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comparing the manual measurements and the 2017 reported cracking data in LA-PMS, results indicated 

that the automated cracking measurements based on 0.1-mile long sections tend to over-estimate the 

medium severity level of cracking amounts for all flexible pavement crack types (alligator, longitudinal, 

and transverse). However, when the automated cracking measurements were re-grouped based on 50-ft. 

long subsections, the overall estimation errors without differentiating the cracking severity levels could 

be significantly reduced due to a smaller standard deviation of the measurement errors and a shorter 

section length. Based on 50-ft. subsections, false positive errors produced by the automated system were 

found to be 8.5%, 9.8%, and 8.8% for alligator, longitudinal, and transverse cracking, respectively and the 

corresponding missed crack errors were 5.0%, 7.9%, and 1.4% respectively in this study. Statistical tests 

based on the mean measurement errors and equality of variance were conducted to qualitatively evaluate 

the accuracy and precision of the collected cracking data. In general, based on 50-ft. subsections, the 

automated system could produce significantly accurate results for high severity transverse cracking and 

significantly precise results for low severity alligator cracking. On the other hand, based on 0.1-mile 

subsections, the automated system was found not able to produce significantly accurate estimation of 

pavement cracking at different severity levels but provide significantly precise cracking measurements at low 

severity levels for all crack types. Since the overall results indicated that the 3D automated cracking 

measurements were statistically different from the manual measurements, which possibly led to a 

smaller cracking index estimation and different treatment selection, an artificial neural network (ANN) 

model was developed using the cracking measurements in this study. The ANN model aimed at 

adjusting the automated cracking measurements towards the manual cracking measurements at a 0.1-

mile interval used in the LA-PMS, specifically for the flexible pavement cracking measurement data 

found in 2017 LA-PMS database. Finally, a MATLAB-based imaging analysis computer program was 

developed to generate an automated cracking report from high-resolution 2D pavement images collected 

by LTRC.  
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Abstract 

The Louisiana Department of Transportation and Development (DOTD) began to collect 

its Pavement Management System (LA-PMS)’s pavement condition data using a 

vendor’s 3D automatic system in 2017. For each 0.1-mile subsection on a flexible 

pavement, the vendor’s 3D automated cracking data reported in LA-PMS consists of 

various cracking amounts in terms of the alligator, longitudinal, and transverse cracks at 

different severity levels (e.g., low, medium, and high). The objectives of this study 

include two-folds: (1) to evaluate and assess the accuracy and precision of the 3D 

automated cracking data on flexible pavements through comparison with manual 

measurements on high-resolution pavement images; (2) to develop an image analysis 

application in pavement cracking identification on high-resolution pavement images 

collected by the Louisiana Transportation Research Center (LTRC)’s high-speed data 

vehicle. 

To achieve these objectives, a comprehensive manual cracking survey based on the 

DOTD’s distress identification protocol was conducted on twenty-three flexible 

pavement sections (totaling 28.6 miles long) and nine 0.5-mile calibration sites, using the 

vendor’s high-resolution pavement images collected during the 2017 DOTD’s pavement 

condition data collection cycle. By directly comparing the manual measurements and the 

2017 reported cracking data in LA-PMS, results indicated that the automated cracking 

measurements based on 0.1-mile long sections tend to over-estimate the medium severity 

level of cracking amounts for all flexible pavement crack types (alligator, longitudinal, 

and transverse). However, when the automated cracking measurements were re-grouped 

based on 50-ft. long subsections, the overall estimation errors without differentiating the 

cracking severity levels could be significantly reduced due to a smaller standard deviation 

of the measurement errors and a shorter section length. Based on 50-ft. subsections, false 

positive errors produced by the automated system were found to be 8.5%, 9.8%, and 8.8% for 

alligator, longitudinal, and transverse cracking, respectively and the corresponding missed 

crack errors were 5.0%, 7.9%, and 1.4%, respectively in this study. Statistical tests based on 

the mean measurement errors and equality of variance were conducted to qualitatively 

evaluate the accuracy and precision of the collected cracking data. In general, based on 

50-ft. subsections, the automated system could produce significantly accurate results for 

high severity transverse cracking and significantly precise results for low severity alligator 

cracking. On the other hand, based on 0.1-mile subsections, the automated system was found 

not able to produce significantly accurate estimation of pavement cracking at different 
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severity levels but provide significantly precise cracking measurements at low severity levels 

for all crack types. Since the overall results indicated that the 3D automated cracking 

measurements were statistically different from the manual measurements, which possibly 

led to a smaller cracking index estimation and different treatment selection, an artificial 

neural network (ANN) model was developed using the cracking measurements in this 

study. The ANN model aimed at adjusting the automated cracking measurements towards 

the manual cracking measurements at a 0.1-mile interval used in the LA-PMS, 

specifically for the flexible pavement cracking measurement data found in 2017 LA-PMS 

database. Finally, a MATLAB-based imaging analysis computer program was developed 

to generate an automated cracking report from high-resolution 2D pavement images 

collected by LTRC.  
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Implementation Statement 

The results of this study demonstrated the potential improvement in data quality and 

accuracy in the flexible pavement cracking survey in Louisiana. The findings of the 

research can be implemented in making a reliable and cost-effective project selection and 

budget allocation for pavement maintenance and rehabilitation. The more accurate 

pavement cracking data can be also used in the local-calibration of the Pavement ME’s 

load-induced cracking models currently implementing in DOTD and the project-level 

cracking distress evaluation analysis by researchers.  

 For DOTD’s 2017 LA-PMS database, the developed ANN model may be used in 

adjusting the existing cracking measurements including the alligator, longitudinal, 

transverse, and random cracking when the computed cracking indices are to be used 

for a project’s treatment selection. Due to the difference between the LCMS3D and 

LCMSRange images, cautions shall be taken when the predicted cracking indices 

are significantly different from the LCMSRange provided results. 

 Pavement researchers can use the developed ANN model in obtaining an accuracy-

improved cracking data for flexible pavement sections in the 2017 LA-PMS for a 

pseudo project-level cracking distress evaluation. 

 For LTRC’s digital highway data vehicle (DHDV) collected 2-D cracking images, 

the developed MATLAB based software can be used to obtain a pavement cracking 

classification report at a network level data accuracy. However, further research is 

still warranted when a project-level cracking data is needed from the DHDV. 
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Introduction 

The Louisiana Department of Transportation and Development (DOTD) has been using a 

3D technology automatic pavement condition survey for its pavement management 

system (LA-PMS) since 2017.  LA-PMS uses a digital highway data collection vehicle to 

survey the existing pavement conditions every two years for its entire pavement network, 

in which, for the flexible pavement sections, the collected condition data includes the 

alligator cracking, longitudinal cracking, transverse cracking, rutting, international 

roughness index (IRI), and patching data for each 0.1-mile long subsection.  While the 

PMS-collected pavement condition data are commonly used by pavement engineers and 

managers in making consistent and cost-effective decisions in pavement maintenance and 

rehabilitation at the network level, more agencies now also consider use of the PMS data 

in project-level pavement applications, such as the local-calibration of the distress models 

in the Mechanistic-Empirical pavement design guide (MEPDG) [1-4]. In LA-PMS, the 

collected pavement condition data are first converted into various distress indices (e.g., 

alligator index, rutting index, etc.) that can be further used in the pavement treatment 

selection process based on pre-defined distress trigger values [5]. 

 

It is well known that the pavement surface cracking distresses in a network level 

pavement distress survey are automatically determined from an imaging analysis 

software using pavement images collected by a digital highway pavement data collection 

system (or vehicle). Currently, there exists different high-speed pavement image 

collection systems and image analysis software. Obviously, the accuracy of the 

automated pavement cracking data in PMS would be largely relied on both the image 

collection system and the image analysis software selected. McQueen and Timm 

conducted a study to determine the accuracy of the automated cracking survey for 

Alabama DOT [6]. It was found that the automated survey under-reported the alligator 

cracking with the severity of Level 1 (i.e., longitudinal cracking in the wheelpath < 0.28 

in. wide), and over-reported the alligator cracking with the severity of Level 3 (i.e., 

longitudinal cracking in the wheelpath ≥ 0.28 in. wide). The study concluded that the 

transverse cracking, block cracking, and alligator cracking at all severity levels require 

greater accuracy. Another study conducted by New Jersey DOT compared the data 

collected by human raters with those by an automated distress survey equipment [7]. A 

recent study [8] evaluated three different automated crack detection systems with manual 

cracking measurements on twenty 550-ft. pavement sections in Texas. The results 

showed that a large number of false positives and missed cracks were observed between 
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the manual measurements and those from the three automated systems considered. The 

false positive indicates that the automatic detection system reports a crack, however, no 

crack can be detected from manual measurements. Meanwhile, the missed crack refers to 

an error when the automatic detection system does not report a crack but the crack is 

detected from manual measurements. This study generally confirms that there still existed 

a certain degree of inconsistency between the manual and automated cracking 

measurements under the current state of the practice in high speed data collection 

technologies. On the other hand, this study also reported that the amount of false 

positives may be significantly reduced if applying a manual post-processing on the 

automated cracking measurements. This implies that both the accuracy and quality of the 

automated cracking measurements may be improved through a manual post-processing 

procedure. 

 

Due to a concern that using the network level collected PMS distress data in pavement 

model calibration could potentially affect the future pavement design reliability, this 

study was focused on the evaluation of the accuracy/precision and possible project level 

application for the automated cracking data collected in LA-PMS. In addition, Louisiana 

Transportation Research Center (LTRC) has its own digital highway data vehicle 

(DHDVLTRC) that can collect the pavement condition data including rut depth, IRI, and 

high resolution pavement images for in-house pavement research purpose. One of the 

original objectives of this study was to conduct a precision evaluation of the DHDV-

collected cracking distresses and use the results to validate the cracking data stored in 

LA-PMS. However, the accompanying cracking imaging analysis software with the 

DHDVLTRC became outdated after the start of this research due to a necessary upgrade of 

the image collection system mounted on the DHDVLTRC. Therefore, the scope of this part 

research had modified and in this report it was considered to develop a MATLAB 

application for the DHDVLTRC in analyzing the collected 2-D pavement images and 

provide an automated pavement cracking report. 

Literature Review 

Manual and Automated Pavement Cracking Distress Identification 

The data collection protocols used for the pavement cracking distress classification and 

measurements in PMS are varied among different state transportation agencies. Currently 

there exists seven national-level protocols or data collection guidelines for identifying the 
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pavement cracking distresses in the US. Table 1 provides a list of these pavement 

cracking collection protocols. Among them, the American Association of State Highway 

and Transportation Officials (AASHTO) protocols, National Park Service (NPS) 

protocol, and UK SCANNER protocols can be used in both automated and manual 

cracking data collection; whereas, the Long-Term Pavement Performance (LTPP) and 

American Society of Testing Materials (ASTM) protocols can only be applied for a 

manual pavement cracking survey [9].  

Table 1. Cracking protocols at national level summary [9] 

Protocol Name Automated Types of Pavement 

Available 

Crack 

Definitions 

AASHTO R 85-18 Yes AC 4 

AASHTO R 55-10 Yes AC 4 

ASTM D6433–16 

(Highway) 

No AC & PCC 9 

ASTM D5340–12 

(Airfield) 

No AC & PCC 9 

FHWA LTPP No AC & JPCP & 

CRCP 

13 

FHWA NPS Yes All Types 3 

UK SCANNER Yes All Types 2 

The AASHTO R 85-18 and the LTPP protocols are the most used national guidelines by 

researchers for an automated or manual pavement cracking survey, respectively. In 

addition, various state agencies have their cracking protocol in place. In the following 

sections, the LTPP, two AASHTO, and Louisiana pavement cracking distress 

classification protocols are described in details. Meanwhile, the Mechanistic-Empirical 

Pavement Design Guide (MEPDG) has its own cracking protocol, which will also be 

discussed.  

LTPP Cracking Protocol 

Federal Highway Administration (FHWA) published the “Distress Identification Manual 

for the Long-Term Pavement Performance Program (Fifth Revised Edition)” to 
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demonstrate the cracking definitions for the manual survey [10]. The LTPP Distress 

Identification Manual defines six types of cracking distress in flexible pavements, 

including fatigue cracking, block cracking, edge cracking, longitudinal cracking, 

reflection cracking at joints, and transverse cracking. Protocol to identify these six 

cracking by the manual survey are given below:  

Fatigue Cracking: Fatigue cracks occur in the wheel path areas which are under 

the constant loads of traffic movement.  These types of cracking start out as a small series 

of interconnected fissures and develop different patterns gradually. At each severity level, 

fatigue cracks are measured in terms of the affected area.  

At low severity levels, very few interconnected cracks are visible and there should be no 

evidence of pumping. Moderate fatigue cracking should show a complete pattern of 

interconnected cracks and pumping is not evident. If the intense and dense cracks connect 

to make a complete pattern, then it should be marked as a high severity level of fatigue 

cracking. In this type of cracking pumping may be evident. 

Figure 1. Fatigue cracking protocol (LTPP) 

 

Block Cracking: Block cracks divide the pavement into approximately 

rectangular pieces and are also measured in terms of the affected area. Cracks with a 

mean width less than 6 mm are considered as low severe block cracks. Cracks with a 

mean width between 6 mm to 19 mm are considered as moderate-severe block cracks. 

Cracks with a mean width greater than 19 mm are considered as high severe block cracks. 

An occurrence should be at least 15 m long if it is to be rated as a block cracking. 
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  Figure 2. Block cracking protocol (LTPP) 

 

Edge Cracking: Edge cracking is generally crescent-shaped cracks that 

interconnect with the edge of the pavement. Edge cracking usually occurs within 2 ft. of 

the pavement edge, adjacent to the shoulder. Cracks with no loss of materials are 

considered as low severe cracks. Cracks with loss of materials up to 10% of the length of 

affected pavement length are considered as moderate-severe cracking. Cracks with 

considerable loss of materials greater than 10% are considered as the high severity level 

of edge cracking. Unit of edge cracking is the length in meters.  
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Figure 3. Edge cracking protocol (LTPP) 

 

Longitudinal Cracking: Longitudinal cracking, predominately parallel to the 

pavement centerline, includes wheel path longitudinal cracking and non-wheel path 

longitudinal cracking. Longitudinal cracking is measured in linear feet (meters). 

A crack with a mean width of less than 6 mm is considered as a low severity level of 

longitudinal cracking. A crack with a mean depth between 6 mm and 19 mm is 

considered as moderate severity longitudinal cracking. If the average crack depth is 

greater than 19 mm, it is considered as high severity longitudinal cracking. Figure 4 

describes the difference between the wheel path and non-wheel path longitudinal 

cracking. 

