# Louisiana Transportation Research Center

## **Final Report 658**

## Retrofit of Existing Statewide Louisiana Safety Walk Bridge Barrier Railing Systems

by

William F. Williams, P.E. (TX) Sana Moran, EIT Wanda L. Menges Bill L. Griffith William Schroeder Darrell L. Kuhn, P.E.

**Texas A&M Transportation Institute** 



4101 Gourrier Avenue | Baton Rouge, Louisiana 70808 (225) 767-9131 | (225) 767-9108 fax | www.ltrc.lsu.edu 1. Title and Subtitle

### Retrofit of Existing Statewide Louisiana Safety Walk Bridge Barrier Railing Systems

- Author(s)
   William F. Williams, Wanda L. Menges, Bill L. Griffith, William Schroeder, Sana Moran, and Darrell L. Kuhn
- Performing Organization Name and Address Texas A&M Transportation Institute The Texas A&M University System College Station, TX 77843
- 4. Sponsoring Agency Name and Address
  9. Louisiana Department of Transportation and Development
  P.O. Box 94245
  Baton Rouge, LA 70804-9245

- 5. Report No. FHWA/LA.17/658
- Report Date
   January 2022
- Performing Organization Code LTRC Project Number: 16-1ST SIO Number: DOTLT1000099
- Type of Report and Period Covered Technical Report June 2016 – August 2021
- 9. No. of Pages

331

10. Supplementary Notes

Conducted in Cooperation with the U.S. Department of Transportation, Federal Highway Administration

11. Distribution Statement

Unrestricted. This document is available through the National Technical Information Service, Springfield, VA 21161.

12. Key Words

Longitudinal barrier; bridge rail; guardrail; retrofit; crash testing; MASH; roadside safety

13. Abstract

Louisiana has approximately 200 miles of vintage 1960s concrete safety walk bridge rail systems currently in use on bridges throughout Louisiana. Many of these systems do not meet the current crash performance requirements of the American Association of State Highway and Transportation Officials *Manual for Assessing Safety Hardware* Second Edition (MASH) specifications for Test Level 3 (TL-3).

Researchers at the Texas A&M Transportation Institute (TTI) have conducted a full literature review of various bridge railing retrofits that have been used throughout the United States and abroad. A literature review search was performed using the Transportation Research Information Services database to document the pertinent findings of others on this proposed study. TTI researchers also obtained all available design information and details of safety walk barriers used throughout Louisiana. Two of the most common types of vintage bridge railings with safety walks were selected for further analysis and details. These included a concrete post and rail system with a sidewalk and a solid concrete parapet

system with a sidewalk. Retrofits were developed that can be used on both common rail types used in Louisiana.

Two full-scale crash tests were performed on the retrofit design anchored to the concrete post and rail system. During MASH Test 3-10 on the Louisiana Retrofit post and beam bridge rail with safety walk Option 1, the vehicle experienced occupant ridedown accelerations above the limit of 20.49 g as specified in MASH.

The bridge rail was redesigned, and MASH Tests 3-10 and 3-11 were repeated. The Louisiana Retrofit post and beam bridge rail with safety walk Option 2 met the requirements for MASH TL-3 longitudinal barriers.

## **Project Review Committee**

Each research project will have an advisory committee appointed by the LTRC Director. The Project Review Committee is responsible for assisting the LTRC Administrator or Manager in the development of acceptable research problem statements, requests for proposals, review of research proposals, oversight of approved research projects, and implementation of findings.

LTRC appreciates the dedication of the following Project Review Committee Members in guiding this research study to fruition.

### LTRC Administrator/Manager

Walid Alaywan, Ph.D., P.E. Senior Structures Research Engineer/Project Research Manager

**Members** 

Kurt Brauner, P.E. David Miller, P.E. Dan Magri, P.E. Art Aguirre, P.E. Steven Mazur, P.E.

### **Directorate Implementation Sponsor**

Christopher P. Knotts, P.E. DOTD Chief Engineer

## Retrofit of Existing Statewide Louisiana Safety Walk Bridge Barrier Railing Systems

By William F. Williams, P.E. (TX) Sana Moran, EIT Wanda L. Menges Bill L. Griffith William Schroeder Darrell L. Kuhn, P.E.

Texas A&M Transportation Institute The Texas A&M University System College Station, TX 77843

> LTRC Project No. 16-1ST SIO No. DOTLT1000099

conducted for Louisiana Department of Transportation and Development Louisiana Transportation Research Center

The contents of this report reflect the views of the author/principal investigator, who is responsible for the facts and the accuracy of the data presented herein.

The contents do not necessarily reflect the views or policies of the Louisiana Department of Transportation and Development, the Federal Highway Administration, or the Louisiana Transportation Research Center. This report does not constitute a standard, specification, or regulation.

January 2022

\_ 4 \_

### Abstract

Louisiana has approximately 200 miles of vintage 1960s concrete safety walk bridge rail systems currently in use on bridges throughout Louisiana. Many of these systems do not meet the current crash performance requirements of the American Association of State Highways and Transportation Officials *Manual for Assessing Safety Hardware* Second Edition (MASH) specifications for Test Level 3 (TL-3).

Researchers at the Texas A&M Transportation Institute (TTI) have conducted a full literature review of various bridge railing retrofits that have been used throughout the United States and abroad. A literature review search was performed using the Transportation Research Information Services database to document the pertinent findings of others on this proposed study. TTI researchers also obtained all available design information and details of safety walk barriers used throughout Louisiana. Two of the most common types of vintage bridge railings with safety walks were selected for further analysis and details. These included a concrete post and rail system with a sidewalk and a solid concrete parapet system with a sidewalk. Retrofits were developed that can be used on both of the common rail types used in Louisiana.

Two full-scale crash tests were performed on the retrofit design anchored to the concrete post and rail system. During MASH Test 3-10 on the Louisiana Retrofit post and beam bridge rail with safety walk Option 1, the vehicle experienced occupant ridedown accelerations above the limit of 20.49 g as specified in MASH.

The bridge rail was redesigned, and MASH Tests 3-10 and 3-11 were repeated. The Louisiana Retrofit post and beam bridge rail with safety walk Option 2 met the requirements for MASH TL-3 longitudinal barriers.

## Acknowledgments

The authors would like to thank Walid Alaywan, Ph.D., senior structures research engineer at the Louisiana Transportation Research Center, Kurt Brauner, bridge engineer manager at the Louisiana Department of Transportation and Development (DOTD), and Steve Mazur, bridge engineer at DOTD. These gentlemen contributed greatly to the success of this project. Their assistance and involvement in this project are greatly appreciated.

## Implementation Statement<sup>1</sup>

The retrofit bridge rail as tested herein met all the strength and performance requirements for MASH TL-3 specifications. This retrofit bridge rail is recommended for implementation on Louisiana post and beam and solid concrete barriers with 10 in. high or less by 18 in. wide or less safety walks.

For additional information, please refer to the information provided in this report.

<sup>&</sup>lt;sup>1</sup> The opinions/interpretations identified/expressed in this section of the report are outside the scope of TTI Proving Ground's A2LA Accreditation.

## **Table of Contents**

| Technical Report Standard Page                                            | 1         |
|---------------------------------------------------------------------------|-----------|
| Project Review Committee                                                  | 3         |
| LTRC Administrator/Manager                                                | 3         |
| Members                                                                   | 3         |
| Directorate Implementation Sponsor                                        | 3         |
| MASH TL-3 Evaluation of Louisiana Retrofit Post and Beam Bridge Rail with | th Safety |
| Walk                                                                      | 4         |
| Abstract                                                                  | 5         |
| Acknowledgments                                                           | 6         |
| Implementation Statement                                                  | 7         |
| Table of Contents                                                         | 8         |
| List of Tables                                                            | 11        |
| List of Figures                                                           | 13        |
| Introduction                                                              | 18        |
| Task 1 – Literature Review                                                | 19        |
| Design and Full Scale Testing of Retrofit Bridge Rail for 24.8            | Miles     |
| Long Southbound Causeway Bridge, New Orleans, Louisi                      | ana–      |
| Option A                                                                  | 19        |
| Design and Full Scale Testing of Retrofit Bridge Rail for 24.8            | Miles     |
| Long Southbound Causeway Bridge, New Orleans, Louisi                      | ana–      |
| Option B1                                                                 | 30        |
| Task 2 – Review of DOTD Bridge Rail Database                              | 47        |
| Task 7 – Full Scale Testing of Retrofit Bridge Rail Option 1, Tested O    | ctober    |
| 2018                                                                      | 50        |
| Test Requirements and Evaluation Criteria                                 | 51        |
| Crash Tests Performed                                                     | 51        |
| Evaluation Criteria                                                       | 52        |
| Test Conditions                                                           | 54        |
| Test Facility                                                             | 54        |
| Vehicle Tow and Guidance System                                           | 54        |
| Data Acquisition Systems                                                  | 55        |
| MASH TL-3 Testing of Louisiana Retrofit post and beam bridge rail w       | with      |
| safety walk Option 1                                                      | 58        |
| Test Installation Details                                                 | 58        |

| MASH Test 3-11 (Crash Test No. 606861-1)                                    | 60  |
|-----------------------------------------------------------------------------|-----|
| MASH Test 3-10 (Crash Test No. 606861-2)                                    | 72  |
| Discussion of Results for MASH TL-3 Tests on Louisiana Retrofit             |     |
| post and beam bridge rail with safety walk Option 1                         | 83  |
| Design and Strength Analysis of the Louisiana Retrofit post and beam bridge | ;   |
| rail with safety walk Option 2                                              | 86  |
| MASH TL-3 Testing of Retrofit post and beam bridge rail with safety walk    |     |
| Option 2                                                                    | 94  |
| Test Installation Details                                                   | 94  |
| MASH Test 3-11 (Crash Test No. 606861-3)                                    | 96  |
| MASH Test 3-10 (Crash Test No. 606861-4)                                    | 107 |
| Discussion of Results for MASH TL-3 Tests on Louisiana Retrofit             |     |
| post and beam bridge rail with safety walk Option 2                         | 118 |
| Developing Retrofitting Methods and Procedures for Single Bridge Rail       |     |
| Design                                                                      | 120 |
| Summary of Results of Full-Scale Crash Testing                              | 120 |
| Installation of MASH TL-3 of Option 2 Retrofit Bridge Rail                  | 120 |
| Installation Procedure                                                      | 121 |
| Material Specifications for MASH TL-3 Retrofit Bridge Rail                  | 128 |
| Preliminary Transition Details for New Retrofit Bridge Rail Design for      |     |
| Concrete Barriers with Safety Walks                                         | 129 |
| Conclusions                                                                 | 135 |
| Recommendations                                                             | 137 |
| Acronyms, Abbreviations, and Symbols                                        | 138 |
| References                                                                  | 140 |
| Appendix A. DOTD Bridge Rails                                               | 141 |
| Appendix B. Details of Louisiana Retrofit Post and Beam with Safety Walk    |     |
| for Tests 606861-1&2                                                        | 162 |
| Appendix C. Supporting Certification Documents for Test No. 606861-1&2.     | 172 |
| Appendix D. MASH Test 3-11 (Crash Test No. 606861-1)                        | 190 |
| Appendix E. MASH Test 3-10 (Crash Test No. 606861-2)                        | 199 |
| Appendix F. Strength Analysis of DOTD Retrofit Bridge Rail System           | 209 |
| Appendix G. Details of Louisiana Retrofit Post and Beam with Safety Walk    |     |
| Option 2 for Tests 606861-3&4                                               | 231 |
| Appendix H. Strength Analysis for Retrofit Bridge Rail Anchored to Solid    |     |
| Concrete Parapet                                                            | 243 |
| Appendix I. Supporting Certification Documents for Test No. 606861-3&4      | 267 |

| Appendix J. MASH Test 3-11 (Cra | ish Test No. 606861-3 | )     |
|---------------------------------|-----------------------|-------|
| Appendix K. MASH Test 3-10 (Ci  | ash Test No. 606861-  | 4)324 |

## List of Tables

| Table 1. Performance evaluation summary for MASH Test 4-12 on Option A Bridge         Poil | 7        |
|--------------------------------------------------------------------------------------------|----------|
| Table 2 Performance evaluation summary for MASH Test 4 11 on Option A Bridge               | ,        |
| Poil                                                                                       | 2        |
| Table 3 Performance evaluation summary for MASH Test 4-10 on Option A Bridge               | ,        |
| Poil                                                                                       | נ        |
| Table 4 Performance evaluation summary for MASH test $4$ -12 (Test No. 690900-             | <i>,</i> |
| GEC7) on Option B1 Bridge Bail                                                             | ,        |
| Table 5 Performance evaluation summary for MASH Test 4-12 (Test No. 690900-                | -        |
| GEC7a) on Option B1 Bridge Rail                                                            | z        |
| Table 6 Performance evaluation summary for MASH Test 4-10 (Test No. 690900-                | ,        |
| GFC8) on Option B1 Bridge Rail                                                             | 1        |
| Table 7 Performance evaluation summary for MASH Test 4-11 (Test No. 690900-                |          |
| GEC9) on Option B1 Bridge Rail                                                             | 5        |
| Table 8. Test conditions and evaluation criteria specified for MASH TL-3 longitudinal      | ,        |
| barriers                                                                                   |          |
| Table 9. Evaluation criteria required for MASH TL-4 longitudinal barriers                  | 3        |
| Table 10. Events during Test No. 606861-1                                                  | 3        |
| Table 11. Occupant risk factors for Test No. 606861-1                                      | 3        |
| Table 12. Summary of results for MASH Test 3-11 on Louisiana Retrofit Post and             |          |
| Beam Bridge Rail with Safety Walk Option 1—Pre-Impact Information                          | )        |
| Table 13. Summary of results for MASH Test 3-11 on Louisiana Retrofit Post and             |          |
| Beam Bridge Rail with Safety Walk Option 1—Post-Impact Information 71                      |          |
| Table 14. Events during Test No. 606861-2                                                  | 1        |
| Table 15. Occupant risk factors for Test No. 606861-2    79                                | )        |
| Table 16. Summary of results for MASH Test 3-10 on Louisiana Retrofit Post and             |          |
| Beam Bridge Rail with Safety Walk Option 1—Pre-Impact Information                          |          |
| Table 17. Summary of results for MASH Test 3-10 on Louisiana Retrofit Post and             |          |
| Beam Bridge Rail with Safety Walk Option 1—Post-Impact Information 82                      | )        |
| Table 18. Performance evaluation summary for MASH Test 3-11 on Louisiana                   |          |
| Retrofit Post and Beam Bridge Rail with Safety Walk Option 1                               | 1        |
| Table 19. Performance evaluation summary for MASH Test 3-10 on Louisiana                   |          |
| Retrofit Post and Beam Bridge Rail with Safety Walk Option 185                             | 5        |
| Table 20. Events during Test No. 606861-3                                                  | 3        |

| Table 21. Occupant risk factors for Test No. 606861-3         103               |
|---------------------------------------------------------------------------------|
| Table 22. Summary of results for MASH Test 3-11 on Louisiana Retrofit Post and  |
| Beam Bridge Rail with Safety Walk Option 2—Pre-Impact Information 105           |
| Table 23. Summary of results for MASH Test 3-11 on Louisiana Retrofit Post and  |
| Beam Bridge Rail with Safety Walk Option 2-Post-Impact Information 106          |
| Table 24. Events during Test No. 606861-4109                                    |
| Table 25. Occupant risk factors for Test No. 606861-4                           |
| Table 26. Summary of results for MASH Test 3-10 on Louisiana Retrofit Post and  |
| Beam Bridge Rail with Safety walk Option 2—Pre-Impact Information116            |
| Table 27. Summary of results for MASH Test 3-10 on Louisiana Retrofit Post and  |
| Beam Bridge Rail with Safety Walk Option 2—Post-Impact Information117           |
| Table 28. Performance evaluation summary for MASH Test 3-11 on Louisiana        |
| Retrofit Post and Beam Bridge Rail with Safety Walk Option 2118                 |
| Table 29. Performance evaluation summary for MASH Test 3-10 on Louisiana        |
| Retrofit Post and Beam Bridge Rail with Safety Walk Option 2119                 |
| Table 30. Assessment summary for MASH TL-3 Tests on Louisiana Retrofit Post and |
| Beam Bridge Rail with Safety Walk Option 1 135                                  |
| Table 31. Assessment summary for MASH TL-3 Tests on Louisiana Retrofit Post and |
| Beam Bridge Rail with Safety Walk Option 2 136                                  |
|                                                                                 |

## **List of Figures**

| Figure 1. Photo of the old southbound causeway bridge rail           | . 20 |
|----------------------------------------------------------------------|------|
| Figure 2. Option A details                                           | . 20 |
| Figure 3. Photos of full-scale test installation                     | . 21 |
| Figure 4. Bridge rail and test vehicle before MASH Test 4-12         | . 22 |
| Figure 5. Bridge rail after MASH Test 4-12                           | . 22 |
| Figure 6. Test vehicle after MASH Test 4-12                          | . 23 |
| Figure 7. Bridge rail and test vehicle before MASH Test 4-11         | . 23 |
| Figure 8. Bridge rail after MASH Test 4-11                           | . 24 |
| Figure 9. Test vehicle after MASH Test 4-11                          | . 25 |
| Figure 10. Test vehicle before MASH Test 4-10                        | . 25 |
| Figure 11. Bridge rail after MASH Test 4-10                          | . 26 |
| Figure 12. Test vehicle after MASH Test 4-10                         | . 26 |
| Figure 13. Option B1 details                                         | . 31 |
| Figure 14. Design Option B1 before testing                           | . 32 |
| Figure 15. Test vehicle before Test No. 690900-GEC7                  | . 33 |
| Figure 16. Rail option B1 after Test No. 690900-GEC7                 | . 33 |
| Figure 17. Post 4 after Test No. 690900-GEC7                         | . 33 |
| Figure 18. Post 5 after Test No. 690900-GEC7                         | . 34 |
| Figure 19. Post 6 and 7 after Test No. 690900-GEC7                   | . 34 |
| Figure 20. Post 8 after Test No. 690900-GEC7                         | . 34 |
| Figure 21. Test vehicle after Test No. 690900-GEC7                   | . 35 |
| Figure 22. Test vehicle before Test No. 690900-GEC7a                 | . 35 |
| Figure 23. Rail Option B1 positions after Test No. 690900-GEC7a      | . 35 |
| Figure 24. Posts 1 through 5 and rear of post 4 after Test No. GEC7a | . 36 |
| Figure 25. Post 5 after Test No. 690900-GEC7a                        | . 36 |
| Figure 26. Post 6 and 7 after Test No. 690900-GEC7a                  | . 36 |
| Figure 27. Post 8 after Test No. 690900-GEC7a                        | . 37 |
| Figure 28. Post 9 through 14 after Test No. 690900-GEC7a             | . 37 |
| Figure 29. Test vehicle after Test No. 690900-GEC7a                  | . 37 |
| Figure 30. Test vehicle before Test No. 690900-GEC8                  | . 38 |
| Figure 31. Rail Option B1 after Test No. 690900-GEC8                 | . 38 |
| Figure 32. Installation after Test No. 690900-GEC8                   | . 39 |
| Figure 33. Test vehicle after Test No. 690900-GEC8                   | . 39 |
| Figure 34. Test vehicle before Test No. 690900-GEC9                  | . 40 |

| Figure 35. Position of vehicle/installation after Test No. 690900-GEC9              | . 40 |
|-------------------------------------------------------------------------------------|------|
| Figure 36. Post 11 after Test No. 690900-GEC9                                       | . 40 |
| Figure 37. Post 12 and 13 after Test No. 690900-GEC9                                | . 41 |
| Figure 38. Photos after Test No. 690900-GEC9                                        | . 41 |
| Figure 39. Test vehicle after Test No. 690900-GEC9                                  | . 41 |
| Figure 40. Interior of test vehicle for Test No. 690900-GEC9                        | . 42 |
| Figure 41. Details from drawing SCJ5C-90-24P concrete post and beam                 | . 48 |
| Figure 42. Details from drawing SC15A-60-24P solid concrete parapet with            |      |
| aluminum hand rail (to be removed)                                                  | . 49 |
| Figure 43. Retrofit bridge rail Option 1 cross section details                      | . 50 |
| Figure 44. Target CIPs for MASH tests on Louisiana Retrofit Post and Beam Bridge    |      |
| Rail With Safety Walk                                                               | . 52 |
| Figure 45. Target CIPs for MASH Test 3-10 on redesigned Louisiana Retrofit Post     |      |
| and Beam Bridge Rail with Safety Walk                                               | . 52 |
| Figure 46. Target CIP for MASH Test 3-11 on redesigned Louisiana Retrofit Post and  |      |
| Beam Bridge Rail with Safety Walk                                                   | . 52 |
| Figure 47. Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk Option 1   |      |
| prior to testing                                                                    | . 59 |
| Figure 48. Joint 2 of Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk |      |
| Option 1 prior to testing                                                           | . 60 |
| Figure 49. Field side of Louisiana Retrofit Post and Beam Bridge Rail with Safety   |      |
| Walk Option 1 prior to testing                                                      | . 60 |
| Figure 50. Test vehicle/bridge rail geometrics for Test No. 606861-1                | . 61 |
| Figure 51. Test vehicle prior to Test No. 606861-1                                  | . 62 |
| Figure 52. Option 1 bridge rail after Test No. 606861-1                             | . 64 |
| Figure 53. Damage at joint 2 after Test No. 606861-1                                | . 65 |
| Figure 54. Damage at section 3 after Test No. 606861-1                              | . 65 |
| Figure 55. Damage on field side of bridge rail after Test No. 606861-1              | . 66 |
| Figure 56. Test vehicle after Test No. 606861-1                                     | . 67 |
| Figure 57. Interior of test vehicle after Test No. 606861-1                         | . 67 |
| Figure 58. Summary of results for MASH Test 3-11 on Louisiana Retrofit Post and     |      |
| Beam Bridge Rail with Safety Walk Option 1                                          | . 69 |
| Figure 59. Test vehicle/bridge rail geometrics for Test No. 606861-2                | . 72 |
| Figure 60. Test vehicle before Test No. 606861-2                                    | . 73 |
| Figure 61. Option 1 bridge rail after Test No. 606861-2                             | . 75 |
| Figure 62. Damage to traffic face of bridge rail after Test No. 606861-2            | . 76 |
| Figure 63. Damage on field side of bridge rail after Test No. 606861-2              | . 77 |

| Figure 64. Test vehicle after Test No. 606861-2                                            | 78    |
|--------------------------------------------------------------------------------------------|-------|
| Figure 65. Interior of test vehicle after Test No. 606861-2                                | 78    |
| Figure 66. Summary of results for MASH Test 3-10 on Louisiana Retrofit Post and            |       |
| Beam Bridge Rail with Safety Walk Option 1                                                 | 80    |
| Figure 67. Section view of retrofitted bridge rail system                                  | 86    |
| Figure 68. Plan view of failure section 2                                                  | 88    |
| Figure 69. Plan view of failure section 3                                                  | 88    |
| Figure 70. Details of the retrofit bridge rail anchored to the solid concrete parapet,     |       |
| sheet 1                                                                                    | 91    |
| Figure 71. Details of the retrofit bridge rail anchored to the solid concrete parapet,     |       |
| sheet 2                                                                                    | 92    |
| Figure 72. Details of the retrofit bridge rail anchored to the solid concrete parapet,     |       |
| sheet 3                                                                                    | 93    |
| Figure 73. Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk Option 2          |       |
| prior to testing                                                                           | 95    |
| Figure 74. Joint of Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk          |       |
| Option 2 prior to testing                                                                  | 96    |
| Figure 75. Test vehicle/bridge rail geometrics for Test No. 606861-3                       | 97    |
| Figure 76. Test vehicle prior to Test No. 606861-3                                         | 98    |
| Figure 77. Option 2 bridge rail after Test No. 606861-3                                    | 99    |
| Figure 78. Damage to traffic face of bridge rail after Test No. 606861-3                   | 100   |
| Figure 79. Damage on field side of bridge rail after Test No. 606861-3                     | 101   |
| Figure 80. Test vehicle after Test No. 606861-3                                            | 102   |
| Figure 81. Interior of test vehicle after Test No. 606861-3                                | 102   |
| Figure 82. Summary of results for MASH Test 3-11 On Louisiana Retrofit Post and            |       |
| Beam Bridge Rail with Safety Walk Option 2                                                 | . 104 |
| Figure 83. Test vehicle/bridge rail geometrics for Test No. 606861-4                       | . 107 |
| Figure 84. Test vehicle before Test No. 606861-4                                           | . 108 |
| Figure 85. Option 2 ridge rail after Test No. 606861-4                                     | 110   |
| Figure 86. Damage to traffic face of bridge rail after Test No. 606861-4                   | 111   |
| Figure 87. Damage on field side of bridge rail after Test No. 606861-4                     | 112   |
| Figure 88. Test vehicle after Test No. 606861-4                                            | 113   |
| Figure 89. Interior of test vehicle after Test No. 606861-4                                | 113   |
| Figure 90. Summary of results for MASH Test 3-10 on Louisiana Retrofit Post and            |       |
| Beam Bridge Rail with Safety walk Option 2                                                 | 115   |
| Figure 91. Safety walk barrier with concrete post and beam bridge rail                     | 121   |
| Figure 92. Hot dipped A193 B7 <sup>3</sup> / <sub>4</sub> -in. diameter Hilti threaded rod | 122   |

| Figure 93. Hilti HIT-RE500-V3 Adhesive Anchoring System used (anchor bolts             |       |
|----------------------------------------------------------------------------------------|-------|
| installed as per manufacturer's specifications)                                        | . 122 |
| Figure 94. Installed L6×4×1/2 angle support bracket with 3/4-in. A193 B7 galvanized    |       |
| threaded rod with Hilti RE500-V3 adhesive                                              | . 123 |
| Figure 95. Installation of first/top rail element with temporary shoring support       | . 124 |
| Figure 96. Installation of lower HSS10×4×3/8 rail and bolting to top rail with 5/8-in. |       |
| diameter B7 threaded rods                                                              | . 125 |
| Figure 97. Typical splice assembly of rail prior to adding adjacent rail section       | . 126 |
| Figure 98. Front view completed retrofit rail installation                             | . 126 |
| Figure 99. End view completed retrofit rail installation                               | . 127 |
| Figure 100. Field side view completed retrofit rail installation                       | . 127 |
| Figure 101. Current retrofit transition for safety walk barriers received from DOTD    | . 130 |
| Figure 102. Proposed transition standard                                               | . 131 |
| Figure 103. New transition concept option 1                                            | . 132 |
| Figure 104. New transition concept option 2, sheet 1                                   | . 133 |
| Figure 105. New transition concept option 2, sheet 2                                   | . 134 |
| Figure 106. Vehicle properties for Test No. 606861-1                                   | . 190 |
| Figure 107. Measurement of vehicle vertical CG for Test No. 606861-1                   | . 191 |
| Figure 108. Sequential photographs for Test No. 606861-1 (overhead view)               | . 192 |
| Figure 109. Sequential photographs for Test No. 606861-1 (frontal view)                | . 193 |
| Figure 110. Sequential photographs for Test No. 606861-1 (rear view)                   | . 194 |
| Figure 111. Exterior crush measurements for Test No. 606861-1                          | . 195 |
| Figure 112. Occupant compartment measurements for Test No. 606861-1                    | . 196 |
| Figure 113. Vehicle angular displacements for Test No. 606861-1                        | . 197 |
| Figure 114. Vehicle longitudinal accelerometer trace for Test No. 606861-1             |       |
| (accelerometer located at center of gravity)                                           | . 197 |
| Figure 115. Vehicle lateral accelerometer trace for Test No. 606861-1 (accelerometer   |       |
| located at center of gravity)                                                          | . 197 |
| Figure 116. Vehicle vertical accelerometer trace for Test No. 606861-1 (accelerometer  | r     |
| located at center of gravity)                                                          | . 198 |
| Figure 117. Vehicle properties for Test No. 606861-2                                   | . 199 |
| Figure 118. Sequential photographs for Test No. 606861-2 (overhead view)               | . 200 |
| Figure 119. Sequential photographs for Test No. 606861-2 (frontal view)                | . 201 |
| Figure 120. Sequential photographs for Test No. 606861-2 (rear view).                  | . 203 |
| Figure 121. Exterior crush measurements for Test No. 606861-2                          | . 204 |
| Figure 122. Occupant compartment measurements for Test No. 606861-2                    | . 205 |
| Figure 123. Vehicle angular displacements for Test No. 606861-2                        | . 206 |

| Figure 124. Vehicle longitudinal accelerometer trace for Test No. 606861-2            |     |
|---------------------------------------------------------------------------------------|-----|
| (accelerometer located at center of gravity)                                          | 207 |
| Figure 125. Vehicle lateral accelerometer trace for Test No. 606861-2 (accelerometer  | •   |
| located at center of gravity)                                                         | 207 |
| Figure 126. Vehicle vertical accelerometer trace for Test No. 606861-2 (accelerometer | er  |
| located at center of gravity)                                                         | 208 |
| Figure 127. Vehicle properties for Test No. 606861-3                                  | 315 |
| Figure 128. Measurement of vehicle vertical CG for Test No. 606861-3                  | 316 |
| Figure 129. Sequential photographs for Test No. 606861-3 (overhead view)              | 317 |
| Figure 130. Sequential photographs for Test No. 606861-3 (frontal view)               | 318 |
| Figure 131. Sequential photographs for Test No. 606861-3 (rear view).                 | 319 |
| Figure 132. Exterior crush measurements for Test No. 606861-3                         | 320 |
| Figure 133. Occupant compartment measurements for Test No. 606861-3                   | 321 |
| Figure 134. Vehicle angular displacements for Test No. 606861-3                       | 322 |
| Figure 135. Vehicle longitudinal accelerometer trace for Test No. 606861-3            |     |
| (accelerometer located at center of gravity)                                          | 322 |
| Figure 136. Vehicle lateral accelerometer trace for Test No. 606861-3 (accelerometer  | •   |
| located at center of gravity)                                                         | 323 |
| Figure 137. Vehicle vertical accelerometer trace for Test No. 606861-3 (accelerometer | er  |
| located at center of gravity)                                                         | 323 |
| Figure 138. Vehicle properties for Test No. 606861-4                                  | 324 |
| Figure 139. Sequential photographs for Test No. 606861-4 (overhead view)              | 325 |
| Figure 140. Sequential photographs for Test No. 606861-4 (frontal view)               | 326 |
| Figure 141. Sequential photographs for Test No. 606861-4 (rear view)                  | 327 |
| Figure 142. Exterior crush measurements for Test No. 606861-4                         | 328 |
| Figure 143. Occupant compartment measurements for Test No. 606861-4                   | 329 |
| Figure 144. Vehicle angular displacements for Test No. 606861-4                       | 330 |
| Figure 145. Vehicle longitudinal accelerometer trace for Test No. 606861-4            |     |
| (accelerometer located at center of gravity)                                          | 330 |
| Figure 146. Vehicle lateral accelerometer trace for Test No. 606861-4 (accelerometer  | •   |
| located at center of gravity)                                                         | 331 |
| Figure 147. Vehicle vertical accelerometer trace for Test No. 606861-4 (accelerometer | er  |
| located at center of gravity)                                                         | 331 |

### Introduction

The purpose of the tests reported herein was to assess the performance of the Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk according to the safetyperformance evaluation guidelines included in the American Association of State Highway and Transportation Officials (AASHTO), *Manual for Assessing Safety Hardware, Second Edition* (MASH) [1]. The crash tests were performed in accordance with MASH Test Level 3 (TL-3), which involves an 1100C and a 2270P vehicle impacting the bridge barrier at a target impact speed of 62 mi/h and an impact angle of 25 degrees.

A retrofit bridge rail system that anchors to the top or sides of the existing concrete parapets, and that meets the current safety performance criteria of MASH TL-3, is needed for Louisiana's vintage concrete railings. The retrofit bridge rail must meet the current safety requirements of MASH TL-3 and continue to accommodate use of the concrete safety walk. The existing safety walk areas on these vintage concrete bridges are needed for proper and safe bridge inspection, maintenance or stranded drivers, and for general pedestrian safety. The objective of this project is to develop a retrofit bridge rail design for the two most common types of bridge railing systems that are currently used by Louisiana Department of Transportation and Development (DOTD). This design shall also maintain the safety walk areas and meet the performance requirements of MASH TL-3. The two most common types of barriers are concrete post and beam and solid concrete parapet bridge rails installed with the 18 in. wide by 10 in. high safety walk curb. The purpose of this technical report is to present the retrofit method and the information necessary to fabricate and construct the retrofit bridge rail design which was successfully crash tested in accordance with MASH TL-3 specifications for Task 7A of this project. All material specifications used for the successful crash tested design are also provided in this report.

This report provides details of the Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk, detailed documentation of the crash test results, and an assessment of the performance of the Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk for MASH TL-3 evaluation criteria.

## Task 1 – Literature Review

For this project, Texas A&M Transportation Institute (TTI) conducted a full literature review of various bridge railing retrofits that have been used throughout the United States and abroad on safety walk bridge barrier railing systems like those used in Louisiana. As part of this task, TTI performed a literature review search using the TRIS database to document the pertinent findings of others on this proposed study. TTI has performed an extensive search to find all the available research information on the topic of crashworthy rail designs that include the features of the bridge rails that are involved in this study. TTI considered all the available information obtained from this search into the proposed research and design efforts planned for this project.

Several retrofit bridge rail designs were reviewed as part of this task. A few retrofit designs were obtained and considered as part of this review. This section contains a summary of the retrofit designs that utilized a walkway and were tested to MASH specifications. A brief summary of these designs are provided as follows.

### Design and Full-Scale Testing of Retrofit Bridge Rail for 24.8 Miles Long Southbound Causeway Bridge, New Orleans, Louisiana–Option A

TTI previously designed and tested a new retrofit bridge rail for the Southbound Causeway Bridge, New Orleans, Louisiana [2]. The purpose of this project was to design and test a retrofit bridge rail for the Southbound Lake Pontchartrain Causeway Bridge in New Orleans, Louisiana. This bridge is approximately 24.8 mi. in length and was constructed in the late 1950s. When the bridge opened it carried two-way traffic from New Orleans to the north shore of Lake Pontchartrain. The previous bridge railing, shown in Figure 1, consists of a 15-in. high concrete parapet mounted on top of a 10-in. high by 18-in. wide concrete curb.

Several retrofit options were developed for this project. A few retrofit designs were selected for full-scale testing. The purpose of the testing reported herein was to assess the performance of the Lake Pontchartrain Causeway Single Rail Bridge Rail Design Option A (25-in.-tall concrete parapet, with steel posts and a single steel railing standing 14 in. above the parapet, atop a 10-in. curb, for a total height of 39 in.) according to the safety-performance evaluation guidelines included in AASHTO MASH Specifications. Details

of the design are shown in Figure 2. A picture of the pre-test installation of the Option A bridge rail design can be found in Figure 3.



Figure 1. Photo of the old southbound causeway bridge rail

Figure 2. Option A details



#### Figure 3. Photos of full-scale test installation



(a) Traffic face of bridge rail



(b) Steel post



(c) Joint

(d) Field side of bridge rail

Three crash tests were required to evaluate the bridge rail's performance for TL-4 of MASH [1]. These tests involved a 10000S vehicle (22,000-lb. single unit truck), a 2270P vehicle (a 5000-lb. (½-ton) quad cab pickup), and a smaller 1100C vehicle (2420-lb. small car). Figure 4 through Figure 12 show the conditions of each of the cars before and after each respective test, as well as the bridge rail damage after each test. Table 1 through Table 3 provide a summary of the MASH criteria evaluation of each individual test.



Figure 4. Bridge rail and test vehicle before MASH Test 4-12

(a) Test vehicle at target impact point

(b) 10000S test vehicle





(a) Traffic face of bridge rail



(b) Joint



(c) Impact point



(d) Field side of bridge rail

#### Figure 6. Test vehicle after MASH Test 4-12



(a) Damage to left side of test vehicle

(b) Damage to right side of test vehicle

Figure 7. Bridge rail and test vehicle before MASH Test 4-11



(a) Test vehicle at target impact point

(b) 2270P test vehicle

### Figure 8. Bridge rail after MASH Test 4-11



(a) Traffic face of bridge rail



(b) Traffic side of joint



(c) Field side of bridge rail



(d) Field side of joint



(a) Damage to left side of test vehicle

(b) Damage to left front tire

### Figure 10. Test vehicle before MASH Test 4-10



(a) Test vehicle at target impact point

(b) 1100C test vehicle

#### Figure 11. Bridge rail after MASH Test 4-10



(a) Traffic side of bridge rail



(b) Impact point



(c) Joint







(a) Damage to front of test vehicle

(b) Damage to left front tire

| Evaluation<br>Factors  | Evaluation <sup>2</sup><br>Criteria | Test Results                                                                                                                                                                                                                                                     | Assessment |
|------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Structural<br>Adequacy | А.                                  | The option A bridge rail contained and redirected the<br>10000S vehicle. The vehicle did not penetrate,<br>underride, or override the installation. Maximum<br>dynamic deflection during the test was 6.9 in.                                                    | Pass       |
| Occupant<br>Risk       | D.                                  | Small fragments of concrete broke loose from the<br>parapet, but did not penetrate or show potential for<br>penetrating the occupant compartment, or show hazard<br>for others in the area.<br>No occupant compartment deformation or intrusion<br>was observed. | Pass       |
|                        | G.                                  | The 10000S vehicle remained upright during and after the collision event.                                                                                                                                                                                        | Pass       |

 Table 1. Performance evaluation summary for MASH Test 4-12 on Option A Bridge Rail

\_\_\_\_\_

<sup>&</sup>lt;sup>2</sup> See Table 9 for details of respective evaluation criteria.

| Evaluation<br>Factors  | Evaluation <sup>3</sup><br>Criteria | Test Results                                                                                                                                                                                                                                                                                                             | Assessment |
|------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Structural<br>Adequacy | А.                                  | The option A bridge rail contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the bridge rail. Maximum dynamic deflection during the test was 3.1 in.                                                                                                                       | Pass       |
| Occupant<br>Risk       | D.                                  | Small fragments of concrete broke loose from the<br>parapet, but did not penetrate or show potential for<br>penetrating the occupant compartment, or show hazard<br>for others in the area.<br>Maximum occupant compartment deformation was<br>7.5 in. in the left front firewall area, but there was no<br>penetration. | Pass       |
|                        | F.                                  | The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 18 degrees and 22 degrees.                                                                                                                                                                                   | Pass       |
|                        | H.                                  | Longitudinal OIV was 17.7 ft/s, and lateral OIV was 26.2 ft/s, which was within the preferred limits.                                                                                                                                                                                                                    | Pass       |
|                        | I.                                  | Maximum longitudinal RDA was 11.0 G, and maximum lateral RDA was 9.7 G, which was within the preferred limits.                                                                                                                                                                                                           | Pass       |

 Table 2. Performance evaluation summary for MASH Test 4-11 on Option A Bridge Rail

<sup>&</sup>lt;sup>3</sup> See Table 9 for details of respective evaluation criteria.

| Evaluation<br>Factors  | Evaluation <sup>4</sup><br>Criteria | Test Results                                                                                                                                                                                                                                                                                                               | Assessment |
|------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Structural<br>Adequacy | А.                                  | The option A bridge rail contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the bridge rail. Maximum dynamic deflection during the test was 0.74 in.                                                                                                                        | Pass       |
| Occupant<br>Risk       | D.                                  | Small fragments of concrete broke loose from the<br>parapet, but did not penetrate or show potential for<br>penetrating the occupant compartment, or show hazard<br>for others in the area.<br>Maximum occupant compartment deformation was 0.25<br>in. in the left front kickpanel area, and there was no<br>penetration. | Pass       |
|                        | F.                                  | The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 18 degrees and 10 degrees.                                                                                                                                                                                     | Pass       |
|                        | H.                                  | Longitudinal OIV was 14.4 ft/s, and lateral OIV was 21.0 ft/s, which was within the preferred limits.                                                                                                                                                                                                                      | Pass       |
|                        | I.                                  | Maximum longitudinal RDA was 5.5 G, and maximum lateral RDA was 11.7 G, which was within the preferred limits.                                                                                                                                                                                                             | Pass       |

Table 3. Performance evaluation summary for MASH Test 4-10 on Option A Bridge Rail

\_\_\_\_

<sup>&</sup>lt;sup>4</sup> See Table 9 for details of respective evaluation criteria.

### Design and Full-Scale Testing of Retrofit Bridge Rail for 24.8 Miles Long Southbound Causeway Bridge, New Orleans, Louisiana– Option B1

TTI designed and tested a second retrofit bridge rail for the Southbound Causeway Bridge in New Orleans, LA [2]. This second design (Option B1) was taller than the previous tested Option A design. The test installation was a 160 ft.-6<sup>3</sup>/<sub>4</sub> in. long double steel rail on a concrete parapet comprised of four 40-ft. long rail segments with 2<sup>1</sup>/<sub>4</sub>-in. long gaps at spliced expansion joints between each segment. The 2-tube bridge rail retrofit measured 46 in. in overall height (at the top of the upper rail) above the bridge deck. The top of the lower rail measured 34 in. above the bridge deck. The rail was anchored to the top of a 25-in.-tall steel reinforced concrete sectionalized curb and parapet that replicated the existing structure on the subject Lake Pontchartrain Causeway bridge deck. The curb was 10 in. high and 18 in. wide (walkway area). Additionally, the parapet had a 2<sup>1</sup>/<sub>4</sub>-in. wide expansion joint overlap gap every 40 ft. along the length of the installation, which coincided with the expansion splice between adjacent spliced rail segments. Details of the Option B1 design is shown in Figure 13.

Figure 14 shows photographs of the installation before full-scale crash testing. Figure 15 through Figure 29 show photographs (before and after) for MASH Test 4-12. Figure 30 through Figure 33 show photographs (before and after) for MASH Test 4-10. Figure 34 through Figure 40 show photographs (before and after) for MASH Test 4-11. These photos show the conditions of the rail installation and test vehicles before and after tests 690900-GEC7, GEC7a, GEC8, and GEC9, as well as damage to the bridge rail after each test. Table 4 through Table 7 provide a summary of the MASH criteria evaluation of each individual test.

Figure 13. Option B1 details



### Figure 14. Design Option B1 before testing



(a) Traffic face of bridge rail



(b) Steel post



(c) Joint



(d) Metal joint and sleeve



(e) Field side of post connection



(f) Field side of bridge rail



Figure 15. Test vehicle before Test No. 690900-GEC7

- (a) 10000S test vehicle at impact point
- (b) Left side of 10000S test vehicle

### Figure 16. Rail option B1 after Test No. 690900-GEC7



(a) Traffic Side

(b) Field Side

Figure 17. Post 4 after Test No. 690900-GEC7



(a) Traffic side

(b) Field side

Figure 18. Post 5 after Test No. 690900-GEC7



(a) Traffic side

(b) Field side





(a) Traffic side

(b) Field side

Figure 20. Post 8 after Test No. 690900-GEC7



<sup>(</sup>a) Traffic side



Figure 21. Test vehicle after Test No. 690900-GEC7



- (a) Damage to right side of test vehicle
- (b) Damage to right front tire





(a) 10000S test vehicle and bridge rail

(b) Right side of 10000S test vehicle

Figure 23. Rail Option B1 positions after Test No. 690900-GEC7a



(a) Traffic side of bridge rail

(b) Parallel with bridge rail
Figure 24. Posts 1 through 5 and rear of post 4 after Test No. GEC7a



(a) Traffic side

(b) Field side of post 4



Figure 25. Post 5 after Test No. 690900-GEC7a

(a) Traffic side

(b) Field side

Figure 26. Post 6 and 7 after Test No. 690900-GEC7a







#### Figure 27. Post 8 after Test No. 690900-GEC7a



(a) Traffic side

(b) Field side





(a) Field side of bridge rail

(b) Damage at post 9

Figure 29. Test vehicle after Test No. 690900-GEC7a



(a) Damage to left side of test vehicle

(b) Damage to left front tire

Figure 30. Test vehicle before Test No. 690900-GEC8



(a) 1100C test vehicle and bridge rail

(b) 1100C test vehicle

### Figure 31. Rail Option B1 after Test No. 690900-GEC8



(a) Traffic side

(b) Parallel with bridge rail





(a) Traffic face of bridge rail





(c) Field side of bridge rail



(d) Crack in concrete curb





(a) Damage to right side

(b) Damage to right front tire

Figure 34. Test vehicle before Test No. 690900-GEC9



(a) 2270P test vehicle and bridge rail

(b) 2270P test vehicle





(a) Traffic side

(b) Along traffic face of bridge rail





(a) Traffic side



Figure 37. Post 12 and 13 after Test No. 690900-GEC9



(a) Traffic side impact area damage test

(b) Field side damage



(a) Traffic side

(b) Field side

Figure 39. Test vehicle after Test No. 690900-GEC9



(a) Damage to right side

(b) Damage to right front wheel assembly

### Figure 38. Photos after Test No. 690900-GEC9

Figure 40. Interior of test vehicle for Test No. 690900-GEC9



(a) Before test

(b) After test

# Table 4. Performance evaluation summary for MASH test 4-12 (Test No. 690900-GEC7) on OptionB1 Bridge Rail

| Evaluation<br>Factors                                                                                                                                                                                                       | Evaluation <sup>5</sup><br>Criteria | Test Results                                                                                                                                                                                                     | Assessment |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Structural<br>Adequacy                                                                                                                                                                                                      | A.                                  | The option B1 bridge rail contained and redirected the 10000S vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 8.2 in.            | Pass       |
| Occupant<br>Risk       D.       No detached elements, fragments, or other debute<br>the bridge rail were present to penetrate or show<br>for penetrating the occupant compartment, or step<br>hazard to others in the area. |                                     | No detached elements, fragments, or other debris from<br>the bridge rail were present to penetrate or show potential<br>for penetrating the occupant compartment, or show undue<br>hazard to others in the area. | Pass       |
|                                                                                                                                                                                                                             |                                     | No occupant compartment deformation or intrusion was observed.                                                                                                                                                   |            |
|                                                                                                                                                                                                                             | G.                                  | The 10000S remained upright during and after the collision event. Maximum roll during the collision event was 29 degrees.                                                                                        | Pass       |

<sup>&</sup>lt;sup>5</sup> See Table 9 for details of respective evaluation criteria.

# Table 5. Performance evaluation summary for MASH Test 4-12 (Test No. 690900-GEC7a) on OptionB1 Bridge Rail

| Evaluation<br>Factors  | Evaluation <sup>6</sup><br>Criteria | Test Results                                                                                                                                                                                                                                                           | Assessment |
|------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Structural<br>Adequacy | А.                                  | The Option B1 bridge rail contained and redirected the 10000S vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 19.6 in.                                                                 | Pass       |
| Occupant D.<br>Risk    |                                     | Pieces of the concrete broke off from the bridge rail<br>parapet and deck but did not show potential for<br>penetrating the occupant compartment, nor show undue<br>hazard to others in the area.<br>No occupant compartment deformation or intrusion was<br>observed. | Pass       |
|                        | G.                                  | The 10000S remained upright during and after the collision event. Maximum roll during the collision event was 35 degrees.                                                                                                                                              | Pass       |

<sup>&</sup>lt;sup>6</sup> See Table 9 for details of respective evaluation criteria.

# Table 6. Performance evaluation summary for MASH Test 4-10 (Test No. 690900-GEC8) on OptionB1 Bridge Rail

| Evaluation<br>Factors  | Evaluation <sup>7</sup><br>Criteria | Test Results                                                                                                                                                                                                                                                                                                   | Assessment |
|------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Structural<br>Adequacy | А.                                  | The Option B1 bridge rail contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 1.5 in.                                                                                                           | Pass       |
| Occupant<br>Risk       | D.                                  | No detached elements, fragments, or other debris from<br>the bridge rail were present to penetrate or show potential<br>for penetrating the occupant compartment, or show undue<br>hazard to others in the area.<br>Maximum occupant compartment deformation was<br>1.0 in. in the right front kickpanel area. | Pass       |
|                        | F.                                  | The 1100C vehicle remained upright during and after the collision event. Maximum roll angle was 10 degrees and pitch was 8 degrees.                                                                                                                                                                            | Pass       |
|                        | H.                                  | Longitudinal OIV was 23.0 ft/s, and lateral OIV was 32.8 ft/s.                                                                                                                                                                                                                                                 | Pass       |
|                        | I.                                  | Longitudinal RDA was 6.1 g, and lateral RDA was 8.8 g.                                                                                                                                                                                                                                                         | Pass       |

<sup>&</sup>lt;sup>7</sup> See Table 9 for details of respective evaluation criteria.

# Table 7. Performance evaluation summary for MASH Test 4-11 (Test No. 690900-GEC9) on OptionB1 Bridge Rail

| Evaluation<br>Factors  | Evaluation <sup>8</sup><br>Criteria | Test Results                                                                                                                                                                                                                                                                                                   | Assessment |
|------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Structural<br>Adequacy | А.                                  | The Option B1 bridge rail contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 8.2 in.                                                                                                           | Pass       |
| Occupant D.<br>Risk    |                                     | No detached elements, fragments, or other debris from<br>the bridge rail were present to penetrate or show potential<br>for penetrating the occupant compartment, or show undue<br>hazard to others in the area.<br>Maximum occupant compartment deformation was<br>1.0 in. in the right front kickpanel area. | Pass       |
|                        | F.                                  | The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 12 degrees and 10 degrees.                                                                                                                                                                         | Pass       |
|                        | H.                                  | Longitudinal OIV was 15.1 ft/s, and lateral OIV was 25.6 ft/s.                                                                                                                                                                                                                                                 | Pass       |
|                        | I.                                  | Longitudinal occupant ridedown acceleration was 13.5 g, and lateral occupant ridedown acceleration was 11.7 g.                                                                                                                                                                                                 | Pass       |

The Lake Pontchartrain Causeway Bridge Design Option B1 contained and redirected all test vehicles. Maximum dynamic deflection was 19.6 in. in the repeat MASH Test 4-12. In all three tests, no detached elements, fragments, or other debris from the bridge rail were present to penetrate or show potential for penetrating the occupant compartment, or show undue hazard to others in the area. No occupant compartment intrusion occurred, and minimal (1.0 in.) to no occupant compartment deformation occurred during the test. All test vehicles remained upright during and after the collision event. During the crash test with the car and pickup (MASH Test 4-10 and 4-11), the occupant risk factors were within the preferred limits specified in MASH. In conclusion, the Lake Pontchartrain

<sup>&</sup>lt;sup>8</sup> See Table 9 for details of respective evaluation criteria.

Causeway Bridge Design Option B1 performed acceptably according to MASH evaluation criteria for TL-4.

These designs were relevant to this project since these designs utilized a 10-in. high by 18-in. wide walkway curb. Information used from these projects were considered in this project.

## Task 2 – Review of DOTD Bridge Rail Database

A literature review was completed for this project as part of Task 1. From Task 1, information was gathered on all the available retrofit options used previously that might be considered for this project. After Task 1 was completed, TTI received a database in Excel format from DOTD listing an inventory of bridges using concrete barriers with walkways used throughout the state. These bridges, approximately 200 total miles, used older types of concrete post and beam rails and solid concrete rails. The bridges in this database used a sidewalk for pedestrian access.

DOTD also provided numerous drawings and details for the common types of bridges in this database. These drawings, along with the Excel database provided to TTI researchers from DOTD, are provided in <u>Bridge Curbed Barrier Retrofit Project</u>. The information in the database and drawings were reviewed as part of this task. From this task, two bridge rail types were selected for analyses and detailing for retrofitting with respect to MASH TL-3. The bridge rails selected from this review were considered critical with respect to strength and performance for MASH TL-3. Other factors were also considered, such as their frequency of use, and geometrical considerations such as curb height, curb width, deck cantilever, and deck thickness.

Based on the researchers' review, the bridge rail designs from the Task 2 effort are provided as follows. For further information, please refer to the drawings provided in Appendix A. Approximately 20 drawings of different vintage bridge rail projects are provided in <u>Bridge Curbed Barrier Retrofit Project</u>. With the assistance of DOTD engineers, these drawings were selected from the larger database provided to TTI researchers on a spreadsheet database from DOTD. Engineering strength analyses were performed on the selected designs as follows.

Based on the researchers' review, the details shown on DOTD SCJ5C-90-24P appeared to be critical, based on strength and performance with respect to MASH TL-3. This design was also common for the concrete post and beam bridge rails with a safety walk. In addition, a solid concrete parapet was reviewed and analyzed during this reporting period. Figure 41 shows concrete geometry and reinforcement details for the concrete post and beam bridge rail with safety walk from drawing DOTD SCJ5C-90-24P. Details from SCJ5C-90-24P were used to develop the crash test installation details for the retrofit designs for this project. A retrofit design was also designed for a solid concrete parapet bridge rail with a safety walk. Drawing SC15A-60-24P and the details shown on this

drawing were used for this design. Details of the solid concrete parapet as shown on this drawing SC15A-60-24P are shown in Figure 42. Please note that the aluminum rail element for the solid concrete parapet was not considered crashworthy with respect to MASH Specifications and therefore needs to be removed prior to retrofitting.



Figure 41. Details from drawing SCJ5C-90-24P concrete post and beam

# Figure 42. Details from drawing SC15A-60-24P solid concrete parapet with aluminum hand rail (to be removed)



## Task 7 – Full Scale Testing of Retrofit Bridge Rail Option 1, Tested October 2018

In October 2018, full-scale testing was performed on the following bridge rail retrofit with respect to MASH TL-3. The retrofit bridge rail designed and tested for this option consisted of an HSS12x8x1/2 tubular rail element anchored to the top of the concrete post and beam with safety walk barrier selected in Task 2. A cross section view of the retrofit is shown in Figure 43.



Figure 43. Retrofit bridge rail Option 1 cross section details

Complete test installation details developed as part of Task 7 for retrofit Option 1 is presented in Appendix B. Please refer to these details in the appendix for additional information for this retrofit Option 1. As part of Task 7, these test installation details were used to construct a test installation for full scale crash testing with respect to MASH TL-3. Full-scale crash testing was performed on Option 1 in October 2018. A summary of the crash testing criteria and results are as follows.

## **Test Requirements and Evaluation Criteria**

## **Crash Tests Performed**

Table 8 shows the test conditions and evaluation criteria for MASH TL-3 for longitudinal barriers. MASH Test 3-10 involves an 1100C vehicle weighing 2420 lb.  $\pm$ 55 lb. impacting the critical impact point (CIP) of the bridge barrier at an impact speed of 62 mi/h  $\pm$ 2.5 mi/h and an angle of 25 degrees  $\pm$ 1.5 degrees. MASH Test 3-11 involves a 2270P vehicle weighing 5000 lb.  $\pm$ 110 lb. impacting the CIP of the bridge barrier at an impact speed of 62 mi/h  $\pm$ 2.5 mi/h and an angle of 25 degrees  $\pm$ 1.5 degrees.

| Test Article         | Test Designation | Test Vehicle | Impact Conditions |       | Evaluation Criteria |
|----------------------|------------------|--------------|-------------------|-------|---------------------|
|                      |                  |              | Speed             | Angle |                     |
| Longitudinal Barrier | 3-10             | 1100C        | 62 mi/h           | 25°   | A, D, F, H, I       |
| Longituunnai Darrier | 3-11             | 2270P        | 62 mi/h           | 25°   | A, D, F, H, I       |

Table 8. Test conditions and evaluation criteria specified for MASH TL-3 longitudinal barriers

The target CIPs for tests on the Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk and the redesigned bridge rail were determined using the information provided in MASH Section 2.2.1, Section 2.3.2, and MASH Figure 2-1. Figure 44 depicts target CIPs for MASH Test 3-10 (crash Test No. 606861-2) and Test 3-11 (crash Test No. 606861-1) on the Louisiana Retrofit post and beam bridge rail with safety walk Option 1. Figure 45 depicts target CIP for MASH Test 3-10 (crash Test 3-10 (crash Test No. 606861-4) on the Redesigned Louisiana Retrofit post and beam bridge rail with safety walk Option 2. Figure 46 shows the target CIP for Test 3-11 (crash Test No. 606861-3) Redesigned Louisiana Retrofit post and beam bridge rail with safety walk Option 2. Figure 46 shows the target CIP for Test 3-11 (crash Test No. 606861-3) Redesigned Louisiana Retrofit post and beam bridge rail with safety walk Option 2. Figure 46 shows the target CIP for Test 3-11 (crash Test No. 606861-3) Redesigned Louisiana Retrofit post and beam bridge rail with safety walk Option 2. Figure 46 shows the target CIP for Test 3-11 (crash Test No. 606861-3) Redesigned Louisiana Retrofit post and beam bridge rail with safety walk Option 2. Figure 46 shows the target CIP for Test 3-11 (crash Test No. 606861-3) Redesigned Louisiana Retrofit post and beam bridge rail with safety walk Option 2.

The crash tests and data analysis procedures were in accordance with guidelines presented in MASH. Brief descriptions of these procedures are described under the section entitled Test Conditions.

## Figure 44. Target CIPs for MASH tests on Louisiana Retrofit Post and Beam Bridge Rail With Safety Walk



Figure 45. Target CIPs for MASH Test 3-10 on redesigned Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk



Figure 46. Target CIP for MASH Test 3-11 on redesigned Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk



### **Evaluation Criteria**

The appropriate safety evaluation criteria from Tables 2-2A and 5-1 of MASH were used to evaluate the crash tests reported herein. The test conditions and evaluation criteria required for MASH TL-3 are listed in Table 8, and the substance of the evaluation criteria

in Table 9. An evaluation of the crash test results is presented in detail under the section Assessment of Test Results.

| Evaluation<br>Factors  |    | Evaluation Criteria                                                                                                                                                                                                                                          |  |
|------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Structural<br>Adequacy | А. | Test article should contain and redirect the vehicle or bring the vehicle to<br>a controlled stop; the vehicle should not penetrate, underride, or override<br>the installation although controlled lateral deflection of the test article is<br>acceptable. |  |
|                        | D. | Detached elements, fragments, or other debris from the test article should<br>not penetrate or show potential for penetrating the occupant compartment<br>or present undue hazard to other traffic, pedestrians, or personnel in a<br>work zone.             |  |
|                        |    | Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.                                                                                                                    |  |
| Occupant Risk          | F. | The vehicle should remain upright during and after collision for Tests 4-10 and 4-11. The maximum roll and pitch angles are not to exceed 75 degrees.                                                                                                        |  |
|                        | H. | Occupant impact velocities (OIV) should satisfy the following limits:<br>Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s for<br>Tests 4-10 and 4-11.                                                                                       |  |
|                        | I. | The occupant ridedown accelerations should satisfy the following:<br>Preferred value of 15.0 g, or maximum allowable value of 20.49 g for<br>Tests 4-10 and 4-11.                                                                                            |  |

Table 9. Evaluation criteria required for MASH TL-4 longitudinal barriers

## **Test Conditions**

### **Test Facility**

The full-scale crash tests reported herein were performed at Texas A&M Transportation Institute (TTI) Proving Ground, an International Standards Organization (ISO)/International Electrotechnical Commission (IEC) 17025-accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing Certificate 2821.01. The full-scale crash tests were performed according to TTI Proving Ground quality procedures, and according to the MASH guidelines and standards.

The test facilities of the TTI Proving Ground are located on the Texas A&M University System RELLIS Campus, which consists of a 2000-acre complex of research and training facilities situated 10 miles northwest of the flagship campus of Texas A&M University. The site, formerly a United States Army Air Corps base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, durability and efficacy of highway pavements, and evaluation of roadside safety hardware and perimeter protective devices. The site selected for construction and testing of the bridge barrier was along the edge of an out-of-service apron. The apron consists of an unreinforced jointedconcrete pavement in 12.5-ft. × 15 ft. blocks nominally 6 in. deep. The aprons were built in 1942, and the joints have some displacement, but are otherwise flat and level.

### Vehicle Tow and Guidance System

Each test vehicle was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point, through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A 2:1 speed ratio between the test and tow vehicle existed with this system. The test vehicle was released just prior to impact, and ran unrestrained. The vehicle remained freewheeling (i.e., no steering or braking inputs) until it cleared the immediate area of the test site (no sooner

than 2 s after impact), after which the brakes were activated, if needed, to bring the test vehicle to a safe and controlled stop.

### **Data Acquisition Systems**

#### Vehicle Instrumentation and Data Processing

Each test vehicle was instrumented with a self-contained, on-board data acquisition system. The signal conditioning and acquisition system is a 16-channel, Tiny Data Acquisition System (TDAS) Pro produced by Diversified Technical Systems, Inc. The accelerometers, which measure the x, y, and z axis of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors, measuring vehicle roll, pitch, and yaw rates, are ultra-small, solid state units designed for crash test service. The TDAS Pro hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of the 16 channels is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 values per second with a resolution of one part in 65,536. Once data are recorded, internal batteries back these up inside the unit should the primary battery cable be severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark as well as initiates the recording process. After each test, the data are downloaded from the TDAS Pro unit into a laptop computer at the test site. The Test Risk Assessment Program (TRAP) software then processes the raw data to produce detailed reports of the test results.

Each of the TDAS Pro units is returned to the factory annually for complete recalibration and all instrumentation used in the vehicle conforms to all specifications outlined by SAE J211. All accelerometers are calibrated annually by means of an ENDEVCO<sup>TM</sup> 2901, precision primary vibration standard. This standard and its support instruments are checked annually and receive a National Institute of Standards Technology (NIST) traceable calibration. The rate transducers used in the data acquisition system receive a calibration via a Genisco Rate-of-Turn table. The subsystems of each data channel are also evaluated annually, using instruments with current NIST traceability, and the results are factored into the accuracy of the total data channel, per SAE J211. Calibrations and evaluations are also made any time data are suspect. Acceleration data is measured with an expanded uncertainty of  $\pm 1.7$  percent at a confidence factor of 95 percent (k=2). TRAP uses the data from the TDAS Pro to compute occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and the highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with a 60-Hz low-pass digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals, then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation of the vehicle-fixed coordinate systems being initial impact. Rate of rotation data is measured with an expanded uncertainty of  $\pm 0.7$  percent at a confidence factor of 95 percent (k=2).

### **Anthropomorphic Dummy Instrumentation**

An Alderson Research Laboratories Hybrid II, 50th percentile male anthropomorphic dummy, restrained with lap and shoulder belts, was placed in the front seat on the impact side of the 1100C vehicle. The dummy was not instrumented.

According to MASH, it is recommended a dummy be used when testing "any longitudinal barrier with a height greater than or equal to 33 in.." Use of the dummy in the 2270P vehicle is recommended for tall rails to evaluate the "potential for an occupant to extend out of the vehicle and come into direct contact with the test article." Although this information is reported, it is not part of the impact performance evaluation. Since the height of the top of the rail on the Option 1 bridge rail was 42<sup>5</sup>/<sub>8</sub> in. and the redesigned Option 2 bridge rail was 40 in., a dummy was placed in the front seat of the 2270P vehicles on the impact side and restrained with lap and shoulder belts.

