhesion is strongly influenced by the pH of the contact 

water. The pH of the water affects contact angle and the wetting 

characteristics of the aggregate-asphalt interface region. 

Environmental 

Effects 

Environment affects water sensitivity, which works as an underlying 

mechanism leading towards the stripping of asphalt pavements. The 

environmental concerns identified are water from precipitation of 

groundwater sources, temperature fluctuations, and aging of the asphalt. 

Asphalt Concrete Stripping Detection Methods 

The traditional method of AC stripping detection (i.e., cores extraction followed by visual 

inspection) is time and labor-intensive. Moreover, cores only represent discrete locations 

and may not accurately represent the continuous conditions throughout the pavement 

section. Recent developments in non-destructive evaluation of in-service pavement 

conditions have increased the prospect of detecting stripping damage during the early 

stage of development and to allow for cost-effective maintenance activities to address the 

detected damage [2]. 

Recent studies have shown that non-destructive devices such as Ground Penetrating 

Radar (GPR), Portable Seismic Property Analyzer (PSPA), Ultrasonic Tomography 



—  36  — 

 

(MIRA), and Infrared Thermography (IRT) may be able to detect moisture damage in 

pavements [2]. Yet, studies have highlighted the limitations of these devices and 

recommended further research and development [51]. The potential of these devices is 

discussed in the following sections with an emphasis on the current state of NDE practice 

in AC stripping detection.  

Portable Seismic Property Analyzer. Seismic methods such as PSPA have shown their 

potential in detecting pavement distresses including moisture damage in asphalt 

pavements [52]. These methods are based on the transmission and detection of stress 

waves in a layered medium. Fourier transformed time records of the measured dispersion 

of the shear waves in the pavement allow prediction of the shear modulus of the profile 

and spectral analysis is performed to obtain phase information [3]. It is the combination 

of two NDE methods: Ultrasonic Surface Waves (USW) and Impact Echo (IE). PSPA is 

typically used in estimating the modulus of the surface layer and assessing the variation 

of the modulus with depth. 

PSPA is a portable device that consists of a source package and two transducers, which 

enable the system to perform seismic tests in the field. The device can be operated using a 

computer that is connected to a hand-held transducer unit by a cable that transfers 

operational commands and measured the signal between the device and the computer as 

shown in Figure 13.   

Most of the data acquisition tasks are performed automatically by the computer; however, 

a technician has to initiate the testing sequence in the computer. Four to six high 

frequency sources are activated. The dynamic range of the system is calibrated using the 

pre-recoding impacts of the sources by adjusting the gains of the amplifiers. The final 

three impacts from the three transducers are recorded as outputs, which are then 

averaged. 
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Figure 13. Portable seismic property analyzer [52] 

 

The analysis of PSPA measurements is based on calculating the stress propagation 

velocity in the material, which is related to its linear elastic modulus. The USW method 

estimates the modulus of the material without back calculation using the following 

equation: 

𝐸𝑓𝑖𝑒𝑙𝑑 = 2𝜌[(1.13 − 0.16𝜈)𝑉𝑅]2(1 + 𝜈) (3) 

Where, 𝐸𝑓𝑖𝑒𝑙𝑑 =  The modulus of the upper layer, 𝑉𝑅 = The velocity of surface waves, 

𝜌 = mass density, and 𝜈 = Poisson’s ratio. 

The Impact Echo method estimates the thickness of the surface layer and can also be used 

to detect cracks, locate voids, defects, and delamination within a concrete structure. 

Impact echo detects the frequency of the standing wave reflecting from the bottom and 

the surface of the pavement layer and the thickness (h) of the layer using the following 

equation: 

ℎ =
𝑉𝑝

2𝑓
  (4) 

Where, 𝑓 = resonant frequency calculated by converting the time record into the 

frequency domain. 𝑉𝑝 is the compression wave velocity, which is determined from the 

following equation if the surface wave velocity (𝑉𝑅) is known: 

𝑉𝑝 =
𝑉𝑅

0.13−0.16𝜈
√

1−𝜈

0.5−𝜈
 (5) 
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The moduli obtained using the seismic methods are usually of low magnitude 

deformation and for high strain rates. On the other hand, repeated traffic loads cause high 

magnitude deformation. This difference is addressed using the master curve concept. 

Ferry proposed the following sigmoidal function that can be used to construct a master 

curve [53]: 

log(𝐸∗) = 𝛿 +
𝛼

1+𝑒𝛽+𝛾 log 𝑡𝑟  (6) 

Where, 𝐸∗ = dynamic modulus, 𝑡𝑟 = loading period, 𝛿 = minimum value of dynamic 

modulus, α = span of E* values, and 𝛽 𝑎𝑛𝑑 𝛾 = sigmoid function shape parameter. 

Application of PSPA in Moisture Damage Detection. Celaya and Nazarian (2007) used 

PSPA with ground truth data to evaluate the capabilities of both USW and IE in detecting 

moisture damage in pavements [52]. USW was found to be superior to the IE method in 

identifying the severity and extent of the damage in terms of asphalt layer stiffness. For 

detection of stripping at shallow depths, the standard receiver spacing of 6 in. worked 

well, but for stripping in depths greater than first 10 in., longer receiver spacing was 

recommended. The study observed that the peak frequency of IE spectrum was not 

suitable for locating stripping in pavement layers as the peak frequencies for stripped and 

non-stripped layers were found to be similar. However, for the damaged areas, the 

amplitude was distributed over a wider range of frequencies, as shown in Figure 14. 

Figure 14. IE amplitude spectra from sound and deteriorated locations 
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MIRA Tomography. The MIRA tomographer, as shown in Figure 15, is a state-of-the-art 

instrument, which is capable of producing three dimensional (3-D) representations 

(tomogram) of flaws that are present inside a concrete structure [54, 55]. It does not 

require surface preparation as the subsurface condition of concrete elements can be 

investigated using an array of dry point contact (DPC) “touch and go” transducers. The 

antenna is composed of an array of DPC transducers and it sends low-frequency shear 

waves into the structure. Unlike traditional ultrasonic techniques, which generally 

produce one pair of waves per measurement, MIRA allows for 45 transmitting and 

receiving pair measurements in each approximately 1-second scan, which can achieve 

high productivity [56]. The received data are then used to create a 2-D image of the 

reflecting interfaces inside the concrete element. A proprietary software is used to 

assemble the stacks of 2-D images into a 3-D model of the test specimen. The test results 

can be interpreted by manipulating the generated 3-D image [55].  

Figure 15. MIRA tomographer 

 

MIRA has been found to be effective in the following applications [54, 55, 56]: 

• Concrete thickness estimation up to 3 ft. deep with high accuracy; 

• Accurate estimation of reinforcement depth; 

• Detection of cracking in the PCC layer or de-bonding between PCC layers; 
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• Detection of concrete deterioration, dowel position, and spalling. 

Ground Penetrating Radar. Ground Penetrating Radar (GPR) is a highly versatile NDE 

method that transmits short pulses of electromagnetic waves into the pavement and the 

reflections from the material boundaries and subsurface anomalies are identified by the 

receiving antenna mounted on a survey vehicle. As the vehicle can operate at regular 

traffic speed, it provides GPR an extra edge over other NDE techniques of pavement 

condition evaluation [57, 58]. GPR was found to be effective in a wide range of highway 

applications including but not limited to the estimation of pavement layer thickness, 

detection of subsurface moisture, density variations, voids, and underground utility 

locations [[1]]. GPR technique has widely been used in Finland, Sweden, Germany and 

Estonia for HMA construction quality control purposes [[51], 59, 60]. Although several 

DOTs use GPR for measuring layer thicknesses, identifying section breaks, and 

estimating trapped moisture, GPR is not commonly included in state specifications in 

HMA construction quality control activities [[51]].  

GPR systems are generally available in two main types. In a ground-coupled GPR 

system, the antennas are in contact with the ground and when the antennas are not in 

contact with the ground, it is referred to as an air-coupled GPR system. Ground-coupled 

GPR systems are capable of producing clearer data as it can get more energy in to the 

ground and more energy out of it. However, ground-coupled GPR system is limited by 

the interference between the direct-coupling and ground reflection, which affects the 

usefulness of the data at shallow depth. Air-coupled GPR provides a faster mean of data 

collection without damaging the antennas since these are usually mounted on a vehicle. 

In addition, the direct-coupling between the antennas is separated from the ground 

reflection, which provides better quality of the data at shallow depth. The SIR-30 is an 

advanced high-performance multi-channel radar control unit that offers advanced filters 

and display capabilities for real-time processing, including migration, surface positioning, 

signal floor tracking, and adaptive background removal, see Figure 16 [61]. 
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Figure 16. Layout of a GPR system 

 

The equipment typically consists of a control unit, monitor, and two dipole bowtie 

(ground coupled) antennae operating at center frequencies of 900 MHz and 1.6 GHz. The 

setup can perform up to 16 scans per ft. at 10 mph, which results in a scan about every 1 

in. The data are collected at the posted speed limit with a maximum of 55 mph, although 

the speed varies based on traffic and stops. A typical GPR acquisition setup is presented 

in Table 2. 

Table 2. Typical GPR acquisition setup 

Antennas GSSI ground coupled 

Channel  - 1 2 

Frequency [MHz] 1600 900 

Time window [ns] 15 30 

Samples/scan - 256 256 

Trace interval [scan/m] 4 4 

IIR (vertical high/low pass filter) [MHz] 375/3000 225/1800 

A survey encoder is used to connect the GPR device to a calibrated survey wheel to 

measure the distance. A Global Positioning System (GPS) device is also used to track the 

locations of the survey lines. The GPS data are typically picked at 0.01-mile intervals 

along the road segment. The moving mode employed allows a radar wave to be 
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transmitted, received, and recorded each time the antenna is moved a fixed distance 

across the pavement surface. The recorded signals are displayed as traces side-by-side to 

form a GPR time-distance record, or radargram, which shows how the reflections vary in 

the subsurface. 

GPR transmits short pulses of electromagnetic waves into the ground. One-dimensional 

electromagnetic wave propagation theory is used to analyze the reflected signals of these 

pulses. Based on the material dielectric properties, surface electrical conductivity, and 

subsurface layers, the pulses are reflected back to the receiving antenna with different 

amplitudes and travel times.  

The dielectric mismatch across the material interfaces results in transmission and 

reflection of energy at the interfaces. The reflected signals are transmitted to the receiving 

antenna and displayed as shown in Figure 17. The surface, base and subbase reflections 

are indicated by 𝐴0, 𝐴1 𝑎𝑛𝑑 𝐴2 respectively. The two-way travel times between the 

surface, base, and subbase peaks are represented by Δt1 𝑎𝑛𝑑 Δt2.  

Figure 17. GPR working principle 

 

The velocity of the electromagnetic wave propagation through the nth layer is given by: 

𝑣𝑛 =
𝑐

√𝜀𝑛
  (7) 

Where, 𝑣𝑛= GPR pulse velocity, 𝑐= The speed of light in vacuum, and 𝜀𝑛 = Dielectric 

constant of nth layer. 
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The thickness of a pavement layer can be estimated by: 

𝑑𝑛 =
𝑣Δ𝑡𝑛

2
=

𝑐Δ𝑡𝑛

2√𝜀𝑛
  (8) 

Where, 𝑑𝑛= The thickness of the nth layer, and Δ𝑡𝑛= Two-way travel time through nth 

layer. 

Equation (8) can be re-written as follows: 

𝜀𝑛 = (
𝑐×Δ𝑡𝑛

2𝑑𝑛
)

2

 (9) 

Using layer thicknesses obtained from extracted core samples, Equation (9) can be 

utilized to estimate the dielectric constants of the pavement layers. Based on previous 

studies, lower dielectric constants of the asphalt layer were associated with the presence 

of stripping after the water had drained out [[2], [3]]. 

A wide range of software packages including RADAN, RGPR, Reflexw, GPRSIM, and 

GPRMax are available and are used to analyze GPR data. RADAN is the most common 

software that is used to process and analyze the radargrams from the GPR data files [62]. 

The software color codes each of the traces for a better visual interpretation of the scans. 

The raw data are subjected to surface position adjustment, time zero correction, infinite 

impulse response (IIR) and finite impulse response (FIR) filtering before reaching the 

interpretation stage. A band-pass filter is used to remove high and low-frequency noises 

from the scans. 

The Interactive Interpolation module of the software can be used to semi-automatically 

locate and analyze features in the GPR scans by defining “picks.” RADAN defines a 

“pick” as a peak amplitude identified in a scan that corresponds to a layer. An illustration 

of interactive module is presented in Figure 18 where the top of HMA layer is identified 

with yellow picks while the HMA-based interface is identified with green picks. MS 

Excel can be used to convert the extracted data to dielectric values in conjunction with 

the data collected from the roadway cores. 
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Figure 18.  Interactive interpolation of GPR data files using RADAN 

 

Al-Qadi and Lahouar used a GPR system to estimate pavement layer thicknesses and 

presented the limitations of the system using field tests. The results indicated GPR to be a 

reliable tool to estimate pavement thickness (see Figure 20). However, the accuracy of 

GPR was observed to decrease where at least one thin layer existed in the pavement 

structure. The authors recommended using signal processing techniques to minimize 

errors in pavements with thin layers [57]. 

Figure 19. Comparison between GPR estimated thicknesses and design thicknesses for the HMA and 

base layers of Route 288 [57] 
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Application of GPR in Moisture Damage Detection. The change in air void contents in 

the pavement materials is usually an indication of pavement damage in flexible 

pavements [63]. However, detection of voids changes in pavement materials underneath 

the pavement surface can be a challenging task. GPR is an effective tool to detect voids in 

pavement materials caused by pavement distresses. Based on their results, Rmeilli and 

Scullion suggested that intermittent negative peaks in flexible pavements is indicative of 

stripping. However, researchers suggest that these peaks can also be generated from an 

internal layer with different dielectric properties. Thus, it is recommended to validate the 

GPR interpretation results with pavement cores [[2]].  

The Texas Department of Transportation investigated the reliability and accuracy of GPR 

to assess subsurface conditions of asphalt pavements including sections breaks based on 

pavement layer thicknesses and conditions, average asphalt layer thicknesses, and the 

severity and extent of pavement defects [[2]]. Scullion and Rmeili were able to detect 

stripping in asphalt layers using GPR where the deterioration was at a moderate to severe 

level. GPR data collected at 50 mph using the Pulse Radar Inc. antenna were first 

processed with color display feature of TTI’s COLORMAP software. Figure 20 presents 

an illustration of the results collected to detect stripping damage. The pavement selected 

for the study was constructed initially as a concrete pavement (with a slab thickness of 8 

in.) in 1960s and 1970s. Since then, the sections were rehabilitated with multiple layers 

of AC overlay. As shown in Figure 20, the red variable line at an approximate depth of 4 

to 8 in. represents the top of the concrete layer. Figure 20(a) presents the pavement with 

the layers identified with no other significant reflections indicating a homogeneous 

pavement without subsurface deterioration. Figure 20(b) was interpreted as an asphalt 

pavement with moderate to severe levels of stripping at a depth of 3 in. underneath the 

surface. The interpretation of GPR results was validated with pavement cores. Figure 21 

presents a comparison of the GPR trace with the conditions of a core. 
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Figure 20. A comparison between (a) a sound pavement structure and (b) a pavement with stripping 

[2] 

 

It was reported that asphalt sections with stripping had higher moisture contents, higher 

air voids, or both; which resulted in an anomalous change in the dielectric constant of the 

stripped layers. It was also concluded that intermittent negative peaks within the surface 

layer in a GPR scan was typically an indication of the presence of stripping in the asphalt 

layer of the pavement as shown in Figure 21. As shown in this figure, GPR was 

successful in identifying pavements with moderate to severe deterioration as there has to 

be a distinct difference in the dielectric properties between the layers.  
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Figure 21. Intermittent negative peaks indicating stripping [2] 

 

Cao et al. studied the capabilities and limitations of GPR in local road applications and 

pointed out that the effectiveness of a GPR survey is highly dependent upon the site 

conditions, the type of equipment used, and the skill of the personnel interpreting the 

results [[1]]. The study evaluated the GPR’s potential to assess stripping based on the 

criterion that high oscillations in the surface amplitudes would indicate near surface 

stripping and strong internal reflection that varies with depth in GPR scans would 

indicate internal stripping. In wet environments, the study concluded that GPR scans 

along the asphalt bases were strongly bending downward and the dielectric values were 

significantly greater for the severely stripped sections as the voids were filled with water. 

Yet, no quantitative measure was introduced in the study to evaluate stripping using GPR.  

Another study by Adcock et al. developed a sophisticated vehicle with a GPR antennas of 

2.5 GHz and 900 MHz to study the variations in layer thickness, air void contents as well 
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as moisture penetration in U.S. airfield pavements [58]. The high-frequency antenna was 

used to assess the dielectric properties of the surface materials whereas the lower 

frequency antenna was used to estimate the subsurface layer thicknesses of the 

pavements. The system was initially developed to be fully automated, but the authors 

recommended some manual input to interpret the data more accurately. The study 

concluded that GPR can predict layer thicknesses with an accuracy of ±5%. 

Hammons et al. developed an asphalt pavement survey protocol using GPR, IR, Seismic, 

and Falling Weight Deflectometer (FWD) to effectively detect stripping in in-service 

pavement [64]. The study introduced a Stripping Index (SI) to quantitatively evaluate the 

potential locations and extent of stripping. The stripping index was defined as: 

𝑆𝐼 =
∣𝐴2∣−𝐴2𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑+𝐴3𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑−𝐴3

5000
  (10) 

Where, A2, A3 = the reflection amplitudes from the asphalt layers.  

Each scan produced by GPR that represent 20 nanoseconds of round-trip travel of the 

wave was quantitatively represented as 256, 16-bit data samples. The stripping was likely 

to occur either if A1 or A2 is non-zero value or A2 is greater than A2threshold or A3 is less 

than A3threshold. The threshold value for A2 and A3 were established to be 8,000 and 18,000 

respectively. The authors plotted the stripping index against the core condition ratings and 

observed that a stripping threshold of 0.5 produces a good match between the SI and core 

condition. Figure 22 presents the plot of SI and core condition index for a section. The 

accuracy of GPR SI to identify stripping on flexible pavements was measured against 

visual core observations and was calculated to be 77%. 