Figure 4. Longitudinal cracking protocol (LTPP) 

 

Transverse Cracking and Reflection Cracking at Joints: Transverse cracking 

is referred to as the cracking predominately perpendicular to the pavement centerline. It is 

measured in linear feet (meters). When a transverse crack found on an AC overlay surface 

that occur over a joint in concrete pavements, it is called as reflection crack at joints. 
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If the mean crack width is less than 6 mm then it is called low severity reflection 

cracking; if the mean crack width is in between 6 mm to 19 mm then it is called moderate 

severity reflection cracking; and if the mean crack width exceeds 19 mm then it is called 

high severity reflection cracking. 

Figure 5. Transverse cracking protocol (LTPP) 

 

 

AASHTO R 85-18 Cracking Protocol 

The AASHTO R85-18 describes the automated methods to quantify cracking distress in 

asphalt pavement surfaces [11]. In this procedure, high-resolution pavement surface 

images are collected using highway data collection vehicle, and the cracks with the 

dimension 25 mm (length) * 1 mm (width) are reported in this cracking protocol. Four 

types of asphalt pavement crack definitions (longitudinal, transverse, pattern, and others) 

were described in this protocol.  

Table 2. Cracking protocol in AASHTO R 85-18 [9] 

Types of Crack Dimension of Crack Crack Orientation 

Longitudinal At least 0.3 m (12”) long +20 degree to -20 degree 

relative to center line 
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Types of Crack Dimension of Crack Crack Orientation 

Transverse At least 0.3 m (12”) long 70 degree to 110 degree 

relative to center line 

Pattern Network of cracks which 

creates a pattern 

N/A 

Other Cracks not detected as pattern, 

longitudinal, or transverse 

ones 

N/A 

In AASHTO R 85-18 protocol, a full pavement section is divided into 5 zones (Figure 6). 

Zone 2 and Zone 4 depict the inside and outside wheel paths respectively. Any cracking 

presented in the wheel paths typically reflect the traffic load-related cracking. The sum of 

the cracking length (meters/feet) in each category and the mean width of the cracking for 

each type are outlined for each region. A typical summary produced in this protocol is 

0.01 mile or less.  

Figure 6. Wheel-path definition [11] 

 

 

AASHTO R 55-10 Cracking Protocol 
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AASHTO R 55-10, “Standard Practice for Quantifying Cracks in Asphalt Pavement 

Surfaces,” describes the automated and manual proceedings to quantify cracking distress 

in asphalt pavement surfaces for network-level pavement management survey [12]. 

Similar to the AASHTO R 85-18 protocol, the cracks with the dimension 25 mm 

(length)*1 mm (width) are reported in this cracking protocol. Cracking within the wheel 

paths is predominately defined as “load associated or fatigue cracking” on the other hand, 

cracks outside the wheel path areas are defined as non-load-associated cracks. Figure 7 

shows the wheel path definition in the AASHTO R 55-10 cracking protocol, in which the 

crack distresses are divided into three severity levels. Table 3 shows the crack dimension 

at each severity level.  

 

Table 3. Severity level definition in AASTHO R 55-10 cracking protocol [12] 

Severity Level Dimension 

Level 1 Crack width ≤ 3 mm (1/8”) 

Level 2 3 mm (1/8”) ≤ Crack width ≤ 6 mm (1/4”) 

Level 3 Crack width ≥ 6 mm (1/4”) 

For each defined survey length (survey strip), intensity of cracking is calculated as the 

total length of cracking per unit area (m/m2 or ft./ft2)  
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Figure 7. AASHTO R 55-10 wheel path definition [12] 

 

Louisiana PMS Cracking Protocol 

Data in the PMS were collected according to the Louisiana Protocol, in which cracking is 

defined as a discontinuity of pavement [13]. Only two types of cracking are defined: 

fatigue (alligator) cracking and miscellaneous (random) cracking. Fatigue (alligator) 

cracking is defined in terms of its area in each wheel path on flexible pavements.  The 

area of each wheel path has a transverse width of 3 ft.  Louisiana Protocol clearly defines 

that longitudinal cracks which occur in the wheel path shall be classified as fatigue 

cracking.  

Fatigue cracking has three severity levels. If there are only longitudinal cracking with 

very little intersecting transverse ones, then it is rated as low severity fatigue cracking. If 

there are intersecting longitudinal, transverse, and diagonal cracks and the crack width is 

less than or equal 0.25 in., then it is rated as medium level severity cracks. If there are 

intersecting longitudinal, transverse, and diagonal cracks and the crack width is greater 

than 0.25 in., then it is rated as high-level severity cracks. The cracks may form a 

network of polygons or blocks and spalling may be evident.  

 

Any cracking not identified as fatigue (alligator) cracking is recorded as the 

miscellaneous (random) cracking in the PMS. Random or miscellaneous cracking 

includes types: longitudinal and transverse, each having three severity levels. If there are 

only longitudinal or transverse cracking (less than 0.25 in.) with no interconnecting 

cracks, then it is rated as low severity random (longitudinal or transverse) cracking. If 
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there are longitudinal or transverse cracks with width in between 0.25 in. to 0.50 in., then 

it is rated as medium-level severity random (longitudinal or transverse) cracks. If there 

are intersecting longitudinal or transverse cracks with width greater than 0.50 in., then it 

is rated as high-level severity random (longitudinal or transverse) cracks. Figure 8 shows 

the three severity levels of fatigue cracking according to Louisiana Protocol. 

Table 4. Summary of Louisiana cracking protocol [13] 

Crack Types Crack 

Location 

Measurement 

Unit 

Severity 

Level 

Dimension 

 

 

Fatigue Cracking 

(Alligator Cracking) 

 

 

 

Wheel Path 

 

 

 

ft2 

 

Low 

Interconnected 

hairlines 

 

Medium 

Hairline 

 ≤ Avg. crack 

width ≤ 0.25 in. 

High 

Avg. crack 

Width ≥   0.25 

in. 

 

 

 

 

 

 

Random 

Cracking 

 

 

 

Longitudinal 

Cracking 

 

Outside Wheel 

Path 

(predominately 

parallel to the 

center line) 

 

 

 

ft. 

 

Low 

Avg. crack 

width ≤ 0.25 in. 

 

Medium 

0.25 in. ≤ Avg. 

crack width ≤ 

0.50 in. 

 

High 

Avg. crack 

width ≥ 0.50 in. 

 

 

 

Transverse 

Cracking 

If a crack 

extends from 

one-wheel path 

to another 

(predominately 

perpendicular 

to the center 

line) 

 

 

 

ft. 

 

Low 

Avg. crack 

width ≤ 0.25 in. 

 

Medium 

0.25 in. ≤ Avg. 

crack width ≤ 

0.50 in. 

 

High 

Avg. crack 

width ≥ 0.50 in. 
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Figure 8. Louisiana protocol fatigue cracking definition [13] 

       

                              (a)                                        (b)                                     (c) 

DOTD Pavement Condition Indices. DOTD uses the deduct value approach to 

calculate the pavement indices. For each distress type, distress indices are calculated on a 

scale of 0 to 100 where 100 indicates no distress. For each cracking type (alligator and 

random) there are different deduct points for each severity level [13]. Equations (1)-(2) 

are used to calculate the alligator cracking (ALCR) and random cracking (RNDM) 

indices.  

𝐴𝐿𝐶𝑅 =  𝑀𝐼𝑁 (100, 𝑀𝐴𝑋 (0, 100 − 𝐴𝐿𝐺𝐿𝐷𝐸𝐷𝑈𝐶𝑇 − 𝐴𝐿𝐺𝑀𝐷𝐸𝐷𝑈𝐶𝑇 −

 𝐴𝐿𝐺𝐻𝐷𝐸𝐷𝑈𝐶𝑇))                                                                                                             (1) 

𝑅𝑁𝐷𝑀 = 𝑀𝐼𝑁(100, 𝑀𝐴𝑋 (0, 100 −  𝑅𝑁𝐷𝑀𝐿𝐷𝐸𝐷𝑈𝐶𝑇 − 𝑅𝑁𝐷𝑀𝑀𝐷𝐸𝐷𝑈𝐶𝑇 −

 𝑅𝑁𝐷𝑀𝐻𝐷𝐸𝐷𝑈𝐶𝑇))                                                                                                         (2) 

In which the subscripts H, M, and L refer to the high severity, moderate severity, and low 

severity cracking, respectively. Except for the wheel path cracking (alligator and 

longitudinal cracks on wheel paths) all other cracks fall in the random cracking criteria. 

The high, moderate, and low severity deduct values can be determined from the 

interpolation of cracking extent ranges shown in Table 5 and Table 6 (Louisiana Protocol, 

2014).  
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Table 5. Alligator cracking deduct values 

Table 6. Random cracking deduct values 

 Extent (ft.) 

Severity 0-31 31-301 301-1601 1601-5001 5001-6001 > 6001 

LOW 0 1-3 3-16 16-18 18-20 20 

MED 0 1-16 16-21 21-30 30 30 

HIGH 0 1-26 26-28 28-42 42-48 48 

Equation (3) can be used to calculate the Pavement Condition Index (PCI) for flexible 

pavements in Louisiana. For PCI calculation, only ALCR and RNDM cracking indices 

are used.  

PCI = MAX (MIN(RNDM, ALCR, PTCH, RUFF, RUT ), [AVG(RNDM, ALCR, PTCH, RUFF, 

RUT ) -  0.85 STD(RNDM, ALCR, PTCH, RUFF, RUT)] )      (3) 

Where,  

RNDM = Random Cracking Index,  

ALCR = Alligator Cracking Index,  

PTCH = Patching Index,  

RUFF = Roughness Index and  

RUT = Rutting Index.  

MEPDG Cracking Definition 

 Extent (ft2) 

Severity 0-51 51-701 701-1301 1301-2401 2401-3168 >3168 

LOW 0 1-16 16-21 21-25 25-28 28 

MED 0 1-21 21-29 29-36 36-49 49 

HIGH 0 1-29 29-43 43-50 50-61 61 
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The AASHTOWare Pavement ME Design is the latest pavement design software from 

AASHTO, which follows the Mechanistic-Empirical Pavement Design Guide (MEPDG) 

introduced by NCHRP. Three types of cracking distress are defined in the current 

MEPDG for flexible pavement: alligator cracking, longitudinal cracking, and transverse 

cracking.  

Alligator Cracking (Bottom-up Cracking): The alligator cracking defined in the 

MEPDG is a form of load-related cracking that initiate at the bottom of the HMA layers. 

A series of cracks interconnect with each other to form an alligator pattern. These 

interconnected cracks are initially seen as longitudinal or transverse cracks of different 

sizes and shapes. MEPDG presumes that the alligator cracking starts at the bottom of the 

asphalt layers and propagate through the layers to the surface under continuous traffic 

loading. These cracks predominately appear in the wheel path of the traffic lane and are 

presented as the % of the lane area in MEPDG [14].  

Longitudinal Cracking (Top-down Cracking): The longitudinal cracking 

defined in the MEPDG is a top-down cracking that initiates from the pavement surface 

and propagates to the bottom. It is a wheel load-related cracking that occurs within the 

wheel path and mostly parallel to the pavement centerline. This type of cracking initially 

shows up as short longitudinal cracks and then become connected with other cracks with 

continuous truck loadings. Other distress such as raveling and crack deterioration may 

show up along the crack edges, but they do not develop any pattern. Longitudinal 

cracking is presented as the total feet/mile by MEPDG. [14] 

Transverse Cracking (Thermal Cracking):  The transverse cracking defined in 

the MEPDG is thermal cracking. This type of cracking is primarily non-load related and 

occurs predominately perpendicular to the pavement centerline. Transverse cracking 

mainly caused by low temperature or change in thermal cycling. The unit of transverse 

cracking calculated by the MEPDG is feet per mile (meters per kilometer) [14].  

Literature review of the cracking definitions indicates that different federal and state 

agencies have their own protocols for classifying crack distress. But in general, all the 

protocols use either a manual or automated system for cracking distress survey.  

Past Studies on Pavement Surface Distress Survey  

Manual Pavement Distress Survey 
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In general, a manual pavement survey is performed and recorded by a crew of trained 

raters to collect surface distresses and crack maps for a pavement section according to a 

designated distress identification manual [15]. A manual pavement survey may be 

conducted by a variety of transportation: 

 Walking survey: Trained raters walk down along pavement test sections to visually 

identify and perform the manual measurements in terms of the distress types, 

quantities, and severities. 

 Bicycle survey: Raters ride along the road and visually record the distress type and 

severity with estimated quantities.  

 Driving or Windshield survey: Inspectors drive their vehicle and record the 

distresses for each type and severity level. In this method, instead of reporting the 

quantities of each distress, the raters report the distresses as the percentage of total 

pavement area or length. Such as 10% of pavement area is affected by alligator 

cracking or 15% of the total pavement length is affected by the longitudinal 

cracking. 

According to Haas et al. [16], the walking survey performed by an experienced rater or 

crew can provide the most accurate surface distress identification and measurements 

among other survey methods. However, the walking survey is also the most time-

consuming, costly and unsafe pavement survey method [17]. The walk survey is often 

only considered in a project level pavement evaluation, in which the pavement 

performance models may be developed and calibrated using a set of more accurate 

pavement distress survey results. For a network level pavement survey, the combination 

of both walking and windshield surveys can a good method to use, in which a randomly 

selected 15% of a pavement network may be walking-surveyed and the results are 

checked with those from the windshield survey for the entire network [16].  

The NCHRP Synthesis 401 study proposed a semi-automated manual measurement 

method as the reference values to evaluate the automated distress measurements [18]. 

According to Kargah-Ostadi et al., in the semi-automated method raters use the high-

resolution pavement images to locate and identify pavement cracking distress using a 

computer, and measure the extent and severity of each cracking distress type. This 

method is also time-consuming for a network-level pavement survey application and 

requires most of the human interference [19, 20, 21, 22].   

Even though manual distress survey is the typical way to conduct pavement condition 

surveys, due to the issues of time, cost-effectiveness, and safety, in recent years most of 
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the state transportation agencies are transitioning towards automated methods of 

pavement distress data collection. 