### Vehicle Instrumentation and Data Processing

Photographic coverage of each test included three digital high-speed cameras:

- 1. One overhead with a field of view perpendicular to the ground and directly over the impact point;
- 2. One placed on the traffic side of the installation at an angle behind the impact; and

3. A third placed to have a field of view parallel to and aligned with the installation at the downstream end.

A flashbulb on the impacting vehicle was activated by a pressure-sensitive tape switch to indicate the instant of contact with the bridge rail. The flashbulb was visible from each camera. The video files from these digital high-speed cameras were analyzed to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A digital camera recorded and documented conditions of each test vehicle and the installation before and after the test.

## MASH TL-3 Testing of Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk Option 1

## **Test Installation Details**

### **Test Installation Description**

The test installation was 106 ft.-10<sup>3</sup>/<sub>4</sub> in. long and consisted of a reinforced cantilevered concrete deck, a stepped-up sidewalk, with a curb and posts topped by a concrete beam, and a rectangular hollow steel rail anchored on top of the concrete beam. The sidewalk, curb, posts, and beam were comprised of five separate segments with 1-in. gaps between the sidewalk and curb segments and 6-in. gaps between the post and beam segments. Each segment contained three concrete posts with one at each end and one at center.

Each steel rail section measured 21 ft.-3<sup>3</sup>/<sub>4</sub> in. long, and each was anchored to the top of the concrete rail such that the impact face of the steel tubes was flush with the impact face of the concrete rails. A 36-in. long fabricated rail splice section spanned the 1-in. gaps between the steel rail sections. The steel rail sections were attached to the concrete beam with <sup>3</sup>/<sub>4</sub>-in. diameter ×16-in. long threaded rods secured with Hilti HIT-RE500V3 epoxy adhesive.

Appendix B presents the drawings and information on the Louisiana Retrofit post and beam bridge rail with safety walk Option 1, and Figure 47 through Figure 49 provide photographs of the completed installation.

### **Material Specifications**

The specified compressive strength of the concrete used in the wall, deck, curb, and parapet was 3000 psi. On October 2, 2018, the average compressive strengths of the concrete were as follows:

- Average concrete strength for the wall and deck: 4535 psi at 75 days of age.
- Average concrete strength for the curb: 4643 psi at 66 and 67 days of age (2 pours).
- Average concrete strength for the parapet: 4044 psi at 54 and 61 days of age (2 pours).

Appendix C provides material certification documents for the materials used to install/construct the Louisiana Retrofit post and beam bridge rail with safety walk Option 1.



Figure 47. Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk Option 1 prior to testing





(c) Upstream of joint



(d) Downstream of joint

# Figure 48. Joint 2 of Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk Option 1 prior to testing



(a) Metal rail element at joint 2

(b) Concrete parapet at joint 2

Figure 49. Field side of Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk Option 1 prior to testing



(a) Field side of joint 2



(b) Field side of joint 4

## MASH Test 3-11 (Crash Test No. 606861-1)

### **Test Designation and Actual Impact Conditions**

MASH Test 3-11 involves a 2270P vehicle weighing 5000 lbs  $\pm$ 110 lbs impacting the CIP of the bridge barrier at an impact speed of 62 mi/h  $\pm$ 2.5 mi/h and an angle of 25 degrees  $\pm$ 1.5 degrees. The CIP for MASH Test 3-11 on the Louisiana Retrofit post and beam bridge rail with safety walk Option 1 was determined to be 4.3 ft.  $\pm$ 1 ft. upstream of the

centerline of the second open joint in the concrete deck/beam. Figure 44 and Figure 50 depict the target CIP.



Figure 50. Test vehicle/bridge rail geometrics for Test No. 606861-1

(a) Frontal view of 2270P test vehicle at target impact point

(b) Rear view of 2270P test vehicle at target impact point

The 2270P vehicle used in the test weighed 5015 lbs, and the actual impact speed and angle were 63.5 mi/h and 25.2 degrees. The actual impact point was 3.9 ft. upstream of the centerline of the second open joint in the concrete deck/beam. Minimum target impact severity (IS) was 106 kip ft., and actual IS was 123 kip-ft.

### Weather Conditions

The test was performed on the morning of October 2, 2018. Weather conditions at the time of testing were as follows: wind speed: 2 mi/h; wind direction: 153 degrees (vehicle was traveling at a heading of 150 degrees); temperature: 77°F; relative humidity: 98 percent.

### **Test Vehicle**

Figure 51 shows the 2012 RAM 1500 pickup truck used for the crash test. The vehicle's test inertia weight was 5015 lbs, and its gross static weight was 5180 lbs. The height to the lower edge of the vehicle bumper was 11.75 in., and the height to the upper edge of the bumper was 27.0 in. The height to the vehicle's center of gravity was 28.5 in. Figure 106 and Figure 107 in Appendix D give additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and

guidance system and was released to be freewheeling and unrestrained just prior to impact.



Figure 51. Test vehicle prior to Test No. 606861-1

(b) Left side of 2270P test vehicle

### **Test Description**

Table 10 lists times and significant events that occurred during Test No. 606861-1. Figure 108 through Figure 110 in Appendix D present sequential photographs during the test.

<sup>(</sup>a) Right side of 2270P test vehicle

| Time (s) | Events                                                                                                                                     |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0000   | Data acquisition trigger activated by curb                                                                                                 |
| 0.0160   | Right front tire of vehicle contacts curb                                                                                                  |
| 0.0480   | Right front bumper contacts concrete rail                                                                                                  |
| 0.0630   | Vehicle begins to redirect                                                                                                                 |
| 0.2330   | Maximum deflection of rail element                                                                                                         |
| 0.2710   | Left front tire leaves pavement surface                                                                                                    |
| 0.3230   | Left front tire returns to pavement surface                                                                                                |
| 0.3990   | Vehicle is parallel to the bridge barrier                                                                                                  |
| 0.4450   | Right rear tire rides up onto curb                                                                                                         |
| 0.5300   | Left rear tire leaves pavement surface                                                                                                     |
| 0.5420   | Rear right side of vehicle contacts concrete rail                                                                                          |
| 0.6830   | Vehicle loses contact with bridge rail while traveling 31.6 mi/h, at a trajectory angle of 6.3 degrees, and a heading angle of 9.7 degrees |
| 1.0600   | Left rear tire returns to pavement surface                                                                                                 |

#### Table 10. Events during Test No. 606861-1

For longitudinal barriers, it is desirable that the vehicle redirects and exits the barrier within the exit box criteria (not less than 32.8 ft. downstream from loss of contact for cars and pickups). The test vehicle exited within the exit box criteria defined in MASH. Brakes on the vehicle were not applied. After loss of contact with the barrier, the vehicle came to rest 122 ft. downstream of the impact and 20 ft. toward the traffic side.

### Damage to Test Installation

Figure 52 through Figure 55 show the damage to the Option 1 bridge rail. The concrete at both posts at joint 2, and the middle post in section 3, failed with rebar exposed. Numerous cracks were observed in the beam and middle post of section 2 and along the beam of section 3, ending 30 in. upstream of the downstream end of section 3. The rear of the deck was broken out at the middle post of section 2, the end posts at the second joint,

and the middle post of section 3. Working width<sup>9</sup> was 22.1 in., and height of the working width was 42.6 in.. Maximum dynamic deflection during the test was 10.0 in., and maximum permanent deformation was 7.25 in.



Figure 52. Option 1 bridge rail after Test No. 606861-1

(a) Bridge rail/test vehicle after test

(b) Permanent deformation of bridge rail

<sup>&</sup>lt;sup>9</sup> Per MASH, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

Figure 53. Damage at joint 2 after Test No. 606861-1



(a) Damage to curb and beam

(b) Damage at joint 2





(a) Section 3 just downstream of joint 2

(b) Middle post of section 3



Figure 55. Damage on field side of bridge rail after Test No. 606861-1

(a) Field side of section 2

(b) Field side of middle post of section 2



(c) Field side of end posts at joint 2

(d) Field side of middle post of section 3

### **Damage to Test Vehicle**

Figure 56 shows the damage sustained by the vehicle. The front bumper, grill, hood, right front fender, right front upper and lower ball joints, right front tire and rim, right frame rail, right front door, right rear tire, and rear bumper were damaged. Maximum exterior crush to the vehicle was 16.0 in. in the front plane at the right front corner at bumper height. Maximum occupant compartment deformation was 2.0 in. in the right firewall. Figure 57 shows the interior of the vehicle. Figure 111 and Figure 112 in Appendix D provide exterior crush and occupant compartment measurements.

Figure 56. Test vehicle after Test No. 606861-1



(a) Front of 2270P test vehicle after test

(b) Right front of 2270P test vehicle





(a) Interior of cab of 2270P test vehicle

(a) Right front floor pan of 2270P test vehicle

### **Occupant Risk Factors**

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk and results are shown in Table 11. Figure 58, Table 12, and Table 13 summarize these data and other pertinent information from the test. Figure 113 in Appendix D shows the vehicle angular displacements, and Figure 114 through Figure 116 in Appendix D show acceleration versus time traces.

| Occupant Risk Factor                    | Value      | Time                                  |
|-----------------------------------------|------------|---------------------------------------|
| Occupant Impact Velocity (OIV)          |            |                                       |
| Longitudinal                            | 28.9 ft/s  | at 0 1472 a an right side of interior |
| Lateral                                 | 21.7 ft/s  | at 0.1472's on fight side of interior |
| Occupant Ridedown Accelerations         |            |                                       |
| Longitudinal                            | 11.8 g     | 0.2803 - 0.2903 s                     |
| Lateral                                 | 6.5 g      | 0.2912 - 0.3012 s                     |
| Theoretical Head Impact Velocity (THIV) | 10.9 m/s   | at 0.1444 s on right side of interior |
| Acceleration Severity Index (ASI)       | 1.6        | 0.1079 - 0.1579 s                     |
| Maximum 50-ms Moving Average            |            |                                       |
| Longitudinal                            | -12.0 g    | 0.0940 - 0.1440 s                     |
| Lateral                                 | −10.9 g    | 0.0783 - 0.1283 s                     |
| Vertical                                | -3.5 g     | 0.0657 - 0.1157 s                     |
| Maximum Roll, Pitch, and Yaw Angles     |            |                                       |
| Roll                                    | 14 degrees | 1.2803 s                              |
| Pitch                                   | 6 degrees  | 0.6268 s                              |
| Yaw                                     | 35 degrees | 0.6866 s                              |

#### Table 11. Occupant risk factors for Test No. 606861-1

### Figure 58. Summary of results for MASH Test 3-11 on Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk Option 1



(a) 0.000 s





(c) 0.400 s

(d) 0.600 s



(e) Impact summary

(f) Cross-section of bridge rail

# Table 12. Summary of results for MASH Test 3-11 on Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk Option 1—Pre-Impact Information

| <b>General Information</b> |                                                                                                                                                                               |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Agency                | Texas A&M Transportation Institute                                                                                                                                            |
| Test Standard Test No.     | MASH Test 3-11                                                                                                                                                                |
| TTI Test No.               | 606861-1                                                                                                                                                                      |
| Test Date                  | 2018-10-02                                                                                                                                                                    |
| Test Article               |                                                                                                                                                                               |
| Туре                       | Longitudinal Barrier—Bridge Rail                                                                                                                                              |
| Name                       | Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk                                                                                                                 |
| Installation Length        | 106 ft10¾ in.                                                                                                                                                                 |
| Material or Key Elements   | Reinforced cantilevered concrete deck, stepped-up sidewalk, curb<br>and posts topped by a concrete beam, rectangular hollow steel rail<br>secured on top of the concrete beam |
| Foundation Type/Condition  | Concrete Bridge Deck, Damp                                                                                                                                                    |
| Test Vehicle               |                                                                                                                                                                               |
| Type/Designation           | 2270P                                                                                                                                                                         |
| Make and Model             | 2012 RAM 1500 Pickup                                                                                                                                                          |
| Curb                       | 4983 lbs.                                                                                                                                                                     |
| Test Inertial              | 5015 lbs.                                                                                                                                                                     |
| Dummy                      | 165 lbs.                                                                                                                                                                      |
| Gross Static               | 5180 lbs.                                                                                                                                                                     |
| Impact Conditions          |                                                                                                                                                                               |
| Speed                      | 63.5 mi/h                                                                                                                                                                     |
| Angle                      | 25.2 degrees                                                                                                                                                                  |
| Location                   | 3.9 ft. upstream of joint 2                                                                                                                                                   |
| Impact Severity            | 123 kip-ft.                                                                                                                                                                   |
| Exit Conditions            |                                                                                                                                                                               |
| Speed                      | 31.6 mi/h                                                                                                                                                                     |
| Exit Trajectory/Heading    | 6.3 degrees/9.7 degrees                                                                                                                                                       |

| Occupant Risk Values                 |                                                  |
|--------------------------------------|--------------------------------------------------|
| Longitudinal OIV                     | 28.9 ft/s                                        |
| Lateral OIV                          | 21.7 ft/s                                        |
| Longitudinal Ridedown                | 11.8 g                                           |
| Lateral Ridedown                     | 6.5 g                                            |
| THIV                                 | 10.9 m/s                                         |
| ASI                                  | 1.6                                              |
| Max. 0.050-s Average                 |                                                  |
| Longitudinal                         | -12.0 g                                          |
| Lateral                              | -10.9 g                                          |
| Vertical                             | -3.5 g                                           |
| Post-Impact Trajectory               |                                                  |
| Stopping Distance                    | 122 ft. downstream / 20 ft. toward traffic lanes |
| Vehicle Stability                    |                                                  |
| Maximum Roll Angle                   | 14 degrees                                       |
| Maximum Pitch Angle                  | 6 degrees                                        |
| Maximum Yaw Angle                    | 35 degrees                                       |
| Vehicle Snagging                     | No                                               |
| Vehicle Pocketing                    | No                                               |
| Test Article Deflections             |                                                  |
| Dynamic                              | 10.0 in.                                         |
| Permanent                            | 7.25 in.                                         |
| Working Width                        | 22.1 in.                                         |
| Height of Working Width              | 42.6 in.                                         |
| Vehicle Damage                       |                                                  |
| VDS                                  | 01RFQ5                                           |
| СДС                                  | 01FREW5                                          |
| Max Exterior Deformation             | 16.0 in.                                         |
| OCDI                                 | FR0010000                                        |
| Max Occupant Compartment Deformation | 2.0 in.                                          |

# Table 13. Summary of results for MASH Test 3-11 on Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk Option 1—Post-Impact Information
### MASH Test 3-10 (Crash Test No. 606861-2)

#### **Test Designation and Actual Impact Conditions**

MASH Test 3-10 involves an 1100C vehicle weighing 2420 lbs  $\pm 55$  lbs impacting the CIP of the bridge barrier at an impact speed of 62 mi/h  $\pm 2.5$  mi/h and an angle of 25 degrees  $\pm 1.5$  degrees. The CIP for MASH Test 3-10 on the Louisiana Retrofit post and beam bridge rail with safety walk Option 1 was 3.6 ft.  $\pm 1$  ft. upstream of the centerline of the fourth open joint in the concrete deck/beam. Figure 44 and Figure 59 depict the target impact point.



Figure 59. Test vehicle/bridge rail geometrics for Test No. 606861-2

(a) Frontal view of 1100C test vehicle at target impact point

(b) Rear view of 1100C test vehicle at target impact point

The 1100C vehicle used in the test weighed 2425 lbs, and the actual impact speed and angle were 62.0 mi/h and 25.2 degrees. The actual impact point was 3.3 ft. upstream of the centerline of the fourth open joint in the concrete deck/beam. Minimum target IS was 51 kip-ft., and actual IS was 57 kip-ft.

#### Weather Conditions

The test was performed on the morning of October 3, 2018. Weather conditions at the time of testing were as follows: wind speed: 5 mi/h; wind direction: 166 degrees (vehicle was traveling at a heading of 150 degrees); temperature: 83°F; relative humidity: 83 percent.

#### **Test Vehicle**

Figure 60 shows the 2009 Kia Rio<sup>10</sup> used for the crash test. The vehicle's test inertia weight was 2425 lbs, and its gross static weight was 2590 lbs. The height to the lower edge of the vehicle bumper was 7.75 in., and the height to the upper edge of the bumper was 21.5 in. Figure 117 in Appendix E gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

#### Figure 60. Test vehicle before Test No. 606861-2



(a) Right side of 1100C test vehicle

(b) Left side of 1100C test vehicle

#### **Test Description**

Table 14 lists events that occurred during Test No. 606861-2. Figure 118 through Figure 120 in Appendix E present sequential photographs during the test.

<sup>&</sup>lt;sup>10</sup> The 2009 model vehicle used is older than the 6-year age noted in MASH, and was selected based upon availability. An older model vehicle is permitted by AASHTO as long as it is otherwise MASH compliant. Other than the vehicle's year model, this 2009 model vehicle met the MASH requirements.

| Time (s) | Events                                                                                                                                        |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0000   | Data acquisition trigger activated by curb                                                                                                    |
| 0.0180   | Vehicle lower front right bumper contacts curb                                                                                                |
| 0.0490   | Vehicle begins to redirect                                                                                                                    |
| 0.0620   | Vehicle contacts concrete beam                                                                                                                |
| 0.1020   | Left front tire leaves pavement surface                                                                                                       |
| 0.1920   | Left rear tire leaves pavement surface                                                                                                        |
| 0.2550   | Vehicle traveling parallel to bridge barrier                                                                                                  |
| 0.2760   | Left rear of vehicle contacts bridge barrier                                                                                                  |
| 0.3530   | Vehicle loses contact with bridge rail while traveling at 47.4 mi/h, at a trajectory angle of 2.0 degrees, and a heading angle of 5.8 degrees |
| 0.4570   | Left front tire returns to pavement surface                                                                                                   |

#### Table 14. Events during Test No. 606861-2

For longitudinal barriers, it is desirable that the vehicle redirects and exits the barrier within the exit box criteria (not less than 32.8 ft. downstream from loss of contact for cars and pickups). The test vehicle exited within the exit box criteria defined in MASH. Brakes on the vehicle were not applied. After loss of contact with the barrier, the vehicle came to rest 145 ft. downstream of the impact and 23 ft. toward traffic lanes.

#### **Damage to Test Installation**

Figure 61 through Figure 63 show the damage to the Option 1 bridge rail. The concrete curb was cracked through on the upstream side of the post on the downstream end of section 4, and a small crack in the curb was observed on the downstream side. The metal rail element was scuffed and scratched. Working width<sup>11</sup> was 12.7 in., and height of

<sup>&</sup>lt;sup>11</sup> Per MASH, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

working width was 42.6 in. Maximum dynamic deflection during the test was 0.7 in., and there was no measurable permanent deformation.



Figure 61. Option 1 bridge rail after Test No. 606861-2

- (a) Bridge rail/test vehicle after test
- (b) Traffic side of bridge rail at impact



Figure 62. Damage to traffic face of bridge rail after Test No. 606861-2

(a) Traffic side at impact point

(b) Traffic side of joint 4



(c) Traffic side of posts at joint 4

(d) Traffic side of metal rail at joint 4



Figure 63. Damage on field side of bridge rail after Test No. 606861-2

(a) Field side of joint 4

(b) Close up view of field side of joint 4

#### **Damage to Test Vehicle**

Figure 64 shows the damage sustained by the vehicle. The front bumper, grill, hood, radiator and support, right front tire and rim, right front strut and strut tower, right front fender, right front door and window glass, right rear quarter panel, right rear rim, and rear bumper were damaged. Maximum exterior crush to the vehicle was 9.0 in. in the side plane at the right front corner at bumper height. Maximum occupant compartment deformation was 1.5 in. in the right firewall area. Figure 65 shows the interior of the vehicle. Figure 121 and Figure 122 in Appendix E provide exterior crush and occupant compartment measurements.



(a) Front of 1100C test vehicle after test

(b) Right front of 1100C test vehicle





(a) Interior of cab of 1100C test vehicle

(b) Right front floor pan

#### **Occupant Risk Factors**

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk and results are shown in Table 15. Figure 66, Table 16, and Table 17 summarize these data and other pertinent information from the test. Figure 123 in Appendix E shows the vehicle angular displacements, and Figure 124 through Figure 126 in Appendix E show acceleration versus time traces.

| Occupant Risk Factor                | Value      | Time                                  |
|-------------------------------------|------------|---------------------------------------|
| OIV                                 |            |                                       |
| Longitudinal                        | 18.4 ft/s  | at 0 1103 s on right side of interior |
| Lateral                             | 24.3 ft/s  | at 0.1105 s on right side of interior |
| Occupant Ridedown Accelerations     |            |                                       |
| Longitudinal                        | 23.1 g     | 0.1103 - 0.1203 s                     |
| Lateral                             | 21.4 g     | 0.1103 - 0.1203 s                     |
| THIV                                | 9.1 m/s    | at 0.1070 s on right side of interior |
| ASI                                 | 1.7        | 0.1063 - 0.1563 s                     |
| Maximum 50-ms Moving Average        |            |                                       |
| Longitudinal                        | -9.9 g     | 0.0700 - 0.1200 s                     |
| Lateral                             | -12.6 g    | 0.0804 - 0.1304 s                     |
| Vertical                            | -5.5 g     | 0.0000 - 0.0500 s                     |
| Maximum Roll, Pitch, and Yaw Angles |            |                                       |
| Roll                                | 21 degrees | 0.8788 s                              |
| Pitch                               | 10 degrees | 0.5391 s                              |
| Yaw                                 | 51 degrees | 1.4091 s                              |

#### Table 15. Occupant risk factors for Test No. 606861-2

#### Figure 66. Summary of results for MASH Test 3-10 on Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk Option 1



(a) 0.000 s





(c) 0.400 s

(d) 0.600 s



(e) Impact summary

(f) Cross-section of bridge rail

# Table 16. Summary of results for MASH Test 3-10 on Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk Option 1—Pre-Impact Information

| General Information                       |                                                                                                                                                                               |  |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Test Agency                               | Texas A&M Transportation Institute                                                                                                                                            |  |
| Test Standard Test No.                    | MASH Test 3-10                                                                                                                                                                |  |
| TTI Test No.                              | TTI Test No. 606861-2                                                                                                                                                         |  |
| Test Date                                 | 2018-10-03                                                                                                                                                                    |  |
| Test Article                              |                                                                                                                                                                               |  |
| Туре                                      | Longitudinal Barrier—Bridge Rail                                                                                                                                              |  |
| Name                                      | Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk                                                                                                                 |  |
| Installation Length                       | h 106 ft10¾ in.                                                                                                                                                               |  |
| Material or Key Elements                  | Reinforced cantilevered concrete deck, stepped-up sidewalk, curb<br>and posts topped by a concrete beam, rectangular hollow steel rail<br>secured on top of the concrete beam |  |
| Foundation Type/Condition                 | Concrete Bridge Deck, Damp                                                                                                                                                    |  |
| Test Vehicle                              |                                                                                                                                                                               |  |
| Type/Designation                          | 1100C                                                                                                                                                                         |  |
| Make and Model                            | 2009 Kia Rio                                                                                                                                                                  |  |
| Curb                                      | 2457 lbs.                                                                                                                                                                     |  |
| Test Inertial                             | 2425 lbs.                                                                                                                                                                     |  |
| Dummy                                     | 165 lbs.                                                                                                                                                                      |  |
| Gross Static                              | 2590 lbs.                                                                                                                                                                     |  |
| Impact Conditions                         |                                                                                                                                                                               |  |
| Speed                                     | 62.0 mi/h                                                                                                                                                                     |  |
| Angle                                     | 25.2 degrees                                                                                                                                                                  |  |
| Location 3.3 ft. upstream of fourth joint |                                                                                                                                                                               |  |
| Impact Severity                           | 57 kip-ft.                                                                                                                                                                    |  |
| Exit Conditions                           |                                                                                                                                                                               |  |
| Speed                                     | 47.4 mi/h                                                                                                                                                                     |  |
| Exit Trajectory/Heading                   | 2.0 degrees/5.8 degrees                                                                                                                                                       |  |

| Occupant Risk Values                 |                                                  |
|--------------------------------------|--------------------------------------------------|
| Longitudinal OIV                     | 18.4 ft/s                                        |
| Lateral OIV                          | 24.3 ft/s                                        |
| Longitudinal Ridedown                | 23.1 g (High)                                    |
| Lateral Ridedown                     | 21.4 g (High)                                    |
| THIV                                 | 9.1 m/s                                          |
| ASI                                  | 1.7                                              |
| Max. 0.050-s Average                 |                                                  |
| Longitudinal                         | -9.9 g                                           |
| Lateral                              | -12.6 g                                          |
| Vertical                             | -5.5 g                                           |
| Post-Impact Trajectory               |                                                  |
| Stopping Distance                    | 145 ft. downstream / 23 ft. toward traffic lanes |
| Vehicle Stability                    |                                                  |
| Maximum Roll Angle                   | 21 degrees                                       |
| Maximum Pitch Angle                  | 10 degrees                                       |
| Maximum Yaw Angle                    | 51 degrees                                       |
| Vehicle Snagging                     | No                                               |
| Vehicle Pocketing                    | No                                               |
| Test Article Deflections             |                                                  |
| Dynamic                              | 0.7 in.                                          |
| Permanent                            | None measurable                                  |
| Working Width                        | 12.7 in.                                         |
| Height of Working Width              | 42.6 in.                                         |
| Vehicle Damage                       |                                                  |
| VDS                                  | 01RFQ5                                           |
| СДС                                  | 01FREW5                                          |
| Max Exterior Deformation             | 9.0 in.                                          |
| OCDI                                 | RF0010000                                        |
| Max Occupant Compartment Deformation | 1.5 in.                                          |

# Table 17. Summary of results for MASH Test 3-10 on Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk Option 1—Post-Impact Information

### Discussion of Results for MASH TL-3 Tests on Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk Option 1

Table 18 shows the Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk met the specified criteria for MASH Test 3-11. However, for MASH Test 3-10, Table 19 shows that the longitudinal and lateral occupant ridedown accelerations were both above the maximum allowable limit of 20.49 g specified in MASH. <u>Therefore, the Louisiana</u> <u>Retrofit post and beam bridge rail with safety walk Option 1 failed to meet occupant risk criteria for MASH Test 3-10, and thus MASH TL-3.</u>

The researchers determined that the bridge rail should be redesigned to achieve performance of the bridge rail to MASH TL-3 specifications.

| Evaluation<br>Factors  | Evaluation <sup>12</sup><br>Criteria | Test Results                                                                                                                                                                                                                                                                                                                                                                             | Assessment |
|------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Structural<br>Adequacy | Α.                                   | The Louisiana Retrofit Post and Beam Bridge Rail<br>with Safety Walk contained and redirected the 2270P<br>vehicle. The vehicle did not penetrate, underride, or<br>override the installation. Maximum dynamic<br>deflection during the test was 10.0 in.                                                                                                                                | Pass       |
| Occupant D.<br>Risk    |                                      | The concrete curb and posts fractured into several<br>pieces. However, these fragments did not penetrate or<br>show potential for penetrating the occupant<br>compartment, or present undue hazard for others on<br>the bridge barrier (several fragments came to rest<br>below the bridge deck).<br>Maximum occupant compartment deformation was<br>2.0 in. in the right firewall area. | Pass       |
|                        | F.                                   | The 2270P vehicle remained upright during and after<br>the collision event. Maximum roll was 14 degrees and<br>pitch was 6 degrees.                                                                                                                                                                                                                                                      | Pass       |
|                        | H.                                   | Longitudinal OIV was 28.9 ft/s, and lateral OIV was 21.7 ft/s.                                                                                                                                                                                                                                                                                                                           | Pass       |
|                        | I.                                   | Maximum longitudinal occupant ridedown was 11.8 g, and maximum lateral occupant ridedown was 6.5 g.                                                                                                                                                                                                                                                                                      | Pass       |

# Table 18. Performance evaluation summary for MASH Test 3-11 on Louisiana Retrofit Post andBeam Bridge Rail with Safety Walk Option 1

<sup>&</sup>lt;sup>12</sup> See Table 9 for details of respective evaluation criteria.

| Evaluation<br>Factors  | Evaluation <sup>13</sup><br>Criteria | Test Results                                                                                                                                                                                                                                                                                    | Assessment |
|------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Structural<br>Adequacy | A.                                   | The Louisiana Retrofit Post and Beam Bridge Rail<br>with Safety Walk contained and redirected the 1100C<br>vehicle. The vehicle did not penetrate, underride, or<br>override the installation. Maximum dynamic<br>deflection during the test was 0.7 in.                                        | Pass       |
| Occupant<br>Risk       | D.                                   | No detached elements, fragments, or other debris was<br>present to penetrate or show potential for penetrating<br>the occupant compartment, or present undue hazard<br>for others on the bridge barrier.<br>Maximum occupant compartment deformation was<br>1.5 in. in the right firewall area. | Pass       |
|                        | F.                                   | The 1100C vehicle remained upright during and after<br>the collision event. Maximum roll was 21 degrees and<br>pitch was 10 degrees.                                                                                                                                                            | Pass       |
|                        | H.                                   | Longitudinal OIV was 18.4 ft/s, and lateral OIV was 24.3 ft/s.                                                                                                                                                                                                                                  | Pass       |
|                        | I.                                   | Maximum longitudinal occupant ridedown was<br>23.1 g, and maximum lateral occupant ridedown was<br>21.4 g.                                                                                                                                                                                      | Fail       |

# Table 19. Performance evaluation summary for MASH Test 3-10 on Louisiana Retrofit Post andBeam Bridge Rail with Safety Walk Option 1

<sup>&</sup>lt;sup>13</sup> See Table 9 for details of respective evaluation criteria.

### Design and Strength Analysis of the Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk Option 2

Due to the unsuccessful MASH Test 3-10 performed on October 3, 2018, for Task 3 of this project, a new retrofit design Option (Option 2) was designed and detailed. A strength analysis procedure using the AASHTO LRFD Bridge Design Specifications, Section 13 [4] was used to analyze the structural capacity of the new bridge rail retrofit. Figure 67 shows a section view of the new retrofitted bridge rail system designed for this project. Appendix F presents the strength analysis performed on the new retrofitted bridge rail. Appendix G presents the structural details for the new retrofit bridge rail.



Figure 67. Section view of retrofitted bridge rail system

The inelastic or yield line resistance of the concrete rail using the principles of the Whitney Stress Block method combined with the elastic resistance of the retrofitted metal rails contributing to an inelastic hinge mechanism in the rail contributing to a plastic hinge (denoted  $M_p$  in AASHTO Section 13, but denoted  $M_{rail}$  in the worksheet) was calculated. The plastic moment resistance of the concrete post at three critical failure sections (denoted  $M_{FS}$  in the worksheet) is calculated using the principles of the Whitney Stress Block method.

The strength of a single post (denoted  $P_p$  in AASHTO Section 13 and in the worksheet in Appendix E) at a failure section was calculated using Equation 1.

$$P_p = \frac{M_{FS}}{y_{FS}} \tag{1}$$

where:

 $P_p$  = Minimum strength of a single post which corresponds to  $M_{FS}$  and is located  $y_{bar}$  above the deck (kips) considering several possible failure modes

 $y_{FS}$  = Height of rail force measured from the centroid of the failure section (in.)

 $M_{FS}$  = Minimum plastic moment resistance at the failure section (kip-in)

For post strength  $P_p$ , three different failure sections were considered. Failure Section 1 is assumed to be located at the interface between the bottom of a post and the top of curb. Failure Section 2 is assumed to be located at the vertical interface of the curb with the sidewalk at the center of sidewalk section (see Figure 68). Failure Section 3 is assumed to be located at the vertical interface between the deck and curb at the center of deck section (see Figure 69).

Once the strength of each failure section was calculated, the minimum strength (i.e., the minimum  $P_p$  value) was taken as the limiting or "worst case" post strength used in the AASHTO Section 13 equations.

The total resistance of the railing (denoted R in AASHTO Section 13) is calculated using AASHTO Section 13 Equation A13.3.2-3 (Equation 2).



Figure 68. Plan view of failure section 2





$$R = \frac{2M_p + 2P_p L(\sum_{i=1}^{N} i)}{2NL - L_t}$$
(2)

where:

R = Total ultimate resistance, i.e., nominal resistance, of the railing (kips)

L = Post spacing of single span (ft.)

 $M_p$  (denoted  $M_{rail}$  on spreadsheet) = Inelastic or yield line resistance of all rails contributing to a plastic hinge (kip-ft.).

N = Number of railing spans.

The structural analysis conducted on the new DOTD retrofitted bridge rail system are presented in Appendix F. The resistance of the new retrofit bridge rail design was compared to the MASH TL-3 design transverse impact load ( $F_t$ ) of 71 kips located an effective height ( $H_e$ ) of 19 in. above the deck surface. The new retrofit bridge rail system has a calculated resistance of 75.4 kips located at an effective height ( $H_e$ ) of 19 in. above the deck surface. The new retrofit bridge rail system has a calculated resistance of 75.4 kips located at an effective height ( $H_e$ ) of 19 in. above the deck. Since the calculated resistance is greater than the design impact load, the retrofitted bridge rail system meets MASH TL-3 structural adequacy criterion. TTI completed test installation details necessary for construction of the new retrofit bridge rail design. Please refer to the calculations in Appendix F for additional information. For additional information on the details of the new retrofit bridge rail please refer to the details of the new retrofit bridge rail please refer to the details shown in Appendix G were developed for MASH full-scale crash testing. The concrete post and beam bridge rail, safety sidewalk, and deck cantilever are the same as those constructed for full-scale crash testing in late 2018.

Based on the results of the structural analysis, the new retrofit bridge rail design as shown herein meets the strength requirements for MASH TL-3. This new design improves the strength of the existing concrete bridge rail and still allows some access to the existing safety sidewalk. This design was recommended for full-scale crash testing.

It was recommended that this design be full-scale crash tested as per the MASH specifications for TL-3. Two full-scale crash tests were planned. MASH Test 3-10 (small car) was performed on December 11, 2020. MASH Test 3-11 (pickup truck) was planned for December 14, 2020.

The new retrofit bridge rail design was also considered for a solid concrete parapet used by DOTD. The details of the retrofit design will require a small post with a base plate anchoring the retrofit bridge rail on top of the solid concrete parapet. These posts are necessary to maintain the rail height of 40 in. from the roadway surface. These posts will maintain the same geometry as the crash tested design. The centerline of the posts shall be located 24 in. minimum from the end of the concrete parapet. Details of the retrofit bridge rail anchored to the solid concrete parapet are shown in Figure 70 through Figure 72. The calculated strength of the new retrofit design anchored to the solid concrete parapet was 140 kips at a height of 19 in. above the roadway surface. Therefore, this retrofit design meets the strength requirements of MASH TL-3. Calculations for the retrofit design are presented in Appendix H.











## MASH TL-3 Testing of Retrofit Post and Beam Bridge Rail with Safety Walk Option 2

#### **Test Installation Details**

#### **Test Installation Description**

The test installation was 106 ft.-10<sup>3</sup>/<sub>4</sub> in. long, and consisted of a reinforced cantilevered concrete deck, a stepped-up sidewalk, with a curb and posts topped by a concrete beam, and two rectangular hollow steel rails anchored to the front face of the concrete beam. The sidewalk, curb, posts, and beams were comprised of five separate segments, with 1-in. gaps between the sidewalk, curb, and rail segments, and 6-in. gaps between the post and beam segments. Each segment contained three concrete posts, with one at each end and one at center.

Each steel rail section measured 21 ft.-3<sup>3</sup>/<sub>4</sub> in. long. A 36-in. long fabricated rail splice section spanned the 1-in. gaps between the steel rail sections. The top steel rail sections were attached to the concrete beam with  $L6 \times 4 \times 1/4$  in. angle brackets that were anchored to the concrete beam with  $\frac{3}{4}$ -in. diameter  $\times$  8-in. long B7 threaded rods secured with Hilti HIT-RE500V3 epoxy adhesive. The bottom steel rails were secured through and to the top rails with  $\frac{5}{8}$ -in. diameter  $\times$  22-in. long grade B7 threaded rods, washers, and bolts.

Appendix G presents the drawings and information on the Louisiana Retrofit post and beam bridge rail with safety walk Option 2, and Figure 73 and Figure 74 provides photographs of the completed installation.

#### **Material Specifications**

The specified compressive strength of the concrete used in the wall, deck, curb, and parapet was 3000 psi. On December 10, 2020, the average compressive strengths of the concrete were as follows:

- Average concrete strength for the wall and deck: 4448 psi at 41 days of age.
- Average concrete strength for the curb: 4563 psi at 35 days of age.
- Average concrete strength for the parapet: 4033 psi at 21 days of age.

Appendix I provides material certification documents for the materials used to install/construct the Louisiana Retrofit post and beam bridge rail with safety walk Option 2.



Figure 73. Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk Option 2 prior to testing



(a) Traffic face of bridge rail

(b) Field side of bridge rail



(c) Upstream of joint



(d) Downstream of joint

Figure 74. Joint of Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk Option 2 prior to testing



(a) Traffic face at joint

(b) Field side at joint

### MASH Test 3-11 (Crash Test No. 606861-3)

#### **Test Designation and Actual Impact Conditions**

MASH Test 3-11 involved a 2270P vehicle weighing 5000 lbs  $\pm$ 110 lbs impacting the CIP of the bridge barrier at an impact speed of 62 mi/h  $\pm$ 2.5 mi/h and an angle of 25 degrees  $\pm$ 1.5 degrees. The CIP for MASH Test 3-11 on the Louisiana Retrofit post and beam bridge rail with safety walk Option 2 was determined to be 4.3 ft. upstream of the centerline of the second open joint in the deck/beam. Figure 46 and Figure 75 depict the target CIP.



Figure 75. Test vehicle/bridge rail geometrics for Test No. 606861-3

(a) Frontal view of 2270P test vehicle at target impact point

(b) Rear view of 2270P test vehicle at target impact point

The 2270P vehicle used in the test weighed 5056 lbs, and the actual impact speed and angle were 62.7 mi/h and 25.0 degrees. The actual impact point was 4.8 ft. upstream of the centerline of the second open joint in the concrete deck/beam. Minimum target IS was 106 kip-ft., and actual IS was 119 kip-ft.

#### Weather Conditions

The test was performed on the morning of December 14, 2020. Weather conditions at the time of testing were as follows: wind speed: 6 mi/h; wind direction: 4 degrees (vehicle was travelling at a heading of 150 degrees); temperature: 42°F; relative humidity: 83 percent

#### **Test Vehicle**

Figure 76 shows the 2014 RAM 1500 pickup truck used for the crash test. The vehicle's test inertia weight was 5056 lbs, and its gross static weight was 5221 lbs. The height to the lower edge of the vehicle bumper was 11.75 in., and the height to the upper edge of the bumper was 27.0 in. The height to the vehicle's center of gravity was 28.5 in. Figure 127 and Figure 128 in Appendix J give additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 76. Test vehicle prior to Test No. 606861-3



(a) Right side of 2270P test vehicle

(b) Left side of 2270P test vehicle

#### **Test Description**

Table 20 lists times and significant events that occurred during Test No. 606861-3. Figure129 through Figure 131 in Appendix J present sequential photographs during the test.

| Time (s) | Events                                                                                                                                         |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0000   | Data acquisition trigger activated by curb                                                                                                     |
| 0.0220   | Vehicle impacted the bridge rail                                                                                                               |
| 0.0410   | Vehicle begins to redirect                                                                                                                     |
| 0.1380   | Left front tire lifts off pavement                                                                                                             |
| 0.2130   | Vehicle travelling parallel to bridge rail                                                                                                     |
| 0.2600   | Left front tire contacts pavement                                                                                                              |
| 0.2700   | Left rear tire lifts off pavement                                                                                                              |
| 0.3700   | Right front tire contacts pavement                                                                                                             |
| 0.4540   | Vehicle loses contact with installation while traveling at 50.2 mi/h, at a trajectory angle of 4.2 degrees, and a heading angle of 7.8 degrees |

#### Table 20. Events during Test No. 606861-3

For longitudinal barriers, it is desirable that the vehicle redirects and exits the barrier within the exit box criteria (not less than 32.8 ft. downstream from loss of contact for cars and pickups). The test vehicle exited within the exit box criteria defined in MASH.

Brakes on the vehicle were applied at 3.0 s after impact, and the vehicle subsequently came to rest 221 ft. downstream of the impact 40 ft. toward traffic lanes.

#### **Damage to Test Installation**

Figure 77 through Figure 79 show the damage to the Option 2 bridge rail. There was some gouging and scuffing of the sidewalk at impact. The concrete deck and posts had significant damage at posts 5, 6, 7, and 8, with exposed rebar at posts 6, 7, and 8. There were several large cracks at the top of posts 6 and 7. There was also some scuffing on the metal rail element. Working width<sup>14</sup> was 38.7 in., and height of the working width was 28.0 in. Maximum dynamic deflection during the test was 6.8 in., and maximum permanent deformation was 3.4 in.





(a) Bridge rail/test vehicle after test

<sup>(</sup>b) Traffic side of bridge rail at impact

<sup>&</sup>lt;sup>14</sup> Per MASH, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.



Figure 78. Damage to traffic face of bridge rail after Test No. 606861-3

(a) Traffic side at impact point

(b) Traffic side of joint



(c) Traffic side of posts at joint

(d) Traffic side loss of contact



Figure 79. Damage on field side of bridge rail after Test No. 606861-3

(a) Field side of joint

(b) Field side of middle post

#### **Damage to Test Vehicle**

Figure 80 shows the damage sustained by the vehicle. The front bumper, grill, hood, radiator and support, right front fender, right front tire and rim, right front and rear doors, right rear cab corner, right rear exterior bed, right rear tire, and rear bumper were damaged. Maximum exterior crush to the vehicle was 11.0 in. in the front plane at the right front corner at bumper height. No occupant compartment deformation was observed. Figure 81 shows the interior of the vehicle. Figure 132 and Figure 133 in Appendix J provide exterior crush and occupant compartment measurements.

Figure 80. Test vehicle after Test No. 606861-3



(a) Front of 2270P test vehicle after test

(b) Right front of 2270P test vehicle





(b) Interior of cab of 2270P test vehicle

(a) Right front floor pan of 2270P test vehicle

#### **Occupant Risk Factors**

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk and results are shown in Table 21. Figure 82, Table 22, and Table 23 summarize these data and other pertinent information from the test. Figure 134 in Appendix J shows the vehicle angular displacements, and Figure 135 through Figure 137 in Appendix J show acceleration versus time traces.

| Occupant Risk Factor                | Value      | Time                                  |  |
|-------------------------------------|------------|---------------------------------------|--|
| OIV                                 |            |                                       |  |
| Longitudinal                        | 13.1 ft/s  | at 0 1207 a an right side of interior |  |
| Lateral                             | 24.6 ft/s  | at 0.1207's on fight side of interior |  |
| Occupant Ridedown Accelerations     |            |                                       |  |
| Longitudinal                        | 6.1 g      | 0.1215 - 0.1315 s                     |  |
| Lateral                             | 8.2 g      | 0.2089 - 0.2189 s                     |  |
| THIV                                | 8.7 m/s    | at 0.1183 s on right side of interior |  |
| ASI                                 | 1.8        | 0.0851 - 0.1351 s                     |  |
| Maximum 50-ms Moving Average        |            |                                       |  |
| Longitudinal                        | -5.4 g     | 0.0746 - 0.1246 s                     |  |
| Lateral                             | -14.0 g    | 0.0565 - 0.1065 s                     |  |
| Vertical                            | 1.8 g      | 0.2949 - 0.3449 s                     |  |
| Maximum Roll, Pitch, and Yaw Angles |            |                                       |  |
| Roll                                | 7 degrees  | 0.6206 s                              |  |
| Pitch                               | 9 degrees  | 0.5326 s                              |  |
| Yaw                                 | 34 degrees | 0.7969 s                              |  |

#### Table 21. Occupant risk factors for Test No. 606861-3

#### Figure 82. Summary of results for MASH Test 3-11 On Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk Option 2



(a) 0.000 s





(c) 0.400 s

(d) 0.600 s



(e) Impact summary

(f) Cross-section of bridge rail

# Table 22. Summary of results for MASH Test 3-11 on Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk Option 2—Pre-Impact Information

| <b>General Information</b>                |                                                                                                                                                                             |  |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Test Agency                               | Texas A&M Transportation Institute                                                                                                                                          |  |
| Test Standard Test No.                    | MASH Test 3-11                                                                                                                                                              |  |
| <b>TTI Test No.</b> 606861-3              |                                                                                                                                                                             |  |
| Test Date                                 | 2020-12-14                                                                                                                                                                  |  |
| Test Article                              |                                                                                                                                                                             |  |
| Туре                                      | e Longitudinal Barrier—Bridge Rail                                                                                                                                          |  |
| Name                                      | Louisiana Retrofit post and beam bridge rail with safety walk<br>Option 2                                                                                                   |  |
| Installation Length                       | 106 ft10¾ in.                                                                                                                                                               |  |
| Material or Key Elements                  | Reinforced cantilevered concrete deck, with 10-in. high sidewalk,<br>curb and posts topped by a concrete beam, 2 rectangular hollow<br>steel rails secured to concrete beam |  |
| Foundation Type/Condition                 | ion Concrete Bridge Deck, Damp                                                                                                                                              |  |
| Test Vehicle                              |                                                                                                                                                                             |  |
| Type/Designation                          | 2270P                                                                                                                                                                       |  |
| Make and Model                            | 2014 RAM 1500                                                                                                                                                               |  |
| Curb                                      | 5056 lbs.                                                                                                                                                                   |  |
| Test Inertial                             | 5056 lbs.                                                                                                                                                                   |  |
| Dummy                                     | 165 lbs.                                                                                                                                                                    |  |
| Gross Static                              | 5221 lbs.                                                                                                                                                                   |  |
| Impact Conditions                         |                                                                                                                                                                             |  |
| Speed                                     | 62.7 mi./h                                                                                                                                                                  |  |
| Angle                                     | 25.0 degrees                                                                                                                                                                |  |
| Location 4.8 ft. upstream of second joint |                                                                                                                                                                             |  |
| Impact Severity                           | 119 kip-ft.                                                                                                                                                                 |  |
| Exit Conditions                           |                                                                                                                                                                             |  |
| Speed                                     | 50.2 mi./h                                                                                                                                                                  |  |
| Exit Trajectory/Heading                   | 4.2 degrees/7.8 degrees                                                                                                                                                     |  |

| Occupant Risk Values                 |                                                  |
|--------------------------------------|--------------------------------------------------|
| Longitudinal OIV                     | 13.1 ft/s                                        |
| Lateral OIV                          | 24.6 ft/s                                        |
| Longitudinal Ridedown                | 6.1 g                                            |
| Lateral Ridedown                     | 8.2 g                                            |
| THIV                                 | 8.7 m/s                                          |
| ASI                                  | 1.8                                              |
| Max. 0.050-s Average                 |                                                  |
| Longitudinal                         | -5.4 g                                           |
| Lateral                              | -14.0 g                                          |
| Vertical                             | 1.8 g                                            |
| Post-Impact Trajectory               |                                                  |
| Stopping Distance                    | 221 ft. downstream / 40 ft. toward traffic lanes |
| Vehicle Stability                    |                                                  |
| Maximum Roll Angle                   | 7 degrees                                        |
| Maximum Pitch Angle                  | 9 degrees                                        |
| Maximum Yaw Angle                    | 34 degrees                                       |
| Vehicle Snagging                     | No                                               |
| Vehicle Pocketing                    | No                                               |
| Test Article Deflections             |                                                  |
| Dynamic                              | 6.8 in.                                          |
| Permanent                            | 3.4 in.                                          |
| Working Width                        | 38.7 in.                                         |
| Height of Working Width              | 28.0 in.                                         |
| Vehicle Damage                       |                                                  |
| VDS                                  | 01RFQ5                                           |
| CDC                                  | 01FREW4                                          |
| Max Exterior Deformation             | 11.0 in.                                         |
| OCDI                                 | RF0000000                                        |
| Max Occupant Compartment Deformation | None                                             |

#### Table 23. Summary of results for MASH Test 3-11 on Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk Option 2—Post-Impact Information

### MASH Test 3-10 (Crash Test No. 606861-4)

#### **Test Designation and Actual Impact Conditions**

MASH Test 3-10 involves an 1100C vehicle weighing 2420 lbs  $\pm 55$  lbs impacting the CIP of the bridge barrier at an impact speed of 62 mi/h  $\pm 2.5$  mi/h and an angle of 25 degrees  $\pm 1.5$  degrees. The CIP for MASH Test 3-10 on the Louisiana Retrofit post and beam bridge rail with safety walk Option 2 was 3.6 ft.  $\pm 1$  ft. upstream of the centerline of the fourth open joint in the deck/beam. Figure 45 and Figure 83 depict the target impact point.



Figure 83. Test vehicle/bridge rail geometrics for Test No. 606861-4

(a) Frontal view of 1100C test vehicle at target impact point

(b) Field side view of 1100C test vehicle at target impact point

The 1100C vehicle used in the test weighed 2404 lbs, and the actual impact speed and angle were 61.5 mi/h and 25.7 degrees. The actual impact point was 3.7 ft. upstream of the centerline of the fourth open joint in the deck/beam. Minimum target IS was 51 kip-ft., and actual IS was 57 kip-ft.

#### Weather Conditions

The test was performed on the morning of December 11, 2020. Weather conditions at the time of testing were as follows: wind speed: 5 mi/h; wind direction: 215 degrees (vehicle was travelling at a heading of 150 degrees); temperature: 64°F; relative humidity: 100 percent.
### **Test Vehicle**

Figure 84 shows the 2014 Nissan Versa used for the crash test. The vehicle's test inertia weight was 2404 lbs, and its gross static weight was 2569 lbs. The height to the lower edge of the vehicle bumper was 7.0 in., and the height to the upper edge of the bumper was 22.25 in. Figure 138 in Appendix K gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

#### Figure 84. Test vehicle before Test No. 606861-4



(a) Right side of 1100C test vehicle

(b) Left side of 1100C test vehicle

### **Test Description**

Table 24 lists events that occurred during Test No. 606861-4. Figure 139 through Figure 141 in Appendix K present sequential photographs during the test.

| Table 24. | <b>Events</b> | during | Test | No. | 606861-4 |
|-----------|---------------|--------|------|-----|----------|
|-----------|---------------|--------|------|-----|----------|

| Time (s) | Events                                                                                                                                  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 0.0000   | Vehicle impacts curb                                                                                                                    |
| 0.0160   | Right front tire lifts off of the pavement                                                                                              |
| 0.0310   | Vehicle begins to redirect                                                                                                              |
| 0.0330   | Right front bumper contacts bridge rail                                                                                                 |
| 0.0990   | Left front tire lifts off of the pavement                                                                                               |
| 0.1570   | Left rear tire lifts off of pavement                                                                                                    |
| 0.1990   | Vehicle travelling parallel to bridge rail                                                                                              |
| 0.2130   | Right rear bumper contacts bridge rail                                                                                                  |
| 0.4160   | Vehicle loses contact with bridge rail while traveling at 53.2 mi/h, trajectory angle of 5.5 degrees, and heading angle of 10.7 degrees |

For longitudinal barriers, it is desirable that the vehicle redirects and exits the barrier within the exit box criteria (not less than 32.8 ft. downstream from loss of contact for cars and pickups). The test vehicle exited within the exit box criteria defined in MASH. Brakes on the vehicle were applied at 2.75 s, and the vehicle subsequently came to rest 175 ft. downstream of the impact and 11 ft. toward traffic lanes.

### **Damage to Test Installation**

Figure 85 through Figure 87 show the damage to the Option 2 bridge rail. There was some gouging and scuffing of the sidewalk at the point of impact, and the curb cracked at posts 12, 13, and 14. The cracks at posts 12 and 13 extended from the traffic side of the curb to the field side, and under the deck 11 in. at post 12 and 9 in. at post 13. The posts were also cracked at posts 12 and 13. At post 14, the curb and post were cracked on the field side. There was also some scuffing on the rail. Working width<sup>15</sup> was 33.0 in., and

<sup>&</sup>lt;sup>15</sup> Per MASH, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

height of working width was 4.6 in. Maximum dynamic deflection during the test was 1.8 in., and maximum permanent deformation was 0.6 in.



Figure 85. Option 2 ridge rail after Test No. 606861-4

- (a) Bridge rail/test vehicle after test
- (b) Traffic side of bridge rail at impact



Figure 86. Damage to traffic face of bridge rail after Test No. 606861-4

(a) Traffic side at impact point

(b) Traffic side of joint



(c) Traffic side of posts at joint

(d) Traffic side loss of contact



Figure 87. Damage on field side of bridge rail after Test No. 606861-4

(a) Field side upstream of joint

(b) Field side downstream of joint

#### **Damage to Test Vehicle**

Figure 88 shows the damage sustained by the vehicle. The front bumper, grill, hood, radiator and support, right front fender, right front tire and rim, right strut and tower, right front and rear doors, right rear quarter panel, right rear tire and rim, and rear bumper were damaged. Maximum exterior crush to the vehicle was 9.0 in. in the front plane at the right front corner at bumper height. Maximum occupant compartment deformation was 0.5 in. in the right front floor pan and right front kick panel area. Figure 89 shows the interior of the vehicle. Figure 142 and Figure 143 in Appendix K provide exterior crush and occupant compartment measurements.

Figure 88. Test vehicle after Test No. 606861-4



(a) Front of 1100C test vehicle after test

(b) Right front of 1100C test vehicle

Figure 89. Interior of test vehicle after Test No. 606861-4



(c) Interior of cab of 1100C

(a) Right front floor pan of 1100C test vehicle

### **Occupant Risk Factors**

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk and results are shown in Table 25. Figure 90, Table 26, and Table 27 summarize these data and other pertinent information from the test. Figure 144 in Appendix K shows the vehicle angular displacements, and Figure 145 through Figure 147 in Appendix K show acceleration versus time traces.

| Occupant Risk Factor                | Value      | Time                                  |
|-------------------------------------|------------|---------------------------------------|
| OIV                                 |            |                                       |
| Longitudinal                        | 19.7 ft/s  | at 0,1060 a an might side of interior |
| Lateral                             | 31.2 ft/s  | at 0.1009 s on fight side of interior |
| Occupant Ridedown Accelerations     |            |                                       |
| Longitudinal                        | 4.0 g      | 0.1383 - 0.1483 s                     |
| Lateral                             | 8.6 g      | 0.2297 - 0.2397 s                     |
| THIV                                | 11.0 m/s   | at 0.1049 s on right side of interior |
| ASI                                 | 2.1        | 0.0830 - 0.1330 s                     |
| Maximum 50-ms Moving Average        |            |                                       |
| Longitudinal                        | -8.8 g     | 0.0509 - 0.1009 s                     |
| Lateral                             | -16.0 g    | 0.0561 - 0.1061 s                     |
| Vertical                            | -3.6 g     | 0.0224 - 0.0724 s                     |
| Maximum Roll, Pitch, and Yaw Angles |            |                                       |
| Roll                                | 12 degrees | 2.5000 s                              |
| Pitch                               | 16 degrees | 0.5178 s                              |
| Yaw                                 | 46 degrees | 0.9913 s                              |

#### Table 25. Occupant risk factors for Test No. 606861-4

### Figure 90. Summary of results for MASH Test 3-10 on Louisiana Retrofit Post and Beam Bridge Rail with Safety walk Option 2



(a) 0.000 s





(c) 0.400 s

(d) 0.600 s



(e) Impact summary

(f) Cross-section of bridge rail

| General Information       |                                                                  |
|---------------------------|------------------------------------------------------------------|
| Test Agency               | Texas A&M Transportation Institute                               |
| Test Standard Test No.    | MASH Test 3-10                                                   |
| TTI Test No.              | 606861-4                                                         |
| Test Date                 | 2020-12-11                                                       |
| Test Article              |                                                                  |
| Туре                      | Longitudinal Barrier—Bridge Rail                                 |
| Name                      | Louisiana Retrofit post and beam bridge rail with safety walk    |
|                           | Option 2                                                         |
| Installation Length       | 106 ft10 <sup>3</sup> /4 in.                                     |
| Material or Key Elements  | Reinforced cantilevered concrete deck, with 10-in. high sidewalk |
|                           | with curb and posts topped by a concrete beam, with two retrofit |
|                           | rectangular hollow steel rails secured to concrete beam          |
| Foundation Type/Condition | Concrete Bridge Deck, Damp                                       |
| Test Vehicle              |                                                                  |
| Type/Designation          | 1100C                                                            |
| Make and Model            | 2014 Nissan Versa                                                |
| Curb                      | 2343 lbs.                                                        |
| Test Inertial             | 2404 lbs.                                                        |
| Dummy                     | 165 lbs.                                                         |
| Gross Static              | 2569 lbs.                                                        |
| Impact Conditions         |                                                                  |
| Speed                     | 61.5 mi/h                                                        |
| Angle                     | 25.7 degrees                                                     |
| Location                  | 3.7 ft. upstream of fourth joint                                 |
| Impact Severity           | 57 kip-ft.                                                       |
| Exit Conditions           |                                                                  |
| Speed                     | 53.2 mi/h                                                        |
| Exit Trajectory/Heading   | 5.5 degrees/10.7 degrees                                         |

# Table 26. Summary of results for MASH Test 3-10 on Louisiana Retrofit Post and Beam Bridge Rail with Safety walk Option 2—Pre-Impact Information

| Occupant Risk Values                 |                             |
|--------------------------------------|-----------------------------|
| Longitudinal OIV                     | 19.7 ft/s                   |
| Lateral OIV                          | 31.2 ft/s                   |
| Longitudinal Ridedown                | 4.0 g                       |
| Lateral Ridedown                     | 8.6 g                       |
| THIV                                 | 11.0 m/s                    |
| ASI                                  | 2.1                         |
| Max. 0.050-s Average                 |                             |
| Longitudinal                         | -8.8 g                      |
| Lateral                              | -16.0 g                     |
| Vertical                             | -3.6 g                      |
| Post-Impact Trajectory               |                             |
| Stopping Distance                    | 175 ft. downstream          |
|                                      | 11 ft. toward traffic lanes |
| Vehicle Stability                    |                             |
| Maximum Roll Angle                   | 12 degrees                  |
| Maximum Pitch Angle                  | 16 degrees                  |
| Maximum Yaw Angle                    | 46 degrees                  |
| Vehicle Snagging                     | No                          |
| Vehicle Pocketing                    | No                          |
| Test Article Deflections             |                             |
| Dynamic                              | 1.8 in.                     |
| Permanent                            | 0.6 in.                     |
| Working Width                        | 33.0 in.                    |
| Height of Working Width              | 4.6 in.                     |
| Vehicle Damage                       |                             |
| VDS                                  | 01RFQ5                      |
| CDC                                  | 01FREW4                     |
| Max Exterior Deformation             | 9.0 in.                     |
| OCDI                                 | RF0000000                   |
| Max Occupant Compartment Deformation | 0.5 in.                     |
|                                      |                             |

# Table 27. Summary of results for MASH Test 3-10 on Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk Option 2—Post-Impact Information

## Discussion of Results for MASH TL-3 Tests on Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk Option 2

Table 28 and Table 29 show that the Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk performed acceptably and met the specifications for MASH TL-3 longitudinal barriers.

| Evaluation<br>Factors  | Evaluation <sup>16</sup><br>Criteria | Test Results                                                                                                                                                                                                                                                                                                                                           | Assessment |
|------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Structural<br>Adequacy | A.                                   | The Louisiana Retrofit post and beam bridge rail with<br>safety walk Option 2 contained and redirected the<br>2270P vehicle. The vehicle did not penetrate,<br>underride, or override the installation. Maximum<br>dynamic deflection during the test was 6.8 in.                                                                                      | Pass       |
| Occupant<br>Risk       | D.                                   | The concrete curb and posts fractured into several<br>pieces. However, these fragments did not penetrate or<br>show potential for penetrating the occupant<br>compartment, or present undue hazard for others on<br>the bridge barrier (several fragments came to rest<br>below the bridge deck).<br>No occupant compartment deformation was observed. | Pass       |
|                        | F.                                   | The 2270P vehicle remained upright during and after<br>the collision event. Maximum roll was 7 degrees and<br>pitch was 9 degrees.                                                                                                                                                                                                                     | Pass       |
|                        | H.                                   | Longitudinal OIV was 13.1 ft/s, and lateral OIV was 24.6 ft/s.                                                                                                                                                                                                                                                                                         | Pass       |
|                        | I.                                   | Maximum longitudinal occupant ridedown was 6.1 g, and maximum lateral occupant ridedown was 8.2 g.                                                                                                                                                                                                                                                     | Pass       |

# Table 28. Performance evaluation summary forTest 3-11 on Louisiana Retrofit Post and BeamBridge Rail with Safety Walk Option 2

<sup>&</sup>lt;sup>16</sup> See Table 9 for details of respective evaluation criteria.

| Evaluation<br>Factors  | Evaluation <sup>17</sup><br>Criteria | Test Results                                                                                                                                                                                                                                                                                                | Assessment |
|------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Structural<br>Adequacy | A.                                   | The Louisiana Retrofit post and beam bridge rail with<br>safety walk Option 2 contained and redirected the<br>1100C vehicle. The vehicle did not penetrate,<br>underride, or override the installation. Maximum<br>dynamic deflection during the test was 1.8 in.                                           | Pass       |
| Occupant<br>Risk       | D.                                   | No detached elements, fragments, or other debris was<br>present to penetrate or show potential for penetrating<br>the occupant compartment, or present undue hazard<br>for others on the bridge barrier.<br>Maximum occupant compartment deformation was<br>0.5 in. in the right floor pan/kick panel area. | Pass       |
|                        | F.                                   | The 1100C vehicle remained upright during and after<br>the collision event. Maximum roll was 12 degrees and<br>pitch was 16 degrees.                                                                                                                                                                        | Pass       |
|                        | H.                                   | Longitudinal OIV was 19.7 ft/s, and lateral OIV was 31.2 ft/s.                                                                                                                                                                                                                                              | Pass       |
|                        | I.                                   | Maximum longitudinal occupant ridedown was 4.0 g, and maximum lateral occupant ridedown was 8.6 g.                                                                                                                                                                                                          | Pass       |

# Table 29. Performance evaluation summary for MASH Test 3-10 on Louisiana Retrofit Post andBeam Bridge Rail with Safety Walk Option 2

<sup>&</sup>lt;sup>17</sup> See Table 9 for details of respective evaluation criteria.

## Developing Retrofitting Methods and Procedures for Single Bridge Rail Design

### Summary of Results of Full-Scale Crash Testing

For this project, a new retrofit bridge rail was designed and succesfully crash tested with respect to MASH Test Level 3. The retrofit bridge rail design was developed from typical details used on existing safety walk bridge barrier railing systems used on vintage Louisiana bridges. Details of the bridge rail retrofit constructed and tested for this project are shown in Figure 91 through Figure 100. In December, 2020, two crash tests, MASH Test 3-10 and 3-11, were performed on the new retrofit design shown in Appendix F. Both crash tests were successful with respect to MASH TL-3 specifications.

### Installation of MASH TL-3 of Option 2 Retrofit Bridge Rail

The retrofit bridge rail presented on the drawings in this report has been successfully crash tested to MASH TL-3 Specifications. The following installation procedure can be used to assist in installing the retrofit bridge rail on existing DOTD bridges with vintage concrete post and beam or solid concrete parapet bridge rails with safety walks. This retrofit bridge rail attaches to the top of a concrete post and rail or solid concrete parapet as shown in the previous figures. The retrofit bridge rail is located in front of the concrete bridge rail and still preserves much of the walkway area. In some cases, any existing attachments on top of the existing concrete barriers in the field should be removed to provide the necessary clearance for the new retrofit bridge rail as presented herein. In no way shall existing hardware remain in place, or be added other than what is shown on the "as-tested" test installation drawings as presented in Appendix F. Please refer to the section below for all material specifications required for the retrofit bridge rail to be used on all MASH TL-3 retrofit applications using this design.