The SI ranged from 0 to 3, where 0 represented good conditions and 3 represented severe 

stripping. When the estimated SI values were compared with the actual core conditions, 

the study reported that GPR-predicted stripping had a 77% accuracy. The study further 

attempted to correlate stripping predictions from GPR with adjusted seismic and elastic 

modulus values, but no significant relationship was observed.  
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Figure 22. GPR stripping analysis, I-20 Lane 2, STA 820 to 970 [64] 

 

Hammons et al. introduced the uniformity index (UI) to identify potential locations that 

might have experienced damages related to moisture [[3]]. The uniformity index was 

defined as follows: 

𝑈𝐼 (𝑥) =
 𝐴(𝑥) 

𝐴(𝑥±
𝐿

2
)
  (11) 

Where, 𝐴= Average reflection amplitude at current location, 𝑥= Current station, and 𝐿= 

Normalization length. 

As the presence of stripping is associated with strong reflections from the bottom of the 

HMA layer, the index showed changes in reflection activities by comparing values from 

neighboring locations. The estimated UI was used to map the potential locations for 

moisture damage as illustrated in Figure 23. The authors recommended to use shorter 

normalization length to identify local anomalies. The authors also suggested to use GPR 
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in combination with seismic technologies in order to improve accuracy in detecting 

stripping in hot-mix asphalt. 

Figure 23. Uniformity index plot for I-75 project [3] 

 

Khamzin et al. investigated full depth asphalt pavements using air launched GPR to 

differentiate between pavement layers, map the variable thicknesses of the pavement 

layers, assess pavement conditions, and develop optimum acquisition and processing 

parameters [65]. The GPR consisted of a GSSI SIR-30 system equipped with two high 

frequency 2 GHz air-launched antennae. The antennae were mounted on the front of the 

survey vehicle with the effective investigative depth of approximately 30 in. The 

amplitude and arrival time of GPR signals from the base of the pavement layers were 

analyzed to assess the roadway conditions. The lower reflection amplitudes were 

observed in the areas of layers’ debonding indicating that the reflection amplitude 

depends primarily on the nature of the layer interface rather than the contrast in dielectric 

constants between the pavement layers. The authors also indicated that the change in 
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apparent thickness of the pavement layers could be indicative of material quality 

variations or presence of moisture. However, the actual changes in thicknesses or 

inhomogeneity of the material can also show the apparent change in layer thicknesses. 

Falling Weight Deflectometer. FWD uses a circular plate to load the pavement structure 

and to measure surface deflections. A deflection basin can be obtained by measuring the 

deflection at various distances from the applied load, which can be useful in estimating 

pavement layer moduli. Stubstad reported that the shape of the deflection basin may be 

related to the bonded layer stiffness and that the underlying layers do not significantly 

affect the basin shape [66]. A study was conducted to identify moisture damage based on 

FWD estimated layer moduli and was cross-validated with the results from GPR and 

visual inspection of cores. The authors reported that no statistical difference was found 

between FWD estimated asphalt layer modulus of stripped and non-stripped cores. AC 

modulus obtained from FWD deflection basin was observed to be insensitive to moisture 

damage within a thin layer sandwiched between thick asphalt layers. To this end, no 

correlation was suggested between FWD predicted modulus and the presence of moisture 

damage [[3]]. 

In summary, past studies reported that NDE devices such as GPR and PSPA have the 

potential to detect AC stripping; however, due to limitations in operation and 

measurement systems, these devices are yet to reach widespread implementation 

potential. Continuous and high-speed evaluation using TSDDs may greatly benefit 

transportation agencies by allowing early detection of AC stripping and the ability to 

address these distresses at the network level. As of yet, no agencies have been able to 

incorporate AC stripping damage as part of pavement condition evaluation, pavement 

management, and treatment selection. 
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Objective 

The main objective of this study was to develop non-destructive field-testing methods to 

identify and detect moisture damage and to classify surface cracking in flexible 

pavements as top-down or bottom-up cracking. In addition, the effect of moisture damage 

on the performance and cost-effectiveness of asphalt concrete (AC) overlay and chip seal 

was evaluated. The study also developed a deep-learning model to predict pavement 

roughness conditions based on the analysis digital images of pavement surface. 
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Scope 

To achieve the moisture detection objective, field data and roadway cores were used to 

evaluate the capabilities of GPR in detecting the presence, extent, and severity of 

stripping in in-place pavement sections. Based on the findings, a novel GPR-based 

indicator, known as the Accumulating In-layer Peaks (AIP), was introduced to detect 

stripping damage in asphalt pavements. Second, the deflection measurements of a Traffic 

Speed Deflection Device (TSDD), namely the Rolling Wheel Deflectometer (RWD), 

were evaluated to identify pavement sections that may suffer from stripping and moisture 

damage. Statistical and Artificial Neural Network (ANN) models that used RWD 

measured deflections, pavement characteristics, and performance data as inputs were 

developed to predict the probability of stripping damage in the tested sections. A logistic 

model that considers the linearity between predictor and response variables was also 

developed and validated with reasonable accuracy in estimating stripping probability.  

To achieve the crack classification objective, machine learning models were developed to 

classify pavement cracks as top-down, bottom-up, and cement-treated reflective cracking 

based on pavement images and pavement and crack characteristics. In this task, an 

image-based CNN model was developed that analyzes pavement surface images. 

Furthermore, a one-step decision-making tool was developed using ANN to cross-

validate the crack classification obtained from the imaged-based CNN model.  

To assess the effect of AC stripping on the performance and cost-effectiveness of chip 

seal and overlays, the average deterioration rate (ADR), extension in pavement service 

life (∆PSL), increase in average pavement condition (PI), and cost-effectiveness (CE) 

were determined for stripped and non-stripped sections. 

To predict pavement roughness from collected surface images, machine learning models 

were developed in order to classify pavement sections into different roughness categories 

and to estimate IRI values using pavement surface images. In addition, the effectiveness 

of ANN and MNL regression models to categorize pavement sections into different 

roughness conditions was investigated. 
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Methodology 

The research approach adopted in this study consisted of collecting and reviewing PMS, 

RWD, and GPR data collected by DOTD. The analysis consisted of identifying pavement 

segments that had moisture-induced damage as identified from extracted cores and the 

methods of repair used in these sections. In addition, PMS data were analyzed in order to 

attempt to identify top-down cracking without core extraction. Researchers also 

collaborated with LTRC staff to extract pavement cores from the field in order to validate 

the crack classification models. 

Pavement Cracks Classification Using Machine Learning 

To achieve this objectives of the study, the research tasks were conducted in two stages. 

In the first stage, a comprehensive literature review was conducted prior to undertaking 

the tasks in both phases in order to gain more insights into the subject. The pertinent 

literature on top-down cracking, Louisiana PMS, image-based crack identification 

methods, latest advancements in image-based crack detection techniques, and artificial 

neural network were reviewed. CNN and ANN models were then developed for 

identification and crack classification in flexible pavements. 

In-service flexible pavement sections were selected for analysis based on the parameters 

identified for these sites. Images were acquired for in-service pavement sections 

exhibiting top-down, bottom-up, and CT reflective cracking. These images were further 

processed to include in the training, testing, and validation sets for the developed crack 

classification CNN models. At once, design input variables namely pavement age, AC 

thickness, annual average daily traffic (AADT), type of base, crack orientation, and crack 

location, were also collected to use in the training, testing, and validation sets of the 

ANN-based decision-making model. The research methodology is explained in detail in 

the following sections.  

PMS Data Collection 

The images for analysis of pavement cracks were obtained from the DOTD PMS 

inventory. The pavement network in Louisiana is surveyed every two years using the 

ARAN system, which acquires continuous high definition digital images of the pavement 

surface. The images for top-down cracking were collected from the PMS inventory based 
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on the field verification of these cracks with coring. The sections with potential top-down 

cracks were first identified based on the characteristics of these cracks as suggested in the 

literature before cores were extracted for verification. To collect the images with bottom-

up fatigue and CT reflective cracks during the early development phase, sections with 

typical bottom-up alligator cracks (fatigue) and CT reflective cracks at specific locations 

were first identified using video surveys and were then projected back to previous year’s 

survey for the same locations. Table 3 presents the total number of surface images 

collected for each crack pattern. 

Table 3. Image data collection for each crack type 

Crack Type Number of Control Sections Number of Images 

Top-down cracking 9 162 

Bottom-up cracking 10 66 

CT reflective cracking 9 122 

Pavement Sections Selection for Top-Down Cracking  

Pavement sections with longitudinal cracks in the wheel path were selected as shown in 

Figure 24. Pavement design and the time of rehabilitation/construction were the main 

factors in selection of the pavement sections. Table 4 presents the pavement sections 

selected in the analysis. 

Table 4. Pavement sections selected in the analysis 

Control Section District Parish Construction Date Route 

057-03 3 1 4/24/2015 LA 13 

058-02 62 52 12/6/2012 LA 41 

262-03 62 32 12/17/2013 LA 16 

266-01 61 3 4/26/2013 LA 22 

829-26 2 29 7/12/2013 LA 3235 

857-63 3 57 5/28/2013 LA 82 

015-05 58 30 10/15/2012 US 165 

019-05 61 63 3/20/2012 US 61 

030-04 62 59 11/1/2012 LA 21 
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Figure 24. Illustration of pavement section selection for top-down cracking from PMS data 

 

Field Validation of the Sections for Top-Down Cracking 

To validate the cracking propagation direction in the selected sections, pavement cores 

were obtained along the wheel path. The location coordinates of the sections with top-
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down cracks were first identified from the project maps in PMS such that these locations 

corresponded to the pavement images locations obtained from PMS for image analysis. 

The cores were extracted at the tip of the longitudinal cracks such that the orientation and 

propagation of the cracks could be verified, see Figure 25. The drilled holes at the sites 

were carefully investigated to validate the top-down propagation of the cracks for the 

cores that fragmented during coring. As shown in the figure, the cracks started at the 

pavement surface and propagated downward through the AC layer. 

Figure 25. Acquisition of field cores, (a) marking core extraction location, (b) coring the marked 

location, (c) careful extraction of core, (d) extracted pavement core 
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Field cores with longitudinal top-down cracking for two pavement sections are presented 

in Figure 26. It is evident from the field cores that the crack started at the top of the AC 

layer. Table 5 summarizes the information obtained from the cores for the six pavement 

sections. Based on field cores observation, the cracks were observed to extend up to a 

depth of 25 to 100 mm from the pavement surface. The top-down propagation of the 

cracks was also confirmed in the field with the drilled holes as some of the cores were 

fragmented during coring. Figure 27 presents an illustration of the fragmented cores and 

the corresponding drilled hole. 

Figure 26. Cores showing longitudinal top-down cracks for control sections (a) 829-26, (b) 857-63 

 

Table 5. Summary of coring observations 

Control Section/Route AC Thickness 

(mm) 

Crack Depth 

(mm) 

Crack Width 

(mm) 

Vertical Orientation 

057-03 / LA 13 317.5 50 3 Top-down 

058-02 / LA 41 203.2 25 3 Top-down 

262-03 / LA 16 215.9 65 6 Top-down 

266-01 / LA 22 355.6 50 4 Top-down 

829-26 / LA 3235 203.2 95 3 Top-down 

857-63 / LA 82 203.2 45 4 Top-down 
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Figure 27. Drilled hole and fragmented core 

 

Pavement Sections Selection for Bottom-Up and Cement Treated Reflective 

Cracking  

The sections selected for bottom-up and cement-treated reflective cracking are presented 

in Table 6 and Table 7, respectively. Figure 28 and Figure 29 present the procedure used 

for the selection of bottom-up and cement treated reflective cracking images from PMS. 

As shown in Figure 28 and Figure 29, pavement sections with typical bottom-up and 

cement-treated reflective cracking were identified in 2016. The locations of the cracks on 

these sections were then projected back to previous years’ surveys until the crack 

initiation phase was reached. The digital images for the year when the cracks initiated at 

the pavement surface were then used to develop the deep learning models. 
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Table 6. Pavement sections with bottom-up fatigue cracking 

Control Section District Parish Construction Date Route 

852-12 62 52 10/18/2001 LA 0434 

034-03 8 43 10/28/2003 LA 0006 

193-06 7 10 8/8/2007 LA 0014 

262-02 62 32 N/A LA 0016 

273-03 62 32 8/2/1996 LA 0064 

391-02 3 28 12/20/1996 LA 0098 

053-01 8 40 7/11/1996 LA 0001 

414-02 61 24 7/19/1991 LA 0030 

828-03 3 28 7/19/1995 LA 723 

034-04 8 35 7/17/2003 LA 0006 

Table 7. Pavement sections with cement treated reflective cracking 

Control Section District Parish Construction Date Route 

014-06 8 40 5/8/2008 US 0165 

015-02 8 40 6/4/2001 US 0165 

048-01 4 9 8/25/2000 US 0079 

054-05 7 27 7/18/2000 LA 0026 

012-12 3 49 2/21/2013 US 0190 

019-05 61 63 9/2/2003 US 0061 

027-04 4 60 1/25/2006 US 0079 

260-01 61 3 2001 LA 0042 

273-03 62 32 1999 LA 0064 
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Figure 28. Pavement section selection for bottom-up fatigue cracking 

 



—  62  — 

 

Figure 29. Pavement section selection for cement treated reflective cracking 

 

Image Pre-Processing 

The objective of this step was to process the pavement images obtained from the DOTD 

PMS to enhance the cracks from the background and noise in order to use them in the 

training, testing, and validation data sets in CNN. The image pre-processing technique 

involved five major steps namely image acquisition, median filtering, morphological 

erosion, contrast enhancement, and background subtraction as illustrated in Figure 30. 
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The detailed description of the image acquisition and processing techniques is presented 

in the following sections. 

Figure 30. Illustration of processed input images for (a) top-down cracking, (b) bottom-up cracking, 

and (c) CT reflective cracking 
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Image Acquisition. The objective of this step was to extract the pavement images from 

the DOTD PMS for the sections presented in Table 6 and Table 7 and at the locations for 

which the cracks were identified and were back-projected to the initiation phase. 

Noise Reduction and Crack Enhancement. This step involves the visibility 

enhancement of particular features in the pavement images with the application of 

specific enhancement and mathematical operations for 2D images. The image pre-

processing using different enhancement techniques intensifies cracks from random 

backgrounds that include pavement surface texture, roughness, patches, spots, stains, 

raveling, and road markings. The selection of appropriate filters is an important step in 

image pre-processing in order to remove excessive noise while preserving the edges of 

the objects of interest. 

Crack Enhancement for 2D Images. The pavement noise reduction was achieved using 

a space-domain image filtering technique known as a Median Filter (MF). This nonlinear 

filtering technique has been widely used in the processing of pavement images as it has 

the advantage of removing background noise with low level of blurring compared to 

mean filtering and Gaussian filter. The results of an application of 3x3 MF are presented 

in Figure 30. The image pixels of the original pavement images were replaced with the 

median of its neighboring pixels while preserving the crack edges. 

A morphological image processing technique known as gray scale erosion was applied 

for further noise reduction and crack enhancement. The erosion of image I and the 

structuring element S is defined as follows [67]: 

𝐼 ɵ 𝑆 = min [𝐼(𝑥 + 𝑥′, 𝑦 + 𝑦′) − 𝑆(𝑥′, 𝑦′) ∣ (𝑥′, 𝑦′) ∊ 𝐷𝑠 (12) 

Where, Ds = the binary matrix, S = the domain of structuring element (which defines 

which neighboring pixels are included in the minimum function), and I(x, y) is assumed 

to be +∞ for (x, y).  

The best possible contrast distribution of pixel values was achieved using local contrast 

enhancement. The image was then subjected to background subtraction, which removes 

gels and shadows from the smooth continuous background. Figure 30 illustrates the 

overall noise removal and image enhancement techniques employed for image data 

preparation of each crack type. 
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Crack Enhancement for 2D and 3D Images.  A CNN-based crack classification tool 

was developed for a combination of both 2D and 3D images. A similar approach for 

median filtering, morphological erosion, and contrast enhancement as described in the 

previous section was applied for the combination of 2D and 3D images. However, before 

the application of aforementioned operations, the images were first subjected to intensity 

normalization, which removes the non-uniform background in the pavement images. The 

application of intensity normalization is illustrated in Figure 31. The pixel intensity in a 

pavement image can be represented by the following equation [[23]]: 

𝑆(𝑝) = 𝑆𝑏(𝑝) + 𝑆𝑐(𝑝) + 𝑆𝑛(𝑝)  (13) 

Where, p = a pixel in a pavement image, S(p) = the intensity of the pixel, and Sb(p), Sc(p), 

and Sn(p) = the background illumination signal, crack component signal, and signal due 

to noise.  

The objective of this step is to arbitrarily normalize the background illumination signal 

into a constant intensity value. The non-uniform background removal method proposed 

by Ying and Salari was implemented with some modifications, which consisted of the 

following steps [[23]]: 

• The image was partitioned into the rectangular windows of size 64*64.  

• For each window, the mean (Gmean), minimum (Gmin), and the maximum (Gmax) of the 

gray level was calculated. 

• An upper (lu) and lower limit (ll) of gray intensity pixel was defined for each window. 

The pixels outside these limits were considered as suspicious points for noise, cracks, 

and other variations. A limiting factor of 50% was chosen for our images. The 

limiting range was calculated using following equation. 

𝑙𝑢 = 𝐺𝑚𝑒𝑎𝑛 + (𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑒𝑎𝑛) ∗ 50% (14) 

𝑙𝑙 = 𝐺𝑚𝑒𝑎𝑛 − (𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑒𝑎𝑛) ∗ 50%  (15) 

• An updated mean value (G’(mean)) was calculated for each window, which 

represents the mean for each window without considering the noise and crack pixels. 

• The background of each window was normalized by multiplying every point window 

with a amplitude correction factor f, which was calculated as f = S/G’(mean), where S 

is the target background value or the mean value of the original image. 
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Figure 31. Intensity normalization 

 

Convolutional Neural Networks Model 

In this study, an image-based crack classification model was developed using deep 

learning techniques through transfer learning and domain adaptation approach. The 

procedure involved the use of a pre-trained CNN model known as AlexNet [68], which 

was developed and trained based on a massive database containing millions of images as 

a feature generator for pavement images. The pre-trained classifier was trained with 

labelled pavement images to predict the crack types (i.e., top-down, bottom-up, or cement 

treated reflective cracking). The pavement cracks can be classified accordingly using a 

sliding window and a CNN classifier that was generated through the training process 

[43]. The developed model automatically generates the crack feature sets based on the 

input images to classify the cracks into the three categories (i.e., top-down, bottom-up, or 

cement treated reflective cracking). 

AlexNet Architecture. The present study built a CNN model by modifying the AlexNet, 

which is a widely recognized pre-trained CNN model for image classification. The 

architecture of the modified CNN network is illustrated in Figure 32. Typical CNN 

models consist of convolutional layers, max pooling layers, and fully connected layers. 
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The modified network had five convolutional layers with three max-pooling layers and 

three fully connected layers as shown in Figure 32. 