Automated Cracking Distress Survey  

Automated surveys at traffic speed are now performed at network level in many state 

agencies and other countries for collecting pavement surface condition data. An 

automated pavement distress evaluation starts by obtaining 2D or 3D pavement images 

using a high speed survey vehicle and then run an image analysis involving various 

imaging algorithms to identify and classify pavement distresses. Figure 9 illustrates the 

typical methodology of the automated pavement distress evaluation, which includes data 

acquisition, data storage, image display, automatic distress processing, and distress 

report. One previous imaging analysis software is the Automated Distress Analyzer 

(ADA), which processes 2D pavement images at 1-mm resolution for cracking 

information with full-lane coverage at highway speed. Due to varying lighting conditions 

and low contrast, a 2D pavement image system is usually subjected to a higher level of 

error in the cracking measurement as compared to a manual rating survey. As 3D survey 

technologies become mature and reliable, the current pavement cracking survey is mostly 

using 3D laser cameras.  

Figure 9. Automated distress evaluation process [2] 

 

Evolution of Automated Distress Survey Technology 

Haas et al. developed the first pavement distress survey vehicle which could collect 

various pavement distress data. The vehicle was also equipped with 2D cameras to collect 

pavement images and used an image recognition technology to detect and classify 

pavement surface cracking [23].  
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New Mexico researchers developed an automated distress evaluation system in 1994. It 

uses camcorders on a data collection vehicle to capture pavement images at 15 mph. 

Collected videos are then digitized into images and the accompanied algorithm classified 

the cracks in alligator, longitudinal, and transverse categories [24]. 

Wang et al. introduced digital area scan and line scan cameras in the pavement condition 

survey vehicle that can collect pavement images at 60 mph. Area scan cameras performed 

better than line scan cameras and can be integrated into any vehicle. Authors also 

developed a 2D image processing algorithm to exclude the distress free areas of 

pavement out of consideration which could potentially save a lot of time [25].  

According to Chambon et al. image processing technology plays the most crucial role in 

distress detection, classification, and quantification. Over the years, pavement image 

collection systems have improved a lot and it is essential to develop reliable image 

processing systems to provide useful pavement condition surveys [26].  

Zakeri et al., authored a study to discuss the various steps to successfully survey the 

cracking distress in asphalt pavements. According to this research, there are five main 

stages of image processing to evaluate pavement cracking distress: pre-processing of 

images, image segmentation, feature extraction, crack detection, and classification. Image 

pre-processing is required to eliminate unwanted marks in the pavements, such as oil 

stains, tire marks, etc. Image segmentation is required to locate the area of interest 

(location of distress). Feature extraction is necessary to identify useful features for the 

next two steps: crack detection and classification [27].  

Tsai et al. assessed the execution outputs of six different methods for crack segmenting 

using actual pavement images from Atlanta, Georgia. Six different crack segmentation 

algorithms were compared against each other both quantitively and qualitatively. 

According to this research, the Dynamic Optimization-based algorithm performed better 

than the other five methods. Dynamic optimization method was able to detect hairline 

cracks which are very useful to select proper preventative measures [28]. 

Zou et al. proposed ‘CrackTree’ procedure for automatic crack detection from pavement 

2D-images. Researchers applied the geodesic shadow removal algorithm to remove 

shadows from the pavement and get a clean image only highlighting the crack. 

Threshold-based algorithm and tensor voting was utilized to effectively prepare a crack 

map. ‘CrackTree’ algorithm can process 1 image with 800*600 resolution within 12 sec 

[29] 
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Oliveira et al. developed a fully automated crack detection and characterization system 

(CrackIT) using 2D pavement images. Unsupervised training of previously sampled 

crack images was conducted to successfully detect pavement crack. Pavement images 

were divided into a small block of pixels. Crack detection algorithm used unsupervised 

training to identify the pixels which contain crack (cracked pixels are typically darker 

than the surroundings). Then detected crack blocks are characterized according to the 

Portuguese Distress Catalogue. CrackIT system also provided a way to determine the 

severity level of each crack. The proposed method can process 56 pavement images in 2 

minutes, but the precision of the crack detection algorithm was not good as it provided 

many false positives results. Collected pavement images contained no shadows from the 

roadside objects which was another drawback of the proposed method [30].  

Hoang et al. authored a comparative study on the performance of six machine learning 

techniques that are being used for automated pavement crack recognition. Naive 

Bayesian Classifier, Classification Tree, Backpropagation ANN, Support Vector, Radial 

Bias Function Neural Network, and Least Squares Support Vector Machine (LSSVM) 

were compared against each other and the researchers discovered that LSSVM 

outperformed other classification algorithms [31].  

The latest development in automatic pavement distress surveys is the application of 3D 

laser sensors. In recent years, 3D imaging technology gained favors from state agencies 

for pavement distress identification because it can measure the depths of the pavement 

distresses. Thus, research to establish an automated technology platform that can evaluate 

the key pavement distresses in 3D at highway speed is necessary to conduct [32]. 

Jiang et al. conducted a study to employ 3D pavement images and an enhanced dynamic 

optimization algorithm to improve pavement crack segmentation. The three-part 

optimization algorithm consisted of: applying two-step Gaussian filter to reduce the 

outliers, rut section and cross slope of the pavement, and identifying the regions which 

might have crack and determine the orientation of each crack. Four types of pavement 

cracking (alligator, longitudinal, transverse, and block) were evaluated and compared 

against the typical optimization algorithm. The researchers found that the enhanced 

algorithm took 1/4th of the computation time and the accuracy of the proposed algorithm 

was much better than the typical algorithm [33].  

Zhang et al. developed a convolutional neural network (CNN) based architecture- 

‘CrackNet’ to automatically detect pavement cracks using 3D images. ‘CrackNet’ 

architecture was trained with 1800 3D pavement images and 200 images were utilized for 
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the validation purpose. This system does not use the commonly used pooling layers in 

developing CNN. The developed architecture divides the images into equal pixels and 

utilizes the feature extractor to define the widths, lengths, and orientation of each pixel. 

The developed architecture provides class scores for all pixels. Results from this research 

shows that ‘CrackNet’ architecture has higher precision, recall, and F-measures scores 

compared to other crack detection algorithms [34]. Li et al. proposed an improvement of 

the ‘CrackNet’ technology by using a deeper architecture and fewer parameters. The 

newly proposed ‘CrackNet-V’ architecture performed better when compared to the 

‘CrackNet’ architecture with higher precision, recall, and F-measure scores. Even though, 

‘CrackNet-V’ architecture was most efficient for 3D asphalt pavement crack detection, 

the results for wide cracks were not satisfying [35].  

Commercial Automated Systems and Processing Software 

The most important and integral part of the automated pavement condition survey is the 

data collection vehicle. There are different kinds of data collection vehicles available in 

the market that follows various technologies to collect distress data from the pavement. 

All these technologies follow one basic mechanism so that they can collect data from the 

pavement at a highway speed. Improvement of computer hardware and image processing 

systems led to the implementation of automated distress detection and classification 

systems. This part will discuss different vehicles and software that are in use for 

pavement crack detection and classification. 

WiseCraX [25]: This system was developed by Roadware Inc. The system 

consists of three underlying systems: data collection, crack identification, and crack 

classification. Automatic Road Analyzer (ARAN) vehicle takes care of the data collection 

component. ARAN collects continuous pavement images with two video cameras 

attached at the back of the vehicle and covers the whole survey length. Each camera 

covers two meters wide area and images from each camera are stored sequentially in a 

single folder. WiseCrax follows a speed encoding algorithm that allows the camera to 

collect pavement images even at very high speed (80 km/h) and without shadows.  

The crack detection algorithm developed for this system digitizes the photos from both 

cameras and converts into grayscale images. The detection algorithm identifies the 

beginning and endpoint of each crack and uses the x-y coordinate system to identify and 

mark each crack precisely. Length, extent, width, and location of each crack are reported 

and sorted. This whole process is called vectorization. Once the vectorization is 

completed, the algorithm then produces a crack map on the pavement surface, and data 

for each crack is reported in a table as a single entry. Classification of different cracks in 
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WiseCrax method is very flexible. As different agencies have different definitions and 

classifications protocols, the WiseCrax system was developed in a way that can meet the 

requirements of any classification protocol. 

INO Laser Crack Measurement System (LCMS): INO LCMS system was 

developed by the National Optics Institute of Canada [36]. LCMS system can be 

deployed in a pavement management system to identify cracks and prioritize 

rehabilitation and preventative measures according to the need, cost allocation, and time 

constraints. This system has high-resolution cameras attached at the back of the vehicle 

which use specially built cameras and laser tools to acquire 2D and 3D images. LCMS 

system can automatically identify and analyze cracks according to the specified 

classification protocols. Cracks can be classified as transverse, alligator or longitudinal 

and can be evaluated according to their severity level. It can operate both in the day and 

nighttime and LCMS system can operate at a speed up to 100 km/h. The cameras can 

cover a 4-m wide road. 

Figure 10. INO laser crack measurement system (INO) 

      

               (a) INO LCMS vehicle                           (b) INO LCMS cameras (sensors) 

Automated Distress Analyzer (ADA): An automated distress analyzer (ADA) 

was developed to detect and classify the cracks from real-time pavement images collected 

by the Digital Highway Data Vehicle (DHDV). Though DHDV has three subsystems: 

laser road profiling, pavement surface imaging, and right of way imaging, ADA mainly 

works with the pavement surface imaging to analyze the cracks [32].  

For image acquisition purposes, tow line-scan cameras and two downward facing laser 

device pointers are attached with the DHDV vehicle. The system named Laser Road 

Imaging System (LRIS) allows the attached cameras to capture a limited amount of 
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information from the surface of the pavement within a narrow spectrum which in turn 

produce shadow-free pavement images. Two cameras can capture 4-m wide pavement 

surface when running at a speed of 100 km/h or more. 

Figure 11. DHDV system and dataflow of DHDV [32] 

 

     (a) DHDV and LRIS                      (b) Working algorithm of DHDV system 

The Automated Distress Analyzer (ADA) uses pavement surface images collected and 

processed by the DHDV system to first detect and then classify the cracks according to 

different protocols. Linear cracks that are parallel to the pavement surface are classified 

as longitudinal cracks and perpendicular cracks are classified as transverse cracks 

respectively. Block cracks and alligator cracks are classified as Patterned Cracks. Lastly, 

a crack map is generated to highlight the detected cracks. 

Pave 3D and Vision: Vision is a software developed by Fugro to automatically 

detect pavement cracks and classify them according to their severity level. This 

proprietary software of Fugro uses the pavement images collected by the vehicle ARAN 

developed by Roadware Inc.  

Among other subsystems installed in the ARAN vehicle, Pave 3D subsystem collects the 

pavement images at a highway speed which can be used for pavement crack detection 

and classification by the Vision software. The hardware used in the modern day ARAN 

vehicle consists of a dual scanning camera Laser Crack Measurement Sensors (LCMS) 

developed by INO and Pavemetrics [37]. Pave 3D system can develop detail 3D models 

of the pavement and crack data can be extracted from the 3D model. ARAN can collect 

5600 profiles while running at 62 mph with a profile spacing of 5 mm. It has a transverse 

field of view of 4 m or 13 ft. Z-axis (depth) resolution of 0.5 mm and x-axis (transverse) 

resolution of 1 mm [37]. Cracking data are collected from a 3D profiler. The system 
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utilizes the 3D imaging technology for each crack to ensure that the crack has propagated 

through the pavement. The 3D imaging system can substantially lessen the false positive 

error and improve the reliability of the cracking data.  

Fugro uses its Vision software and the supporting pattern identification algorithm to 

ascertain the types of cracking. Cracking data are then measured and rated according to 

the distress identification document provided by the clientele.  

Figure 12. ARAN vehicle and subsystem [37] 

 

Evaluation of Automated Cracking Measurements 

The quality of the manual distress survey heavily relies on the rater due to its subjective 

nature. A study by Rada et al. [22] found that the variability of an individual rater, even 

an accredited one, was large for any distress type. To provide a reliable and standardized 

specification for gathering pavement distress data for the LTPP program, AASHTO 

developed the Distress Identification Manual, which was first issued in 1987 and then 

updated in 1993, 2003, and 2014[32]. 

NCHRP sponsored a synthesis study on the automated pavement distress collection in 

2004 [2]. Regarding the cracking distress, the study reported that, among a total of 56 

responses, pavement images were collected through means by 30 agencies, but only 14 

agencies implemented the automatic processing of the distress data. The others applied 
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the semi-manual data processing techniques using the pavement images. The major issue 

regarding the manual process was the inability to identify the distresses in a fast and 

reliable manner.  

In terms of the accuracy of the automated distress survey, McQueen and Timm conducted 

the statistical analysis of the automated survey versus the manual survey for Alabama 

DOT [38]. It was found that the automated survey under-reported the alligator cracking 

with the severity of Level 1 and over-reported the alligator cracking with the severity of 

Level 3. For the purpose of pavement management, the study concluded that all types of 

cracking measurements need more accuracy. 

McNeil and Humplick evaluated the data-acquisition component of two automated 

optical technologies and identified the main sources of error [39]. Different from other 

studies in which evaluation was made based on pavement images, this study simulated 

the longitudinal and transverse cracks. In this study, the parameters for the crack length, 

width, orientation, and spatial distribution were identified based on the visual inspection 

of a parking lot by a nine-person team. Researchers found that both technologies showed 

poor accuracy in the detailed report. However, when the number of observations were 

limited, and big sections were selected for comparison the results were comparatively 

good. In addition, the analysis demonstrated that the low-resolution quality of the images 

was responsible for measuring the wrong crack width, while the accuracy of the crack 

detection technology was affected by the crack length measurements. Since technologies 

have advanced greatly in the past two decades, the problems identified in this study might 

have been solved. Nevertheless, the methodology used in this study (i.e. simulation) is 

still appropriate to evaluate the latest automated distress acquisition systems. 

Offrell et al. investigated the repeatability in the collection of the cracking distress of 

flexible pavements by video cameras, laser cameras, and a simplified manual survey [40]. 

10 repetitive measurements were taken on a 10-km pavement section. Cracking was 

measured by two camera systems installed on the same vehicle—four analog video 

cameras mounted at the rear of the vehicle and six laser distance measuring cameras 

installed at the front of the vehicle. Subsequently, a typical windshield survey was 

performed by three different raters. Results showed that the two automated methods 

showed high repetition while the measurements from manual survey were comparatively 

low. Hence, the manual survey at the network level was not recommended. The authors 

also discussed other reliable measurements that automatic methods provided, such as the 

crack length, position, direction, shape, and percentage of the cracked area. 
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New Jersey DOT (NJDOT) conducted a study to compare the data collected by human 

raters with those by the automated distress survey equipment [7]. Two vendors collected 

the data of the pavement condition on fourteen selected test sites. Then the NJDOT staff 

investigated the pavement condition through a windshield survey. The starting point of 

the test sites was marked with a white paint stripe that could be identified in the images 

and assist the vendors as a reference point for the repeated runs. Through graphical 

comparisons and statistical analyses, it was concluded that the automated distress survey 

equipment was applicable to collect the cracking distress data with the quality control 

checks.  