### **Installation Procedure**

1. Figure 91 shows a view of the simulated Louisiana safety walk bridge barrier railing system with concrete deck cantilever (TTI simulated crash test installation) without the retrofit bridge rail.



Figure 91. Safety walk barrier with concrete post and beam bridge rail

2. Drill and install adhesive anchors for L6×4×½ angle support brackets on top of concrete bridge rail. These holes shall be drilled and the anchors installed as per the manufacturer's specifications. Hilti RE500-V3 adhesive shall be used for these ¾-in. diameter by 8 in. long anchors. The anchors shall be embedded 6 in. minimum. These anchors shall be A193-B7 galvanized threaded rods installed typically using 52 in. maximum spacing on the top of the barrier as shown in the drawings provided herein. For the solid concrete parapet design Option shown in Figures 70 to 72, the anchors shall be embedded 10 in. minimum. Photographs of the adhesive anchoring system used for this project and recommended for use for this retrofit design are provided in Figure 92 and Figure 93.



Figure 92. Hot dipped A193 B7 ¾-in. diameter Hilti threaded rod

Figure 93. Hilti HIT-RE500-V3 Adhesive Anchoring System used (anchor bolts installed as per manufacturer's specifications)



3. Install L6×4×½ angle brackets and allow complete cure time as per Hilti HIT-RE500-V3 specifications. Figure 94 shows the bracket installed. The bracket shall be installed with the 4-in. angle face flush (even) with the face of the existing concrete barrier as shown in the photos and drawings. Please note, the concrete bridge rail is flush with the face of the support angle to provide a good uniform bearing surface for the new retrofit bridge rail. Also note, two additional holes were provided in the  $L6 \times 4 \times \frac{1}{2}$  angle. These holes can be used if rebar is encountered in the drilling operation using the center hole in the angle.



Figure 94. Installed L6×4×1⁄2 angle support bracket with 3⁄4-in. A193 B7 galvanized threaded rod with Hilti RE500-V3 adhesive

4. Install/connect the top HSS10×4×<sup>3</sup>/<sub>8</sub> rail to the L6×4×<sup>1</sup>/<sub>2</sub> angle support brackets. At each bracket location, the top rail element is attached to the bracket using a single round head 5/8-in. diameter x 5 <sup>1</sup>/<sub>2</sub> in. long bolt. Some temporary shoring support might be required to bolt this top rail element to the L6×4×<sup>1</sup>/<sub>2</sub> angle support bracket. Figure 95 shows the top rail installed with the temporary shoring. Installation of the top rail should progress from one end of the bridge installation to the other adding bridge rail splices and additional rail elements as you proceed toward the opposite end of the bridge.



Figure 95. Installation of first/top rail element with temporary shoring support

5. Install lower HSS10×4× $\frac{3}{8}$  rail element by connecting lower element to top rail element using  $\frac{5}{8}$ -in. × 22 in. long B7 threaded rods with F436 washers and two hex nuts. Figure 96 shows the lower rail installation.

#### Figure 96. Installation of lower HSS10×4×3% rail and bolting to top rail with 5%-in. diameter B7 threaded rods



Figure 97 shows the installation of a typical splice joint assembly as installation of the rail progresses from one end of the installation (bridge) to the other. Photos of the completed rail section are shown in Figure 98 through Figure 100. From start to finish (after curing of the adhesive anchors), installation of the bridge rail installation was completed within 3 hours.



Figure 97. Typical splice assembly of rail prior to adding adjacent rail section

Figure 98. Front view completed retrofit rail installation





Figure 99. End view completed retrofit rail installation

Figure 100. Field side view completed retrofit rail installation



### Material Specifications for MASH TL-3 Retrofit Bridge Rail

The retrofit bridge rail design tested for this project met all the safety and performance criteria for MASH TL-3. To meet the requirements for MASH TL-3, the following material specifications shall be used for the retofit bridge design for implematation in the field on DOTD bridges. A list of the material specifications for this retrofit bridge rail design are provided as follows. Please refer to the drawings provided in this report for further information.

- Anchor bolts <sup>3</sup>/<sub>4</sub>-in. diameter, 8 in. long A193 B7 hot-dipped galvanized threaded rods, embedded 6 in. minimum.
- Anchor bolt epoxy Hilti HIT-RE500 V3 Epoxy. Anchor bolts shall be installed as per the manufacturer's specifications.
- HSS10×4×3/8 Steel Tube ASTM A500 grade B material, hot dipped galvanized. The maximum distance of 60 ft. is recommended between splice. It is recommended that 60 ft. maximum section lengths be used.
- Joint assembly, HSS5×3×3/8 and HSS4×3×3/8 ASTM A500 grade B material, hot dipped galvanized.
- Rail attachment bolts, round head bolt, <sup>5</sup>/<sub>8</sub>-in. diameter × 5<sup>1</sup>/<sub>2</sub> in. long attaching rail to L6×4×<sup>1</sup>/<sub>2</sub> bracket angles ASTM A449 with F436 washer and heavy hex nut, hot dipped galvanized.
- Rail connecting bolts, <sup>5</sup>/<sub>8</sub>-in. diameter × 22 in. long bolts connecting HSS10×4×<sup>3</sup>/<sub>8</sub> tubes A193 B7 threaded rods, with F436 washers (2) and heavy hex nuts (2), hot-dipped galvanized.
- $L6 \times 4 \times \frac{1}{2}$  attachment bracket ASTM A36 material, hot-dipped galvanized.
- Splice connection bolts, <sup>1</sup>/<sub>2</sub>-in. diameter × 1<sup>1</sup>/<sub>2</sub>-in. long ASTM A307 material, hotdipped galvanized.

# Preliminary Transition Details for New Retrofit Bridge Rail Design for Concrete Barriers with Safety Walks

TTI received current details used for safety walk barriers from Kurt Brauner, with DOTD. Figure 101 shows the current details used for safety walk barriers. In addition, TTI has received details for the DOTD proposed transition standard. Figure 102 shows the DOTD proposed transition standard details.

TTI has developed preliminary details for two approach guardrail transitions for the retrofit bridge rail designed and successfully crash tested with respect to MASH TL-3 specifications for this project. Two concepts have been developed for this project. Option 1, as shown in Figure 103 below, utilizes similar details to the one shown in Figure 101. The transition connects directly to the steel retrofit bridge rail and concrete post and rail. The transition rail laps over the new retrofit bridge rail over a distance of approximately 20 ft. and is blocked out over this distance as shown in Figure 103. After further analyses and detailing of this transition concept, full scale crash testing will be necessary to meet the requirements of MASH TL-3 specifications.

Option 2, as shown in Figure 104 and Figure 105, connects directly to the end of the retrofit bridge rail. The retrofit bridge rails extend off the ends of the existing concrete bridge rail a sufficient length to make the connection to the steel retrofit tubular rail elements. A new tapered curb section is constructed off the bridge end and tapers the curb back and down beneath the guardrail as shown in Figure 104 and Figure 105. Some additional connection hardware will likely be necessary to connect the transition end shoe to the retrofit tubular rail elements. After further analyses and detailing of this transition concept, full scale crash testing will be necessary to meet the requirements of MASH TL-3 specifications.



Figure 101. Current retrofit transition for safety walk barriers received from DOTD

















## Conclusions

The purpose of the tests reported herein was to assess the performance of the Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk according to the safety-performance evaluation guidelines included in MASH. The crash tests were performed in accordance with MASH TL-3, which involves an 1100C and a 2270P vehicle impacting the bridge barrier at a target impact speed of 62 mi/h and an impact angle of 25 degrees.

During MASH Test 3-10 on the Louisiana Retrofit post and beam bridge rail with safety walk Option 1, the vehicle experienced occupant ridedown accelerations above the limit of 20.49 g as specified in MASH. Table 30 shows that the bridge rail did not meet the specifications for MASH longitudinal barriers.

| <b>Evaluation Factors</b> | Evaluation Criteria | Test No. 606861-1 | Test No. 606861-2 |
|---------------------------|---------------------|-------------------|-------------------|
| Structural Adequacy       | А.                  | S                 | S                 |
| Occupant Risk             | D.                  | S                 | S                 |
|                           | F.                  | S                 | S                 |
|                           | Н.                  | S                 | S                 |
|                           | I.                  | S                 | U                 |
|                           | Test No.            | MASH              | MASH              |
|                           |                     | <b>Test 3-11</b>  | Test 3-10         |
|                           | Pass/Fail           | Pass              | Fail              |
| 1                         |                     | S = Satisfacto    | bry               |
|                           |                     | U = Unsatisfa     | ictory            |

Table 30. Assessment summary for MASH TL-3 Tests onLouisiana Retrofit Post and Beam Bridge Rail with Safety Walk Option 1

The bridge rail was redesigned and MASH Tests 3-10 and 3-11 were repeated. Table 31 shows the Retrofit post and beam bridge rail with safety walk Option 2 met the requirements for MASH TL-3 longitudinal barriers.

| Evaluation Factors  | Evaluation Criteria | Test No. 606861-3 | Test No. 606861-4 |
|---------------------|---------------------|-------------------|-------------------|
| Structural Adequacy | А.                  | S                 | S                 |
| Occupant Risk       | D.                  | S                 | S                 |
|                     | F.                  | S                 | S                 |
|                     | H.                  | S                 | S                 |
|                     | I.                  | S                 | S                 |
|                     | Test No.            | MASH<br>Test 3-11 | MASH<br>Test 3-10 |
|                     | Pass/Fail           | Pass              | Pass              |

Table 31. Assessment summary for MASH TL-3 Tests on Louisiana Retrofit Post and Beam Bridge Rail with Safety Walk Option 2

S = Satisfactory U = Unsatisfactory

## **Recommendations**<sup>18</sup>

The retrofit bridge rail Option 2 as tested herein, and anchored to a safety walk concrete post and beam bridge rail as shown herein, met all the safety and performance requirements of MASH TL-3 specifications. This retrofit bridge rail is recommended for use on all concrete post and beam and solid concrete barriers with safety walks 10 in. high or less and 18 in. wide or less. The retrofit bridge rail should be installed as per the recommendations provided in this report. Please refer to the section entitled "Developing Retrofitting Methods and Procedures for Single Bridge Rail Design." The height of the retrofit bridge rail should always be 40 in. from the roadway surface as successfully tested herein. The retrofit bridge rail shall be installed as per the specifications and procedures provided in the referenced section. In cases where the retrofit bridge using the  $L6 \times 4 \times \frac{1}{2}$  angle brackets is lower than the as tested height of 40 in., short steel baseplated posts shall be used instead of the  $L6 \times 4 \times \frac{1}{2}$  angle brackets. These short posts shall be W6×15 baseplated posts spaced on 6.0 ft. on centers (maximum) as shown on the solid concrete parapet design and presented herein, and shall be used to achieve the required height of 40 in. above the roadway surface. For the solid concrete parapet, the L6x4x1/2angle bracket can be used if this bracket results in the steel tubes being mounted at the correct height (as-tested height of 40 in.). Otherwise, the W6x15 baseplated post is recommend to achieve this correct height. Please refer to the drawings and material specifications contained in this report for additional information.

<sup>&</sup>lt;sup>18</sup> The opinions/interpretations identified/expressed in this section of the report are outside the scope of TTI Proving Ground's A2LA Accreditation.

# Acronyms, Abbreviations, and Symbols

| Term    | Description                                                                                                        |
|---------|--------------------------------------------------------------------------------------------------------------------|
| 1100C   | small (compact) test vehicle                                                                                       |
| 2270P   | pickup truck test vehicle                                                                                          |
| A2LA    | American Association for Laboratory Accreditation                                                                  |
| AASHTO  | American Association of State Highway and Transportation Officials                                                 |
| ASI     | Acceleration Severity Index                                                                                        |
| CDC     | SAE Collision Damage Classification                                                                                |
| CG      | center of gravity                                                                                                  |
| cm      | centimeter(s)                                                                                                      |
| FHWA    | Federal Highway Administration                                                                                     |
| ft.     | foot (feet)                                                                                                        |
| ft./s   | foot (feet)/second                                                                                                 |
| g       | unit of gravity                                                                                                    |
| h       | hour(s)                                                                                                            |
| in.     | inch(es)                                                                                                           |
| IEC     | International Electrotechnical Commission                                                                          |
| IS      | impact severity                                                                                                    |
| ISO     | International Standards Organization                                                                               |
| kip-ft. | kilopound [kip] which is one thousand pounds [lbf], a unit of force,<br>with feet [ft.], which is a unit of length |
| DOTD    | Louisiana Department of Transportation and Development                                                             |
| LTRC    | Louisiana Transportation Research Center                                                                           |
| lb.     | pound(s)                                                                                                           |
| m       | meter(s)                                                                                                           |
| m/s     | meters/second                                                                                                      |
| MASH    | AASHTO Manual for Assessing Roadside Safety Hardware, Second                                                       |
|         | Edition                                                                                                            |
| mi.     | mile(s)                                                                                                            |
| ms      | millisecond                                                                                                        |

| Term  | Description                                                       |
|-------|-------------------------------------------------------------------|
| NCHRP | National Cooperative Highway Research Program                     |
| NIST  | National Institute of Standards Technology                        |
| OCDI  | NCHRP Report 350 Appendix E: Occupant Compartment Deformation     |
|       | Index                                                             |
| OIV   | Occupant Impact Velocity                                          |
| psi   | pound(s) per square inch                                          |
| S     | second(s)                                                         |
| SAE   | Society of Automotive Engineers                                   |
| TDAS  | Tiny Data Acquisition System                                      |
| THIV  | Theoretical Head Impact Velocity                                  |
| TRAP  | Test Risk Assessment Program                                      |
| TTI   | Texas A&M Transportation Institute                                |
| VDS   | National Safety Council Vehicle Damage Scale for Traffic Accident |
|       | Investigators                                                     |

## References

- 1. AASHTO. *Manual for Assessing Roadside Safety Hardware, Second Edition.* American Association of State Highway and Transportation Officials, Washington, DC, 2016.
- 2. W. F. Williams, "4.3. Design & Full Scale Testing of Retrofit Bridge Rail for 24.8 Miles Long Southbound Causeway Bridge, New Orleans, Louisiana," Texas Transportation Institute, College Station, 2015



Appendix A. DOTD Bridge Rails








































## Appendix B. Details of Louisiana Retrofit Post and Beam with Safety Walk for Tests 606861-1&2





T1-ProjectFiles/68604 - LADOTD Bridge Railing Retrofits - Williams/Drafting, 68664 1-2 Drawing



T1-ProjectFiles/606861 - LADOTD Bridge Railing Retrofits - VMIIiams/Drafting, 606861 1-2 Drawing



T1-ProjectFiles/68604 - LADOTD Bridge Railing Retrofits - Williams/Drafting, 68664 1-2 Drawing



T/1-ProjectFiles/606/5-1 1-2/2007 Bridge Ratiling Retrofits - Williams/Drafting, 606361 1-2/2007 - 1/2



T:/1-ProjectFiles/606081 - LADOTD Bridge Railing Retrofits - Williams/Drafting, 606681 1-2 Drawing



T/1-ProjectFiles/606861 - LADOTD Bridge Railing Retrofits - Williams/Drafting, 606861 1-2 Drawing



Qriweng S-1 188806/S-1 188808, 2011 Fillion - Todial - Co-188806/Seli Ragion - OC-188806/Seli Ragion - 1705-200



T:/1-ProjectFiles/606061 - LADOTD Bridge Railing Retrofits - Williams/Drafting, 606361 1-2/606061 1-2 Drawing



01/wered 1-1 198906/2-1 198906 (printer d/zamell/W - To Gal - 00-198906/zeli 7 bejor 9 000-8137 102-8205 (-01/a



## Appendix C. Supporting Certification Documents for Test No. 606861-1&2

| ANY, INC.<br>ANY<br>O7<br>07<br>120' GRADE 4<br>07<br>107<br>11<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>81011<br>810110<br>8100000000 | FY STEEL COMPANY, INC.       IBOX 735       I'T X 77492       I'Y TX 77492       I'Y TX 77494       I'Y TY 7749       I'Y I'Y 1'Y 714       I'Y I'Y 1'Y 714       I'Y I'Y 1'Y 714       I'Y 1'Y 1'Y 1'Y 1'Y 1'Y 1'Y 1'Y 1'Y 1'Y 1 | MILL TEST CERTIFICATE<br>MANUFACTURER: VINTON STEEL LLC | D (ASTM A615) (ASTM A615/A615M)<br>CERTIFICATE NUMBER: 55757<br>PROGRAM NUMBER: 0080665407<br>ISSUING DATE: 25.06.2018<br>CERTIFICATE NUMBER: 55757<br>PAGE: 1/1 | PERCENT BEND ACTUAL W.<br>LLONGATION PER FOOT * 1b/ft | 19 ACCEPTABLE 0.642 | Si Ni Cr Mo Cu V Cb CE | 25 0.1930 0.1423 0.1535 0.0199 0.2396 0.0000 0.0180 | ARE CORRECT AS CONTAINED IN THE RECORDS OF THE COMPANY.<br>America Act requirements of 23 CFR 635.410<br>CERTIFIED BY THE QUALITY DEPARTMENT - SIGNATURE ON FILE |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------|------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rY STEEL COMP/<br>BOX 735<br>rY TX 77494<br>rY STEEL COMPA<br>rY STEEL COMPA<br>rY TX 77494<br>r NUMBER: 4172<br>r NUMBER: 4172<br>r NUMBER: 4172<br>r T NUMBER: 4172<br>r 71494<br>r 71494<br>r 71494<br>r 71494<br>r 71494<br>r 71494<br>r 7140<br>r 7<br>r 7<br>r 7<br>r 7<br>r 7<br>r 7<br>r 7<br>r 7<br>r 7<br>r 7                                                                                                                                                                                                                                                                                    |                                                         | NNY, INC.<br>NY<br>20' GRADE 40 (AS<br>07                                                                                                                        | ENSILE PER<br>FRENGTH ELON                            | 81011               | 0, %                   | 0.0294 0.0325                                       | OVE FIGURES ARE<br>THE U.S.A.<br>ments of the Buy Ame                                                                                                            |

| annen le naul- | NUMBER: 0080665407<br>NG DATE: 25.06.2018<br>NUMBER: 55756<br>PAGE: 1/1                                            |                            |         |         |                |         | V (Gamic .<br>SIGNATURE ON FILE                                           | REET ADDRESS      |
|----------------|--------------------------------------------------------------------------------------------------------------------|----------------------------|---------|---------|----------------|---------|---------------------------------------------------------------------------|-------------------|
|                | PROGRAM<br>ISSUI                                                                                                   |                            |         |         | ₩ CE           | 0.3972  | Ctord .                                                                   | STI<br>1-10       |
|                | Ö                                                                                                                  |                            |         |         | se Cb          | -0.01   | NY.                                                                       |                   |
| LLC            |                                                                                                                    |                            |         |         | > %            | -0.003  | HE COMPA                                                                  |                   |
| ICATE          |                                                                                                                    |                            |         | 1       | ₽ Gu           | 0.2497  | RDS OF T                                                                  |                   |
| CERTIF         | SM)                                                                                                                | PER FOOT<br>1b/ft          | 0.987   |         | MO<br>&        | 0.0112  | THE RECO                                                                  |                   |
| TEST<br>RER: V | 4615/A61:                                                                                                          | 2                          | ABLE    |         | ∿ Cr           | 0.0995  | AINED IN                                                                  |                   |
| MILL           | ) (ASTM                                                                                                            | BENI                       | ACCEPTA |         | Ni<br>&        | 0.0700  | T AS CONT                                                                 |                   |
| MAN            | STM A615                                                                                                           | RCENT<br>GATION<br>\$      | 21      |         | s<br>S         | 0.1457  | CORRECT                                                                   |                   |
|                | DE 40 (AS                                                                                                          | FEION                      |         |         | w (V)          | 0.0393  | URES ARE<br>L<br>he Buy Am                                                | 843               |
|                | ANY, INC<br>ANY<br>X 20' GRA<br>207                                                                                | TENSILE<br>STRENGTH<br>psi | 76669   |         | £4, e%         | 0.0145  | BOVE FIG<br>THE U.S./<br>rements of t                                     | D. BOX 12         |
|                | EL COMF<br>735<br>77492<br>EL COMP<br>90<br>817PA #5<br>17494<br>818R: 4177<br>BER: 4177<br>BER: 4177<br>BER: 4177 | HLL                        | 0       | NOITI   | Mn<br>&        | 0.5971  | HAT THE A<br>TURED IN<br>all the requi<br>ity Assurar                     | NTON P.C          |
|                | ATY STE<br>ATY TX<br>ATY TX<br>ATY STE<br>8011 HW<br>S011 HW<br>ATY TX<br>RV16040E<br>IST NUM<br>AER NUM           | YIEL<br>STRENG<br>psi      | 4800    | COMPOS  | U %            | 0.2775  | ERTIFY TF<br>MANUFAC<br>MANUFAC<br>steel meets<br>SGV Qual<br>20 10/09/20 | DRESS<br>ELLLC VI |
|                | OLD TO: K<br>HIP TO: K<br>IATERIAL:<br>GELIVERY L<br>O. CUSTOM                                                     | HEAT<br>NUMBER             | 1820222 | HEMICAL | HEAT<br>NUMBER | 1820222 | E HEREBY C<br>ELTED AND<br>is reinforcing<br>pproved by B<br>anual REV-2  | NTON STEE         |

|                           |                                                                           | 0                   |                   |                                                                          |       |      | 7                                                                                                             |
|---------------------------|---------------------------------------------------------------------------|---------------------|-------------------|--------------------------------------------------------------------------|-------|------|---------------------------------------------------------------------------------------------------------------|
|                           | 2-May-2018<br>21690<br>10675                                              | MG-08 January 1 201 |                   |                                                                          |       |      | tan.                                                                                                          |
| age: 1                    | Date: 2:<br>ber: 8<br>ber: 4                                              | NB                  | 1                 | .002                                                                     |       |      | Van                                                                                                           |
| Ċ.                        | B.L. Num<br>Load Num                                                      |                     | ICAL TESTS        | 004                                                                      |       |      | fla R                                                                                                         |
| REPORT                    |                                                                           |                     | CHEMI             | .012                                                                     |       |      | En                                                                                                            |
| . TEST F                  |                                                                           |                     | Mn                | 1.02                                                                     |       |      |                                                                                                               |
| IED MILL                  | 00337724<br>el - Texas<br>79 W<br>TX 75846<br>445                         |                     | U<br>U            | 4. <del>6.</del>                                                         |       |      |                                                                                                               |
| CERTIF                    | Ship from:<br>MTR #: 00<br>Nucor Stei<br>8812 Hwy<br>JEWETT,<br>800-527-6 |                     | WT%               |                                                                          |       |      | QUALITY                                                                                                       |
|                           |                                                                           | entative.           | BEND              | Ŋ                                                                        |       |      |                                                                                                               |
|                           |                                                                           | ales represe        | ELONG % IN 8"     | 15.0%                                                                    |       |      |                                                                                                               |
| CRATION<br>ORATION        |                                                                           | your inside s       | TENSILE<br>P.S.I. | 108,400<br>747MPa                                                        |       |      | ments.                                                                                                        |
| OR CORP                   |                                                                           | oy contacting       | YIELD<br>P.S.I.   | 67,500<br>465MPa                                                         |       |      | tured in acco                                                                                                 |
| L                         |                                                                           | rbar.com or I       |                   | AASHT                                                                    |       |      | been manufac<br>t satisfies<br>orm                                                                            |
| 8                         | R PU                                                                      | le at www.nuco      | SCRIPTION         | xas<br>20 (Gr60)<br>5M-16 GR 60                                          |       |      | lbed herein has<br>above and that i<br>is material<br>od States.                                              |
| 32-                       | CUSTOME                                                                   | ts are availab      | DES               | 537-4<br>5r Steel - Te:<br>5 Rebar<br>(615M GR42<br>M A615/A61<br>M31-15 |       |      | aterial descridands listed a rformed on thi d in the United phases of the |
| STEEL<br>X 735<br>TX 7749 | STEEL-(<br>TX 7749                                                        | Data Shee           |                   | 322€<br>116/#<br>60' A<br>ASTI                                           |       |      | chat the m<br>s and stan<br>tas not pe<br>unifacture<br>int. or Alt                                           |
| PO BO                     | KATY S<br>N/A<br>KATY, 7                                                  | erial Safety D      | .OT #<br>IEAT #   | PO# =><br>/181040570<br>/18104057                                        | <br>ł |      | eby certify t<br>pecifications<br>Weld repair w<br>Melred and Ma<br>Merrury Radi                              |
| SOL                       | SHIP                                                                      | Mat                 |                   | 55                                                                       | <br>  | <br> | the the                                                                                                       |



T:/1-ProjectFiles/606861 - LADOTD Bridge Railing Retrofits - Williams/Drafting, 606861 1-2/Concrete





| Proving Grau<br>3100 SH 47,<br>Bryan, TX 77                                        | And Texas A&M<br>Transporta<br>Institute<br>Bidg 7091<br>Bidg 7091<br>Ror Phone 979485-6375 | Mation<br>5.7.2                 | Concrete Samplin                                                                          | <b>g</b> QPF 5.7.2 | Revision<br>Date:<br>2018-04-17 |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------|--------------------|---------------------------------|
| Qu                                                                                 | ality Policy For                                                                            | m Revised by: E<br>Approved by: | <ol> <li>L. Griffith</li> <li>D. Kuhn</li> </ol>                                          | Revision:<br>6     | Page:<br>1 of 1                 |
| Project No                                                                         | 606861                                                                                      | Casting Date:                   | 2018-07-19                                                                                | Mix Design (psi)   | 3000                            |
| Printed Name of<br>Fechnician takin<br>Sampl<br>Signed Name of<br>Fechnician takin | of<br>e<br>of<br>g<br>A                                                                     | RIFZ<br>Th                      | Printed Name of<br>Technician breaking<br>Sample<br>Signed Name of<br>Technician breaking | min                | a Kobinso                       |
| Sample                                                                             | Truck No.                                                                                   | Ticket No.                      | Sample                                                                                    | on (from concret   | e map)                          |
| WILTI                                                                              | 7108                                                                                        | 4850758                         | 100% of                                                                                   | Wall, 6"           | from Top                        |
| DITZ                                                                               | 8162                                                                                        | 4850501                         | Deck For 3                                                                                | coment 3 an        | d 'k each way                   |
| D2/53                                                                              | 7211                                                                                        | 4850572                         | Deck for No                                                                               | reh fort 1/2 Say   | meat each Sic                   |
| Load No.                                                                           | Break Date                                                                                  | Cylinder Age                    | Total Load (lbs)                                                                          | Break (psi)        | Average                         |
| 73                                                                                 | 2018-10-02                                                                                  | 75 d                            | 4050                                                                                      | 114500             |                                 |
| 1                                                                                  | 1                                                                                           | 1                               | 4085                                                                                      | 115500             | 4002                            |
| l                                                                                  | (                                                                                           |                                 | 3891                                                                                      | 110600             | /                               |
| T2                                                                                 | 2010-10-3                                                                                   | 752                             | 4527                                                                                      | 128000             | 1 180                           |
| 1                                                                                  | 1                                                                                           |                                 | 4333                                                                                      | 122500             | 4486                            |
|                                                                                    |                                                                                             |                                 | 4588                                                                                      | 120000             | 1                               |
| - B 2010-2                                                                         | 2018-10-2                                                                                   | 250                             | 5359                                                                                      | 151500             |                                 |
| 1                                                                                  | 1                                                                                           | 1                               | 5199                                                                                      | 147000             | 5111                            |
|                                                                                    |                                                                                             |                                 | 4275                                                                                      | 135000             |                                 |
|                                                                                    |                                                                                             |                                 |                                                                                           |                    |                                 |
|                                                                                    |                                                                                             |                                 |                                                                                           |                    |                                 |
|                                                                                    |                                                                                             |                                 |                                                                                           |                    |                                 |
|                                                                                    |                                                                                             |                                 |                                                                                           |                    |                                 |
|                                                                                    |                                                                                             |                                 |                                                                                           |                    |                                 |
|                                                                                    |                                                                                             |                                 |                                                                                           |                    |                                 |
|                                                                                    |                                                                                             |                                 |                                                                                           | C. Contraction     |                                 |
|                                                                                    |                                                                                             |                                 |                                                                                           |                    |                                 |

|                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TICKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TNO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Martin<br>Marietta Marietta Martin M<br>Suite<br>Dallas, T                                                                                                                                                                                                           | <b>Tarietta</b><br>Freeway<br>400<br>x 75234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                      | Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management<br>Management | A Comparison of | and the second se |  |  |  |  |  |  |
| LOAD TIME TO JOB ARRIVE JOB SITE BEGIN P                                                                                                                                                                                                                             | OUR FINISH POUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LEAVE JOB SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ARRIVE PLANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| 18:19 15 45 11 11 11                                                                                                                                                                                                                                                 | 17 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| WATER ADDED ON JOB AT CUSTOMER'S REQUESTGAL.<br>ALLOWABLE WATER (withheld from batch)GAL.<br>TEST CYLINDER TAKENYESNO BY<br>CYLINDER TAKENBEFOREAFTER WATER<br>ADDITIONAL WATER ADDED TO THIS CONCRETE WILL REDUCE<br>TTS STRENGTHATTER ADDED IN EXCESS OF SPECIFIED | CUSTOMER SIGNATURE<br>X<br>DELIVERY OF THESE MATI<br>CONDITIONS ON THE REV<br>SIGNATURE ABOVE .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ERIALS IS SUBJECT<br>Verse side herec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TO THE TERMS ANI<br>OF AS ACCEPTED B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| SLUMP IS AT CUSTOMER'S RISK.                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| CUSTOMER NAME AND DELIVERY ADDRESS<br>BRYAN CONSTRUCTION C<br>TAMU RIVERSIDE CAMPUS                                                                                                                                                                                  | PLANT TRUCK ORDER NO.<br>617721120<br>DRIVER NAME<br>JUAN RAMOS<br>CUSTOMER NUMBER PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SLUMP P.O.<br>24 5.0 293<br>7/19<br>CUM. QTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | #/JOB/LOT GRID DATE ORDERED OTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                      | 209190 745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UNITPRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AMOUNT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| SPECIAL DELIVERY INSTRUCTIONS<br>SOUTH 2818, RIGHT LEONARD, RIGHT47, LEFT INTO RELLIS<br>THEY WILLMEET YOU RIGHT THERE                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| SPECIAL DELIVERY INSTRUCTIONS<br>SOUTH 2818, RIGHT LEONARD, RIGHT47, LE<br>THEY WILLMEET YOU RIGHT THERE                                                                                                                                                             | FT INTO RELLIS SAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ES TAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| SPECIAL DELIVERY INSTRUCTIONS<br>SOUTH 2818, RIGHT LEONARD, RIGHT47, LE<br>THEY WILLMEET YOU RIGHT THERE<br>DANGER! MAY CAUSE ALKALI BURNS.<br>SEE WARNINGS ON REVERSE SIDE.                                                                                         | FT INTO RELLIS SAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | es tax<br>otal<br>e only FORM: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 210013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| CUSTON                                                                          | IER'S COPY                                                                                                      |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                                                                 | IICKET NO.                                                                                                      |
| Martin M                                                                        | larietta                                                                                                        |
| Martin 1503 LBJ                                                                 | 4850758                                                                                                         |
| Manetta Suite                                                                   | 400                                                                                                             |
| Dallas, T                                                                       | x 75234                                                                                                         |
|                                                                                 |                                                                                                                 |
| 1                                                                               |                                                                                                                 |
| LOAD TIME TO JOB ARRIVE JOB SITE BEGIN P                                        | OUR FINISH POUR LEAVE JOB SITE ARRIVE PLANT                                                                     |
| 1:38 11 :00 11 :10 11.                                                          | 22 101.25 .                                                                                                     |
|                                                                                 |                                                                                                                 |
| ALLOWABLE WATER (withheld from batch)                                           | X X                                                                                                             |
| TEST CYLINDER TAKEN I YES INO BYGAL.                                            | DELIVERY OF THESE MATERIALS IS SUBJECT TO THE TERMS AND                                                         |
| CYLINDER TAKEN DEFORE AFTER WATER                                               | CONDITIONS ON THE REVERSE SIDE HEREOF AS ACCEPTED BY                                                            |
| ADDITIONAL WATER ADDED TO THIS CONCRETE WILL REDUCE                             | SIGNATURE ABOVE .                                                                                               |
| SLUMP IS AT CUSTOMFR'S RISK                                                     |                                                                                                                 |
| CUSTOMER NAME AND DELIVERY ADDRESS                                              | PLANT TRUCK ORDER NO. SLUMP P.O. #/JOB/LOT GRID                                                                 |
| TAMU RIVERSIDE CAMPUS                                                           | 617 7108 2024 5.0 292                                                                                           |
|                                                                                 | VICTOR MARTINEZ 7/19/18                                                                                         |
|                                                                                 | CUSTOMER NUMBER PROJECT CUM. QTY ORDERED QTY                                                                    |
| OAD QUANTITY PRODUCT CODE DESCRIPTION                                           | 309195 74925 10.00 30.00                                                                                        |
| 10 100 0000 000000                                                              | UNITPRICE AMOUNT                                                                                                |
| and and and and and and                                                         | I had been a second and the second |
|                                                                                 |                                                                                                                 |
|                                                                                 |                                                                                                                 |
|                                                                                 |                                                                                                                 |
|                                                                                 |                                                                                                                 |
| SPECIAL DELIVERY INSTRUCTIONS                                                   | CALED TAY                                                                                                       |
| THEY WILLMEET YOU RIGHT THERE                                                   | FT INTO RELLIS SALES TAX                                                                                        |
| Station Station                                                                 | TOTAL                                                                                                           |
| DANGER! MAY CAUSE ALKALI BURNS.                                                 |                                                                                                                 |
| SEE WARNINGS ON REVERSE SIDE.                                                   | FOR OFFICE USE ONLY FORM: 2210010                                                                               |
| 717                                                                             | - P                                                                                                             |
| Truck Driver User , Dien T                                                      | inket Nue Tinteti ID Time Date 1                                                                                |
| 7108 923381 user 485075                                                         | B (67601 11:38 7/19/18                                                                                          |
| 10.00 CYDS BDOTCA00 Returned Dty                                                | Mix Age Seq Load ID                                                                                             |
| Material Design Dty Required Batched Var                                        | * Noisture Actual Nat                                                                                           |
| 10 1374 1b 14268 1b 14320 1b 6,373                                              | 8.50% M 12 g1<br>3.70% M 63 g1                                                                                  |
| 8 158 lb 1580 lb 1590 lb 30638                                                  | *                                                                                                               |
| 901 2 02 20 02 -2.01%<br>901 8 02 02 -2.01%                                     |                                                                                                                 |
| PEØ 242 10 1653 10 1653 10 -9, 01%<br>PEØ 7 oz # 147 oz 146 oz -0, 41%          | 198 gl                                                                                                          |
| Actual Num Batches: 1<br>Load Total: 40033 15 Design 0.537 Water/Cement 0.534 T | Besign 290,0 ol Actual 273 3 al To Odda 15 7 al                                                                 |
| Slump: 5.00 in Water in Truck: 0.0 gl Adjust Water: 0.0                         | a gl / Load Tris Rater: -1.7 gl/ CVD                                                                            |
|                                                                                 |                                                                                                                 |

| CUSTOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ER'S COPY                                                                                                                      | TICKE                                        | T NO.                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------|
| Martin<br>Marietta<br>Marietta<br>Marietta<br>Martin M<br>1503 LBJ<br>Suite<br>Dallas, Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>freeway</b><br>400<br>x 75234                                                                                               | 4850                                         |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                |                                              |                                        |
| LOAD TIME TO JOB ARRIVE JOB SITE BEGIN P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OUR FINISH POUR                                                                                                                | LEAVE JOB SITE                               | ARRIVE PLANT                           |
| WATER ADDED ON JOB AT CUSTOMER'S REQUEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CUSTOMER SIGNATURE                                                                                                             | 2.1 -                                        | •                                      |
| ALLOWABLE WATER (withheld from batch)GAL.<br>TEST CYLINDER TAKEN Q YES NO BY<br>CYLINDER TAKEN BEFORE AFTER WATER<br>ADDITIONAL WATER ADDED TO THIS CONCRETE WILL REDUCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DELIVERY OF THESE MAT<br>CONDITIONS ON THE RE<br>SIGNATURE ABOVE .                                                             | ERIALS IS SUBJECT<br>VERSE SIDE HEREO        | TO THE TERMS ANI<br>F AS ACCEPTED BY   |
| SLUMP IS AT CUSTOMER'S RISK.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.1                                                                                                                            | State State                                  |                                        |
| BRYAN CONSTRUCTION C<br>TAMU RIVERSIDE CAMPUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PLANT TRUCK ORDER NO<br>617 8162 20<br>DRIVER NAME                                                                             | SLUMP P.O. 4                                 | AJOB/LOT GRID                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CUSTOMER NUMBER PROJECT                                                                                                        | CUM. QTY                                     | ORDERED OTY                            |
| 10.00 CYDS BDOTCA00 CLASS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                |                                              |                                        |
| SPECIAL DELIVERY INSTRUCTIONS<br>SOUTH 2818, RIGHT LEONARD, RIGHT47, LE<br>THEY WILLMEET YOU RIGHT THERE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FT INTO RELLIS SAL                                                                                                             | ES TAX                                       |                                        |
| DANGER! MAY CAUSE ALKALI BURNS.<br>SEE WARNINGS ON REVERSE SIDE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FOR OFFICE USE                                                                                                                 | ONLY FORM: 2                                 | 210012                                 |
| Truck         Driver         User         Disp T           8162         37791         user         485090           Load Size         Mix Code         Returned         Rty           10.200         CYDS         BDOTCA00         I           Material         Design Dty         Required         Batched         X Var           157         1931 lb         19407 lb         19400 lb         -0.044           16         1374 lb         14268 lb         100.004         1           18         2931 lb         2930 lb         22040 lb         0.044           900         202         202         22 02         22 02         0.064           18         202         02         22 02         22 02         0.065         1.75           1980         7 02         1456 02         146 02         0.065         1.75         1.065           1980         7 02         1456 02         146 02         0.065         0.065         0.065           10ad Total:         33876 lb         Design 0.537         Mater/Cement 0.534         Materia 0         Materia 0 | icket Num Ticket<br>1 57603<br>Mix Age<br>* Moisture Actual Mat<br>0.50% M 12 g1<br>3.70% M 53 g1<br>198 g1<br>Design 290.0 g1 | ID Time D.<br>12:03'7<br>Seq Load<br>D 68559 | ate<br>/19/18<br>ID<br>To Add: 16.6 gl |
| and in the ord of the last water, to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - Brit Fran It to March 1 -1                                                                                                   | ar ga ou                                     |                                        |

| Proving Gro<br>3100 SH 41<br>Brvan TX 7                                     | And<br>Hold 2011<br>Texas A&M<br>Transporta<br>Institute<br>Texas A&M University<br>College Station, TX 71<br>Phone 073-6454376 | 1<br>tion<br>7843 | .7.2 Co                         | oncrete Sampli                                                                          | Doc. No.<br>QPF 5.7.2 | Revision<br>Date:<br>2018-04-17 |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------|-----------------------------------------------------------------------------------------|-----------------------|---------------------------------|
| Q                                                                           | uality Policy Form                                                                                                              | n Ret             | vised by: B. L<br>proved by: D. | . Griffith<br>Kuhn                                                                      | Revision:<br>6        | Page:<br>1 of 1                 |
| Project No                                                                  | b: 606861                                                                                                                       | Castir            | ng Date:                        | 2018-7-20                                                                               | Mix Design (ps        | i): <u>3000</u>                 |
| Printed Name<br>Fechnician takin<br>Samp<br>Signed Name<br>Fechnician takin | of<br>le Gregs FRI<br>of A A                                                                                                    | 12<br>1-1-        | T                               | Printed Name or<br>echnician breaking<br>Sample<br>Signed Name or<br>echnician breaking | mai                   | + 1 Rob :                       |
| Samp                                                                        | Truck No                                                                                                                        | Ticket            | No                              | Jaca                                                                                    | tion (from concre     | ate man)                        |
| P1                                                                          | 7/2 4                                                                                                                           | 48656             | 30                              | South, M.J                                                                              | ble, & Nor            | th Segments                     |
| Load No.                                                                    | Break Date                                                                                                                      | Cylinde           | er Age                          | Total Load (lbs)                                                                        | Break (psi)           | Average                         |
| PI                                                                          | 2018-10-2                                                                                                                       | 680               | ļ                               | 5055                                                                                    | 151500                |                                 |
| 1                                                                           | 1                                                                                                                               | 1                 |                                 | 5355                                                                                    | 151500                | 5235                            |
|                                                                             |                                                                                                                                 |                   |                                 | 498'7<br>                                                                               | 14/000                | )                               |
|                                                                             |                                                                                                                                 |                   |                                 |                                                                                         |                       |                                 |
|                                                                             |                                                                                                                                 |                   |                                 |                                                                                         |                       |                                 |
|                                                                             |                                                                                                                                 |                   |                                 |                                                                                         |                       |                                 |
|                                                                             |                                                                                                                                 |                   |                                 |                                                                                         |                       |                                 |

|                                                                                                                     |                                                       | 1                   |                  | CUST                          | OMER'S CO                                | PY                                |                                | TIC                                      | ET NO.                      | 3                   |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------|------------------|-------------------------------|------------------------------------------|-----------------------------------|--------------------------------|------------------------------------------|-----------------------------|---------------------|
| Mo                                                                                                                  | <b>irtin</b><br>irietta                               |                     | Mar<br>1         | tin<br>503 Ll<br>Su<br>Dallas | Mari<br>BJ Freew<br>ite 400<br>, Tx 7523 | etta<br><sup>ay</sup><br>4        |                                | 1.<br>4486                               | 5630                        |                     |
| LOAD TIME                                                                                                           | ТО ЈОВ                                                | ARRIVE JOE          | SITE             | BEG                           | IN POUR                                  | FINISH                            | 6 5<br>I POUR                  | 6 3 Ø                                    | ARRIVE                      | PLANT               |
| \$:37 8                                                                                                             | :41                                                   | 9:1                 | 3                | 9                             | :16                                      |                                   | :                              | :                                        |                             | :                   |
| WATER ADDED ON JOB AT<br>ALLOWABLE WATER (withh<br>TEST CYLINDER TAKEN C<br>CYLINDER TAKEN C<br>ADDITIONAL WATER AD | CUSTOMER'S<br>eld from batch)<br>YES INO<br>BEFORE IN | BY                  |                  | G/                            | LL. CUSTOM<br>XL. Z<br>DELIVI<br>CONDI   | ERY OF TH<br>TIONS ON<br>TURE ABO | ESE MATE<br>N THE REV<br>DVE . | RIALS IS SUBJEC<br>ERSE SIDE HERI        | CT TO THE TE<br>EOF AS ACCI | RMS ANI<br>EPTED B' |
| ITS STRENGTH. ANY W                                                                                                 | ATER ADDED                                            | IN EXCES            | S OF SF          | PECIFIE                       | D                                        |                                   |                                |                                          |                             |                     |
| CUSTOMER NAME AND DELIVE<br>BRYAN CONSTR<br>TAMU RIVERSI                                                            | RY ADDRESS<br>UCTION C<br>DE CAMPUS                   | 3                   | 1                |                               | PLANT<br>61<br>DRIVER NA                 | TRUCK<br>7 712<br>ME<br>THOMY     | ORDER NO.                      | SLUMP P.<br>13 5.0 29<br>7/2<br>CUM. 0TY | 0. #/JOB/LOT                | GRID                |
| and the second second                                                                                               | Sun parties                                           | Sec.                |                  |                               | 50                                       | 9195 1                            | 7498                           | 85 7.                                    | 00                          | 7.00/               |
|                                                                                                                     |                                                       |                     |                  |                               |                                          |                                   |                                |                                          |                             |                     |
| SPECIAL DELIVERY INSTRUCTION<br>SOUTH 2818,<br>RELLIS THEY I                                                        | S<br>RIGHT LEC                                        | INARD RC<br>FYOU F  | ), RIG           | SHT H                         | WY 47,<br>RANCE                          | LEFT I                            | NTO SALES                      | s tax                                    |                             |                     |
| SPECIAL DELIVERY INSTRUCTION<br>SOUTH 2016,<br>RELLIS THEY I                                                        | IS<br>RIGHT LEC<br>JILL MEE                           | DNARD RE            | ), RIC           | ант н<br>5 епт                | WY 47,<br>RANCE                          | LEFT I                            | NTO SALES                      | s TAX<br>AL                              |                             |                     |
| SPECIAL DELIVERY INSTRUCTION<br>SOUTH 2818,<br>RELLIS THEY I<br>DANGER! MAY CAUSE ALKA<br>SEE WARNINGS ON REVER     | IS<br>RIGHT LEC<br>AILL MEE<br>LI BURNS.<br>ISE SIDE. | DNARD RI<br>F YOU F | ), RIC<br>IT THE | SHT H<br>E ENT                | WY 47,<br>RANCE                          | LEFT I                            | NTO SALES                      | al<br>DNLY FORM:                         | 221020                      | 02                  |

| Proving Grou<br>3100 SH 47.<br>Brvan. TX 7                                                              | and Texas A&M<br>Transporta<br>Institute<br>Bidg 7091<br>Stor<br>Phone 973-945-6375 | 5.7.2                        | Concrete Samplin                                                                                    | <b>g</b> QPF 5.7.2              | Revision<br>Date:<br>2018-04-17 |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|
| Qu                                                                                                      | ality Policy Form                                                                   | n Revised by:<br>Approved by | B. L. Griffith<br>y: D. Kuhn                                                                        | Revision:<br>6                  | Page:<br>1 of 1                 |
| Project No<br>Printed Name o<br>Technician takin<br>Sampl<br>Signed Name o<br>Technician takin<br>Samol | $= \frac{606861}{67es}$                                                             | Casting Date                 | Printed Name of<br>Technician breaking<br>Sample<br>Signed Name of<br>Technician breaking<br>Sample | Mix Design (psi):<br>Max<br>Max | <u>3000</u><br>7 Robin          |
| Load No.                                                                                                | Truck No                                                                            | Ticket No                    | Locatio                                                                                             | on (from concret                | e man)                          |
| P2                                                                                                      | 7139                                                                                | 4869236                      | 2 segment,                                                                                          | M.d Sarth ,                     | M.d North                       |
| Load No.                                                                                                | Break Date                                                                          | Cylinder Age                 | Total Load (lbs)                                                                                    | Break (psi)                     | Average                         |
| PZ                                                                                                      | 2018-10-2                                                                           | 67                           | 4156                                                                                                | 117500                          |                                 |
| P2                                                                                                      | 1                                                                                   | 1                            | 3997                                                                                                | 113000                          | 4050                            |
| 122                                                                                                     |                                                                                     |                              | 3557                                                                                                | 113000                          |                                 |
|                                                                                                         |                                                                                     |                              |                                                                                                     |                                 |                                 |
|                                                                                                         |                                                                                     |                              |                                                                                                     |                                 |                                 |
|                                                                                                         |                                                                                     |                              |                                                                                                     |                                 |                                 |
|                                                                                                         |                                                                                     |                              |                                                                                                     |                                 |                                 |
|                                                                                                         |                                                                                     | ÷                            |                                                                                                     |                                 |                                 |
|                                                                                                         |                                                                                     |                              |                                                                                                     |                                 |                                 |
|                                                                                                         |                                                                                     |                              |                                                                                                     |                                 |                                 |
|                                                                                                         |                                                                                     |                              |                                                                                                     |                                 |                                 |

|                                                                                                                                     | 14-11                                                                                                                                                                                                                     |                                                                                                                        |                                                                                                                         | CUSTOM                                                                                                                                | ER'S CO                                        | PY                            |                                                                                            | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ICKET NO                                            |                                      |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------|
|                                                                                                                                     | Martin<br>Marietta                                                                                                                                                                                                        |                                                                                                                        | Mar                                                                                                                     | 503 LBJ<br>Suite<br>Dallas, Ta                                                                                                        | <b>lari</b><br>Freewa<br>400<br>x 7523         | ett<br>ay<br>4                |                                                                                            | American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>American<br>Ame | eege 236                                            |                                      |
| LOAD TIME                                                                                                                           | то јов                                                                                                                                                                                                                    | ARRIVE JO                                                                                                              | DB SITE                                                                                                                 | BEGIN P                                                                                                                               | DUR                                            | FIN                           | ISH POUR                                                                                   | LEAVE JOB SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TE                                                  | ARRIVE PLANT                         |
| 9:03                                                                                                                                | 9:13                                                                                                                                                                                                                      | :                                                                                                                      |                                                                                                                         | :                                                                                                                                     |                                                |                               | :                                                                                          | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     | :                                    |
| WATER ADDED ON                                                                                                                      | JOB AT CUSTOMER'S                                                                                                                                                                                                         | S REQUEST                                                                                                              |                                                                                                                         | GAL.                                                                                                                                  | CUSTOM                                         | ER SIGNAT                     | URE                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |                                      |
| ALLOWABLE WATE                                                                                                                      | R (withheld from batch                                                                                                                                                                                                    | 1)                                                                                                                     | 8                                                                                                                       | GAL.                                                                                                                                  | DELIVE                                         | BY OF                         | THESE MAT                                                                                  | FRIALS IS SUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |                                      |
| CYLINDER TAKEN<br>ADDITIONAL WA<br>ITS STRENGTH.<br>SLUMP IS AT CUS                                                                 | BEFORE D<br>TER ADDED TO THI<br>ANY WATER ADDE<br>STOMER'S RISK.                                                                                                                                                          | AFTER WATE                                                                                                             | R<br>TE WILL<br>SS OF SI                                                                                                | REDUCE                                                                                                                                | CONDI<br>SIGNA                                 | TIONS<br>TURE A               | ON THE REV<br>Above .                                                                      | VERSE SIDE H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EREOF AS                                            | ACCEPTED B                           |
| BRYAN CO                                                                                                                            | ID DELIVERY ADDRESS                                                                                                                                                                                                       |                                                                                                                        |                                                                                                                         |                                                                                                                                       | PLANT<br>61                                    | TRUCK                         | ORDER NO.                                                                                  | SLUMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P.O. #/JOB/L                                        | OT GRID                              |
|                                                                                                                                     | ERSIDE CAMPU                                                                                                                                                                                                              | IS                                                                                                                     |                                                                                                                         |                                                                                                                                       | DRIVER NA                                      | ME                            | Lucas                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DATE                                                |                                      |
|                                                                                                                                     |                                                                                                                                                                                                                           |                                                                                                                        |                                                                                                                         |                                                                                                                                       | CUSTOMER                                       | NUMBER                        | PROJECT                                                                                    | CUM. OTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OF                                                  | DEREDQTY                             |
| LOAD QUANTITY PE                                                                                                                    | RODUCT CODE DES                                                                                                                                                                                                           | CRIPTION                                                                                                               |                                                                                                                         |                                                                                                                                       | 00                                             | 9190                          | 743                                                                                        | UNITPRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00 A                                              | MOUNT                                |
| SPECIAL DELIVERY INS                                                                                                                | TELICTIONS                                                                                                                                                                                                                |                                                                                                                        |                                                                                                                         |                                                                                                                                       |                                                |                               |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |                                      |
| SOUTH 28<br>RELLIS T                                                                                                                | 18, RIGHT LE                                                                                                                                                                                                              |                                                                                                                        |                                                                                                                         | SHT HWY                                                                                                                               | 47, 1                                          |                               | INTO SALE                                                                                  | ES TAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     |                                      |
| 1 Shee backberride Self - 1                                                                                                         | + the 1 - YV & to be - 1 Thereby                                                                                                                                                                                          | 1 100                                                                                                                  |                                                                                                                         | C ENTRH                                                                                                                               | NUC                                            |                               | то                                                                                         | DTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |                                      |
| DANGER! MAY CAU<br>SEE WARNINGS ON                                                                                                  | SE ALKALI BURNS.                                                                                                                                                                                                          |                                                                                                                        |                                                                                                                         |                                                                                                                                       |                                                | FOR                           |                                                                                            | ONLY FORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 220                                               | 4892                                 |
|                                                                                                                                     |                                                                                                                                                                                                                           |                                                                                                                        |                                                                                                                         |                                                                                                                                       |                                                | FUF                           | OFFICE USE                                                                                 | UNLY FORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                                      |
| Truck<br>7139<br>Load Siz<br>5.00 CY<br>Naterial I<br>157<br>18<br>900<br>900<br>900<br>900<br>Actual<br>Load Total:<br>Slump: 5.00 | Driver<br>934548<br>e Mix Code<br>DS BDOTCA00<br>Nesign Qty Reg<br>1331 1b 567<br>1374 1b 710<br>233 1b 456<br>1358 1b 79<br>2 oz 1<br>242 1b 67<br>7 oz 1<br>7 oz 1<br>7 w Batches: 1<br>20034 1b Pesis<br>in Water in T | User<br>user<br>Ret<br>9 1b<br>5 1b<br>6 02<br>1b<br>6 02<br>6 1b<br>6 02<br>6 1b<br>8 02<br>9 0,537 Wa<br>ruck: 0.0 g | urned<br>9728 lb<br>7160 lb<br>1480 lb<br>738 lb<br>19 az<br>679 lb<br>74 az<br>679 lb<br>74 az<br>ter/Cemen<br>1 Adjus | Disp T<br>486923<br>Gty<br>X Var<br>0.42%<br>0.42%<br>0.42%<br>1.02%<br>0.98%<br>0.98%<br>0.31%<br>0.35%<br>t 0.533 T<br>t Water: 0.1 | icket<br>5<br>8,255<br>3,307<br>8,255<br>3,307 | Num<br>Mix<br>sture<br>M<br>M | Ticket<br>67883<br>Age<br>Actual Wat<br>3 gl<br>28 gl<br>105 gl<br>5.8 gl<br>ris Water: -1 | ID Time<br>9:03<br>Seq Lo<br>D 68<br>Actual 136.6<br>.agl/ CVD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date<br>7/27<br>ad ID<br>339<br>60<br>60<br>91 To R | 718<br>26861 PL<br>151<br>dd: 8.4 gl |
|                                                                                                                                     |                                                                                                                                                                                                                           |                                                                                                                        |                                                                                                                         |                                                                                                                                       |                                                |                               |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |                                      |