Figure 32. CNN’s overall architecture [43] 

 

The CNN architecture also included other operations namely rectified linear units 

(ReLU), local response normalization (LRN), and dropout. The ReLU is used as 

activation function after each convolution layer and the first two fully connected layers; 

LRN is used before the first two pooling layers, and the dropout is used after first two 

fully-connected layers. The softmax layer, consisting of three units for classification of 

input data, was located at the end of the CNN’s structure. The overall architecture 

consisted of 25 layers with 24 connections.  

The objective function was optimized using stochastic gradient descent (SGD) algorithm 

with momentum and “on-line” or incremental training characteristic, which updates the 

network parameter after each input during the training process. Through an iterative 

procedure, SGD minimizes the loss function E(i) = D(D(i), F(W, Z(i))), which measures 

the deviation of the true output “D” for input “Z” from output generated from the CNN 

function F(W, Z) [43]. The SGD was used with the initial learning rate of 0.01 and the 

momentum, weight decay, and dropout rate were set to 0.9, 0.0001, and 0.5, respectively. 

The classifiers were trained for 8 epochs with a batch size of 25. 
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The input sets consisted of 162, 66, and 122 pavement images for top-down, bottom-up, 

and cement treated cracks, respectively. The patch size was set to 227 x 227 to save 

computing time before feeding the CNN with the training images. The first and second 

convolution layers convoluted the image matrix into 11 x 11 and 5 x 5 pixel-sizes, 

respectively, to obtain an improved noise suspension while other convolution layers were 

equipped with kernel of 3 x 3 and a stride of 1. The max pooling was performed in a filter 

size of 3 x 3 with a stride of 2. Table 8 presents the detailed specifications of the different 

layers of the CNN model. 

Table 8. Detailed specifications of CNN model 

Layer Filter size Stride Padding Activations 

conv1 11*11 [4 4] [0 0 0 0] 55*55*96 

pool1 3*3 [2 2] [0 0 0 0] 27*27*96 

conv2 5*5 [1 1] [2 2 2 2] 27*27*256 

pool2 3*3 [2 2] [0 0 0 0] 13*13*256 

conv3 3*3 [1 1] [1 1 1 1] 13*13*384 

conv4 3*3 [1 1] [1 1 1 1] 13*13*384 

conv5 3*3 [1 1] [1 1 1 1] 13*13*256 

pool3 3*3 [2 2] [0 0 0 0] 6*6*256 

fc1 - - - 1*1*4096 

fc2 - - - 1*1*4096 

fc3 - - - 1*1*1000 

Softmax - - - 1*1*1000 

ANN Decision-Making Tool 

A decision-making tool was developed using ANN to serve as a secondary screening tool 

and to cross-validate the image-based classification results obtained from the CNN 

model. The tool used input variables related to pavement conditions and crack properties 

and was developed using ANN-based pattern recognition system. This was achieved by 

using a multilayered feed forward ANN with a hard-lim transfer function that presents the 

output as “0” or “1.” A scaled conjugate gradient back-propagation algorithm (trainscg) 

was used for the network optimization. The confusion matrices having two dimensions, 

one with the actual class of the input and the other with the predicted class, were used to 

express the accuracy of the system. Figure 33 presents a basic confusion matrix with 
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patterns P1, P2, and Pn. The Nij represents the number of samples actually belonging to 

class Pi but classified by the ANN as class Pj [69]. The tool can be used separately or in 

conjunction with the CNN model to cross-validate the predicted crack type obtained from 

the image-based CNN model.  

Figure 33. Confusion matrix for pattern recognition ANN [69] 

 

Network Inputs and ANN Structure. The input layer was fed with the simplest set of 

inputs corresponding to the images and that required no optimization analysis to be 

conducted. The input set consisted of six different variables—pavement age, base type, 

AADT, AC thickness, orientation of cracks, and location of cracks, which may be 

obtained from the DOTD PMS. Each input was divided into different classes and was 

assigned a numerical value. Figure 34 presents the classification and numerical values 

assigned to each input; the numbers in front of each class represent the assigned 

numerical value. Figure 35 presents the ANN structure. As shown in Figure 35, six ANN 

consisted of six neurons in the input layer to incorporate six different inputs and the target 

layer was comprised of three neurons to incorporate the corresponding prediction classes. 

The adequate correlations between the inputs and targets were established with a hidden 

layer consisting of 10 neurons by connecting each neuron in the input and target layers. 

An iterative process was used to select the number of neurons in the hidden layer such 

that the least number of hidden neurons are selected without affecting the network 

performance. 
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Figure 34. Input parameters selected in the ANN model 

 

Figure 35. Structure of the ANN model 

 

Asphalt Concrete Stripping Detection Using Deflection Measurements 

A large TSDD dataset consisting of RWD measurements was used for developing and 

validating the AC stripping prediction models. The RWD testing program was conducted 

in District 05 of Louisiana as detailed elsewhere [12]. The testing was conducted in two 

phases: testing of 1,000 miles in the first phase and a detailed evaluation of RWD 

technology in 16 road sections (1.5-mile each) in the second phase. In each section, RWD 

measured deflections were considered at 0.1-mile intervals and were normalized to a 
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standard temperature of 20°C [12]. Core reports were collected for all the sections from 

the year of RWD testing in the wheel path. Core reports provided detailed pavement 

thicknesses information and detection of any distress including AC stripping in the 

underlying pavement layers as illustrated in Figure 36. The pavement segments that did 

not have any coring information available were excluded from the analysis. Thus, the 

total number of road segments used in this study were 192, out of which 67 pavement 

segments were diagnosed with stripping and the remaining pavements did not have any 

moisture-induced damage. 

Figure 36. Cores inspection to identify AC stripping in the underlying layers 

 

A statistical regression model was developed to predict the Structural Number (SN) of in-

service pavements at an interval of 0.1 mile based on RWD measurements as follows 

[[12]]:  

SNRWD0.1= -14.72+27.55* (
ACth

D0
)

0.04695

-2.426* ln SD+0.29* ln ADTPLN (16) 

Where, ACth = Asphalt concrete layer(s) thickness of the pavement structure (in.); D0 = 

Avg. RWD deflection measured at an interval of 0.1 mile (mils.); SD = Standard 

deviation of the RWD deflection each 0.1 mile (mils.); and ADTPLN = Average Annual 

Daily Traffic per lane (vehicle/day). 

As presented in Equation (17), the Structural Condition Index (SCI) was calculated based 

on the existing structural number predicted from RWD (SNRWD0.1, also referred as SNeff) 

and AASHTO SN required for 10 years of design life (referred as SNreq) to describe 

pavement structural conditions as compared to the required structural capacity. The detail 

calculation procedure of the SCI can be found elsewhere [[12]]: 
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SCI =  
SNeff 

SNreq
 (17) 

where, SCI = Structural Condition Index; SNeff = existing (estimated) Structural Number; 

and SNreq = required Structural Number for 10 years. 

Initially, the SCI of stripped and non-stripped sections was compared in this study to 

examine any indication of stripping using TSDD measurements. The SCI of stripped and 

non-stripped road sections was calculated and was grouped into different pavement 

categories based on AC layer thickness (i.e., thick, medium, and thin) as shown in Figure 

37. The comparison indicated that the SCI estimated from RWD measurements can 

differentiate between the stripped and non-stripped pavement segments as the average 

SCI was higher for non-stripped sections for all the pavement categories; see Figure 

37(a). Furthermore, the SCI difference between stripped and non-stripped sections tended 

to increase with the increase in AC thickness, i.e., for thin pavements (4.5%), for medium 

pavements (8.6%), and for thick pavements (15.2%) as shown in Figure 37(b). This 

implies that the pavement structure characteristics may also be valuable alongside RWD 

measurements in identifying AC stripping. This may be due to thick pavements that 

include multiple AC layers, which may have been overlaid over time, and had a longer 

period for moisture damage to occur.  

Figure 37. SCI comparison between stripped and non-stripped sections 

 

As core reports are the only real evidence of AC stripping within a road section, the 

available RWD measurements and pavement thicknesses were averaged over 1-mile 

segments such that the core location would be in the middle of the 1-mile segment. Such 
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an assumption was made considering the practicality related to core extraction by state 

agencies and would allow the measurements to reasonably reflect the stripped or 

unstripped conditions within a road section. Since the objective was to identify stripped 

sections using RWD measurements and available pavement information in the Louisiana 

PMS, various variables were evaluated to model the probability of moisture damage in 

in-service pavements in the preliminary stage. These variables were evaluated based on 

statistical measures and engineering judgment to decide whether to include them in the 

developed models. The statistical models considered to predict the probabilities of AC 

stripping or to identify moisture damage are presented in the following sections. 

Logistic Regression Model 

Logistic regression is a popular statistical method in medical studies broadly used for 

modeling a dichotomous outcome based on variables that may influence the outcome. 

Usually, logistic regression is suitable for explaining and testing hypotheses about the 

relationship between a categorical response variable based on continuous or categorical 

predictor variables [70]. The objective in the present study was to identify if a pavement 

is diagnosed with stripping damage or not, based on RWD-measured deflections and 

pavement structure information; this setting favored the incorporation of logistic 

regression over conventional linear regression models. Linear regression assumes 

linearity and continuity between the predictor (independent variables) and outcome 

variable (dependent variable), which would be invalid in the present study as the response 

variable is binary. In the present analysis, a value of 1 was assigned if the pavement was 

diagnosed with stripping damage and a value of 0 was assigned for non-stripped 

pavement segments. 

The principal concept of logistic regression is to define the relationship between the 

outcome and predictor variables in terms of the natural logarithm of a likelihood ratio. 

Unlike linear regression, logistic regression estimates the probability of an outcome that 

would assist in classifying the response variable. A simple logistic regression model has 

the following form [71]: 

logit (Y) = natural log(odds) = ln (
P

1−P
) =  α + βX (18) 

Where, P = the probability of an event of interest, α = presented as the Y-intercept, and β 

= regression coefficient of the predictor variable X. 
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A logistic regression model was developed in the present study to predict the presence of 

stripping in the underlying pavement layers. To develop the logistic model, RWD-

measured surface deflections, asphalt layer and base layer thicknesses, traffic data, and 

surface condition data (i.e., fatigue cracking, random cracking, surface roughness, and 

rutting) were considered as initial predictor variables. Different combinations of these 

variables were tested with different functions through an iterative process to obtain the 

most accurate model that may be used in predicting the outcome (i.e., stripping damage 

in pavement). For model development, 70% of the dataset was used and the remaining 

30% was used for validation. The logistic model development was conducted in SAS 9.4 

software. Equation (19) presents the developed logistic model: 

Ln (
P

1−P
) = 0.6281 + 0.000418 ∗ (D0 ∗ D0STD) + 0.1563 ∗ (ACth) + 0.3063 ∗

(TreatedBase) − 0.02658 ∗ (RTI) (19) 

Where, P = Probability of stripping, D0 = Avg. RWD deflection measured at an interval of 

0.1 mile (mils.), D0STD = Standard deviation of the RWD deflection at 1-mile interval 

(mils.); ACth = Asphalt concrete layer(s) thickness (in.), TreatedBase = whether the base 

is treated or not, (if treated=1, not treated =0), and RTI = Rutting index is defined as 

follows: 

RTI =MIN [100, 100-((R_Avg*(10/0.125))-10)]  (20) 

Where, RTI = Rutting index (from 0 to 100); and R_Avg. = Average rut depth (in.). 

Generalized Additive Models (GAM) 

Generalized Additive Model (GAM) is a powerful technique that extends a linear model 

by integrating non-linear functions for each of the variables and captures the non-linear 

relationship between the dependent and predictor variables [72]. Compared to linear 

models, GAM is more flexible and does not require a functional form. However, it is hard 

to interpret due to its instability due to the complex dimensionality. For the general case, 

each term is computed in low dimensions to avoid complexity. The generalized additive 

models for the classification response can be written as: 

log (
p(x)

1−p(x)
) = β0 + f1(X1) + f2(X2) + ⋯ + fp(Xp) (21) 

Where, 𝑓𝑗’s = arbitrary functions estimated from the data.  
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The functions𝑓1, … , 𝑓𝑝 can be polynomials, natural splines, smoothing splines, local 

regressions. Two common techniques in GAM are the loess smoother and the smoothing 

splines, which were considered in this study. 

The loess smoother (locally estimated scatterplot smoothing) performs based on local 

fitting [73] and the weights are dependent on how far the distance is from those points. 

The closer the points, the more weighted they get. The weighted least squares for fitting 

the regression is as follows: 

uj =
|zj−z|

max|zj−z|
  (22) 

Where, uj is between 0 and 1.  

The Loess smoother technique is flexible to ease the parametric model’s limitation to 

non-linear form. In addition, it suggests that the model is not mathematically proven; 

therefore, complicated models can be extended from the loess smoother. However, it does 

not perform well with a comparably small dataset, especially if it is based on empirical 

information to fit in the nearest points of the scatterplot. 

The smoothing splines is another method in the GAM model. Spline is the collection of 

the knots in a piecewise polynomial [74]. The knot makes the discontinuity of the pieces 

join smoothly. The degree of the splines requires the m-1 derivatives to be continuous. 

The spline of degree m is defined as follows: 

S(x) = ∑ βj
m
j=0 Xj + ∑ λj

k
j=1 (x − ξj)+

m (23) 

Where, 𝜆 = a smoothing parameter.  

In the present study, the smoothing functions (i.e., loess smoother and smoothing splines) 

were combined to develop the best GAM model using an iterative process. There was 

70% of the data used for training the model and the remaining 30% data were used for 

model validation. Smoothing functions were assigned such that they yield significant 

effect on the predictor variable while training the GAM model; yet, some other variables 

were added as they improved the prediction accuracy in the validation phase in terms of 

misclassification rate. The modeling and training of GAM were performed using software 

R, version 3.6.1. 
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ANN-based Pattern Recognition System 

An ANN-based pattern recognition system was developed to adequately describe the 

complex relationship between the predictor variables and the binary response variable 

indicating the probability of stripping. A multilayered feed-forward neural network was 

selected with a logistic sigmoidal activation function (logsig) that produces output 

between 0 and 1. The ANN consisted of five layers (i.e., one input layer, two hidden 

layers, one probabilistic layer, and a target layer) as shown in Figure 38.  

Figure 38. Neural network architecture 

 

ANN Structure.  The set of inputs were incorporated into the system such as it produces 

the highest classification accuracy. The input layer consisted of six neurons of input 

variables, which were subjected to a scaling method called “StandardDeviation” that 

normalizes the inputs. The input layer was fed with center deflection (D0 ), deflection at 

18 in. distance from center deflection (D18), asphalt layer thickness (ACth), standard 

deviation of RWD measurements within 1-mile (D0STD), annual daily traffic (ADT), and 

if a base is treated or not noted as Treated Base (1=if treated, 0=if not treated). The neural 

network had two hidden layers of 10 and 3 neurons, respectively, as shown in Figure 38. 
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A minimum number of hidden layers were selected through an iterative process that 

would not affect the network performance. The selection of the number of neurons within 

each hidden layer was conducted using an incremental order algorithm that increases the 

number of neuron with each iteration. The fourth layer of the neural network was a 

probabilistic layer that allows the outputs to be converted to probabilities (i.e., values 

between 0 and 1); it was followed by the target layer. The target layer consisted of two 

classes (i.e., 1=stripping, 0=no stripping). 

Training Strategy.  The neural network was trained using the Quasi-Newton method that 

uses gradient information to compute inverse Hessian at each iteration. The network error 

was calculated using a weighted squared error method that is useful for unbalanced class 

of dataset, which is the case with the dataset used in the study. A regularization method 

called “neural parameters norm” was applied to the network to reduce its complexity. 

About 70% of data were used for training, 15% of data were used for testing, and 15% 

data were used for validating the network. 

Classification Tree. To assist in the identification of stripped sections, a classification 

tree was developed based on the given dataset. A classification tree uses a recursive 

binary splitting algorithm to grow a decision tree. This kind of decision tree is simple and 

convenient for the use of state agencies. It is assumed that decision trees closely reflect 

the human nature of decision-making unlike other regression and classification 

approaches. Furthermore, it has the capability of handling qualitative predictor variables 

without replacing them with a dummy variable [75]. 

Unlike regression, the residual sum of squares (RSS) is not used for binary class splits; a 

classification tree approach rather uses classification-error-rate to grow the best decision-

based tree. When an observation is assigned to a most occurring class, the classification 

error rate refers to the fraction of the observations that did not belong to the most 

occurring class. This study developed a classification tree such that the classification-

error-rate is minimized for the given dataset; this analysis was conducted with iterative 

trials of the predictor variables. 

Moisture Damage Detection using Ground Penetrating Radar 

Simulation Study using gprMax. As an electromagnetic phenomenon, the transmission 

of GPR signals can be described by the well-known Maxwell’s equations. The Finite-

Difference Time-Domain (FDTD) method discretizes both the time and space continua 
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for numerical solution of Maxwell’s equations. In this study, an FDTD-based open source 

program, gprMax [76], was used to simulate the propagation of GPR signal in stripped 

pavement sections. 

A 2D pavement model with stripping within the AC layer was constructed to simulate the 

pavement section with moisture damage (Figure 39). The pavement structure consisted of 

101.6-mm thick AC layer, 203.2-mm thick base layer, and 101.6-mm long void section, 

where all the materials were assumed to be non-conductive and non-magnetic. 

Simulations were conducted by constructing voids in the middle and at the bottom of the 

AC layer for five void thicknesses (2 mm, 4 mm, 6 mm, 8 mm, and 10 mm). A perfectly 

matched layer (PML) boundary (as shown in Figure 39) is a type of absorbing boundary 

condition (ABC) that absorbs the wave and limits the computational space. The dielectric 

constants of AC, base, and air voids were assumed to be 5, 9, and 1, respectively. The 

transmitter (Tx) and Receiver (Rx) were placed 8 in. above the pavement surface. In 

order to simulate the GPR pulse used in field testing, the Ricker wavelet with center 

frequency of 1.6 Hz was used as the excitation source. The spatial resolutions in the 

vertical and horizontal direction were 2 mm. Equation (24) was used to calculate the time 

step (t) of each iteration as follows: 

𝛥𝑡 ≤
1

𝑐√
1

(𝛥𝑥)2+
1

(𝛥𝑦)2

 (24) 

Where, x and y are the spatial resolution in the horizontal and vertical directions, 

respectively, and c is the speed of light in vacuum. 