Another study conducted in Australia [41], evaluated both 2D and 3D automated crack 

detection and measurement systems and found a strong correlation between two 

automated measurements when the pavement surface was dense graded. For the rough 

textured surface, the false positive error and measurement error increased significantly. 

Qiu et al. compared the 3D crack measurement system with manual measurements in 

terms of inherent errors and found those crack measurements varied significantly for two 

systems [4]. 

Wang et al. conducted a precision test of the cracking package in the Automated Distress 

Analyzer [32]. The study analyzed 20 road sections consisting of four severity levels. In 

the precision test, four out of the twenty road sections were manually surveyed repeatedly 

by nine raters four times. The rest of the 16 roadway sections were manually rated by 

three raters who demonstrated the ability to be statistically consistent. The UK 

SCANNER protocol was used to calculate the index for each section as an indicator of 

the cracking condition. The nine raters were considered as “laboratories” and, similarly, 

four pavement sections as “material”. The importance of the precision test was that it 

obtained the precision statistics of the raters’ data before using them to establish the 

reference and the acceptable range for the data from the automated survey. Unlike 

accepting a simple average of all raters, the precision test identified outliers and only 

retained those statistically reasonable data for further analysis. Overall, the study found 

that 90% of the automated results were statistically acceptable. As expected, the semi-

automated results for all sections were within the acceptable range. Furthermore, the 

study tracked the time consumed in each process (manual, semi-auto, and auto). Results 

showed that manual processing took 45 minutes to 2 hours to evaluate one 0.1-mi section, 

depending on the distress quantity of the section. Semi-automated processing took less 

than half of the time required for manual processing. Automated processing only took 16 

seconds per section in a moderately equipped computer. Hence, the study concluded that 
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the time and cost savings from a fully automated survey can be substantial when it is used 

for a large network.  

A recent study [8] evaluated three different automated crack detection systems with 

manual cracking measurements on twenty 550-ft. pavement sections in Texas. The results 

showed that a large number of false positives and missed cracks were observed between 

the manual measurements and those from the three automated systems considered. The 

false positive indicates that the automatic detection system reports a crack, however, no 

crack can be detected from manual measurements. Meanwhile, the missed crack refers to 

an error when the automatic detection system does not report a crack but the crack is 

detected from manual measurements. This study generally confirms that there still existed 

a certain degree of inconsistency between the manual and automated cracking 

measurements under the current state of the practice in high-speed data collection 

technologies. On the other hand, this study also reported that the number of false 

positives may be significantly reduced if applying manual post-processing on the 

automated cracking measurements. This implies that both the accuracy and quality of the 

automated cracking measurements may be improved through a manual post-processing 

procedure, if available. 

Kargah-Ostadi et al. developed a framework to evaluate the accuracy, precision, 

repeatability, reproducibility, and efficiency of manual, semi-automated, and automated 

survey systems for rigid pavement. The results demonstrated that automated system 

provided somewhat accurate results (83%) in transverse cracking measurements when 

compared to the manual surveys (75%) but the accuracy was far less when compared to 

the semi-automated method (93%). For longitudinal cracking, the accuracy of the 

automated system was lower than transverse cracking (71%). Precision analysis showed 

that automated system had lower precision compared to the manual and semi-automated 

method. Researchers identified that automated system was unable to provide correct 

crack detection and measurements in the presence of joint strips, lane strips or pavement 

markings [20]. 

Tao et al. conducted a research to statistically evaluate the performance of Mississippi’s 

state of the practice automated cracking distress survey system [42]. Manual/Semi-

automated cracking survey results from 22.8 miles of asphalt pavement was used as the 

reference or ground truth value to evaluate the automated system. The results showed that 

automated system over detected longitudinal and transverse cracking as the false 

positives and precision error rates were higher than the missed crack and recall error. 

Statistical analysis on the crack measurement shows that the accuracy and precision of 
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the automated system were better for transverse cracking measurement than longitudinal 

cracking. Although, the automated system showed underestimation tendency in crack 

measurement. Overall, researchers concluded that the automated survey method is not 

reliable and still not ready to replace the traditional semi-automated method.  

Artificial Neural Network (ANN) in Pavement Condition Survey  

ANN Introduction 

ANN is a globally accepted analogical tool that imitates the biological function of human 

brains. Fundamental elements in ANN are called nodes, which are similar to the neurons 

and weighted connections behave like synapses in the human biological system [43].  

Like human brains, ANN can learn from experience as the nodes process the information 

locally and improve the performance of the model in the environment [44, 45]. 

Nowadays, ANN is a frequently utilized tool because of its ability to work with non-

linear data, tolerance for outliers, the generalization of data, and flexibility with fitting 

complex datasets. Furthermore, there are various types of ANN that can be utilized in 

different scenarios based on the characteristics of problems [46].  

The application of neural networks in the civil engineering sector has increased over the 

past few decades because of its adaptability to work with complex non-linear data. ANNs 

have been found to be very useful in dealing with pavement engineering problems due to 

the non-linear approximation of functions [47]. According to Plati et al. ANN can be a 

very essential tool to deal with large or small datasets. Although, modeling with large 

datasets provides more accurate approximation [48].  

Feed-Forward ANN: Feed-forward ANN models are one of the most common 

types of ANN models and are generally used for function approximation and regression. 

A typical feed-forward neural network consists of input layers, hidden layers, and output 

layers. In the input layers, one or more independent variables can be defined. Output 

layers may consist of just one or multiple target variables and hidden layers deal with 

weight adjusting and updating. Single or multiple hidden layers can be used to process 

the data until the model produces the desired result. All of the layers may contain 

multiple neurons/nodes to process the data. These neurons are interlinked with each other 

and previous layers. Bias is distributed among each neuron and weight is assigned to the 

connection link among the neurons [49].  
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Figure 13. Typical feed-forward ANN architecture [50] 

 

Back-Propagation ANN: Back-propagation ANN uses the training of the input 

data to produce the desired output to match with the target values. Back-propagation 

algorithm utilizes gradient descent and the mean square error to modify the weights in the 

neuron connections. In this algorithm, a little weight is assigned at the network 

connection at first, and then the learning sample is adjusted to achieve the minimum 

gradient of the error. The difference between the predicted output and target value is 

described as the error signal. The error signal is propagated from the predicted or output 

layer to the input layer. Weights in each connection are updated regularly to match the 

predicted output with original target values [51]. 

Figure 14. Typical back propagation ANN [43] 
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Torrecilla et al. provided a brief description about the different learning algorithms used 

in ANN back-propagation. Selection of a learning algorithm depends on the 

characteristics of the problem. Table 7 provides a brief overview of the generally used 

training algorithms used in back-propagation ANN.  

Table 7. Brief description of commonly used training algorithms in back propagation neural 

networks [52] 

Learning 

Algorithms 
Descriptions 

Variable Learning Rate- Gradient Descent 

TRAINGD Learning rate is slow and can be used in incremental training. 

 

TRAINGDM 
Faster than TRAINGD and can be used in incremental training. 

TRAINGDX Faster than TRAINGD. Can only be used in batch mode training. 

TRAINGDA 
Faster than TRAINGD and TRAINGDM. Can only be used in batch 

mode training. 

Resilient Back Propagation 

TRAINR 
Random incremental training. Minimal storage with fast 

convergence.  

TRAINRP 
Minimal storage with fast convergence. Can only be used in batch 

processing. 

Conjugated Gradient Descent 

TRAINCGF Smallest storage requirements. 

TRAINCGP Faster than TRAINCGF and larger storage requirements.  

TRAINCGB Faster than TRAINCGP.  
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Learning 

Algorithms 
Descriptions 

TRAINSCG Used for general purpose training.  

Quasi-Newton Algorithm 

TRAINBFG 
More iteration in each conjugate and Fast convergence. BFGS 

Quasi-Newton Method. 

TRAINOSS 
Adjust between Quasi-Newton method and Conjugate Gradient 

method. 

Levenberg-Marquardt 

TRAINLM 
Memory reduction features and fastest training algorithm for 

moderate sized network.  

Automated Regularization 

TRAINBR 
Bayesian regularization. Modification of Levenberg-Marquardt 

algorithm.  

Aside from training algorithms, transfer functions are used in ANN to learn the temporal 

frequency or non-linear relationship among inputs and outputs variables. The most 

commonly used transfer functions are Log-sigmoid transfer function (LOGSIG), 

Hyperbolic tangent transfer function (TANSIG), and PURELIN transfer function. 

LOGSIG and TANSIG transfer functions generally have a sigmoidal shape. Although, 

they can take other forms based on the non-linearity of the data. Outputs from LOGSIG 

and TANSIG transfer functions range from 0 to +1 and -1 to +1 respectively [53]. 

LOGSIG, TANSIG, and PURELIN transfer functions can be estimated from Equations 

(4-6) [54]. 

𝐿𝑂𝐺𝑆𝐼𝐺:  𝑌𝑖= 
1

(1+𝑒𝑥𝑝(−𝑋))
                                                                                                (4) 

𝑇𝐴𝑁𝑆𝐼𝐺: 𝑌𝑖 = tanh (X)                                                                                      (5) 

𝑃𝑈𝑅𝐸𝐿𝐼𝑁: 𝑌𝑖 = (X)                                                                                            (6) 
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ANN in Pavement Condition Prediction 

Sollazzo et al. used the pavement roughness data from the LTPP database to develop an 

ANN model to predict the structural performance of the pavement. Researchers used a 

Multi-Layer Feed-Forward ANN as the prediction model where the inputs were: 

roughness index, structural parameters, traffic parameters, and climatic parameters 

collected from the LTPP database, and the target value was the structural numbers 

calculated from the FWD data. Results showed that ANN model produced high accuracy 

in predicting structural number with R2 values 0.877, and 0.850 for validation and testing 

dataset respectively. The authors concluded that ANN model can successfully predict 

pavement structural performance from roughness index, and it would minimize the 

necessity for frequent deflection testing [55].  

Vyas et al. conducted a similar study to predict the pavement performance from 

roughness data. Instead of collecting the input variables from any database, Vyas et al. 

conducted a thorough field testing program and collected 1452 observations. Vyas et al. 

used pavement roughness, structural parameters, and climatic parameters as the inputs 

and structural performance data derived from FWD testing as the target. The authors 

trained a total of 16 ANN models and the best model showed R2 values 0.875, and 0.868 

for testing and validation dataset respectively. Researchers also concluded that utilizing 

general pavement information and roughness data in ANN model can successfully reduce 

the frequency of FWD testing for structural performance determination [56]. 

Kargah-Ostadi et al. successfully implemented an ANN model to predict the pavement 

roughness index using pavement age, previous IRIs, HMA thickness, traffic data, and 

weather condition data. The developed ANN model produced an R2 value of 0.9578 when 

compared with the measured IRI [57]. Lou et al. developed an ANN model to predict 

pavement cracking index in Florida and compared the model with the typical 

autoregressive model. Research found that ANN model predicted the cracking index 

more accurately than the typical regression models [58].  



—  45  — 

 

Objective 

The objectives of this study are two-fold as follows: 

For DOTD Pavement Management System (LA-PMS) Collected Cracking Data:  

• Conduct a manual cracking distress survey using semi-automated image analysis 

approach; 

• Evaluate the accuracy and precision of automated cracking detection and 

measurement results for both 3-D and 2-D automated measurement systems 

considered in LA-PMS; 

• Perform a project level (a 50-ft. interval based) comparison analysis using the 3-D 

automated and manual cracking measurement results; 

• Conduct a network level ( a 0.1-mile interval based) comparison analysis using the 

3-D automated and manual cracking measurement results; 

• Develop an ANN application that correlates between the 3-D automated and 

manual cracking measurement results.  

 

For LTRC Digital Highway Data Vehicle (DHDVLTRC): 

• Develop a software application to generate an automated cracking survey report 

from the high-resolution 2-D images collected. 
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Scope 

To achieve these objectives, a comprehensive manual cracking survey was conducted on 

23 selected pavement sections in Louisiana. The 23 selected sections contained 28.6 

miles of flexible pavement. Manual measurements were reported for every 50-ft. 

subsections and 0.1-mile subsections for project and network-level assessment 

respectively. Automated cracking data for every 0.1 mile was collected from LA-PMS 

and 50-ft. cracking data were collected from the DOTD contracted vendor’s proprietary 

software.  Statistical analyses were conducted to find out the difference between the 

manual measurements and automated measurements. Statistical Analyses includes: 

Comparative analysis, accuracy and precision results, t-test, Monte-Carlo analysis and 

Simple Linear Regression. An ANN model was developed for the verification of PMS 

data for network-level evaluation. To utilize the LTRC vehicle’s high-resolution 

pavement images, an already established ‘Crack Detection’ application was modified to 

add a crack classification and measurement algorithm to provide an automated package 

for crack quantification.   
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Methodology 

The methodology of this research was divided into two parts. Firstly, as described in the 

literature, the LA-PMS data are based on pavement condition measurements that are 

collected biennially using an Automatic Road Analyzer (ARAN) system that provides a 

continuous assessment of the Louisiana pavement network. Historically the pavement 

crack measurement in LA-PMS were obtained from a 2D image collection system in 

ARAN. Starting from 2017, DOTD began to use a new 3D image collection system of 

ARAN in collecting its pavement condition data. The ARAN collected pavement images 

are further analyzed by an automated image analysis software called Vision for 

classification and quantity measurement of pavement cracking. In LA-PMS, the 

automated cracking reports for asphalt pavement include the alligator, longitudinal, 

transverse, and random cracking measurements on a 0.1-mile subsection base. Due to the 

cracking survey report generated by the automated system has not been fully validated, 

the first part of the study aims to provide a comprehensive quality assessment of the 

automated cracking data and provide recommendations for future applications. In this 

regard, the following tasks were performed:  

 Imaging Data Project Selection. 

 Manual and automated crack detection and classification. 

 Evaluation of 3D automated crack detection accuracy. 

 Statistical analyses between manual and automated cracking measurement 

at both the project and network levels. 

 Development and application of an ANN-based computer model for 

adjusting the automated cracking measurements in LA-PMS.  