| Proving Gro<br>3100 SH 47<br>Brvan. TX 7                | und<br>Bidg 7091<br>7807<br>Und 2091<br>Reidg 7091 | M<br>ation | 5.7.2 0                       | Concrete Sampli                                                    | Doc. No.<br>QPF 5.7.2 | Revision<br>Date:<br>2018-04-17 |
|---------------------------------------------------------|----------------------------------------------------|------------|-------------------------------|--------------------------------------------------------------------|-----------------------|---------------------------------|
| Q                                                       | uality Policy For                                  | m          | Revised by: B<br>Approved by: | . L. Griffith<br>D. Kuhn                                           | Revision:<br>6        | Page:<br>1 of 1                 |
| Project No                                              | . 606361                                           | Ca         | sting Date:                   | 2018-02-02                                                         | Mix Design (ps        | si): <u>3000 psr</u>            |
| Printed Name<br>Fechnician takir<br>Samp<br>Signed Name | of<br>le GRtG                                      | FRI        | 72                            | Printed Name of<br>Technician breaking<br>Sample<br>Signed Name of | mat                   | t Robin                         |
| Fechnician takir<br>Samp                                | le Dra                                             | rk         | nz                            | Technician breaking<br>Sample                                      |                       | nr                              |
| Load No.                                                | Truck No.                                          | Ti         | cket No.                      | Locat                                                              | tion (from concr      | rete map)                       |
| //                                                      | 8163                                               | 188        | 2859                          | 3 Parapet                                                          | s on Ris.             | ht Side                         |
|                                                         |                                                    |            |                               |                                                                    |                       |                                 |
|                                                         |                                                    |            | 1                             |                                                                    |                       |                                 |
| Load No.                                                | Break Date                                         | Cyli       | nder Age                      | Iotal Load (Ibs)                                                   | Break (psi)           | Average                         |
| //<br>                                                  | 2012-10-2                                          | 6          | ( days                        | 9280                                                               | 121000                | LIDOF                           |
| 11                                                      |                                                    |            | 1                             | 379/                                                               | 112000                | 1085                            |
| //                                                      |                                                    |            |                               | 3927                                                               | 1/2200                |                                 |
|                                                         |                                                    |            |                               |                                                                    |                       |                                 |
|                                                         |                                                    |            |                               |                                                                    |                       |                                 |
|                                                         |                                                    |            |                               | 100 A.                                                             |                       |                                 |
|                                                         |                                                    |            |                               |                                                                    |                       | -                               |
|                                                         |                                                    |            |                               |                                                                    |                       |                                 |
|                                                         |                                                    |            |                               |                                                                    |                       |                                 |
|                                                         |                                                    |            |                               |                                                                    |                       |                                 |
|                                                         |                                                    |            |                               |                                                                    |                       |                                 |
|                                                         |                                                    |            |                               |                                                                    |                       |                                 |
|                                                         |                                                    |            |                               |                                                                    |                       |                                 |
|                                                         |                                                    |            |                               |                                                                    |                       |                                 |
|                                                         |                                                    | -          |                               |                                                                    |                       |                                 |
|                                                         |                                                    |            |                               |                                                                    |                       |                                 |
|                                                         | -                                                  |            |                               |                                                                    |                       |                                 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CUSTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DMER'S COPY                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOAD TIME         TO JOB         ANNUE JOB STE         DECAM POUR         PNISH POUR         LEAVE JOB STE         ANNUE PLANT           1:35         1         :4/3         2:02         2:28         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Martin<br>Marietta<br>Marietta<br>Marietta<br>Martin<br>Sui<br>Dallas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Marietta<br>BJ Freeway<br>ite 400<br>, Tx 75234                                                                                                                                                          |
| 1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135       1:135 <td< th=""><th>LOAD TIME TO JOB ARRIVE JOB SITE BEG</th><th>IN POUR FINISH POUR LEAVE JOB SITE ARRIVE PLANT</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOAD TIME TO JOB ARRIVE JOB SITE BEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IN POUR FINISH POUR LEAVE JOB SITE ARRIVE PLANT                                                                                                                                                          |
| WATER ADDED ON JOB AT CUSTOMER'S REQUEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13:135 1 :43 2:00 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 08                                                                                                                                                                                                       |
| ALLOWABLE WATER (withhed from batch)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WATER ADDED ON JOB AT CUSTOMER'S REQUEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L. CUSTOMER SIGNATURE                                                                                                                                                                                    |
| CVUINDER TAKEN DEFORE AFTER WATER<br>ADDITIONAL WATER ADDED TO THIS CONCRETE WILL REDUCE<br>ITS STRENGTH. ANY WATER ADDED IN EXCESS OF SPECIFIED<br>SUMMER NAME AND ELIVERY ADDRESS<br>DRYEN AME AND ADDRESS<br>DRYEN AME AND ELIVERY ADDRESS<br>DRYEN AME AND ELIVERY ADDRESS<br>DRYEN AME AND ADDRESS<br>DRYEN ADDRESS<br>D | ALLOWABLE WATER (withheld from batch)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DELIVERY OF THESE MATERIALS IS SUBJECT TO THE TERMS A                                                                                                                                                    |
| ADDITIONAL WATER ADDED TO THIS CONCRETE WILL REDUCE<br>TS STRENGTH. ANY WATER ADDED IN EXCESS OF SPECIFIED<br>SUMMISE AT CUSTOMER'S RISK.<br>CUSTOMER NAME AND DELIVERY ADDRESS<br>DEVENANCE IN DELIVERY ADDRESS<br>DEVENANCE AND ELIVERY ADDRESS<br>DEVENANCE AND ADDRESS<br>DEVENANCE ADDRESS DE COMPUS<br>CUSTOMER NAME AND DELIVERY ADDRESS<br>DEVENANCE ADDRESS DE COMPUS<br>CUSTOMER NAME AND ADDRESS<br>DEVENANCE ADDRESS DE COMPUS<br>CUSTOMER NAME AND ADDRESS<br>DEVENANCE ADDRESS DE COMPUS<br>CUSTOMER NAME AND ADDRESS<br>DEVENANCE ADDRESS DE COMPUS<br>SUMMISER PROJECT CUM. ON ORDERED OF<br>SUMMISER PROJECT CUM. OF ADDRESS<br>CUSTOMER NAME AND ADDRESS<br>SPECIAL DELIVERY INSTRUCTIONS<br>HUT 21 WEST. LEFT INTO RELLIS THEY WILL MEET YOU<br>THERE SITTING IN A SILVER CHEVROLET TRUCK<br>TOTAL<br>DANGERN MAY CAUSE ALKALI BURNS.<br>SEE WARNINGS ON REVERSE DIDE<br>DISP TICKET NUS TICKET NUS TICKET NUS TICKET ID<br>SUMS DISP TICKET NUS TICKET NUS TICKET ID<br>DISP TICKET NUS TICKET NUS TICKET ID<br>TIME DATE<br>DISP TICKET NUS TICKET NUS TICKET ID<br>DISP TICKET NUS TICKET NUS TICKET NUS TICKET ID<br>DISP TICKET NUS TICKET IS TICKET NUS TICKET ID<br>DISP TICKET NUS TICKET NUS TICKET ID<br>DISP TICKET NUS TICKET NUS TICKET NUS TICKET ID<br>DISP TICKET NUS TICKET NUS TICKET NUS TICKET NUS TICKET ID<br>DISP TICKET NUS TICKET IS TICKET NUS TICKET AT TICKET ID<br>DISP TICKET IS TICKET NUS TICKET ADDITICKET IS TICKET NUS TIC                                                               | CYLINDER TAKEN BEFORE AFTER WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CONDITIONS ON THE REVERSE SIDE HEREOF AS ACCEPTED                                                                                                                                                        |
| SLUMP IS AT CUSTOMER'S RISK.       CUSTOMER'S ALCOLOR OF A CURLED OF A CURL                                                                                                                                                                                                                                            | ADDITIONAL WATER ADDED TO THIS CONCRETE WILL REDUCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E SIGNATURE ABOVE .                                                                                                                                                                                      |
| CUSTOMER NAME AND DELIVERY ADDRESS BY AND CONSTRUCTION C TAMU RIVERSIDE CAMPUS PLANT TRUCK ORDERNO. SLUMP P0. MOBALOT GRD G17 A163 2033 5.0 292 DIVERNAME G17 A163 2033 5.0 292 DIVERNAME CUSTOMER NUMBER PROJECT CUM. GTV ONDERD GTV S09195 74925 3.00 3.00 UNITPRICE AMOUNT 3.00 CYDS BDOTCA00 CLASS A  SPECIAL DELIVERY INSTRUCTIONS HVY 21 WEST, LEFT INTO RELLIS THEY WILL MEET YOU THERE SITTING IN A SILVER CHEVROLET TRUCK THERE SITTING IN A SILVER CHEVROLET TRUCK DATE DISP TICKET NUB FOR OFFICE USE ONLY FORM: 2205141  Truck Driver User Disp Ticket Nus Ticket ID Time Date A163 37794 USER Disp Ticket Nus Ticket ID Time Date A163 37794 USER Disp Ticket Nus Ticket ID Time Date A163 37794 USER Disp Ticket Nus Ticket ID Time Date A163 37794 USER Disp Ticket Nus Ticket ID Time Date A163 37794 USER Disp Ticket Nus Ticket ID Time Date A163 37794 USER Disp Ticket Nus Ticket ID Time Date A163 37794 USER DISP TICKET NUS Returned Qty Mix Age Seq Load ID 69090  A177 10 423 10 477 10 423 10 423 10 4.513  A187 11 01 11 10 10 423 10 4.513  A187 12 10 4.51  A187 12 10                                                                                                                                                                              | SLUMP IS AT CUSTOMER'S RISK.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | u                                                                                                                                                                                                        |
| TAMU RIVERSIDE CAMPUS       DRIVERNAME     DESCRIPTION       DIVERNAME     DESCRIPTION       UNIT PROJECT CODE     DESCRIPTION       UNIT PROJECT CODE     DESCRIPTION       UNIT PROJECT CODE     DESCRIPTION       UNIT PRICE     AMOUNT       3.00     CUM. CIY       OUN CIY     DOTE DATE       UNIT PRICE     DESCRIPTION       UNIT PRICE       SPECIAL DELIVERY INSTRUCTIONS       HIV: CI WEST, LEFT INTO RELLIS THEY WILL MEET YOU       THERE SITTING IN A SILVER CHEUROLET TRUCK       TOTAL       DAMOERI MAY CAUSE ALKALI BURNS.       SEE WARNINGS ON REVERSE SIDE.       FOR OFFICE USE ONLY FORM: 2205141       Truck       Disp Ticket Nus Ticket ID       Time Pate       ABACH       AMOUNT       TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BRYAN CONSTRUCTION C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PLANT TRUCK ORDER NO. SLUMP P.O. #/JOB/LOT GRID                                                                                                                                                          |
| CUSTOMER NUMBER     CHRC     BY22/18       CUSTOMER NUMBER     ONO     OPDERED DY       S09195     74925     3.00     3.00       LOAD QUANTITY     PRODUCT CODE     DESCRIPTION     UNIT PRICE     AMOUNT       3.00     CYDS     BDDTEA00     CLASS A     CLASS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TAMU RIVERSIDE CAMPUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DRIVER NAME DATE                                                                                                                                                                                         |
| S09195     74925     3.00     3.00       LOAD QUANTITY     PRODUCT CODE     DESCRIPTION     UNITPRICE     AMOUNT       3.00     CYDS     BDDTCA00     CLASS A     UNITPRICE     AMOUNT       3.00     CYDS     BDDTCA00     CLASS A     SALES TAX       PECIAL DELIVERY INSTRUCTIONS     HWY 21 WEST, LEFT INTO RELLIS THEY WILL MEET YOU     SALES TAX       THERE SITTING IN A SILVER CHEOROLET TRUCK     TOTAL       DAMGERI MAY CAUSE ALKALI BURNS.     SEE WARNINGS ON REVERSE SIDE.     FOR OFFICE USE ONLY FORM: 2205141       Truck     Driver     User     Disp Ticket Num Ticket ID Time Date       A163     37794     user     4882854       68132     13:335     8/2/16       3.00     CYDS BDOTCA00     Hix Age     Seq       Material Design Aft     Required     Batched     Alter       157     153     10     4201     402       157     154     10     4201     4202       157     155     10     4201     4032       157     156     10     4201     4032       157     155     10     4201     4202       157     156     10     4201     421       157     156     10     4201     42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CUSTOMER NUMBER PROJECT CUM. QTY ORDERED QTY                                                                                                                                                             |
| SPECIAL DELIVERY INSTRUCTIONS<br>HVY 21 WEST, LEFT INTO RELLIS THEY WILL MEET YOU<br>THERE SITTING IN A SILVER CHEVROLET TRUCK<br>DANGER! MAY CAUSE ALKALI BURNS.<br>SEE WARNINGS ON REVERSE SIDE.<br>DANGER! MAY CAUSE ALKALI BURNS.<br>SEE WARNINGS ON REVERSE SIDE.<br>Truck Driver User Disp Ticket Num Ticket ID Time Date<br>8163 37794 user 4482854 68132<br>Truck Driver User Disp Ticket Num Ticket ID Time Date<br>8163 37794 user 4482854 68132<br>Load Size Mix Code Returned Qty Mix Age Seq Load ID<br>3.00 CYDS BODTCA00<br>Material Design Oty Age ID 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LOAD QUANTITY PRODUCT CODE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 509195 74925 3,00 3.00                                                                                                                                                                                   |
| SPECIAL DELIVERY INSTRUCTIONS<br>HW1 21 WEST, LEFT INTO RELLIS THEY WILL MEET YOU<br>THERE SITTING IN A SILVER CHEVROLET TRUCK<br>TOTAL<br>DANGERI MAY CAUSE ALKALI BURNS.<br>SEE WARNINGS ON REVERSE SIDE.<br>Truck Driver User Disp Ticket Num Ticket ID Time Date<br>8163 37794 User Disp Ticket Num Ticket ID Time Date<br>8163 37794 User Disp Ticket Num Ticket ID Time Date<br>8163 37794 User Disp Ticket Num Ticket ID Time Date<br>8163 37794 User Disp Ticket Num Ticket ID Time Date<br>8163 37794 User Disp Ticket Num Ticket ID Time Date<br>8163 37794 User Disp Ticket Num Ticket ID Time Date<br>8163 37794 User Disp Ticket Num Ticket ID Time Date<br>8163 37794 User A4882854 58132<br>Load Size Mix Code Returned Qty Mix Age Seq Load ID<br>69090<br>Material Design Bty Food b 480 10 -0.885 4.000 H 21 gl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.00 CYDS BDDTCOMA CLOCE O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UNIT PRICE AMOUNT                                                                                                                                                                                        |
| DANGER! MAY CAUSE ALKALI BURNS.<br>SEE WARNINGS ON REVERSE SIDE.<br>Truck Driver User Disp Ticket Num Ticket ID Time Date<br>8163 37794 user 4882854<br>Load Size Mix Code Returned Qty Mix Age Seq Load ID<br>3.00 CYDS BDOTCA00<br>Material Desim By Fegured Batched \$ Var \$ Moisture Actual Hat<br>10 1374 10 4294 10 4320 10 # 0.515 4.000 M 21 g1<br>1 293 10 879 10 860 10 -2.155<br>900 2 0 7 6 07 6 07 6 07 6 07 6 07 6 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SPECIAL DELIVERY INSTRUCTIONS<br>HWY 21 WEST, LEFT INTO RELLIS THEY WIL<br>THERE SITTING IN A SILVER CHEVROLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LL MEET YOU SALES TAX<br>FRUCK TOTAL                                                                                                                                                                     |
| Truck         Driver         User         Disp Ticket Num         Ticket ID         Time         Date           8163         37794         user         4882854         68132         13:35         8/2/18           Load Size         Mix Code         Returned         Qty         Mix Age         Seq         Load ID           3.00         CYDS BDOTCA02         Returned         Qty         Mix Age         Seq         Load ID           Material         Design 0ty         Required         Batched         \$ Var         \$ Moisture         Actual Wat           18         1374 1b         586 1b         5900 1b         = 0.515         4.00% M         21 g1           1         293 1b         879 1b         860 1b         -2.155         4.00% M         21 g1           3         158 1b         199 1b         860 1b         -2.155         300         301           2         0         502 6         0         0         509         301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DANGER! MAY CAUSE ALKALI BURNS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22051/1                                                                                                                                                                                                  |
| Truck         Driver         User         Disp Ticket Num         Ticket ID         Time         Date           8163         37794         user         4882854         68132         13:35         8/2/18           Load Size         Mix Code         Returned         Qty         Mix Age         Seq         Load ID           3.00         CYDS BDDTCA00         D         69090         69090           Material         Design @ty         Required         Batched         X Var         X Noisture         Actual Nat           10         1374 15         5816 16         5600 16         -0.288         0.408 M         3 g]           10         1374 15         4294 16         4320 16         # 0.518 M         2 i g1           1         293 16         879 16         860 16         -2.165 M         2 i g1           1         293 16         879 16         860 16         -2.165 M         2 i g1           3         1         293 16         6 oz         6 oz         6 oz         6 oz           304         2 oz         6 oz         6 oz         6 oz         5055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FOR OFFICE USE ONLY FORM: 2200141                                                                                                                                                                        |
| H20         242 lb         97         02         02           PB0         7 oz         8 38 oz         37 oz         -8.85%           Actual         Num Batches:         1         -3.85%           Load Total:         1194 lb         Design 0.537 Water/Cement 0.542 T         Design 87.0 gl           Slump:         5.00 in         Water in Truck:         0.0 gl         Adjust Water:         0.0 gl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Truck         Driver         User         Disp           8163         37794         user         48826           Load Size         Mix Code         Returned         Qt           3.00         CYDS BDOTCA00         Returned         Qt           Material         Design 0ty         Required         Batched         % W           157         1921         10         5806         10         -0.281           10         1374         10         4294         16         4201         16         601         5006         10         -0.281           10         1374         10         4294         16         4201         16         601         5006         10         -0.281           1         293         16         879         16         860         16         -2.161           30         2         60         602         602         10         509         10         1.279           906         2         02         602         602         02         1.299         10         1.299           906         7         02         38         02         37         02         3.397 | Ticket Num Ticket ID Time Date<br>68132 13:35 8/2/18<br>Sy Mix Age Seq Load ID<br>D 69090<br>ar % Moisture Actual Wat<br>% 0.40% M 21 gl<br>%<br>58 gl<br>58 gl<br>0.0 gl /Load Trim Water: -1.8 gl/ CVD |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                          |

|        | Promy of the second sec | ality Policy Ford         | n S.7.2 Casting Date:          | Concrete Sampli<br>L. Griffith<br>D. Kuhn<br>                                             | Doc. No.<br>QPF 5.7.2<br>Revision:<br>6<br>Mix Design (psi | Revision<br>Date:<br>2018-04-17<br>Page:<br>1 of 1 | -              |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------|----------------|
| BF 000 | Technician taking<br>Sample<br>Signed Name o<br>Technician taking<br>Sample<br>Load No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GREC<br>Truck No.<br>21/6 | FRIT2<br>Ticket No.<br>487923/ | Technician breaking<br>Sample<br>Signed Name of<br>Technician breaking<br>Sample<br>Locat | ion (from concre                                           | ta Kobin<br><u>M</u><br>to map)<br>(Surth S. d., ) | <u>i</u> s r~~ |
| ĺ      | Load No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Break Date                | Cylinder Age                   | Total Load (lbs)                                                                          | Break (psi)                                                | Average                                            | ]              |
|        | く<br>く<br>く<br>く<br>く<br>く                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2018-10-2                 | 47 days                        | 4174<br>4103                                                                              | 118000                                                     | 1 4002                                             |                |
|        | <b>د ک</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2018-10-2                 | (                              | 373/                                                                                      | 105500                                                     |                                                    | -              |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                |                                                                                           |                                                            |                                                    |                |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                |                                                                                           |                                                            |                                                    | -              |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | ·                              |                                                                                           |                                                            |                                                    |                |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                         |                                |                                                                                           |                                                            |                                                    |                |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                         |                                |                                                                                           |                                                            |                                                    |                |
| ſ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                |                                                                                           |                                                            |                                                    |                |
| -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                |                                                                                           |                                                            |                                                    |                |

| CUSTOM                                                                                                                                                                                                                                                            | ER'S COPY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TICKE                                                                        | T NO.                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------|
| Martin<br>Marietta<br>Marietta<br>Marietta<br>Martin M<br>1503 LBJ<br>Suite<br>Dallas, Ta                                                                                                                                                                         | <b>freeway</b><br>400<br>x 75234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4899                                                                         | 231                                 |
|                                                                                                                                                                                                                                                                   | * Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Strendings<br>Stre |                                                                              |                                     |
| LOAD TIME TO JOB ARRIVE JOB SITE BEGIN P                                                                                                                                                                                                                          | OUR FINISH POUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LEAVE JOB SITE                                                               | ARRIVE PLANT                        |
| 12:09 12:19 12:35 12:                                                                                                                                                                                                                                             | 40 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                              |                                     |
| WATER ADDED ON JOB AT CUSTOMER'S REQUESTGAL.                                                                                                                                                                                                                      | CUSTOMER SIGNATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                              |                                     |
| ALLOWABLE WATER (WILLING TOTT DATATION TO THE ALLOWABLE WATER TAKEN VES NO BY<br>CYLINDER TAKEN BEFORE AFTER WATER<br>ADDITIONAL WATER ADDED TO THIS CONCRETE WILL REDUCE<br>ITS STRENGTH. ANY WATER ADDED IN EXCESS OF SPECIFIED<br>SLUMP IS AT CUSTOMER'S RISK. | DELIVERY OF THESE MA<br>CONDITIONS ON THE RI<br>SIGNATURE ABOVE .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TERIALS IS SUBJECT<br>Everse side here(                                      | TO THE TERMS AND<br>F AS ACCEPTED B |
| CUSTOMER NAME AND DELIVERY ADDRESS                                                                                                                                                                                                                                | PLANT TRUCK ORDER N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0. SLUMP P.O.                                                                | #/JOB/LOT GRID                      |
| TAMU RIVERSIDE CAMPUS                                                                                                                                                                                                                                             | DRIVER NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                              | DATE                                |
|                                                                                                                                                                                                                                                                   | HOUSE, JOHN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                              | 18                                  |
|                                                                                                                                                                                                                                                                   | CUSTOMER NUMBER PROJEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T CUM. QTY                                                                   | ORDERED GIY                         |
| LOAD QUANTITY PRODUCT CODE DESCRIPTION                                                                                                                                                                                                                            | CUSTOMER NUMBER PROJEC<br>509195 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T CUM. OTY<br>925 3. 0<br>UNITPRICE                                          |                                     |
| SPECIAL DELIVERY INSTRUCTIONS<br>HWY 21 WEST, LEFT INTO RELLIS THEY WILL<br>ARCUND THERE                                                                                                                                                                          | CUSTOMER NUMBER PROJEC<br>509195 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T CUM. OTY<br>925 3. C<br>UNITPRICE                                          | AMOUNT                              |
| LOAD QUANTITY PRODUCT CODE DESCRIPTION<br>3.00 CYDS BDUTCA00 CLASS A<br>SPECIAL DELIVERY INSTRUCTIONS<br>HWY 21 WEST, LEFT INTO RELLIS THEY WILL<br>AROUND THERE                                                                                                  | CUSTOMER NUMBER PROJEC<br>509195 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T CUM. OTY<br>925 3. C<br>UNIT PRICE                                         | AMOUNT                              |
| LOAD QUANTITY PRODUCT CODE DESCRIPTION<br>3.00 CYDS BDDTCA00 CLASS A<br>SPECIAL DELIVERY INSTRUCTIONS<br>HWY 21 WEST, LEFT INTO RELLIS THEY WILL<br>ARCILIND THERE<br>DANGER! MAY CAUSE ALKALI BURNS.<br>SEE WARNINGS ON REVERSE SIDE.                            | CUSTOMER NUMBER PROJEC<br>509195 74<br>MEET YOU SA<br>FOR OFFICE US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T CUM. OTY<br>925 3. 0<br>UNITPRICE<br>LLES TAX<br>TOTAL<br>SEE ONLY FORM: 2 | 2205428                             |

# Appendix D. MASH Test 3-11 (Crash Test No. 606861-1)

| Date:2018-10-03                                           | 2Test No.: _                            | 606861-1                            | VIN No.                              | 1C6RD6G                                 | TXCS268732          |
|-----------------------------------------------------------|-----------------------------------------|-------------------------------------|--------------------------------------|-----------------------------------------|---------------------|
| Year: 2012                                                | Make:                                   | RAM                                 | Model                                | :1                                      | 500                 |
| Tire Size: 265/70                                         | R 17                                    |                                     | Tire Inflation Pre                   | essure:                                 | 35 psi              |
| Tread Type: Highwa                                        | у                                       |                                     | Odd                                  | ometer: 268732                          | 1                   |
| Note any damage to th                                     | ne vehicle prior to te                  | est: None                           |                                      |                                         |                     |
| Denotes accelerome                                        | eter location.                          |                                     |                                      |                                         |                     |
| NOTES: None                                               |                                         |                                     |                                      |                                         |                     |
|                                                           |                                         |                                     |                                      |                                         |                     |
| Engine Type: V-8<br>Engine CID: 4.7 li                    | ter                                     | A M<br>WHEEL<br>TRACK               |                                      |                                         | WHEEL WHEEL         |
| Transmission Type:                                        |                                         |                                     |                                      | -TEST INER                              | TIAL C. M.          |
|                                                           |                                         |                                     |                                      |                                         |                     |
| Optional Equipment:<br>None                               |                                         |                                     |                                      |                                         | В                   |
| Dummy Data:<br>Type: 50th<br>Mass:<br>Seat Position: Impa | percentile male<br>165 lb<br>ct side    |                                     |                                      |                                         |                     |
| Geometry: inches                                          |                                         | -                                   | FRONT                                | — C ———                                 | EAR                 |
| A 78.50                                                   | F40.00                                  | к2                                  | 0.00 P                               | 3.00                                    | U26.50              |
| B74.00                                                    | G28.50                                  | L <u>3</u>                          | <u>0.00</u> Q _                      | 30.50                                   | V 30.25             |
| C <u>227.50</u>                                           | H <u>61.30</u>                          | M6                                  | 8.50 R _                             | 18.00                                   | W 61.30             |
| D <u>44.00</u>                                            | I <u>11.75</u>                          | N 6                                 | <u>8.00</u> S _                      | 13.00                                   | X                   |
| E 140.50<br>Wheel Center<br>Height Front                  | J <u>27.00</u><br>14.75 <sub>Clea</sub> | O 4<br>Wheel Well<br>trance (Eropt) | <u>6.00</u> T _<br>6.00              | 77.00<br>Bottom Frame<br>Height - Front | 12.50               |
| Wheel Center<br>Height Rear                               | 14.75 Clea                              | Wheel Well arance (Rear)            | 9.25                                 | Bottom Frame<br>Height - Rear           | 22.50               |
| RANGE LIMIT: A=78 ±2 inches; C                            | =237 ±13 inches; E=148 ±12 ir           | nches; F=39 ±3 inches;              | G = > 28 inches; H = 63 ±4 i         | inches; O=43 ±4 inches; M               | +N/2=67 ±1.5 inches |
| GVWR Ratings:                                             | Mass: Ib                                | <u>Curb</u>                         | Test                                 | Inertial                                | Gross Static        |
| Front 3700                                                | Mfront                                  | 293                                 | 0                                    | 2826                                    | 2911                |
| Back 3900                                                 | M <sub>rear</sub>                       | 205                                 | 3                                    | 2189                                    | 2269                |
| Total 6700                                                | M <sub>Total</sub>                      | 4983                                | 3                                    | 5015                                    | 5180                |
| Mass Distribution:                                        | LF: 1388                                | (<br>RF: 143                        | Allowable Range for TIM and $88$ LR: | 1108 RF                                 | R: 1081             |

Figure 106. Vehicle properties for Test No. 606861-1

| Date: 2018-            | 10-02 T      | est No.: _    | 60686      | 1-1           | VIN:         | 1C6RD6G              | TXCS26873       | 32        |
|------------------------|--------------|---------------|------------|---------------|--------------|----------------------|-----------------|-----------|
| Year:20*               | 12           | Make:         | RAM        |               | Model:       | 1                    | 1500            |           |
| Body Style: _C         | ad Cab       |               |            |               | Mileage:     | 268732               |                 |           |
| Engine: <u>4.7 lit</u> | er '         | V-8           |            | Tran          | smission:    | Automatic            |                 |           |
| Fuel Level: E          | mpty         | Ball          | last: _171 |               |              |                      | (440            | ) Ib max) |
| Tire Pressure:         | Front:       | 35 <b>ps</b>  | i Rea      | ar: <u>35</u> | psi S        | Size: _265/70 R      | 17              |           |
| Measured Vel           | nicle Wei    | ghts: (I      | b)         |               |              |                      |                 |           |
| LF:                    | 1388         |               | RF:        | 1438          |              | Front Axle           | : 2826          |           |
| LR:                    | 1108         |               | RR:        | 1081          |              | Rear Axle            | : 2189          |           |
| Left:                  | 2496         | _             | Right:     | 2519          |              | Total                | : 5015          |           |
|                        |              |               |            |               |              | 5000 ±               | :110 lb allowed |           |
| <b>VV</b> h            | eel Base:    | 140.50        | inches     | Track: F:     | 68.50        | inches R             | : 68.00         | inches    |
|                        | 148 ±12 inch | es allowed    |            |               | Track = (F+F | R)/2 = 67 ±1.5 inche | s allowed       |           |
| Center of Gra          | vity, SAE    | J874 Sus      | pension M  | ethod         | -            |                      |                 |           |
| X:                     | 61.33        | inches        | Rear of F  | ront Axle     | (63 ±4 inche | s allowed)           |                 |           |
| Y:                     | 0.16         | inches        | Left -     | Right +       | of Vehicle   | e Centerline         |                 |           |
| Z:                     | 28.50        | inches        | Above Gr   | ound          | (minumum 2   | 8.0 inches allowed)  |                 |           |
| Hood Heig              | ıht:         | 46.00         | inches     | Front         | Bumper H     | leight:              | 27.00 i         | nches     |
|                        | 43 ±4 i      | nches allowed | -          |               |              | U                    |                 |           |
| Front Overha           | ng:          | 40.00         | inches     | Rear          | Bumper H     | eight:               | 30.00 i         | nches     |
|                        | 39 ±3 i      | nches allowed |            |               |              |                      |                 |           |

### Figure 107. Measurement of vehicle vertical CG for Test No. 606861-1

Overall Length: 227.50 inches 237 ±13 inches allowed Figure 108. Sequential photographs for Test No. 606861-1 (overhead view).



0.000 s



0.100 s



0.400 s



0.500 s



0.200 s



0.300 s



0.600 s



 $0.700 \mathrm{\ s}$ 

Figure 109. Sequential photographs for Test No. 606861-1 (frontal view).



0.000 s



0.100 s



0.200 s







0.400 s



0.500 s



0.600 s



0.700 s

Figure 110. Sequential photographs for Test No. 606861-1 (rear view).



0.000 s



0.400 s



0.100 s



0.500 s



0.200 s



0.600 s



0.300 s



0.700 s

| Date: | 2018-10-02 | Test No.: | 606861-1 | VIN No.: | 1C6RD6GTXCS268732 |
|-------|------------|-----------|----------|----------|-------------------|
| Year: | 2012       | Make:     | RAM      | Model:   | 1500              |

#### Figure 111. Exterior crush measurements for Test No. 606861-1

### VEHICLE CRUSH MEASUREMENT SHEET<sup>1</sup>

| Complete When Applicable |                 |  |  |  |  |  |  |  |
|--------------------------|-----------------|--|--|--|--|--|--|--|
| End Damage               | Side Damage     |  |  |  |  |  |  |  |
| Undeformed end width     | Bowing: B1 X1   |  |  |  |  |  |  |  |
| Corner shift: A1         | B2 X2           |  |  |  |  |  |  |  |
| A2                       |                 |  |  |  |  |  |  |  |
| End shift at frame (CDC) | Bowing constant |  |  |  |  |  |  |  |
| (check one)              | X1+X2           |  |  |  |  |  |  |  |
| < 4 inches               | 2               |  |  |  |  |  |  |  |
| $\geq$ 4 inches          |                 |  |  |  |  |  |  |  |

Note: Measure  $C_1$  to  $C_6$  from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

| Specific<br>Impact<br>Number | Plane* of<br>C-Measurements | Direct I<br>Width**<br>(CDC) | Damage<br>Max***<br>Crush | Field<br>L** | $C_1$ | $C_2$ | $C_3$ | $C_4$ | C5   | $C_6$ | ±D  |
|------------------------------|-----------------------------|------------------------------|---------------------------|--------------|-------|-------|-------|-------|------|-------|-----|
| 1                            | AT FT BUMPER                | 26                           | 16                        | 34           | 2     | 2.5   | 5     | 8     | 12   | 16    | +14 |
| 2                            | ABOVE FT BUMPER             | 26                           | 15.5                      | 56           | 2     | 5     | 8     | 10    | 13.5 | 15.5  | +72 |
|                              |                             |                              |                           |              |       |       |       |       |      |       |     |
|                              |                             |                              |                           |              |       |       |       |       |      |       |     |
|                              | Measurements recorded       |                              |                           |              |       |       |       |       |      |       |     |
|                              | √inches or ☐mm              |                              |                           |              |       |       |       |       |      |       |     |
|                              |                             |                              |                           |              |       |       |       |       |      |       |     |

<sup>1</sup>Table taken from National Accident Sampling System (NASS).

\*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

\*\*Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

\*\*\*Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.



### Figure 112. Occupant compartment measurements for Test No. 606861-1





\*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

| Before | After<br>(inches)                                                                                                                                                                                          | Differ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 65.00  | 65.00                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 63.00  | 63.00                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 65.50  | 65.50                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 45.00  | 45.00                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 38.00  | 38.00                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 45.00  | 44.50                                                                                                                                                                                                      | -0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 39.50  | 39.50                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 43.00  | 43.00                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 39.50  | 39.50                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 26.00  | 26.00                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 0.00   | 0.00                                                                                                                                                                                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 26.00  | 24.00                                                                                                                                                                                                      | -2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 11.00  | 11.00                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 0.00   | 0.00                                                                                                                                                                                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 11.50  | 11.25                                                                                                                                                                                                      | -0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 58.50  | 59.00                                                                                                                                                                                                      | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 63.50  | 65.75                                                                                                                                                                                                      | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 63.50  | 63.50                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 63.50  | 63.50                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 59.00  | 59.00                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 59.00  | 59.00                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 37.50  | 37.50                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 37.50  | 37.50                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 25.00  | 24.00                                                                                                                                                                                                      | -1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|        | Before<br>65.00<br>63.00<br>65.50<br>45.00<br>38.00<br>45.00<br>39.50<br>43.00<br>39.50<br>26.00<br>0.00<br>26.00<br>11.00<br>0.00<br>11.50<br>58.50<br>63.50<br>63.50<br>63.50<br>59.00<br>37.50<br>25.00 | DRMATION MEASOR           Before         After<br>(inches)           65.00         65.00           63.00         63.00           63.00         65.50           45.00         45.00           38.00         38.00           45.00         45.00           39.50         39.50           43.00         43.00           39.50         39.50           26.00         26.00           0.00         0.00           11.00         11.00           0.00         0.00           11.50         11.25           58.50         59.00           63.50         63.50           63.50         63.50           59.00         59.00           59.00         59.00           59.00         59.00           59.00         59.00           37.50         37.50           37.50         37.50 |  |  |  |  |  |

Figure 113. Vehicle angular displacements for Test No. 606861-1



Roll, Pitch, and Yaw Angles

Figure 114. Vehicle longitudinal accelerometer trace for Test No. 606861-1 (accelerometer located at center of gravity)



Figure 115. Vehicle lateral accelerometer trace for Test No. 606861-1 (accelerometer located at center of gravity)



Figure 116. Vehicle vertical accelerometer trace for Test No. 606861-1 (accelerometer located at center of gravity)



Z Acceleration at CG

# Appendix E. MASH Test 3-10 (Crash Test No. 606861-2)

| Date:                                              | 2020-12-11                                                                                                                                                   | _ Test No.:                                        | 606861-4                                                                                       | VIN No.:                                                         | 3N1CN7APOEL862280                                      |  |  |  |  |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|--|--|--|--|
| Year:                                              | 2014                                                                                                                                                         | Make:                                              | NISSAN                                                                                         | Model:                                                           | VERSA                                                  |  |  |  |  |
| Tire Inf                                           | lation Pressure: <u>36</u>                                                                                                                                   | ) PSI                                              | Odometer: <u>91861-4</u>                                                                       |                                                                  | Tire Size: <u>P185/65R15</u>                           |  |  |  |  |
| Descrit                                            | be any damage to th                                                                                                                                          | ne vehicle prio                                    | r to test: <u>None</u>                                                                         |                                                                  |                                                        |  |  |  |  |
|                                                    | S: <u>None</u>                                                                                                                                               | location.                                          |                                                                                                |                                                                  |                                                        |  |  |  |  |
| Engine<br>Engine<br>Transm<br>I<br>Optiona<br>None | engine Type: <u>4 CYL</u><br>Engine CID: <u>1.6 L</u><br>Transmission Type:<br>↓ Auto or ↓ Manual<br>↓ FWD ↓ RWD ↓ 4WD<br>Optional Equipment:<br><u>None</u> |                                                    |                                                                                                |                                                                  |                                                        |  |  |  |  |
| Dummy<br>Type:<br>Mass:<br>Seat F                  | y Data:<br>50th Perce<br>165 lb<br>Position: IMPACT S                                                                                                        | entile Male                                        |                                                                                                | H_S<br>WE                                                        |                                                        |  |  |  |  |
| Geome                                              | etry: inches                                                                                                                                                 |                                                    |                                                                                                |                                                                  | -                                                      |  |  |  |  |
| A <u>66.7</u>                                      | <u>70                                    </u>                                                                                                                | 2.50                                               | K <u>12.50</u>                                                                                 | P <u>4.50</u>                                                    | U <u>15.50</u>                                         |  |  |  |  |
| B <u>59.6</u>                                      | <u> </u>                                                                                                                                                     |                                                    | L <u>26.00</u>                                                                                 | Q <u>24.0</u>                                                    | 0 V <u>21.25</u>                                       |  |  |  |  |
| C <u>175</u>                                       | . <u>40 H 42</u>                                                                                                                                             | 2.15                                               | M <u>58.30</u>                                                                                 | R <u>16.2</u>                                                    | 5 W <u>42.10</u>                                       |  |  |  |  |
| D <u>40.5</u>                                      | 50 l <u>7.</u>                                                                                                                                               | 00                                                 | N <u>58.50</u>                                                                                 | S <u>7.50</u>                                                    | X <u>79.75</u>                                         |  |  |  |  |
| E <u>102</u>                                       | . <u>40</u> J <u>22</u>                                                                                                                                      | 2.25                                               | O <u>30.50</u>                                                                                 | <u> </u>                                                         | 0                                                      |  |  |  |  |
| VVhe<br>RA                                         | NGE LIMIT: A = 65 ±3 inches;                                                                                                                                 | 11.5U<br>C = 169 ±8 inches; E =<br>(M+N)/2 = 59 +2 | VVheel Center Ht<br>= 98 ±5 inches; F = 35 ±4 inches; H =<br>inches; WH < 2 inches or use MASH | <b>Rear <u>11.5</u></b><br>39 ±4 inches; 0 (<br>Paragraph A4 3 2 | D W-H -0.05<br>Top of Radiator Support) = 28 ±4 inches |  |  |  |  |
| GVWR                                               | Ratings:                                                                                                                                                     | Mass: Ib                                           | Curb                                                                                           | Test I                                                           | nertial Gross Static                                   |  |  |  |  |
| Front                                              | 1750                                                                                                                                                         | Mfront                                             | 1369                                                                                           | 1425                                                             | 1510                                                   |  |  |  |  |
| Back                                               | 1687                                                                                                                                                         | M <sub>rear</sub>                                  | 974                                                                                            | 979                                                              |                                                        |  |  |  |  |
| Total                                              | 3389                                                                                                                                                         | MTotal                                             | 2343                                                                                           | 2404                                                             | 2569                                                   |  |  |  |  |
| Mass I<br>Ib                                       | Distribution:                                                                                                                                                | 706                                                | Allowable TIM = 242<br>RF: <u>719</u>                                                          | 0 lb ±55 lb   Allow<br>LR: <u>502</u>                            | able GSM = 2585 lb ± 55 lb RR: 477                     |  |  |  |  |

## Figure 117. Vehicle properties for Test No. 606861-2

0.000 s



0.100 s



0.400 s



0.500 s



0.200 s



0.300 s



0.600 s



0.700 s

Figure 118. Sequential photographs for Test No. 606861-2 (overhead view).



0.000 s



0.300 s



0.100 s



0.200 s

Figure 119. Sequential photographs for Test No. 606861-2 (frontal view).



0.400 s



0.600 s



0.500 s



0.700 s



Figure 120. Sequential photographs for Test No. 606861-2 (rear view).

| Date:                  | 2018-10-03 | Test No.:    | 606861-2           | VIN No.:   | KNADE223396496067 |  |  |  |
|------------------------|------------|--------------|--------------------|------------|-------------------|--|--|--|
| Year:                  | 2009       | Make:        | Kia                | Model:     | Rio               |  |  |  |
|                        | 1          | VEHICLE CRU  | JSH MEASURE        | MENT SHEET | -1                |  |  |  |
|                        |            | Cor          | nplete When Applic | able       |                   |  |  |  |
| End Damage Side Damage |            |              |                    |            |                   |  |  |  |
|                        | Undeformed | d end width  |                    | Bowing: B1 | X1                |  |  |  |
|                        | Corn       | er shift: A1 |                    | B2         | X2.               |  |  |  |

Bowing constant

 $\frac{X1+X2}{2}$ 

#### Figure 121. Exterior crush measurements for Test No. 606861-2

Note: Measure C<sub>1</sub> to C<sub>6</sub> from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

A2

 $\leq$  4 inches  $_{\geq}$  4 inches

End shift at frame (CDC)

(check one)

| G                |                             | Direct Damage     |                 |              |                |    |      |      |     |       |     |
|------------------|-----------------------------|-------------------|-----------------|--------------|----------------|----|------|------|-----|-------|-----|
| Impact<br>Number | Plane* of<br>C-Measurements | Width***<br>(CDC) | Max***<br>Crush | Field<br>L** | C <sub>1</sub> | C2 | C3   | C4   | C5  | $C_6$ | ±D  |
| 1                | AT FT BUMPER                | 14                | 8               | 22           | 8              | 6  | 2    | 1.5  | 1   | 0     | +18 |
| 2                | ABOVE FT BUMPER             | 14                | 9               | 40           | 0              | 7  | 3.25 | 3.75 | 6.5 | 9     | +65 |
|                  |                             |                   |                 |              |                |    |      |      |     |       |     |
|                  |                             |                   |                 |              |                |    |      |      |     |       |     |
|                  | Measurements recorded       |                   |                 |              |                |    |      |      |     |       |     |
|                  | √ inches or ☐ mm            |                   |                 |              |                |    |      | -    |     |       |     |
|                  |                             |                   |                 |              |                |    |      |      |     |       |     |

<sup>1</sup>Table taken from National Accident Sampling System (NASS).

\*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

\*\*Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

\*\*\*Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

| Date:2018-10-03Te                 | st No.:  | 606861-2 |          | VIN No.:                                       | KNADE223396496067 |         |  |  |
|-----------------------------------|----------|----------|----------|------------------------------------------------|-------------------|---------|--|--|
| Year: 2009 Ma                     | ake:     | Kia      |          | Model:                                         | Rio               |         |  |  |
| <b>H</b>                          | $\Box$   |          | O<br>DEI | OCCUPANT COMPARTMENT<br>EFORMATION MEASUREMENT |                   |         |  |  |
| F                                 |          |          |          | Before                                         | After<br>(inches) | Differ. |  |  |
| G                                 |          |          | A1       | 67.50                                          | 67.50             | 0.00    |  |  |
|                                   |          | 」        | A2       | 67.25                                          | 67.25             | 0.00    |  |  |
| \$ <u></u>                        |          | -0       | A3       | 67.75                                          | 67.75             | 0.00    |  |  |
|                                   |          |          | B1       | 40.50                                          | 40.50             | 0.00    |  |  |
|                                   |          |          | B2       | 39.00                                          | 39.00             | 0.00    |  |  |
| B1, B2, B3, B4                    | , B5, B6 |          | B3       | 40.50                                          | 40.50             | 0.00    |  |  |
|                                   |          |          | B4       | 36.25                                          | 36.25             | 0.00    |  |  |
| A1, A2, &A 3                      |          | 1        | B5       | 36.00                                          | 36.00             | 0.00    |  |  |
| D1, D2, & D3<br>C1, C2, & C3      |          |          | B6       | 36.25                                          | 36.25             | 0.00    |  |  |
|                                   |          |          | C1       | 26.00                                          | 26.00             | 0.00    |  |  |
|                                   |          |          | C2       | 0.00                                           | 0.00              | 0.00    |  |  |
|                                   |          |          | C3       | 26.00                                          | 24.50             | -1.50   |  |  |
|                                   |          |          | D1       | 9.50                                           | 9.50              | 0.00    |  |  |
|                                   |          |          | D2       | 0.00                                           | 0.00              | 0.00    |  |  |
| / 1                               | 1        |          | D3       | 9.50                                           | 8.50              | -1.00   |  |  |
| P1 B2                             |          |          | E1       | 51.50                                          | 51.75             | 0.25    |  |  |
|                                   |          |          | E2       | 51.00                                          | 51.75             | 0.75    |  |  |
|                                   |          |          | F        | 51.00                                          | 51.00             | 0.00    |  |  |
|                                   |          |          | G        | 51.00                                          | 51.00             | 0.00    |  |  |
|                                   |          |          | Н        | 37.50                                          | 37.50             | 0.00    |  |  |
|                                   |          |          | Į        | 37.50                                          | 37.50             | 0.00    |  |  |
| *Lateral area across the cab from | n        |          | J*       | 51.00                                          | 50.50             | -0.50   |  |  |

### Figure 122. Occupant compartment measurements for Test No. 606861-2

\*Lateral area across the cab from driver's side kick panel to passenger's side kick panel.

Figure 123. Vehicle angular displacements for Test No. 606861-2



Roll, Pitch, and Yaw Angles

Figure 124. Vehicle longitudinal accelerometer trace for Test No. 606861-2 (accelerometer located at center of gravity)



Figure 125. Vehicle lateral accelerometer trace for Test No. 606861-2 (accelerometer located at center of gravity)



Y Acceleration at CG

Figure 126. Vehicle vertical accelerometer trace for Test No. 606861-2 (accelerometer located at center of gravity)



# Appendix F. Strength Analysis of DOTD Retrofit Bridge Rail System



SUBJECT: LADOTD (LTRC 16) HSS Tube Bridge Rail Retrofit LRFD Strength Analysis



Section View of Bridge Rail Section



Section View of Bridge Rail System with Variable Notations



Section View of Bridge Rail System with Key Dimensions



Plan View of Failure Section 2



Plan View of Failure Section 3



Details of Concrete and Reinforcement Bars



SUBJECT: LADOTD (LTRC 16) HSS Tube Bridge Rail Retrofit LRFD Strength Analysis



Detail Views of Splice Details



SUBJECT: LADOTD (LTRC 16) HSS Tube Bridge Rail Retrofit LRFD Strength Analysis



Detail Views of Steel Rails


#### **General Information:**

- Concrete Parapet Strength, fc = 4000psi •
- •
- .
- .
- Anchor Rods are \$3/4" x 8" long, A193 B7 Threaded Anchor: Fu=120ksi All concrete reinforcing steel = Grade 40: fy=40ksi HSS10x4x3/8 Tube Rails are A500 Grade B Material: Fy=46 ksi Reference: AASHTO LRFD Bridge Design Specifications, Section 13, TL-3 Conditions. •
- Objective: Calculate the Strength of the Rail based on Worst Case Rail Strength and AASHTO LRFD Section 13 Strength Requirements.

| f' <sub>c</sub> := 4000 psi                                            | Compressive Strength of Concrete (psi)                 |
|------------------------------------------------------------------------|--------------------------------------------------------|
| F <sub>yR</sub> := 46ksi                                               | Yield Strength of all Steel Rails (ksi)                |
| $f_y := 40$ ksi                                                        | Yield Strength of Concrete Reinforcing Steel (ksi)     |
| b <sub>rail</sub> := 12in                                              | Width of Concrete Rail (in.)                           |
| d <sub>rail</sub> := 6in                                               | Distance to Tensile Reinf. from Compression Face (in.) |
| n <sub>sCR</sub> := 3                                                  | Number of tensile reinf. bars in Concrete Rail         |
| $A_{SCR} := n_{SCR} \cdot 0.31 \text{ in}^2 = 0.93 \cdot \text{ in}^2$ | Total Area of Tensile Reinf. (in2)                     |

| F <sub>u.rod</sub> := 120ksi |  |
|------------------------------|--|
| $d_{rod} := \frac{3}{4}in$   |  |
|                              |  |

 $\mathbf{A}_{rod} \coloneqq \frac{\boldsymbol{\pi} \cdot \mathbf{d}_{rod}^2}{4} = 0.442 \cdot \mathrm{in}^2$ 

Tensile Strength of Anchor Rods (ksi)

Diameter of Anchor Rods (in)

Area of a Anchor Rod (in2)



| Test Level | Ft (kip) | FL (kip) | Fv (kip) | L <sub>l</sub> /L <sub>L</sub> (ft) | L <sub>v</sub> (ft) | He (in) | Hmin (in) |
|------------|----------|----------|----------|-------------------------------------|---------------------|---------|-----------|
| TL 1       | 13.5     | 4.5      | 4.5      | 4.0                                 | 18.0                | 18.0    | 18.0      |
| TL 2       | 27.0     | 9.0      | 4.5      | 4.0                                 | 18.0                | 20.0    | 18.0      |
| TL 3       | 71.0     | 18.0     | 4.5      | 4.0                                 | 18.0                | 24.0    | 29.0      |
| TL 4 (a)   | 68.0     | 22.0     | 38.0     | 4.0                                 | 18.0                | 25.0    | 36.0      |
| TL 4 (b)   | 80.0     | 27.0     | 22.0     | 5.0                                 | 18.0                | 30.0    | 36.0      |
| TL 5 (a)   | 160.0    | 41.0     | 80.0     | 10.0                                | 40.0                | 35.0    | 42.0      |
| TL 5 (b)   | 262.0    | 75.0     | 160.0    | 10.0                                | 40.0                | 43.0    | 42.0      |
| TL 6       | 175.0    | 58.0     | 80.0     | 8.0                                 | 40.0                | 56.0    | 90.0      |

## MASH Design Impact Loads

Note: (a) and (b) denote different TL4 and TL 5 design force values for bridge rails of different heights.

| TL := 3                                                         | Test Level                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F <sub>t</sub> := 71kip                                         | Transverse Impact Force (kip)                                                                                                                                                                                                                                                             |
| $\mathbf{L}_{\mathbf{t}} \coloneqq \mathbf{4ft}$                | Longitudinal Length of Distribution of Transverse Impact Force (ft.)                                                                                                                                                                                                                      |
| $\mathbf{L}_{t,amp} := 1.5 \cdot \mathbf{L}_t = 6  \mathrm{ft}$ | Amplified Longitudinal Length of Distribution of Transverse Impact<br>Force (ft.)<br>- Note: Amplify Lt by 50% since steel rail retrofit will distribute impact<br>load greater than what typically occurs. 50% amplification is typical of<br>what we've seen in previous similar tests. |
| H <sub>e</sub> := 19in                                          | Height of Transverse Impact Load (in.)                                                                                                                                                                                                                                                    |
| $H_{e,mod} := H_e + 10in = 29 \cdot in$                         | Modified Height of Transverse Impact Load (in.)<br>- Note: Due to curb and deck geometry, the impact load will be applied<br>to the barrier at a greater height than the typical $H_e$ . Adding 10 inches<br>to $H_e$ acounts for the curb height.                                        |
| F <sub>v</sub> := 4.5kip                                        | Vertical Impact Force (kip)                                                                                                                                                                                                                                                               |
| $L_v := 18ft$                                                   | Longitudinal Length of Distribution of Vertical Impact Force (ft.)                                                                                                                                                                                                                        |
| $L_p := 9ft + 9in + \frac{7}{8}in = 117.875 \cdot in$           | Spacing of Posts (in.)                                                                                                                                                                                                                                                                    |
| H <sub>p</sub> := 34.625in                                      | Height of Concrete Post and Beam (in.)                                                                                                                                                                                                                                                    |
| H <sub>t</sub> := 40in                                          | Total height of bridge rail system (in.)                                                                                                                                                                                                                                                  |



Analysis of Steel and Concrete Rails:

<u>Concrete Rail Properties and Dimensions:</u> a) Concrete Rail has a width of 12in and a height of 8in b) #5-Gr.40 Rebar is used for Longitudinal Reinforcement



 $\mathbf{A_{sCR}}=0.93\cdot\text{in}^2$ Total Area of Tensile Reinf. (in2) Width of Concrete Rail (in.)  $b_{rail} = 12 \cdot in$ d<sub>rail</sub> = 6∙in Distance to Tensile Reinf. from Compression Face (in.)  $f_v = 40 \cdot ksi$ Yield Stress of Reinf. (ksi)  $f'_c = 4 \cdot ksi$ Compressive Strength of Concrete (ksi)

$$a_{rail} := \frac{A_{sCR} \cdot f_y}{0.85 \cdot f'_{c} \cdot b_{rail}} = 0.912 \cdot in$$

 $\mathbf{M}_{CR} \coloneqq \mathbf{A}_{sCR} \cdot \mathbf{f}_{y} \cdot \left( \mathbf{d}_{rail} - \frac{\mathbf{a}_{rail}}{2} \right) = 17.187 \cdot \mathbf{kip} \cdot \mathbf{ft}$ 

Moment Strength of Concrete Rail (k-ft)

y<sub>CR</sub> := 28.625in

Height of the centroid of the Concrete Rail (in.)

SUBJECT: LADOTD (LTRC 16) HSS Tube Bridge Rail Retrofit LRFD

Strength Analysis

Whitney Stress Block Depth (in.)



Find Height of Resultant Force of Concrete and Steel Rails: (ybar1) HSS10x4x3/8 Steel Rail Properties and Dimensions: a) Steel Rails are A500 Gr. B Material, Fy=46ksi b) Steel Rails bend about the y-axis  $F_{yR} = 46 \cdot ksi$ Yield Strength of Steel Rail (ksi)  $Z_{SR} := 14in^3$ Plastic Sectional Modulus of both Steel Rails (in3)  $\mathbf{M}_{SR} \coloneqq \mathbf{2Z}_{SR} \cdot \mathbf{F}_{yR} = \mathbf{107.333} \cdot \mathbf{kip} \cdot \mathbf{ft}$ Total Plastic Moment Strength of both Steel Rails (k-ft) Height of the centroid of the Steel Rails (in.)  $y_{SR} := 30in$ Height of the centroid of the Concrete Rail (in.)  $y_{CR} = 28.625 \cdot in$  $M_{CR} = 17.187 \cdot kip \cdot ft$ Moment Strength of Concrete Rail (k-ft)  $M_{rail1} := M_{SR} + M_{CR} = 124.52 \cdot kip \cdot ft$ Total Moment Capacity of Concrete Rail and Steel Rails (k-ft)  $\mathbf{y_{bar1}} \coloneqq \frac{\mathbf{M_{SR}} \cdot \mathbf{y_{SR}} + \mathbf{M_{CR}} \cdot \mathbf{y_{CR}}}{\mathbf{M_{rail1}}} = 29.81 \cdot \text{in}$ Height of Resultant Force of Concrete Rail and Steel Rails (in.)  $F_{rail1} := \frac{M_{rail1}}{y_{bar1}} = 50.125 \cdot kip$ Total Resistance Force of Concrete Rail and Steel Rails located @ ybar1 (kip)



<u>Steel Splice Rail Properties and Dimensions;</u> a) Steel Splice Rails are A500 Gr. B Material, Fy=46ksi b) Steel Splice Rails are HSS5x3x3/8 and HSS4x3x3/8 members b) Steel Splice Rails bend about the y-axis

| $F_{yR} = 46 \cdot ksi$                                                                                                                                                                                                                  | Yield Strength of Steel Splice Rails (ksi)                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Z <sub>S1</sub> := 5.1in <sup>3</sup>                                                                                                                                                                                                    | Plastic Sectional Modulus of top most Steel Splice Rail (in <sup>3</sup> )     |
| $\mathbf{M}_{S1} \coloneqq \mathbf{F}_{yR} \cdot \mathbf{Z}_{S1} = 19.55 \cdot \mathbf{kip} \cdot \mathbf{ft}$                                                                                                                           | Plastic Moment Strength of top most Steel Splice Rail (k-ft)                   |
| y <sub>S1</sub> := 37in                                                                                                                                                                                                                  | Height of the centroid of top most Steel Splice Rail (in.)                     |
| Z <sub>S2</sub> := 4.18in <sup>3</sup>                                                                                                                                                                                                   | Plastic Sectional Modulus of 2nd from top Steel Splice Rail (in <sup>3</sup> ) |
| $\mathbf{M}_{S2} := \mathbf{F}_{yR} \cdot \mathbf{Z}_{S2} = 16.023 \cdot kip \cdot ft$                                                                                                                                                   | Plastic Moment Strength of 2nd from top Steel Splice Rail (k-ft)               |
| y <sub>S2</sub> := 32.5in                                                                                                                                                                                                                | Height of the centroid of 2nd from top Steel Splice Rail (in.)                 |
| $Z_{S3} := 5.1 in^3$                                                                                                                                                                                                                     | Plastic Sectional Modulus of 3rd from top Steel Splice Rail (in <sup>3</sup> ) |
| $\mathbf{M}_{S3} \coloneqq \mathbf{F}_{yR} \cdot \mathbf{Z}_{S3} = 19.55 \cdot kip \cdot ft$                                                                                                                                             | Plastic Moment Strength of 3rd from top Steel Splice Rail (k-ft)               |
| y <sub>\$3</sub> := 27.25in                                                                                                                                                                                                              | Height of the centroid of 3rd from top Steel Splice Rail (in.)                 |
| $Z_{S4} := 4.18 in^3$                                                                                                                                                                                                                    | Plastic Sectional Modulus of 4th from top Steel Splice Rail (in <sup>3</sup> ) |
| $\mathbf{M}_{S4} := \mathbf{F}_{yR} \cdot \mathbf{Z}_{S4} = 16.023 \cdot \mathbf{kip} \cdot \mathbf{ft}$                                                                                                                                 | Plastic Moment Strength of 4th from top Steel Splice Rail (k-ft)               |
| y <sub>S4</sub> := 22.75in                                                                                                                                                                                                               | Height of the centroid of 4th from top Steel Splice Rail (in.)                 |
| $M_{S} := M_{S1} + M_{S2} + M_{S3} + M_{S4} = 71.147 \cdot kip \cdot ft$                                                                                                                                                                 | Total Plastic Moment Strength of Steel Splice Rails (k-ft)                     |
| $\mathbf{y}_{S} \coloneqq \frac{\mathbf{M}_{S1} \cdot \mathbf{y}_{S1} + \mathbf{M}_{S2} \cdot \mathbf{y}_{S2} + \mathbf{M}_{S3} \cdot \mathbf{y}_{S3} + \mathbf{M}_{S4} \cdot \mathbf{y}_{S4}}{\mathbf{M}_{S}} = 30.098 \cdot \text{in}$ | Height of the centroid of the Steel Splice Rails (in.)                         |



Find Height of Resultant Force of Concrete and Steel Splice Rails: (ybar2)

| $M_{CR} = 17.187 \cdot kip \cdot ft$                                                                                                                                  | Moment Capacity of Concrete Rail (k-ft)                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| $y_{CR} = 28.625 \cdot in$                                                                                                                                            | Height of the centroid of the Concrete Rail (in.)                                                   |
| $M_{S} = 71.147 \cdot kip \cdot ft$                                                                                                                                   | Plastic Moment Strength of Steel Splice Rails (k-ft)                                                |
| $y_{S} = 30.098 \cdot in$                                                                                                                                             | Height of the centroid of the Steel Splice Rails (in.)                                              |
| $M_{rail2} := M_{CR} + M_S = 88.333 \cdot kip \cdot ft$                                                                                                               | Total Moment Capacity of Concrete Rail and Steel Splice Rails (k-ft)                                |
| $\mathbf{y_{bar2}} \coloneqq \frac{\mathbf{M_S} \cdot \mathbf{y_S} + \mathbf{M_{CR}} \cdot \mathbf{y_{CR}}}{\mathbf{M_S} + \mathbf{M_{CR}}} = 29.811 \cdot \text{in}$ | Height of the centroid of the Concrete Rail and Steel Splice Rails (in.)                            |
| $y_{bar1} = 29.81 \cdot in$                                                                                                                                           | Height of the centroid of the Concrete Rail and Steel Rails (in.)                                   |
| $M_{rail2\_ybar1} := M_{rail2} \cdot \frac{y_{bar2}}{y_{bar1}} = 88.337 \cdot kip \cdot ft$                                                                           | Total Moment Capacity of Concrete Rail and Steel Splice Rails @ $y_{\rm barl}~(\rm k\mathchar`hmu)$ |
| M <sub>rail1</sub> = 124.52 · kip·ft                                                                                                                                  | Total Moment Capacity of Concrete Rail and Steel Rails (k-ft)                                       |
| $M_{rail} := \begin{vmatrix} M_{rail2} & \text{if } M_{rail2\_ybar1} < M_{rail1} & = 88.333 \\ M_{rail1} & \text{otherwise} \end{vmatrix}$                            | kip ft Critical Moment Capacity Rails (k-ft)                                                        |
| $y_{bar} := \begin{vmatrix} y_{bar2} & \text{if } M_{rail2\_ybar1} < M_{rail1} &= 29.811 \text{ in} \\ y_{bar1} & \text{otherwise} \end{vmatrix}$                     | Critical Height of the centroid of the Rails (in.)                                                  |



#### Analysis of Post (Failure Section 1): PP1

Failure Section 1 (FS1) Properties and Dimensions: a) FS1 has a width of 15in and a height of 10in b) #6-Gr.40 Rebar is used for Tensile Reinforcement c) See Figure 6 for more information.

 $f_v = 40 \cdot ksi$   $f'_c = 4 \cdot ksi$ 

 $\mathbf{b}_{FS1} := 15 \mathrm{in}$ 

$$A_{FS1} := 2 \cdot 0.44 in^2 = 0.88 \cdot in^2$$

 $\mathbf{d_{FS1}}\coloneqq 7.625 \text{in}$ 

 $y_{FS1} := y_{bar} - 14.625 in = 15.186 \cdot in$ 

 $\mathbf{a_{FS1}} \coloneqq \frac{\mathbf{A_{FS1}} \cdot \mathbf{f_y}}{\mathbf{0.85} \cdot \mathbf{f'_c} \cdot \mathbf{b_{FS1}}}$ 

$$\mathbf{M}_{FS1} := \mathbf{A}_{FS1} \cdot \mathbf{f}_{\mathbf{y}} \cdot \left( \mathbf{d}_{FS1} - \frac{\mathbf{a}_{FS1}}{2} \right) = 21.354 \cdot \mathbf{kip} \cdot \mathbf{ft}$$

 $P_{P1} := \frac{M_{FS1}}{y_{FS1}} = 16.874 \cdot kip$ 

Width of FS1 (in.)

Area of Tensile Reinforcement in FS1 (in2)

Distance to Tensile Reinf. from Compression Face of FS1 (in.)

Height measured from centroid of FS1 to Resultant Force of Rails (in.)

Whitney Stress Block Depth for FS1 (in.)

Moment Strength of Post at FS1 (k-ft)

Strength of Post at FS1 (kip)



#### Analysis of Post (Failure Section 2): PP2

Failure Section 2 (FS2) Properties and Dimensions: a) Assuming FS2 is vertical from top to bottom of upper deck at the intersection with the parapet. b) #5-Gr.40 Rebar is used for Tensile Reinforcement c) See Figure 4 for more information. f<sub>y</sub> = 40 · ksi  $f'_c = 4 \cdot ksi$ Amplified Longitudinal Length of Distribution of Transverse Impact  $L_{t.amp} = 6 ft$ Force (ft.)  $h_{FS2} := 7.75$ in Distance from roadway surface to centroid of FS2 (in.) [See figure 2 for more information] Height of the Concrete Post and Beam measured from top of  $H_{p} = 34.625$  in roadway surface (in.) Width of FS2 (in.)  $\mathbf{b}_{FS2} \coloneqq \mathbf{L}_{t,amp} + 2 \cdot \left(\mathbf{H}_p - \mathbf{h}_{FS2}\right) = 10.479 \cdot \text{ft}$ Note: Width of FS2 is assumed to be the impact force projected outward at a 45 degree angle to the centroid of FS2.  $A_{FS2} := 9.0.31 in^2 = 2.79 in^2$ Area of Tensile Reinforcement in FS2 (in2) There are 9 bars over b<sub>FS2</sub>  $d_{FS2} := 4.25 in$ Distance to Tensile Reinf. from Compression Face of FS2 (in.) [See Figure 3 for more information]  $\mathbf{a}_{FS2} \coloneqq \frac{\mathbf{A}_{FS2} \cdot \mathbf{f}_y}{\mathbf{0.85} \cdot \mathbf{f}_c \cdot \mathbf{b}_{FS2}}$ Whitney Stress Block Depth for FS2 (in.)  $\mathbf{M}_{FS2} \coloneqq \mathbf{A}_{FS2} \cdot \mathbf{f}_y \cdot \left( \mathbf{d}_{FS2} - \frac{\mathbf{a}_{FS2}}{2} \right) = 38.311 \cdot \mathbf{kip} \cdot \mathbf{ft}$ Moment Strength at FS2 about the longitudinal axis (k-ft)  $y_{FS2} := y_{bar} - 7.75 in = 22.061 \cdot in$ Height measured from centroid of FS2 to Resultant Force of Rails (in.)

 $P_{P2} := \frac{M_{FS2}}{y_{FS2}} = 20.839 \cdot kip$ 

Strength of Post at FS2 (kip)



## Analysis of Post (Failure Section 3): PP3

| Failure Section 3 (FS3) Properties and Dimensions:<br>a) Assuming FS3 is vertical from top to bottom of lower deck at the<br>b) #5-Gr.40 Rebar is used for Tensile Reinforcement<br>c) See Figure 5 for more information. | intersection of the lower deck to curb.                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| $f_y = 40 \cdot ksi$ $f'_c = 4 \cdot ksi$                                                                                                                                                                                 |                                                                                                                                              |
| $H_p = 34.625$ in                                                                                                                                                                                                         | Height of Concrete Post and Beam<br>measured from top of roadway surface (in.)                                                               |
| $L_{t.amp} = 6 ft$                                                                                                                                                                                                        | Amplified Longitudinal Length of Distribution of Transverse Impact<br>Force (ft.)                                                            |
| $h_{FS3} := 3in$                                                                                                                                                                                                          | Vertical distance from roadway surface to centroid of FS3 (in.)<br>[See Figure 2 for more information]                                       |
| $\mathbf{b}_{FS3} \coloneqq \mathbf{L}_{t,amp} + 2 \cdot \left(\mathbf{H}_p + \mathbf{h}_{FS3}\right) = 12.271 \cdot \text{ft}$                                                                                           | Width of FS3 (ft.)<br>Note: Width of FS3 is assumed to be the impact force projected<br>outward at a 45 degree angle to the centroid of FS3. |
| $A_{FS3} := 10.0.31 \text{ in}^2 = 3.1 \cdot \text{in}^2$                                                                                                                                                                 | Area of Tensile Reinforcement in FS3 (in <sup>2</sup> ) There are 10 bars over $b_{\rm FS3}$                                                 |
| $d_{FS3} \coloneqq 4.25$ in                                                                                                                                                                                               | Distance to Tensile Reinf. from Compression Face of FS3 (in.)<br>[See Figure 3 for more information]                                         |
| $\mathbf{a}_{\mathbf{FS3}} := \frac{\mathbf{A}_{\mathbf{FS3}} \cdot \mathbf{f}_{\mathbf{y}}}{0.85 \cdot \mathbf{f}_{\mathbf{c}} \cdot \mathbf{b}_{\mathbf{FS3}}}$                                                         | Whitney Stress Block Depth for FS3 (in.)                                                                                                     |
| $M_{FS3} := A_{FS3} \cdot f_y \cdot \left( d_{FS3} - \frac{a_{FS3}}{2} \right) = 42.637 \cdot kip \cdot ft$                                                                                                               | Moment Strength of Post at FS3 (k-ft)                                                                                                        |
| $y_{FS3} := y_{bar} + 3in = 32.811 \cdot in$                                                                                                                                                                              | Height measured from centroid of FS3 to Resultant Force of Rails (in.)                                                                       |
| $P_{P3} := \frac{M_{FS3}}{y_{FS3}} = 15.593 \cdot kip$                                                                                                                                                                    | Strength of Post at FS3 (kip)                                                                                                                |



#### Analysis of Post: PP

| $P_{P1} = 16.874 \cdot kip$ | Strength of Post at FS1 (kip) |  |
|-----------------------------|-------------------------------|--|
| $P_{P2} = 20.839 \cdot kip$ | Strength of Post at FS2 (kip) |  |
| $P_{P3} = 15.593 \cdot kip$ | Strength of Post at FS3 (kip) |  |

 $\underline{Note}:$  The Limiting ("worst case") Post Strength is taken as  $P_{\rm p}$ 

 $P_{P} \coloneqq \min\left(P_{P1}, P_{P2}, P_{P3}\right) = 15.593 \cdot kip$ 



## Total Ultimate Resistance (Nominal Resistance) of Railing: R<sub>R</sub>

$$\begin{array}{l} \underline{One \; Span \; Failure \; Mode} \colon N_1 = 1 \\ P_p = 15.593 \cdot kip \\ N_1 := 1 \\ M_{rail} = 88.333 \cdot kip \cdot ft \\ L_p = 9.823 \cdot ft \\ L_t = 4 \cdot ft \\ R_1 := \frac{16 \cdot M_{rail} + \left(N_1 - 1\right) \cdot \left(N_1 + 1\right) \cdot P_P \cdot L_p}{2 \cdot N_1 \cdot L_p - L_t} = 90.333 \cdot kip \end{array}$$

$$2 \cdot N_1 \cdot L_p - I$$

Two Span Failure Mode: N2=2

 $P_P = 15.593 \cdot kip$ 

N<sub>2</sub> := 2

 $M_{rail} = 88.333 \cdot kip \cdot ft$ 

 $L_p = 9.823 \cdot ft$ 

 $L_t = 4 \cdot ft$ 

$$\mathbf{R}_{2} := \frac{\mathbf{16} \cdot \mathbf{M}_{rail} + \mathbf{N}_{2}^{-2} \cdot \mathbf{P}_{p} \cdot \mathbf{L}_{p}}{2 \cdot \mathbf{N}_{2} \cdot \mathbf{L}_{p} - \mathbf{L}_{t}} = 57.408 \cdot kip$$



Total Ultimate Resistance (Nominal Resistance) of Railing: R<sub>R</sub>

$$\begin{array}{l} \underline{Three \; Span \; Failure \; Mode} : N_{3} = 3 \\ P_{p} = 15.593 \cdot kip \\ N_{3} := \; 3 \\ M_{rail} = 88.333 \cdot kip \cdot ft \\ L_{p} = 9.823 \cdot ft \\ L_{t} = 4 \cdot ft \\ R_{3} := \frac{16 \cdot M_{rail} + \left(N_{3} - 1\right) \cdot \left(N_{3} + 1\right) \cdot P_{P} \cdot L_{p}}{2 \cdot N_{3} \cdot L_{p} - L_{t}} = 48.031 \cdot kip \end{array}$$

Four Span Failure Mode: N4=4

 $P_P = 15.593 \cdot kip$ 

N<sub>4</sub> := 4

M<sub>rail</sub> = 88.333 · kip · ft

 $L_p = 9.823 \cdot ft$ 

 $L_t = 4 \cdot ft$ 

$$\mathbf{R_4} := \frac{\mathbf{16} \cdot \mathbf{M_{rail}} + \mathbf{N_4}^2 \cdot \mathbf{P_P} \cdot \mathbf{L_p}}{2 \cdot \mathbf{N_4} \cdot \mathbf{L_p} - \mathbf{L_t}} = 51.809 \cdot \mathbf{kip}$$



## Total Ultimate Resistance (Nominal Resistance) of Railing: R<sub>R</sub>

$$\begin{split} & \underline{Five \; Span \; Failure \; Mode} : N_5 = 5 \\ & \mathbf{P_P} = 15.593 \cdot kip \\ & N_5 := 5 \\ & \mathbf{M_{rail}} = 88.333 \cdot kip \cdot ft \\ & \mathbf{L_p} = 9.823 \cdot ft \\ & \mathbf{L_t} = 4 \cdot ft \\ & \mathbf{R_5} := \frac{16 \cdot \mathbf{M_{rail}} + \left(N_5 - 1\right) \cdot \left(N_5 + 1\right) \cdot \mathbf{P_P} \cdot \mathbf{L_p}}{2 \cdot N_5 \cdot \mathbf{L_p} - \mathbf{L_t}} = 54.012 \cdot kip \end{split}$$

Six Span Failure Mode:  $N_6=6$   $P_p = 15.593 \cdot kip$   $N_6 := 6$   $M_{rail} = 88.333 \cdot kip \cdot ft$   $L_p = 9.823 \cdot ft$  $L_t = 4 \cdot ft$ 

$$\mathbf{R}_{6} \coloneqq \frac{\mathbf{16} \cdot \mathbf{M}_{rail} + \mathbf{N}_{6}^{2} \cdot \mathbf{P}_{P} \cdot \mathbf{L}_{p}}{2 \cdot \mathbf{N}_{6} \cdot \mathbf{L}_{p} - \mathbf{L}_{t}} = 60.835 \cdot kip$$



## Total Ultimate Resistance (Nominal Resistance) of Railing: R<sub>R</sub>

Seven Span Failure Mode: N<sub>7</sub>=7  
P<sub>P</sub> = 15.593 · kip  
N<sub>7</sub> := 7  
M<sub>rail</sub> = 88.333 · kip · ft  
L<sub>p</sub> = 9.823 · ft  
L<sub>t</sub> = 4 · ft  
R<sub>7</sub> := 
$$\frac{16 \cdot M_{rail} + (N_7 - 1) \cdot (N_7 + 1) \cdot P_P \cdot L_p}{2 \cdot N_7 \cdot L_p - L_t} = 65.65 \cdot kip$$

Eight Span Failure Mode: N8=8

 $P_P = 15.593 \cdot kip$ 

N<sub>8</sub> := 8

 $M_{rail} = 88.333 \cdot kip \cdot ft$ 

 $L_p = 9.823 \cdot ft$ 

 $L_t = 4 \cdot ft$ 

 $R_8 \coloneqq \frac{16 \cdot M_{rail} + N_8^{-2} \cdot P_P \cdot L_p}{2 \cdot N_8 \cdot L_p - L_t} = 73.23 \cdot kip$ 



Total Ultimate Resistance of the bridge rail system @ ybar (kip)

#### Total Ultimate Resistance (Nominal Resistance) of Railing: RR

<u>Note</u>: The Total Ultimate Resistance of the bridge rail system is the minimum value of  $R_1 - R_8$ 

 $\mathbf{R}_r \coloneqq min \left(\mathbf{R}_1\,, \mathbf{R}_2\,, \mathbf{R}_3\,, \mathbf{R}_4\,, \mathbf{R}_5\,, \mathbf{R}_6\,, \mathbf{R}_7\,, \mathbf{R}_8\right) = 48.031 \cdot kip$ 

 $H_e = 19 \cdot in$ 

Height of Transverse Impact Load (in.)