Figure 39. gprMax model of stripped asphalt pavement 
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Figure 40 presents the A-scan results of the simulated GPR signal. The curves represent 

the reflection of the electromagnetic wave from the transmitter to the receiver. A negative 

peak was observed between two intermittent positive peaks when the EM waves were 

transmitted from a material with low dielectric constant to a material with high dielectric 

constant. In contrast, a positive peak appeared between two intermittent negative peaks 

when the EM waves were transmitted from a material with high dielectric constant to a 

material with low dielectric constant. In a regular non-stripped pavement, two positive 

peaks were observed in the reflected signal, where the first peak represents the reflected 

wave of air-AC interface and the second reflected peak represents the wave from the 

interface between AC and the base layers. 

Theoretically, the strength of the reflected wave from the interface between the void and 

the base layer should be stronger than the reflection from the interface between the AC 

and base layer as the difference in dielectric constants between the void and the base 

layer is higher. However, the pavement with a 2-mm thick void showed lower reflection 

strength than the non-stripped pavement as indicated by the simulation results. This can 

be attributed to the overlapping of the signals from the two interfaces as they passed 

through the thin void layer. For the simulated pavement with a void at the bottom of the 

AC layer and a void thickness greater than 2 mm, a negative peak appeared between the 

two positive peaks, which represent the reflection from the interface between the void 

and AC layer. The strength of the second positive peak increased with the increase in void 

thickness due to the overlapping of the two reflections, see Figure 40. 

For the simulated pavement section with a void in the middle of the AC layer, a positive 

peak appeared between the reflections from the surface and the interface between AC and 

base layers; the strength of the positive peak increased with the increase in void 

thickness; see Figure 40. It is noted that the strength of the reflected wave from the 

interface between AC and base layers decreased compared to the non-stripped pavement. 

This is due to the loss in energy of the EM wave as it passes through the void layer. 
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Figure 40. A-scan results of simulated GPR signal for (a) a void at bottom of the AC layer and (b) a 

void in middle of the AC layer 

 

Figure 41 presents the results of the B-scan for the simulated pavement section with a 10-

mm thick void and with stripping damage in the middle of the section. The x-axis 

represents the length of the road segment in the traffic direction. The deeper red zone in 

the interface between the AC and base layers (Figure 41 [a]) and the hyperbolic contour 
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within the AC layer (Figure 41 [b]) represent the moisture damaged area. For a normal 

non-stripped pavement, the first and second positive peaks (red belt in figure) are 

reflected from the surface and the interface between AC and base layers, respectively. 

Figure 41. B-scan results of simulated GPR signal for (a) void at bottom of the AC layer, (b) void in 

middle of the AC layer 

 

Development of GPR Stripping Detection Approach 

Field Testing Program.  To evaluate GPR capabilities in detecting stripping damage in 

flexible pavements, a field-testing program was undertaken. Field data used in this study 

included cores samples and GPR scans collected by DOTD. GPR surveys were 

conducted on the entire length of the control sections in Louisiana. A GPR system 

manufactured by Geophysical Survey Systems, Inc. (GSSI) was utilized in the testing 

program to perform these surveys. Figure 42 shows the GPR testing setup. The 

equipment consisted of a control unit, monitor, and two dipole bowtie (ground and air-

coupled) antennae operating at center frequencies of 900 MHz and 1.6 GHz. The setup 

can perform up to 16 scans per feet at 10 mph, which results in a scan at about every 1 

inch. The data were collected at the posted speed with a maximum speed of 55 mph, 

although the speed varied based on traffic and vehicle stops. The GPR acquisition setup 

and configuration are summarized in Table 9.  
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Figure 42. Description of the GPR testing setup 

 

Table 9. GPR acquisition setup 

Antennas GSSI Ground coupled 

Channel - 1 2 

Frequency [MHz] 1600 900 

Time window [ns] 15 30 

Samples/scan - 256 256 

Trace interval [scan/m] 4 4 

IIR (vertical high/low pass filter) [MHz] 375/3000 225/1800 

A survey encoder was used to connect the GPR device to a calibrated survey wheel that 

measures the traveling distance. A Global Positioning System (GPS) device was also used 

to track the locations of the survey lines. The GPS data were collected at 0.01-mile 

intervals along the road segment. The moving mode employed in this study allowed a 

radar wave to be transmitted, received, and recorded each time the antenna is moved a 

fixed distance across the pavement surface. The recorded signals are displayed as traces 

side-by-side to form a GPR time-distance record, or radargram, which shows how the 

reflections vary in the subsurface with distance. 

DOTD also performed pavement coring for most of the road segments. At least one core 

sample was extracted from each road segment to verify pavement thicknesses and to 

identify any material deterioration below the pavement surface as well as bonding 

conditions. The core thicknesses were measured in accordance with ASTM D3549. In 

this study, core samples were visually inspected to determine whether stripping damage 
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was detected in each core location. The GPR data were analyzed and averaged at 0.003-

mile nearest to the location of cores. Each core location included about 12 GPR scans. 

Data Processing. The raw data were processed for surface position adjustment, time zero 

correction, and Infinite Impulse Response (IIR) and Finite Impulse Response (FIR) 

filtering before further analysis. A band-pass filter was used to remove high and low-

frequency noises from the scans. The RADAN software was used to process and analyze 

the radargrams from the GPR data. Figure 43 shows a typical signal interpretation of B-

scan results. When thousands of collected traces are stacked side by side, color-coded 

images help the users identify target features in the scan. The interactive interpolation 

module of the software offers query feature to acquire the location, time, and strength of 

peaks on the wave curve, then export the collected data for further processing. 

Figure 43. Interactive interpretation of GPR data 

 

Example of GPR Data Analysis. As described earlier, the GPR data were processed for 

the core locations based on distance correlation. The pattern of GPR traces was studied 

and compared with the condition of the extracted cores at that location. Figure 44 

presents the GPR traces at the stripped and non-stripped core locations for a control 

section located in Bienville parish in Louisiana. The pavement structure consisted of an 

AC layer, a PCC base layer, and a subgrade. The time range of the GPR traces covered 

the reflected waves from the pavement surface to the interface between the AC and base 

layers. The colored data points in the GPR trace represent the interfaces between the 

layers or the rebars in case of the reinforced concrete layer. As shown in the figure, in the 

non-stripped location, there were three positive peaks from top to bottom that correlated 

with the surface and layer interfaces. In the stripped section, intermittent positive peaks 

can be observed between the layer interfaces, which indicate loss of integrity within the 

AC layer. 
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Figure 44. Comparison of GPR traces for stripped and non-stripped sections and visual inspection of 

each core, (a) stripped section, (b) non-stripped section 

 

Accumulating In-Layer Peaks.  As demonstrated in the previous section, AC stripping 

damage was found to be associated with the intermediate peaks of waves within the AC 

layer in the GPR trace. Based on this observation, a novel indicator, known as the 

Accumulating In-layer Peaks (AIP), was defined to evaluate the stripping potential in 
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asphalt pavements (Equation 25). As shown Equation (25), AIP is the ratio of the sum of 

in-layer positive amplitudes to the amplitude of surface reflection. Compared to the 

dielectric constant indicator that has been extensively used in previous studies, the AIP 

reflects the loss of integrity of the AC layer, which is associated with stripping damage. 

The AIP is also able to quantitatively evaluate the stripping damage. A greater value of 

AIP indicates a greater potential for AC stripping damage. 

𝐴𝐼𝑃 =
∑ 𝐴𝑖

𝑛
𝑖=1

𝐴0
⁄  (25) 

Where, Ai is the amplitude of positive peaks within the AC layer, and A0 is the amplitude 

of peak reflected from the surface. 

Pavement Sections Selection and AIP Computation.  The Louisiana PMS was used to 

identify the pavement control sections related to the ARAN file names (GPR file with 

.DZT extension used in the analysis) using the district, parish, route, and direction 

information in the original GPR data file. The pavement control sections and DZT files 

were first sub-grouped based on the location such that each related group set are on the 

same parish, route, and direction. The DZT files were then considered for the analysis 

only if: 

• The number of control sections in a route were the same as the number of DZT files 

for that route, and 

• The difference between the length of the control section and length of the DZT file 

did not exceed 0.2 mile. 

The interactive interpolation tool in the RADAN software was used to trace the surface, 

in layer peaks, and the interface between asphalt and base layer as shown in Figure 45. 

While a wide range of color combinations are available in the software, a color 

combination of red and blue (Color Table of 25 and Color XForm of 1 in the software) 

was used in the analysis where red indicates a strong positive reflection and blue 

indicates a strong negative reflection.  
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Figure 45. GPR traces of surface, in-layer noises, and asphalt-base interface for control section 112-

07-1 (LA0174, Red River Parish) 

 

The location of the core in the GPR scan was identified using the control section log mile 

(CSLM) information in the core report. The CSLM was multiplied by 1000 and was 

added to the beginning of the GPR scan for the sections cored in the primary direction 

while the thousandth of the CSLM was subtracted from the end of the GPR scan for the 

sections cored in the secondary direction to accurately locate the core location. Layer 

traces were then color-coded using the EZ tracker picking tool in the software for 

enhanced visual interpretation of the scans. The resulting layer file was exported to 

Microsoft Excel to compute the amplitudes of the traced layers. The amplitudes of the 

surface and in layer peaks were averaged at 0.003-mile nearest to the location of cores. 

The AIP was then computed using Equation (25). Figure 46 presents examples of GPR 

traces for stripped and non-stripped cores. 
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Figure 46. GPR traces for stripped sections (a) 065-07-1, (b) 256-03-1, and non-stripped sections (c) 

001-06-1, and (d) 010-02-1 

 

As shown in Figure 46, the stripped sections contained relatively higher levels of layer 

noises compared to the non-stripped sections. Figure 47 presents an illustration of 

amplitudes computation for a stripped pavement section (112-07-1). An AIP of 1.48 was 

calculated for the section presented in Figure 47. 



—  88  — 

 

Figure 47. Amplitude of surface and in-layer noises for control section 112-07-1 

 

Effect of Moisture Damage on the Performance and Cost-Effectiveness 

of Chip Seal and Overlay 

Figure 48 illustrates the general outlines of the research methodology for this task. Chip 

sealed and AC overlay road sections were identified from the DOTD PMS. For these 

sections, core reports were then reviewed and analyzed to identify the occurrence of 

moisture-induced damage in the underlying AC layers before applying chip seal or an AC 

overlay. Distress and roughness data were then obtained from the PMS and Pavement 

Condition Index (PCI) values were calculated. Performance curves, which were fitted to 

the PMS data, were then used to calculate four field performance indicators, which were 

the average deterioration rate (ADR), extension in pavement service life (∆PSL), average 

condition increase over the treatment service life (PI), and cost-effectiveness (CE). The 

last step consisted of conducting a statistical analysis to evaluate the effects of moisture-

induced damage on the long-term pavement performance and cost-effectiveness of chip 

seal and AC overlays.  
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Figure 48. General outlines of the research methodology 

 

Data Collection  

Data from approximately 496 miles of Louisiana roads were used in the present analysis. 

For chip seal sections, data from 228 miles were used in the analysis. Based on core 

reports, 160 miles were identified as non-stripped chip-sealed sections while the 

remaining 68 miles were classified as stripped sections (i.e., with moisture damage) (see 

Figure 49). Similarly, among 268 miles of AC overlay sections, 117 miles were stripped 

sections and about 151 miles were non-stripped sections. Distress and roughness data 

were obtained from the DOTD PMS inventory. As previously noted, pavement condition 

measurements are regularly conducted in Louisiana biennially using the Automatic Road 

Analyzer (ARAN) vehicle, which provides a continuous evaluation of the road network. 

DOTD PMS reports the collected data for each 0.1 of a mile. Data for each log-mile were 

used to calculate PCI values, which in turn were used to calculate the different 

performance indicators selected in the analysis. 



—  90  — 

 

Figure 49. Examples of core data extracted by DOTD 

 

Data Processing 

The condition of the existing pavement sections was evaluated based on the PCI since it 

accurately reflects pavement surface conditions over time. In addition, many agencies 

throughout the United States and Canada use it to monitor the performance of the road 

sections and their level of service [77]. In Louisiana, PCI is typically calculated as a 

function of different DOTD indices as presented in Equation (26) [78]. Based on the 

calculated PCI, a regression curve describing pavement performance before and after the 

treatment was fitted for each pavement section, as illustrated in Figure 50.  

PCI = MAX{MIN(RCI, ALCR, PTCH, RFI, RTI) × AVG(RCI, ALCR, PTCH, RFI, RTI) −

0.85 SD(RCI, ALCR, PTCH, RFI, RTI) (26) 

Where, RCI = the random cracks index; ALCR = alligator cracking index; PTCH  = patch 

index; RFI = roughness index; RTI = rutting index; and SD = standard deviation. 
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Figure 50. Modeling of pavement performance from PMS data 

 

Performance Indicators 

The present study selected four performance indicators to compare the long-term 

performance of stripped and non-stripped sections after the application of chip seals and 

AC overlays. These indicators are classified into two categories: benefits-only approaches 

and benefit-cost approaches. The benefit-only approach included the average 

deterioration rate (ADR), the extension in pavement service life (∆PSL), and the average 

increase in pavement condition (PI %). Treatment cost-effectiveness (CE %) was used as 

a benefit-cost indicator in the current analysis.  A description of these indicators is 

provided in the following sections. 

Average Deterioration Rate. The ADR was compared for the stripped and non-stripped 

pavement sections. The deterioration rate between two successive survey cycles was 

calculated using Equation (27). ADR was then calculated based on Equation (28). 

DRi+1 (%) = 
PCIi−PCIi+1

Yi+1−Yi
*100 (27) 

Where, DRi = the deterioration rate (%) in the year of (i+1) years of the treatment age, 

PCIi = PCI value at the year of (i) after applying the treatment, PCIi+1 = PCI value at the 

year of (i+1) after applying the treatment, Yi = treatment age at PCI value of PCI I, and 

Yi+1 = treatment age at PCI value of PCI i+1.   

ADR (%) = 
∑ DRi

n
i=1

n
  (28) 
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where, n = the number of surveys. 

Extension in Pavement Service Life (∆PSL). Pavement service life (PSL) is defined as 

the age at which a given pavement condition (i.e., PCI or IRI) reaches a selected 

threshold value [79]. Based on this definition, PSL can be calculated by extrapolating the 

pavement performance curve to a point at which pavement conditions reach a pre-

determined threshold. ∆PSL calculation involved numerous steps. First, performance 

curves were fitted between PCI values and pavement age (years) (see Figure 50). As 

shown in Figure 50(a), the remaining PSL (PSLR) of the pavement before the treatment 

was calculated by extrapolating the performance curve before the treatment to the 

selected threshold value. Similarly, the treatment PSL (PSLT) was computed by 

extrapolating the performance curve after the treatment until it reached the threshold 

value. Finally, ∆PSL was calculated by subtracting PSLR from PSLT considering a PCI 

threshold value of 60 as suggested by DOTD PMS [80].  

Average Condition Increase (PI %). In the present analysis, the increase in average 

pavement condition over chip seal or AC overlay service life relative to the condition of 

the road before the treatment (PCI-) was used to evaluate the effect of moisture damage 

on chip seal and AC overlay performance. Equation (29) was used to calculate PI [81, 

82]. It can be noted from Equation (29), the higher the PI value, the better the long-term 

performance of a treatment is. 

PI (%) = 
PCIavg−PCI−

PCI− *100  (29) 

PCIavg = 
∑ 0.5∗(PCIi+PCIi+1)∗ ∆Yn

i=1

Yn−Y1
  (30) 

Where, PCI avg = average PCI value over the treatment service life, PCI i = PCI value at 

the time of I, ∆Y = the period between i and i+1, Y1 = the year when chip seals or AC 

overlays were placed, Yn = the last measurement year, and PCI- = PCI value before 

treatment. 

Cost-Effectiveness. Cost-Effectiveness (CE) analysis typically compares the relative 

efficiency of several alternatives from a budgetary perspective to help decision-makers 

select the optimum alternative. However, in the current study, CE analysis was used to 

evaluate the effect of moisture-induced damage on the cost efficiency of chip seal and AC 

overlay treatments. The CE of a treatment strategy for a road section was calculated using 

Equation (31): 



—  93  — 

 

CE (%) = 
A1−A2

Unit  Cost ($)
*100  (31) 

Where, A1 = an area that represents the benefits of a given treatment (see Figure 50(a)) 

until reaching a cutoff value; A2 = an area that represents the remaining benefits of the 

existing pavement (see Figure 50(b)) until reaching the same cutoff value; A1-A2 = an 

area, which indicates the net benefits of treatment application; see Figure 50(b); and Unit 

Cost ($) = unit cost of the treatment, which was obtained from DOTD database.  

Data Analysis Strategy  

Figure 51 presents the data analysis strategy adopted in the study. For chip seal and AC 

overlay sections, traffic volume and pre-treatment conditions (PCI-) were used to classify 

the road sections into groups. In terms of traffic volume, pavement sections were 

categorized into two groups as sections with low traffic levels (ADT <1,100 vpd) and 

medium traffic levels (1,100 <ADT < 5,300 vpd) (see Figure 51(a)). In addition, pre-

treatment conditions (PCI- values) were used to classify pavement sections as sections 

with PCI-< 80 and PCI- > 80, as shown in Figure 51(b). Pavement sections in each group 

were then categorized into two different sub-groups based on the presence of moisture 

damage before treatment (i.e., stripped and non-stripped sections). The performances of 

the road sections were then compared statistically for the defined subsets to assess the 

statistical significance of moisture-induced damage on the observed field performance. It 

is worth noting that for AC overlays, the majority of the road sections had pre-treatment 

conditions (PCI-) ranging from 65 to 70, which hindered the feasibility to assess the 

effect of this factor on the performance of the AC overlays. Therefore, the effects of 

moisture-induced damage on AC overlays were evaluated only for different traffic levels.  
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Figure 51. Analysis procedure for chip-sealed and AC overlay sections 

 

Prediction of Pavement Roughness Conditions Using Surface Images 

Figure 52 demonstrates the general outlines of the research methodology for this task. In-

service pavement sections were selected from the DOTD PMS databases. For this task, 

digital images and quantitative distress data were extracted. On one hand, 3D pavement 

images were acquired from the iVision application available in the DOTD PMS 

inventory. The images from the different sections were then labeled based on their IRI 

values as “VG,” “G,” “F,” and “P” sections, as shown in Table 10. The labeled images 

were then utilized to train and to validate a pre-existing CNN model for pavement 

roughness evaluation. On the other hand, the surface quantitative distress data were 

extracted from the PMS and the DOTD indices were calculated. Sections were clustered 

into different groups based on their roughness conditions (see Table 10). The 

effectiveness of an ANN-based and a MNL-based models to classify the sections into 

different pavement roughness conditions using only DOTD indices as independent 

variables was investigated.   