Secondly, for the DHDVLTRC collected high-resolution 2D pavement images, this study 

developed a MATLAB-based computer program using an open source cracking 

identification algorithm in generating an automated cracking report for research purpose.  

Project Section 

LA-PMS Calibration Control Sites  

DOTD selects nine 0.5-mile long control pavement sites for calibration of the current 

vendor’s highway data collection system, or ARAN9000. Cracking distress data from 
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nine calibration control sites in Louisiana were used for the preliminary comparison 

among manual, 2D, and 3D automated data. Even though only flexible pavements were 

used for the quality assessment of 3D automated data, all three types of pavements in 

Louisiana (flexible, composite, and rigid) were used for this section. Table 8 represents 

the general description of the calibration sites used for the comparison in this section. 

Table 8 shows that total of 4.5 miles of pavement sections were rated from 9 control sites 

and each site was 0.5 miles long. The automated pavement condition data were collected 

by the vendor in 2016 on nine pavement sites with two image collection systems (2D and 

3D) for a comparison purpose. The calibration sites include three pavement types 

(asphalt, composite, and jointed concrete) and each are 0.5 mile long (Table 8). 

Table 8. General description of the calibration control sites 

Control Site No. District Route Begin mile 

post 

End mile 

poste 

Pavement 

Type 

CTLSITE-02 61 US190 3.2 3.7 JCP 

CTLSITE-03 61 LA019 6.8 7.3 COM 

CTLSITE-04 61 LA042 5 4.5 JCP 

CTLSITE-05 61 LA067 9.9 10.4 COM 

CTLSITE-06 61 LA067 6.4 6.9 ASP 

CTLSITE-07 61 LA010 1.2 1.7 ASP 

CTLSITE-09 61 LA019 11.4 11.9 COM 

CTLSITE-10 61 LA408 5.2 5.7 ASP 

CTLSITE-13 61 LA964 0.2 0.7 ASP 

Flexible Pavement Cracking Test Sections  

To evaluate the automated 3D crack measurement accuracy, test sections were selected in 

a way to represent the typical pavement conditions and characteristics of the Louisiana 

highway network. A total of 23 flexible pavement sections were selected based on 
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different variables associated with Louisiana pavements. The severity (e.g., good, fair, 

and poor) of the cracking was taken into consideration during the selection of the 

sections.  In addition, the selected sections are intended to represent most of the variables 

(e.g., geographic location, traffic level and year since last treatment) in the data collection 

process that DOTD encounters during the routine data collection. Figure 15 shows the 

geographical location of these projects. The selected test sections include 4 interstate 

asphalt pavements, 7 US highways, and 12 Louisiana roadways.  

Figure 15. Geographical location of the selected projects 

  

Table 9 shows the general description of the selected projects. In terms of initial traffic, 

ADT ranges from 640 to 37,510 vehicles per day which covers the low, medium, and 

high-volume roads. ALCR and RNDM column represents the alligator cracking index, 

and random cracking index respectively. ALCR range from 68.2 to 100. Subsequently, 

RNDM ranges from 70.8 to 100. Regarding the last treatment performed on these 

pavement sections, the year since the last treatment ranges from 1 to 36 years.  
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Table 9.  General description of the selected projects 

Control Section Route District Parish Length ADT ALCR RNDM 

Year 

since Last 

Treatment 

034-05-1-010 LA 0006 08 35 0.1-1.1 7000 77.9 86.6 17 

055-06-1-010 LA 0014 03 57 0.0-0.7 5872 84.0 81.3 36 

057-06-1-010 LA 0013 03 20 0.0-1.0 4400 77.6 94.3 11 

058-02-1-010 LA 0041 62 52 0.0-1.0 4200 87.9 98.0 9 

060-04-1-010 LA 0067 61 19 6.3-6.8 2700 73.7 81.4 30 

097-01-1-010 LA 0169 04 09 2.7-5.0 2500 80.1 90.8 22 

100-01-1-010 LA 0514 04 41 0.5-6.7 1320 75.7 83.7 11 

219-30-1-010 LA 0010 61 39 1.7-2.7 990 88.2 83.5 21 

230-03-1-010 LA 0075 61 24 0.0-1.0 1930 98.5 95.6 21 

300-04-1-010 LA 0513 04 16 0.0-1.0 710 98.3 98.9 8 

839-02-1-010 LA 0419 61 39 0.0-1.0 640 78.2 80.6 21 

841-02-1-010 LA 0788 04 41 1.0-2.0 970 68.2 78.1 24 

008-30-1-010 US 0071 08 40 0.0-1.0 19300 87.8 77.6 22 

008-01-2-010 US 0190 61 61 13.1-12.1 20100 82.3 90.7 13 

013-08-1-010 US 

0051-X 

62 53 0.0-1.0 23100 94.3 90.6 6 

015-05-1-010 US 0165 58 30 1.0-2.0 4900 98.1 95.6 1 

026-05-2-010 US 0425 58 13 7.0-6.0 4000 99.4 100 5 

080-01-1-010 US 0167 03 57 1.0-2.0 19300 99.9 95.9 7 

424-07-1-010 US 0090 02 55 17.8-18.7 22800 84.7 90.9 11 

450-03-1-010 I -0010 07 27 6.4-7.4 37,510 100 98.3 5 

451-01-1-010 I -0020 04 09 1.8-2.8 36,600 77.8 79.8 10 

451-06-1-010 I -0020 05 37 6.2-7.2 33,040 100 86.0 1 

454-03-1-010 I -0012 62 53 0.2-1.2 24,070 99.7 70.8 1 
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Manual Cracking Survey and Measurements 

In this study, the manual cracking survey was performed using a high resolution 

pavement image collected on selected pavement sites by ARAN. In a manual crack 

survey, a trained rater first manually marks all individual pavement cracks on a pavement 

image using the vendor provided image processing software on a workstation. Based on 

the DOTD’s cracking protocol the rater then identify manually each cracking type with 

severity levels and input the identified cracking information into the processing software. 

Finally, the process software produces a detail manual cracking report for a selected 

pavement section based on the marked pavement cracks and a chosen subsection length. 

Figure 16 presents an example of the manual crack survey.  

Figure 16. Manual data collection in a semi-automated way (a) crack detection and classification (b) 

generating manual cracking distress report 

 

(a) 
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(b) 

More specifically, in this study the manual cracking distress measurements were reported 

in each 50-ft. and 0.1-mile subsections for a project- and network-level analysis, 

respectively. Firstly, the wheel path was identified for every subsection. The next step 

was to mark the cracking distress and determine the type and severity levels according to 

LA-PMS. Detected cracks were classified as alligator, longitudinal, and transverse 

cracking. Alligator cracking was reported in three severity levels. If there was only 

longitudinal cracking with very few intersecting transverse ones in the wheel path, then it 

was rated and reported as low severity alligator cracking. If there were intersected 

longitudinal, short transverse, and diagonal cracks, that occur solely in the wheel paths, 

with crack widths that range from hairline to 0.25 in., then it was rated and reported as 

moderate severity alligator cracking. If there were intersecting longitudinal, transverse, 

and diagonal cracks that occur solely in the wheel paths, with the crack widths generally 

greater than 0.25 in. then it was rated and reported as high severity alligator cracking. The 

cracks may form a network of polygons or blocks, and spalling may be evident. Total 

alligator cracking measured for each section were reported in ft2. 

Cracks presented in the non-wheel path and predominately parallel to the traffic flow 

were classified as longitudinal cracking. Longitudinal cracking was reported in three 

severity levels. If the average crack width was less than 0.25 in., it was rated and reported 

as low severity cracks. If the average crack width was in between 0.25 in. to 0.50 in., it 

was rated and reported as moderate severity cracks. If the average crack width exceeds 

0.50 in., it was rated as high severity cracks. Total longitudinal cracking measured for 

each section were reported in ft.  
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Cracks that are predominately perpendicular to the traffic flow were classified as 

transverse cracking. Transverse cracking was reported in three severity levels.  If the 

average crack width was less than 0.25 in., it was rated and reported as low severity 

cracks. If the average crack width was in between 0.25 in. to 0.50 in., it was rated and 

reported was moderate severity cracks. If the average crack width exceeds 0.50 in., it was 

rated as high severity cracks. Total transverse cracking measured for each section were 

reported in ft.  

Random cracking measurements were calculated by adding the total longitudinal cracks 

and transverse cracks reported in each section. LA-PMS use alligator and random 

cracking indices to estimate the composite pavement condition index. In this study, one 

rater with a good knowledge of the current DOTD cracking measurement protocol 

manually rated on the collected LCMS3D images. The manual cracking measurements 

were then used as the ‘ground truth’ values for comparison with the automated computer-

algorithm identified cracking reports for Louisiana flexible pavements in LA-PMS. 

Automated Crack Detection and Classification. DOTD currently uses a 

vendors’ ARAN 9000 system in collecting the pavement condition data for LA-PMS 

(after 2017). ARAN 9000 is equipped with the automatic pavement crack detection 

sensor – Pave3D. The supporting software in the system was designed to automatically 

conduct crack classification and generate surface distress report for LA-PMS. Figure 17 

shows the Pave3D sensors’ working principle and a schematic of ARAN 9000 data 

collection vehicle. This system uses two 3D cameras and a laser to measure the surface 

coordinates.  

Figure 17. Pave3D sensor working principal and ARAN 9000 specification 

 

Upon completion of collecting 3D images at highway speed, the vendor uses its 

proprietary software to detect and quantify surface cracks of each type and severity. The 
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image processed cracking data are then transferred and stored in LA-PMS for each 0.1-

mile pavement subsection surveyed. The vendor’s image processing software uses a 

pattern recognition algorithm to classify the pavement cracks as alligator, longitudinal, or 

transverse cracking. Detailed reports and summary reports are produced after automated 

crack detection and classification. The detailed report contains the type, length, width, 

angle, extent, and severity level of each crack. On the other hand, the summary report 

includes the total length of different types of cracks and severity for a specific section. 

Usually for PMS, the vendor reports and summarizes the cracking data in a tenth of a 

mile subsection. 

For this research, automated data for 50-ft. subsections were summarized and reported by 

utilizing the supporting software. The 0.1-mile data were collected directly from LA-

PMS. There was a total of 323 data points for the 0.1-mile subsection and 2844 data 

points for the 50-ft. subsection. Each data point consists of the total number of cracks of 

different types, severity, and extent present in 0.1-mile or 50-ft. subsections. All the 

measurements were stored in the US system. Alligator cracking measurements were 

stored in ft2. Both longitudinal and transverse cracking measurements were stored in feet.   

Statistical Assessment of the Automated Cracking Measurements in LA-

PMS  

Accuracy of Automated Crack Detection 

In general, two types of error may be produced by the automated system: a missing crack 

error and a false positive crack error [37]. Both the false positive and missing crack errors 

were used in the comparative analysis between automated and manual cracking 

measurements in this study. The false positive error is a ratio (in percentage) between the 

total number of sections of falsely-report-A-crack by the automated system to the total 

number of sections detecting no cracks by the manual operator [i.e., equation (7)].  The 

missed crack error is a ratio (in percentage) between the total number of sections of miss-

detected-A-crack by the automated system to the total number of sections detected at 

least one crack by the manual operator [i.e., equation (8)]. 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 =  
∑ (𝑀𝑎𝑛𝑢𝑎𝑙=0,𝐴𝑢𝑡𝑜>0)𝑛

𝑖=1

𝑇𝑜𝑡𝑎𝑙 𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑠
× 100%                                            (7) 

𝑀𝑖𝑠𝑠𝑒𝑑 𝐶𝑟𝑎𝑐𝑘 =  
∑ (𝑀𝑎𝑛𝑢𝑎𝑙>0,𝐴𝑢𝑡𝑜=0)𝑛

𝑖=1

𝑇𝑜𝑡𝑎𝑙 𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑠
× 100%                                             (8) 
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Statistical parameters of error precision and error recall were also calculated using 

equation (9) and (10), respectively to evaluate the precision and accuracy of the 

automated system in a crack detection. 

𝐸𝑟𝑟𝑜𝑟 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑ (𝑀𝑎𝑛𝑢𝑎𝑙=0,𝐴𝑢𝑡𝑜>0)𝑛

𝑖=1

∑ 𝑀𝑎𝑛𝑢𝑎𝑙=0𝑛
𝑖=1

× 100%                                               (9)                                                                            

Error Recall =  
∑ (Manual>0,Auto=0)n

i=1

∑ Manual>0n
i=1

× 100%                                                 (10) 

Ground-Truth Comparison for the 3D Cracking Measurements 

At both a project level (a 50-ft. section based) and a network level (0.1 mile section 

based), statistical analyses were conducted between the 3D automated and the manual 

(ground-truth) cracking measurements for the selected pavement sections in this study.  

Specially, two statistical parameters—the mean measurement error (STE) and the 

standard deviation of the measurement error (STD)—were computed based on equation 

(11) and (12), respectively. The mean measurement error refers to the average standard 

error produced by the automated system for each distress type as against the manual 

readings. A negative measurement error suggested the automated system under-estimated 

the measurements and vice-versa. The mean measurement error also represents the 

general estimation of the accuracy for the automated system. 

𝑆𝑇𝐸 =  𝑌𝑖
𝑝𝑟𝑒𝑑 − 𝑦𝑖

𝑚𝑒𝑎𝑠                                                                                                 (11) 

𝑆𝑇𝐷 =  √∑ (𝑦
𝑖
𝑝𝑟𝑒𝑑

−𝑦𝑖
𝑚𝑒𝑎𝑠)2𝑛

𝑖=1

𝑛
                                                                                        (12) 

Where,  

STE = Standard Error of estimation 

𝑌𝑖
𝑝𝑟𝑒𝑑

 = Automated Cracking Measurements.  

𝑌𝑖
𝑚𝑒𝑎𝑠 = Manual Cracking Measurements 

n = Total number of data points.  

In addition, two statistical tests below were conducted to verify the accuracy and 

precision of the automated system currently used by LA-PMS. In general, the lower the 

absolute value of the average standard error indicates that the automated system can be 
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better representative the results from manual measurements. The two hypothesis-based 

tests were described below:  

• The t-test: A t-test with non-normally distribution was performed in this study 

on the mean measurement errors to verify the accuracy of the automated system. 