 $y_{bar} = 29.811 \cdot in$ 

Height of Resultant Force (in.)

 $F_t = 71 \cdot kip$ 

Transverse Impact Force (kip)

 $\mathbf{R}_{\mathbf{R}} := \mathbf{R}_{\mathbf{r}} \cdot \left( \frac{\mathbf{y}_{bar}}{\mathbf{H}_{e}} \right) = 75.362 \cdot kip$ 

Total Ultimate Resistance of the bridge rail system @ He (kip)

<u>CHECK</u>= "OK", since  $R_R = 75.4$  kip >  $F_t = 71$  kip

## Appendix G. Details of Louisiana Retrofit Post and Beam with Safety Walk Option 2 for Tests 606861-3&4



<u>-231</u>







Q://Acreditation-1702-5201/1/EIR-000 Project Files/6903/e913 - C0-L3004 - LaDoT - Villiams/Drafition-1702-5207



Q:/Accreditation-17055-2017/EIR-000 Project Files/68604-03 - LaDoT - Williams/Drafting, 606861-03/EIR-000 Project Files/606861-03 Drawing



Q:/Accreditation-17025-2017/EIR-000 Project Files/66661-03 - LaDoT - Williams/Draffing, 606561-03/606961-3 Drawing



Q:/Accreditation-1705-2017/EIR-000 Project Files/606/asil-03 - LaDoT - Williams/Drafting, 606/61-03/EIR-000 Project Files/06/60/asil-03/Eires/Drafting, 60/61/asil-03/Eires/Drafting, 60/61/asi





Q:/Accreditation-17025-2017/EIR-000 Project Files/06/89/06/201 - LaDoT - LaDoT - Contraction - Contr



0:/Accreditation-17025-2017/EIR-000 Project Files/60661-03 - LaDoT - Williams/Drafting, 606661-03/606661-3 Drawing



Q:/Accreditation-17025-2017/EIR-000 Project Files/6061-03 - LaDoT - Williams/Drafting, 60651-03/60691-3 Drawing



0://screditation-17025-2017/EIR-000 Project Files/606801 - 50 - LaDoT - Williams/Draftiong, 606561-03/60604 - Drawing



Q:/Accreditation-17025-2017/EIR-000 Project Files/60861-03 - LaDoT - Williams/Draffing, 606861-03/606861-3 Drawing

# Appendix H. Strength Analysis for Retrofit Bridge Rail Anchored to Solid Concrete Parapet



1.) Given the following Details

## SUBJECT: <u>LADOTD (LTRC 16) HS</u> <u>Tube Bridge Rail Retrofit LRFD</u> <u>Strength Analysis</u>



Figure 1. Detailed Views of Bridge Rail System











Figure 3. Plan View of Failure Section 3









at Ends/Joints







Figure 6. Steel and Rail details





**Figure 7. Steel Splice Detail** 









SUBJECT: <u>LADOTD (LTRC 16) HSS</u> <u>Tube Bridge Rail Retrofit LRFD</u> <u>Strength Analysis</u>

kips ≡ kip

#### 2.) General Information:

- Concrete Parapet Strength, fc = 4000psi
- Anchor Rods are \$\phi3/4" x 12" long, A193 B7 Threaded Anchor: Fu=120ksi
- All concrete reinforcing steel = Grade 40: fy=40ksi
- HSS10x4x3/8 Tube Rails are A500 Grade B Material: Fy=46 ksi
- Reference: AASHTO LRFD Bridge Design Specifications, Section 13, TL-3 Conditions.
- Objective: Calculate the Strength of the Rail based on Worst Case Rail Strength and AASHTO
   DED Control 12 Contro
- LRFD Section 13 Strength Requirements.
- Use Hilti RE500 Epoxy with 10" Embedment

| ******************************* Concrete, Reinforcing Steel & Structural Shape Information ************************************ |                                                                                                           |  |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|
| $\mathbf{f'}_{\mathbf{c}} := 4000 \cdot \mathbf{psi}$                                                                           | Compressive Strength of Concrete (psi)                                                                    |  |
| $F_{yR} := 46ksi$                                                                                                               | Yield Strength of all Steel Rails (ksi)                                                                   |  |
| f <sub>y</sub> := 40ksi                                                                                                         | Yield Strength of Concrete Reinforcing Steel (ksi)                                                        |  |
| b <sub>w</sub> := 13.5in                                                                                                        | Width of Concrete Parapet/Wall (in.)                                                                      |  |
| h <sub>w</sub> := 18in                                                                                                          | Height of Concrete Parapet/Wall (in.)                                                                     |  |
| H <sub>w</sub> := 28.625in                                                                                                      | Height of Concrete Parapet/Wall measured from roadway surface (in.)                                       |  |
| $A_{v1} := 0.2 in^2$                                                                                                            | Area of one vertical reinforcement bar in tension zone of the Concrete Parapet/Wall (in <sup>2</sup> )    |  |
| $A_{sw1} := 0.2in^2$                                                                                                            | Area of one longitudinal reinforcement bar in tension zone of the Concrete Parapet/Wall $(\mathrm{in}^2)$ |  |
| **************************************                                                                                          |                                                                                                           |  |
| $F_{u.rod} := 120ksi$                                                                                                           | Tensile Strength of Anchor Rods (ksi)                                                                     |  |
| $d_{rod} := \frac{3}{4}in$                                                                                                      | Diameter of Anchor Rods (in)                                                                              |  |

 $\mathbf{A}_{\mathrm{rod}} \coloneqq \frac{\pi \cdot \mathbf{d}_{\mathrm{rod}}^2}{4} = 0.442 \cdot \mathrm{in}^2$ 

Area of a Anchor Rod (in2)


| Test Level | Ft (kip) | F <sub>L</sub> (kip) | F <sub>v</sub> (kip) | $L_t/L_L$ (ft) | L <sub>v</sub> (ft) | H <sub>e</sub> (in) | H <sub>min</sub> (in) |
|------------|----------|----------------------|----------------------|----------------|---------------------|---------------------|-----------------------|
| TL 1       | 13.5     | 4.5                  | 4.5                  | 4.0            | 18.0                | 18.0                | 18.0                  |
| TL 2       | 27.0     | 9.0                  | 4.5                  | 4.0            | 18.0                | 20.0                | 18.0                  |
| TL 3       | 71.0     | 18.0                 | 4.5                  | 4.0            | 18.0                | 24.0                | 29.0                  |
| TL 4 (a)   | 68.0     | 22.0                 | 38.0                 | 4.0            | 18.0                | 25.0                | 36.0                  |
| TL 4 (b)   | 80.0     | 27.0                 | 22.0                 | 5.0            | 18.0                | 30.0                | 36.0                  |
| TL 5 (a)   | 160.0    | 41.0                 | 80.0                 | 10.0           | 40.0                | 35.0                | 42.0                  |
| TL 5 (b)   | 262.0    | 75.0                 | 160.0                | 10.0           | 40.0                | 43.0                | 42.0                  |
| TL 6       | 175.0    | 58.0                 | 80.0                 | 8.0            | 40.0                | 56.0                | 90.0                  |

#### MASH Design Impact Loads

Note: (a) and (b) denote different TL 4 and TL 5 design force values for bridge rails of different heights.

| TL := 3                                                                | Test Level                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{F}_{\mathbf{t}} \coloneqq 71 \mathbf{kip}$                    | Transverse Impact Force (kip)                                                                                                                                                                                                                                                             |
| $L_t := 4ft$                                                           | Longitudinal Length of Distribution of Transverse Impact Force (ft.)                                                                                                                                                                                                                      |
| $\mathbf{L}_{t.amp} \coloneqq 1.5 \cdot \mathbf{L}_t = 6  \mathrm{ft}$ | Amplified Longitudinal Length of Distribution of Transverse Impact<br>Force (ft.)<br>- Note: Amplify Lt by 50% since steel rail retrofit will distribute impact<br>load greater than what typically occurs. 50% amplification is typical of<br>what we've seen in previous similar tests. |
| H <sub>e</sub> := 19in                                                 | Height of Transverse Impact Load (in.)                                                                                                                                                                                                                                                    |
| $\mathbf{H}_{e.mod} := \mathbf{H}_{e} + 10in = 29 \cdot in$            | Modified Height of Transverse Impact Load (in.)<br>- Note: Due to curb and deck geometry, the impact load will be applied<br>to the barrier at a greater height than the typical $H_e$ . Adding 10 inches<br>to $H_e$ acounts for the curb height.                                        |
| F <sub>V</sub> := 4.5kip                                               | Vertical Impact Force (kip)                                                                                                                                                                                                                                                               |
| L <sub>V</sub> := 18ft                                                 | Longitudinal Length of Distribution of Vertical Impact Force (ft.)                                                                                                                                                                                                                        |
| $H_{W} = 28.625 \cdot in$                                              | Height of Concrete Parapet measured from the top of the roadway surface (in.)                                                                                                                                                                                                             |
| <b>H</b> <sub>t</sub> := 40in                                          | Total height of bridge rail system (in.)                                                                                                                                                                                                                                                  |



SUBJECT: <u>LADOTD (LTRC 16) HSS</u> <u>Tube Bridge Rail Retrofit LRFD</u> <u>Strength Analysis</u>

3.) Calculate the Bending Capacity based on Failure Section 1 about the Longitudinal Axis: M<sub>c.FS1</sub> Note: See Figure 1 for more information

$$A_{v1} = 0.2 \text{ in}^2$$
Area of one vertical reinforcement leg in tension zone (in?) $b_c := 12\text{in}$ Unit Width of Wall (in.) $v_{vnild} := 12\text{in}$ Spacing of vertical reinforcement at midspan (in.) $v_{vnild} := 12\text{in}$ Average Spacing of vertical reinforcement at the end of the propertical or at a joint per the length of the longitudinal distribution of the impact force (in.) $A_{v,mild} := \left(\frac{b_c}{s_{v,mild}}\right) \cdot A_{v1} = 0.2 \text{ in}^2$ Total Area of vertical reinforment per unit length of the wall at midspan (in?) $A_{v,mild} := \left(\frac{b_c}{s_{v,mid}}\right) \cdot A_{v1} = 0.2 \text{ in}^2$ Total Area of vertical reinforment per unit length of the wall at the end of the wall at the end of the wall at the end of the wall or at a joint (in?) $A_{v,end} := \left(\frac{b_c}{0.85 \cdot f_c \cdot b_c} = 0.196 \text{ in}$ Depth of Whitney Stress Block at midspan (in.) $a_{c,end} := \frac{A_{v,end} \cdot f_v}{0.85 \cdot f_c \cdot b_c} = 0.196 \text{ in}$ Depth of Whitney Stress Block at the end of the wall or at a joint (in.) $b_w = 13.5 \text{ in}$ Width of the Concrete Parapet/Wall (in.) $d_c := b_w - 1.5\text{in} - 0.25\text{in} = 11.75 \text{ in}$ Externe distance of tension vertical reinforcement of the wall (in.) $d_c := b_w - 1.5\text{in} - 0.25\text{in} = 11.75 \text{ in}$ Externe distance of tension vertical reinforcement of the wall (in.) $d_c := b_w - 1.5\text{in} - 0.25\text{in} = 11.75 \text{ in}$ Externe distance of tension vertical reinforcement of the wall (in.) $d_c := b_w - 1.5\text{in} - 0.25\text{in} = 11.75 \text{ in}$ Externe distance of tension vertical reinforcement of the wall (in.) $d_c := b_w - 1.5\text{in} - 0.25\text{in} = 11.75 \text{ in}$ Externe distance of tension vertical reinforcement of the wall (in.) $d_c := b_w - 1.5\text{in} - 0.25\text{in$ 



#### 4.) Calculate the Bending Capacity based on Failure Section 2 about the Longitudinal Axis: McFS2

Failure Section 2 (FS2) Properties and Dimensions: a) Assuming FS2 is vertical from top to bottom of upper deck at the intersection with the parapet. b) #5-Gr40 Rebar is used for Tensile Reinforcement

| $f_y = 40 \cdot ksi$                                                                                                                                      | $\mathbf{f'}_{\mathbf{c}} = 4 \cdot \mathbf{k} \mathbf{s} \mathbf{i}$                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $H_{W} = 28.625 \cdot in$                                                                                                                                 | Height of Concrete Parapet/Wall measured from top of roadway surface (in.)                                                                                                          |
| $L_{t.amp} = 6  ft$                                                                                                                                       | Amplified Longitudinal Length of Distribution of Transverse Impact<br>Force (ft.)                                                                                                   |
| $\mathbf{h}_{FS2} := 7.75 \mathbf{in}$                                                                                                                    | Distance from roadway surface to centroid of FS2 (in.)<br>[See Figure 1 for more information]                                                                                       |
| $\mathbf{b}_{FS2} := \mathbf{L}_{t.amp} + 2 \cdot \left( \mathbf{H}_{W} - \mathbf{h}_{FS2} \right) = 9.479 \cdot ft$                                      | Width of FS2 (in.)<br>Note: Width of FS2 is assumed to be the impact force<br>projected outward at a 45 degree angle to the centroid of FS2.<br>[See Figure 2 for more information] |
| $A_{FS2} := 7.0.31 \text{in}^2 = 2.17 \cdot \text{in}^2$                                                                                                  | Area of Tensile Reinforcement in FS2 (in <sup>2</sup> )<br>[See Figure 2 for more information] There<br>are 9 bars over b <sub>FS2</sub>                                            |
| d <sub>FS2</sub> := 4.25in                                                                                                                                | Distance to Tensile Reinf. from Compression Face of FS2 (in.)<br>[See Figure 1 for more information]                                                                                |
| $\mathbf{a}_{FS2} := \frac{\mathbf{A}_{FS2} \cdot \mathbf{f}_{y}}{0.85 \cdot \mathbf{f}_{c} \cdot \mathbf{b}_{FS2}}$                                      | Whitney Stress Block Depth for FS2 (in.)                                                                                                                                            |
| $\mathbf{M}_{FS2} := \mathbf{A}_{FS2} \cdot \mathbf{f}_{y} \cdot \left( \mathbf{d}_{FS2} - \frac{\mathbf{a}_{FS2}}{2} \right) = 29.93 \cdot \mathbf{kip}$ | • ft Moment Strength at FS2 about the longitudinal axis (k-ft)                                                                                                                      |
| $M_{c,FS2} := \frac{M_{FS2}}{L_{t,amp}} = 4.988 \cdot \frac{kip \cdot ft}{ft}$                                                                            | Moment Strength at FS2 about the longitudinal axis per 1 ft segment of barrier (k-ft/ft)                                                                                            |



#### 5.) Calculate the Bending Capacity based on Failure Section 3 about the Longitudinal Axis: Mc.FS3

<u>Failure Section 3 (FS3) Properties and Dimensions:</u> a) Assuming FS3 is vertical from top to bottom of lower deck at the intersection of the lower deck to curb. b) #5-Gr.40 Rebar is used for Tensile Reinforcement

| $f_y = 40 \cdot ksi$                                                                                                                                                       | $\mathbf{f'}_{\mathbf{c}} = 4 \cdot \mathbf{k} \mathbf{s} \mathbf{i}$ |                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H <sub>w</sub> = 28.625 ⋅ in                                                                                                                                               |                                                                       | Height of Concrete Parapet/Wall measured<br>from top of roadway surface (in.)                                                                                                       |
| $L_{t.amp} = 6  ft$                                                                                                                                                        |                                                                       | Amplified Longitudinal Length of Distribution of Transverse Impact<br>Force (ft.)                                                                                                   |
| h <sub>FS3</sub> := 3in                                                                                                                                                    |                                                                       | Vertical distance from roadway surface to centroid of FS3 (in.)<br>[See Figure 1 for more information]                                                                              |
| $\mathbf{b}_{FS3} := \mathbf{L}_{t,amp} + 2 \cdot (\mathbf{H}_{W} + \mathbf{h}_{FS3})$                                                                                     | s) = 11.271 · ft                                                      | Width of FS3 (ft.)<br>Note: Width of FS3 is assumed to be the impact force projected<br>outward at a 45 degree angle to the centroid of FS3.<br>[See Figure 3 for more information] |
| $A_{FS3} := 11.0.31 \text{ in}^2 = 3.41 \cdot \text{in}^2$                                                                                                                 |                                                                       | Area of Tensile Reinforcement in FS3 (in <sup>2</sup> )<br>[See Figure 3 for more information]<br>There are 11 bars over b <sub>FS3</sub>                                           |
| d <sub>FS3</sub> := 4.25in                                                                                                                                                 |                                                                       | Distance to Tensile Reinf. from Compression Face of FS3 (in.)<br>[See Figure 1 for more information]                                                                                |
| $\mathbf{a}_{FS3} := \frac{\mathbf{A}_{FS3} \cdot \mathbf{f}_{y}}{0.85 \cdot \mathbf{f}_{c} \cdot \mathbf{b}_{FS3}}$                                                       |                                                                       | Whitney Stress Block Depth for FS3 (in.)                                                                                                                                            |
| $\mathbf{M}_{\mathbf{FS3}} := \mathbf{A}_{\mathbf{FS3}} \cdot \mathbf{f}_{\mathbf{y}} \cdot \left( \mathbf{d}_{\mathbf{FS3}} - \frac{\mathbf{a}_{\mathbf{F5}}}{2} \right)$ | $\left(\frac{53}{2}\right) = 46.623 \cdot \text{kip} \cdot \text{ft}$ | Moment Strength of Post at FS3 (k-ft)                                                                                                                                               |
| $M_{c.FS3} := \frac{M_{FS3}}{L_{t.amp}} = 7.77 \cdot \frac{kip}{ft}$                                                                                                       | ft                                                                    | Moment Strength of Post at FS3 per 1 ft segment of barrier (k-ft)                                                                                                                   |



6.) Critical Bending Capacity of the Bridge Rail System about the Longitudinal Axis: Mc

| $\mathbf{M}_{\mathbf{cmid},\mathbf{FS1}} = 7.768 \cdot \frac{\mathbf{kip} \cdot \mathbf{ft}}{\mathbf{ft}}$ | Flexural Resistance of Cantilever Wall<br>specified in Article A13.4.2 at midspan (k-fl/ft)                              |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| $M_{cend.FS1} = 7.768 \cdot \frac{kip \cdot ft}{ft}$                                                       | Flexural Resistance of Cantilever Wall<br>specified in Article A13.4.2 at the end of the wall or<br>at a joint (k-fl/ft) |
| $M_{c,FS2} = 4.988 \cdot \frac{\text{kip} \cdot \text{ft}}{\text{ft}}$                                     | Moment Strength at FS2 about the longitudinal axis per 1 ft segment of barrier (k-ft/ft)                                 |
| $\mathbf{M}_{c.FS3} = 7.77 \cdot \frac{\mathbf{kip} \cdot \mathbf{ft}}{\mathbf{ft}}$                       | Moment Strength of Post at FS3 per 1 ft segment of barrier (k-ft/ft)                                                     |

 $\mathbf{M}_{\mathbf{c}} := \min \left( \mathbf{M}_{\mathbf{cmid},\mathbf{FS1}}, \mathbf{M}_{\mathbf{cend},\mathbf{FS1}}, \mathbf{M}_{\mathbf{c},\mathbf{FS2}}, \mathbf{M}_{\mathbf{c},\mathbf{FS3}} \right) = 4.988 \cdot \frac{\mathbf{kip} \cdot \mathbf{ft}}{\mathbf{ft}}$ Critical Bending Capacity of the Bridge Rail System about the Longitudinal Axis (k-ft/ft)



#### 7.) Calculate the Bending Capacity of the Parapet/Wall about the Vertical Axis: Mw

| $A_{swl} = 0.2 \cdot in^2$ | Area of one Longitudinal bar in tension (in <sup>2</sup> ) |
|----------------------------|------------------------------------------------------------|
| 5W1                        |                                                            |

 $n_{_{SW}} := 2$  Number of Longitudinal bars in tension (m<sup>2</sup>)

 $\mathbf{A}_{sw} \coloneqq \mathbf{n}_{sw} \cdot \mathbf{A}_{sw1} = 0.4 \cdot \mathbf{in}^2$ 

 $h_w = 18 \cdot in$ 

$$\mathbf{a}_{\mathbf{W}} := \frac{\mathbf{A}_{\mathbf{SW}} \cdot \mathbf{f}_{\mathbf{y}}}{\mathbf{0.85} \cdot \mathbf{f}_{\mathbf{C}} \cdot \mathbf{h}_{\mathbf{W}}} = \mathbf{0.261} \cdot \mathbf{in}$$

 $b_w = 13.5 \cdot in$ 

Depth of the Whitney Stress Block (in.)

Total height of the concrete parapet (in.)

Total Area of Longitudinal Rebar in tension (in2)

Width of the Concrete Parapet/Wall (in.)

$$d_{W} := b_{W} - 1.5in - 0.5in - 0.25in = 11.25 \cdot in$$

Extreme distance of tension longitudinal reinforcement in wall (in.)  $d_w = b_w$  - cover - diameter of stirrups - (1/2)\*diameter of longitudinal bars

$$\mathbf{M}_{\mathbf{W}} := \mathbf{A}_{\mathbf{SW}} \cdot \mathbf{f}_{\mathbf{Y}} \cdot \left( \mathbf{d}_{\mathbf{W}} - \frac{\mathbf{a}_{\mathbf{W}}}{2} \right) = 14.826 \cdot \mathbf{kip} \cdot \mathbf{ft}$$

Flexural Resistance of the Concrete Parapet/Wall about the Vertical Axis(k-ft)



#### 8.) Determine the Ultimate Resistance of the Parapet at Midspan: R<sub>wmid</sub>



Yield Line Analysis of Concrete Parapet Walls for Impact within Wall Segment.

$$\mathbf{L}_{\mathbf{cmid}} \coloneqq \frac{\mathbf{L}_{\mathbf{t.amp}}}{2} + \sqrt{\left(\frac{\mathbf{L}_{\mathbf{t.amp}}}{2}\right)^2 + \frac{\left[8 \cdot \mathbf{h}_W \cdot \left(\mathbf{M}_B + \mathbf{M}_W\right)\right]}{\mathbf{M}_c}} = 9.683 \cdot \text{ft}$$
(AASHTO Equation A13.3.1-2)  
$$\mathbf{R}_{\mathbf{wmid}} \coloneqq \left[\left(\frac{2}{2 \cdot \mathbf{L}_{\mathbf{cmid}} - \mathbf{L}_{\mathbf{t.amp}}}\right) \cdot \left[8 \cdot \mathbf{M}_B + 8 \cdot \mathbf{M}_W + \frac{\mathbf{M}_c \cdot \left(\mathbf{L}_{\mathbf{cmid}}\right)^2}{\mathbf{h}_W}\right]\right] = 64.404 \cdot \text{kip}$$
(AASHTO Equation A13.3.1-1)



9.) Determine the Ultimate Resistance of the Parapet at Joints/Ends: Rwend



Yield Line Analysis of Concrete Parapet Walls for Impact near End of Wall Segment

| $h_{W} = 18 \cdot in$                                                                                                          | Height of the Concrete Parapet/Wall (in.)<br>$h_w = H \text{ in Figure 3}$                                                                  |                      |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| $M_B = 0$                                                                                                                      | No additional concrete beam strength                                                                                                        |                      |
| $M_{W} = 14.826 \cdot kip \cdot ft$                                                                                            | Flex. Resistance of the Wall about the Vert. Axis (k-ft)                                                                                    |                      |
| $L_{t.amp} = 6 ft$                                                                                                             | Amplified Longitudinal length of distribution of impact fo                                                                                  | rce (ft.)            |
| $\mathbf{M}_{c} = 4.988 \cdot \frac{\mathbf{kip} \cdot \mathbf{ft}}{\mathbf{ft}}$                                              | Flexural Resistance of the Wall about the Longitudinal Ax specified in Article A13.4.2 (k-ft/ft)                                            | is at Joints/Ends    |
| $\mathbf{L}_{cend} \coloneqq \frac{\mathbf{L}_{t.amp}}{2} + \sqrt{\left(\frac{\mathbf{L}_{t.amp}}{2}\right)^2 + \mathbf{h}}$   | $\mathbf{w} \cdot \left(\frac{\mathbf{M}_{\mathbf{B}} + \mathbf{M}_{\mathbf{W}}}{\mathbf{M}_{\mathbf{C}}}\right) = 6.669 \cdot \mathbf{ft}$ | (Equation A13.3.1-4) |
| $\mathbf{R}_{wend} := \left(\frac{2}{2 \cdot \mathbf{L}_{cend} - \mathbf{L}_{t.amp}}\right) \cdot \left[\mathbf{M}_{B}\right]$ | + $\mathbf{M}_{W}$ + $\frac{\left(\mathbf{M}_{c} \cdot \mathbf{L}_{cend}^{2}\right)}{\mathbf{h}_{W}}$ = 44.353 · kip                        | (Equation A13.3.1-3) |



10. Resistance of Steel Rails:

SUBJECT: LADOTD (LTRC 16) HSS Tube Bridge Rail Retrofit LRFD Strength Analysis

| <u>HSS10x4x3/8 Steel Rail Properties and Dimensions;</u><br>a) Steel Rails are A500 Gr. B Material, Fy=46ksi<br>b) Steel Rails bend about the y-axis                                                                                                                                       |                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| $F_{yR} = 46 \cdot ksi$                                                                                                                                                                                                                                                                    | Yield Strength of Steel Rail (ksi)                                                           |
| $Z_{SR} := 14in^3$                                                                                                                                                                                                                                                                         | Plastic Sectional Modulus of both Steel Rails (in <sup>3</sup> )                             |
| $M_{SR} := 2Z_{SR} \cdot F_{yR} = 107.333 \cdot kip \cdot ft$                                                                                                                                                                                                                              | Total Plastic Moment Strength of both Steel Rails (k-ft)                                     |
| y <sub>SR</sub> := 30in                                                                                                                                                                                                                                                                    | Height of the centroid of the Steel Rails measured from the top of the roadway surface (in.) |
| <u>Steel Splice Rail Properties and Dimensions:</u><br>a) Steel Splice Rails are A500 Gr. B Material, Fy=46ksi<br>b) Steel Splice Rails are HSS5x3x3/8 and HSS4x3x3/8 memb<br>c) Steel Splice Rails bend about the y-axis<br>d) Note: All heights measured from the top of the roadway sur | ers<br>face                                                                                  |
| $F_{yR} = 46 \cdot ksi$                                                                                                                                                                                                                                                                    | Yield Strength of Steel Splice Rails (ksi)                                                   |
| $Z_{S1} := 5.1 \text{ im}^3$                                                                                                                                                                                                                                                               | Plastic Sectional Modulus of top most Steel Splice Rail $(\mbox{in}^3)$                      |
| $\mathbf{M}_{S1} \coloneqq \mathbf{F}_{yR} \cdot \mathbf{Z}_{S1} = 19.55 \cdot \mathbf{kip} \cdot \mathbf{ft}$                                                                                                                                                                             | Plastic Moment Strength of top most Steel Splice Rail (k-ft)                                 |
| y <sub>S1</sub> := 37in                                                                                                                                                                                                                                                                    | Height of the centroid of top most Steel Splice Rail (in.)<br>(See Figure 4)                 |
| $Z_{S2} := 4.18 in^3$                                                                                                                                                                                                                                                                      | Plastic Sectional Modulus of 2nd from top Steel Splice Rail (in <sup>3</sup> )               |
| $\mathbf{M}_{S2} \coloneqq \mathbf{F}_{yR} \cdot \mathbf{Z}_{S2} = 16.023 \cdot \mathbf{kip} \cdot \mathbf{ft}$                                                                                                                                                                            | Plastic Moment Strength of 2nd from top Steel Splice Rail (k-ft)                             |
| y <sub>S2</sub> := 32.5in                                                                                                                                                                                                                                                                  | Height of the centroid of 2nd from top Steel Splice Rail (in.)<br>(See Figure 4)             |
| $Z_{S3} := 5.1 \text{im}^3$                                                                                                                                                                                                                                                                | Plastic Sectional Modulus of 3rd from top Steel Splice Rail $(\mathrm{in}^3)$                |
| $\mathbf{M}_{S3} := \mathbf{F}_{yR} \cdot \mathbf{Z}_{S3} = 19.55 \cdot \mathbf{kip} \cdot \mathbf{ft}$                                                                                                                                                                                    | Plastic Moment Strength of 3rd from top Steel Splice Rail (k-ft)                             |
| y <sub>S3</sub> := 27.25in                                                                                                                                                                                                                                                                 | Height of the centroid of 3rd from top Steel Splice Rail (in.)<br>(See Figure 4)             |

SUBJECT:LADOTD (LTRC 16) HSS  
Tube Bridge Rail Retrofit LRFD  
Strength Analysis
$$Z_{54} := 4.18 \text{ in}^3$$
Plastic Sectional Modulus of 4th from top Steel Splice Rail (in<sup>3</sup>) $M_{54} := F_{yR} \cdot Z_{54} = 16.023 \cdot \text{kip} \cdot \text{ft}$ Plastic Sectional Modulus of 4th from top Steel Splice Rail (k-ft) $y_{54} := 22.75 \text{ in}$ Height of the centroid of 4th from top Steel Splice Rail (in.)  
(See Figure 4) $M_S := M_{S1} + M_{S2} + M_{S3} + M_{S4} = 71.147 \cdot \text{kip} \cdot \text{ft}$ Total Plastic Moment Strength of Steel Splice Rails (k-ft) $y_S := \frac{M_{S1} \cdot y_{S1} + M_{S2} \cdot y_{S2} + M_{S3} \cdot y_{S3} + M_{S4} \cdot y_{S4}}{M_S} = 30.098 \cdot \text{in}$ Height of the centroid of the Steel Splice Rails (in.)**L1.) Find Height of Critical Moment Capacity and Resultant Force of Steel Rails:**  $(M_{rail} & \& y_{bar})$ 

$$\mathbf{M}_{SR} = 107.333 \cdot kip \cdot ft$$

Total Plastic Moment Strength of both Steel Rails (k-ft)

 $y_{SR} = 30 \cdot in$ 

Height of the centroid of the Steel Rails (in.)

 $\mathbf{M}_{\underline{S}\_\underline{ySR}} \coloneqq \mathbf{M}_{\underline{S}} \cdot \left( \frac{\mathbf{y}_{\underline{S}}}{\mathbf{y}_{\underline{SR}}} \right) = 71.379 \cdot \mathbf{kip} \cdot \mathbf{ft}$ 

Total Plastic Moment Strength of Steel Splice Rails at  $y_{SR}$  (k-ft)



#### 12.) Strength of Post at HR based on Post Yielding Pp1

$$\begin{split} & Z_{W6x15} \coloneqq 10.8 in^3 \qquad F_{yA992} \coloneqq 50 ksi \\ & F_{Tpost} \coloneqq 71 kip \cdot 0.50 \quad \text{Consider } 1/2 \text{ of maximum impact force on top of post (worst cast)} \\ & Ht_{post} \coloneqq 30 in - 27.25 in = 2.75 \cdot in \qquad \text{Use max impact of center of top rail element for } TL-3 \\ & M_{postimpact} \coloneqq Ht_{post} \cdot F_{Tpost} = 8.135 \cdot kip \cdot ft \\ & M_{postUltimate} \coloneqq Z_{W6x15} \cdot F_{yA992} = 45 \cdot kip \cdot ft \end{split}$$

 $P_{p1} := \frac{M_{postUltimate}}{Ht_{post}} = 196.364 \cdot kip$ 

#### 13.) Strength of Post based on Adhesive Anchor Strength Pp2

Design Hilti Anchorage System:

| Sanchors := 10in              | C <sub>anchors</sub> = 5in Edge and Anchor Spacing distances (inches)                                                                                                                                                                              |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F <sub>vHilti</sub> := 313501 | <ul> <li>Factored ultimate strength from Table 25, Page 151, Hilti 2016 Technical Guide for RE500V3 Epoxy with<br/>dymanic loading for 4000 psi concrete. Comparable for full scale static testing (TTI Project 490026<br/>August 2016)</li> </ul> |
| $f_{AN} := 0.70$              | Reduction factor for Spacing Table 36, Page 158, 2016 Hilti Technical Guide                                                                                                                                                                        |
| $f_{RN} := 0.40$              | eduction factor for Edge Distance With reinforcing use 0.40 factor.                                                                                                                                                                                |
| Ecc <sub>BP</sub> := 6in      | centricty of Anchor Bolts on Baseplate in Tension                                                                                                                                                                                                  |

#### $\mathbf{M}_{HiltiAnchors} := \mathbf{F}_{vHilti} \cdot \mathbf{f}_{AN} \cdot \mathbf{f}_{RN} \cdot 2 \cdot \mathbf{Ecc}_{BP} = 11.675 \cdot kip \cdot ft$

Use Hilti RE500V3 for A193B7 Threaded Rods, embedded 10 inches minimum

$$P_{p2} := \frac{M_{HiltiAnchors}}{Ht_{post}} = 50.944 \text{ kip}$$

 $P_p := P_{p2}$  Limiting post strength based on Hilti Adhesive Strength



14.) Calculate the strength of the Steel & Concrete Rail over 1 and 2 Span As per Section A13.3.3





$$\mathbf{R}_{1} := \frac{\mathbf{16} \cdot \mathbf{M}_{rail} + (\mathbf{N}_{1} - 1) \cdot (\mathbf{N}_{1} + 1) \cdot \mathbf{P}_{p} \cdot \mathbf{Post}_{spa}}{2 \cdot \mathbf{N}_{1} \cdot \mathbf{Post}_{spa} - \mathbf{L}_{t}}$$

$$\mathbf{R}_{2} := \frac{\mathbf{16} \cdot \mathbf{M}_{rail} + \mathbf{N}_{2}^{2} \cdot \mathbf{P}_{p} \cdot \mathbf{Post}_{spa}}{2 \cdot \mathbf{N}_{2} \cdot \mathbf{Post}_{spa} - \mathbf{L}_{t}}$$

R<sub>2</sub> = 118.051 · kips Strength over 2 spans

$$R_{wreduced} := \frac{R_{wrid} \cdot H_w - P_p \cdot H_R}{H_w} = 11.012 \cdot kips$$

Equation A13.3.3-1 LRFD Section 13

 $R_{bar1} := R_1 + R_{wmid} = 206.697 \cdot kips$ 

Strength of the rail 1 span (between posts)

$$Y_{bar1} := \frac{R_1 \cdot H_R + R_{wmid} \cdot H_W}{R_{bar1}} = 29.572 \cdot in$$

Equation A13.3.3-2 LRFD Section 13



Figure A13.3.3-2 Concrete Wall and Metal Rail Evaluation---Impact at Post.



| $R_{bar2} := P_p + R_2 + R_{wreduced} = 180.007 \cdot kips$                                                                                         | Equation A13.3.3-3 LRfd Section 13<br>Strength of the rail at a post                                                     | Strength OK for 1 and 2 span                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| $Y_{bar2} := \frac{P_p \cdot H_R + R_2 \cdot H_R + R_{wreduced} \cdot H_w}{R_{bar2}}$                                                               | = 29.916 in Equation A13.3.3-4                                                                                           | LRFD Section 13                                  |
| 15.) Total Resistance of Bridge Rail System (as con                                                                                                 | tinous): R <sub>T</sub>                                                                                                  |                                                  |
| Since the rail retofit bears on top and against the concrete parapet, or<br>Centroid height of the rails very close to top of concrete parapet, the | onsider the strength of the retrofit in additio<br>erefore impact load for TL-3 will bear rail o                         | on to the concrete parapet<br>n parapet concrete |
| $R_{winid} = 64.404 \cdot kip$                                                                                                                      | Resistance of the Concrete Para                                                                                          | pet at midspan (kip)                             |
| R <sub>wend</sub> = 44.353 · kip                                                                                                                    | Resistance of the Concrete Para                                                                                          | pet at joints/ends (kip)                         |
| Note: Due to steel rail retrofit, the failure mechanism that will occ                                                                               | ur in the concrete parapet will not occur like                                                                           | e a typical joint/end failure.                   |
| $\mathbf{R}_{\mathbf{W}} := \mathbf{R}_{\mathbf{W}\mathbf{M}\mathbf{i}\mathbf{d}} = 64.404 \cdot \mathbf{kip}$                                      | Critical Resistance of the Concrete Par                                                                                  | apet (kip)                                       |
| $\mathbf{H}_{\mathbf{W}} = 28.625 \cdot \mathbf{in}$                                                                                                | Height of the Concrete Parapet measur                                                                                    | ed from the roadway surface (in.)                |
| $\mathbf{M}_{\text{parapet}} := \mathbf{R}_{W} \cdot \mathbf{H}_{W} = 153.63 \cdot \text{kip} \cdot \text{ft}$                                      | Moment Capacity of the Concrete Para                                                                                     | pet (k-ft)                                       |
| y <sub>bar</sub> = 30.098·in                                                                                                                        | Height of the Centroid of the Steel Rail<br>surface (in.) (See Figure 4)                                                 | ls measured from the roadway                     |
| $M_{rail} = 71.147 \cdot kip \cdot ft$                                                                                                              | Moment Capacity of Steel Rails (k-ft)<br>(bending strength at the splices This<br>conservative due to dynamic strength a | resistance is very<br>t impact.                  |

 $\mathbf{M_{T}} \coloneqq \mathbf{M_{parapet}} + \mathbf{M_{rail}} = \mathbf{224.777} \cdot \mathbf{kip} \cdot \mathbf{ft}$ 

$$\mathbf{y}_{T} := \frac{\mathbf{M}_{parapet} \cdot \mathbf{H}_{w} + \mathbf{M}_{rail} \cdot \mathbf{y}_{bar}}{\mathbf{M}_{T}} = 29.091 \cdot \mathrm{in}$$

$$\mathbf{R}_{\mathbf{T}} := \frac{\mathbf{M}_{\mathbf{T}}}{\mathbf{y}_{\mathbf{T}}} = 92.719 \cdot \mathbf{kip}$$

Centroid Height of the Total Resistance of the Bridge Rail System measured from the roadway surface  $({\rm in})$ 

Total Resistance of the Bridge Rail System (kip) from item 15 above.

Total Moment Capacity of Bridge Rail System (k-ft)

| Texas A&M<br>Transportation<br>Institute                                                                                                                       | SUBJECT: <u>LADOTD (LTRC 16) HSS</u><br><u>Tube Bridge Rail Retrofit LRFD</u><br><u>Strength Analysis</u> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 16.) Summary & Conclusions:                                                                                                                                    |                                                                                                           |
| y <sub>T</sub> = 29.091 · in                                                                                                                                   | Centroid Height of the Total Resistance of the Bridge Rail System measured from the roadway surface (in.) |
| $R_{T} = 92.719 \cdot kip$                                                                                                                                     | Total Resistance of the Bridge Rail System at the centroid height yt (kip)                                |
| $H_{e.mod} = 29 \cdot in$                                                                                                                                      | Modified Height of the Transverse Impact Force, $\mathbf{F}_t$ due to curb and deck geometry (in.)        |
| $\mathbf{H}_{\mathbf{e}} = 19 \cdot \mathbf{in}$                                                                                                               | From Full scale crash testing, truck impacts rail $\textcircled{@}$ He                                    |
| $\mathbf{R}_{\mathbf{R}} := \mathbf{R}_{\mathbf{T}} \cdot \left( \frac{\mathbf{y}_{\mathbf{T}}}{\mathbf{H}_{\mathbf{e}}} \right) = 141.964 \cdot \mathbf{kip}$ | Total Resistance of the Bridge Rail System located at $\rm H_{e}$ (kip)                                   |
| $\mathbf{F}_{\mathbf{t}} = 71 \cdot \mathbf{kip}$                                                                                                              | Transverse Impact Force located at $H_e$ (kip)                                                            |

 $Post_{spa} = 6 ft$ 

Use W6x15 Post size with 2 ~ Hilti 3/4" Dia. A193 B7 Threaded Rods 12 inches long, embedded 10 inches and anchored with RE500V3

<u>CHECK</u>= "OK", since:  $R_R = 140.0$  kips @ 19 inches height >  $F_t = 71$  kips

# Appendix I. Supporting Certification Documents for Test No. 606861-3&4

# CERTIFIED MATERIAL TEST REPORTFORASTM A307, GRADE A - HEX BOLTS

| FACTORY: ZHEJIANG       | GOLDEN AUTOMOTIVE          | FASTENER CO.LTD<br>IG CHINA | DATE       | MAY.20,2    | 016        |            |
|-------------------------|----------------------------|-----------------------------|------------|-------------|------------|------------|
| 1001000.10110.00        |                            |                             | MFG LO     | I NUMBEF    | 0405006    |            |
| CUSTOMER: BRIGHTON      | <b>↓-BEST INTERNATIONA</b> | L(TAIWAN)INC.               |            |             |            |            |
|                         |                            |                             | PO NUM     | BER:        | C11420     |            |
| SAMPLE SIZE: ACC. T     | O ASME B18. 18-2011        | Categories 2                |            |             |            |            |
| SIZE: 1/2-13X1-1.       | /2" ZP QTY:                | 48150 PCS                   | PART NO    | 9494086     |            |            |
| HEADMARKS: 307A +       | NDF                        |                             |            |             |            |            |
| STEEL PROPERTIES:       |                            |                             |            |             |            |            |
| STEEL GRADE: 1008       |                            |                             | HEAT N     | JMBER :     | 1B-42019   | <b>6</b> 5 |
| CHEMISTRY SPEC:         | C% <b>Mn%</b> F            | 2% S%                       | ]          |             |            |            |
| TEST:                   | 0.25 1144 1.20 1144 0      | 0.024 0.021                 | 3          |             |            |            |
| DIMENSIONAL INSPE       | CTIONS                     | SPECIFIC                    | CATION: A  | SME B18.2.  | 1-2012     |            |
| CHARACTERISTICS         | SPECI                      | FIED                        | ACTUA      | L RESULT    | ACC.       | REJ.       |
| ****                    | ***                        | ****                        | ****       | ****        | ******     | ******     |
| APPEARANCE              | ASTM F78                   | 8/F788M-13                  | PASSED     |             | 100        | 0          |
| THREAD                  | ANSI B1.1-                 | 08 2.A                      | PASSED     |             | 32         | 0          |
| WIDTH FLATS             | 0.750"-0.72:               | 5"                          | 0.728"-0.1 | 748"        | 8          | 0          |
| WIDTH A/C               | 0.866"-0.82                | б"                          | 0.834"-0.8 | 355"        | 8          | 0          |
| HEAD HEIGHT             | 0.364"-0.30                | 2"                          | 0.308"-0.3 | 335"        | 8          | 0          |
| BODY DIA.               |                            |                             | FULL TH    | IREAD       | 8          | 0          |
| THREAD LENGTH           |                            |                             |            |             | 8          | 0          |
| LENGTH                  | 1.54"-1.44"                |                             | 1.46"-1.47 | 7"          | 8          | 0          |
| MECHANICAL PROPE        | RTIES:                     | SPECIFIC                    | CATION: A  | ASTM A307   | -2014 GR-2 | A          |
| CHARACTERISTICS         | TEST METHOD                | SPECIFIED                   | ACTUA      | L RESULI    | ACC.       | REJ.       |
|                         |                            | £0 100 LTDD                 | 01 05      | *****       | • ******** | ******     |
| WEDGE TENST E           | ASTMETO-140                | MIN SOUSI                   | 01-03      | TIKD<br>VOT | 0          | 0          |
| CHARACTERISTICS         | TEST METHOD                | SPECIFIED                   | ACTUAL     | RESILT      | ACC        | REI        |
| *************           | ****                       | ****                        | ****       | *****       | *****      | *****      |
| ZINC PLATED             | ASTM F1941-15              | FE/Zn 3AN                   | PASS       |             | 15         | 0          |
| ALL TESTS IN ACC        | CORDANCE WITH TH           | HE METHODS PR               | ESCE       | THE         | APPLICA    | BLE        |
| ASTM SPECIFICATIO       | N. WE CERTIFY TH           | IAT THIS DAIA I             | S IST      | ES          | ENTATIO    | N OF       |
| INFORMATION PROV        | IDED BY THE MATE           | RIAL SUPPLIER A             | N K        | TAR G       | LABORAT    | FORY.      |
| All parts meet the requ | irements of FQA and ree    | cords of compliance         | e 1. 41    | mil         |            |            |
| Maker's ISO#CN11/20     | 818                        |                             | BC MM      | 書牌 *        |            |            |
|                         | -                          |                             | TEST       | INC CONT    | •          |            |
|                         |                            | (SIGNATURE (                | DF Q.A. L  | AB MGR.     | )          |            |

(ZHEJIANG GOLDEN AUTOMOTIVE FASTENER CO.LTD )



3441 NW Guam Street, Portland, OR 97210 Web: www.portlandbolt.com | Email: sales@portlandbolt.com

Phone: 800-547-6758 | Fax: 503-227-4634

| t | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | <br>+   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---------|
|   |   | C | E | R | т | Ι | F | I | C | A | т | E |   | 0 | F |   | C | 0 | N | F | 0 | R | M | A | N | C | E | i       |
| + | - | - | - | - | - | - | - | - | - | _ | - | - | _ | - | _ | _ | - | _ | _ | - |   | _ |   |   |   |   | - | <br>100 |

 For: CUSTOM FABRICATORS & REPAIRS

 PB Invoice#: 133286

 Cust PO#: PO-00408

 Date: 8/13/2020

 Shipped: 8/13/2020

We certify that the following items were manufactured and tested in accordance with the chemical, mechanical, dimensional and thread fit requirements of the specifications referenced.

Description: 5/8 X 5-1/2 GALV ASTM A449 ROUND HEAD BOLT Heat#: 3090536 Base Steel: 1045 Diam: 5/8 Source: COMMERCIAL METALS CO Proof Load: 19,200 LBF C: .460 Mn: .750 P: .011 Hardness: 269 HBN **S**: .021 **Si:** .250 Tensile: 35,340 LBF Ni: .070 RA: .00% Cr: .110 Mo: .040 Cu: .280 Yield: 0 Elon: .00% Pb: .000 V : .000 Cb: .001 Sample Length: 0 N: .010 CE: .6057 Charpy: CVN Temp: LOT#19812

Nuts:

ASTM A563DH HVY HX

#### Washers:

ASTM F436-1 RND

#### Coatings:

ITEMS HOT DIP GALVANIZED PER ASTM F2329/A153C

#### Other:

ALL ITEMS MELTED & MANUFACTURED IN THE USA

By Certification Department Quality Assurance Dane McKinnon

| No.0000336     No.0000336     Dentand Bol & Mig     S     CPU Seguin     Delivery#: 83035550       No.0000336     1     3411WV Gam St     1     1     1     1     1       E. Alsi 1045     1     3411WV Gam St     1     1     1     1     1       E. Alsi 1045     1     3411WV Gam St     1     1     1     1     1       DATE 60/0715019     1     0     1     1     1     1     1     1       DATE 60/0715019     1     1     1     1     1     1     1     1       DATE 60/0715019     1     1     1     1     1     1     1     1       No. 3305550 / 1000556/032     1     1     1     1     1     1     1       No. 3305550 / 1000556/032     1     1     1     1     1     1       No. 3305550 / 1000556/032     1     1     1     1     1       No. 33055550 / 1000556/032     1     1     1     1     1       No. 33055550 / 1000556/04     1     1     1     1     1       No. 3305550 / 1000556/04     1     1     1     1     1       No. 3305550 / 1000556/04     1     1     1     <                                                                                                                                                                                                                                                                                                                                                                                                             | CMC                                                                                                                                                             | DRIVE  | For additional co<br>830-372-8                                                                                    | səl kerokı<br>opies call<br>\$771                                                                                                                                                                 | are accurate and conform to the reported<br>Relando A.<br>Relando A.                    | rade specification                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------|
| Characteristic         Value         Characteristic         Value | NO.:3090536<br>ION: ROUND 5/8 x 20'0" 1045<br>DE: AISI 1045<br>DATE: 09/07/2019<br>DATE: 08/15/2019<br>No.: 83085550 / 090536A032<br>No.: 83085550 / 090536A032 |        | Portland Bolt & Mfg<br>441 NW Guam St<br>ortland OR<br>5 97210-1613<br>5032274634<br>5032274634                   | S         CPU Seguin           H         1           1         1 Steel Mill Dr           P         Seguin TX           US         78155-7510           T         9939999999           O         0 | Delivery#: 83085<br>BOL#: 1925538<br>CUST P0#: 45865<br>CUST P/N:<br>DLVRY LBS / HEA    | 50<br>: 4589.000 LB<br>: 220 EA    |
| C     0.46%     Bend Test 1     Pased       P     0.011%     F     0.011%       S     0.021%     Field Strength test 2     71.2ksi       F     0.011%     Elongation test 2     71.2ksi       S     0.25%     Elongation test 2     71.2ksi       S     0.25%     Elongation test 2     21.38N       Ni     0.07%     Bend Test 2     2N       Ni     0.07%     Bend Test 2     2N       Ni     0.07%     Bend Test 2     2N       Ni     0.00%     Bend Test 1     2N       Ni     0.00%     ASTM E381     Nacro Etch Method       A     0.000%     ASTM E381     Nacro Etch Method       Ni     0.000%     Nacro Etch Method     ASTM E381       Nacro Etch Method     ASTM E381     Nacro Etch Method     ASTM E381       Nacro Etch Method     ASTM E381     Nacro Etch Method     ASTM E381       Nacro Etch Method     ASTM E381     Nacro Etch Method     ASTM E381       Nacro Etch Method     ASTM E381     Nacro Etch Method                                                                                                                                                                                                                                                                                                   | Characteristic Valu                                                                                                                                             |        | Characteristic                                                                                                    | Value                                                                                                                                                                                             | Characteristic Value                                                                    |                                    |
| Ni     0.07%     Macro Etch Method     ASTM E381       No     0.040%     Macro Etch Method     ASTM E381       No     0.0040%     Macro Surface Rating     1       V     0.001%     Macro Surface Rating     1       Natro Surface Rating     1     1     Macro Surface Rating       Sin     0.001%     Macro Surface Rating     1       Macro Surface Rating     1     1     Macro Surface Rating       Sin     0.000%     Macro Core Rating     1     1       Al     0.000%     Macro Core Rating     1     1       No     0.0105%     Macro Core Rating     1     1       No     0.0105%     Macro Surface Rating     1       No     0.0101%     Macro                                                                                                                                                                                                                                                                                                                                  | C 0.46<br>Mn 0.75<br>P 0.01<br>S 0.01<br>S 0.22<br>Cu 0.23<br>Cr 0.11                                                                                           | %<br>1 | Bend T<br>Vield Strength t<br>Tensile Strength t<br>Elongation Gage Lgth tt<br>Bend Test Dian<br>BHN @ Surface ti | (ast 1 Passed<br>test 2 71.2ksi<br>test 2 111.7ksi<br>test 2 218<br>meter 2 2181<br>test 1 228BHN                                                                                                 |                                                                                         |                                    |
| V     0.000%     Macro Random Rating     Improving it me of the material represented by this MIR:       Cb     0.001%     Macro Random Rating     1       Sin     0.000%     Macro Core Rating     1       Al     0.000%     Macro Core Rating     1       All accord core and region regulation regale regulation regulation regulation regulation regulati                                                                   | Mo 0.04                                                                                                                                                         | %0     | Macro Etch Me                                                                                                     | ethod ASTM E381                                                                                                                                                                                   | Part Part                                                                               |                                    |
| Cb     0.001%     Macro Core Rating     1     100% motor and relied in the USA       Sin     0.000%     Firl 100%     Firl 100% motor and relied in the USA       Al     0.000%     Continues on well repain       Al     0.0105%     Continues on well repain       N     0.0105%     Continues on well repain       Yield Strength test 1     71.3ksi     Continues on well repain       Tensile Strength test 1     11.2, 4ksi     Continues on well repain quiry motual       Elongation test 1     17.3, 4ksi     Mactor Core Rating       Elongation test 1     17.3, 4ksi     Continues on well repain quiry motual       Imaulactured in a contanneation     Meets the 'Buy America' requirements of 23 CFR555 410, 49 CFR 66       Origation Gape Light test 1     81N       Reduction of Area test 1     45%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V 0.000                                                                                                                                                         | %0     | Macro Surrace Ra<br>Macro Random Re                                                                               | ating 1<br>ating 1                                                                                                                                                                                | The Following is true of the material represe<br>Material is fully willow               | nted by this MTR:                  |
| Sin     0.000%       Al     0.000%       N     0.0105%       N     0.0105%       Vield Strength test 1     71.9ksi       Tensile Strength test 1     71.3ksi       Giongation test 1     71.3ksi       Flongation test 1     71.3ksi       Giongation test 1     71.3ksi       Viete the Start requirements of 23 CFR555 410, 49 CFR 66       Weets the Start requirements of 23 CFR555 410, 49 CFR 66       Weets the Start requirements of 23 CFR555 410, 49 CFR 66       Norman test 1     45%       Reduction of Area test 1     45%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cb 0.00                                                                                                                                                         | 1%     | Macro Core Re                                                                                                     | ating 1                                                                                                                                                                                           | 100% meted and rolled in the USA                                                        |                                    |
| N     0.0105%     Containing on every containation       Yield Strength test 1     71.9ksi     - Containing on Mecury containation       Tensile Strength test 1     71.9ksi     - Manufactured in accordance with the latest version<br>of the plant quality manual       Tensile Strength test 1     112.4ksi     - Manufactured in accordance with the latest version<br>of the plant quality manual       Tensile Strength test 1     179%       Gongation test 1     179%       Gongation test 1     179%       Reduction of Area test 1     45%       Reduction of Area test 1     45%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AI 0.000                                                                                                                                                        | %6     |                                                                                                                   |                                                                                                                                                                                                   | *EN10204:2004 3.1 compliant                                                             |                                    |
| Vield Strength test 1     71.9ksi       Tensile Strength test 1     71.9ksi       Tensile Strength test 1     112.4ksi       Elongation test 1     112.4ksi       Elongation test 1     179,       Indets the Tay America Tequirements of 23 CFR53 410, 49 CFR 66       Warning: This product can expase you to chemicals which are too the point out if a state of California to cause cancer, birth actors to the found to the facts are caused of the facts are too the point out if a state of California to cause cancer, birth actors are duction of Area test 1       Abeduction of Area test 1     45%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N 0.010                                                                                                                                                         | 95%    |                                                                                                                   |                                                                                                                                                                                                   | Contains no Mercury contamination                                                       |                                    |
| I ensule Strength test 1         112.4ksi           Elongation test 1         112.4ksi           Elongation test 1         17%           ongation degle galh test 1         81N           Reduction of Area test 1         45%           reduction of Area test 1         45%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yield Strength test 1 71.9k                                                                                                                                     | si     |                                                                                                                   |                                                                                                                                                                                                   | Manufactured in accordance with the late:<br>of the plant quality manual                | t version                          |
| Longation test 1     17%       Longation Gage Light test 1     8IN       Induction of Area test 1     45%       Reduction of Area test 1     45%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lensile Strength test 1 112.4                                                                                                                                   | lksi   |                                                                                                                   |                                                                                                                                                                                                   | "Meets the "Buy America" requirements of                                                | 23 CFR635.410, 49 CFR 661          |
| Reduction of Area test 1 45% to a cuse caree, birth defects or other reproductive harm. For more information go to www.r65Wamings.ca.gov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Elongation test 1 17%<br>Iongation Gage Loth test 1 BIN                                                                                                         |        |                                                                                                                   |                                                                                                                                                                                                   | •Warning: This product can expose you to                                                | chemicals which are                |
| I to www.P65Wamings.ca.gov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reduction of Area test 1 45%                                                                                                                                    |        |                                                                                                                   |                                                                                                                                                                                                   | known to the State of California to cause<br>or other reproductive harm. For more infor | cancer, birth defects<br>nation go |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                 |        |                                                                                                                   |                                                                                                                                                                                                   | 10 www.P65Wamings.ca.gov                                                                |                                    |