Table 10. IRI threshold for different IRI categories [11] 

IRI Rating IRI Range (in./mile) 

1 Very Good (VG) <90 

2 Good (G) 90-180 

3 Fair (F) 180-258 

4 Poor (P) >258 
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Figure 52. The general outlines of the research methodology 

 

Data Collection and Categorization 

As previously noted, pavement sections in Louisiana are surveyed every two years using 

the ARAN system, which collects high definition pavement images for continuous 

assessment of the road network. In this assessment, pavement sections are divided into 

segments with a length of 0.10 mile. For each 0.10 mile, ARAN captures twenty-five 3D 

images meaning that each image covers 0.004 mile of the road length, which provides a 

detailed assessment of pavement surface conditions. The DOTD PMS was used to extract 

850 3D pavement images and their corresponding IRI values for 34 road sections. The 

pavement sections were selected to cover a wide range of traffic levels and different 

pavement surface conditions. As presented in Table 11, the IRI values of the selected 

pavement sections ranged from 50 in./mile to 342 in./mile to cover all roughness 

conditions. With respect to the quantitative data, 1,142 measurements were extracted 

from 114 miles of Louisiana roads and were used to develop the ANN and MNL models. 

These data included roughness and distress condition data. 
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Table 11. Images data description for the development of the CNN model 

Group No. of sections 
Average IRI value for each section 

(in./mile)  

ADT1 
No. of 

images Min. Max. 

VG 8 50, 58, 62, 65, 74, 75, 80, and 88 1,440 14,000 200 

G 7 
96, 104, 119, 126, 136, 144, and 

158 
860 15,100 175 

F 11 
181, 186, 192, 199, 207, 212, 220, 

228, 236, 244, and 256 
860 12,900 275 

P 8 
261, 267, 277, 285, 293, 302, 322, 

and 342 
570 16,800 200 

Total 34    850 

1 ADT: Average Daily Traffic 

DOTD Indices 

For the ANN-based and MNL-based models, DOTD indices were the main inputs used in 

the developed models. Distress data extracted from the DOTD PMS inventory were used 

to calculate the rut index (RTI), random cracking index (RCI), alligator cracking index 

(ALCR), and patching index (PTCH) using Equations (32), (33), (34), and (35), 

respectively [83].  

RTI = Min (100,100-((R_AVG*(10/0.125))-10))  (32) 

Where, R_AVG = average rutting (in.). 

RCI = Min (100, Max (0, 100-RCI_L DEDUCT - RCI_M DEDUCT- RCI _H 

DEDUCT))  (33) 

Where, RCI_L DEDUCT, RCI_M DEDUCT, and RCI _H DEDUCT = the deduct points 

due to low, medium, and high severity random cracks. 

ALCR = Min (100, Max (0, 100-ALCR_LDEDUCT-ALCR_MDEDUCT            

-ALCR_HDEDUCT))  (34) 

Where, ALCR_LDEDUCT, ALCR_MDEDUCT, and ALCR_HDEDUCT = the deduct 

points due to low, medium, and high severity fatigue cracks. 

PTCH = Min (100, Max (0, 100-PTCH_L DEDUCT-PTCH_M DEDUCT            

-PTCH_H DEDUCT))  (35) 
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Where, PTCH_L DEDUCT, PTCH_M DEDUCT, and PTCH_H DEDUCT = the deduct 

points due to low, medium, and high severity patching. 

CNN Classification Model 

The present analysis developed a CNN model to classify road sections into different 

roughness categories and to estimate the IRI values for road sections based on 3D 

pavement images. A pre-existing CNN model known as AlexNet was used in the analysis 

[84]. AlexNet was developed based on a massive database containing 1.2 million images. 

AlexNet was selected since it was expected to be effective in capturing both surface 

distresses and other irregularities that affect pavement roughness. Therefore, accurate 

predictions of pavement roughness may be achieved. Figure 53 presents the architecture 

of the AlexNet model. 

Figure 53. AlexNet architecture 

 

AlexNet Architecture. As shown in Figure 53, the adopted AlexNet architecture 

consisted of eight layers, five convolutional layers, and three fully connected layers. The 

last fully connected layer is connected to a softmax layer for the final classification. The 

first convolutional layer scans the input patch (224x224) with kernels of size 11x11 and a 

stride of 4x4. The second convolutional layer applies a 5x5 filter and the remaining 

convolutional layers were equipped with a kernel of 3x3 and a stride of one. The max 
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pooling was performed in a filter size of 3x3 with a stride of two. Finally, the fully 

connected layer consists of 4,096 neurons. The CNN use the rectified linear units (ReLU) 

as activation function after each convolution layer and fully connected layer instead of 

the traditional sigmoid function. The training time of CNN with ReLUs is six times faster 

than the CNN with the sigmoidal activation functions [85]. The data processing, CNN 

training, testing, and validation were performed in MATLAB 2018b platform in a 

computer with Intel Core i5-8265U CPU and 8GB of RAM.   

ANN-Based Pattern Recognition Model 

Pattern recognition is one of the most promising applications of artificial intelligence. 

Pattern recognition is the scientific discipline that uses prior knowledge or statistical 

information to build a classification tool that helps in the classification of objects into 

different categories [86]. Speech recognition, fingerprint identification, handwriting 

recognition, and seismic analysis are the general applications of pattern recognition. In 

the field of transportation, pattern recognition was utilized in different applications. For 

instance, Elbagalati et al. developed a pattern recognition system to select the optimum 

maintenance and rehabilitation decisions at the network-level [87].  

ANN Architecture for Pattern Recognition. Pattern recognition can be applied by using 

a multilayered feed-forward ANN with a Hard-Lim transfer function. The Hard-Lim 

function returns an output of zero or one. The final output would be “1” if specific 

thresholds were achieved; otherwise, the final output would be “0.” In the present study, 

an ANN-based pattern-recognition classification tool was developed to classify the 

pavement sections into different roughness groups. The ANN consisted of three layers: a 

four-neuron input layer, a twenty–neuron hidden layer, and a four-neuron output layer as 

shown in Figure 54(a). 

Inputs and Target Variables. As shown in Figure 54(b), the input set consisted of four 

DOTD indices, which are related to pavement surface conditions; namely, RTI, RCI, 

ALCR, and PTCH. On the other hand, the roughness category, as presented in Table 10, 

was the final output. A twenty-neuron hidden layer was used to establish adequate 

correlations between the inputs and target outputs. 



—  99  — 

 

Figure 54. (a) Scheme of the components of the ANN model and (b) ANN’s inputs and outputs 

 

Logistic Regression Classification Model  

Logistic regression is one of the most powerful tools that has been used in biological 

sciences since the beginning of the twentieth century [88, 89]. Logistic regression is a 

predictive analysis that can be only conducted when the dependent variables (outputs or 

target) are categorical or dichotomous. Logistic regression can be used to describe and 

test the relationship between the dependent variables and each independent variable 

(predictor) [88, 89]. However, the focus of the logistic regression is the classification of 

the individuals (observations) into different groups [89]. In the present application, either 

the output can be a binary (binomial) logistic regression or a multinomial logistic 

regression based on the number of dependent variables.  
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Binary Logistic Models. Logistic regression defines the relationship between the 

dependent and independent variables in terms of the natural logarithm of a likelihood 

ratio. Mathematically, binary logistic regression estimates a multiple linear regression 

function as defined by Equation (36):   

Logit (PA) = Ln (
PA

1−PA
) = Ln (

PA

PB
) = α + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + ⋯ +𝛽𝑛𝑋𝑛  (36) 

Where, PA = the probability of an observation to be assigned to the category “A,” α = the 

Y-intercept, and βn = regression coefficients of the predictor variables Xn. 

Multinomial Logistic Models. The MNL was used to develop models, which are capable 

of classifying the observations into more than two categories (i.e., A, B, and C) [90, 91]. 

Equations (37) and (38) present the mathematical representation of the MNL for a 

multiple linear regression function. It is worth noting that category C was selected as the 

reference to calculate the probabilities of A and B. 

Ln (
PA

PC
) = 𝛼1 + 𝛽11𝑋1 + 𝛽12𝑋2 + 𝛽13𝑋3 + ⋯ +𝛽1𝑛𝑋𝑛  (37) 

Ln (
PB

PC
) = α2 + 𝛽21𝑋1 + 𝛽22𝑋2 + 𝛽23𝑋3 + ⋯ +𝛽2𝑛𝑋𝑛  (38) 

The current analysis developed a MNL model to classify the pavement sections with 

different characteristics (RTI, RCI, ALCR, and PTCH) as the independent variables into 

different groups of roughness conditions as the dependent variable. Statistical Package 

for Social Sciences (SPSS) software was used to develop the logistic model by producing 

𝛼𝑖and β𝑖𝑗 in Equations (37 and 38), to assess the significance of each predictor to the 

dependent variables, and to evaluate the classification ability of the developed models. 
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Discussion of Results 

Pavement Cracks Classification Using Machine Learning 

CNN Network Performance 

The data processing, CNN training, testing, and validation were performed in MATLAB 

2019a platform in a computer with Intel Core i5-4590S microprocessor and 8GB of 

RAM. A data set consisting of 200 2D pavement images of size about 2500 x 4000 and 

150 3D images of size about 1030 x 1610 were collected from the DOTD PMS database. 

These images were pre-processed using an automated preprocessing tool according to the 

aforementioned image processing techniques. The data were then divided into 60% for 

training, 15% for testing, and 25% for validation. The accuracy of the model was 

expressed in form of confusion matrices, which present the actual and predicted crack 

types in terms of numbers and percentages.  

The developed CNN model was trained, tested, and validated for two data sets: a data set 

consisting of 2D images only and a data set consisting of both 2D and 3D images. Figure 

55 presents the accuracy of CNN model for the raw pavement images. As shown in 

Figure 55, the model achieved an accuracy of 61.7% and 73.4% on the testing and 

validation phases, respectively. The low model accuracy for raw images is due to 

different factors such as pavement noise, background illumination, pavement marking, 

spots and stains including cracking patterns. The pavement images in the two data sets 

were then processed according to the aforementioned image processing techniques. For 

the data set consisting of 2D images only, the developed network achieved an overall 

accuracy of 88.9% and 86.7% in the testing and validation phases, respectively. Figure 56 

presents the confusion matrices in the testing and validation phases. Similarly, for the 

data set consisting of a combination of 2D and 3D images, the developed model achieved 

an overall accuracy of 93.8%, and 91% respectively as illustrated in Figure 57. 
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Figure 55. Confusion matrices for raw pavement images for (a) testing, (b) validation for CNN model 
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Figure 56. Confusion matrices for 2D images for (a) testing, (b) validation for CNN model 
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Figure 57. Confusion matrices for 2D and 3D images for (a) testing, (b) validation for CNN model 

 

The dropout layers after the first two fully connected layers reduced the data overfitting 

by preventing complex co-adaptations during network training. The dropout layer 

randomly ignores some hidden and visible neurons during training and prevents the co-

dependency amongst the neurons. However, the dropout layer requires additional 

computational expense for model training. In order to enhance the convergence and 
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calculation speed, the ReLU layers were connected to the convolutional and fully-

connected layers. The ReLU layers implements the activation function and determines 

the output of the neural network. The output of ReLU layers was generalized using the 

LRN, which implements the lateral inhibition in order to reduce the capacity of a neuron 

that impedes the activity of its neighbors.  

ANN Training and Performance 

A computational tool available in MATLAB 2019a was used to process all the data and to 

develop the ANN decision-making tool. The input data corresponding to 150 pavement 

images used in the ANN model were collected from the Louisiana PMS. The data were 

then divided into 70%, 15%, and 15% for training, validation, and testing, respectively. 

Data overfitting was avoided by halting the training process when the validation set error 

stopped decreasing. The testing data were used to provide independent measure of the 

network performance as it had no effect on the training. Figure 58 presents the confusion 

matrices for training, validation, testing, and overall step for the pattern recognition 

system. As shown in the figure, the ANN tool achieved an accuracy of 91.3% in the 

testing and validation sets. The confusion matrices showed an overall prediction accuracy 

of 92% indicating the effectiveness of the ANN model to predict the correct crack types 

in the evaluation process.  

The generalization ability of the overall network was enhanced and overfitting was 

avoided by halting the training as there was no observed decrease in the validation set 

error as shown in Figure 59. The matrices present Nij with corresponding percentage, 

precision of every decision, and overall accuracy. The testing data set was used to provide 

an independent measure of the network performance. The network training time was 

found to be 4.2 seconds. 
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Figure 58. Confusion matrices for the pattern recognition system for training, validation, and testing 

for ANN model 
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Figure 59. ANN model performance 

 

Forward Calculations 

The trained and validated CNN and ANN models were used to perform forward 

calculations and to predict the crack type with an independent set of images and 

variables. The CNN and ANN models can be saved as a MATLAB file once the desired 

accuracy is achieved in the training and validation phases, which can then be used to 

perform forward calculations for crack classification. The data set consisted of 12 images 

with top-down cracking, 11 images with bottom-up cracking, and 8 images with cement-

treated reflective cracking and their respective pavement and crack characteristics and 

was used to assess the accuracy of the developed models. Table 12 presents the results of 

the forward calculations.  

Table 12. Forward calculation results 

Crack Type Number of 

Test Images 

Correctly 

Predicted by 

CNN 

Correctly Predicted 

by ANN 
Correctly Predicted by both 

CNN and ANN 

Top-down 12 11 (91.7%) 12 (100%) 11 (91.7%) 

Bottom-up 11 10 (90.9%) 10 (90.9%) 10 (90.9%) 

CT reflective 8 7 (87.5%) 8 (100%) 7 (87.5%) 

Total 31 28 (90.3%) 30 (96.7 %) 28 (90.3%) 
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As shown in Table 12, both CNN and ANN models achieved a satisfactory accuracy in 

crack classification. The CNN and ANN models in MATLAB were subsequently 

incorporated into a user-friendly computer program, which can be used by PMS 

engineers without advanced knowledge of machine-learning techniques. Based on the 

results of forward calculations, the following observations are made: 

• The CNN model accurately predicted the crack types for all images with distinct 

cracks. However, for images with poor background illumination, excessive shadows, 

spots and stains, and containing blurry cracks, the crack classification from the CNN 

model should be validated with the predicted crack type from the ANN-based model.  

• The prediction accuracy of top-down cracks for both models was higher compared to 

bottom-up and CT reflective cracks; this can be attributed mainly to three distinct 

characteristics of top-down cracks (crack orientation, crack location, and pavement 

age). Compared to the ANN model, the CNN model more accurately predicted the 

crack types for pavements that developed top-down cracks at later stages in their 

service life.  

• Bottom-up cracking usually appears in the surface during the later stages of pavement 

service life. However, for the pavements with relatively small AC thickness and high 

traffic volume, the bottom-up cracks were observed to resemble top-down cracking. 

In this case, the models’ accuracy was slightly inferior to other cases. 

• The CT reflective cracks usually initiate as transverse and longitudinal cracks in the 

pavement with cement-treated base or subgrade and can appear during the early or 

later stages of pavement service life. CT cracks that appeared only as longitudinal 

crack in the wheel path were mistakenly classified as top-down or bottom-up cracking 

by the CNN model. Therefore, the crack classification from the CNN model should 

be cross-checked with the predicted crack type from the ANN-based model. 

ANN and CNN Applications 

The commercial MATLAB, which provides a design toolbox (MATLAB App designer) to 

develop standalone windows-based and MATLAB-based applications, was used in this 

study. The required dependencies for the developed applications were compiled using the 

MATLAB compiler, which also generates the installation file for the end users. The ANN 

and CNN applications were developed in MATLAB 2019a platform in a computer with 

Intel Core i5-4590S microprocessor and 8GB of RAM. The procedure to formulate the 

applications is explained in this section.  
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Create Input and Output Components. The input and output components were created 

by using app designer component library that provides sliders, push buttons, drop down 

lists, numeric edit fields, and axes (to present figures) components, which can be easily 

dragged and dropped into the canvas. These components allow the user to define the 

inputs and the application to present the results. 

Create a Callback Function. The user interface (UI) components created in the first step 

were then assigned with specific functions known as callbacks, which are executed when 

the user interacts with the UI components. The application stores the user inputs once the 

user interacts with the UI components. The ANN code to classify pavement cracks into 

three classes was incorporated using the callback function created for the “Results” push 

button component. The neural network is first trained when the user clicks the “Results” 

push button. Then, the classification results for the respective inputs defined by the user 

are displayed in the “Table” component as shown in Figure 60.  

Create Standalone Application. The standalone application was created using 

MATLAB Complier, which generates an installation file and incorporates both the 

standalone application and all the required dependencies. The end users can access the 

application after installing the installer generated by the compiler without the need of 

MATLAB in their computer. Figure 60(a) presents the interface developed to classify the 

pavement cracks using the ANN model. The results of ANN classification are displayed 

in the table with assigned class and net error with a description in yellow colored boxes.  

Create MATLAB-Based Application. An application that presents both CNN and ANN 

results was also created using the MATLAB compiler by adding a section with “CNN 

Result” as presented in Figure 60(b). The CNN classification algorithm was incorporated 

along with the image processing algorithm in the “Open Image” push button such that the 

application processes the image and presents the result of CNN classification for the 

given image at once. However, this application requires the users to install a licensed 

version of MATLAB on their computer. 
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Figure 60. (a) ANN interface for crack classification, (b) CNN and ANN application for crack 

classification 

 

Steps to use the ANN and CNN applications. The use of the developed ANN and CNN 

applications consists of four main steps as detailed in this section. 

• Step 1: Open Image  

The “Open Image” push button allows the user to browse and open the digital pavement 

image on their computer for image processing as shown in Figure 61(a).  

• Step 2: Image Processing 
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Once the user opens the digital image, the application processes the raw pavement image 

such that the orientation and location of cracks can be identified and used as input for the 

ANN model. The image processing algorithms including intensity normalization, median 

filtering, morphological erosion, and contrast enhancement are incorporated in the “Open 

Image” push button automatically. Hence, once the user opens the image using the push 

button, the application automatically processes the image. Figure 61(b and c) illustrates 

the image processing procedure in the application. 

• Step 3: Enter Inputs for ANN Classification 

The application requires the users to collect the pavement image with crack and six 

different inputs for the selected pavement section including pavement age, AC thickness, 

base type, ADT, crack orientation, and crack location. Numeric edit field components 

were created for pavement age, AC thickness, and ADT, which allows the user to enter 

the respective values. The user then defines the base type, crack orientation, and crack 

location using the drop-down menu. The base type drop-down menu allows the user to 

select between cement-treated base, untreated base, and PCC. The crack orientation 

allows the user to select between longitudinal, transverse, and both longitudinal and 

transverse. The crack location drop-down menu allows the user to select wheel path or 

outside wheel path for longitudinal crack and any location for transverse or transverse 

and longitudinal crack. 