As shown in Figure 18, both manual and automated measurements were not 

normally distributed. The null hypothesis for the t-test is presented in equation 

(13):  

𝐻0 : (𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑𝑚𝑒𝑎𝑛 −  𝑀𝑎𝑛𝑢𝑎𝑙𝑚𝑒𝑎𝑛) = 0                                (13) 

Figure 18. Distribution of the cracking measurements from automated and manual measurements at 

project level 

    

(a)                                                                  (b) 

     

(c)                                                                  (d) 
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(e)                                                                  (f) 

• Fligner-Kileen (FK) Test: FK statistical variance analysis was conducted to 

evaluate the precision of the automated system [59]. The FK is a nonparametric 

statistical test that evaluates the equality of variances of two datasets. The null 

hypothesis considered in this study is given below: 

𝐻0 : (𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒)

= (𝑚𝑎𝑛𝑢𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒)                                                                

 

This test is more useful when the variables are not normally distributed and 

contains high number of data outliers. In the analysis, the median of a dataset 

is first determined to find out the residuals of each measurement from the 

median. Then those residual values are ranked and normalized. A Fligner-

Kileen statistic can be determined from the following formula:  

𝐹𝐾 =  
∑ 𝑛𝑖(𝑥𝑖−𝑥)2𝑗

𝑖=1

𝑉𝑎𝑟2                                                                                      (14) 

Where, j = number of methods, 

  ni = Size of the ith group. 

  xi = mean of the normalized values for ith group.  

  x = mean of total normalized values.  

  Var = variance of the all normalized values.  

FK statistics is used to determine the p-value. If p-value is less than the required 

significant level then the null hypothesis is rejected indicating the variances of the two 

dataset are statistically different from each other.  
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Development of ANN Cracking Prediction Model 

The main goal of developing an ANN-based cracking prediction application in this study 

was to create a set of direct correlation links between the 3-D automated and the manual 

cracking measurements in order to adjust the less accurate automated cracking datasets in 

LA-PMS towards the manual measured cracking results.  Selection of a proper 

architecture for an ANN model is the most important and complex task. In this study, a 

trial-version machine learning software application was used in the ANN’s architecture 

design and a multilayered backpropagated feed-forward ANN model using three hidden 

layers was developed. The architecture of the developed ANN model is presented in 

Figure 19. As shown in Figure 19, the input layer considers fifteen input parameters 

including nine automated cracking measurements at each three severity levels, other 

surface conditions of rutting, IRI and mean profile depths (MPD), and the surface 

treatment type and service years as well the average temperature during the data 

collection. The output layer contains nine predicted measurements for the alligator, 

longitudinal, and transverse cracking of three severity levels. 

Figure 19. Architecture of ANN model 

 

The ANN model was developed using the cracking measurements from 323 subsections 

(0.1 miles based) considered in this study. The measurement data of both the 3D 

automated and the manual were divided into three subsets: 55% for training, 30% for 

validation, and the remaining 15% data were used for testing. Such percentages of dataset 

breakdown were adopted after using a trial-and-error process in the model development 

https://en.wikipedia.org/wiki/Machine_learning
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to reach an overall best performance of the ANN prediction model developed. Training of 

the ANN model can be described as the process through which the network deploys 

preliminary values and subsequently optimize the connection weights to achieve a global 

minimum instead of a local minimum [60]. As a longer training cycle can cause the 

model to over-fit, a maximum of 1000 iterations were allowed in this study. Furthermore, 

the training of the model was discontinued when the validation error was leveled. 

Validation of the ANN model is necessary to evaluate the robustness of the model. Upon 

completion of the training and validate phases, independent 15% of data was used to test 

the proposed ANN model with respect to the accuracy in predicting the alligator, 

longitudinal, transverse cracking at each severity level. With that in mind, the correlation 

coefficient R, Coefficient of determination R2, Root Mean Square Error (RMSE) and 

Mean Absolute Error (MAE) of the ANN-predicted cracking measurements were used to 

evaluate the predicted cracking measurements. The RMSE and MAE were calculated 

using the following equations. 

𝑅𝑀𝑆𝐸 =  √1

𝑛
∑ (𝑌𝑖

𝑝𝑟𝑒𝑑 − 𝑌𝑖
𝑚𝑒𝑎𝑠)

2
𝑛
𝑖                                                                   (15) 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑌𝑖

𝑝𝑟𝑒𝑑 − 𝑌𝑖
𝑚𝑒𝑎𝑠|𝑛

𝑖                                                                                    (16) 

 

Where,  

𝑌𝑖
𝑝𝑟𝑒𝑑

 = Predicted Cracking Measurements.  

𝑌𝑖
𝑚𝑒𝑎𝑠 = Manual Cracking Measurements 

n = Total number of data points.  

Indices Analysis of Cracking Measurements in LA-PMS 

The ALCR (alligator cracking) and RNDM (random cracking) indices were calculated 

using equations (1) and (2). Pairwise T-statistical test was performed to check if there is 

any significant difference between automated indices and manual or ground truth indices. 

Similarly, a pairwise t-test was also conducted between the indices from ANN-predicted 

measurements and manual measurements. T-test was performed as it uses sample 

standard deviation instead of population standard deviation which will allow to 

qualitatively evaluate the precision of ANN-predicted and automated indices. Moreover, 

t-tests results for ANN-predicted and automated indices were compared against each 

other.  
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Monte Carlo simulation was used to evaluate the changes in the overall pavement 

condition index (PCI) due to errors from automated and ANN-predicted indices. Equation 

(3) was modified to find out the changes in PCI. This analysis uses a sequence of random 

numbers and uses the error result from each system to create a probability density 

function (PDF). Cumulative Density Function (CDF) is then estimated from the PDF. 

Monte Carlo simulation uses a random sampling technique from the CDF to produce the 

change in PCI due to error in each system.  

In PCI calculation, only ALCR and RNDM parameters were used. So, for this analysis, 

errors from ALCR and RNDM produced by automated and ANN-predicted 

measurements were utilized. The following describes the procedure of using Monte Carlo 

simulation in the PCI calculation: 

 Error from each parameter can be computed from equation (16): 

             𝐸𝑟𝑟𝑜𝑟 = 𝑦𝑖
𝑝𝑟𝑒𝑑 − 𝑦𝑖

𝑚𝑒𝑎𝑠                                                                    (16) 

Where, 𝑦𝑖
𝑚𝑒𝑎𝑠denotes the ALCR or RNDM from manual measurements and 𝑦𝑖

𝑝𝑟𝑒𝑑
 

denotes the ALCR and RNDM from automated or ANN-predicted measurements.  

𝑃𝐶𝐼𝑀  =

 MAX(MIN(RNDM, ALCR, PTCH, RUFF, RUT )𝑀, [AVG(RNDM, ALCR, PTCH, RUFF, RUT )𝑀 −

 0.85 STD(RNDM, ALCR, PTCH, RUFF, RUT)]𝑀)                                                   (17) 

𝑃𝐶𝐼𝐴  =

 MAX(MIN(RNDM, ALCR, PTCH, RUFF, RUT )𝐴, [AVG(RNDM, ALCR, PTCH, RUFF, RUT )𝐴 −

  0.85 STD(RNDM, ALCR, PTCH, RUFF, RUT)]𝐴)                                                   (18) 

Where, subscripts M and A denote manual results and automated or ANN-predicted 

results, respectively.  

To evaluate the effect of each parameter on PCI change, all the other parameters except 

for the one under review were set to 0. Equations (19) and (20) describe the change in 

PCI due to ALCR and RNDM error, respectively: 

∆𝑃𝐶𝐼𝐴𝐿𝐶𝑅  =  𝑀𝐴𝑋(𝑀𝐼𝑁(0, 𝐴𝐿𝐶𝑅𝐸𝑟𝑟𝑜𝑟 , 0, 0, 0 ), [𝐴𝑉𝐺(0, 𝐴𝐿𝐶𝑅𝐸𝑟𝑟𝑜𝑟 , 0, 0, 0  ) −

  0.85 𝑆𝑇𝐷(0, 𝐴𝐿𝐶𝑅𝐸𝑟𝑟𝑜𝑟 , 0, 0, 0 )])                                                                   (19) 
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                 ∆𝑃𝐶𝐼𝑅𝑁𝐷𝑀  =  𝑀𝐴𝑋(𝑀𝐼𝑁(𝑅𝑁𝐷𝑀𝐸𝑟𝑟𝑜𝑟 , 0, 0, 0, 0 ), [𝐴𝑉𝐺(𝑅𝑁𝐷𝑀𝐸𝑟𝑟𝑜𝑟 , 0, 0 ,0, 0) −

                   0.85 𝑆𝑇𝐷(𝑅𝑁𝐷𝑀𝐸𝑟𝑟𝑜𝑟 , 0, 0, 0, 0)])                                                                            (20) 

Errors from automated and ANN-predicted ALCR and RNDM indices were calculated 

using equation (16) for each data point. Equations (19) and (20) were then used for 

constructing a CDF for Monte Carlo analysis. Random numbers between 0 to 100 were 

generated, which allowed ∆𝑃𝐶𝐼𝐴𝐿𝐶𝑅 and ∆𝑃𝐶𝐼𝑅𝑁𝐷𝑀 to be determined from CDF. Monte 

Carlo simulation provides a mean and standard deviation of the change in PCI due to 

error from ALCR and RNDM indices. Mean and standard deviation of ∆𝑃𝐶𝐼𝐴𝐿𝐶𝑅 and 

∆𝑃𝐶𝐼𝑅𝑁𝐷𝑀 from automated and ANN-predicted measurements have been evaluated 

against each other. 

Development of Automated Crack Survey Application for DHDVLTRC 

As described in the Introduction, LTRC owns a DHDVLTRC system for collecting research 

based pavement condition data including high resolution 2D pavement surface images at 

highway speeds. This portion of the research describes the development of a prototype 

imaging processing software for DHDVLTRC using an open source algorithm called 

Random Structured Forests in MATLAB to detect, classify, and measure the cracking 

distresses automatically based on high resolution 2D images. MATLAB is a proprietary 

multi-paradigm programming language and numeric computing environment developed 

by MathWorks [61]. 

Shi et al. [62] developed the ‘CrackForest’ framework based on the Random Structured 

Forests algorithm. Developers of the CrackForest application divided the framework into 

three major parts: (1) Feature extraction by integrating channel features—feature 

extraction allowed the developers to represent cracks with a higher level of structural 

information, (2) Introduction of Random Structured Forest [63] to obtain preliminary 

information on crack detection, and (3) Using of Crack Descriptor which can characterize 

the cracks. They applied a classification algorithm to separate cracks from noise.  
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Figure 20. Manually drawn contour lines in the image patches to identify crack regions [61] 

 

Figure 20 shows the mechanism of selecting the training dataset for the ‘CrackForest’ 

application. Researchers divided the images with pavement cracks to create small image 

patches and manually draw contour lines along the crack edge. These small image 

patches were then used as the training dataset to extract crack features and crack edge 

detection process.  

Upon completion of the crack detection, images were stored in a separate folder, and a 

crack classification algorithm was applied to classify cracks. The classification criteria 

were kept simple for these research purposes. Matlab's’ image processing toolbox was 

used to develop the crack classification and measurement algorithm. Interconnected 

cracks were classified as alligator cracking and reported in ft2. Cracks that were 

predominately parallel to the traffic direction and/or pavement centerline were reported as 

longitudinal cracking and reported in linear ft. Cracks that were predominately 

perpendicular to the pavement centerline were reported as transverse cracking and 

reported in linear ft. 
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Discussion of Results 

For the nine calibration control sites, both the 2D and 3D automated cracking data on 0.1-

mile subsections as well as the vendor 3D-camera collected pavement images were 

obtained from DOTD’s pavement management system engineers. In collecting various 

pavement cracking distress data for selected flexible pavement test sections, the 3D 

automated cracking measurements of every 0.1-mile were retrieved from the 2017 LA-

PMS pavement condition database. Furthermore, datasets of 50-ft. based subsections for 

the 3D automated cracking measurements were generated by the research team using the 

vendor provided imaging software. In addition, manual pavement cracking measurements 

were obtained using the aforementioned semi-auto method on all calibration sites and 

flexible pavement test sections considered. In total, there were 2,844 cracking 

measurement subsections of 50 ft. each for the flexible pavement test sections and 45 

subsections of 0.1 mile each for the calibration sites used in this study. The following 

presents the details of the 2D/3D automated and the manual cracking measurement data 

analysis and software applications developed. 

Comparison of 2D and 3D Automated Cracking Measurements  

The following presents a direct comparison of the vendor’s two automated imaging 

systems (2D and 3D) collected cracking on the DOTD’s nine calibration pavement sites 

using the manual measurements as the ground truth.  

Comparison on Total Measured Crack Quantities 

Table 10 presents the total quantity results for the alligator, longitudinal, and transverse 

cracks measured on the nine pavement sites using the three cracking survey methods (2D, 

3D, and the manual). As can be seen in Table 10, by comparing to the manual survey 

results, the 2D system generally slightly over-reported the alligator cracks, under-

reported the transverse cracks, but largely under-reported the longitudinal cracking by 

approximately 30 percent on the total measurements of nine testing sites surveyed. On the 

other hand, the 3D measurements were found to provide a similar total alligator cracking 

measurement as that from the manual survey, but slightly under-reported the longitudinal 

cracking and over-predicted the transverse cracking. Overall, the 2D system seems to 

under-estimate the total longitudinal and transverse crack lengths as compared to those 

obtained by the 3D system.  
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Table 10. Total results of cracking measurements on nine calibration sites 

Cracking Type Manual 
2D-

Automated 

3D- 

Automated 

% 

Difference 

between 2D 

and Manual  

% 

Difference 

between 3D 

and Manual  

% 

Difference 

between 2D 

and 3D  

Alligator (ft2) 26,596 27,202 26,221 2.3% -1.4% 3.7% 

Longitudinal (ft.) 21,431 14,968 19,837 -30.2% -7.4% -24.5% 

Transverse (ft.) 20,279 18,696 22,562 -7.8% 11.3% -17.1% 

 

Comparison on Individual Measured Crack Quantities 

Figure 21 presents the individual cracking measurements on each pavement site 

surveyed. Figure 21(a) shows that the alligator cracking were measurable only on sites 6, 

7, 10, and 13. In general, the alligator cracking measurements from manual rating and 3D 

system visually matched with each other. On the other hand, the 2D system tended to 

either over- or under-predicted the alligator cracking significantly. Figure 21(b) shows the 

individual longitudinal cracking measurement results of test sections. As can be viewed 

in Figure 21(b), both the 2D and 3D automated measurements tended to under-predict the 

longitudinal cracking with the 2D results showing a significant under prediction on both 

site 3 and site 5. In term of the overall transverse cracking quantity measured on each test 

section, Figure 21(c) indicates that the automated 3D measurement appeared to over-

report the overall transverse cracking quantity; whereas, the 2D data showed a mixed-bag 

results as comparing with the manual transverse cracking measurements.  