Page 1 OF 1 05/15/2020 16:04:04

| Customer       Ship To:         Customer Part No:       Shipped Qty:         Customer PO No:       Shipped Qty:         Lot Number:       32394-6215169002         Part Information         Part Information         Part No:         ASTM A563 5/8-11 +0.020 DH HHN HDG BLUE DYE         Description:         ASTM A563 HHN, Grade DH, Hot Dipped Galv, Blue         Description:         Specification         Amend         Specification         Amend <t< th=""><th>Job No:</th><th>32394</th><th>Job Information</th><th>Certified</th><th>Date: 4/2/20</th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Job No:                                                                                                                                                                                                                                                                      | 32394                                                                                                      | Job Information                                                                             | Certified                                                                                                         | Date: 4/2/20                                                                      |                                    |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------|---|
| Customer Part No:<br>Customer PO No:<br>Lot Number: 32394-6215169002         Part Information         Part Information         Part No: A563 5/8-11 +0.020 DH HHN HDG BLUE DYE         Description:<br>Description:<br>Dye         Manufactured Quantity: 153,268         Specification         Amend       Specification       Amend         Specification       Amend         Specification       Amend         Specification       Amend         Specification       Amend         Specification       Amend         Specification       Amend         Specification       Amend         Specification       Amend         Specification <th cols<="" th=""><th>Customer:</th><th></th><th></th><th></th><th>Ship To:</th><th></th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <th>Customer:</th> <th></th> <th></th> <th></th> <th>Ship To:</th> <th></th>                                                                                                                                                                                                 | Customer:                                                                                                  |                                                                                             |                                                                                                                   |                                                                                   | Ship To:                           |   |
| Shipped Qty:         Lot Number: 32394-6215169002         Part Information         Part Information         Part No: A563 5/8-11 +0.020 DH HHN HDG BLUE DYE         Description: ASTM A563 HHN, Grade DH, Hot Dipped Galv, Blue Dye         Description: ASTM A563 HHN, Grade DH, Hot Dipped Galv, Blue Dye         Manufactured Quantity: 153,268         Specification       Amend         Specification       Amend         ASTM A563       2015         Aster Specification       Amend         ASTM A563       2015         Aster Specification       Amend         Specification       Amend         ASTM A563       2015         Specification       Amend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Customer Part No:                                                                                                                                                                                                                                                            |                                                                                                            |                                                                                             |                                                                                                                   |                                                                                   |                                    |   |
| Lot Number: 32394-6215169002         Part Information         Part No: A563 5/8-11 +0.020 DH HHN HDG BLUE DYE         Description: ASTM A563 HHN, Grade DH, Hot Dipped Galv, Blue<br>Dye         Manufactured Quantity: 153,268         Specification       Amend<br>Asme B1.1       2003       ASTM A563         Specification       Amend<br>Asme B18.2.6       2015         ASTM A563       2015       Astm E18.2.6       2015         ASTM A563       2015       ASTM F606/605M       2015       ASTM F606/605M       2015       ASTM F812       2017         Certification       Amend<br>ASME B18.2.6       2015         ASTM F506/605M       2019       ASTM F812       2017         Description       Arrandom active colspan="2">ASTM F606/605M       2015       ASTM F812       2017         Description       Astm F2000 Pass       Pass       Pass       Pass         Description        Certified Chemica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Customer PO No:                                                                                                                                                                                                                                                              |                                                                                                            |                                                                                             |                                                                                                                   | Shipped Qty:                                                                      |                                    |   |
| Part Information         Part No: A563 5/8-11 +0.020 DH HHN HDG BLUE DYE         Description: ASTM A563 HHN, Grade DH, Hot Dipped Galv, Blue         Dye         Manufactured Quantity: 153,268         Specifications         Specification       Amend         Specification       Amend         ASTM A563       AMend       Specification         Amend       Specification       Amend         ASTM A563       2015       ASTM F3220/F2329/M       2015         ASTM F506/605M       2019       ASTM F812       2017         Certification       Amend         ASTM F506/605M       2015       ASTM F812       2017         Certification       ASTM F812       2017         Sample       Pass       Pass       Pass         Signed: 28.2       1.166       3.3,900       Pass       Pass       Pass         Mat No <th cols<="" td=""><td>Lot Number:</td><td>32394-6215169002</td><td></td><td></td><td>1</td><td></td></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <td>Lot Number:</td> <td>32394-6215169002</td> <td></td> <td></td> <td>1</td> <td></td>                                                                                                                                                                                      | Lot Number:                                                                                                | 32394-6215169002                                                                            |                                                                                                                   |                                                                                   | 1                                  |   |
| Part No: A563 5/8-11 +0.020 DH HHN HDG BLUE DYE         Constraint of the second of the s                                                                                                  |                                                                                                                                                                                                                                                                              |                                                                                                            | Part Information                                                                            |                                                                                                                   |                                                                                   |                                    |   |
| Part No: A553 5/8-11 +0.020 DH HHN HDG BLUE DYE         ASTM A563 HHN, Grade DH, Hot Dipped Galv, Blue         Description:       ASTM A563 HHN, Grade DH, Hot Dipped Galv, Blue         Dye         Manufactured Quantity: 153,268         Specification       Amend       Specification       Amend         Specification       Amend         Specification       Amend         Specification       Amend         ASME B18.2.6       2015         ASTM A563       2015       ASTM F812       2015         ASTM F806/600BM       2019       ASTM F812       2017         Sample ast Results       Est A563 DH Mechanical Properties       Thread Precision       Visual /         Sample       Pass       Pass       Pass         Inspection       2012       1.166       33,900       Pass       Pass         Sample       2012       1.166       33,900 <th col<="" td=""><td></td><td></td><td></td><td></td><td></td><td>1</td></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>                                                                                                                                                                                                                 |                                                                                                            |                                                                                             |                                                                                                                   |                                                                                   |                                    | 1 |
| ASTM A563 HHN, Grade DH, Hot Dipped Galv, Blue         Description: ASTM A563 HHN, Grade DH, Hot Dipped Galv, Blue         Manufactured Quantity: 153,268         Specification       Amend       Specification       Amend         Specification       Amend         Specification       Amend         ASME B18.2.2       2015         ASME B18.2.6 M       2012         ASTM A563       2015       ASTM F2329/F3239M       2015         ASTM F606/606M       2019       ASTM F812       2017         Cest Results         Test: A563 DH Mechanical Properties       Thread Precision       AstM E 18.2.2       ASME E18.1.1         Sample       28.2       1.166       33,900       Pass       Pass         Pass       Description       Aster Manufacturer Origin       C         Isten X633 DH Mechanical Properties       Certified Chemical Analysis         Sample       28.3       Pass </td <td>Part No:</td> <td>A563 5/8-11 +0.020 DH HH</td> <td>N HDG BLUE DYE</td> <td></td> <td></td> <td>[0]</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Part No:                                                                                                                                                                                                                                                                     | A563 5/8-11 +0.020 DH HH                                                                                   | N HDG BLUE DYE                                                                              |                                                                                                                   |                                                                                   | [0]                                |   |
| ASTM A563 HHN. Grade DH, Hot Dipped Galv, Blue         Description:       ASTM A563 HHN. Grade DH, Hot Dipped Galv, Blue         Manufactured Quantity:       153,268         Specification       Amend       Specification       Amend         Specification       Amend       Amend         ASME B1.1       2003       ASME B18.2.2       2015         ASTM A563       2015       ASTM F802/Grade       Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"         ASTM F606/605M       2015       ASTM F812       2017         Colspan= Colspan= Colspan= Colspan="2">ASME B18.2.2       ASME B18.2.6       2015         ASTM F606/605M       2015       ASTM F612       2017         Colspan= Colspan= Colspan= Colspan= Colspan= Colspan= Colspan= Colspan="2">ASME B18.2.2       Misual //         Description       Hardness (HRC)       Tempering Temp (800 Proof Load (Pass ASTM Shape & Dimension ASME B18.1.1       Feat No: 217/9       ASME B18.2       ASME B18.1       ASME B18.2 <td></td> <td></td> <td></td> <td></td> <td></td> <td>A A</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                            |                                                                                             |                                                                                                                   |                                                                                   | A A                                |   |
| Aye         Manufactured Quantity: 153,268         Applicable Specifications         Specification       Amend       Specification       Amend         Specification       Amend       Amend         ASME B18.2.6       2015         ASME B18.2.6       2015         ASTM A563       2015       ASTM F8329/F23299M       2015         ASTM F606/605M       2019       ASTM F812       2017         Test Results       Test: A563 DH Mechanical Properties       Pass       Pass         Certified Chemical Analysis       Name B18.2.2       1.166       33,900       Pass       Pass         Sample       28.2       1.166       33,900       Pass       Pass         Notes         Notes         Notes         Notes         Notes         Notes         Notes <th co<="" td=""><td>Description:</td><td>ASTM A563 HHN, Grade D</td><td>H, Hot Dipped Galv, Blue</td><td></td><td></td><td></td></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <td>Description:</td> <td>ASTM A563 HHN, Grade D</td> <td>H, Hot Dipped Galv, Blue</td> <td></td> <td></td> <td></td>                                                                                                                                                        | Description:                                                                                               | ASTM A563 HHN, Grade D                                                                      | H, Hot Dipped Galv, Blue                                                                                          |                                                                                   |                                    |   |
| Applicable Specifications           Specification         Amend         Specification         Amend           ASME B1.1         2003         ASME B18.2.2         2015           ASME B18.2.6         2019         ASME B18.2.6M         2012           ASTM A563         2015         ASTM F2329/F2329M         2015           ASTM F606/606M         2019         ASTM F812         2017           Test Results         Tempering Temp (800         Proof Load (Pass ASTM Shape & Dimension ASME B18.1.1         F81           Sample         11.66         33.900         Pass         Pass         Pass           Inspection         28.2         1.166         33.900         Pass         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Manufactured Quantitue                                                                                                                                                                                                                                                       | 153 268                                                                                                    |                                                                                             |                                                                                                                   |                                                                                   |                                    |   |
| Applicable Specification         Amend         Amend           Specification         Amend         Specification         Amend           ASME B1.1         2003         ASME B18.2.6         2015           ASME B18.2.6         2019         ASME B18.2.6M         2012           ASTM A563         2019         ASTM F2329/F2329M         2015           ASTM F606/606M         2019         ASTM F812         2017           rest Results         Tempering Temp (800         Proof Load (Pass ASTM Shape & Dimension ASME B18.1.1         Nisal / ASME B18.2.6         Visal / ASME B18.2.6           Sample Inspection         4ardness         (HRC)         Tempering Temp (800         Proof Load (Pass ASTM Shape & Dimension ASME B18.1.1         F81           Sample Inspection         28.2         1.166         33,900         Pass         Pass         Pass           Inspection         Grade         Manufacturer         Origin         C         Mn         P         S         Si         Cr         Ni         Co           It lests are in accordance with the latest revisions of the methods prescribed in the applicable SAE and ASTM Specifications.         No tas         No tas         No tas         No tas           It lests are in accordance with the latest revisions of the methods pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              | 100,200                                                                                                    |                                                                                             |                                                                                                                   |                                                                                   |                                    |   |
| Specification     Amend     Specification     Amend       ASME B1.1     2003     ASME B18.2.6     2015       ASME B18.2.6     2019     ASME B18.2.6     2012       ASTM A563     2015     ASTM F2329/F2329M     2015       ASTM F606/606M     2019     ASTM F2329/F2329M     2017       rest Results     2019     ASTM F812     2017       rest No: 21749     Test: A563 DH Mechanical Properties     Thread Precision     Visual /       Sample     1.166     33,900     Pass     Pass       Sample     28.2     1.166     33,900     Pass     Pass       Heat No     Grade     Manufacturer     Origin     C     Mn     P     S     Si     Cr     Ni     Co       It lests are in accordance with the latest revisions of the methods prescribed in the applicable SAE and ASTM Specifications.     0.0700     0.0200     0.1900     0.0270     0.22       It lests are in accordance with the latest revisions of the methods prescribed in the applicable SAE and ASTM Specifications.     Heat No error of the products. No heats to which Bismuth, Selenium, Tellurium, or Lead was intentionally added have been used to produce reformed in the production of the products. No heats to which Bismuth, Selenium, Tellurium, or Lead was intentionally added have been used to produce reducts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                              |                                                                                                            | Applicable Specification                                                                    | IS                                                                                                                |                                                                                   |                                    |   |
| ASME B18.2.6     2003     ASME B18.2.2     2015       ASTM A563     2015     ASTM F2329/F2329M     2015       ASTM F606/606M     2019     ASTM F812     2017       Test Results     2019     ASTM F812     2017       Sample<br>Inspection     Hardness     (HRC)     Tempering Temp (800<br>degree F Min)     Proof Load (Pass ASTM Shape & Dimension<br>Min LBS)     Thread Precision     Visual /<br>ASME B18.1.1     F81       Sample<br>Inspection     28.2     1,166     33,900     Pass     Pass     Pass       Heat No     Grade     Mandfacturer     Origin     C     Mn     P     Sil     Cr     Ni     Co       It lests are in accordance with the latest revisions of the methods prescribed in the applicable SAE and ASTM Specifications.     Notes     Notes     Notes       It lests are in accordance with the latest revisions of the methods prescribed in the applicable SAE and ASTM Specifications.     No teas to which Bismuth, Selenium, Tellurium, or Lead was intentionally added have been used to produce orducts.       he steel was melled and manufactured in the U.S.A. and the product was manufactured and tested in the U.S.A.     Selenium, Tellurium, or Lead was intentionally added have been used to produce orduce.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Specificatio                                                                                                                                                                                                                                                                 | n Ame                                                                                                      | end                                                                                         | Specification                                                                                                     |                                                                                   | Amend                              |   |
| ASTM 4563 2015 ASTM F2329/F2329M 2015<br>ASTM F606/605M 2019 ASTM F2329/F2329M 2015<br>Test Results<br>Test No: 21749 Test: A563 DH Mechanical Properties<br>Description Hardness (HRC) Tempering Temp (800 Proof Load (Pass ASTM Shape & Dimension ASME B18.1.1 F81<br>Sample Inspection 28.2 1.166 33.900 Pass Pass Pass Pass Pass Pass<br>Heat No Grade Manufacturer Origin C Mn P S SI Cr NI Cc<br>Amenated USA 0.4600 0.7700 0.0000 0.0010 0.2000 0.0070 0.0270 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0070 0.2000 0.0000 0.2000 0.0000 0.2000 0.0000 0.2000 0.0000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.20   | ASME B18.2.6                                                                                                                                                                                                                                                                 | 2003                                                                                                       | ASME B18.2.2                                                                                |                                                                                                                   | 2015                                                                              |                                    |   |
| ASTM F606/606M 2019 ASTM F812 2015<br>est Results<br>Test No: 21749 Test: A563 DH Mechanical Properties<br>Description Hardness (HRC) Tempering Temp (800 Proof Load (Pass ASTM Shape & Dimension ASME B18.2.2 ASME B18.1.1 F81<br>Sample 18.2.2 1.166 33,900 Pass Pass Pass Pass Pass Pass<br>Heat No Grade Mandfacturer Origin C Mn P S Si Cr Ni Co<br>Certified Chemical Analysis<br>Heat No Grade Mandfacturer Origin C Mn P S Si Cr Ni Co<br>Coordo 0:030 0:000 0:100 0:0700 0:200 0:100 0:0700 0:200 0:100 0:0700 0:200 0:000 0:000 0:000 0:000 0:000 0:200 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:00 | ASTM A563                                                                                                                                                                                                                                                                    | 2019                                                                                                       | ASIVE B18.2.6M                                                                              | 22014                                                                                                             | 2012                                                                              |                                    |   |
| Source of the products of the methods prescribed in the product was manufactured and tested in the U.S.A.         Action of the products of the product was manufactured and tested in the U.S.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ASTM F606/606M                                                                                                                                                                                                                                                               | 2019                                                                                                       | ASTM F812                                                                                   | 329101                                                                                                            | 2015                                                                              |                                    |   |
| Test: A563 DH Mechanical Properties         Description       Hardness (HRC)       Tempering Temp (800 Proof Load (Pass ASTM Min LBS)       Aske B18.1.1       Visual F81         Sample Inspection       28.2       1,166       33,900       Pass       Pass       Pass         Heat No       Grade       Manufacturer       Origin       C       Min LBS       0.0000       0.0010       0.2000       0.1300       0.0700       0.0210         Heat No       Grade       Manufacturer       Origin       C       Min       P       S       SI       Cr       NI       Cc         It tests are in accordance with the latest revisions of the methods prescribed in the applicable SAE and ASTM Specifications.       Notes       Notes       Notes         It tests are in accordance with the latest revisions of the methods prescribed in the applicable SAE and ASTM Specifications.       Notes       Notes         Is asamples tested conform the specifications as described/listed above and were manufactured free of mercury contamination and there is no welding erformed in the production of the products. No heats to which Bismuth, Selenium, Tellurium, or Lead was intentionally added have been used to produce orducts.         he steel was melted and manufactured in the U.S.A.       and the product was manufactured and tested in the U.S.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | est Results                                                                                                                                                                                                                                                                  |                                                                                                            |                                                                                             |                                                                                                                   | 2017                                                                              |                                    |   |
| Description       Hardness (HRC)       Tempering Temp (800<br>degree F Min)       Proof Load (Pass ASTM<br>Min LBS)       Shape & Dimension<br>ASME B18.2.2       Thread Precision<br>ASME B18.1.1       Visual /<br>F81         Sample<br>Inspection       28.2       1.166       33,900       Pass       Pass       Pass       Pass         Heat No       Grade       Manufacturer       Origin       C       Mn       P       S       Si       Cr       Ni       Cc         5215169002       1045       Gendau<br>Amensteel       USA       0.4600       0.7700       0.0000       0.0310       0.2000       0.1300       0.0700       0.27         Il lests are in accordance with the latest revisions of the methods prescribed in the applicable SAE and ASTM Specifications.       Here are an accordance with the latest revisions of the methods prescribed in the applicable SAE and ASTM Specifications.       Here are are an accordance with the production of the products. No heats to which Bismuth, Selenium, Tellurium, or Lead was intentionally added have been used to produce roducts.       No tead         reformed in the production of the products. No heats to which Bismuth, Selenium, Tellurium, or Lead was intentionally added have been used to produce and tested in the U.S.A.       Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Test No: 21749 Test: A563 DH                                                                                                                                                                                                                                                 | Mechanical Properties                                                                                      |                                                                                             |                                                                                                                   |                                                                                   |                                    |   |
| Inspection         26.2         1,166         33,900         Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Description Hardness (HR                                                                                                                                                                                                                                                     | .C) Tempering Temp (800<br>degree F Min)                                                                   | Proof Load (Pass ASTM<br>Min LBS)                                                           | Shape & Dimension<br>ASME B18.2.2                                                                                 | Thread Precision<br>ASME B18.1.1                                                  | Visual ASTM<br>F812                |   |
| Heat No         Grade         Manufacturer         Origin         C         Mn         P         S         Si         Cr         Ni         Cc           5215168002         1045         Gendu         USA         0.4600         0.7700         0.0000         0.0310         0.2000         0.1300         0.0700         0.22           Notes           all tests are in accordance with the latest revisions of the methods prescribed in the applicable SAE and ASTM Specifications.           he samples tested conform the specifications as described/listed above and were manufactured free of mercury contamination and there is no welding reformed in the production of the products. No heats to which Bismuth, Selenium, Tellurium, or Lead was intentionally added have been used to produce roducts.           he steel was melted and manufactured in the U.S.A. and the product was manufactured and tested in the U.S.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Inspection 28.2                                                                                                                                                                                                                                                              | 1,166                                                                                                      | 33,900                                                                                      | Pass                                                                                                              | Pass                                                                              | Pass                               |   |
| 6215169002       1045       Gendau<br>Amenisteel       USA       0.4600       0.7700       0.0000       0.0310       0.2000       0.1300       0.0700       0.22         Notes         Il tests are in accordance with the latest revisions of the methods prescribed in the applicable SAE and ASTM Specifications.         he samples tested conform the specifications as described/listed above and were manufactured free of mercury contamination and there is no welding reformed in the production of the products. No heats to which Bismuth, Selenium, Tellurium, or Lead was intentionally added have been used to produce to produce.         he steel was metted and manufactured in the U.S.A. and the product was manufactured and tested in the U.S.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Heat No Grade Manuf                                                                                                                                                                                                                                                          | facturer Origin C                                                                                          | Mn P                                                                                        | SIS<br>S SI                                                                                                       | Cr Ni                                                                             | Cu                                 |   |
| Notes<br>It tests are in accordance with the latest revisions of the methods prescribed in the applicable SAE and ASTM Specifications.<br>he samples tested conform the specifications as described/listed above and were manufactured free of mercury contamination and there is no welding<br>erformed in the production of the products. No heats to which Bismuth, Selenium, Tellurium, or Lead was intentionally added have been used to produce<br>needed was melted and manufactured in the U.S.A. and the product was manufactured and tested in the U.S.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6215169002 1045 Ger<br>Ame                                                                                                                                                                                                                                                   | rdau USA 0.4600                                                                                            | 0.7700 0.0090                                                                               | 0 03 10 0 2000                                                                                                    | 0 1300 0 0700                                                                     | 0 2200                             |   |
| he samples tested conform the specifications as described/listed above and were manufactured free of mercury contamination and there is no welding<br>aformed in the production of the products. No heats to which Bismuth, Selenium, Tellurium, or Lead was intentionally added have been used to produce<br>be steel was melted and manufactured in the U.S.A. and the product was manufactured and tested in the U.S.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Il tests are in accordance with th                                                                                                                                                                                                                                           | an latest revisions of the method                                                                          | Notes                                                                                       |                                                                                                                   |                                                                                   |                                    |   |
| e certify that this data is true representation of information provided by the material supplier and our testing laboratory. This certified material test report<br>lates only to the items listed on this document and may not be reproduced except in full.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | he samples tested conform the s                                                                                                                                                                                                                                              | specifications as described/liste<br>e products. No heats to which Bi<br>actured in the U.S.A. and the pri | d above and were manufactur<br>ismuth, Selenium, Tellurium, o<br>oduct was manufactured and | red free of mercury contant<br>or Lead was intentionally a<br>tested in the U.S.A.<br>and our testing laboratory. | nination and there is no<br>idded have been used to<br>This certified material to | welding<br>o produce<br>est report |   |
| OFFICIAL SEAL<br>JEAN E MARGHERIO<br>HOTARY PUBLIC - STATE OF LLINOSS<br>IN COMMISSION EXPRESSION 1271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | roducts.<br>he steel was melted and manufa<br>/e certify that this data is true rep<br>lates only to the items listed on                                                                                                                                                     | presentation of information prov<br>this document and may not be r                                         | reproduced except in full.                                                                  |                                                                                                                   |                                                                                   |                                    |   |
| Thorsen, Chris - Supervisor, Quality Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | roducts.<br>the steel was melted and manufa<br>/e certify that this data is true rep<br>iates only to the items listed on<br>OFFICIAL SEAL<br>JEAN E MARCHERIO<br>HOTATY PLALS. STATE OF LINK<br>NOTATY PLALS. STATE OF LINK<br>NOTATY PLALS. STATE OF LINK<br>NOTATY PLALS. | presentation of information prov<br>this document and may not be :                                         | Ided by the material supplier a reproduced except in full.                                  | Churt Anna                                                                                                        |                                                                                   | 412/20                             |   |

| CERVIDAL UNTITE INCLARALLE PLANT UNTITE INCLASSION | ADDE TO | L. MN 55119 SALES ORDER CU:<br>8310712/000060 B10. | R PURCHASE ORDER NUMBER BILL OF LADING<br>1332-000077194 | COMPOSITION<br>MA<br>0.77 0.009 0.031 0.20 0.22 | CAL CHARACTERISTICS ESI S ESI R<br>Inde 1 ESI 5 ESI R<br>1 1 | 8. melled and rolled in the USA. Manufacturing processes for this steel, which n<br>ng, have been performed at Gerkus R. Puul Mill, 1957 Red Rock Road, Saine Pas<br>Silleon Nilled (Genxidized) steel. No weld repairmen performed. Steel not expose<br>tient temperatures during processing or while in Gerdau St. Paul Mills<br>possession.<br>GerdauSA: Paul Mill Mibiout the expressed written consent of Gerdau St.<br>Par the inability of this material to meet specific applications.<br>13156000C roll due 112/2019 fer dran (FC 53)<br>and Manual Rev. 10, implemented date 11/22019<br>C1 Reduction Ratio: 49.9 (ASTM E381-17 EA5-18a) |                                                                          | The above figures are certified chemical and physical test records as compliance with specified requirements. Weld repair has not been performe with EN 10204 3.1. | Machon BHASKAR YALMANCHILI |
|----------------------------------------------------|---------------------------------------------|----------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| MER BILL TO<br>TE INC                              | TITE DR<br>IL 61354-9710                    | ISTOMER MATERIAL N°<br>045SC0.8750 I               | DATE<br>01/14/2020                                       | ی<br>محر<br>12% 0                               | E381 C                                                       | may include scrap melted in ;<br>uil, Minnesson, USA. All pr<br>de on mercury or any iquid<br>Any modification to bits ca<br>all regates the validity of this<br>St. Paul Mill. Gerdau St. P.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                          | ained in the permanent record<br>ed on this material. This man                                                                                                     |                            |
| GRADE<br>1045M23FJZN                               | LENGTH<br>24'10"                            | SPECIFICATION / DATE or<br>REVISION                | ASTM A29-16<br>ASTM A576-17                              |                                                 | 00'h 010'h 010'h                                             | an electric arc furnace<br>oduct produced from strand<br>aloy which is<br>aloy within as<br>the report. This<br>test report. This<br>ball Mill is not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                          | is of Company. We certify that these di<br>zrial, including the billets, was melted I                                                                              | m 2 m                      |
| SHAPE / SIZE<br>Round Bar / 7/8"                   | WEIGHT<br>21,462 LB                         |                                                    |                                                          | £≁8                                             | 000.0                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BRAL. KARIESCI<br>tary Public Minnasot<br>manason taryar ana si<br>Kanua | ata are correct and in<br>USA. CMTR complies                                                                                                                       | EA BRANDENBURG             |
| Page 1/1<br>DOCUM<br>ID:                           | 000003821<br>HEAT / BATCI<br>62151690/02    |                                                    |                                                          | <b>A</b>                                        | 600.0                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ST a SS - S                                                              |                                                                                                                                                                    |                            |

# Universal Galvanizing, Inc. 510 E South 1st St. Wright City, Missouri 63390 Phone:(636)791-2016 Fax:(636)745-0667

Date: 3-27-20

1

#### RE: GALVANIZING CERTIFICATE UNYTITE, INC. PO# P009098

| QTY<br>53,268 | AS63 5/8-11+0 020 GRADE DU | LOT NUMBER       | COATE | NG THICKNESS |
|---------------|----------------------------|------------------|-------|--------------|
|               | HEAVY HEX NUT              | 32394-6215169002 | 3.5   | AVG. MILS    |
| 48,064        | A563 5/8-11+0.020 GRADE DH | 32395-6215169002 | 3.5   | AVG. MILS    |

THIS WILL CERTIFY THAT THE MATERIAL GALVANIZED ON THE ABOVE JOB MEETS ASTM F2329 SPECIFICATIONS. THIS MATERIAL WAS GALVANIZED IN THE USA AT UNIVERSAL GALVANIZING INC IN WRIGHT CITY, MO AT A ZINC BATH TEMPERATURE OF 840° WITH A PLUS MINUS VARIANCE OF 5°. THE MATERIALS ITEMIZED IN THIS SHIPMENT ARE CERTIFIED TO BE IN COMPLIANCE WITH THE APPLICABLE ASTM STANDARDS AND THE IOWA DEPARTMENT OF TRANSPORTATION STANDARD SPECIFICATIONS, IMS AND MEET THE BUY AMERICA REQUIREMENTS AS DESCRIBED IN IM 107 FOR ALL STEEL, IRON PRODUCTS AND COATINGS.

Joseph Jokisch

Joseph Jokisch, Quality/ Shipping & Receiving

| CHNIC<br>TSI<br>STATEST. 1981                                                                                                 | TECH                                                                                                                                   | INICA<br>0600 E. RUSS<br>DIESTERFI<br>PH(586)948- | <b>L STAN</b><br>FEL SCHMIDT<br>FED TWP., MI<br>3285 / FN(586)9 | <b>APING</b><br>1 BLAD.<br>48051<br>048-3256      | <u>, INC.</u> | MATERIAL<br>CERTIFICATION                    |                                                                |                                                             |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------|---------------|----------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|--|--|
| CUSTOMER NAME                                                                                                                 | s<br>Mfg Co                                                                                                                            |                                                   | CUST                                                            | OMER OF                                           | DER NUM       | BER DATE 5/4/2020                            |                                                                |                                                             |  |  |
| PART NUMBER                                                                                                                   | - CUSTOMER LOT                                                                                                                         | TNO.                                              | LC                                                              | DT NUMBI                                          | R             |                                              | QUANTIT                                                        | 17 2020<br>IY                                               |  |  |
| 5/8" F436 Hdg                                                                                                                 | g 16443                                                                                                                                |                                                   |                                                                 | 1019-282                                          |               |                                              | 20,00                                                          | 00                                                          |  |  |
| STEEL GRADE                                                                                                                   | 31938550                                                                                                                               | .52                                               | мі<br>.72                                                       | .008                                              | .0001         | .24                                          | AL                                                             | ASTM F-436-1                                                |  |  |
| SPECIFIC                                                                                                                      | CATION                                                                                                                                 |                                                   | ACT                                                             | UAL                                               |               | G                                            | AUGE                                                           | 1                                                           |  |  |
| 0.D -                                                                                                                         | 1.281 - 1.345                                                                                                                          |                                                   | 1.313 -                                                         | - 1.316                                           |               | (                                            | CALIPER                                                        |                                                             |  |  |
| I.D -                                                                                                                         | .688720                                                                                                                                |                                                   | .703 -                                                          | .706                                              |               | CALIP                                        | PER, PIN                                                       | GAUGE                                                       |  |  |
| THICKNESS-                                                                                                                    | .122177                                                                                                                                |                                                   | .123 -                                                          | 126                                               |               | MIG                                          | CROMET                                                         | TER                                                         |  |  |
| FLAT-                                                                                                                         | Max .010                                                                                                                               |                                                   | .003                                                            |                                                   |               | c                                            | ALIPER                                                         |                                                             |  |  |
| HEAT TREAT -                                                                                                                  | 38 - 45HRC                                                                                                                             |                                                   | 41 -                                                            | - 43                                              |               |                                              |                                                                |                                                             |  |  |
| PLATING-                                                                                                                      |                                                                                                                                        |                                                   | See Attac                                                       | ched Cert                                         |               |                                              |                                                                | ****                                                        |  |  |
| OTHER                                                                                                                         | J.m.                                                                                                                                   |                                                   | N.                                                              | /A                                                |               |                                              |                                                                |                                                             |  |  |
| AL HEARBY CERTIFY THIS P<br>AL MATERIALS ARE MADE AT<br>50R WASHERS AS PRODUCE<br>EXCEPT IN FULL WITHOUT PR<br>CERTII<br>SO 9 | RODUCT WAS PRODUCED UNDER<br>NO MELTED IN THE U.S.A. THIS PI<br>DA CCORDING TO A.S.T.M. F-438<br>NOR WRITTEN APPROVAL<br>FIED<br>0011: | A ISO-9001 C<br>RODUCT WAS NO. THE ABOVE          | DUALITY ASSURAT<br>MANUFACTURED<br>E TEST RESULTS               | NCE SYSTEM ISI<br>IN CHESTEPFIEL<br>APPLY ONLY TO | ALL           | ATION NUMBER-<br>A THIS PRODUCED THIS TEST R | 1285 - DATE OF I<br>GT CONFORMS T<br>EPORT MUST NO<br>D SIGNAT | REGIS JAN 3 2003<br>TO ALL REQUIREMENTS<br>TO BE REPRODUCED |  |  |

#### INDUSTRIAL STEEL TREATING COMPANY, INC

613 Carroll Street Jackson, MI 49202 P.O. Box 98 Jackson MI, 49204 Voice: 517-787-6312 Fax: 517-787-5441

#### HEAT TREAT CERTIFICATION

Customer: TECHNICAL STAMPING, INC. Attn: SHANNON COX 50600 E. RUSSELL SCHMIDT CHESTERFIELD, MI 48051

1350

Certification Date: 10/29/2019

Page: 1 of 1

#### Order Details

| Part Number.    | F0058         | Blu |
|-----------------|---------------|-----|
| Packing Slip:   | 7259          | Mat |
| Purchase Order. |               | Qua |
| IST Order Numt  | per. 801460-1 | Net |
| Lot Number.     | 1019-282      | Par |
| Heat Number.    | 31938550      | Con |

| Blue Print Rev | 1279                       |
|----------------|----------------------------|
| Material Type: | 1030 - 1 <mark>05</mark> 0 |
| Quantity:      | 400,244                    |
| Net Weight:    | 13,128.0                   |
| Part Desc:     | WASHER                     |
| Comments       | 9 TUBS#1218,1989,C91,951,  |
|                | 416,921,003,640,655        |

#### SPECIFICATIONS

HRC 38 - 45 HEAT TREATED IN THE USA

#### RESULTS

HRC 41-43 HEAT TREATED IN THE USA

Approval: Jom Leny Tom Levy - Quality Assurance Supervisor

#### Contact

Tom Levy - Quality Assurance Supervisor Voice: 517-780-9043 Fax: 517-787-5441 E-Mail: tolevy@indst.com

This Certification cannot be reproduced except in full, without written authorization from Industrial Steel Treating Company, LLC.

| 248-61            | RESEANGTO        | ARCH DRIV<br>N HILLS, M            | /E<br>II 48335                      | SAB                                          | BRE S                                 | TEEL<br>INC               |                  | 10/14/2019 1:23:57 PM                                             |
|-------------------|------------------|------------------------------------|-------------------------------------|----------------------------------------------|---------------------------------------|---------------------------|------------------|-------------------------------------------------------------------|
| Sold To           |                  | TECHNICA<br>50600 E. R<br>CHESTERI | USSELL SC<br>FIELD TWP.,            | G<br>HMIDT BLVD.<br>MI 48051                 |                                       | Ship To:                  | TECHN<br>50600 F | IICAL STAMPING<br>RUSSELL SCHMIDT BLVD.<br>ERFIELD TWP., MI 48051 |
| Cust PC           | ):               |                                    | S91539                              |                                              | Ship Date                             | : 10/15/2019              |                  |                                                                   |
| Sales O           | rder:            |                                    | 77172                               |                                              | Weight:                               | 29,710#                   |                  |                                                                   |
|                   |                  |                                    |                                     | CI                                           | HEMICAL ANA                           | LYSIS                     | Too gal          |                                                                   |
| leat Nu           | mhor             |                                    | 21022555                            |                                              |                                       |                           |                  | And the reserver to the data of the                               |
| D:                | .52              |                                    | 31938550<br>Mn:                     | .72                                          | p.                                    | 008                       | <b>C</b> .       |                                                                   |
| Si:               | .24              |                                    | Ti:                                 | .001                                         | Cr:                                   | .008                      | S:<br>Mo:        | .0001                                                             |
|                   | .10              |                                    | AI:                                 | .028                                         | Cb:                                   |                           | Va:              | .002                                                              |
| 41:<br>1936-05-05 | .03              | ana satar ett                      | B:                                  |                                              | Sn:                                   |                           | N:               |                                                                   |
| epteritig.        | 1.12.1<br>1.12.1 |                                    |                                     | PHY                                          | SICAL PROP                            | ERTIES                    |                  |                                                                   |
| 'S:<br>Chemistr   | y:               | C1050                              | TS:                                 |                                              | E:                                    |                           |                  |                                                                   |
| line:             |                  | 1                                  | ltem:<br>Grade:<br>Cust Part:       | .122min X 3.9<br>HRP&O High<br>F0058M        | 9500 C1050<br>Carbon                  |                           |                  |                                                                   |
|                   |                  | CERTIFY THE                        | 6 A thru H<br>HE ABOVE<br>E TRACEAE | Made & Melted<br>FIGURES ARE<br>BLE IN OUR R | In The USA<br>E ACCURATI<br>ECORDS BA | ELY STATED<br>ÇK TO THE I | , MEET Y         | OUR MATERIAL                                                      |
|                   |                  |                                    |                                     | 10                                           |                                       | /<br>                     |                  |                                                                   |
|                   |                  |                                    | 1                                   | Quality                                      | Assurance                             | Manager                   |                  |                                                                   |
|                   |                  |                                    | -t                                  | //                                           |                                       |                           |                  |                                                                   |
|                   |                  |                                    |                                     |                                              |                                       |                           |                  |                                                                   |
|                   |                  |                                    |                                     |                                              |                                       |                           |                  |                                                                   |
|                   |                  |                                    |                                     |                                              |                                       |                           |                  |                                                                   |
|                   |                  |                                    |                                     |                                              |                                       |                           |                  |                                                                   |
|                   |                  |                                    |                                     |                                              |                                       |                           |                  |                                                                   |
|                   |                  |                                    |                                     |                                              |                                       |                           |                  |                                                                   |
|                   |                  |                                    |                                     |                                              |                                       |                           |                  |                                                                   |

9929 
 C
 Mn
 P
 S
 Si
 AI
 Cu
 Ni
 Cr
 Mo
 Sn
 N
 V
 Nb
 Ti
 B
 Ca
 Pb
 Zr

 0.52
 0.72
 0.008
 0.000
 0.24
 0.03
 0.04
 0.02
 0.007
 0.000
 0.001
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.0001
 0.000
 0.0001
 0.000
 0.0001
 0.000
 0.0001
 0.000
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001</t Metallurgical Certification Page 1 of 1 SDI does not weld or repair Prime Hot Rolled Band All tests were performed according to applicable standards and are correct as contained in the records of the company. Heat # 31938550 PO# 65716 - 4 Hunner Melted, thin slab cast and rolled by proud Americans in Butler, IN, USA. Shipped from Butler, IN, United States. **Coil Alias** Cert # 3360599 Hiroshl Kimura Metallurgist Material Spec. SAE 1050 WITH SILICON Product Desc. Prime Hot Rolled Band Porola Coil # 198448749 Order # 663249 products. Line Item # 4 Part # Surface Treatment Cert Comment Steel Dynamics Rev. Level 1.15 [1560] Width 50.2500 in. / 1,276 mm Chem Treat No Oiled No 4500 County Road 59 Butler , IN 46721 USA Telephone (260) 868-8000 Fax (260) 868-8955 Contact Taylor RECEIVING P: 847-695-2900 F: 847-695-2950 P: 313-291-8535 Contact Bob Alexander 0.1250 in. / 3.18 mm | Min Flat Roll Group Gauge Mechanical Properties (if applicable) Farmington Hills, MI 48335 United States 49,350 lbs / 22,384.77 kg Voss Industries - T 7925 Beech Daly Road Retrieve on : 9/30/2019 8:44:06 PM Sabre Steel Inc. 23680 Research Drive 2,227 ft. / 679 m Ladle Chemical Analysis (%) Taylor, MI 48180 United States Length Weight 105 Ship To Sold To



January 09, 2020

Technical Stamping 50600 E. Russell Schmidt Chesterfield TWP, MI 48051

To Whom It May Concern:

This is to certify that the hot dip galvanizing of the following washers on your Purchase Order number 1651 conforms to specification ASTM A-153. The following sizes and lot numbers comply with the coating, workmanship, finish, and appearance requirements of ASTM F2329 specifications. The hot dip galvanizing is ROHS compliant. The galvanizing process was conducted in a temperature range of 830F to 855F.

 PIECES
 PART# & SIZE
 LOT NUMBER
 AVERAGE ZINC

 90,090
 #F0058
 5/8" WASHER
 1019-282
 4.18

This certification in no way implies anything other than the quality of our hot dip galvanizing as it pertains to your order.

This product was galvanized in Rockford, IL USA

Yours very truly,

AZZ Galvanizing Rockford, IL

Geros Doering

Peggy Doering Office Manager

PD:ac

| Uā<br>THREADED P | Fall<br>PRODUCTS, INC | Vulcan Thr<br>10 Cross C<br>Pelham, Al<br>Tel (205) 6<br>Fax (205) 0 | readed Product<br>Creek Trail<br>L 35124<br>20-5100<br>620-5150 | S                     | JOB           | MATER      | RIAL CE     | ERTIFIC      | ATION       |
|------------------|-----------------------|----------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------|---------------|------------|-------------|--------------|-------------|
| ATT TO A LOLD DO | Job No:               | 676043                                                               |                                                                 | Job Info              | ormation      | Cer        | tified Date | 6/8/20       |             |
| C                | containers:           | S17187917                                                            |                                                                 |                       |               |            |             |              |             |
|                  |                       |                                                                      |                                                                 |                       |               |            |             | 2200 Singlet | on Blyd     |
|                  | Customer:             | Interstate Thr                                                       | readed Produ                                                    | cts                   | 6             |            | Ship To     | Dallas, TX 7 | 5212        |
| Vul              | an Part No:           | ATR 87 5/8x                                                          | 12 HDG                                                          |                       |               |            |             |              |             |
| Custor           | ner Part No:          | ATR 87 5/8x                                                          | 12 HDG                                                          |                       |               |            |             |              |             |
| Custo            | mer PO No:            | 43237                                                                |                                                                 |                       |               | 9          | Shipped Ofv | : 96 Ft      |             |
| Suatu            | Order No.             | 403088                                                               |                                                                 |                       |               |            | Line Ma     | . 3          |             |
|                  | Order NO.             | 403500                                                               |                                                                 |                       |               |            | Line wo     |              |             |
|                  | Note:                 |                                                                      |                                                                 |                       |               |            |             |              |             |
|                  |                       |                                                                      |                                                                 | Applicable S          | pecifications |            |             |              |             |
| Тур              | ie i                  |                                                                      | Spi                                                             | cification            |               | Rev        | AI AI       | nend         | Option      |
|                  |                       |                                                                      | ASTM F                                                          | 1554 Gd 105 S4        | 4             | 2011       | 8           |              | a.          |
| Heat 7           | reat                  |                                                                      | ASME SA-                                                        | 193/SA-193M           | 87            | 201        | 3           |              | 11.50 × 11. |
|                  |                       |                                                                      | A91                                                             | WI A 193 B7           |               | 2013       | 3           |              |             |
| est Results      |                       |                                                                      |                                                                 |                       |               |            |             |              |             |
| ee following     | pages for test        | s                                                                    |                                                                 |                       |               |            |             |              |             |
|                  | a cycel week          | e reest line                                                         |                                                                 | <b>Certified</b> Cher | mical Analysi | 5          |             |              |             |
|                  |                       | eat No: 206884                                                       | 50                                                              |                       |               | ,          | Origin: USA | 1. 1. 1. 1   |             |
| C                | Mn                    | P                                                                    | S                                                               | Si                    | Cr            | Mo<br>0.15 | Ni          | V            | Cu          |
| 0.42             | 0.85                  | 0.010                                                                | 0.003                                                           | 0.29                  | 0.06          | 0.15       | 0.05        | G S          | Magro S     |
| 0.029            | 0.002                 | 0.007                                                                | 0.001                                                           | 0.0050                | 0.0001        | 4.57       | 160:1       | fine         | 1           |
| Macro R          | Macro C               | J1                                                                   | J2                                                              | J3 ·                  | J4            | J5         | JG          | J7           | JB          |
| 1                | 1                     | 57                                                                   | 57                                                              | 57                    | 57            | 57         | 54          | 53           | 51          |
| J9               | J10                   | J12                                                                  | J14                                                             | J16                   | J18           | J20        | J24         | · j28        | J32         |
| 50               | 48                    | 46                                                                   | 44                                                              | 41                    | 40            | 39         | 37          | 34           | 33          |
|                  | and a shart of the    |                                                                      |                                                                 | No                    | tor           |            |             |              |             |

Plex 6/8/20 11:34 AM vulc.sano Page 1 of 2

| THREADED     | PRODUCTS, IN | 10 Cross (<br>Pelham, A<br>Tel (205) (<br>Fax (205) | Creek Trail<br>L 35124<br>520-5100<br>620-5150 | IS             | JO                                    | B MATER | RIAL CE     | ERTIFIC                    | CATION              |
|--------------|--------------|-----------------------------------------------------|------------------------------------------------|----------------|---------------------------------------|---------|-------------|----------------------------|---------------------|
|              | Job No       | : 668113                                            |                                                | Job Infe       | ormation                              | Cert    | ified Date: | 4/8/20                     |                     |
|              | Containers   | : S17411160                                         |                                                |                |                                       |         |             |                            |                     |
|              | Customer     | : Winzer Corp                                       |                                                |                |                                       |         | Ship To:    | 1214 S. Tex<br>Bryan, TX 7 | as Ave<br>7803-4582 |
| Vu           | Ican Part No | : ATR B7 3/4x*                                      | 12 HDG                                         |                |                                       |         |             |                            |                     |
| Custo        | mer Part No  | : ATR B7 3/4x*                                      | 12 HDG                                         |                |                                       |         |             |                            |                     |
| Cust         | tomer PO No  | . 1103397                                           |                                                |                |                                       |         |             |                            |                     |
|              | Order No     | 407208                                              |                                                |                |                                       | 5       | mpped Qty:  | i containers               | S                   |
|              | Order No     | . 407308                                            |                                                |                |                                       |         | Line No:    | 1                          |                     |
|              | Note         |                                                     |                                                | 5 919 10-11 V  | _                                     |         |             |                            |                     |
|              |              |                                                     |                                                | Applicable S   | pecifications                         |         |             |                            |                     |
| Ту           | rpe          |                                                     | Spec                                           | ification      |                                       | Rev     | Ame         | nd                         | Option              |
|              |              | ASTM F1554 0                                        | 3d 105 S4                                      |                |                                       | 2018    |             |                            |                     |
| Heat Treat   |              | ASTM A193 B7                                        | ,                                              |                |                                       | 2019    |             |                            |                     |
| est Results  |              |                                                     | 1930                                           |                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |         |             |                            |                     |
| ee following | pages for te | sts                                                 |                                                |                |                                       |         |             |                            | -                   |
|              |              |                                                     | 1.1812.7                                       | Certified Cher | nical Analysis                        | 3       |             |                            |                     |
|              | ł            | leat No: 1064922                                    | 20                                             |                |                                       | (       | Origin: USA |                            |                     |
| С            | Mn           | Р                                                   | S                                              | Si             | Cr                                    | Mo      | Ni          | v                          | Cu                  |
| 0.41         | 0.87         | 0.018                                               | 0.024                                          | 0.27           | 0.91                                  | 0.20    | 0.06        | 0.002                      | 0.16                |
| AI           | Nb           | Sn                                                  | Ti                                             | N              | В                                     | DI      | RR          | G.S.                       | Macro S             |
| 0.028        | 0.001        | 0.007                                               | 0.002                                          | 0.0070         | 0.0001                                | 5.21    | 54:1        | fine                       | 1                   |
| Macro R      | Macro C      | J1                                                  | J2                                             | J3             | J4                                    | J5      | J6          | J7                         | J8                  |
| 1            | 1            | 57                                                  | 57                                             | 57             | 57                                    | 57      | 57          | 55                         | 54                  |
| 79           | J10          | J12                                                 | J14                                            | J16            | J18                                   | J20     | J24         | J28                        | J32                 |
| 53           | 51           | 49                                                  | 47                                             | 45             | 44                                    | 43      | 41          | 39                         | 37                  |
|              |              |                                                     |                                                | No             | tes                                   |         |             |                            |                     |

Plex 4/8/20 2:04 PM vulc.sano Page 1 of 2

| (<br>Test Results<br>Part No: BAR                                                                                                                                                        | Contair                                                                                                                                        | are: 01714                                                                                                                                                                          |                                                                                                                                                                |                                                                                                                                        |                          | nation              |                         | nuneu Date. 4        |                       |                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------|-------------------------|----------------------|-----------------------|---------------------|
| Test Results                                                                                                                                                                             |                                                                                                                                                | iers: 51/41                                                                                                                                                                         | 1160                                                                                                                                                           |                                                                                                                                        |                          |                     |                         |                      |                       |                     |
| Part No BAR                                                                                                                                                                              |                                                                                                                                                |                                                                                                                                                                                     |                                                                                                                                                                |                                                                                                                                        |                          |                     |                         |                      |                       |                     |
| a.c                                                                                                                                                                                      | B7 .681                                                                                                                                        | 3x292 HT                                                                                                                                                                            |                                                                                                                                                                |                                                                                                                                        |                          |                     |                         |                      |                       |                     |
| Test No: 59660                                                                                                                                                                           | 0 Test:                                                                                                                                        | Quench & Ten                                                                                                                                                                        | nper Information                                                                                                                                               | n (Lbs)                                                                                                                                |                          |                     |                         |                      |                       |                     |
| Description                                                                                                                                                                              | Aust                                                                                                                                           | enitizing Ter                                                                                                                                                                       | np (F) Te                                                                                                                                                      | empering Temp                                                                                                                          | (F)                      | Run Spee            | d (Ft/min)              | Quench Water         | Temp (F)              | Note                |
| Results                                                                                                                                                                                  |                                                                                                                                                | 1,660                                                                                                                                                                               | 10101                                                                                                                                                          | 1,346                                                                                                                                  |                          | 4                   | 40                      | 89                   |                       |                     |
| Test No: 59665                                                                                                                                                                           | 5 Test:                                                                                                                                        | Partial Decarb                                                                                                                                                                      | Test                                                                                                                                                           |                                                                                                                                        |                          |                     |                         |                      |                       |                     |
| Desc                                                                                                                                                                                     | ription                                                                                                                                        |                                                                                                                                                                                     | Surfac                                                                                                                                                         | e Carb.                                                                                                                                |                          |                     | Partial Surfa           | ce Decarb.           |                       | Note                |
|                                                                                                                                                                                          |                                                                                                                                                |                                                                                                                                                                                     | Pa                                                                                                                                                             | ass                                                                                                                                    |                          |                     | Pa                      | ss                   |                       | note                |
| Test No: 59666                                                                                                                                                                           | 6 Test                                                                                                                                         | F1554-105 FB                                                                                                                                                                        | Requirements                                                                                                                                                   |                                                                                                                                        |                          |                     | 14                      | 7471                 |                       |                     |
| Description                                                                                                                                                                              | Tensile                                                                                                                                        | (ksi) (ksi)                                                                                                                                                                         | Yield 0.2% Of                                                                                                                                                  | ffset (ksi) (kei)                                                                                                                      | Flore                    | ation (%)           | Elongation C            | ago Longth (Pin)     | POA (%)               | Note                |
|                                                                                                                                                                                          | renono                                                                                                                                         | (101) (101)                                                                                                                                                                         | 11010 0.270 0                                                                                                                                                  |                                                                                                                                        | Liong                    | auon (76)           | Liongation G            | age cength (om)      | RUA (%)               | Note                |
|                                                                                                                                                                                          |                                                                                                                                                | 138                                                                                                                                                                                 |                                                                                                                                                                | 129                                                                                                                                    |                          | 13.1                |                         | 8in                  | 58.8                  | external<br>provide |
| Test No: 59667                                                                                                                                                                           | 7 Test:                                                                                                                                        | A193 B7, F155                                                                                                                                                                       | 54-105 Require                                                                                                                                                 | ments                                                                                                                                  |                          |                     |                         |                      |                       |                     |
| Description <sup>1</sup>                                                                                                                                                                 | ensile<br>(ksi)                                                                                                                                | Yield 0.2%<br>Offset (ks                                                                                                                                                            | Elongation                                                                                                                                                     | Elongation<br>Gage Length                                                                                                              | ROA<br>(%)               | Midradiu<br>Hardnes | us Surface<br>s Hardnes | Center<br>s Hardness | Hardness<br>Test Type | Note                |
|                                                                                                                                                                                          | 139                                                                                                                                            | 127                                                                                                                                                                                 | 22                                                                                                                                                             | 4D                                                                                                                                     | 61                       | 29                  | 29                      | 29                   | HRC                   |                     |
|                                                                                                                                                                                          | 138                                                                                                                                            | 127                                                                                                                                                                                 | 21                                                                                                                                                             | 4D                                                                                                                                     | 59                       | 30                  | 30                      | 29                   | HRC                   |                     |
|                                                                                                                                                                                          | 137                                                                                                                                            | 125                                                                                                                                                                                 | 20                                                                                                                                                             | 4D                                                                                                                                     | 64                       | 28                  | 29                      | 29                   | HRC                   |                     |
|                                                                                                                                                                                          | 137                                                                                                                                            | 129                                                                                                                                                                                 | 21                                                                                                                                                             | 4D                                                                                                                                     | 61                       | 29                  | 29                      | 29                   | HRC                   |                     |
|                                                                                                                                                                                          | 139                                                                                                                                            | 128                                                                                                                                                                                 | 19                                                                                                                                                             | 4D                                                                                                                                     | 61                       | 29                  | 29                      | 29                   | HRC                   |                     |
|                                                                                                                                                                                          | 130                                                                                                                                            | 125                                                                                                                                                                                 | 19                                                                                                                                                             | 40                                                                                                                                     | 62                       | 29                  | 29                      | 28                   | HRC                   |                     |
|                                                                                                                                                                                          | 139                                                                                                                                            | 120                                                                                                                                                                                 | 20                                                                                                                                                             | 40                                                                                                                                     | 61                       | 29                  | 29                      | 29                   | HRC                   |                     |
|                                                                                                                                                                                          | 137                                                                                                                                            | 126                                                                                                                                                                                 | 19                                                                                                                                                             | 4D                                                                                                                                     | 61                       | 29                  | 29                      | 29                   | HRC                   |                     |
| est No: 59668                                                                                                                                                                            | Tost                                                                                                                                           | E1554 Gd105                                                                                                                                                                         | S4 Charny ft/lbi                                                                                                                                               | Requirements                                                                                                                           |                          |                     |                         | 20                   |                       |                     |
| Description                                                                                                                                                                              | Conta                                                                                                                                          | iner Test                                                                                                                                                                           | Temp (F)                                                                                                                                                       | Toet1 (ft/lbc)                                                                                                                         | Torta                    | (ft/lbc)            | Toot? (ft/lb            | Desults Au           | . (6)(1)              | Nete                |
| Description                                                                                                                                                                              | Conta                                                                                                                                          | iner rest                                                                                                                                                                           | 20                                                                                                                                                             |                                                                                                                                        | Testz                    | 102                 | Tests (TUID             | s) Results Ave       | g (TUIDS)             | Note                |
| he reported tes<br>he reported tes<br>aken from the p<br>laterial was ma<br>roduct standard<br>fanagement Sy<br>faterial was tes<br>606, and F2321<br>his test report<br>he written perm | st results<br>st results<br>production<br>anufactur<br>d and in<br>ystem reg<br>sted in ac<br>8 test me<br>shall not<br>hission of<br>accordan | conform to the<br>are the actual<br>n lot.<br>red, tested, and<br>accordance with<br>stored June 3<br>ccordance with<br>thods.<br>be reproduced<br>Vulcan Steel<br>to ce with FN 10 | e specifications<br>values measur<br>d inspected as<br>th Vulcan''s IS(<br>0th, 2017.<br>I the current re<br>d or distributed,<br>Products.<br>204 - 3.18 of 2 | I listed above.<br>red on the sample:<br>required by the<br>0 9001:2015 Quali<br>vision of ASTM A<br>except in full, with<br>004 (3.1) | s<br>ity<br>370,<br>nout |                     | Sallie N                | orwood               | r                     | 4/8/20              |

### CERTIFIED MATERIAL TEST REPORT FOR ASTM A194/A194M-10a GRADE 2H HVY HEX NUTS

| FACTORY: NING     | BO HAIXIN HARDWARE CO., LTD.         |
|-------------------|--------------------------------------|
| ADDRESS: XIJIN    | GTANG LUOTUO NINGBO ZHEJIANG 315205  |
| CHIN.             | <u>A</u>                             |
| CUSTOMER: BRIG    | HTON-BEST INTERNATIONAL (TAIWAN) INC |
| QNTY SHIPPED:     | 28.800MPCS                           |
| SAMPLE SIZE :     | ACC. TO ASME B18, 18, 1-02           |
| SIZE & DESCRIPTIC | DN: 5/8-11+0.020"(HDG)               |

DATE: AUG.08.2011

MFG LOT NUMBER: <u>1033130006</u> PO NUMBER: <u>U04584</u> PART NO: <u>313150</u>

| STEEL PROP              | ERTIES:       |         | -               |         |                   |          |                 |                 |             |          |
|-------------------------|---------------|---------|-----------------|---------|-------------------|----------|-----------------|-----------------|-------------|----------|
| STEEL GRAI              | DE:<br>COMPOS | SWRCI   | <u>-145K</u>    | SIZE    | : <u>25mm</u>     |          |                 | HEAT NO         | : <u>33</u> | 1105231  |
| CHEMIST                 | C %           | Mn %    | P%              | S%      | Si%               | Cr%      | Ni 94           | C. 9/           | 1 11 11     | OTURNA   |
| SPE:                    | MIN           | MAX     | MAX             | MAX     | MAX               | 0.70     | 141 70          | Cu 76           | IVIO %      | OTHERS   |
|                         | 0.40          | 1.00    | 0.04            | 0.05    | 0.40              |          |                 |                 |             |          |
| TEST:                   | 0.45          | 0.73    | 0.009           | 0.01    | 0.21              |          |                 |                 |             |          |
| DIMENSION,<br>CHARACTER | AL INSPE      | CTIONS  | TEST ME         | THOD    | SPECIFI           | CATION   | ASME/AN         | ISI B18.2       | . 2 - 87(R) | 999)     |
| *****                   | ******        |         | ******          | ******  | 3FECI<br>* ****** | ******   | ACTUAL.         | RESULT          | ACC.        | REJ.     |
| APPEARANC               | E             |         | ASTM            | F812-02 |                   |          | DAG             |                 | *****       | *****    |
| WIDTH A/F               | /IDTH A/F     |         | 1.031 "         | -1.062" |                   |          | PAS<br>LOAD     | SED             | 100         | 0        |
| WIDTH A/C<br>THREAD     |               | 1.175"- | 1 227 "         |         |                   | 1.042"   | -1.052"         | 32              | 0           |          |
|                         |               |         | ASME            | BL 1-02 |                   |          | 1.180           | -1.221"         | 32          | 0        |
| HEIGHT                  |               |         | 0 587"          | 0 631"  |                   |          | PASSED 8        |                 |             | 0        |
| MARK                    |               |         | 0.507 -<br>7LI# | 1 14    |                   |          | 0.597"          | -0.611"         | 32          | 0        |
|                         |               |         | 2H* LM          |         |                   |          | PAS             | SED             | 100         | 0        |
| MECHANICA               | L PROPE       | RTIES:  | TO 1-1/2        | " in    |                   | SPECIF   | ICATION:        | ASTM AIG        | 04-10-      |          |
| CHARACTER               | ISTICS        |         | TEST ME         | THOD    | SPECI<br>*******  | FIED     | ACTUAL          | RESULT          | ACC.        | REJ.     |
| HARDNESS                |               |         | ASTM            | E18-05  | 24-351            | IRC      | HRC             | 28.20           |             | ******** |
| PROOF LOAD              | )             |         | ASTM F          | 606-07  | 3955              | Olbf     | 3054            | 20-50<br>SOILE  | 5           | 0        |
| DECARBURIZ              | ZATION        |         | SAE.            | J121    |                   |          | DAC             | SED             | 5           | 0        |
| HARDNESS A              | FTER 241      | AT 540  | CASTM.          | A194 MI | N 89 HRB          |          | ЦРР             | 07.04           | 5           | 0        |
| EMPERING "              | TEMPERA       | TUREN   | Ain455°C        |         |                   |          | DAGODO          | 72-94           | >           | 0        |
| MACROETCH               | [             |         | ASTM E3         | 81      | \$1/R1/C1~        | S4/R4/C4 | PASSED<br>\$2/R | (520°C)<br>2/C2 | 5           | 0        |

PARTS ARE MANUFACTURED AND TESTED IN ACCORDANCE WITH ASTM A194/A194M-10a ALL TESTS IN ACCORDANCE WITH THE METHODS PRESCRIBED SPECIFICATION. WE CERTIFY THAT THIS DAIA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY.