• Step 4: Results 

The ANN classification code is incorporated in the “Results” push button in the interface. 

The corresponding class of the analyzed pavement crack can be obtained with one click 

of the button. The result of the classification is displayed in terms of number as “1,” “2,” 

or “3” where 1 indicates bottom-up, 2 indicates cement-treated reflective, and 3 indicates 

top-down cracking. The net error is also displayed along with the assigned class, which 

indicates the chance that a crack with given properties belong to other classes than 

classified. In case of the MATLAB-based application, the result of the CNN classification 

is displayed in “CNN Result” component once the users open the image.  
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Figure 61. (a) Open pavement image, (b) loading image, (c) processed image 

 

Case Studies. This section presents the application of the CNN and ANN models along 

with the Windows application to a number of field sections in order to classify the surface 

cracks as either top-down, bottom-up, or cement-treated reflection cracking. 
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Section 058-02. The pavement section is located on St. Tammany Parish (Parish 52) of 

Hammond district (District 62). The section had a length of 7.51 miles and the pavement 

structure consisted of 8-in. AC and a 6-in. stabilized granular base over a 5-in. clay 

subbase and clayey subgrade. An asphalt concrete overlay was applied within the 

pavement preservation program for a sub section with begin log mile of 0 and end log 

mile of 7.51. The final inspection date of the project was 12/6/2012. The section carries 

an ADT of 4,700. Top-down cracking initiated on the pavement section in 2016, which 

was validated with field coring. The longitudinal cracks appeared in the wheel path as 

shown in the preprocessed image. Figure 62(a) presents the results of CNN and ANN 

classification. As shown in the figure, both CNN and ANN successfully classified the 

pavement cracking as top-down cracking. 

Section 262-03. The pavement section is located on Livingston Parish (Parish 32) of 

Hammond district (District 62). The section had a length of 6.41 miles and the pavement 

structure consisted of 8.5-in. AC and a 5.5-in. base over a clay subgrade. A cold planning, 

patching, and AC overlay were applied in a sub-section with a begin log mile of 0 and an 

end log mile of 6.41. The final inspection date of the project was 12/17/2013. The section 

carries an ADT of 15,000. Top-down cracking initiated on the pavement section in 2016, 

which was validated with field coring. Figure 62(b) presents the results of CNN and ANN 

classification. The longitudinal cracks appeared in the wheel path as shown in the 

processed image. As shown in the figure, both CNN and ANN successfully classified the 

pavement cracking as top-down cracking. 

Section 011-04. The pavement section is located on Caddo Parish (Parish 09) of Bossier 

City district (District 04). The section had a length of 14.13 miles and the pavement 

structure consisted of 8-in. AC and a 6.75-in. red sand with gravel base over a clayey 

subgrade. An AC overlay was applied within the pavement preservation program for a 

sub-section with a begin log mile of 0 and an end log mile of 5.02. The final inspection 

date of the project was 10/5/2005. The section carries an ADT of 1,000. The section 

developed pavement surface cracking in 2014. Figure 64(c) presents the results of CNN 

and ANN classification. The cracks were not clearly visible in the preprocessed image 

due to excessive noise in the original image. The zoomed-in preprocessed picture showed 

longitudinal cracks in the wheel path. As shown in the figure, both CNN and ANN 

classified the pavement cracking as bottom-up cracking. 

Section 857-63. The pavement section is located on Vermilion Parish (Parish 57) of 

Lafayette district (District 03). The section had a length of 10.79 miles and the pavement 

structure consisted of 3.5-in. AC and 9.5-in. cement stabilized sand clay gravel base over 



—  114  — 

 

a clay subgrade. A base stabilization and AC overlay were applied for a sub-section with 

a begin log mile of 0.65 and an end log mile of 10.85. The final inspection date of the 

project was 5/28/2013. The section carries an ADT of 2,300. Top-down cracking initiated 

in the pavement section in 2015, which was validated with field coring. The longitudinal 

cracks appeared on the wheel path as shown in the processed image. Figure 62(d) 

presents the results of CNN and ANN classification. As shown in the figure, both CNN 

and ANN successfully classified the pavement cracking as top-down cracking. 

Section 003-10. The pavement section is located on Acadia parish (Parish 01) of 

Lafayette district (District 03). The section had a length of 11.367 miles and the pavement 

structure consisted of 6-in. AC and a 7.5-in. Portland Cement Concrete (PCC) base over a 

clay subgrade. An AC overlay was applied in a sub-section with a begin log mile of 6.28 

and an end log mile of 11.377. The final inspection date of the project was 8/13/2012. 

The section carries an ADT of 6,700. The section developed pavement surface cracks in 

2016. Figure 62(e) presents the results of CNN and ANN classification. As shown in the 

figure, both CNN and ANN classified surface cracking as cement-treated reflective 

cracking. 

Section 014-06. The pavement section is located on Rapides Parish (Parish 40) of 

Alexandria district (District 08). The section had a length of 13.21 miles and the 

pavement structure consisted of 9-in. AC and an 8.5-in. cement stabilized sand shell base 

over 9-in. PCC and a clayey subgrade. A cold planning and AC overlay were applied in a 

sub-section with a begin log mile of 3.44 and an end log mile of 10.75. The final 

inspection date of the project was 5/8/2008. The section carries an ADT of 7,800. 

Cement-treated reflective cracking initiated on the pavement section in 2016. Figure 62(f) 

presents the results of CNN and ANN classification. As shown in the figure, CNN 

successfully classified the pavement cracking as cement treated cracking while ANN 

mistakenly classified the cracking as bottom-up cracking. As discussed earlier, this can be 

attributed to ANN models’ limitations to classify longitudinal cracking in the wheel path 

as cement-treated reflective cracking. 
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Figure 62. CNN and ANN classification results for sections (a) 058-02, (b) 262-03, (c) 011-04, (d) 857-

63, (e) 003-10, (f) 014-06 

 

Asphalt Concrete Stripping Detection Using Deflection Measurements 

Evaluation and Validation of the Logistic Regression Model 

The soundness of the logistic model was assessed through significance test of the 

individual predictor variables with respect to the dependent variable, overall model 

performance evaluation, and goodness of fit statistics.  

Statistical Significance of the Predictor Variables. In logistic regression, statistical 

significance of the predictors with respect to the dependent variable is assessed by the 

Wald Chi-Square (χ2) unlike conventional linear regression models, which may be 

assessed using conventional t-tests. Similar to linear regression, if the P-value of the 

predictor is less than 0.05, the predictor is considered statistically significant on the 

dependent variable. As shown in Table 13, the predictor variables used in the model 

showed significance with a P-value less than 0.05 except for the Rutting Index (RTI). 

However, the RTI variable was still included as it yielded a P-value close to 0.05 and it 
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improved the model’s prediction to a certain extent. The RWD measured parameters used 

in the model (i.e., center deflection (D0) and the standard deviation of D0 measurements 

within 1 mile denoted as D0STD), were statistically insignificant individually. Yet, the 

interaction term between these two variables (D0* D0STD) was significant in predicting 

the outcome of AC stripping. 

Table 13. Logistic regression model evaluation 

Predictor Variables Estimate, β Standard Error 
Wald Chi-

Square (χ2) 
DF Pr > χ2 

Intercept 0.6281 1.5757 0.1589 1 0.6902 

D0* D0STD 0.000418 0.000210 3.9726 1 0.0462 

ACth 0.1563 0.0463 11.3754 1 0.0007 

TreatedBase 0.3063 0.1362 5.0602 1 0.0245 

RTI -0.02658 0.0158 2.8087 1 0.0938 

Test    χ2 DF Pr > χ2 

Overall Model Evaluation 

Likelihood ratio test 34.5968 4 <0.0001 

Score test 30.9908 4 <0.0001 

Wald test 28.3533 4 <0.0001 

Goodness of fit test 

Hosmer & Lemeshow 7.1499 8 0.5205 

Deviance   138.6151 130 0.2864 

Pearson   125.4202 130 0.5971 

c-statistic = 0.792 

Overall Model Performance. Overall, logistic model performance can be assessed by 

three statistical tests: the likelihood ratio test, the score test, and the Wald test. The 

significance value (P-value) for these tests is expected to be less than 0.05 if the overall 

model is a better predictor with the presence of the predictor variables than the intercept 

only model. The intercept only model, also known as the null model, can be rejected over 

the full model that includes the predictor variables with a P-value less than 0.05 based on 

the aforementioned model performance tests. For the present model, the tests suggest that 

the model with predicted variables was more effective than the null model as shown in 

Table 13. 

Goodness-of-Fit Test. The goodness of fit test determines if the model’s prediction is 

statistically acceptable against the actual outcome of the event. To test the goodness of fit, 

three statistical measures were considered; namely, the Hosmer & Lemeshow test, 
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Deviance, and the Pearson test [71]. If these tests are significant in terms of P-value 

(<0.05), then the proposed model needs to be rejected, while insignificant value suggests 

that the model’s prediction is statistically acceptable. As shown in Table 13, all the 

goodness of fit parameters yielded an insignificant value supporting the acceptance of the 

developed model.  

Validation of Model’s Prediction. As previously mentioned, the logistic model predicts 

the logit (natural log) of the probability of an event based on the predictor variables. The 

natural log of the odds can be converted to the probability scale. The proposed model was 

developed to predict the probability of stripping in the pavement; therefore, higher 

probabilities would indicate the presence of stripping whereas lower probabilities are 

associated with no stripping. As shown in Table 13, c-statistic of 0.792 was calculated 

from the proposed model indicating that 79.2% of the pair of pavement sections had 

higher probabilities for stripped sections than for non-stripped section. A c-statistic of 1.0 

would indicate that the predicted probability was higher for stripped sections than non-

stripped sections for each pair of possible pavement sections. 

The predicted probabilities are summarized in Figure 63, where it shows the change of 

probability estimation with the predictor variables. Two plots are illustrated for the 

categorical variable TreatedBase (0=if no treatment conducted on the base layer, 1=if the 

base is treated). Higher probability of stripping was noted with the increase in the AC 

layer thickness and the interaction term D0* D0STD (referred in the figure as DDSTD). 

This variation reveals that stripping is more likely to occur in pavements with higher 

surface deflection and higher variation in the deflection measurements obtained from 

RWD. This variation may also be concluded from the sign (+ve or -ve) of the regression 

coefficients presented in Equation (19). It can also be observed from Figure 63 that for 

the treated base segments, the probability of stripping was lower compared to the 

segments with untreated base. Furthermore, the negative sign of the regression coefficient 

for RTI suggest that with higher rutting index representing better rutting performance, the 

probability of stripping was lower. Hence, the model’s characteristics agreed with 

engineering principles. 
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Figure 63. Predicted probability variation with the independent variables 

 

Further evaluation was conducted using the classification table obtained from the model’s 

prediction at the different probability levels. This table can be effective in identifying the 

probability level that needs to be used to differentiate between stripping and non-stripped 

sections. As shown in Table 14, the sensitivity of the logistic model indicates the 

percentage of time the predicted probabilities are correct for a positive outcome. If a 

probability level of 0.35 were used to separate the stripped and non-stripped sections, 

about 82.6% of the time, the model would predict the stripped sections correctly whereas 

the specificity of 55.0% of the model means that about 55% of the time, the model would 

identify the non-stripped sections correctly. A false-positive rate of 44.9% at a probability 

level 0.35 means that about 44.9% of the time, the model identified AC stripping in 

pavement with a probability of 0.35 or greater even though they were not stripped; 

whereas a false-negative rate of 21% indicates that the probability for stripped sections 

were predicted lower than 0.35 about 21% of the time. Although the overall correctly 

predicted probabilities were 72.5% for all the sections at a probability level of 0.5, the 

probability level 0.35 would yield optimal results in terms of sensitivity and specificity; a 

higher percentage of sensitivity for the model is desirable so that AC stripping can be 

captured for the maximum number of sections.  
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Table 14. Classification based on predicted probability levels 

The model was applied to an independent dataset; about 30% of the total data points were 

used for validation purpose. Although the prediction accuracy for the validation dataset 

decreased as compared to the development phase, at a sensitivity of 76.1% and a false-

negative rate of 23.8% at probability level 0.35, the model performance in predicting the 

stripping within a pavement is reasonable given that logistic model only considers linear 

parametric effects of the predictor variables. A generalized additive model was developed 

in order to investigate the non-linear parametric effects and is presented in the following 

section. 

Generalized Additive Models 

As shown in Table 15, the smoothing function was assigned on the predictor such that 

they are statistically significant except ACth (asphalt concrete layer thickness). As shown 

in Figure 64(d), ACth is linearly related in estimating stripping probability; therefore, no 

smoothing function was used and the degree of freedom (DF) was 1.0 with statistical 

significance depicting a P-value less than 0.05. The splines of the center deflection (D0) 

Classification: Model Development Phase 

Probability 

Levels 

Percentages 

Correct Sensitivity Specificity False POS False NEG 

0.1 54.1 97.8 31.5 57.5 3.4 

0.2 62.2 91.3 47.2 52.8 8.7 

0.3 68.9 78.3 64.0 47.1 14.9 

0.35 64.4 82.6 55.0 44.9 21.0 

0.4 68.9 60.9 73.0 46.2 21.7 

0.5 72.5 50.0 83.1 39.5 23.7 

0.6 68.9 30.4 88.8 41.7 28.8 

0.7 68.1 17.4 94.4 38.5 31.1 

0.8 65.9 2.2 98.9 50.0 33.8 

0.9 65.9 0.0 100.0 - 34.1 

1.0 65.9 0.0 100.0 - 34.1 

Classification: Model Validation Phase 

0.3 56.1 76.1 44.4 55.5 0.23 

0.35 63.1 76.1 55.5 44.4 23.8 

0.4 66.6 57.1 72.2 27.7 42.8 

0.5 70.1 47.6 83.3 16.6 52.3 
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and Rutting index (RTI) showed significant non-parametric effect in predicting the 

probability of stripping with a DF of 3.0 for both the variables. The non-parametric effect 

of D18 (deflection at 18 in. distance from D0) and D0STD was observed to be insignificant 

with the loess smoother; yet, they were integrated in the model as they improved the 

model’s prediction accuracy in the validation phase and were found significant in the 

logistic model. The negative slope between D0 and D18 referred as Slope, i.e., (D18-

D0)/18, and Log of ADT (Annual Daily Traffic) were also observed to be statistically 

significant. The proposed GAM model had the following form: 

log (
P

1−P
) = β0 + s(D0) + lo(D18) + lo(Slope) + ACth + lo(D0STD) + s(RTI) +

lo(logADT)          (39) 

Where, P = the probability of stripping. 

Table 15. Evaluation of the generalized additive model (GAM) 

Predictor 

variables 

Type of smoothing 

function used  
DF 

Significance 

F-value for 

Parametric 

eff. 

Chi-Square (χ2) for 

Non-parametric eff. 
Pr 

D0 
Smoothing 

splines 
3.0 - 20.9699 0.0001069 

D18 Loess smoother 2.9 - 4.1192 0.2292714 

Slope Loess smoother 2.8 - 11.4792 0.0074054 

ACth NA 1.0 8.9272 - 0.0034760 

D0STD Loess smoother 2.8 - 3.6696 0.2721296 

RTI 
Smoothing 

splines 
3.0 - 8.5108 0.0365380 

lo(ADT) Loess smoother 1.0 15.1501 - 0.0001719 

The GAM model is more valuable when presented graphically with parametric or non-

parametric effect of each predictor variable. The non-linear effect of each variable is 

evident in Figure 64 except ACth. When the GAM model was applied to the validation 

dataset, the misclassification rate was found to be 0.25 meaning that, the model correctly 

predicted 75% of the time whether the pavement was diagnosed with stripping or not. 
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Figure 64. Component plot of each predictor variable (as defined in Table 15) 
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ANN-Based Pattern Recognition System 

The ANN network performance was evaluated based on how well it performed in the 

validation phase. The proposed neural network could successfully classify stripped and 

non-stripped pavements with a 78% accuracy in the validation phase. The area under the 

curve was obtained to be 0.77 from the ROC (Receiver Operating Characteristics) plot 

shown in Figure 65; this is a graphical representation of how well the network can 

differentiate between the two classes, which are obtained from false-positive rate in the x-

axis and true-positive rate in the y-axis. The neural network classified the validation 

dataset with a sensitivity of 70%, a specificity of 83.3%, a false-positive rate of 16.6%, 

and a false-negative rate of 30%. 

Figure 65. Receiver operating characteristics (ROC) plot 

 

In summary, the neural network performed well with a greater accuracy than the logistic 

model or generalized additive model (GAM) presented in the study. Yet, the logistic 

model has better sensitivity than the neural network, which is desired as the goal was set 

to identify stripped sections. Furthermore, the GAM model had a special feature over the 

ANN-based model that the non-linear relationship between the predictor variables and 

dependent variable could be interpreted from the graphical representations. Therefore, the 

ANN tool would be useful in cross-validating the results from the logistic and GAM 

models. 
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Classification Tree. The proposed classification tree had 15 terminal nodes with 6 

predictor variables as shown in Figure 66. At a particular node of a tree, the left-hand 

branch belongs to the criterion mentioned (i.e., ACth <4.65 in.), and the right-hand 

branch belongs to its contrasting criterion (i.e., ACth ≥ 4.65 in.). The decision “Yes” 

indicates the pavement is stripping-affected and “No” indicates otherwise. The units of 

the variables used are ACth in inches, Slope refers to the negative slope between D0 

(mils) and D18 (mils), and a value of 0 for TreatedBase means the base is not treated 

(TreatedBase=1, if treated). The illustrated classification tree achieved a classification 

error rate of 0.13 indicating that 87% of the cases could be successfully explained 

through this tree to identify if a pavement was diagnosed with AC stripping or not. It is 

evident in Figure 66 that ACth, Slope, and D0 are the most important predictors for the 

presence of stripping as they reside on top of the tree as well as frequently appear in the 

process of classification. This tree would conveniently assist agencies in identifying the 

stripped sections using RWD measurements. 

Figure 66. Classification tree to identify stripped pavement sections 
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Moisture Damage Detection Using GPR 

Figure 67 presents the results of stripping detection using the AIP indicator for 156 non-

stripped and 46 stripped pavement sections. The x-axis represents the section number in 

each data set. As shown in Figure 67, contrasting values of AIP were observed for 

stripped and non-stripped sections; the average AIP values for the stripped and non-

stripped sections were 1.622 and 0.358, respectively. Because of the existence of noisy 

signal, the AIP value of most non-stripped sections were non-zero but low. The AIP 

values of stripped sections varied over a large range but most of the values were larger 

than 0.9.  The 95% confidence intervals for the non-stripped sections were 0.358 ± 0.05 

and were 1.622 ± 0.29 for the stripped sections. 