—  65  — 

 

Figure 21. Comparison of cracking measurements at each control site (a) alligator (b) longitudinal 

and (c) transverse cracking measurements 
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Comparison on Crack Severity 

A further breakdown comparison in various cracking severity levels (i.e., high, moderate, 

and low) was performed based on the imaging and manual collected cracking 

measurements on the calibration pavement sites. Figure 22 shows the measurement 

comparison for the three cracking types (i.e., alligator, longitudinal and transverse) 

illustrated by a pie-chart. In general, in terms of the absolute measured crack quantities at 

different severity levels, the 3D measurements showed slightly more matching (or closer) 

values to the manual survey values than the 2D measurements (Figure 22). With an 

exception in 3D high transverse cracking measurement, both 2D and 3D underestimated 

all other high-level cracking measurement quantities, as shown in Figure 22. On the other 

hand, the 3D measurements appeared to over report the crack quantities at a moderate 

level but under-predict at a low severity level (except for the 3D low transverse cracking 

measurements). In addition, all 2D collected cracking quantities were found to under 

estimate moderate level cracks but tend to over report the amounts of low alligator and 

transverse cracking.  

In terms of the measured alligator cracking breakdown percentages, the considered 3D 

system detected, respectively, 2%, 73% and 25% of the high, moderate and low severity 

alligator cracks, which were comparable to those values (3%, 69%, and 28%, 

respectively) obtained from the manual alligator cracking survey. However, the 2D 

system was found to have over-predicted the percentage of low alligator cracks (i.e., 

40%) and under reported the percentage of moderate alligator cracks (i.e., 59%) for the 

calibration pavement sites surveyed (Figure 22).  
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For the breakdown percentages in transverse cracking measurements, the 2D system 

followed a similar trend as the comparison showed in alligator cracking measurements. 

The 2D results were found to overestimate low severity transverse cracks (i.e., 45% vs. 

34% of the manual survey) and under report moderate severity of 48% transverse 

cracking as compared to manual measurements of 57%. On the other hand, 3D system 

detected respectively, 9%, 56% and 35% of the high, moderate and low severity 

transverse cracks, which were similar to those values obtained from the manual 

transverse cracking survey results (Figure 22). 

In terms of those the breakdown percentages for longitudinal cracking measurements, 

however, similar percentages at three severity levels were obtained for all three cracking 

survey systems or methods considered in this study. As shown in Figure 22, both 2D and 

3D systems detected 7% high severity longitudinal cracking compared to the 10% of 

manual measurements. There were 23%, 29%, and 28% moderate severity cracking 

detected by manual, 2D system and 3D system respectively. And 67% low severity 

cracking was detected by the manual rating compared to the 64% and 65% detected by 

2D and 3D system, respectively.  

Overall, the 3D system showed an improved cracking identification and measurement 

results over the 2D system studied. This is promising since the LA-PMS cracking data 

has been collected by the 3D system since 2017. However, an accuracy analysis for the 

3D system is still needed in order to improve the LA-PMS collected cracking data to be 

potentially used in a project level pavement performance analysis. The following section 

describes the results of the accuracy analysis for the 3D automated system considered. 
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Figure 22. Crack measurements results at different severity level for calibration control sites 
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Performance of the 3D Automatic Crack Detection 

To evaluate the crack detection performance for the current vendor’s 3D imaging 

software used by the LA-PMS for collecting the automated cracking measurements, four 

statistical measures (false positives, missed cracks, precision, and recall) were computed 

using the 3D automated and manual cracking measurements collected on all 23 flexible 

pavement test sections considered in this study. This analysis was based on the 

measurements of 50-ft. subsections and a total of 2844 subsections were evaluated. 

Cracking measurements at high, moderate, and low severity for each crack type (alligator, 

longitudinal, and transverse) were combined in this analysis. Again, the manual survey 

measurements were considered as the ground truth reference values. 

Table 11 represents a summary report of various number of sections of the values that are 

used in the crack detection accuracy evaluation of the automated system. Manual = 0, 

Auto > 0 column represents the number of sections where the manual system did not 

detect a crack, but the automated system detected at least one crack. Manual > 0, Auto = 

0 column represents the number of sections where the manual system detected at least 

one crack, but the automated system did not detect any crack. Manual = 0 and Manual > 

0 columns represent the number of sections; the manual system did not detect a crack and 

manual system detected at least. 

Table 11. Automated system crack detection accuracy calculation 

Cracking 

Type 

Total 

Test 

Sections 

False 

Positive 

Sections 

(Manual=0 

Auto>0) 

Missed 

Cracks 

Sections 

(Manual>0 

Auto=0) 

No 

Detectable 

Crack 

Sections 

(Manual = 0) 

Detected 

Minimum 

One Crack 

Sections 

(Manual > 0) 

Alligator 2844 241 141 1042 1802 

Longitudinal 2844 280 225 1086 1758 

Transverse 2844 249 41 862 1982 

Figure 23 represents the percentages of false positive, missed cracks, precision, and 

distress sensitivity (recall) errors produced by the automated system. False positive error 

is the ratio (in percentage) between the number of sections of falsely-report-A-crack by 

the automated system and the total number of sections. Missed crack error is the ratio (in 
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percentage) between the number of sections of missed-detected-A-crack by the 

automated system and the total number of sections. Precision error is the percentage of 

non-cracked sections where the automated system at least detected one crack, and the 

distress sensitivity error (Recall) is the percentage of cracked sections where the 

automated system did not detect any crack. Equations (7-10) were used to calculate 

%False Positives, %Missed Cracks, %Precision, and %Recall of the automated system.  

For example, among 2,844 subsections of flexible pavements, the automated system 

measured alligator cracking in 241 subsections, but the manual system did not detect any 

alligator cracks in those subsections. So, the total percentage of false positives error 

produced by the automated system using equation (7) is 8.5%. Subsequently, among 

2,844 subsections, the manual system measured alligator cracking in 141 subsections, but 

the automated system did not detect any. Thus, the total percentage of missed crack error 

produced by the automated system is 5.0%. On the other hand, the manual system did not 

detect any alligator cracks in 1042 subsections, but the automated system detected 

alligator cracks in 241 of them. So, the total %Error Precision produced by the automated 

system is 23.1%. Subsequently, the manual system detected alligator cracking in 1802 

subsections, but the automated system did not detect any in 141 of them. So, the %Error 

Recall produced by the automated system is 7.8%.  

Figure 23. False positives, missed cracks, precision, and distress sensitivity (recall) in comparison 

with manual measurements 
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Figure 24(a) shows that, due to the oil stains presented in the considered section, the 

automated system falsely identified three cracks. On the other hand, Figure 24(b) shows 

that even though a longitudinal crack is clearly visible at the right wheel path, the 

automated system did not detect the crack. One reason for these errors produced by the 

automated system may lie in the fact that the illumination, pavement marks, shadows, and 

humidity are continuously changing during pavement condition surveys.  

Figure 24. (a) False positive and (b) missed crack error produced by automated system 

 

(a)                                                       (b) 

In general, it can be observed in Figure 23 that highest percentages of false positives and 

missed cracks are the longitudinal cracking. Moreover, %Error Precision was greater than 

20% for all crack types suggests that, automated system tend to report cracking distress in 

the non-cracked sections. This is as expected, since computer software may miss-identify 

a fallen object or sealed crack as longitudinal cracking, or longitudinal cracking may be 

miss-counted due to the strict algorithm followed by the software. It should be noted that 

the vendor and DOTD’s pavement engineers performed additional manual post-checking 

of the cracking measurements during the DOTD’s 2019 data collection cycle. Therefore, 

those percentages of false positive and missed cracks may have been significantly 

reduced in DOTD’s 2019 LA-PMS database.    
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Accuracy and Precision Analysis of the 3D Automated Crack 

Measurements 

The crack measurement accuracy and precision for the vendor’s 3D automated system are 

evaluated in this section using the measurement cracking data collected in the selected 23 

flexible pavement sections. Both a project level analysis (based on 50-ft. subsection 

measurements) and a network-level analysis (based on 0.1-mile subsection 

measurements) were performed. Three types of automated cracking measurements (i.e., 

alligator, longitudinal, and transverse) at each severity level were compared against the 

reference manual measurements. Note that only the subsections for which both the 

automated system and the manual detected cracking were considered in the analyses. 

Cracking Measurements on 50-ft. Subsections 

Table 12 presents a summary of the accuracy and precision analysis for the 3D automated 

cracking measurements based on the selected 50-ft. subsections. The “Mean” and 

“Median” columns in Table 12 are the means and medians of the measurement values 

obtained from both the 3D automated and manual methods. In general, all mean values 

differ from the corresponding medium values. This is expected as the cracking distresses 

of the selected pavement projects are not necessary to follow the uniform or a normal 

distribution. The means of the 3D automated cracking measurements are also found 

different from the means of the manual measurement results for all cracking types.   

For each subsection, a measurement error was first calculated as the difference between 

the 3D automated and the manual measurements. The “Mean Measurement Error” 

column in Table 12 lists an overall average of all subsection measurement errors for each 

type of cracking measurement produced by the 3D automated system; whereas, the 

“Standard Deviation of the Error” column gives the standard deviation of all subsection 

measurement errors of each type.  While the mean measurement error is the estimate of 

accuracy for the 3D automated measurement system (a positive signed error suggests an 

overestimation and vice versa), a standard deviation of the error is indicative of the 3D 

measurement precision. Generally, the smaller a mean measurement error, the more 

accurate of the 3D automated system. One the other hand, the greater a standard deviation 

of the error, the more variation of the 3D measurements, indicating the imprecision of the 

measurement system and vice versa. For example, as can be seen in Table 12, the 3D 

automated system tended to underestimate the high severity alligator cracking with an 

accuracy of 24.57 ft2 and a precision of 35.80 ft2 on a 50-ft. long pavement section. 
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Overall, the results shown in Table 12 indicate that, in term of accuracy, the 3D 

automated system can significantly over-estimate the amounts of cracks at a moderate 

severity level with positive errors of 49.09 ft2, 9.04 ft., and 24.86 ft. for the alligator, 

longitudinal, and transverse measurements, respectively. The 3D system was also found 

slightly over-estimated in the low and high severity transverse cracking. On the other 

hand, the 3D measurements generally under-reported other crack amounts at high or low 

severity levels for both alligator and longitudinal cracks with negative errors ranged from 

(-3.59) ~ (-11.01) in feet and (-2.8) to (-24.57) in square feet, respectively, over a 50-ft. 

long pavement section. The precision errors of the 3D measurements generally showed a 

similar level of magnitude as the accuracy errors.  

Table 12.  Summary results of the quantification error produced by the automated based on 50-ft. 

subsections 

 

 

Crack Type 

 

 

Severity 

Level 

 

 

Mean 

 

Median 

Mean 

Measurement 

Error  

(Accuracy 

estimate) 

Standard 

Deviation 

of the 

Error 

(Precision 

estimate) 

Automated Manual Automated Manual 

 

 

Alligator 

(ft2) 

High 30.74 55.30 25.47 35.93 -24.57 35.80 

Moderate 108.26 59.16 92.38 41.00 49.09 58.71 

Low 48.72 51.52 34.87 37.99 -2.80 45.71 

 

 

Longitudinal 

(ft.) 

High 8.63 19.65 4.85 17.24 -11.01 14.32 

Moderate 25.13 16.09 21.26 11.79 9.04 14.47 

Low 6.22 9.81 4.33 7.68 -3.59 7.51 

 

 

Transverse 

(ft.) 

High 28.60 26.04 27.43 22.67 2.65 18.72 

Moderate 57.46 32.60 53.49 25.40 24.86 31.99 

Low 18.74 17.21 12.36 12.01 1.53 17.41 

Figure 25 presents the scatter plots for automated and manual alligator cracking 

measurements at each severity level. From Figure 25, it can be observed that at all 
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severity levels, when the crack amounts are low, data points are close to the identity line. 

However, with the increase in crack measurements, points are dispersed up and below the 

identity line. At each severity level for all crack types, with the increase of pavement 

cracking, the accuracy of the automated system tends to reduce. Figure 25 also shows that 

the correlations between automated and manual measurements are generally poor with R2 

values approximately ranging from 0.15 to 0.47 for all cracking measurements 

considered.  
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Figure 25. Scatter plot of automated vs manual cracking measurements on 50-ft. (a) alligator 

cracking (b) longitudinal cracking and (c) transverse cracking 

 

As it was previously established, none of the cracking measurements from automated and 

manual measurements were normally distributed and most of the data reside in the first 

quartile range. T-test statistical analysis at a significant level of 95% was conducted to 

evaluate the accuracy of the automated system. Measurement error occurred from the 

automated system was used for this analysis, which evaluated two hypotheses of H0 (Null 
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Hypothesis): Mean Measurement Error = 0, and H1 (Alternative Hypothesis): Mean 

Measurement Error ≠ 0. When the resulted p-value < 0.05, reject the null hypothesis of 

no measurement error. 

A t-test with non-normally distribution at a significant level of 95% was performed in this 

study on the mean measurement errors to verify the accuracy of the 3D automated 

cracking measurements. Table 13 presents the t-test results. It can be observed that, 

except for high severity transverse cracking, there is a significant difference between the 

automated and manual cracking measurements for all crack types at all severity levels. 

Although the t-test indicates there is no statistically significant difference between the 3D 

automated and the manual results on the high severity transverse cracking measurements, 

however, it was found by viewing Figure 25(c) that the two datasets of high severe 

transverse cracking were not correlated each other with a R2-value of only 0.27, 

indicating they are differed practically in most of the test sections considered. The t-test 

results generally confirmed the accuracy estimates in terms of the 3D mean measurement 

errors shown in Table 12. 

Table 13. T-test on measurement errors results for 50-ft. subsections 

Crack Type Severity 

Level 

Actual 

Mean 

Number of 

Subsections 

Degree 

of 

Freedom 

t-

Statistic 

p-Value Significance 

 

Alligator 

(ft2) 

High -24.57 73 72 5.86 <0.0001 Yes 

Moderate 49.09 802 801 23.68 <0.0001 Yes 

Low -2.80 1259 1258 2.18 0.0298 Yes 

 

Longitudinal 

(ft.) 