All parts meet the requirements of FQA and records of compliance are on file. Maker's ISO#00109Q10593R0M/3302

Aanbeed

(SIGNATURE OF Q.A. LAB MGR. ) (NAME OF MANUFACTURER )

#### NINGBO DONGXIN HIGH-STRENGTH NUT CO.,LTD TEST CERTIFICATE (EN 10204.3.1)

#### TEL:0086-574-86531750 FAX:0086-574-86531751 www.d-x.com.cn dongxin@d-x.com.cn

|                                             | P/O NO.: B1610                     | 0374             | QTY(MP): 33.75      |              | INVOICE              | NO: 17075DX228-018 |  |
|---------------------------------------------|------------------------------------|------------------|---------------------|--------------|----------------------|--------------------|--|
| Customer:<br>BRIGHTON-BEST<br>INTERNATIONAL | Product Descriptio<br>ASTM A194 2H | n<br>Heavy Hex N | luts                |              |                      |                    |  |
|                                             | Specification:                     | 3/4"-10          |                     | T/O, 0.51    | Lot#: 1610DX228-0242 |                    |  |
|                                             | Material:                          | 45K              | Surface Finish: HDG |              | Heat No.:            | J11604926          |  |
|                                             | Mark:                              | DX,2HZN          |                     | Part Number: | 3132                 | 200                |  |

#### Specification: ASTM A194-16

|             |       | opeenie | auon.Ao mi A134-10 |       |       |
|-------------|-------|---------|--------------------|-------|-------|
| Element     | С     | Mn      | Р                  | S     | Si    |
| Requirement | ≥0.40 | ≤1.00   | ≤0.04              | ≤0.05 | ≤0.40 |
| Result      | 0.44  | 0.69    | 0.019              | 0.004 | 0.15  |

#### **Mechanical Properties** Specification:ASTM A194-16

| Test Item                | Standard | Results | Samolino | Test method       |
|--------------------------|----------|---------|----------|-------------------|
| Hardness after Treatment |          |         | Gamping  | Teachieurou       |
| (540°C 24h HRB)          | MIN89    | 92-94   | 5        | ASTM E18-14       |
| Hardness HRC             | 24 - 35  | 27 - 31 | 4        | ASTM E18-14       |
| Proof loading LBF        | 58450    | 58736   | 3        | ASTMA962/A962M-09 |

#### Dimensions

| Test Item            | Spec.         | Inspection Results | Sampling | Rej | Remark | Test method  |
|----------------------|---------------|--------------------|----------|-----|--------|--------------|
| Widthacrossflats(mm) | 30.78 - 31.75 | 31.24-31.42        | 125      | 0   | ок     | (**********) |
| Widthacrossangle(mm) | 35.10 - 36.65 | 35.80-35.97        | 125      | 0   | ОК     |              |
| Height(mm)           | 18.03 - 19.25 | 18.52-18.72        | 125      | 0   | ОК     |              |
| Go Gauge             | GO            | GO                 | 125      | 0   | ОК     | ASTM 81.1-02 |
| No-Go                | NO GO         | NO GO              | 125      | 0   | ОК     | ASTM B1.1-02 |
| Appearance           | OK            | OK                 | 125      | 0   | ОК     | ASTM F812-07 |

#### MACROETCH

Random Condition Surface Condition Center Segregation Spec. Of test method Spec. S2 R2 C3 ASTM E381 Results S2 R2 СЗ NOTE

Division

Test Standards:ASTM A194/A194M-2016/ WAF TO DIN934-1987 H=D (HEIGHT=1 DIAMETER) Standard Specification for Carbon and Alloy Steel nuts. Quench at 830°C about 80 minutes, Tempering at 550°C about 80 minutes We hereby certify that all the above results are original from our actual testing, and the products have proved to comply with the relevant standards. Signed on Behalf of Ningbo Dongxin High- Strength Nut Co., Ltd. Date:2017.02.27

宁波东鑫高强度 NNGBD DONGXIN HIGH SK

(2)

1/2

## HEXICO ENTERPRISE CO., LTD.

NO.355-3,SEC. 3,CHUNG SHAN ROAD,KAU-JEN,TAINAN,TAIWAN,R.O.C. TEL : 886 - 6 - 2390616 FAX : 886 - 6 - 2308947

#### **INSPECTION CERTIFICATE**



| CUSTOMER        | PORTEOUS FASTE     | NER CO.                   |                    |
|-----------------|--------------------|---------------------------|--------------------|
| PART NAME       | ASTM F436 - 09 TYP | E 1 WASHERS ( HOT DIP GAL | .V. PER ASTM A153) |
| SIZE            | 3/4 "              | DATE                      | April 08, 2011     |
| PART NO.        | W2A6C6000S6JV      | REPORT NO.                | 1000408-02         |
| CUST. PART NO.  | 00385-3200-024     | SHIPPING NO.              |                    |
| MATERIAL / DIA. | 10B20 / 23 mm      | ORDER NO.                 | 10122251           |
| HEAT(COIL) NO.  | 3B143              | LOT NO.                   | 022C6PF41          |
| LOT QTY         | 72,000 PCS         | DOCUMENT NO.              | 9709015            |
| STANDARD OF S   | AMPLING SCHEME     | ANSI / ASME B18.18.2 M    |                    |

|   | INSPECTION FEM   | C DE    | OIFICAT       | CLON  |    | INSPECTIO | N RESULTS | DED CODEC |  |
|---|------------------|---------|---------------|-------|----|-----------|-----------|-----------|--|
|   | INSPECTION TIEM  | SPE     | UIFICA        | IION  |    | MIN.      | MAX.      | REMARKS   |  |
| 1 | OUTSIDE DIAMETER | 1.4360  | () <b>-</b> ) | 1.500 | 00 | 1.4547    | 1.4681    | 4         |  |
| 2 | INSIDE DIAMETER  | 0.8130  | -             | 0.845 | 50 | 0.8311    | 0.8354    |           |  |
| 3 | THICKNESS        | 0.1220  | -             | 0.177 | 70 | 0.1311    | 0.1394    |           |  |
| 4 | HARDNESS         | HRC     | 26            | - 4   | 15 | 26.1      | 27.0      |           |  |
| 5 | COATING          | HOT DIP | GALV.         | 43    | μm | 46.0      | 75.6      |           |  |
| 6 | APPEARANCE       |         | VISUAL        |       |    | C         | )K        |           |  |

| HOT DIP GALV. 43 µm  | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|----------------------|------|------|------|------|------|------|------|------|------|------|
| SAMPLE SIZE : 10 PCS | 49.1 | 58.2 | 62.0 | 75.6 | 71.4 | 49.2 | 51.4 | 56.9 | 66.7 | 46.0 |

INSPECTED BY

Yu Tain Lin

CERTIFIED BY

Jing Yeh Tsao

PDF created with pdfFactory trial version www.pdffactory.com

# HEXICO ENTERPRISE CO., LTD. NO.355-3,SEC. 3,CHUNG SHAN ROAD,KAU-JEN,TAINAN,TAIWAN,R.O.C. TEL : 886 - 6 - 2390616 FAX : 886 - 6 - 2308947

#### **INSPECTION CERTIFICATE**



| CUSTOMER       | PORTEO             | US FASTE     | NER CO.                   |                   |
|----------------|--------------------|--------------|---------------------------|-------------------|
| PART NAME      | ASTM F43           | 36 - 09 TYPI | E 1 WASHERS ( HOT DIP GAL | V. PER ASTM A153) |
| SIZE           | 5/8 "              |              | DATE                      | April 01, 2011    |
| PART NO.       | W2A6C50            | 00S6JV       | REPORT NO.                | 1000401-01        |
| CUST. PART NO  | 0. 00385-300       | 0-024        | SHIPPING NO.              |                   |
| MATERIAL / DIA | . <u>10B20 / 2</u> | 20 mm        | ORDER NO.                 | 10122251          |
| HEAT(COIL) NO  | . 1Q961            |              | LOT NO.                   | 022C5PF41         |
| LOT QTY        | 72,000             | PCS          | DOCUMENT NO.              | 9802003           |
| STANDARD OF    | SAMPLING           | SCHEME       | ANSI / ASME B18 18 2 M    |                   |

|   | INSPECTION ITEM  | SDE     | TEICAT  | TON    | INSPECTIC | N RESULTS | DEMONICO |
|---|------------------|---------|---------|--------|-----------|-----------|----------|
|   | MOLECTION TIEM   | 5110    | JITICA. | ION    | MIN.      | MAX.      | REMARKS  |
| 1 | OUTSIDE DIAMETER | 1.2810  | ÷.      | 1.3450 | 1.2909    | 1.3181    |          |
| 2 | INSIDE DIAMETER  | 0.6880  |         | 0.7200 | 0.7134    | 0.7197    |          |
| 3 | THICKNESS        | 0.1220  | -       | 0.1770 | 0.1264    | 0.1421    |          |
| 4 | HARDNESS         | HRC     | 26      | - 45   | 26.5      | 31.4      |          |
| 5 | COATING          | HOT DIP | GALV.   | 43 μm  | 46.6      | 104.0     |          |
| 6 | APPEARANCE       | 1       | VISUAL  |        | 0         | DK        |          |

| HOT DIP GALV. 43 µm  | 1    | 2    | 3    | 4    | 5    | 6     | 7     | 8    | 9    | 10   |
|----------------------|------|------|------|------|------|-------|-------|------|------|------|
| SAMPLE SIZE : 10 PCS | 46.6 | 50.6 | 99.2 | 84.7 | 81.6 | 104.0 | 101.0 | 88.3 | 65.1 | 70.9 |

INSPECTED BY

Yu Tain Lin

CERTIFIED BY

Jing Yeh Tsao

PDF created with pdfFactory trial version www.pdffactory.com

| REF.B/L: 80954217<br>Date: 06/01/2020<br>Customer: 192                                                           | <u>Shipped To</u><br>Intsel Steel Distributors<br>11310 West Little York<br>HOUSTON TX 77041<br>USA | n:<br>canada     | un. canada         | Ti B N Ca            | 0.002 0.0002 0.0040 0.0002                         | CE: 0.34                                  | o Harvested Writhin Miles of Location<br>1000 1000              | 1: Canada         | in: canada          | 2<br>2<br>1 |                                 | CE: 0.34                                        | Harvested Within Miles of Location<br>1000 1000                 | ion and contract requirements.<br><b>Ce Genter Institute</b>                                   |  |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------|--------------------|----------------------|----------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------|-------------------|---------------------|-------------|---------------------------------|-------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|
| OOD ADAS TUDE<br>A DIVISION OF ZEKELMAN INDUSTRIES                                                               |                                                                                                     | Made 1           | וובררפת            | Cr V                 | 0.034 0.002                                        | GRADE B&C                                 | it Industrial) 2/1                                              | Made ir           | Melted              | Cr.         | 0.041 0.002                     | GRADE R&C                                       | t Industrial) 26                                                | II applicable specificat                                                                       |  |
|                                                                                                                  | ORT                                                                                                 |                  |                    | Mo Ni<br>0.007 0.020 | Certification<br>ASTM A500-18<br>Pre-Consumer (Pos | Pre-Consumer (Pos<br>14.40%               |                                                                 |                   | Mo Ni               | 0.004 0.016 | Certification<br>ASTM A500-18 ( | Pre-Consumer (Posi<br>14.40%                    | full compliance with a                                          |                                                                                                |  |
|                                                                                                                  | Erial test rep                                                                                      | 2: 70050250      | -der: WLY-24734    | Cu Cb                | 0.057 0.004                                        |                                           | Recycled Content Post Consumer<br>36.90% 19.80%                 | 100060250         | der: WLY-24807      | Cu          | 0.050 0.005                     |                                                 | Post Consumer<br>19.80%                                         | urnished and indicate                                                                          |  |
|                                                                                                                  | MAT                                                                                                 | Material N       | Purchase O         | Si AI                | 0.014 0.034                                        | e Eln.2in<br>6 Psi 34.5 %                 |                                                                 | Material No       | Purchase 0          | Si AI       | 0.017 0.045                     | 0.017 0.045<br><u>e Eln.2in</u><br>3 Psi 36.5 % | 3 Psi 36.5 %<br>Recycled Content<br>36.90%                      | utes of the material                                                                           |  |
|                                                                                                                  |                                                                                                     | 2).              |                    | S                    | 0.009 0.009                                        | <u>Id</u> <u>Tensil</u><br>709 Psi 06692( | Method<br>BOF                                                   | .(1).             |                     | s           | 600.0 600.0                     | d <u>Tensil</u><br>304 Psi 073933               | Method<br>BOF                                                   | these Reland                                                                                   |  |
| Atlas Tube Canada<br>200 Clark st.<br>Harrow Ontario Canada<br>NOR 160<br>Tel: 519-738-3541<br>Fax: 519-758-5537 | pty                                                                                                 | .0x250x40'0"0(2x | 22                 | Mn                   | 0 0.780                                            | PCs Yiel<br>4 057                         | <u>Mill Location</u><br>Nanticoke, ON                           | 5.0x250x4810"0(2) | 25                  | Mn          | 0 0.810 0                       | PCs <u>Yiel</u><br>2 063;                       | Mill Location<br>Nanticoke, ON                                  | Assurance: 5<br>Aws D1:1 meth<br>CUDC                                                          |  |
|                                                                                                                  | <u>Sold To</u><br>Triple S steel Sup<br>PO Box 21119<br>HOUSTON TX 77026<br>USA                     | Material: 7.0x5  | Sales Order: 15146 | Heat No C            | 797469 0.15                                        | Bundle No<br>M101982978                   | Heat MILL<br>797469 STELCO<br>Material Note:<br>Sales Or. Note: | Material: 10.0x   | Sales Order: 152130 | Heat No C   | 796871 0.19                     | Bundle No<br>M201442261                         | Heat MILL<br>796871 STELCO<br>Material Note:<br>Sales Dr. Note: | Authorized by Quality<br>The results reported on<br>CE calculated using the<br>SHORE<br>OF WOR |  |

| REF.B/L: 80954217<br>Date: 06/01/2020<br>Customer: 192<br>192<br>Shipped To<br>Inteel Stel Distributors<br>11370 West Little York<br>USA                                                                        | Made in: Canada<br>Melted in: Canada                        | V TI B N Ca<br>0.002 0.0002 0.0040 0.0002<br>CE: 0.35                                             | % Harvested Within Miles of Location<br>100% 1000                                          | Made in: Canada<br>Metted in: Canada<br>V Ti B N Ca                             | 0.002 0.002 0.0002 0.0040 0.0002<br>CE: 0.34<br><u>% Harvested</u> Wrthin Miles of Location<br>100% 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | specification and contract requirements.<br>Service Center Institute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Jbe<br>v industrates<br>RT                                                                                                                                                                                      |                                                             | Mo Ni Cr v<br>0.004 0.017 0.042 (0<br><u>Certification</u><br>ASTM A500-18 GRADE B&C              | Pre-Consumer (Post Industrial)<br>14.40%                                                   | Mo Ni Cr                                                                        | 0.006 0.019 0.051 (<br>Certification<br>ASTM A500-18 GRADE B&C<br>Pre-Consumer (Post Industrial)<br>14.40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | full compliance with all applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DOD ALLAS TU<br>A DIVISION OF ZEKELMA<br>MATERIAL TEST REPO                                                                                                                                                     | Material No: 100060250<br>Purchase Order: WLY-24807         | S Si AI Cu Cb<br>0.009 0.014 0.034 0.048 0.004<br><u>Tensile Eln.2in</u><br>Pai 071252 Pai 32.5 % | Method Recycled Content Post Consumer<br>BOF 36.90% 19.80%                                 | C Material No: 100080625<br>Purchase Order: WLY-24818<br>S Si AI Cu Cb          | 1         0.008         0.016         0.050         0.048         0.005           Imatile         Eln.2in         Eln.2in | - Letter and indicate the material furnished and indicate the actual attributes of the material furnished and indicate the actual attributes of the material formation of the actual attributes of the material formation of the actual attributes of |
| Atlas Tube Canada<br>200 Clark St.<br>Harrow Ontario Canada<br>NOR 160<br>Tel: 519-738-3541<br>Fax: 519-738-3537<br>Sold To<br>Fax: 519-738-3537<br>Sold To<br>Friple S Steel Supply<br>HOUSTON TX 77026<br>USA | Material: 10.0%6.0x250x48'0"0(2x2).<br>Sales Order: 1521362 | Heat No C Mn P<br>797482 0.200 0.790 0.014<br><u>9undta No Pcs Yield</u><br>M201435080 4 061098 P | Heat MILL Mill Location<br>797482 STELCO Namticoke.ON<br>Material Note:<br>Sales Or. Note: | Material: 10.0x8.0x625x25'0"0(1x1)REC<br>Sales Order: 1521862<br>Heat No C Mn P | 842890 0.190 0.800 0.014<br>Bundle No <u>Pcs</u> <u>vietd</u><br>M201426482 1 059292 P<br>Heat MILL <u>MIL Location</u><br>842840 MILL <u>MIL Location</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Material Note:<br>Sales or. Note:<br>Authorized by Quality Assurance:<br>The results reported on this report represent<br>to E calculated using the AWS D1.1 method.<br>Steel This Process The AMS D1.1 method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| REF.B/L: 80954217<br>Date: 06/01/2020<br>Customer: 192                                                           | Shipped To<br>Inres treel bistributors<br>11310 West Little York<br>Houston TX 77041<br>USA | Made in: Canada<br>Melted in: Canada                   | r Ti B N Ca<br>.002 0.0002 0.0050 0.0002                                  | CE: 0.34<br><u>% Harvested Within Miles of Location</u><br>100%                                                                                                                                | Made in: Canada                   | Melted in: Canada                  | / Ti B N Ca                                           | 0.002 0.002 0.0002 0.0040 0.0002                    | CE: 0.36                                                                                              | 76 Harvested Writin Miles of Location<br>100% 100%                                          | specification and contract requirements.<br>Service Center Institute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|-------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Atlas</b> Tube<br>a division of zekelman industries                                                           | MATERIAL IESI REPORT                                                                        | Material No: 400403134800<br>Purchase Order: WLY-24734 | S Si AI Cu Cb Mo Ni Cr V<br>0 0.018 0.048 0.048 0.005 0.004 0.015 0.035 C | Pair Terrification Certification Certification Terrification Terrification 73420 Psi 29.5 % A500-18 GRADE B&C Method Recycled Content Post Consumer (Post Industrial) BOF 36.90% 19.80% 14.40% | Material No: 800605004800         |                                    | Purchase Order: WLY-24013<br>S Si Al Cu Cb Mo Ni Cr V | 3 0.007 0.022 0.042 0.058 0.005 0.006 0.023 0.053 ( | Tensile         Eln.2in         Certification           Psi         074005         Psi         31.0 % | Method Recycled Content Post Consumer (Post Industrial)<br>BOF 36.90% 19.80% 14.40%         | the actual attributes of the material furnished and indicate full compliance with all applicable entropy actual attributes of the material furnished and indicate full compliance with all applicable the actual attributes of the material function of the actual attributes o |
| Atlas Tube Canada<br>200 Clank st.<br>Harrow Ontario Canada<br>NOR 160<br>Tel: 519-738-3541<br>Fax: 519-738-3537 | <u>sold To</u><br>Triple 5 steel supply<br>PO Box 21119<br>HOUSTON TX 77026<br>USA          | Material: 4.0x4.0x313x48'0"0(5x2).                     | Heat No C Mn P                                                            | 797410 0.190 0.510 0.00<br>Bundle No PCS <u>1616</u><br>M101985797 10 067661<br>Heat Mill Location<br>797410 STELCO Nanticoke.ON                                                               | Material Note:<br>Sales Or. Note: | Material: &.UXO.UX200X40 0 015X2). | Sales Order: 1521578                                  | 796584 0.200 0.810 0.01                             | Bundle No PCs Yield<br>M201431614 4 062920                                                            | Heat MILL Mill Location<br>796584 STELCO Nanticoke.ON<br>Heterisel Note:<br>Sales on Untre- | Authorized by Quality Assurance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| REF.B/L: 80954217<br>Date: 06/01/2020<br>Customer: 192<br><u>Shipped To</u><br>Inteel Sreel Distributors<br>11310 West Little York<br>HoursTon TX 77041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Made in: Canada<br>Meted in: Canada<br>V TI B N Ca<br>0.002 0.0002 0.0000 0.00002<br>CE: 0.32<br>CE: 0.32<br>CE: 0.32<br>Mithin Miles of Location<br>1000<br>Mode in: Canada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Metter III.         Calinada           V         Ti         B         N         Ca           0.002         0.002         0.0030         0.0002           0.002         0.002         0.0030         0.0002           CE:         0.35         CE:         0.35           % Harvested         Within Miles of Location           100%         1000         1000                                                                                                                                                                                                                                                                            | e specification and contract requirements.<br>IS Service Center Institute                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACLASS TUDE<br>A DIVISION OF ZEKELMAN INDUSTRIES<br>MATERIAL TEST REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Material No:         1000402504800           Purchase Order:         ULY-24734           Purchase Order:         ULY-24734           S         Si         Al         Cu           0.010         0.012         0.032         0.042         0.004         0.034           0.011         0.032         0.042         0.004         0.005         0.034         0.034           Method         Recycled Content         Post Consumer         Post Consumer         Post Industriall           BOF         36.30%         19.80%         14.40%         14.40%         14.40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Furchase Order:         MLY-24734           S         Si         Al         Cu         Cb         Mo         Ni         Cr           0.007         0.016         0.038         0.035         0.005         0.018         0.042           0.053         0.036         0.005         0.005         0.018         0.042           0.0759         psi.50.%         0.032         0.005         0.005         0.042           Method         Bervield Content         Post Consumer         Pre-Consumer         Pre-Consumer         Post Industrial           BOF         36.90%         19.80%         14.40%         14.40%         14.40% | ectual attributes of the material furnished and indicate full compliance with all applicable<br>ectual attributes of the material furnished and indicate full compliance with all applicable |
| as Tube Canada<br>I clark St.<br>I clark St.<br>I 160<br>I 160<br>I 159-738-3541<br>I 159-738-3541<br>I 19-738-3551<br>I 19-738-3551<br>I 19-738-3551<br>I 19-738-3551<br>I 19-238-3551<br>I 19-238-35551<br>I 19-238-35551<br>I 19-238-355555<br>I 19-238-35555555555555555555555555555555555 | ial: 10.0x4.0x250x48'0°0(2x3).<br>order: 1514677 m P<br>No C Mm P<br>71 0.180 0.750 0.007<br>(438465 6 058060 Pai<br>(438465 6 058060 Pai<br>(438465 6 138465 6 138465<br>(438465 6 13865<br>(438465 6 13865 | s order: 1514677<br>No C Mn P<br>t15 0.200 0.800 0.014<br><u>Le No Pcs Yield</u><br>1438379 4 057599 Psi<br>MILL MILLCettion<br>s TELCO Nanticole.ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | or. Note:<br>horized by Quality Assurance:<br>results reported on this report represent the<br>calculated using the AWS D1.1 method.<br>Steel Thube<br>or NORTH AMBRICA                      |

| REF.B/L: 80954217<br>Date: 06/01/2020<br>Customer: 192                                  | Shipped To<br>Inreel Steel Distributors<br>11310 Mest Little York<br>HOUJTON TX 77041<br>USA                                          | Made in: Canada<br>Melted in: Canada                                 | V TI B N Ca<br>0.002 0.0002 0.0030 0.0002<br>ce: 0.34                                                                                                                                                                                                                                                                                                                                                                                        | % Harvested Within Miles of Location<br>100% 1000                                                                                                         | e specification and contract requirements.                                                                                                                                                           |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>ACLAS</b> TUDE<br>a division of zekelman industries                                  | MATERIAL TEST REPORT                                                                                                                  | <pre>x1). Material No: 1200806254800 Purchase Order: WLY-24807</pre> | P         S         AI         Cu         Cb         Mo         Ni         Cr           0.012         0.008         0.015         0.034         0.048         0.005         0.004         0.037         0           Id         Tensite         EIn.2in         Certification         Certification         Certification           Id         Tensite         EIn.2in         ASTM A500-18 GRADE B&C         Center Control of Certification | 956/ Pst 0/13/01 and 2010 method Recycled Content Post Industrial)<br>Method Recycled Content Post Consumer (Post Industrial)<br>BOF 36.90% 19.80% 14.40% | reserve the actual attributes of the material furnished and indicate full compliance with all applicable and.                                                                                        |
| Atlas Tube Canada<br>200 clark St.<br>Harrow Ontario Canada<br>NDR 160<br>cro_754.75(1) | Fax: 519-738-3537<br>Eax: 519-738-3537<br>Sold To<br>Triple S steel Supply<br>PO Box 27119<br>PO Box 27119<br>HOUSTON TX 77026<br>USA | Material: 12.0x8.0x625x48'0"0(2)                                     | Sales Order: 1521562<br>Heat No C Mn 1<br>797462 0.190 0.790 (<br>Bundle No <u>PCs</u> <u>71e</u>                                                                                                                                                                                                                                                                                                                                            | M201439535 2 Ub8<br><u>Heat MILL Mill Location</u><br>797462 STELCO Nanticoke,ON<br>Material Note:                                                        | Authorized by Quality Assurance:<br>The results reported on this report report report calculated using the AWS D1.1 me<br>CE calculated using the AWS D1.1 me<br>CE calculated using the AWS D1.1 me |

| REF.B/L: 80940403<br>Date: 031/0/2020<br>Customer: 192                                                                        | Shipped To           Intsel Steel Distributors           Intsel Distrib | ui         Cr         V         Ti         B         N         Ca           0010         0.040         0.001         0.0050         0.0000           ation         0.001         0.001         0.0050         0.0000           attorn         CE:         0.34         0.000         0.0000           0004         0.0050         0.0000         0.0000           attorn         CE:         0.34         0.0000           mer (Post Industrial) <u>% Harvested</u> Within Miles of Location           100%         500         500         500 | Made in:         USA<br>USA           Made in:         USA<br>USA           Melted in:         USA<br>USA           No         USA           No         USA           No         Ca           Or         0.050         0.002         0.001         0.0040         0.0000           Usa         N         Ca         N         Ca           Oral Grad         0.0040         0.0000         0.0000           Usa         Ca         Ca         0.0040         0.0000           Usa         Ca         Ca         0.0040         0.0000           Intervention         Ca         Ca         0.0040         0.0000           Intervention         Ca         Oracition         0.0040         0.0000           Intervention         Ca         Oracition         Oracition         Oracition | th all applicable specification and contract requirements.<br>Metals Service Center Institute                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ATTERIAL TEST REPORT                                                                                                          | (3x1)PB Material No: 80040500<br>Purchase Order: WLY-24524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.010 0.007 0.014 0.045 0.020 0.004 0.005 0<br>eld <u>Tensile</u> EIn.2in<br>5915 Psi 0.75380 Psi 33 % 0.020 0.004 0.005 0<br>5915 Psi 0.75380 Psi 33 % ASTM At<br>BOF <u>Revocied Content</u> <u>Post Consumer</u> <u>Pre-Consu</u><br>19.80% 14.40%                                                                                                                                                                                                                                                                                           | P         Si         AI         Curchase Order:         VLY-24410           0.019         0.010         0.018         0.050         0.003         0.003         0.004           0.019         0.010         0.018         0.050         0.030         0.003         0.004         0.004           0.02         Psi         Ensile         El2in         0.003         0.003         0.004         0.016           002         Psi         Method         Recycled Content         Post Consumer         Pre-Consum           BOF         36.90%         19.80%         14.40%         14.40%                                                                                                                                                                                               | Auc-Related<br>ent the actual attributes of the material furnished and indicate full compliance wit<br>d.                                                             |
| Attas Tube Corp. Chicago<br>1855 East 12204 Street<br>Chicago Illinois USA<br>60633<br>Tel: 773-646-4500<br>Fax: 773-646-6128 | Triple S Steel Supply<br>POUSTON TX 77026<br>USA 21119<br>Material: 8.0x4.0x500x40'0'0<br>Sales Order: 1498356<br>Heat No c Mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Υ05692         0.200         0.770           Bundle No         Bundle No         Bundle No           Basson93466         Bundle No         Bundle No           Person Notes:         MILL         Mill Location           Yorss2         USSTEEL         ARY,IN           Material Note:         Sales Or. Note:         Ans.Ox375x400°00                                                                                                                                                                                                       | Sales Order: 1492004<br>Heat No C Mn<br>D83893 0.210 0.760<br><u>Bundle No</u> 2.710 0.760<br><u>Bundle No PCs</u> Yie<br>M800931772 3 061<br>Heat MILL<br>D8389 USSTEEL GARY,IN<br>Material Note:<br>Sales Or. Note:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Authorized by Quality Assurance:<br>The results reported on this report represe<br>CE calculated using the AWS D1.1 method<br>CE calculated using the AWS D1.1 method |

|   | REF.B/L: 80940403<br>Date: 03/10/2020<br>Customer: 192                                | Shipped To<br>Intsel Steel Distributors<br>11310 West Little York<br>HOUSTON TX 77041<br>USA | in: USA<br>Jin: USA |                         | 0.001 0.001 0.0010 0.0000 | CE: 0.33                         | e Harvested Writhin Milles of Location<br>00% 500          | in: USA          | l in: USA      | Ti B N Ca |             | CE: 0.34                         | <u>Harvested</u> Within Miles of Location<br>500   | and contract roominements                 | ce Center Institute  |                |
|---|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------|-------------------------|---------------------------|----------------------------------|------------------------------------------------------------|------------------|----------------|-----------|-------------|----------------------------------|----------------------------------------------------|-------------------------------------------|----------------------|----------------|
|   |                                                                                       |                                                                                              | Made                | Cr v                    | 0.040 0.001               | ADE B&C                          | st Industrial) 2                                           | Made             | Meltec         | Cr V      | 0.050 0.001 | ADF B&C                          | t Industrial) 26                                   | plicable specification                    | Metals Servi         |                |
|   | Ube<br>NINDUSTRIES                                                                    | ORT                                                                                          | 1000                | 0<br>Mo Ni              | 0.004 0.010               | Certification<br>ASTM A500-18 GF | Pre-Consumer (Pos<br>14.40%                                | 000              | -              | Mo Ni     | 0.003 0.010 | Certification<br>ASTM A500-18 GR | Pre-Consumer (Post                                 | ompliance with all ap                     | Ŷ                    |                |
|   | Has T<br>ion of Zekelma                                                               | VIAL TEST REP                                                                                | 400303754           | rder: WLY-2441<br>Su Cb | 0.030 0.003               |                                  | Post Consumer<br>19.80%                                    | 700505004        | der: WLY-24291 | u Cb      | 020 0.004   |                                  | Post Consumer<br>19.80%                            | ed and indicate full c                    |                      | :2 of 5        |
|   |                                                                                       | MATER                                                                                        | Material No:        | Purchase OI<br>AI C     | 14 0.047 0                | <u>Eln.2in</u><br>31 %           | ecycled Content<br>6.90%                                   | Material No:     | Purchase Or    | AIC       | 18 0.044 0. | <u>Eln.2in</u><br>36 %           | ecycled Content<br>3.90%                           | f the material furnish                    |                      | Page           |
|   |                                                                                       |                                                                                              |                     | S                       | 0.007 0.0                 | ii 077169 Psi                    | Method<br>BOF 36                                           |                  |                | S         | 0.008 0.01  | Tensile<br>079066 Psi            | Method Re<br>BOF 36                                | -lichere/<br>s actual attributes of       |                      |                |
|   |                                                                                       |                                                                                              | 0"0(4x3).           | ۵.                      | 0.014                     | Yield<br>063360 Ps               | U U                                                        | 0"0(3x1).        |                | ٩         | 0.013       | Vield<br>066337 Psi              | LOI                                                | e: And                                    | <b>p</b>             | <.             |
|   | ube Corp. Chicago<br>ast 122nd Street<br>o Illinois USA<br>73-646-4500<br>73-646-6128 | Steel Supply<br>21119<br>3N TX 77026                                                         | 4.0x3.0x375x40'     | er: 1492004<br>C Mn     | 0.190 0.780               | 9 PCS                            | <u>MILL MIII Local</u><br>USSTEEL GARY,IN<br>ote:<br>Vote: | 7.0x5.0x500x40'( | er: 1485177    | C Mn      | 0.190 0.800 | 3 3                              | MILL MIILLocat<br>USSTEEL GARY,IN<br>Ste:<br>lote: | by Quality Assurance                      | Steel Tu<br>Mustitut | UNAMA RINUN 10 |
| ć | Atlas Tr.<br>1855 Ea<br>Chicago<br>60633<br>Tel: 77<br>Fax: 73                        | Sold To<br>Triple S (<br>POBXZ<br>HOUSTC                                                     | Material:           | Sales Ord<br>Heat No    | D83894                    | Bundle No<br>M800931772          | <u>Heat</u><br>D83894<br>Material Nc<br>Sales Or. N        | Material:        | Sales Orde     | Heat No   | Y05253      | Bundle No<br>M800931582          | Heat<br>Y05253<br>Material Nc<br>Sales Or. N       | Authorized<br>The results<br>CE calculate | <¢                   |                |

| REF.B/L: 80940403<br>Date: 03/10/2020<br>Customer: 192                                                                        | Shipped To<br>Intest Steel Distributors<br>11310 West Little York<br>HOUSTON TX 77041<br>USA | Made in: USA                       | Melted in: USA            | V TI B N C           | 0.001 0.001 0.0000 0.0050 0.0000            | CE: 0.34                                                                                                      | <u>% Harvested</u> Within Miles of Location<br>100% 500                                           | Made in: USA                       | Melted in: USA            | N A II                 | 1001 0.001 0.001 0.0050 0.0000              | CE: 0.32                                                                                                       | 26 Harvested Within Miles of Location<br>100% 500                                                 | ification and contract requirements.                                                                                                                                          | Service Center Institute |                  |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------|---------------------------|----------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------|---------------------------|------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|
| <b>Adlas</b> <i>Tube</i><br>a division of zekelman industries                                                                 | MATERIAL TEST REPORT                                                                         | Material No: 700505004000          | Purchase Order: WLY-24291 | Si Al Cu Cb Mo Ni Cr | 0.018 0.044 0.020 0.004 0.003 0.010 0.050 ( | <u>Tsile Eln.2in</u><br>066 Psi 36 % ASTM A500-18 GRADE B&C                                                   | I Recycled Content Post Consumer Pre-Consumer (Post Industrial)<br>36.90% 19.80% 14.40%           | Material No: 800805004800          | Purchase Order: WLY-24524 | Si Al Cu Cb Mo Ni Cr V | 0.010 0.042 0.030 0.003 0.005 0.010 0.030 0 | sile EIn.2in Certification<br>291 Psi 34 % ASTM ASTM ASTM ASTM DEC                                             | Recycled Content Post Consumer Pre-Consumer (Post Industrial)<br>36.90% 19.80% 14.40%             | V<br>butes of the material furnished and indicate full compliance with all applicable spec                                                                                    | S Metals                 | Page 3 of 5      |
| Atlas Tube Corp. Chicago<br>1855 East 122nd Street<br>Chicago Illinois USA<br>60633<br>Tel: 773-646-4500<br>Fax: 773-646-4500 | Sold To<br>Triple S Steel Supply<br>PO Box 21119<br>HOUSTON TX 77026<br>USA                  | Material: 7.0x5.0x500x40'0"0(3x1). | Sales Order: 1485177      | Heat No C Mn P S     | Y05253 0.190 0.800 0.013 0.008              | Bundle No         PCs         Yield         Ter           M800931583         3         066337 Psi         079 | Heat MILL Mill Location Method<br>Y05253 USSTEEL GARY,IN BOF<br>Material Note:<br>Sales Or. Note: | Material: 8.0x8.0x500x48'0"0(2x2). | Sales Order: 1498356      | Heat No C Mn P S       | M87505 0.180 0.780 0.010 0.005              | Bundle No         PCs         Yield         Ten           M901119365         2         060302 Psi         0713 | Heat MILL Mill Location Method<br>M87505 USSTEEL GARY,IN BOF<br>Material Note:<br>Sales Or. Note: | Authorized by Quality Assurance: Assurance: Assurance of the form of the results reported on this report represent the actual attribute calculated using the AWS D1.1 method. | Steel Tube<br>Institute  | OF NORTH AMERICA |

Page: 3 of 5

| and a pivision of zekelman inbustries groups customer: 192 03/10/2020                                                         | MATERIAL TEST REPORT<br>Shipped To<br>Insel Steel Distributors<br>11310 West Little York<br>HOUSTON TX 77041<br>USA | 0(2x2). Material No: 800805004800 Made in: USA | Purchase Order: WLY-24524 Melted in: USA | P S SI AI CU CD Mo NI Cr V TI R N | 0.009 0.008 0.004 0.050 0.004 0.005 0.010 0.040 0.002 0.011 0.001 0.000 | Vield Tensile Eln.2in Certification Certification CE: 0.34 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 | D Method Recreted Content Post Consumer Pre-Consumer (Post Industrial) <sup>26</sup> / <sub>2</sub> Harvested Writhin Miles of Location<br>BOF 36.30% 19.80% 14.40% 14.40% 14.40% | 0(2x2). Material No: 800805004800 Made in: USA | Purchase Order: WLY-24524 Melted in: USA | P S Si Al Cu Cb Mo Ni Cr V Ti B N Co | 0.007 0.006 0.012 0.049 0.030 0.004 0.005 0.010 0.030 0.001 0.001 0.001 0.001 | <u>field Tensile EIn.2in</u><br>66430 Psi 078625 Psi 34 % ASTM A500-18 GRADF BAC | Method         Recycled Content         Post Consumer         Pre-Consumer (Post Industrial)         % Harvested         Within Miles of Location           BOF         36.90%         19.80%         14.40%         14.40%         500 | deser Richard                    | resent the actual attributes of the material furnished and indicate full compliance with all applicable specification and contract requirements. | Service Center Institute | Page: 4 of 5 |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------|-----------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------|
| Atlas Tube Corp. Chicago<br>1855 East 122nd Street<br>Chicago Illinois USA<br>60633<br>Tel: 773-646-4500<br>Fax: 773-646-6128 | <u>Sold To</u><br>Triple S Steel Supply<br>PO Box 21119<br>HOUSTON TX 77026<br>USA                                  | Material: 8.0x8.0x500x48'0"                    | Sales Order: 1498356                     | Heat No C Mn                      | Y05507 0.200 0.790                                                      | Bundle No PCS 2                                                                                                 | Heat <u>MILL MIII Locatic</u><br>Y05507 USSTEEL GARY,IN<br>Material Note:<br>Sales Or. Note:                                                                                      | Material: 8.0x8.0x500x48'0"                    | Sales Order: 1498356                     | Heat No C Mn                         | D83797 0.190 0.780                                                            | Bundle No PCs 2 0 0                                                              | Heat MILL Mill Locatio<br>D83797 USSTEEL GARY,IN<br>Material Note:<br>Sales Or. Note:                                                                                                                                                   | Authorized by Quality Assurance: | The results reported on this report rep<br>CE calculated using the AWS D1.1 met                                                                  | Steel Tul                |              |

Page: 4 of 5

| 80940403<br>03/10/2020<br>192                                                                                            | tributors<br>ttie York<br>77041                                             | ISA               | ISA                 | 2       | 01010000    | 2                                 | Within Miles of Loo         | 500                            | SA                | SA                  | N       | 03 0.0060 0.0 | 89                               | Within Miles of Loc<br>500                                            | uirements.                                                                    | stitute        |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------|---------------------|---------|-------------|-----------------------------------|-----------------------------|--------------------------------|-------------------|---------------------|---------|---------------|----------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------|
| REF.B/L:<br>Date:<br>Customer:                                                                                           | Shipped To<br>Intsel Steel Dis<br>11310 West Li<br>HOUSTON TX<br>USA        | e in:             | ed in: U            | Ш       | 0.001 0.00  | CE: 0.3                           | <u>%</u> Harvested          | 100%                           | ini e             | ed in: U            | Ti B    | 0.002 0.000   | CE: 0.3                          | <u>% Harvested</u><br>100%                                            | on and contract req                                                           | rice Center In |
|                                                                                                                          |                                                                             | Made              | Melte               | ۲<br>۲  | 0.040 0.001 | DE R&C                            | ndustrial)                  |                                | Made              | Melte               | r       | 070 0.003     | DE B&C                           | <u>ndustrial)</u>                                                     | icable specificatio                                                           | Metals Serv    |
| De                                                                                                                       |                                                                             |                   |                     | Ni      | 5 0.010 0   | Certification                     | e-Consumer (Post            |                                |                   |                     | Ni      | 0.050 0.      | ertification<br>STM A500-18 GRAI | - <u>Consumer (Post I</u> r<br>00%                                    | liance with all appli                                                         | Ś              |
| ZEKELMAN IN                                                                                                              | EST REPORT                                                                  | 800805004800      | WLY-24524           | Cb Mo   | 0.004 0.005 |                                   | onsumer Pre                 | Ė                              | 1201202504000     | WLY-24454           | Cb Mo   | 0.003 0.020   |                                  | onsumer Pre<br>39.0                                                   | indicate full compl                                                           |                |
| Atla                                                                                                                     | MATERIAL T                                                                  | erial No:         | chase Order:        | Cu      | 0.030       |                                   | ontent Post C               |                                | erial No:         | hase Order:         | Cu      | 30 0.170      |                                  | ontent Post Co<br>21.70%                                              | ial furnished and                                                             |                |
|                                                                                                                          |                                                                             | Mate              | Purc                | Si AI   | 0.012 0.0   | <u>sile Eln.2i</u><br>81 Psi 36 % | Recycled Co<br>36.90%       |                                | Mate              | Purc                | Si AI   | 0.030 0.03    | sile Eln.2ir<br>86 Psi 28 %      | Recycled Co<br>60.60%                                                 | /<br>utes of the materi                                                       |                |
|                                                                                                                          |                                                                             | ).                |                     | w       | 06 0.008    | i Psi 0777                        | <u>Method</u><br>BOF        |                                | x2).              |                     | S       | 13 0.004      | Psi 0754                         | <u>Method</u><br>EAF                                                  | un Richard                                                                    |                |
| ago<br>et                                                                                                                |                                                                             | (500x48'0"0(2x2   | 6                   | Mn P    | 0.770 0.0   | PCs Yield<br>2 065336             | Mill Location<br>SARY,IN    |                                | 0x250x40'0"0(2.   |                     | Mn      | 0.830 0.0     | PCs <u>Yield</u>                 | <u>Mill Location</u><br>Shent,KY                                      | ssurance: A.<br>s report represent<br>IS D1.1 method.                         | I Tube         |
| Atlas Tube Corp. Chic<br>1855 East 122nd Stre<br>Chicago Illinois USA<br>60633<br>Tel: 773-646-4500<br>Fax: 773-646-6128 | Sold Io<br>Triple S Steel Supply<br>PO Box 21119<br>HOUSTON TX 77026<br>USA | aterial: 8.0x8.0x | iles Order: 1498356 | at No C | 1125 0.180  | Indie No<br>101114557             | at MILL 1<br>1125 USSTEEL 0 | aterial Note:<br>les Or. Note: | aterial: 12.0x12. | iles Order: 1494355 | at No C | 3111 0.200    | 01118368 4                       | at <u>MILL</u> 1<br>3111 GALLATIN 0<br>iterial Note:<br>les Or. Note: | thorized by Quality A:<br>results reported on this<br>calculated using the AW | Stee           |

Page: 5 of 5

| REF.B/L: 80934498<br>Date: 02/10/2020<br>Customer: 192                                                                         | Shipped To<br>Intsel Steel Distributors<br>11310 West Little York<br>HOUSTON TX 77041<br>USA | Made in: USA<br>Metted in: USA                           | ,<br>F<br>F            | 0.001 0.001 0.0050 0.0000                                             | CE: 0.35                                       | al) 2 <u>6 Harvested</u> Within Miles of Location<br>100% 500                                                                         | Made in: USA                      | Melted in: USA            | N TI N                 | 0.001 0.001 0.0050 0.0000                                            | CE: 0.34<br>26 Harvested Within Miles of Location<br>100% 500                                                                                                     | eoffication and contract requirements                                                                                                                                                                                 | s Service Center Institute |              |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------|-----------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------|------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|
| and Atlas Tube<br>a division of zekelman industries                                                                            | MATERIAL TEST REPORT                                                                         | Durchase Order: WV 20050                                 | S Si Al Cu Cb Mo Ni Cr | 29 0.007 0.012 0.045 0.020 0.004 0.008 0.010 0.030<br>Tensile Fin 2in | Psi 076143 Psi 28 % ASTM A500-18 GRADE B&C     | Method Recycled Content Post Consumer Pre-Consumer (Post Industria<br>BOF 36.90% 19.80% 14.40%                                        | PB Material No: 50030375          | Purchase Order: WLY-24291 | S Si Al Cu Cb Mo Ni Cr | 0 0.007 0.008 0.039 0.030 0.005 0.008 0.010 0.030<br>Tensile Fin 2in | Psi 081026 Psi 29 % Certification<br>081026 Psi 29 % ASTM A500-18 GRADE B&C<br>Method Recycled Content Post Consumer (Post Industrial<br>BOF 36.90% 19.80% 14.40% | المسلمات ال<br>The actual attributes of the material furnished and indicate full compliance with all applicable sp | S Metal                    | Page: 1 of 4 |
| Atlas Tube Corp. Chicago<br>1855 East 1/22nd Street<br>Chicago Illinois USA<br>60633<br>Tel: 773-646-4500<br>Fax: 773-646-6128 | Sold Io<br>Triple S Steel Supply<br>PO Box 21119<br>HOUSTON TX 77026<br>USA                  | Material: 5.0x2.0x250x48'0'0(4x3<br>Sales Order: 1472390 | Heat No C Mn P         | M87395 0.200 0.800 0.0<br>Bundle No PCs Yield                         | M800923834 12 057589<br>Heat Mill Mill Control | Maran mut dar mut dar mut dar mut mut mut mut maran maran maran maran maran maran maran maran mut | Material: 5.0x3.0x375x40'0"0(1x8) | Sales Order: 1485177      | Heat No C Mn P         | E84426 0.200 0.780 0.00<br>Bundle No PCs Yield                       | M800913733 2 069108<br>Heat MILL Mill Location<br>E8426 USSTEEL GARY,IN<br>Material Note:<br>Sales Or. Note:                                                      | Authorized by Quality Assurance:                                                                                                                                                                                      | Steel Tube                 |              |

| <b>COOD</b> Adas <i>Tube</i><br>Date: 0210/2020<br><i>a Division of ZEKELMAN INDUSTRIES</i><br>Customer: 192                  | MATERIAL TEST REPORT<br>Shipped To<br>Intsel Steel Distributors<br>11310 West Little York<br>HOUSTON TX 77041<br>USA | PB Material No: 50030375 Made in: USA | Purchase Order: VVLY-24291 Melted in: USA | S Si Al Cu Cb Mo Ni Cr V Ti D M | 10 0.006 0.008 0.048 0.020 0.006 0.003 0.010 0.030 0.001 0.001 0.001 0.000 0.000 | Tensile         EIn. 2in         Certification         Certification         CE: 0.32           Psi         000685 Psi         29 %         ASTM A500-18 GRADE B&C         CE: 0.32 | Method         Recycled Content         Post Consumer         Pre-Consumer (Post Industrial)         % Harvested         Writhin Miles of Location           BOF         36.90%         19.80%         14.40%         14.40%         500 | t). Material No: 1200603134800 Made in: USA | Purchase Order: WLY-24050 Melted in: USA | S Si Al Cu Cb Mo Ni Cr V Ti B N Co | 8 0.008 0.013 0.052 0.010 0.005 0.010 0.030 0.001 0.001 0.0040 0.000 | Tensile         EIn.2in         Certification           Psi         077505 Psi         29 % | Method Recycled Content Post Consumer Pre-Consumer (Post Industrial) 26 Harvested Within Miles of Location BDF 36.90% 19.80% 14.40% 14.40% | en Richard<br>the actual attributes of the material furnished and indicate full compliance with all applicable specification and contract requirements. | Some and the service conter institute |   |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|---------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------|------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---|
| Attas Tube Corp. Chicago<br>1855 East 122nd Street<br>Chicago Illinois USA<br>60633<br>Tel: 773-646-4500<br>Fax: 773-646-6128 | Sold To<br>Triple S Steel Supply<br>PO Box 21119<br>HOUSTON TX 77026<br>USA                                          | Material: 5.0x3.0x375x40'0"0(1x8)     | Sales Order: 1485177                      | Heat No C Mn P                  | M87383 0.180 0.750 0.0                                                           | Bundle No<br>M800913733 6 068651                                                                                                                                                    | <u>Heat MilLL Mill Location</u><br>M87383 USSTEEL GARY,IN<br>Material Note:<br>Sales Or. Note:                                                                                                                                           | Material: 12.0x6.0x313x48'0"0(2x2           | Sales Order: 1472390                     | Heat No C Mn P                     | W86982 0.200 0.770 0.00                                              | M901114292 4 0607221                                                                        | Heat MILL MIIL Location<br>W86982 USSTEEL GARY,IN<br>Material Note:<br>Sales Or, Note:                                                     | Authorized by Quality Assurance:                                                                                                                        | Steel Tube<br>Institute               | > |

Page: 2 of 4

| Place Customer: 192<br>ION OF ZEKELMAN INDUSTRIES                                                                            | KIAL TEST REPORT<br>Shipped To<br>Intsel Steel Distributors<br>11310 West Little York<br>HOUSTON TX 77041<br>USA | 1200603754000 Made in: USA   | der: V/LY-24291 Melted in: USA | u Cb Mo Ni Cr V Ti B M | .050 0.001 0.008 0.020 0.080 0.001 0.001 0.000 0.000 | Certification<br>ASTM A500-18 GRADE B&C CE: 0.36 CE: 0.36               | 1400405004000 Made in: USA   | der: WLY-24291       | u Cb Mo Ni Cr V Ti B N Ca | 030 0.005 0.006 0.010 0.040 0.001 0.001 0.001 0.00 | Certification<br>ASTM A500-18 GRADE B&C                | Post Consumer Pre-Consumer (Post Industrial) 2 <u>4 Harvested</u> Within Miles of Loci<br>19.80% 14.40% 500 | ed and indicate full compliance with all applicable specification and contract requirements.                            | Source Conter Institute |                    |
|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------|------------------------|------------------------------------------------------|-------------------------------------------------------------------------|------------------------------|----------------------|---------------------------|----------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------|
|                                                                                                                              | MATER                                                                                                            | 0(2x2). Material No:         | Purchase Ore                   | P S Si AI CI           | 0.013 0.011 0.020 0.042 0.0                          | ield <u>Tensile Eln.2in</u><br>59674 Psi 072705 Psi 32 %                | 0(1x4). Material No:         | Purchase Ord         | P S Si Al Cu              | 0.009 0.008 0.022 0.050 0.0                        | eld <u>Tensile Eln.2in</u><br>1481 Psi 074158 Psi 33 % | Method Recycled Content E<br>BOF 36.90% 1                                                                   | Auser Reckerd<br>seent the actual attributes of the material furnishe<br>oo.                                            | 9                       |                    |
| Attas Tube Corp. Chicago<br>1855 East 122nd Street<br>Chicago Illinois USA<br>6003<br>Tel: 773-646-4500<br>Fax: 773-646-6128 | Sold To<br>Triple Steel Supply<br>PO Box 21119<br>HOUSTON TX 77026<br>USA                                        | Material: 12.0x6.0x375x40'0" | Sales Order: 1485177           | Heat No C Mn           | D00023 0.200 0.800                                   | Bundle No PCs Y<br>M901114268 4 00<br>Material Note:<br>Sales Or, Note: | Material: 14.0x4.0x500x40'0" | Sales Order: 1485177 | Heat No C Mn              | T01126 0.190 0.770                                 | Bundle No PCs Yi<br>M901114122 4 06                    | Heat MILL Mill Location<br>101126 USSTEEL GARY,IN<br>Material Note:<br>Sales Or. Note:                      | Authorized by Quality Assurance:<br>The results reported on this report repre<br>CE calculated using the AWS D1.1 meth- | Steel Tub<br>Institute  | UNIVARIA RIVANI IN |

Page: 3 of 4

| REF.B/L: 80934498<br>Date: 02/10/2020<br>Customer: 192                                                                        | Shipped To<br>Intsel Steel Distributors<br>11310 West Little York<br>HOUSTON TX 77041<br>USA | Made in: USA<br>Motion in:        | Mered III. USA            | V Ti B N Ca            | 0.001 0.001 0.0001 0.0050 0.0000<br>CE: 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>% Harvested</u> <u>Within Miles of Location</u><br>100% 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Made in: USA                      | Melted in: USA            | / Ti B N Ca              | 002 0.001 0.0001 0.0070 0.0000                    | CE: 0.26                                                                   | 26 Harvested Within Miles of Location<br>100% 500                                                  |                                                                                              | ification and contract requirements.<br>Service Center Institute                                                                              |              |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------|---------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------|--------------------------|---------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| ATIAS TUDE<br>A DIVISION OF ZEKELMAN INDUSTRIES                                                                               | MATERIAL TEST REPORT                                                                         | ). Material No: 1400603754800     | Purchase Order: WLY-24338 | S Si Al Cu Cb Mo Ni Cr | 1 0.010 0.009 0.047 0.020 0.003 0.008 0.010 0.040 1<br><u>Tensile EIn.2in</u> <u>Certification</u><br>2si 076088 Psi 33 % ASTM A500-16 GRADE B&C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Method         Recycled         Content         Post         Consumer         Pre-Consumer         Pre-Sonsumer         Pre-Sonsum | . Material No: 1600803134000      | Purchase Order: WLY-24338 | S Si Al Cu Cb Mo Ni Cr V | 0.013 0.008 0.051 0.030 0.004 0.007 0.020 0.060 0 | Iensile Ein.2in Certification<br>si 074921 Psi 30 % ASTM A500-18 GRADE B&C | Method Recycled Content Post Consumer Pre-Consumer (Post Industrial)<br>BOF 36.30% 19.80% 14.40%   | - Richard<br>te actual attributes of the material furnitehed and indiceds full constituents. |                                                                                                                                               | Page: 4 of 4 |
| Atlas Tube Corp. Chicago<br>1855 East 122nd Street<br>Chicago Illinois USA<br>60633<br>Tel: 773-646-6128<br>Fax: 773-646-6128 | Sold Io<br>Triple S Steel Supply<br>PO Box 21119<br>HOUSTON TX 77026<br>USA                  | Material: 14.0x6.0x375x48'0"0(1x3 | Sales Order: 1487345      | Heat No C Min P        | Doutration         U.ZUU         U.FUU         U.FUU | Heat MILL Mill Location<br>D83794 USSTEEL GARY,IN<br>Material Note:<br>Sales Or, Note:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Material: 16.0x8.0x313x40'0'0(1x3 | Sales Order: 1487345      | Heat No C Mn P           | D83392 0.160 0.460 0.01;                          | M901107193 3 061671 F                                                      | Heat <u>MILL</u> <u>MII Location</u><br>D8392 USSTEEL GARY,IN<br>Material Note:<br>Sales Or. Note: | Authorized by Quality Assurance:                                                             | CE calculated using the AWS D1.1 method.<br>Steel Tube<br>DE DI DI DE DI DE DI DI DE DI DI DE DI DI DE DI |              |

|                                                                                                                                                                                                      |                                            | CE                                                                | RTIFIED MATERIAL TEST REPORT                                                           |                                                                                                     |                                          |                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------|
| GD GERDAU                                                                                                                                                                                            | CUSTOMER SI<br>INTSEL STEE<br>11310 W LITT | HIP TO<br>EL DISTRIBUTORS LP<br>TLE YORK RD                       | CUSTOMER BILL TO<br>INTSEL STEEL DISTRIBUTORS LP                                       | GRADE<br>GGMULTI                                                                                    | SHAPE / SIZE<br>Angle / 6X4XI/           | Page 1/1<br>DOCUMEI<br>000024587 |
| US-ML-CARTERSVILLE<br>384 OLD GRASSDALE ROAD NE                                                                                                                                                      | HOUSTON,T.<br>USA                          | X 77041-4917                                                      | HOUSTON.TX 77226-1119<br>USA                                                           | LENGTH<br>40'00"                                                                                    | WEIGHT<br>19,440 LB                      | HEAT / BATCH<br>55061469/02      |
| CARTERSVILLE, GA 30121<br>USA                                                                                                                                                                        | SALES ORDI<br>7833203/0000                 | ER                                                                | CUSTOMER MATERIAL N°                                                                   | SPECIFICATION / DA<br>ASTM A529-14, A572-15                                                         | TE or REVISION                           |                                  |
| CUSTOMER PURCHASE ORDER NUMBER<br>WLY-23175                                                                                                                                                          | -                                          | BILL OF LADING<br>1323-0000135212                                 | DATE<br>06/03/2019                                                                     | ASTM A6-17,A36-14, AS<br>ASTM A709-17, AASHTC<br>CSA G40.20-13/G40.21-13<br>CSA G40.20-13/G40.21-13 | ME SA-36<br>0 M270-15<br>}               |                                  |
| CHEMICAL COMPOSITION<br>CHEMICAL COMPOSITION<br>CHEMICAL COMPOSITION<br>0.15<br>0.015                                                                                                                | \$<br>0.021                                | Si Gu<br>0.20 0.32                                                | 。<br>影。<br>11.0                                                                        | Mo<br>Mo<br>0075                                                                                    | AN A | £%                               |
| CHEMICAL COMPOSITION                                                                                                                                                                                 |                                            |                                                                   |                                                                                        | 1000                                                                                                | 010.0                                    | 0.0040                           |
| MECHANICAL PROPERTIES                                                                                                                                                                                | 55000                                      | P.E.S.<br>77800<br>78000                                          | MBS<br>536<br>538                                                                      | YS 0.2%<br>PSI<br>53700<br>53700                                                                    | M8a<br>368<br>370                        |                                  |
| COMMENTS / NOTES<br>This grade meets the requirements for the followin<br>ASTM Grades: A36, A229-50, A572-50, A709-36<br>CSA Grades: A4W; 50W<br>ASHTO Grades: M270-36, M270-50<br>ASME Grades: SA36 | g grades:<br>5, A709-50                    |                                                                   |                                                                                        |                                                                                                     |                                          |                                  |
|                                                                                                                                                                                                      |                                            |                                                                   |                                                                                        |                                                                                                     |                                          |                                  |
|                                                                                                                                                                                                      |                                            |                                                                   |                                                                                        |                                                                                                     |                                          |                                  |
|                                                                                                                                                                                                      |                                            |                                                                   |                                                                                        |                                                                                                     |                                          |                                  |
| The above figures are certi<br>specified requirements. Th                                                                                                                                            | ified chemical and<br>is material, includ  | I physical test records as col-<br>ling the billets, was melted a | ntained in the permanent records of company<br>and manufactured in the USA. CMTR compi | v. We certify that these data are lies with EN 10204 3.1.                                           | correct and in compliance                | with                             |
| 19haske                                                                                                                                                                                              | PYY QUALT                                  | (AR YALAMANCHILI<br>TY DIRECTOR                                   |                                                                                        | Small                                                                                               | YAN WANG<br>QUALITY ASSURANCE            | MGR                              |
| Phone: (409) 267-1071 E                                                                                                                                                                              | mail: Bhaskar.Yalan                        | nanchili@gerdau.com                                               |                                                                                        | Phone: (770) 387 5718 E                                                                             | mail: yan.wang@gerdau.com                |                                  |

| שרו                                     | at#: A90000" Tag: C03071520                                                                                                                                                                                                 |                                                                                                               | D#: PU-00404 Part: T1000403748* Qt                        |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|                                         | TUBULAR PRODUCTS                                                                                                                                                                                                            | 6226 W. 74TH STREET<br>CHICAGO, IL 60638<br>Tel: 708-496-0380<br>Fax: 708-563-1950                            | https://www.nucortubular.com<br>https://www.ntpportal.com |
| 10 miles                                | Sold By:<br>NUCOR TUBULAR PRODUCTS INC.<br>MARSEILLES DIVISION<br>1201 E. BROADWAY<br>MARSEILLES, IL 61341<br>Tel: 815 795-4400<br>Fax: 815 795-4449<br>Sold Tax                                                            | Purchase Order No: SSW11261<br>Sales Order No: MAR 394124 -<br>Bill of Lading No: MAR 232863 -<br>Invoice No: | 1<br>1<br>4 Shipped: 5/29/2020<br>invoiced:               |
| L a                                     | 2734 - SERVICE STEEL WAREHOUSE CO., L.P.<br>PO BOX 9607<br>HOUSTON, TX 77213                                                                                                                                                | Ship To:<br>1 - SERVICE STEEL WAREHOU<br>8415 CLINTON DRIVE<br>HOUSTON, TX 77029                              | JSE CO.                                                   |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | CERTIFICATE of ANALYSIS and TES<br>Customer Part No:                                                                                                                                                                        | STS                                                                                                           | Certificate No: MAR 341996                                |
| 11                                      | TUBING A500 GRADE B(C)<br>10" X 4" X 3/8" X 48'                                                                                                                                                                             |                                                                                                               | Total Pieces Total Weight Lbs                             |
| 1                                       | * DOMESTIC STEEL M&M *                                                                                                                                                                                                      |                                                                                                               | 12 18,766                                                 |
| 50                                      | Bundle Tag         Mill         Heat         Specs           400062         13N         A96500         YLD=52500/TEI           400063         13N         A96500         YLD=52500/TEI                                      | V=67580/ELG=34.8 0.7769<br>N=67580/ELG=34.8 0.7769                                                            | atio Pieces Weight Lbs<br>9 6 9,383                       |
| C                                       | Mill #: 13N Heat #: A96500 Carbon Eq: 0.1534 H                                                                                                                                                                              | eat Src Origin: MELTED AND MANUFA                                                                             | CTURED IN THE USA                                         |
| 10                                      | C         Mn         P         S         Si           0.0600         0.4100         0.0080         0.0030         0.0200         0.0                                                                                        | Al Cu Cr Mo 0440 0.1100 0.0500 0.0200 0.0                                                                     | V Ni Nb Sn<br>020 0.0500 0.0120 0.0040                    |
| J                                       | 0.0061 0.0001 0.0010 0.0019                                                                                                                                                                                                 |                                                                                                               |                                                           |
| ~                                       | Method                                                                                                                                                                                                                      | formation from the producing mill)                                                                            |                                                           |
| ~                                       | EAF Ghent, KY                                                                                                                                                                                                               | Recycled Content Post Consu                                                                                   | Imer Post Industrial                                      |
| -                                       | Certification                                                                                                                                                                                                               |                                                                                                               | 28.2% 38.8%                                               |
| )                                       | I certify that the above results are a true and correct or<br>PRODUCTS INC. Sworn this day, 5/27/2020.                                                                                                                      | ppy of records prepared and maintained                                                                        | by NUCOR TUBULAR                                          |
| N ~                                     | THE SPECIFICATIONS LISTED BELOW REPRESEN<br>CURRENT ISSUED DATES OF THESE STANDARDS<br>DOES NOT INDICATE THAT THE MATERIAL ABOVE<br>TO EACH OR ALL OF THE STANDARDS. WE CERTI<br>MATERIAL ABOVE TO THE SPECIFICATION LISTED | T THE<br>THIS<br>CONFORMS<br>FY THE<br>IN THE                                                                 | Thrie Allen                                               |
| i                                       | CURRENT STANDARDS:<br>A252-19                                                                                                                                                                                               | Chris /<br>Quality                                                                                            | Allen, ASQ CMQ/OE<br>Systems Supervisor                   |
| 1                                       | A513/A513M-19<br>ASTM A53/A53M-18LASME SA 52/54 534 40                                                                                                                                                                      |                                                                                                               |                                                           |
| 1                                       | A847/A847M-14<br>A1085/A1085M-15                                                                                                                                                                                            |                                                                                                               |                                                           |
| 1                                       | N COMPLIANCE WITH EN 10204 SECTION 4.1<br>NSPECTION CERTIFICATE TYPE 3.1                                                                                                                                                    | -                                                                                                             |                                                           |
|                                         |                                                                                                                                                                                                                             | ne Vermer Meteoren                                                                                            |                                                           |
|                                         |                                                                                                                                                                                                                             |                                                                                                               |                                                           |
|                                         |                                                                                                                                                                                                                             |                                                                                                               |                                                           |
|                                         |                                                                                                                                                                                                                             |                                                                                                               |                                                           |

Page - 1

| EPORT are accurate and conform to the reported grade specification<br>call Relation to the reported grade specification call and the second statement of | CMC Construction Svcs College Stati         Delivery#: 83224860           B0L#: 73793087         B0L#: 73793087           10650 State Hwy 30         CUST P0#: 862925           College Station TX         CUST P0#: 862925           US 77845-7950         DLVRY LBS / HEAT: 2106.000 LB           979 774 5900         DLVRY PCS / HEAT: 280 EA | e Characteristic Value |       |       |        |       |       |         | The Editorian is true of the metadal concentrate he sits MTD. | The Following is true of the material represented by this Mith.<br>• Material is fully killed | * 100% melted and rolled in the USA | •EN10204:2004 3.1 compliant | * Contains no weld repair | -Contains no mercury contamination<br>•Manufactured in accordance with the latest version | of the plant quality manual | "Meets the "Duy America" requirements of 23 CFR635.410, 49 CFR 661 | *Warning: This product can expose you to chemicals which are | known to the State of California to cause cancer, birth defects | or other reproductive harm. For more information go | to www.P65Warnings.ca.gov |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------|-------|--------|-------|-------|---------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------|---------------------------|-------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|---------------------------|
| CERTIFIED MILL TEST REF<br>For additional copies ca<br>830-372-8771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MC Construction Svcs College Stati S<br>0650 State Hwy 30<br>100896 Station TX<br>5 77845-7950<br>79 774 5900<br>79 774 5900                                                                                                                                                                                                                      | Characteristic Value   | *     |       |        | Æ     |       |         |                                                               |                                                                                               |                                     |                             |                           |                                                                                           |                             |                                                                    |                                                              |                                                                 | 2                                                   |                           |
| 7510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                   | 23                     |       |       |        |       |       | 2       |                                                               |                                                                                               |                                     |                             |                           |                                                                                           |                             |                                                                    |                                                              |                                                                 |                                                     |                           |
| TTEEL TEXAS<br>EL MILL DRIVE<br>N TX 78155-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | '0" 300/40<br>800/40<br>357                                                                                                                                                                                                                                                                                                                       | : Value                | 0.10% | 0.74% | 0.012% | 0.19% | 0.31% | r 0.10% | 0.12%                                                         | %66000 v                                                                                      | %0000°0                             | 0.013%                      | %0000%                    | 17 9hei                                                                                   | GE 14ci                     | 26%                                                                | BIN                                                          | Passed                                                          | 1.313IN                                             |                           |
| CMC SEGUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HEAT NO.:3099966<br>SECTION: REBAR 10MM (#3) 20<br>GRADE: ASTM A615-20 Grade 3<br>ROLL DATE: 09/25/2020<br>MELT DATE: 09/13/2020<br>MELT DATE: 09/13/2020<br>Cert. No.: 83224860 / 099966A                                                                                                                                                        | Characteristic         |       | Min   |        | 0.0   | G     | Ū       | Z                                                             | Mo                                                                                            | ° °                                 | ĽS                          | A                         | Viald Creaneth tact 1                                                                     | Toneile Strandth test 1     | Finnation test 1                                                   | Flondation Gade Loth test 1                                  | Bend Test 1                                                     | Bend Test Diameter                                  |                           |