Figure 67. AIP results for stripped and non-stripped sections 

 

The Interactive Interpolation module of the RADAN software was used to semi-

automatically locate and analyze features in the GPR scans by placing “picks.” RADAN 

defines a “pick” as a peak amplitude identified in a scan that corresponds to a layer. The 

top of the AC layer was identified with yellow picks while the AC-base interface was 

identified with green picks. The pick locations, depths, and reflection amplitudes for 

multiple layers were exported to an ASCII file (*.lay) at an interval of 0.01 mile. MS 
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Excel was used to further convert the extracted data to dielectric values in conjunction 

with the data collected from the roadway cores. 

Based on this analysis, a threshold AIP value of 0.9 was selected to predict stripping 

damage in a pavement section. A pavement section is predicted to be non-stripped or 

stripped if its AIP is less than or greater than or equal to 0.9, respectively. Table 16 

presents the results of the analysis for 237 pavement sections. The results indicate that 

AIP is an effective indicator for evaluating stripping damage potential in asphalt 

pavements. The predictive accuracies of stripped and non-stripped section were 82% and 

96%, respectively. 

Table 16. Prediction result accuracies based on a threshold of AIP=0.9 

 Actual 

Predictive Accuracy 
Stripped Non-stripped 

Predicted 

Stripped 45 (correct) 10 (Incorrect) 82% 

Non-stripped 7 (Incorrect) 175 (Correct) 96% 

True Accuracy 87% 95%  

  Number of sections =237 

By comparing the conditions of stripped pavement cores with different AIP values, it was 

noticed that the AIP value can also be used to assess the severity of AC stripping damage. 

Figure 68 presents selected cores with different AIP value ranges. Cores in Figure 68(a to 

c) had an AIP value larger than 2.5. As shown in Figure 68(a to c), the stripping of these 

cores were severe, as manifested by delamination and missing parts. The core in Figure 

68(b) was the most severe; the original AC layer was 13 in. thick and stripping was 

detected throughout the AC layer. The AIP value of the cores presented in Figure 68(d to 

f) ranged from 0.9 to 2.5. These cores had moderate delamination and particles loss. The 

stripping damage occurred at the bottom of the AC layer and started propagating upward. 

Cores presented in Figure 68(g to i) had AIP values smaller than 0.9. The stripping in 

these cases were minor, starting at the bottom of the AC layer but the upper part of the 

AC layer was in good condition. These results show that AIP can quantitatively evaluate 

the severity of AC stripping damage in flexible pavements. 
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Figure 68. Illustration of pavement cores with varying AIP values 

 

Effect of Moisture Damage on the Performance and Cost-Effectiveness 

of Chip Seal and Overlay 

Chip Seal Sections 

Average Deterioration Rate (ADR). Figure 69(a) shows the effects of moisture-induced 

damage on the ADR of chip seal sections for different PCI- conditions. For roads with 

PCI- less than 80, the average deterioration rate was 6.5% and 3.5% for pavement 

sections with and without stripping damage, respectively. For pavements with PCI- > 80, 

the ADR was almost the same for both stripped and non-stripped sections (see Figure 

69(a)). The reason behind these trends is that pavement sections at the early ages, PCI - > 

80, may not be affected significantly by the presence of moisture damage. In addition, 
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ADR was calculated based on performance curves that were fitted to the first four survey 

cycles (i.e., eight years). During their early years, pavements usually experience similar 

and low deterioration rates. Therefore, the similar ADR values, which were observed for 

stripped and non-stripped sections for pavement sections with PCI- > 80, are reasonable. 

An Analysis of Variance (ANOVA) test was conducted at 95% confidence level (α=0.05) 

followed by a Tukey’s Honest Significant Difference (HSD) test in order to evaluate the 

impact of moisture-induced damage on the ADR of chip seal sections. Pavement sections 

with PCI-< 80 and PCI-> 80 were divided into two subgroups as sections with stripping 

damage and sections without stripping damage in order to analyze the effect of moisture 

damage at different PCI-conditions. As shown in Figure 69, the average value of each 

performance indicator was represented by letters A, B, or C. Different assigned letters 

indicate that the two groups are statistically different. As shown in Figure 69(a), the ADR 

of chip seal sections with PCI-<80 was affected significantly by the presence of moisture-

induced damage. However, the effect of moisture-induced damage was insignificant for 

pavement sections with PCI->80.  

Figure 69(b) presents the ADR of stripped and non-stripped road sections for different 

traffic levels. When ADT was less than 1,100, stripped sections exhibited an ADR of 5% 

compared to 2% for the non-stripped sections; this difference was statistically significant. 

However, at medium traffic level, moisture-induced damage increased the deterioration 

rate by about 1.5%; however, this difference was not statistically significant. 

Extension of Pavement Service Life Service (∆PSL). Figure 69(c) presents the effects 

of moisture-induced damage on ∆PSL of the sections treated with chip seal for different 

pre-treatment conditions. For sections with PCI- less than 80, chip seal extended 

pavement service life by approximately 9.5 years when placed on pavement sections 

without moisture-induced damage. This extension was only 5 years when the chip seal 

was applied on stripped pavements at the same PCI- level. Tukey’s HSD results indicated 

that moisture damage decreased the service life of chip seal significantly, as illustrated in 

Figure 69(c). For pavements with PCI- > 80, both stripped and non-stripped sections 

exhibited similar ∆PSL (about 5 years). The results in Figure 69(c) are consistent with the 

results presented in Figure 69(a). As previously noted, sections that are in good 

conditions prior to treatment were not significantly affected by the presence of moisture 

damage in the underlying layers. In addition, previous results by the authors also found 

that chip seal had minimal impact on the condition and the deterioration rate of 

pavements when the PCI- is greater than 80. Therefore, equal ΔPSL for stripped and non-

stripped sections, when PCI- is greater than 80, is reasonable. Figure 69(d) presents the 
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effects of moisture damage on chip seals service life at two different traffic levels. At low 

traffic level (ADT<1100), moisture damage decreased chip seal service life significantly 

by 8 years, as implied from the Tukey’s HSD test results. At medium traffic level 

(1100<ADT<5300), moisture damage decreased chip seals service life by 3 years; 

however, the impact of moisture damage was not significant. 

Average Performance Increase over Treatment Life Relative to Pre-treatment 

Condition (PI). Figure 69(e) presents the effects of stripping damage on the PI for 

different pre-treatment conditions. For the sections with PCI- less than 80, PI was 16.5% 

and 1.4% for non-stripped and stripped sections, respectively. These results indicate that 

the use of chip seal resulted in 16.5% improvement in pavement conditions over its 

service life for non-stripped sections. On the other hand, the average condition of stripped 

sections was enhanced by only 1.4%. For the sections with PCI->80, PI was 7.5% when 

chip seal was applied on pavement sections without moisture damage. On the other hand, 

stripped sections exhibited an overall condition enhancement of 6.2% after applying chip 

seal. Similarly, the application of chip seal on sections without moisture damage 

improved the average pavement condition by 18.0% and 6.4% for low and medium 

traffic, respectively; see Figure 69(f). However, the PI was 3.5% for sections at both low 

and medium traffic levels when chip seal was applied on pavement sections with 

moisture damage.  

Cost-Effectiveness (CE). As shown in Figure 69(g), non-stripped and stripped 

pavements achieved a CE of 1.3% and 0.5%, respectively at a PCI- <80. However, 

sections with and without moisture damage exhibited similar cost-effectiveness of 0.6% 

when PCI- was greater than 80. This trend agrees with the results presented in Figure 69 

(a and c). As shown in Figure 69(g), moisture damage decreased the cost effectiveness of 

chip seal significantly for sections with PCI-<80. On the other hand, the effect of 

moisture damage for pavement sections with PCI- greater than 80 was negligible. 

Moisture damage reduced the CE of chip seal at both traffic levels; see Figure 69(h). At 

low traffic level, the presence of AC stripping decreased significantly the CE from 1.2% 

to 0.3%. For sections with medium traffic level, moisture damage decreased CE by 0.1%, 

which was not statistically significant.  
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Figure 69. Impact of moisture damage on the performance and cost effectiveness of chip seals 
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AC Overlay Sections 

AC Overlay Average Deterioration Rate (ADR). Table 17 summarizes the effects of 

moisture damage on the ADR of AC overlays. The average deterioration rates were 

observed to be 4.0% and 9.4% for pavements without and with moisture damage, 

respectively. In Figure 70(a), ADR was observed to be lower for sections without 

moisture damage than that of the sections with moisture damage at all traffic levels. In 

Table 17, the P-value of 0.00094 obtained from two-tailed t-test (at a confidence level of 

95%) indicated a significant effect of moisture damage on the ADR of AC overlays. This 

significance was also illustrated by the results of the Tukey’s HSD test as shown in 

Figure 70(a).  

Table 17. Impact of moisture damage on overlay average deterioration rate 

Statistical factor 
Average Deterioration Rate (%) 

without Moisture Damage with Moisture Damage 

Mean ADR 4.0 9.4 

P-value 0.00094 

Extension of Pavement Service Life Service (∆PSL). The effect of stripping damage on 

the service life of the AC overlay is presented in Table 18 and Figure 70(b). As shown in 

Table 18, AC overlays extended pavement service life by 13.3 and 8.7 years, on average, 

for pavements without and with moisture-induced damage, respectively. Furthermore, the 

average ΔPSL was statistically greater for non-stripped sections than for stripped sections 

(except for the >16,000 ADT category). 

Figure 70(b) shows the effects of moisture-induced damage on the PSL of AC overlay. As 

shown in the figure, the non-stripped sections outperformed stripped sections with an 

average increase in pavement service life of 13 years at all traffic levels. Likewise, in all 

sections, ΔPSL increased with the increase of ADT when an AC overlay was applied on 

stripped pavements. Based on these observations, it is assumed that the reduction in 

ΔPSL of AC overlays can be attributed to moisture-induced damage.  

In Table 18, a P-value of 0.037 was obtained from a two-tailed t-test, at a confidence 

level of 95%, indicating a significant impact of moisture damage on AC overlay 

pavement service life. The different assigned letters (A and B) for stripped and non-

stripped sections in Figure 70(b) also show the significant effect of moisture damage. 

These results imply that moisture damage had a significant impact on the service life of 
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AC overlays. Moreover, the thicker the AC overlay the less impact of moisture damage 

on the AC overlay service life would be experienced. 

Table 18. Impact of moisture damage on pavement service life 

Statistical factor 
Pavement Service Life (years) 

Without Moisture Damage With Moisture Damage 

Mean ∆PSL 13.3 8.7 

P-value 0.037 

Average Performance Increase for AC Overlays. Figure 70(c) and Table 19 show the 

impact of moisture-induced damage on the PI of the sections treated with AC overlays at 

different traffic levels. For pavement sections without moisture damage, the range of PI 

was between 35% (at traffic volume between 4,000 and 8,000 vpd) and 12.5% (at traffic 

volume between 8,000 and 12,000 vpd). For stripped sections, the PI ranged from -1.2% 

to 7.5%. The negative sign means that at a traffic level of ADT < 4,000, the average 

pavement condition after placement of AC overlay was less than the PCI- by 1.2%. It is 

worth noting that all non-stripped sections performed better, in terms of PI, than the 

stripped sections. In addition, the PI values were statistically greater for non-stripped 

sections than for stripped sections at all traffic levels. The stripped and non-stripped 

section also exhibited significantly different PI values as can be inferred from the P-value 

of 0.0022 shown in Table 19 and the Tukey’s HSD results presented in Figure 70(c). 

Table 19. Impact of moisture damage on the PI of AC overlay 

Statistical factor 
PI (%) 

Without Moisture Damage With Moisture Damage 

Mean CE 28.0 5.0 

P-value 0.0022 

Cost-Effectiveness (CE). The effect of moisture damage on the cost-effectiveness of AC 

overlays is presented in Table 20 and Figure 70(d). The average values of CE were 1.1% 

and 0.6% for non-stripped and stripped pavements, respectively, when treated with AC 

overlay. In Figure 70(d), the cost-effectiveness of AC overlays was significantly lower for 

AC overlays constructed on sections with existing moisture damage than for AC overlays 

placed on non-stripped sections (except for traffic volume greater than 16,000 vpd). A P-

value of 0.004 obtained from the two-tailed t-test results (at a confidence level of 95%) 

indicated a significant impact of moisture damage on the CE of AC overlays. The 
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significance is also supported by the different assigned letters (A and B) obtained from 

the Tukey’s HSD test for stripped and non-stripped sections as shown in Figure 70(d).  

Table 20. Impact of moisture damage on overlay cost-effectiveness 

Statistical factor 
Cost-effectiveness (%) 

Without Moisture Damage With Moisture Damage 

Mean CE 1.10 0.60 

P-value 0.004 
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Figure 70. Impact of moisture damage on the performance and cost effectiveness of AC overlays 
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Prediction of Pavement Roughness Conditions Using Surface Images 

CNN Model 

A dataset consisting of 850 3D pavement images of size of 1040 x 1609 pixels was used 

to train and validate the developed CNN model. The images were labeled into four 

different categories based on the surface roughness conditions, as shown in Table 10. The 

appropriate selection of the training dataset allows the model to explain the variation in 

the input data and subsequently develop the optimum model with minimum errors. In 

addition, a validation dataset is required to assess the performance of the developed 

model using an independent dataset, which is not included in the training stage. Several 

trials were conducted with different percentages for the training, testing, and validation 

datasets in order to obtain the least variance and to avoid overtraining. Eventually, this 

study used 70%, 20%, and 10% of the data for training, testing, and validation, 

respectively. The aforementioned percentages were selected since they yielded the best 

statistics over all stages compared to the other percentages. It is worth noting that the 

images were selected randomly in all stages.  

The accuracy of the CNN model was expressed in the form of confusion matrices, which 

present the actual and predicted classes in terms of number and percentage. Figure 71 

presents the confusion matrices for the training and validation stages. The CNN classified 

the images into their pre-labeled categories with an overall accuracy of 93.4% in the 

training stage and 89.6% in the validation stage. For the “Fair” and “Good” groups, the 

accuracy was 92.0% and 100% in the training stage, respectively. However, the accuracy 

decreased to 82.8% and 88.2% in the validation stage, respectively. The developed model 

successfully classified the images in the “Poor” category with accuracies of 86.8% and 

92.3% in the training and validation stages, respectively. Furthermore, the model 

successfully classified the pavement images in the “Very Good” category with 97.3% 

accuracy in the training stage and with an accuracy of 100% in the validation stage.  
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Figure 71. Training and validation matrices of the CNN model 

 

ANN Model 

There were 1,142 observations extracted from the DOTD PMS inventory and used to 

train, test, and validate the ANN model. These data were divided into 70% for training, 

15% for testing, and 15% for validation. The training stage was stopped when the 

validation error leveled to avoid overfitting. Figure 72 demonstrates the confusion 

matrices for the training and validation phases for the ANN-based pattern recognition 

model. Overall, the ANN-based model exhibited low accuracies in the training, testing, 

and validation stages; see Figure 72. This performance was expected as the roughness 

conditions depend not only on the pavement surface distresses but also on pavement 

irregularities [91]. In all stages, the accuracy of the ANN model was about 58%. This 

accuracy was significantly lower compared to the accuracy of the CNN model. 
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Figure 72. Confusion matrices of the ANN model 

 

MNL Model 

The SPSS software package was used to formulate the MNL model using 1,142 

observations, which were divided into four groups based on the average IRI value as 

presented in Table 21. In addition, the study assessed the statistical significance of each 

independent variable (RTI, RCI, ALCR, and PTCH) on the dependent variable (different 

IRI categories). Finally, the potential of the MLN models to classify pavement sections 

into different roughness categories was evaluated.  

MNL Model Development. In the current study, MNL models were developed for the 

evaluation of pavement roughness conditions. Using SPSS, the probability of each 

section to fall in a specific roughness category (see Table 21) relative to falling in the 

poor category was calculated according to Equations (40), (41), and (42) as follows: 

ln (
𝑃𝑉𝐺

𝑃𝑝
) = -28.126- 0.015 * RTI + 0.177 *RCI + 0.124 * PTCH + 0.028 ALCR (40) 

ln (
𝑃𝐺

𝑃𝑝
) = -3.427- 0.015 * RTI + 0.028 *RCI + 0.048 * PTCH -0.003 ALCR (41) 

ln (
𝑃𝐹

𝑃𝑝
) = 2.180- 0.025 * RTI + 0.008 *RCI + 0.013 * PTCH -0.012 ALCR (42) 



—  137  — 

 

Where, PVG = the probability of a section to be in the “Very Good” roughness condition, 

PG = the probability of a section to be in the “Good” roughness condition, PF = the 

probability of a section to be in the “Fair” roughness condition, and PP = the probability 

of a section to be in the “Poor” roughness condition.  

Table 21. Wald test results 

Parameter Estimates^ 

Dependent 

Variables 
Independent Variables 𝜷 Std. Error Wald Df p-value 

Very Good 

RTI -0.015 0.012 1.438 1 0.230 

RCI 0.177 0.022 66.424 1 0.000 

PTCH 0.124 0.038 10.840 1 0.001 

ALCR 0.028 0.016 3.165 1 0.075 

Good 

RTI -.015 0.011 1.757 1 0.185 

RCI 0.028 0.016 3.135 1 0.077 

PTCH 0.048 0.009 26.199 1 0.000 

ALCR -0.003 0.012 0.063 1 0.802 

Fair 

RTI -0.025 0.012 4.376 1 0.036 

RCI 0.008 0.017 0.211 1 0.646 

PTCH 0.013 0.008 2.937 1 0.087 

ALCR -0.012 0.013 0.872 1 0.350 

^ The reference category is the Poor Category 

Statistical Analysis. In logistic regression, the Wald Chi-Square test was used to evaluate 

the statistical significance of the independent variables on the dependent variable by 

examining the following hypothesis: 

• Ho (null hypothesis): the set of the coefficients (𝛽) are equal to zero; 

• H1 (alternative hypothesis): the set coefficients are not equal to zero. 

An independent variable can be neglected if the null hypothesis is accepted, i.e., if the P-

value is greater than 0.05. In other words, the removal of this independent variable from 

the model will not significantly affect the performance of the model. Table 21 presents 

the results of the Wald Chi-Square test. For the “Very Good” category, the significant 

independent variables were RCI and PTCH with P-values less than 0.05. Similarly, 

PTCH was the only significant independent variable for the “Good” category. For the 
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“Fair” category, only the RTI index was the only significant variable with a P-value of 

0.036.  

MNL Model as a Classification Tool. The probability of each observation to fall in a 

specific roughness category was calculated using Equations (40), (41), and (42). A given 

observation was classified into the “Very Good” if PVG > PG, PVG > PF, and PVG > PP. Table 

22 illustrates the confusion matrix for the MNL model. As shown in the table, the model 

achieved an overall accuracy of only 58%.  

Table 22. Confusion matrix of the MNL model 

Observations 

Predicted 

Very Good Good Fair Poor Overall Accuracy (%) 

Very Good 332 87 0 0 79.2 

Good 179 314 6 1 62.8 

Fair 16 123 13 4 8.3 

Poor 9 45 12 1 1.5 

Overall Percentage (%) 46.9 49.8 2.7 0.5 57.8 

IRI Value Prediction 

Model Development. The aforementioned results, which showed the superior prediction 

capability of the CNN model, encouraged the authors to use CNN to predict the IRI 

values at the project level. For this purpose, the images were divided into 34 road 

sections with an average IRI value ranging from 50 to 342 in./ mile. The images that were 

extracted from the DOTD PMS were used in the development and validation of the CNN 

model.  

For each section, 20 out of 25 images were used in the model development phase. The 

remaining five images were used to evaluate the performance of the developed model 

using independent datasets; these images were selected randomly and excluded images 

that were used in the model development phase. In this study, 680 and 170 images were 

used to develop validate the CNN model, respectively. During the model development 

phase, the images were divided into 70%, 20%, and 10% for the training, validation, and 

testing of the CNN model, respectively. 

The accuracy of the developed CNN models to predict the IRI value was expressed in 

term of confusion matrices; however, these matrices cannot be presented in the 
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manuscript because they were 34 x 34 confusion matrices. For the training stage, the 

CNN model predicted the IRI value with an accuracy of 89%. In addition, the accuracy of 

the CNN in the verification stage was 85%. These results indicated that the CNN model 

could accurately predict the roughness category of the pavement sections as well as 

estimate their IRI values. 

Model Performance Evaluation. The performance of the developed model was assessed 

using 170 digital images extracted from the DOTD PMS. These images represent 34 (five 

images from each section) road sections with different IRI values ranging from 50 to 342 

in./mile. For each section, the developed model was used to predict the IRI value of each 

image. Then, the average IRI value of the five images was calculated and was compared 

with the corresponding measured IRI value.  

Figure 73(a) demonstrates the correlation between the measured and predicted IRI values. 

Overall, the CNN predicted accurately the IRI value with R2 of 0.985 and a Root Mean 

Square Error (RMSE) of 5.9% when the measured and predicted IRI values were 

compared. With respect to precision, the figure illustrates a slope and intercept of 0.959 

and 6.046 in./mile of the unconstrained regression line between the measured and 

predicted values indicating no bias in the model predictions. Furthermore, Figure 73(b) 

indicates that the mean error is -1.325 indicating precise prediction of the IRI values.  

Figure 73 shows relatively higher scatter and error values when the CNN model was used 

to predict the IRI values of the pavement section with IRI value greater than 180. The 

reason for this behavior may be the high variation in the roughness characteristics of the 

pavement surface along the road sections at high IRI values, which may result in a 

significant difference in the performance of sequential segments within the same section. 

This will result in a wide range of IRI values along these sections resulting in a higher 

scatter and error values.    
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Figure 73. (a) Correlation between the measured and predicted IRI value (b) The relation between 

the residuals and the predicted IRI value from the CNN model 

 

The performance of the developed model was evaluated statistically by examining the 

following hypotheses: 
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Hypothesis 1: the ability of the developed model to produce the same population of the 

measured IRI values was investigated using a two-tailed Z-test at a significant level of 

95%, which examines the following hypotheses: 

• Ho: the average of the predicted IRI values = the average of the measured IRI value 

• H1: the average of the predicted IRI values ≠ the average of the measured IRI value 

The rejection of the null hypothesis (P-value <0 .05) would indicate that the model did 

not produce the same population as the measured IRI values. 

Hypothesis 2: determine whether the slope of the unconstrained regression line between 

the predicted and measured IRI values equals the unity by examining the following 

hypotheses:  

• Ho: the slope = 1 

• H1: the slope ≠ 1 

The rejection of the null hypothesis (P-value <0 .05) would indicate that the slope of the 

linear regression model between the measured and predicted values is significantly 

different from unity. This also would indicate the inability of the model to predict precise 

IRI values [92].  

Hypothesis 3: examine whether the intercept of the unconstrained regression line between 

the predicted and measured IRI values equals zero by testing the following hypotheses:  

• Ho: the intercept = 0 

• H1: the intercept ≠ 0 

The rejection of the null hypothesis (P-value < 0.05) would imply that the intercept of the 

regression model between the measured and predicted IRI values is significantly different 

from zero. This would also indicate that the model produced biased predictions especially 

for low IRI values [93]. 

Table 23 depicts the results of the tested hypotheses. The table shows that the CNN 

model was able to produce the same population of the measured IRI with a P-value of 

0.949. In addition, a P-value of 0.059 indicates that the slope of the regression linear 

model between the measured and predicted IRI value is not significantly different from 

unity indicating insignificant bias in the predictions. Similarly, the intercept of the 

unconstrained linear regression model was not significantly different from zero (P-value 
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= 0.296), which reflects the model ability to produce accurate results especially at low 

IRI values.      

Table 23. Statistical evaluation of the developed model 

Hypothesis Coefficients Standard Error t-state P-value 

1 Ho: Predicted  = Measured - - - 0.949 

2 Ho: Slope  = 1 0.959 0.021 45.940 0.059 

3 Ho: Intercept = 0 6.046 4.178 1.447 0.296 
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Conclusions 

Pavement Cracks Classification Using Machine Learning 

The study identified and classified top-down, bottom-up, and cement treated reflective 

cracking in in-service flexible pavements without core extraction or other destructive 

tools. An image-based CNN model was developed that analyze the characteristics of 

pavement surface images. Furthermore, a one-step decision-making tool was developed 

using ANN to cross validate the crack classification obtained from the imaged-based 

CNN. To achieve this objective, 350 pavement images were pre-processed and were used 

as inputs for training, testing, and validation of the CNN model. It is worth noting that 

coring was only conducted for validation of top-down cracking. Additional coring is 

recommended to validate the propagation mechanisms of alligator fatigue cracking and 

cement-treated reflective cracking. 

The input database for the CNN model contained both high quality pavement images 

with distinct cracks and images with high complexity such as cracks on shadowed 

surface, highly textured pavement surface, blurry cracks, and surfaces with poor 

background illumination and high intensity variation. For unprocessed pavement images, 

the model achieved an accuracy of 61.7% and 73.4% on testing and validation phases, 

respectively. The lower accuracy can be attributed to the presence of excessive pavement 

noise, non-uniform background illumination, pavement marking, spots and stains 

including cracking pattern. For the data set consisting of 2D images only, the developed 

network achieved an overall accuracy of 88.9% and 86.7% in the testing and validation 

phases, respectively. The overall accuracy for 2D and 3D images was 93.8% and 91% in 

the testing and validation phases, respectively. An ANN-based pattern recognition system 

was trained and validated based on pavement age, AC thickness, AADT, base type, crack 

orientation, and crack location to further validate the image-based classification. The 

developed model showed an acceptable decision prediction accuracy of 92%. Based on 

the overall accuracy, the approach of using pre-trained convolutional neural network 

model was observed to be successful for automated pavement crack classification. 

Based on the ANN classification model, a windows-based application was developed that 

allows the user to perform crack classification without installing MATLAB in their 

computer. An application that presents both CNN and ANN classification results was 

also developed by incorporating CNN classification algorithm into an UI component; 

however, this application requires the user to install a licensed version of MATLAB on 
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their computer. The use of the developed applications was successfully demonstrated for 

in-service pavement sections. While this study is one of the first attempts to classify 

pavement cracks with respect to their initiation and propagation, further improvement and 

training of the models is recommended to increase the crack classification accuracy. 

Asphalt Concrete Stripping Detection Using Deflection Measurements 

A methodology was developed to detect AC stripping in the underlying pavement layers 

based on TSDD measurements and variables related to pavement characteristics readily 

available to state agencies. As many agencies are considering the implementation of 

continuous deflection measuring devices for pavement structural evaluation, the analyses 

and methods presented in the study may be used for stripping damage detection and as an 

additional benefit of TSDD testing. From comprehensive modeling and analyses on the 

use of RWD measurements in stripping detection, the findings and recommendations of 

this task were as follows: 

• The logistic model developed in the study was observed to be reasonable with a 

sensitivity of 76.1% in predicting the probability of stripping. The false-positive rate 

was higher compared to false-negative rate implying that the model could be used as 

a viable tool for initial screening at the network-level.  

• The generalized additive model (GAM) successfully described the non-linear 

relationship between the probability of stripping and predictor variables considered in 

terms of RWD measurements and other pavement information. These non-linear 

relationships were validated with an accuracy of 75% in identifying AC stripping in 

pavement. However, further investigation in interpreting the non-linear relationship is 

recommended, which would be useful for improved accuracy. 

• Compared to logistic and GAM models, the ANN pattern recognition system showed 

better performance with a stripping prediction accuracy of 78% while validating on a 

new pavement dataset. This was expected as ANN can adopt complex relationships 

between the predictor and dependent variables, while logistic model considers only 

linearity among the predictor and dependent variables and GAM captures the non-

linearity that can be further subjected to sophisticated modeling. The ANN model can 

be used to cross-validate the results obtained from the logistic or GAM models. 

• A decision tree was developed to classify stripping and non-stripped sections in the 

dataset. About 87% of the data could be successfully interpreted using this 
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classification tree. This is a simple and convenient way for state agencies to identify 

possible stripped sections for further evaluation.  

Moisture Damage Detection Using GPR 

The study developed a novel GPR-based indicator, the Accumulating In-layer Peaks 

(AIP), to detect stripping damage in asphalt pavement. A Finite-Difference Time-Domain 

(FDTD) based simulation program, gprMax, was used to study the propagation of GPR 

signal in stripped pavement sections. Field test data including GPR scans and visual 

inspection of cores were used to study the relationship between GPR traces and AC 

stripping damage. An indicator that may be used to detect stripping was developed and 

validated using cores extracted from 237 pavement sections. Based on the results of this 

task, the following conclusions may be drawn: 

• The presence of void in middle of the AC layer resulted in positive peaks in the 

reflected waves as indicated by the simulation of the GPR signals. When the void was 

at bottom of the AC layer, the reflected waves from the interface between the void 

and AC layer, and void and base overlapped resulting in a higher strength of positive 

peaks compared to the non-stripped pavement. 

• Detected intermediate wave peaks between the surface and the interface between AC 

and base layers on GPR traces were associated with stripping damage in the AC layer. 

• The AIP predicted accuracies for stripped and non-stripped sections were 82% and 

96%, respectively, indicating its effectiveness to detect stripping damage in flexible 

pavements. The value of AIP can also be used to quantitatively evaluate the severity 

of stripping damage in the asphalt layer. 

Effect of Moisture Damage on the Performance and Cost-Effectiveness 

of Chip Seal and Overlay 

The performance and cost-effectiveness of in-service pavement sections were evaluated 

to assess the effects of AC stripping on the performance of chip seal and AC overlay in 

Louisiana. Pavement sections were categorized and analyzed according to their pre-

treatment conditions, traffic volume, and moisture damage in the underlying pavement. 

Based on the results of the analysis, the following conclusions were drawn: 
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• Pavement service life, the average performance increase, and cost-effectiveness 

decreased significantly when chip seal was applied on moisture-damaged pavements 

with a pre-treatment PCI of less than 80. 

• The effect of AC stripping damage on the performance of chip seal was observed to 

be insignificant on the performance indicators including pavement service life, 

average deterioration rate, average condition increase, and cost-effectiveness for 

pavement sections with a pre-treatment PCI greater than 80. 

• Similar results were observed for AC overlays. AC overlay extended pavement 

service life by 13.3 years when placed on non-stripped pavements but only performed 

adequately for 8.7 years when moisture damage was present in the underlying AC 

layers. 

• Stripping damage decreased the cost-effectiveness of AC overlays from 1.1% to 

0.6%. Furthermore, for pavement sections without moisture damage, the range of PI 

was between 35 and 12.5% but it was -1.2% to 7.5% for sections with moisture 

damage.  

Prediction of Pavement Roughness Conditions Using Surface Images 

Roughness prediction models developed during the last two decades have many 

limitations. First, most of these models require extensive data collection such as climatic 

and traffic data, pavement distresses, and pavement structural capacity. The collection of 

these data is costly, time-consuming, and may not be available to the user. Second, these 

models have geographical limitations; therefore, they cannot be used at different 

locations without recalibration. Finally, models that were developed based only on 

pavement surface distresses exhibited low accuracy. This low accuracy was the result of 

ignoring other irregularities that may affect pavement roughness.  

To address these limitations, the present study developed a CNN model using a pre-

trained network to classify pavement images into four different categories of pavement 

roughness conditions (Very Good, Good, Fair, and Poor). The CNN classification tool 

was trained, tested, and validated using 850 3D pavement images, which were collected 

from the DOTD PMS inventory. The CNN model classified the pavement images into the 

pre-labeled categories with an overall accuracy of 93.4% and 89.6% in the training and 

validation stages, respectively, indicating its effectiveness in predicting pavement 

roughness conditions.  
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An image-based CNN model was also developed using 680 3D images to predict the IRI 

value of the pavement section. The CNN predicted the IRI value with an accuracy of 89% 

and 85% in the training and validation stages, respectively. The developed CNN model 

was verified using 170 digital images, which represent 34 test sections with different IRI 

values ranging from 50 in./mile to 342 in./mile. The developed model accurately 

predicted the IRI values, which correlated with the measured IRI values at an R2 of 0.985 

and a RMSE of 5.9%.  

The study also investigated the potential of ANN and MNL models to predict pavement 

roughness conditions. The ANN and MNL models were developed based on 1,142 test 

observations, which included average IRI of the pavement sections and four pavement 

distress indices (RTI, RCI, ALCR, and PTCH). The developed models achieved an 

accuracy of about 58% indicating their low accuracy as compared to the CNN models.  

Based on the results of the study, the developed CNN models are recommended for 

further validation with independent data sets obtained from different climatic regions. 

Upon validation, the developed CNN models provide numerous implementation 

opportunities into PMS activities. The developed model may also be incorporated to 

predict pavement surface roughness using camera-captured pavement images during the 

construction and pavement evaluation phases. 
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Recommendations 

While this study introduced numerical methods and approaches to detect and predict 

moisture damage in pavements, further validation and fine-tuning of the models are 

recommended. In addition, the following recommendations are provided: 

• The training, testing, and validation data set for the developed CNN model consisted 

of pavement images with known crack types. Further testing on the accuracy of the 

developed model is recommended by using pavement images with different crack 

types and core extraction. 

• Coring was only conducted for validation of top-down cracking. Additional coring is 

recommended to validate the propagation mechanisms of alligator fatigue cracking 

and cement-treated reflective cracking. 

• The developed tool can only be used for classification of a single crack pattern in a 

given image during the early stages of propagation.  Therefore, future research studies 

should extend the developed tool to allow for classification of multiple crack patterns 

in a single image. 

• The developed tool should be extended to a more specific tool that would test every 

pavement image for a tenth of a mile and label the classified cracks as 1-top-down, 2-

bottom-up, or 3-cement treated reflective cracking. 

• The pavement network in Louisiana is surveyed every two years. However, due to the 

inconsistencies in the pavement images before and after the year 2012, only the 

images after 2012 were used. This limited the number of images for each crack type 

in the developed model. Further improvement of the model is recommended as more 

data become available. 

• The automated image processing step involved crack enhancement by using few 

mathematical operations. It is recommended to expand the developed methodology in 

order to increase crack classification accuracy in flexible pavements. This can be 

achieved by using advanced image processing techniques or a deep learning CNN 

that can automatically perform crack segmentation.  

• The analyses and statistics presented in the study suggest that TSDD measurements 

can be useful for stripping detection, which comes as an added benefit of TSDD 

testing that is primarily used for pavement structural evaluation. By fine-tuning the 

models, the developed methodology could be applied to other TSDD devices such as 
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TSD. An algorithm and computer tool should also be developed to implement the 

results of these models and to provide a final prediction tool for AC stripping 

detection based on TSDD measurements. 

• The AIP indicator is a promising parameter to detect AC stripping damage in asphalt 

pavements based on GPR test results. Further evaluation and validation of the AIP 

indicator is recommended prior to its implementation in Pavement Management 

System (PMS) activities. 

• The results indicate that pavement-underlying conditions including AC stripping 

damage should be taken into consideration in PMS decision and treatment selection 

process. Furthermore, moisture damage should be effectively corrected before the 

application of maintenance or rehabilitation strategies for more durable pavements 

and optimum use of available funds. 

• Based on the results of the study, the developed CNN models are recommended for 

further validation with independent data sets obtained from different climatic regions. 

Upon validation, the developed CNN models provide numerous implementation 

opportunities into PMS activities. The developed model may also be incorporated to 

predict pavement surface roughness using camera-captured pavement images during 

the construction and pavement evaluation phases. 
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Acronyms, Abbreviations, and Symbols 

Term Description 

AC Asphalt Concrete  

ADR Average Deterioration Rate 

AADT Annual Average Daily Traffic 

ADT Average Daily Traffic 

AIP Accumulating In-layer Peaks 

ANN Artificial Neural Network 

ALCR Alligator Cracking Index 

ARAN Automatic Road Analyzer 

CE Cost Effectiveness 

CNN Convolutional Neural Network 

COV Coefficient of Variation 

CT Cement-Treated 

DOTD Louisiana Department of Transportation and Development 

FHWA Federal Highway Administration 

ft. foot (feet) 

FWD Falling Weight Deflectometer 

GAM Generalized Additive Model 

GPR Ground Penetrating Radar 

HMA Hot Mix Asphalt 

in. in.(es) 

IRI International Roughness Index 

Ksi Kilo pounds per square in. 

lbs. Pound(s) 

LRN Local Response Normalization 

LTRC Louisiana Transportation Research Center 

MNL Multinomial Logistic 
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Term Description 

NDE Non-Destructive Evaluation 

PCC Portland Cement Concrete 

PCI Pavement Condition Index 

PMS Pavement Management System 

psi Pounds per square in. 

PSL Pavement Service Life 

PTCH Patching Index 

RFI Roughness Index 

RTI Rutting Index 

RMSE Root Mean Square Error 

RWD Rolling Wheel Deflectometer 

SD Standard Deviation 

SHRP Strategic Highway Research Program 

TDC Top-Down Cracking 

TSD Traffic Speed Deflectometer  

TSDD Traffic Speed Deflection Devices 
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