Page 1 OF 1 09/25/2020 16:24:57

"Meets the "Buy America" requirements of 23 CFR635.410, 49 CFR 661 are accurate and conform to the reported grade specification We hereby certify that the test results presented here \*Warning: This product can expose you to chemicals which are known to the State of California to cause cancer, birth defects DLVRY LBS / HEAT: 2191.000 LB Page 1 OF 1 09/25/2020 16:24:57 The Following is true of the material represented by this MTR: DLVRY PCS / HEAT: 164 EA or other reproductive harm. For more information go Manufactured in accordance with the latest version Rotando A Davila H and Delivery#: 83224860 CUST PO#: 862925 BOL#: 73793087 Contains no Mercury contamination \* 100% melted and rolled in the USA Characteristic Value CUST P/N: **Quality Assurance Manager** EN10204:2004 3.1 compliant to www.P55Warnings.ca.gov of the plant quality manual Contains no weld repair \*Material is fully killed S CMC Construction Svcs College Stati H 1 10650 State Hwy 30 P College Station TX College Station TX US 77845-7950 979 774 5900 **CERTIFIED MILL TEST REPORT** For additional copies call 830-372-8771 Characteristic Value ۲ 0 CMC Construction Svcs College Stati 10650-State Hwy 30 College Station TX US 77845-7950 979 774 5900 SEGUIN TX 78155-7510 ŝ - 0 ⊢ 0 **1 STEEL MILL DRIVE** CMC STEEL TEXAS 0.13% 0.058% SECTION: REBAR 13MM (#4) 20'0" 300/40 0.013% 0.048% 0.000% 0.001% 0.012% 0.000% 47.0ksi 64.4ksi 1.750IN 0.81% 0.30% 0.14% Passed 0.17% 0.11% Value 26% 8IN GRADE: ASTM A615-20 Grade 300/40 Cert. No.: 83224860 / 099959A293 A S S C S S S S S S S S S υ Mn Yield Strength test 1 Bend Test 1 Characteristic Tensile Strength test 1 Elongation test 1 Elongation Gage Lgth test 1 **Bend Test Diameter** ROLL DATE: 09/17/2020 MELT DATE: 09/13/2020 HEAT NO.:3099959 REMARKS :

| Inform to the reported grade specification<br>Rolando A Davlia<br>Rolando A Davlia                          | Delivery#: 83224860<br>BOL#: 73793087<br>CUST PO#: 862925<br>CUST P/N:<br>DLVRY LBS / HEAT: 210 EA<br>DLVRY PCS / HEAT: 210 EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | racteristic ≋Value       | is true of the material represented by this MTR:<br>uity killed<br>of and rolled in the USA<br>Vold 3.1 compliant<br>werd repair                | Mercury contamination<br>d in accordance with the latest version<br>Buy Arminas " requirements of 23 CFR655, 410, 49 CFR 661<br>Buy Arminas" requirements of 23 CFR655, 410, 49 CFR 661<br>Buy Arminas" requirements of 23 CFR655, 410, 49 CFR 661<br>Buy Arminas" requirements of 23 CFR655, 410, 49 CFR 661<br>Buy Arminas" requirements of 23 CFR655, 410, 49 CFR 661<br>Buy Arminas" requirements of 23 CFR655, 410, 49 CFR 661<br>Buy Arminas" requirements of 23 CFR655, 410, 49 CFR 661<br>Buy Arminas" requirements of 23 CFR655, 410, 49 CFR 661<br>Buy Arminas" requirements of 23 CFR655, 410, 49 CFR 661<br>Buy Arminas" requirements of 23 CFR655, 410, 49 CFR 661<br>Buy Arminas" requirements of 23 CFR655, 410, 49 CFR 661<br>Buy Arminas" requirements of 23 CFR655, 410, 49 CFR 661<br>Buy Arminas" requirements of 23 CFR655, 410, 49 CFR 661<br>Buy Arminas" requirements of 23 CFR655, 410, 49 CFR 661<br>Buy Arminas" requirements of 23 CFR655, 410, 49 CFR 661<br>Buy Arminas" requirements of 23 CFR655, 410, 49 CFR 661<br>Buy Arminas" requirements of 23 CFR655, 410, 49 CFR 661<br>Buy Arminas" requirements of 23 CFR655, 410, 49 CFR 661<br>Buy Arminas" requirements of 23 CFR655, 410, 49 CFR 661<br>Buy Arminas" requirements of 23 CFR655, 410, 49 CFR 661<br>Buy Arminas" requirements of 23 CFR655, 410, 49 CFR 661<br>Buy Arminas" requirements of 23 CFR655, 410, 49 CFR 661<br>Buy Arminas" requirements of 23 CFR6555, 410, 49 CFR 661<br>Buy Arminas" requirements of 23 CFR6555, 410, 40 CFR 661<br>Buy Arminas" requirements of 23 CFR6555, 410, 410, 410, 410, 410, 410, 410, 410 |  |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| CERTIFIED MILL TEST REPORT are accurate and co<br>For additional copies call<br>830-372-8771<br>Quality Ass | onstruction Svcs College StatiSCMC Construction Svcs College StatiState Hwy 30H10650 State Hwy 30Station TXPCollege Station TX45-7950T979 774 59004 59000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Characteristic Vatue Cha | The Following<br>Material is fu<br>• 100% metre<br>• EN10204: 20                                                                                | Contains no<br>Manufacture<br>of the plant<br>Meriss the 2<br>Meriss the 2<br>Meriss the 2<br>Meriss the 2<br>Meriss the 2<br>Meriss to 2<br>Mown 265N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| CMC STEEL TEXAS<br>1 STEEL MILL DRIVE<br>SEGUIN TX 78155-7510                                               | HEAT NO.:3099508 HEAT NO.:3099508 SECTION: REBAR 16MM (#5) 20'0" 300/40 0 SECTION: REBAR 16MM (#5) 20'0" 300/40 1 10650 S ROLL DATE: 08/28/2020 1 College 5 MELT DATE: 08/25/2020 1 College 5 MELT DATE: 08/25/2020 1 College 5 OCHEVEN 1 2 3224860 / 099508A138 1 2 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 Cert. No.: 83224860 / 099508A138 1 3 3734 0 CHEVEN 2 3 | Characteristic Value     | C 0.20%<br>Mn 0.75%<br>S 0.010%<br>S 0.049%<br>Si 0.18%<br>Cu 0.33%<br>Cu 0.33%<br>No 0.043%<br>V 0.000%<br>Cb 0.001%<br>Sn 0.014%<br>Al 0.001% | Yield Strength test 1 48.6ksi<br>Tensile Strength test 1 71.6ksi<br>Elongation test 1 24%<br>Bend Test 1 81N<br>Bend Test Diameter 2.1881N<br>EMARKS :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |

| Na | Proving Ground<br>3100 SH 47, Bits 700<br>Bryan, TX 778071<br>Qua<br>The information con<br>Project No:<br>me of Technician<br>Taking Sample<br>Signature of<br>Technician<br>Taking Sample | Texas A&M<br>Transportation<br>Transportation<br>Transportation<br>Toollege Station, TX: 7780<br>Ality ·Forma<br>tained in this document is co<br>606861-03<br>Terra | on<br>an<br>onfident<br>C:<br>acon | QF.7.        | 3-01Concret<br>Sampling¤<br>Wanda L. Menges¶<br>Darrell L. Kuhn¤<br>Ground ¶<br><u>10/30/2020</u><br>Name of Technician<br>Breaking Sample<br>Signature of<br>Technician Breaking<br>Sample | e.<br>Mix De         | DocNo.¶<br>¶<br><i>QF-7.3-01</i> □<br>Revision:-←<br>6¤<br>esign (psi): <u>3</u><br>Terrac | Issue-Date: ↓ c       ↓       2018-06-18∞       ↓       Page:¶       1 of 1∞ |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|    |                                                                                                                                                                                             | Truck No                                                                                                                                                             | ті                                 | icket No     | Locat                                                                                                                                                                                       | ion (fro             | m concrete i                                                                               | map)                                                                         |
|    | T1<br>T2                                                                                                                                                                                    | Tucker                                                                                                                                                               |                                    | 1027<br>1357 | Sou<br>North                                                                                                                                                                                | th half d<br>ern Hal | of wall and de<br>f of Wall and                                                            | deck                                                                         |
|    | Load No                                                                                                                                                                                     | Broak Data                                                                                                                                                           | Cul                                | inder Age    | Total Load (lbs)                                                                                                                                                                            | Bro                  | ak (nsi)                                                                                   | Average                                                                      |
|    |                                                                                                                                                                                             |                                                                                                                                                                      |                                    |              |                                                                                                                                                                                             |                      |                                                                                            |                                                                              |
|    |                                                                                                                                                                                             |                                                                                                                                                                      |                                    |              |                                                                                                                                                                                             |                      |                                                                                            |                                                                              |
|    |                                                                                                                                                                                             |                                                                                                                                                                      |                                    |              |                                                                                                                                                                                             |                      |                                                                                            |                                                                              |

|   | U   | 1        | •   | r        | 1        | C       | -       | r      | ٢.    |            |          | -   | -   |     | L | )  | N   | 1       | C   |     | r   | K | t | - |     | I       |     | E          |     |    |   |     |
|---|-----|----------|-----|----------|----------|---------|---------|--------|-------|------------|----------|-----|-----|-----|---|----|-----|---------|-----|-----|-----|---|---|---|-----|---------|-----|------------|-----|----|---|-----|
|   |     | 89<br>97 | 3 . | 0<br>- 7 | 17       | 7       | с<br>-  | Y<br>6 | 7     | N E<br>4 1 | E I<br>D | - 1 | -   | R   | D | V  | CM  | S<br>11 | 8 ( | 0 2 | 2   |   |   |   |     |         |     |            |     |    |   |     |
|   |     | 1.0      | h   | +        | +        | т       |         | CI     | k I   | = =        | 5        |     |     |     |   |    |     |         |     |     |     |   |   |   |     |         |     |            |     |    |   |     |
|   |     | LA       |     |          | ,<br>T C | '       | T       | T      |       |            |          |     |     |     |   |    |     |         |     |     |     |   |   |   |     |         |     |            |     |    |   |     |
| 0 | тл  | рт       |     |          | \ Т      | F       | T       | 1      | CI    | < E        |          |     | *   | ‡ , | 2 | 0  | 2   |         | 1 ( |     | 2 7 |   |   |   |     |         |     |            |     |    |   |     |
| S | TO  | P        |     | DA       | AT       | E       | • • • • |        |       | 1 (        | 0        | 13  | 3 0 | )   | 2 | 0  | 2   | 0       | 1   |     | I N |   | • |   | 1   |         | 9   |            | 17  |    | 1 | 2 4 |
|   |     |          |     |          |          | м       | 1       | x      | 1     | DI         | E        | SI  | 10  | S N |   |    | B   | 1 :     | 3 5 | 5 0 | 1   |   |   |   |     |         |     |            |     |    |   |     |
| R | AW  | 0        | E   | ME       | EN       | IT      | -       | C      | 0     |            | N        |     | 5   | -   |   | -  | -   |         |     |     |     |   | 1 |   |     |         |     | 5 9        | 1 4 | 9  |   |     |
| R | WAN |          |     |          |          | ľ       | 0       | ĸ      |       |            |          |     |     | S   | - | -  | -   |         |     |     |     |   | - |   | ~   |         | 4   | 4 4        | 1   | 9  |   |     |
|   | 1   | U        | 1   | F        | 4        | L       |         |        | +     | -          | F        | 1   | R   | 1   | J | 2  | >   |         |     |     |     |   | 1 |   | U   |         |     | C          | )   | 5  | ) |     |
|   | MA  | TE       | R   | 1        | 44       |         | No.Y    | 75     | R     | A -        | TI       | Ed  | 5   | E   | т | т  | 1   | NO      | 3   |     |     |   |   |   | г   | 2 1     |     | A L        |     |    |   |     |
| 5 | CA  | PI       | Y   | PE       | EL       | and the | A.S.    | 1      | P     |            | 4        | 517 | 1.  | 4   | L | B  | P   | M       |     | -   |     |   | 4 | 7 | 2   | 5.      |     | BL         | . 8 | S  |   |     |
|   | RG  | BL       | E   | NL       | 51       | ~       |         | R. A   |       | 9          |          | 7   |     | }   | G | AA | T   | E       | -   |     |     | 1 | 3 | 2 | 4 1 | 9.<br>6 |     | 1 L<br>2 L | . E | SS |   |     |
|   | WA  | TE       | R   |          | A.       | 4.      | La      |        | - der | in the     | 3:       | 2   | 1.  | 1   | G | P  | M   |         | -   |     |     |   | 2 | 6 | 2   | . 7     | 7 ( | GA         | L   |    |   |     |
| - | SI  | KA       | 16  | 8 6      | 6        |         |         | -      | -     |            |          |     | 1.  | 2   | G | P  | M   |         |     |     |     |   |   | 1 | 2   | . 1     | 10  | GA         | L   | •  |   |     |
|   | NO  | -        |     |          |          |         |         | -      | 4     |            |          |     |     | 0   | G | F  | IVI |         | -   |     |     |   |   |   | 0   |         |     | 52         |     |    |   |     |
|   |     |          | •   |          |          |         |         |        |       |            |          |     |     |     |   |    |     |         |     |     |     |   |   |   |     |         |     |            |     |    |   |     |
|   | NAI | ИE       |     |          |          | -       |         | -      | _     |            |          |     |     |     |   | -  | -   |         |     | _   |     |   | - | - |     |         |     |            |     |    |   |     |
|   | NO  | ΤE       | S   | :        |          |         |         |        |       |            |          |     |     |     |   |    |     |         |     |     |     |   |   |   |     |         |     |            |     |    |   |     |
|   | ø   | ,        |     |          |          |         |         |        |       |            |          |     |     |     |   |    |     |         |     |     |     |   |   |   |     |         |     |            |     |    |   |     |
|   |     |          |     |          |          |         |         |        |       |            |          |     |     |     |   |    |     |         |     |     |     |   |   |   |     |         |     |            |     |    |   |     |
|   |     |          |     |          |          |         |         |        |       |            |          |     |     |     |   |    |     |         |     |     |     |   |   |   |     |         |     |            |     |    |   |     |
|   |     |          |     |          |          |         |         |        |       |            |          |     |     |     |   |    |     |         |     |     |     |   |   |   |     |         |     |            |     |    |   |     |
|   |     |          |     |          |          |         |         |        |       |            |          |     |     |     |   |    |     |         |     |     |     |   |   |   |     |         |     |            |     |    |   |     |
|   |     |          |     |          |          |         |         |        |       |            |          |     |     |     |   |    |     |         |     |     |     |   |   |   |     |         |     |            |     |    |   |     |
|   |     |          |     |          |          |         |         |        |       |            |          |     |     |     |   |    |     |         |     |     |     |   |   |   |     |         |     |            |     |    |   |     |
|   |     |          |     |          |          |         |         |        |       |            |          |     |     |     |   |    |     |         |     |     |     |   |   |   |     |         |     |            |     |    |   |     |
|   |     |          |     |          |          |         |         |        |       |            |          |     |     |     |   |    |     |         |     |     |     |   |   |   |     |         |     |            |     |    |   |     |

## TUCKER\_concrete

## 9797776749

 1904

 TUCKER CONST

 LA\_DOT\_TTI

 TICKET # 1357

 START DATE: 2020-10-30 TIME: 10:20:38

 STOP DATE: 2020-10-30 TIME: 10:34:59

 MIX DESIGN: B1350

 RAW CEMENT COUNTS: 3736

 RAW CONVEYOR COUNTS: 127042

 CONVEYOR SPEED: 45

 TOTAL YARDS 6.75

 MATERIAL RATE SETTING SOUTAL YARDS 6.75

 MATERIAL RATE SETTING ADJUSTED:

 ADJUSTED: ADJUSTED:

 WATER 0.002/MIN

 ADMIX #1 0.002/MIN

 ADMIX #2 0.002/MIN

 ADMIX #3 0.002/MIN

LADOTO

ASTM DATA AVAILABLE UPON REQ

Name NOTES:

## CONCRETE COMPRESSIVE STRENGTH TEST REPORT

Report Number: A1171057.0151 Service Date: 10/30/20 Report Date: 10/30/20



| Task: 606861-3                                                                                                                       | 3 (LADOT)                                   |                                                               | 9'                                                                                                                                                      | 79-846-3767                                                              | Reg No: F-3272                                          |            |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------|------------|
| Client                                                                                                                               |                                             |                                                               | Project                                                                                                                                                 |                                                                          |                                                         |            |
| Texas Transportation Instit<br>Attn: Gary Gerke<br>TTI Business Office<br>3135 TAMU                                                  | ute                                         |                                                               | Riverside Campus<br>Riverside Campus<br>Bryan, TX                                                                                                       |                                                                          |                                                         |            |
| College Station, TX 77843                                                                                                            | -3135                                       |                                                               | Project Number: A1171057                                                                                                                                |                                                                          |                                                         |            |
| <b>Material Information</b>                                                                                                          | 1                                           |                                                               | Sample Information                                                                                                                                      |                                                                          |                                                         |            |
| Specified Strength: 3,00<br>Mix ID: B1350<br>Supplier: Tucker<br>Batch Time: 1000<br>Truck No.:                                      | 00 psi @ 2<br>Plant:<br>Ticket No.:         | 8 days                                                        | Sample Date:<br>Sampled By:<br>Weather Conditions:<br>Accumulative Yards:<br>Placement Method:<br>Water Added Before (gal):<br>Water Added After (gal): | 10/30/20<br>Cullen Turr<br>Clear, no w<br>10/20<br>Direct Disc<br>0<br>0 | Sample Time:<br>ney<br>ind<br>Batch Size (cy):<br>harge | 1008<br>10 |
| Field lest Data                                                                                                                      |                                             |                                                               | Sample Location:                                                                                                                                        | South east                                                               | end                                                     |            |
| Test<br>Slump (in):<br>Air Content (%):<br>Concrete Temp. (F):<br>Ambient Temp. (F):<br>Plastic Unit Wt. (pef):<br>Yield (Cu. Yds.): | Result<br>7 1/2<br>1.8<br>68<br>55<br>146.2 | Specification<br>Max 8<br>40 - 95<br>40 - 95<br>Not Specified | Placement Location:                                                                                                                                     | 606861-3()                                                               | LADOT)                                                  |            |
| Laboratory Test Dat                                                                                                                  | a                                           |                                                               |                                                                                                                                                         | _                                                                        |                                                         |            |

| Labo    | latory ic.  | St Data   |         |          |               | Age at | Maximum | Compressive |          |        |
|---------|-------------|-----------|---------|----------|---------------|--------|---------|-------------|----------|--------|
| Set     | Specimen    | Avg Diam. | Area    | Date     | Date          | Test   | Load    | Strength    | Fracture | Tested |
| No.     | ID          | (in)      | (sq in) | Received | Tested        | (days) | (lbs)   | (psi)       | Туре     | By     |
| l       |             | 6.00      | 28.27   |          | 12/10/20      | 41 F   | 132,160 | 4,670       |          | SLS    |
| 1       | в           | 6.00      | 28.27   |          | 12/10/20      | 41 F   | 128,080 | 4,530       | 2        | SLS    |
| L       | С           | 6.00      | 28.27   |          | 12/10/20      | 41 F   | 124,660 | 4,410       | I        | SLS    |
| 1       | D           |           |         |          |               | Hold   |         |             |          |        |
| Initial | Cure: Outsi | de        |         | Final Ci | ire: Field Cu | red    |         |             |          |        |

Comments: F = Field Cured

## Samples Made By: Terracon

Services: Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and test compressive strength samples (ASTM C 31, C 39, C 1231).

Start/Stop: 0815-1400

Terracon Rep.: Cullen Turney Reported To:

Contractor:

**Report Distribution:** 

 Texas Transportation Institute, Gary Gerke
 Texas Transportation Institute, Bill Griffith (1) Terracon Consultants, Inc., Alex Dunigan, P.E.

## Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

CR0001.11-16-12, Rev.6

Page 1 of 2

## CONCRETE COMPRESSIVE STRENGTH TEST REPORT

Report Number: A1171057.0151 Service Date: 10/30/20 **Report Date:** 10/30/20 606861-3 (LADOT) Task



| 1ask. 000801-54                                                                                                              | (LADOI)                           |                                              | ,                                                                                                                                                       | / 9-040-5707                                                             | Reg No. 1-5272                                            |            |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------|------------|
| Client                                                                                                                       |                                   |                                              | Project                                                                                                                                                 |                                                                          |                                                           |            |
| Texas Transportation Institut<br>Attn: Gary Gerke<br>TTI Business Office<br>3135 TAMU                                        | e                                 |                                              | Riverside Campus<br>Riverside Campus<br>Bryan, TX                                                                                                       |                                                                          |                                                           |            |
| College Station, TX 77843-3                                                                                                  | 3135                              |                                              | Project Number: A1171057                                                                                                                                |                                                                          |                                                           |            |
| Material Information                                                                                                         |                                   |                                              | Sample Information                                                                                                                                      |                                                                          |                                                           |            |
| Specified Strength: 3,000<br>Mix ID: B1350<br>Supplier: Tucker<br>Batch Time: 1030<br>Truck No.:                             | psi @ 2<br>Plant:<br>Ticket No.:  | 8 days<br>1357                               | Sample Date:<br>Sampled By:<br>Weather Conditions:<br>Accumulative Yards:<br>Placement Method:<br>Water Added Before (gal):<br>Water Added After (gal): | 10/30/20<br>Cullen Turn<br>Clear, no w<br>20/20<br>Direct Disc<br>0<br>0 | Sample Time:<br>ney<br>/ind<br>Batch Size (cy):<br>:harge | 1035<br>10 |
| Test                                                                                                                         | Decult                            | Encoification                                | Sample Location:                                                                                                                                        | North west                                                               | end                                                       |            |
| Slump (in):<br>Air Content (%):<br>Concrete Temp. (F):<br>Ambient Temp. (F):<br>Plastic Unit Wt. (pef):<br>Yield (Cu. Yds.): | 7 1/4<br>1.9<br>68<br>57<br>146.4 | Max 8<br>40 - 95<br>40 - 95<br>Not Specified | racement Location.                                                                                                                                      | 000801-3(                                                                |                                                           |            |
| Laboratory Test Data                                                                                                         |                                   |                                              | Age at Maximum                                                                                                                                          | Compress                                                                 | ive                                                       |            |

| Set<br>No. | Specimen<br>ID | Avg Diam.<br>(in) | Area<br>(sq in) | Date<br>Received | Date<br>Tested | Age at<br>Test<br>(days) | Load<br>(lbs) | Strength<br>(psi) | Fracture<br>Type | Tested<br>By |
|------------|----------------|-------------------|-----------------|------------------|----------------|--------------------------|---------------|-------------------|------------------|--------------|
| 2          | A              | 6.00              | 28.27           |                  | 12/10/20       | 41 F                     | 124,320       | 4,400             | 1                | SLS          |
| 2          | в              | 6.00              | 28.27           |                  | 12/10/20       | 41 F                     | 121,970       | 4,310             | 1                | SLS          |
| 2          | С              | 6.00              | 28.27           |                  | 12/10/20       | 41 F                     | 123,700       | 4,370             | 1                | SLS          |
| 2          | D              |                   |                 |                  |                | Hold                     |               |                   |                  |              |
| Initial    | Cure: Outsi    | ide               |                 | Final Cu         | ire: See Com   | ments                    |               |                   |                  |              |

Comments: F = Field Cured

## Samples Made By: Terracon

Services: Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and test compressive strength samples (ASTM C 31, C 39, C 1231).

Terracon Rep.: Cullen Turney **Reported To:** 

Contractor:

**Report Distribution:** (1) Terracon Consultants, Inc., Alex Dunigan, P.E.

Texas Transportation Institute, Gary Gerke
 Texas Transportation Institute, Bill Griffith

**Reviewed By:** 

Start/Stop: 0815-1400 1 1h Alexander Dunigan

Project Manager

## Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

CR0001, 11-16-12, Rev.6

Page 2 of 2

| Project No:                                 | 606861-03  | Casting Date:     | 11/5/2020                                     | Mix Design (psi):  | 3000 psi |
|---------------------------------------------|------------|-------------------|-----------------------------------------------|--------------------|----------|
| Name of Technician<br>Taking Sample         | Tern       | acon              | Name of Technician<br>Breaking Sample         | Terr               | acon     |
| Signature of<br>Technician<br>Taking Sample | Terr       | acon              | Signature of<br>Technician Breaking<br>Sample | Terr               | acon     |
| Load No.                                    | Truck No.  | Ticket No.        | Locat                                         | ion (from concrete | e map)   |
| Τ1                                          | Tucker     | 292               |                                               | 100% of Curb       |          |
|                                             |            |                   |                                               |                    |          |
|                                             |            |                   |                                               |                    |          |
|                                             |            |                   |                                               |                    |          |
| Load No.                                    | Break Date | Cylinder Age      | Total Load (lbs)                              | Break (psi)        | Average  |
|                                             |            | See attached Repo | orts from Terracon                            |                    |          |
|                                             |            |                   |                                               |                    |          |
|                                             |            |                   |                                               |                    |          |
|                                             |            |                   |                                               |                    |          |
|                                             |            |                   |                                               |                    |          |
|                                             |            |                   |                                               |                    |          |
|                                             |            |                   |                                               |                    |          |
|                                             |            |                   |                                               |                    |          |
|                                             |            |                   |                                               |                    |          |
|                                             |            |                   |                                               |                    |          |
|                                             |            |                   |                                               |                    |          |
|                                             |            |                   |                                               |                    |          |
|                                             |            |                   |                                               |                    |          |
|                                             |            |                   |                                               |                    |          |
|                                             |            |                   |                                               |                    |          |

# TUCKER\_concrete 979-777-6749 TRUCK #4 TUCKER\_CONSTRUCTION TTI\_LA\_DOT

TICKET # 292

 START
 DATE:
 2020-11-05
 TIME:
 08:59:55

 STOP
 DATE:
 2020-11-05
 TIME:
 09:25:51

## MIX DESIGN: B1350

RAW CEMENT COUNTS: 4751 RAW CONVEYOR COUNTS: 161573 CONVEYOR SPEED: 50 TOTAL YARDS 8.286

| MATERIAL     | RATE SETTING  | TOTAL    |
|--------------|---------------|----------|
| CEMENT       | 9.343309LBS   | 3894.87L |
| SAND         | 6.013903 GA   | 11505.07 |
| ADJUSTED :   |               |          |
| STONE        | 7.916514 GA   | 15889.93 |
| ADJUSTED :   |               |          |
| WATER        | 27.58288GAL   | 193,7082 |
| ADMIX #1     | 0.00Z/MIN     | 0.00Z    |
| ADMIX #2     | 0.00Z/MIN     | 0.007    |
| ADMIX #3     | 0.00Z/MIN     | 0.00Z    |
| TOTAL SAND M | OISTURE: 0.0  |          |
| TOTAL STONE  | MOISTURE: 0.0 |          |

Name\_\_\_ NOTES:

## CONCRETE COMPRESSIVE STRENGTH TEST REPORT

Report Number: A1171057.0154 Service Date: 11/05/20 **Report Date:** 11/06/20 606861-3 (LADOT) Task:



| Clien     | t             |              |            |             |        | Project      |                 |               |                  |        |
|-----------|---------------|--------------|------------|-------------|--------|--------------|-----------------|---------------|------------------|--------|
| Texas     | Transportati  | on Institute |            |             |        | Riverside Ca | mpus            |               |                  |        |
| Attn:     | Gary Gerke    |              |            |             |        | Riverside Ca | mpus            |               |                  |        |
| TTI B     | usiness Offic | ce           |            |             |        | Bryan, TX    | •               |               |                  |        |
| 3135      | TAMU          |              |            |             |        | •            |                 |               |                  |        |
| Colle     | ge Station, T | X 77843-313  | 5          |             |        | Project Numb | ber: A1171057   |               |                  |        |
| Mate      | rial Inforn   | nation       |            |             |        | Sample Inf   | ormation        |               |                  |        |
| Speci     | fied Strengt  | h: 3,000 p   | si @ 28    | days        |        | Sample Date  | :               | 11/05/20      | Sample Time:     | 0820   |
| •         | 8             |              | 0          | 5           |        | Sampled By:  | :               | Matcek, Jam   | es               |        |
| Mix I     | D: B13        | 350          |            |             |        | Weather Co   | iditions:       | Partly cloudy | /                |        |
| Supp      | lier: Tuc     | ker Concrete |            |             |        | Accumulativ  | e Yards:        | 8.28          | Batch Size (cy): | 8.28   |
| Batch     | Time: 080     | 0 P          | 'lant:     |             |        | Placement M  | lethod:         | Direct Disch  | arge             |        |
| Trucl     | « No.: 4      | Т            | icket No.: | 292         |        | Water Addeo  | i Before (gal): | 0             |                  |        |
| E la la l | Test Det      | _            |            |             |        | Water Addeo  | l After (gal):  | 0             |                  |        |
| Field     | lest Data     | a            |            |             |        | Sample Loca  | tion:           | 20' West of S | Southeast end    |        |
|           | Test          |              | Result     | Specificati | ion    | Placement L  | ocation:        | Curb          |                  |        |
| Slum      | p (in):       |              | 4 3/4      |             |        |              |                 |               |                  |        |
| Air C     | ontent (%):   |              | 1.2        |             |        |              |                 |               |                  |        |
| Cone      | rete Temp. (  | F):          | 74         |             |        |              |                 |               |                  |        |
| Ambi      | ent Temp. (l  | F):          | 63         |             |        |              |                 |               |                  |        |
| Plasti    | c Unit Wt. (  | pcf):        | 147.2      |             |        |              |                 |               |                  |        |
| Yield     | (Cu. Yds.):   |              |            |             |        |              |                 |               |                  |        |
| Labo      | ratory Te     | st Data      |            |             |        | Age at       | Maximum         | Compressiv    | /e               |        |
| Set       | Specimen      | Avg Diam.    | Area       | Date        | Date   | Test         | Load            | Strength      | Fracture         | Tested |
| No.       | ID            | (in)         | (sq in)    | Received    | Tested | (days)       | (lbs)           | (psi)         | Туре             | By     |

| Set     | specimen    | Avg Diam. | Агеа    | Date     | Date          | Test   | Loau    | Strength | Fracture | Testeu |
|---------|-------------|-----------|---------|----------|---------------|--------|---------|----------|----------|--------|
| No.     | ID          | (in)      | (sq in) | Received | Tested        | (days) | (lbs)   | (psi)    | Туре     | By     |
| 1       | A           | 6.00      | 28.27   | 11/06/20 | 12/10/20      | 35 F   | 133,780 | 4,730    | 1        | SLS    |
| 1       | в           | 6.00      | 28.27   | 11/06/20 | 12/10/20      | 35 F   | 125,810 | 4,450    | 1        | SLS    |
| 1       | С           | 6.00      | 28.27   | 11/06/20 | 12/10/20      | 35 F   | 127,600 | 4,510    | 1        | SLS    |
| 1       | D           |           |         | 11/06/20 |               | Hold   |         |          |          |        |
| Initial | Cure: Outsi | ide       |         | Final C  | ure: Field Cu | red    |         |          |          |        |

Comments: F = Field Cured

## Samples Made By: Terracon

Services: Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and test compressive strength samples (ASTM C 31, C 39, C 1231).

Terracon Rep.: Matcek, James **Reported To:** 

Contractor:

**Report Distribution:** 

 Texas Transportation Institute, Gary Gerke
 Texas Transportation Institute, Bill Griffith (1) Terracon Consultants, Inc., Alex Dunigan, P.E.

**Reviewed By:** 

Start/Stop: 0715-0915 1 1h Alexander Dunigan

Project Manager

## Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

CR0001, 11-16-12, Rev.6

Page 1 of 1

| Project No:                                                                        | 606861-03  | Casting Date:     | 11/19/2020                                                                             | Mix Design (psi):  | 3000 psi |  |  |
|------------------------------------------------------------------------------------|------------|-------------------|----------------------------------------------------------------------------------------|--------------------|----------|--|--|
| Name of Technician<br>Taking Sample<br>Signature of<br>Technician<br>Taking Sample | Terr       | acon              | Name of Technician<br>Breaking Sample<br>Signature of<br>Technician Breaking<br>Sample | Ten                | acon     |  |  |
|                                                                                    | Ten        |                   | - Campio                                                                               |                    |          |  |  |
| Load No.                                                                           | Truck No.  | licket No.        | Locat                                                                                  | ion (from concrete | e map)   |  |  |
| Τ1                                                                                 | Tucker     | 340               |                                                                                        | Parapet            | it       |  |  |
|                                                                                    |            |                   |                                                                                        |                    |          |  |  |
| Load No.                                                                           | Break Date | Cvlinder Age      | Total Load (lbs)                                                                       | Break (psi)        | Average  |  |  |
|                                                                                    |            |                   | arts from Torrason                                                                     |                    | <u> </u> |  |  |
|                                                                                    |            | See attached Kept |                                                                                        |                    |          |  |  |
|                                                                                    |            |                   |                                                                                        |                    |          |  |  |
|                                                                                    |            |                   |                                                                                        |                    |          |  |  |
|                                                                                    |            |                   |                                                                                        |                    |          |  |  |
|                                                                                    |            |                   |                                                                                        |                    |          |  |  |
|                                                                                    |            |                   |                                                                                        |                    |          |  |  |
|                                                                                    |            |                   |                                                                                        |                    |          |  |  |
|                                                                                    |            |                   |                                                                                        |                    |          |  |  |
|                                                                                    |            |                   |                                                                                        |                    |          |  |  |
|                                                                                    |            |                   |                                                                                        |                    |          |  |  |
|                                                                                    |            |                   |                                                                                        |                    |          |  |  |
|                                                                                    |            |                   |                                                                                        |                    |          |  |  |
|                                                                                    |            |                   |                                                                                        |                    |          |  |  |
|                                                                                    |            |                   |                                                                                        |                    |          |  |  |
|                                                                                    |            |                   |                                                                                        |                    |          |  |  |
|                                                                                    |            |                   |                                                                                        |                    |          |  |  |
|                                                                                    |            |                   |                                                                                        |                    |          |  |  |

# TUCKER\_concrete 979-777-6749 TRUCK #4 TUCKER\_CONSTRUCTION LA\_DOT\_TTI

TICKET # 340

 START DATE:
 2020-11-19
 TIME:
 07:57:42

 STOP
 DATE:
 2020-11-19
 TIME:
 08:41:15

## MIX DESIGN: B1350

RAW CEMENT COUNTS: 2227 RAW CONVEYOR COUNTS: 83512 CONVEYOR SPEED: 50 TOTAL YARDS 3.884

| MATERIAL  | F         | AS  | T | E |   | S  | E | 1 | Т | 1 | 1  | 10 | G | T |   | 1 | - 0 |    |   |   |        |  |
|-----------|-----------|-----|---|---|---|----|---|---|---|---|----|----|---|---|---|---|-----|----|---|---|--------|--|
| CEMENT    | 9         |     | 3 | 4 | 3 | 3  | 0 | 9 | L | R | 15 |    |   | - | 9 |   | 6   |    | 0 | 0 |        |  |
| SAND      | 6         | i . | 0 | 1 | 3 | 9  | 0 | 3 |   | G | A  | 1  |   | 5 | 9 | 4 | 6   | Ĵ  | 6 | 9 | D<br>L |  |
| STONE     | FED:<br>7 |     | 9 | 1 | 6 | 5  | 1 | 4 |   | G |    |    |   |   |   |   |     |    |   |   |        |  |
| ADJUST    | ED:       |     | Č |   | č | v  | ŝ | 7 |   | 0 | ~  | 8  |   | 0 | 2 | 1 | 3   | •  | 0 | 0 | 6      |  |
| WATER     | 2         | 3   |   | 5 | 8 | 2  | 8 | 8 | G | A | L  |    |   | 9 | 2 |   | 5   | 1  | 6 | 2 | 0      |  |
| ADMIX #1  | 0         |     | 0 | 0 | Z | 1  | M | 1 | N |   |    |    |   | 0 | ~ |   | 0   | 7  | 0 | 4 | G      |  |
| ADMIX #2  | 0         |     | 0 | 0 | Z | 1  | M | i | N |   |    |    |   | 0 | 1 | 0 | 0   | 27 |   |   |        |  |
| ADMIX #3  | 2         | 6   | 8 |   | 3 | 7  | 1 | 6 | 0 | Z | 1  |    |   | 9 | 0 | 9 | ~   | 8  | 1 | A | 5      |  |
| TOTAL SAN | D MO      | 1   | S | Т | U | R  | E |   |   | 0 | Ĵ  | 0  |   | 9 | V | 9 |     | 0  | 1 | 4 | 9      |  |
| TOTAL STO | NE M      | 0   | 1 | S | T | UI | R | E | : |   | 0  |    | 0 |   |   |   |     |    |   |   |        |  |

Name\_\_\_\_ NOTES:

## CONCRETE COMPRESSIVE STRENGTH TEST REPORT

Report Number: A1171057.0155 Service Date: 11/19/20 **Report Date:** 11/19/20 606861-3 (LADOT) Task



| Task. |                 | 11) C-100000 | worj       |           |          |                          | /               | 77-040-5707 1  | Ceg NO. 1-5272   |        |  |  |  |  |  |  |
|-------|-----------------|--------------|------------|-----------|----------|--------------------------|-----------------|----------------|------------------|--------|--|--|--|--|--|--|
| Clien | t               |              |            |           |          | Project                  |                 |                |                  |        |  |  |  |  |  |  |
| Texas | Transportati    | on Institute |            |           |          | Riverside Car            | npus            |                |                  |        |  |  |  |  |  |  |
| Attn: | Gary Gerke      |              |            |           |          | Riverside Car            | npus            |                |                  |        |  |  |  |  |  |  |
| TTI E | Business Offic  | ce           |            |           |          | Bryan, TX                |                 |                |                  |        |  |  |  |  |  |  |
| 3135  | TAMU            |              |            |           |          | •                        |                 |                |                  |        |  |  |  |  |  |  |
| Colle | ge Station, T   | X 77843-313  | 5          |           |          | Project Number: A1171057 |                 |                |                  |        |  |  |  |  |  |  |
| Mate  | rial Inforn     | nation       |            |           | ;        | Sample Information       |                 |                |                  |        |  |  |  |  |  |  |
| Speci | fied Strengt    | h: 3.000 p   | si@ 2      | 8 davs    |          | Sample Date              | :               | 11/19/20       | Sample Time:     | 0712   |  |  |  |  |  |  |
| •     | 8               |              | 0          | 5         |          | Sampled By:              |                 | Cullen Turney  |                  |        |  |  |  |  |  |  |
| Mix I | <b>D:</b> B13   | 350          |            |           |          | Weather Cor              | iditions:       | Cloudy, no wi  | ind              |        |  |  |  |  |  |  |
| Supp  | lier: Tuc       | ker          |            |           |          | Accumulativ              | e Yards:        | 10/10          | Batch Size (cy): | 10     |  |  |  |  |  |  |
| Batel | 1 Time: 070     | 0 P          | lant:      |           |          | Placement M              | lethod:         | Direct Discha  | rge              |        |  |  |  |  |  |  |
| Truc  | <b>k No.:</b> 4 | Т            | icket No.: | 340       |          | Water Addeo              | l Before (gal): | 0              |                  |        |  |  |  |  |  |  |
|       | Test Det        | -            |            |           |          | Water Addeo              | l After (gal):  | 0              |                  |        |  |  |  |  |  |  |
| Field | lest Data       | a            |            |           |          | Sample Loca              | tion:           | 10' west of So | outheast end     |        |  |  |  |  |  |  |
|       | Test            | 1            | Result     | Specifica | tion     | Placement L              | ocation:        | 606861-3 hal   | f wall           |        |  |  |  |  |  |  |
| Slum  | p (in):         |              | 6 3/4      |           |          |                          |                 |                |                  |        |  |  |  |  |  |  |
| Air C | Content (%):    |              | 2.5        |           |          |                          |                 |                |                  |        |  |  |  |  |  |  |
| Cone  | rete Temp. (    | F):          | 69         |           |          |                          |                 |                |                  |        |  |  |  |  |  |  |
| Amb   | ient Temp. (l   | F):          | 54         |           |          |                          |                 |                |                  |        |  |  |  |  |  |  |
| Plast | ic Unit Wt. (   | pef):        | 145.8      |           |          |                          |                 |                |                  |        |  |  |  |  |  |  |
| Yield | (Cu. Yds.):     |              |            |           |          |                          |                 |                |                  |        |  |  |  |  |  |  |
| Labo  | ratory Te       | st Data      |            |           |          | Age at                   | Maximum         | Compressive    | <b>`</b>         |        |  |  |  |  |  |  |
| Set   | Specimen        | Avg Diam.    | Area       | Date      | Date     | Test                     | Load            | Strength       | Fracture         | Tested |  |  |  |  |  |  |
| No.   | ID              | (in)         | (sq in)    | Received  | Tested   | (days)                   | (lbs)           | (psi)          | Туре             | By     |  |  |  |  |  |  |
| 1     |                 | ( 00         | 28.27      | 11/10/20  | 10/10/00 |                          | 112.100         | 4,000          |                  |        |  |  |  |  |  |  |

| Sec     | specimen    | Arg Diam. | nica    | Date     | Date          | 1030   | Loau    | Strength | Fracture | resteu |
|---------|-------------|-----------|---------|----------|---------------|--------|---------|----------|----------|--------|
| No.     | ID          | (in)      | (sq in) | Received | Tested        | (days) | (lbs)   | (psi)    | Туре     | By     |
| 1       | A           | 6.00      | 28.27   | 11/19/20 | 12/10/20      | 21 F   | 113,160 | 4,000    | 2        | SLS    |
| 1       | В           | 6.00      | 28.27   | 11/19/20 | 12/10/20      | 21 F   | 111,410 | 3,940    | 1        | SLS    |
| 1       | С           | 6.00      | 28.27   | 11/19/20 | 12/10/20      | 21 F   | 117,530 | 4,160    | 2        | SLS    |
| 1       | D           |           |         | 11/19/20 |               | Hold   |         |          |          |        |
| Initial | Cure: Outsi | ide       |         | Final Cu | are: Field Cu | red    |         |          |          |        |

Comments: F = Field Cured

## Samples Made By: Terracon

Services: Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and test compressive strength samples (ASTM C 31, C 39, C 1231).

Terracon Rep.: Cullen Turney **Reported To:** 

Contractor:

**Report Distribution:** (1) Terracon Consultants, Inc., Alex Dunigan, P.E.

Texas Transportation Institute, Gary Gerke
 Texas Transportation Institute, Bill Griffith

**Reviewed By:** 

Start/Stop: 0600-1000 1 1h Alexander Dunigan

Project Manager

## Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

CR0001, 11-16-12, Rev.6

Page 1 of 1

## Appendix J. MASH Test 3-11 (Crash Test No. 606861-3)

| Date: 2                       | 2020-12-14          | Test No.:                | 606861                      | 1-3               | VIN No.:             | 1C              | 6RR6GT                 | 0ES28        | 37150          |
|-------------------------------|---------------------|--------------------------|-----------------------------|-------------------|----------------------|-----------------|------------------------|--------------|----------------|
| Year:                         | 2014                | Make:                    | RAM                         |                   | Model:               |                 |                        |              |                |
| Tire Size:                    | 265/70 R 1          | 7                        |                             | Tire I            | Inflation Pre        | essure:         |                        | 35 ря        | si             |
| Tread Type:                   | Highway             |                          |                             |                   | Odo                  | meter:          | 118074                 |              |                |
| Note any da                   | mage to the v       | ehicle prior to te       | est: <u>None</u>            |                   |                      |                 |                        |              |                |
| <ul> <li>Denotes a</li> </ul> | ccelerometer        | location.                |                             | Ì                 | ◀───X ─<br>◀── ₩ ──► | -               |                        |              |                |
| NOTES N                       | one                 |                          | 1                           |                   | 77                   |                 |                        | )            |                |
| <u> </u>                      |                     |                          |                             | (                 |                      |                 |                        |              | T I            |
| Engine Type                   | · V-8               |                          | A M -                       |                   | {-{{                 | -               | <u> </u>               |              | - N T          |
| Engine CID:                   | 5.7L                |                          |                             |                   |                      |                 |                        |              | WHEEL<br>TRACK |
| Transmissio                   | n Type:             |                          | <b>y</b>                    |                   | JE                   | 14              | TEST INERT             | IALC M       |                |
|                               |                     |                          |                             | _ <b> </b> • 0    | •                    |                 | /                      |              |                |
|                               |                     |                          | P —•                        |                   |                      |                 |                        |              | t t            |
| Optional Equ                  | ipment:             |                          | <b>†</b>                    | 6                 |                      |                 | 0                      |              | B              |
|                               |                     |                          |                             | EH.               |                      | ╉ <u></u><br>╉  |                        | Pi           |                |
| Dummy Data<br>Type:           | a:<br>50th pero     | centile male             |                             |                   |                      | • •             | Y                      | /            |                |
| Mass:                         | 1                   | 65 lb                    |                             | - F               | •— H —►              | LG              | -5                     | — D —        | •              |
| Seat Position                 | DN: IMPACT SI       | IDE                      |                             |                   | M                    | - <u>E</u>      |                        | M            |                |
| Geometry:                     | inches              |                          |                             | -                 | FRONT                | — C ——          | RE                     | CAR.         |                |
| A78                           | .50 F               | 40.00                    | К                           | 20.00             | P_                   | 3.0             | 00                     | υ            | 26.75          |
| B74                           | .00 G               | 28.50                    | L                           | 30.00             | _ Q _                | 30.5            | 50                     | V _          | 30.25          |
| C227                          | . <u>50</u> H       | 61.46                    | Μ                           | 68.50             | _ R                  | 18.0            | 00                     | W _          | 61.40          |
| D 44                          | .00                 | 11.75                    | N                           | 68.00             | _ s _                | 13.0            | 00                     | × _          | 79.00          |
|                               | . <u>50</u> J       | 27.00                    |                             | 46.00             | - <sup>T</sup> -     | 77.0            | 00<br>n Erame          | _            |                |
| Height F                      | ront                | 14.75 Clea               | arance (Front)              |                   | 6.00                 | Heigh           | t - Front              |              | 12.50          |
| Wheel Ce<br>Height F          | nter<br>Rear        | 14.75 Clea               | Wheel Well<br>arance (Rear) |                   | 9.25                 | Botton<br>Heigh | n Frame<br>nt - Rear _ |              | 22.50          |
| RANGE LIMIT: A=               | 78 ±2 inches; C=237 | ±13 inches; E=148 ±12 ir | nches; F=39±3 inch          | es; G = > 28 ir   | nches; H = 63 ±4 i   | nches; O=43 ±   | ±4 inches; (M·         | +N)/2=67 ±   | 1.5 inches     |
| GVWR Ratin                    | ngs:                | Mass: Ib                 | <u>Curb</u>                 |                   | <u>Test</u>          | <u>Inertial</u> |                        | <u>Gross</u> | <u>Static</u>  |
| Front                         | 3700                | Mfront                   | 2                           | 925               |                      | 2844            | -                      |              | 2929           |
| Back                          | 3900                | M <sub>rear</sub>        | 2                           | 131               |                      | 2212            | -                      |              | 2292           |
| Total                         | 6700                | M <sub>Total</sub>       | 5(                          | 056<br>(Allowable | Range for TIM and    | 5056            | lb +110 lb) -          |              | 5221           |
| Mass Distri                   | oution:             | 1 100                    |                             |                   |                      |                 |                        |              | 050            |
| lb                            | LF                  | 1430                     | RF:1                        | 1414              | LR:                  | 1154            | _ RR                   | ∷1           | 008            |

Figure 127. Vehicle properties for Test No. 606861-3

| Date:2020                                                   | 0-12-14 Test No.: 6 |                  |               | 1-3       | VIN:         | 1C6RR6GT0ES287150 |                    |                       |           |  |  |  |
|-------------------------------------------------------------|---------------------|------------------|---------------|-----------|--------------|-------------------|--------------------|-----------------------|-----------|--|--|--|
| <b>Year</b> : 2                                             | 014                 | Make:            | RAM           | 1         | Model:       |                   | 15                 | 500                   |           |  |  |  |
| Body Style:                                                 | Quad Cab            |                  |               |           | Mileage:     | 1180              | )74                |                       |           |  |  |  |
| Engine: 5.7L                                                |                     | V-8              |               | Tran      | smission:    | Automatic         |                    |                       |           |  |  |  |
| Fuel Level:                                                 | Empty               | Bal              | last: 140     |           |              |                   |                    | (440                  | ) lb max) |  |  |  |
| Tire Pressure: Front: 35 psi Rear: 35 psi Size: 265/70 R 17 |                     |                  |               |           |              |                   |                    |                       |           |  |  |  |
| Measured Vo                                                 | ehicle We           | <u>iahts:</u> (1 | b)            | <u>55</u> | _ poi _ c    | <u> </u>          |                    |                       |           |  |  |  |
|                                                             |                     | .g (.            |               |           |              |                   |                    |                       |           |  |  |  |
| LF                                                          | - <u>:</u> 1430     |                  | RF:           | 1414      |              | Fron              | t Axle:            | 2844                  |           |  |  |  |
| LF                                                          | <b>R</b> : 1154     |                  | RR:           | 1058      |              | Rea               | Axle:              | 2212                  |           |  |  |  |
|                                                             |                     |                  | <b>D</b> : 14 | 0.470     |              |                   | <b>-</b>           | 5050                  |           |  |  |  |
| Let                                                         | t: 2584             |                  | Right:        | 2472      |              |                   | 1 otal:<br>5000 +1 | 0000<br>10 lb allowed |           |  |  |  |
|                                                             |                     |                  |               |           |              |                   |                    |                       |           |  |  |  |
| V                                                           | /heel Base          | : 140.50         | inches        | Track: F: | 68.50        | inches            | R:                 | 68.00                 | inches    |  |  |  |
|                                                             | 148 ±12 incl        | nes allowed      |               |           | Track = (F+F | R)/2 = 67 ±1      | .5 inches          | allowed               |           |  |  |  |
| Center of Gr                                                | avitv. SAE          | J874 Sus         | pension M     | ethod     |              |                   |                    |                       |           |  |  |  |
|                                                             | , _, _, _           |                  |               |           |              |                   |                    |                       |           |  |  |  |
| >                                                           | <b>(</b> : 61.47    | inches           | Rear of F     | ront Axle | (63 ±4 inche | s allowed)        |                    |                       |           |  |  |  |
|                                                             | <b>r</b> · −0.76    | inches           | loft_         | Right +   | of Vehicle   | - Center          | ino                |                       |           |  |  |  |
|                                                             | . 0.70              | Inches           |               | Tright '  |              | e Centen          | ine                |                       |           |  |  |  |
| Z                                                           | 28.5                | inches           | Above Gr      | ound      | (minumum 2   | 8.0 inches a      | llowed)            |                       |           |  |  |  |
|                                                             |                     |                  |               |           |              |                   |                    |                       |           |  |  |  |
| Hood He                                                     | ight:               | 46.00            | inches        | Front     | Bumper H     | leight:           |                    | <u>27.00</u> i        | nches     |  |  |  |
| 43 ±4                                                       |                     | inches allowed   | I             |           |              |                   |                    |                       |           |  |  |  |
|                                                             |                     | 40.00            | inches        | Deer      | Duman an L   | ام أحد أحد أ      |                    | 20.00                 |           |  |  |  |
| Front Overhang:                                             |                     | 40.00            |               | Rear      | Bumper H     | leight:           |                    | <u>30.00</u> I        | ncnes     |  |  |  |
|                                                             | 59 ±3               | mones anowed     | I             |           |              |                   |                    |                       |           |  |  |  |
| Overall Length:                                             |                     | 227.50           | inches        |           |              |                   |                    |                       |           |  |  |  |
|                                                             | 237 ±               | 13 inches allow  | /ed           |           |              |                   |                    |                       |           |  |  |  |

## Figure 128. Measurement of vehicle vertical CG for Test No. 606861-3

Figure 129. Sequential photographs for Test No. 606861-3 (overhead view).



0.000 s



0.400 s



0.100 s



0.500 s



0.200 s







0.300 s



0.700 s

Figure 130. Sequential photographs for Test No. 606861-3 (frontal view).





0.100 s



0.400 s



0.500 s



0.200 s



0.300 s



0.600 s



0.700 s

Figure 131. Sequential photographs for Test No. 606861-3 (rear view).



0.000 s



0.400 s



0.100 s



0.500 s







0.300 s



0.600 s



0.700 s

| Date: | 2020-12-14 | Test No.: | 606861-3 | VIN No.: | 1C6RR6GT0ES287150 |
|-------|------------|-----------|----------|----------|-------------------|
| Year: | 2014       | Make:     | RAM      | Model:   | 1500              |

## Figure 132. Exterior crush measurements for Test No. 606861-3

## VEHICLE CRUSH MEASUREMENT SHEET<sup>1</sup>

| Complete What            | en Applicable   |
|--------------------------|-----------------|
| End Damage               | Side Damage     |
| Undeformed end width     | Bowing: B1 X1   |
| Corner shift: A1         | B2 X2           |
| A2                       |                 |
| End shift at frame (CDC) | Bowing constant |
| (check one)              | $X1+X2$ _       |
| < 4 inches               | 2               |
| $\geq$ 4 inches          |                 |

## Note: Measure C<sub>1</sub> to C<sub>6</sub> from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

| ~                            |                             | Direct I         | Damage          |              |       |       |       |    |       |       |    |
|------------------------------|-----------------------------|------------------|-----------------|--------------|-------|-------|-------|----|-------|-------|----|
| Specific<br>Impact<br>Number | Plane* of<br>C-Measurements | Width**<br>(CDC) | Max***<br>Crush | Field<br>L** | $C_1$ | $C_2$ | $C_3$ | C4 | $C_5$ | $C_6$ | ±D |
| 1                            | Front plane at bmp ht       | 16               | 11.0            | 40           | -     | -     | -     | -  | -     | -     | 18 |
| 2                            | Side plane at bmp ht        | 16               | 9.0             | 56           | -     | -     | -     | -  | -     | -     | 78 |
|                              |                             |                  |                 |              |       |       |       |    |       |       |    |
|                              |                             |                  |                 |              |       |       |       |    |       |       |    |
|                              | Measurements recorded       |                  |                 |              |       |       |       |    |       |       |    |
|                              | √inches or ☐mm              |                  |                 |              |       |       |       |    |       |       |    |
|                              |                             |                  |                 |              |       |       |       |    |       |       |    |

<sup>1</sup>Table taken from National Accident Sampling System (NASS).

\*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

\*\*Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

\*\*\*Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.



## Figure 133. Occupant compartment measurements for Test No. 606861-3

\*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

59.00 59.00 G 37.50 37.50 Н 37.50 37.50 L

25.00

25.00

0.00

0.00

0.00

J\*

Figure 134. Vehicle angular displacements for Test No. 606861-3



Roll, Pitch, and Yaw Angles

Figure 135. Vehicle longitudinal accelerometer trace for Test No. 606861-3 (accelerometer located at center of gravity)



Figure 136. Vehicle lateral accelerometer trace for Test No. 606861-3 (accelerometer located at center of gravity)



Figure 137. Vehicle vertical accelerometer trace for Test No. 606861-3 (accelerometer located at center of gravity)



Z Acceleration at CG
# Appendix K. MASH Test 3-10 (Crash Test No. 606861-4)

|                                           |                                                                                                        | -                                           |                                                               |                                                                      |                           |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------|---------------------------|
| Date:                                     | 2020-12-11                                                                                             | Test No.:                                   | 606861-4                                                      | VIN No.: <u>3N1CN7</u>                                               | APOEL862280               |
| Year:                                     | 2014                                                                                                   | Make:                                       | NISSAN                                                        | Model: <u>VERSA</u>                                                  |                           |
| Tire Inf                                  | lation Pressure:                                                                                       | 36 PSI                                      | _ Odometer: <u>918</u>                                        | 361-4 Tire Size                                                      | e: <u>P185/65R15</u>      |
| Descril                                   | oe any damage to                                                                                       | the vehicle pric                            | or to test: <u>None</u>                                       |                                                                      |                           |
|                                           | otes acceleromete<br>S: <u>None</u>                                                                    | er location.                                |                                                               | ~ · · ·                                                              |                           |
| Engine<br>Engine<br>Transn<br>U<br>Option | Type: <u>4 CYL</u><br>CID: <u>1.6 L</u><br>nission Type:<br>Auto or<br>FWD <u></u> RW<br>al Equipment: | <mark>∕/</mark> Manual<br>/D <u> </u> 4WD   |                                                               |                                                                      |                           |
| Dumm<br>Type:<br>Mass<br>Seat I           | y Data:<br><u>50th Pe</u><br>: <u>165 lb</u><br>Position: <u>IMPAC</u>                                 | ercentile Male                              | F                                                             |                                                                      |                           |
| Geom                                      | etry: inches                                                                                           |                                             |                                                               | · ·                                                                  |                           |
| A <u>66.7</u>                             | 7 <u>0</u> F                                                                                           | 32.50                                       | K <u>12.50</u>                                                | P <u>4.50</u>                                                        | U <u>15.50</u>            |
| B <u>59.6</u>                             | <u>60</u> G                                                                                            |                                             | L <u>26.00</u>                                                | Q <u>24.00</u>                                                       | V <u>21.25</u>            |
| C <u>175</u>                              | . <u>40</u> H                                                                                          | 42.15                                       | M <u>58.30</u>                                                | R <u>16.25</u>                                                       | W _42.10                  |
| D <u>40.</u>                              | 50 <u> </u>                                                                                            | 7.00                                        | N <u>58.50</u>                                                | S <u>7.50</u>                                                        | X <u>79.75</u>            |
| E <u>102</u>                              | . <u>40</u> J                                                                                          | 22.25                                       | O <u>30.50</u>                                                | T <u>64.50</u>                                                       |                           |
| Whe                                       | eel Center Ht Fror                                                                                     | nt <u>11.50</u>                             | Wheel Cent                                                    | er Ht Rear <u>11.50</u>                                              | W-H0.05                   |
| RA                                        | NGE LIMIT: A = 65 ±3 inch                                                                              | es; C = 169 ±8 inches; E<br>(M+N)/2 = 59 ±2 | = 98 ±5 inches; F = 35 ±4 inc<br>inches; W-H < 2 inches or us | ches; H = 39 ±4 inches; O (Top of Radiato<br>e MASH Paragraph A4.3.2 | r Support) = 28 ±4 inches |
| GVWR                                      | Ratings:                                                                                               | Mass: Ib                                    | Curb                                                          | Test Inertial                                                        | Gross Static              |
| Front                                     |                                                                                                        | Mfront                                      | 1369                                                          | 1425                                                                 | 1510                      |
| Back                                      | 1687                                                                                                   | M <sub>rear</sub>                           | 974                                                           | 979                                                                  | 1077                      |
| Total                                     | 3389                                                                                                   | MTotal                                      | 2343                                                          | 2404                                                                 | 2587                      |
| Mace                                      | Netribution                                                                                            |                                             | Allowable 7                                                   | FIM = 2420 lb ±55 lb   Allowable GSM = 258                           | 35 lb ± 55 lb             |
| lb                                        |                                                                                                        | _F: _706                                    | RF: <u>719</u>                                                | LR: <u>502</u>                                                       | RR: <u>477</u>            |
|                                           |                                                                                                        |                                             |                                                               |                                                                      |                           |

## Figure 138. Vehicle properties for Test No. 606861-4

Figure 139. Sequential photographs for Test No. 606861-4 (overhead view).



0.000 s



0.400 s



0.100 s



0.500 s



0.200 s







0.300 s



0.700 s

Figure 140. Sequential photographs for Test No. 606861-4 (frontal view).



0.000 s



0.100 s



0.400 s



0.500 s



0.200 s



0.300 s



0.600 s



0.700 s

Figure 141. Sequential photographs for Test No. 606861-4 (rear view).



0.000 s



0.100 s



0.400 s



0.500 s







0.300 s



0.600 s



0.700 s

| Date: | 2020-12-11 | Test No.: | 606861-4 | VIN No.: | 3N1CN7APOEL862280 |
|-------|------------|-----------|----------|----------|-------------------|
| Year: | 2014       | Make:     | NISSAN   | Model:   | VERSA             |

#### Figure 142. Exterior crush measurements for Test No. 606861-4

## VEHICLE CRUSH MEASUREMENT SHEET<sup>1</sup>

| Complete When Applicable |                 |  |  |  |  |  |  |  |
|--------------------------|-----------------|--|--|--|--|--|--|--|
| End Damage               | Side Damage     |  |  |  |  |  |  |  |
| Undeformed end width     | Bowing: B1 X1   |  |  |  |  |  |  |  |
| Corner shift: A1         | B2 X2           |  |  |  |  |  |  |  |
| A2                       |                 |  |  |  |  |  |  |  |
| End shift at frame (CDC) | Bowing constant |  |  |  |  |  |  |  |
| (check one)              | $X1+X2$ _       |  |  |  |  |  |  |  |
| < 4 inches               | 2               |  |  |  |  |  |  |  |
| ≥ 4 inches               |                 |  |  |  |  |  |  |  |

#### Note: Measure C<sub>1</sub> to C<sub>6</sub> from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

|                  |                             | Direct Damage    |                 |              |       |       |       |       |                |       |    |
|------------------|-----------------------------|------------------|-----------------|--------------|-------|-------|-------|-------|----------------|-------|----|
| Impact<br>Number | Plane* of<br>C-Measurements | Width**<br>(CDC) | Max***<br>Crush | Field<br>L** | $C_1$ | $C_2$ | $C_3$ | $C_4$ | C <sub>5</sub> | $C_6$ | ±D |
| 1                | Front plane at bumper ht    | 14               | 9.0             | 30           | -     | -     | -     | -     | -              | -     | 11 |
| 2                | Side plane at bumper ht     | 14               | 6.0             | 44           | -     | -     | -     | -     | -              | -     | 60 |
|                  |                             |                  |                 |              |       |       |       |       |                |       |    |
|                  |                             |                  |                 |              |       |       |       |       |                |       |    |
|                  | Measurements recorded       |                  |                 |              |       |       |       |       |                |       |    |
|                  | ✓ inches or  mm             |                  |                 |              |       |       |       |       |                |       |    |
|                  |                             |                  |                 |              |       |       |       |       |                |       |    |

<sup>1</sup>Table taken from National Accident Sampling System (NASS).

\*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

\*\*Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

\*\*\*Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

| Date:2020-12-11 Test No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 606861-4  | VIN No.:                                        | 3N1CN7APOEL862280 |         |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------|-------------------|---------|--|--|--|
| Year: 2014 Make:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NISSAN    | Model:                                          | VERS              | A       |  |  |  |
| H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | OCCUPANT COMPARTMENT<br>DEFORMATION MEASUREMENT |                   |         |  |  |  |
| F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | Before                                          | After<br>(inches) | Differ. |  |  |  |
| G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1        | 75.00                                           | 75.00             | 0.00    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | → 卅 A2    | 74.00                                           | 74.00             | 0.00    |  |  |  |
| \$ <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A3        | 74.00                                           | 74.00             | 0.00    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B1        | 43.00                                           | 43.00             | 0.00    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B2        | 37.00                                           | 37.00             | 0.00    |  |  |  |
| B1, B2, B3, B4, B5, B6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B3        | 43.00                                           | 43.00             | 0.00    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B4        | 46.50                                           | 46.50             | 0.00    |  |  |  |
| A1, A2, &A3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B5        | 42.50                                           | 42.50             | 0.00    |  |  |  |
| D1, D2, & D3<br>C1, C2, & C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>B6</b> | 46.50                                           | 46.50             | 0.00    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) C1      | 26.00                                           | 26.00             | 0.00    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C2        | 0.00                                            | 0.00              | 0.00    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C3        | 26.00                                           | 26.00             | 0.00    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D1        | 12.50                                           | 12.50             | 0.00    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D2        | 0.00                                            | 0.00              | 0.00    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D3        | 10.00                                           | 9.50              | -0.50   |  |  |  |
| P1 $B2$ $P2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E1        | 45.00                                           | 45.00             | 0.00    |  |  |  |
| $\left( \begin{array}{c} B I \\ F I \\ F F I \\ F F I \\ F I $ | E2        | 48.75                                           | 48.75             | 0.00    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F         | 47.50                                           | 47.50             | 0.00    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G         | 47.50                                           | 47.50             | 0.00    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | н         | 39.00                                           | 39.00             | 0.00    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I         | 39.00                                           | 39.00             | 0.00    |  |  |  |
| *Lateral area across the cab from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J*        | 48.50                                           | 48.00             | -0.50   |  |  |  |

## Figure 143. Occupant compartment measurements for Test No. 606861-4

\*Li driver's side kick panel to passenger's side kick panel.

Figure 144. Vehicle angular displacements for Test No. 606861-4



Roll, Pitch, and Yaw Angles

Figure 145. Vehicle longitudinal accelerometer trace for Test No. 606861-4 (accelerometer located at center of gravity)



Figure 146. Vehicle lateral accelerometer trace for Test No. 606861-4 (accelerometer located at center of gravity)



Figure 147. Vehicle vertical accelerometer trace for Test No. 606861-4 (accelerometer located at center of gravity)



Z Acceleration at CG

This public document is published at a total cost of \$200. 29 copies of this public document were published in this first printing at a cost of \$200. The total cost of all printings of this document including reprints is \$200. This document was published by Louisiana Transportation Research Center to report and publish research findings as required in R.S. 48:105. This material was duplicated in accordance with standards for printing by state agencies established pursuant to R.S. 43:31. Printing of this material was purchased in accordance with the provisions of Title 43 of the Louisiana Revised Statutes.