High -11.01 69 68 6.38 <0.0001 Yes 

Moderate 9.04 1344 1343 22.90 <0.0001 Yes 

Low -3.59 375 374 9.27 <0.0001 Yes 

 

Transverse 

(ft.) 

High 2.65 154 153 1.68 0.92 No 

Moderate 24.86 1248 1247 27.45 <0.0001 Yes 

Low 1.53 1519 1518 3.43 0.0006 Yes 
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Fligner-Kileen statistical analysis was conducted to qualitatively evaluate the variation 

(or precision) of the 3D automated cracking measurements at each severity level. Fligner-

Kileen analysis is a hypothesis test that estimates the homogeneity of variances for two or 

more groups. It is more useful than other equality of variance tests as it takes non-

normality and the presence of outliers into account. The Fligner-Kileen analysis 

evaluated two hypotheses of H0 (Null Hypothesis): Automated cracking Variance = 

Manual cracking Variance, and H1 (Alternative Hypothesis): Automated cracking 

Variance ≠ Manual cracking Variance. When the resulted in p-value < 0.05, reject the null 

hypothesis, indicating the variances of the 3D automated and manual measurements are 

statistically different. Figure 14 illustrates the results from Fligner-Kileen analysis. It can 

be observed in Table 14, except for low severity alligator cracking, the 3D automated 

cracking measurements generally showed higher variation (or less precision) as compared 

to those manual measurements. This also agreed by large with the standard deviation of 

the errors (or the estimate for precision) shown in Table 12. 

Table 14. Summary of Fligner-Kileen analysis for 50-ft. subsections 

Crack Type Severity 

Level 

Number 

Methods, 

(n) 

Degree of 

Freedom, 

(n-1) 

FK-

Statistic 

P-value Significance 

 

Alligator 

(ft2) 

High 2 1 25.8 3.83E-

07 

Yes 

Moderate 2 1 96.4 9.24E-

23 

Yes 

Low 2 1 0.1 0.72 No 

 

Longitudinal 

(ft.) 

High 2 1 16.5 4.83E-

05 

Yes 

Moderate 2 1 77.6 1.24E-

18 

Yes 

Low 2 1 39.3 3.62E-

10 

Yes 

 High 2 1 860.13 4.6E-19 Yes 

Moderate 2 1 270.79 7.6E-61 Yes 
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Crack Type Severity 

Level 

Number 

Methods, 

(n) 

Degree of 

Freedom, 

(n-1) 

FK-

Statistic 

P-value Significance 

Transverse 

(ft.) 

Low 2 1 67.62 1.9E-16 Yes 

Cracking Measurements on 0.1-mile  

Table 15 represents an overall cracking measurement comparison (without considering 

the cracking severity) between the 3D and the manual methods for a total of 28.6-mile 

long of the 23 flexible pavement test sections rated in this study. Note that the total 

cracking quantities in Table 15 were based on 0.1-mile subsections. As shown in Table 

15, the 3D automated cracking generally overestimated the total alligator, longitudinal, 

and transverse cracking by 32.8%, 8.5%, and 27.7%, respectively, over the surveyed 

pavement length of 28.6 miles in this study. 

Table 15.  Summary results of automated vs. manual system at network-level 

 

Total 

Miles 

Covered 

 

Crack Type 

 

Automated 

System 

 

Manual  

System 

 

% Difference 

between 

Automated and 

Manual 
 

 

28.6 

 

Alligator (ft2) 216,073 162,657 32.8% 

 

Longitudinal (ft.) 44,990 41,455 8.5% 

 

Transverse (ft.) 127,936 100,214 27.7% 

In terms of the accuracy and precision for the 3D automated cracking measurements in a 

network-level data analysis, a summary of quantification error results based on 286 

subsections of 0.1-mile each are presented in Table 16. Similar to Table 12, the “Mean” 

columns represent the means of the measurement values obtained from both the 3D 

automated and manual methods. In general, Table 16 shows that large discrepancies were 

observed for all mean values between the 3D and the manual measurements based on the 

0.1-mile measurement subsections. This implies that the accuracy of the 3D cracking 

measurements may still need to be improved for using the PMS data in a decision making 

of treatment selection or the calibration of pavement design models. The mean 
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measurement errors echoed the inaccuracies of the means, which are similar to those in 

Table 12. In general, the variations (less precision) of 3D measurements are also 

increased at all severity level cracking measurements compared to those in Table 12. This 

may be due to the length of measurement subsection changed from 50 ft. to 0.1 mile.   

Table 16.  Summary results of the quantification errors produced by the automated system based on 

0.1-mile subsection 

 

Crack Types 

 

Severity 

Level 

 

Mean Mean 

Measurement 

Error 

(Accuracy 

estimate) 

Standard 

Deviation 

of the Error 

(Precision 

estimate) 

Automated Manual 

Alligator 

(ft2) 

High 1846.1 18067.2 -50.1 114.2 

Moderate 133335.6 52219.6 250.4 348.0 

Low 81560.4 92873.7 -34.9 203.4 

Longitudinal 

(ft.) 

High 877.4 9266.1 -26.0 60.3 

Moderate 38143.7 25172.3 40.2 89.4 

Low 5969.1 7016.9 -3.2 18.9 

Transverse 

(ft.) 

High 5267.1 13619.6 -25.9 79.9 

Moderate 89420.0 48445.5 126.9 204.3 

Low 33249.2 38149.6 -15.2 90.5 

To further investigate the comparisons between the 3D automated and the manual 

cracking measurements on 0.1-mile subsections, Figure 26 shows a breakdown of the 

cracking measurements at each severity level and Figure 27 presents the scatter plots of 

those measurements. 
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Figure 26. Crack measurements by severity level for automated and manual system (a) alligator 

cracking (b) longitudinal cracking and (c) transverse cracking 
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Figure 27. Scatter plot of automated vs manual transverse cracking measurements (a) alligator 

cracking (b) longitudinal cracking and (c) transverse cracking 

 

Figure 26 indicates the 3D automated system tends to over-estimate the moderate severity 

cracking for each crack type, but under-reports the high and low severity cracks for a 0.1 

mile subsection.  The results in Figure 27 are observed similar to those plots shown in 

Figure 25. It can be seen in Figure 27, when the cracking measurements of both 3D 

automated and the manual are relatively low, data points are close to the identity line. 

However, at each severity level for all crack types, with the increase of deterioration, the 

accuracy of the automated system reduces. On the other hand, the correlations between 

the 3D automated and manual measurements are found somewhat improved with the 
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higher R2-values as compared to Figure 25. One reason may be partially because using 

less data points in Figure 27 could result in less scatter of the measurements. Another 

reason may be due to some accuracy and precision improvement when the 3D 

measurements are summarized in a longer subsection (e.g., the 0.1-mile subsection) as 

compared to those in the 50-ft. subsections. 

Similarly, t-tests with non-normally distribution at a significant level of 95% and the 

Fligner-Kileen variance tests were performed on the 0.1-mile subsection to further verify 

the accuracy and precision of the 3D automated cracking measurements. The statistical 

results are presented in Table 17 and Table 18.  

It can be observed in Table 17 that the mean errors between the automated and manual 

cracking measurements at all crack types at all severity levels are statistically different 

from zero based on 0.1-mile subsections. The t-test results generally confirmed the 

accuracy estimates in terms of the 3D mean measurement errors shown in Table 16. On 

the other hand, the p-values shown in Table 18 are slightly different from Table 13 at the 

project level analysis. The 3D automated measurements showed less varied (more 

precise) for low severity level of all crack types and high severity transverse cracking 

measurements. This finding agrees with the correlation analysis in Figure 27, indicating 

when reporting the cracking on a 0.1-mile subsection the 3D automated measurements 

tend to report slightly more precise cracking measurements as less data points are 

involved than using a 50-ft. subsection reporting. 

Table 17. T-tests on measurement mean error results for 0.1-mile subsection 

 

Crack Types 

 

Severity 

Level 

 

Actual 

Mean 

Error 

 

Number of 

Subsections 

 

Degree 

of 

Freedom 

 

t-

Statistic 

 

p-Value 

 

Significance 

 

 

Alligator 

(ft2) 

High -158.1 21 20 5.08 <0.0001 Yes 

Moderate 373.9 207 206 14.47 <0.0001 Yes 

Low -41.15 252 251 2.58 0.0046 yes 

 High -77.78 37 36 4.99 <0.0001 Yes 
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Crack Types 

 

Severity 

Level 

 

Actual 

Mean 

Error 

 

Number of 

Subsections 

 

Degree 

of 

Freedom 

 

t-

Statistic 

 

p-Value 

 

Significance 

 

Longitudinal 

(ft.) 

Moderate 49.89 265 264 8.472 <0.0001 Yes 

Low -6.66 164 163 3.55 0.0005 Yes 

 

 

Transverse 

(ft.) 

High -43.33 52 51 2.04 0.046 yes 

Moderate 177.4 226 225 11.87 <0.0001 Yes 

Low -18.68 264 263 3.12 0.002 Yes 

Table 18. Results from Fligner-Kileen statistical analysis for 0.1-mile measurements 

 

Crack Types 

 

Severity 

Level 

 

Number 

of 

Methods 

 

Degree of 

Freedom 

 

FK-

Statistic 

 

p-value 

 

Significance 

Alligator 

(ft2) 

High 2 1 6.5 0.01 Yes 

Moderate 2 1 52.6 4E-13 Yes 

Low 2 1 0.6 0.44 No 

Longitudinal 

(ft.) 

High 2 1 26.5 2.57E-07 Yes 

Moderate 2 1 40.9 1.60E-10 Yes 

Low 2 1 3.5 0.06 No 

Transverse 

(ft.) 
High 2 1 1.55 0.26 No 

Moderate 2 1 48.72 2.94E-12 Yes 

Low 2 1 1.12 0.29 No 
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Discussion 

It should be noted that the repeatability and variation of the manual cracking rating due to 

multiple raters was not directly considered in this research due to time and budget 

constraints. However, it is believed that, due to the variation in pavement image quality 

and computer algorithm used in the 2017 LA-PMS database, the amounts of false 

positive and missed cracks identified by the manual rating in this study should be similar 

or close to each other even when a different experienced rater was involved. In addition, 

Figure 28 presents an example comparison between the manual and 3D measured 

medium alligator cracking amounts on one selected pavement project (841-02-1-010) of 

this study. As seen in Figure 28, when comparing the automated cracking measurements 

to +/- 50% of the manual results, the automated system was found to over-estimate the 

medium-severity cracks on 8 out 11 0.1-mile testing points. Similar observations were 

found on other cracking types considered, which indicates that the automated system 

used in 2017 LA-PMS database generally tends to over-estimate the medium-severity 

cracks of flexible pavements. 

Figure 28. Comparison between automated cracking measurements to manual measurement results 

 

Furthermore, the pavement images used for the manual rating of this study are those of 

the Laser Crack Measurement System (LCMS) 3D collected pavement images as shown 

in the following Figure 29 (a), which are different from those used in the automatic 

software rating called the LCMSRange, figure (b). As can be seen in the figure, the 
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LCMSRange image tends to display significantly more cracks on a pavement surface 

than the LCMS3D image.  

Figure 29. Comparison between LCMS3D and LCMSRange images 

     

(a) LCMS3D                                           (b) LCMSRange 

A close look between the LCMS3D and LCMSRange images (Figure 30) indicates that 

some of the cracks in the LCMSRange image are not visible in the LCMS3D image. 

Since the comparison in this study was based on the manual LCMS3D image rating vs. 

the automated LCMSRange image rating, further research is still needed to clarify: (1) 

whether or not some of those unseen cracks in LCMS3D images are real pavement cracks 

through the field investigations; and (2) if LCMSRange images were found to over-

predict pavement cracks, then determine how to improve the accuracy in the future 

DOTD’s cracking data collection through adjusting the algorithm considered in the 

imaging software.  
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Figure 30. False crack in LCMSRange image 

   

Comparison of Cracking Indices from the 3D and Manual 

Measurements 

Previous analyses were based on the comparison of the accuracy and precision of the 3D 

automated cracking measurements as against the manual measurements. The results 

generally indicated that the automated cracking measurements were not statistically equal 

to the manual cracking data in various cracking types and severity levels. In this section, 

the cracking indices currently used in the treatment selection process by DOTD were 

determined using both the 3D automated and the manual cracking measurements 

collected on the selected 23 flexible pavements. Note that only an ALCR (the alligator 

cracking index) and an RNDM (the random cracking index determined by combining the 

longitudinal and transverse cracking measurements) are currently used by DOTD in a 

treatment selection.   

The average calculated cracking index results are presented in Table 19. A pairwise t-test 

at a significant level of 95% was used in the comparison. Overall, the p-values indicate 

both cracking indices (ALCR and RNDM) determined from the automated cracking 

measurements are significantly different from those of manual cracking measurements. 

As shown in Table 19, the automated cracking measurements tend to under-predict the 

alligator cracking index but over-predict the random cracking index as compared to the 

manual cracking measurements. 
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Table 19. Comparison of automated cracking indices and p-values 

Index 

Type 
Automated 

Mean 

Manual 

Mean 

t-Statistics t-Critical p-Value Significance 

ALCR 84.82 88.00 -6.81 1.65 2.37E-

11 
Significant 

RNDM 88.53 85.63 4.07 1.65 2.86E-

05 
Significant 

Difference in indices from the 3D automated and manual cracking measurements may 

lead to a different pavement treatment selection. The calculated cracking indices for each 

selected 0.1-mile survey section of flexible pavement in this study were further used in a 

trial treatment selection exercise to determine if the automated and the manual cracking 

indices would provide the same or different treatment selections based on the current 

DOTD’s treatment trigger values. The detailed results of the treatment selection exercise 

may be referred to as Appendix A. Note that only ALCR and RNDM indices were 

considered in the treatment selection exercise based on roadway function classes and 

control sections. Overall, nine out of twenty-three control sections (roughly 39 percent of 

control sections) yielded different treatment plans between the automated and manual 

cracking indices. Similar percentages of different treatment selections between the 

manual and the automated indices were found when the comparison were based on 

roadway function classes.  

In summary, the aforementioned results generally indicate the automated cracking data 

collected using the vendor’s 3D high-speed data collection system proved to be more 

accurate and less variated than the 2D automated system measurements for all flexible 

pavement crack types considered by DOTD’s LA-PMS. On the other hand, the 3D 

automated cracking measurements were found statistically different from the manual 

measurements, as evidenced by the percentages of false positives and missed cracks as 

well as the overall low precisions. The different automated cracking measurements, 

specifically in terms of severity levels, would potentially yield a wrong treatment 

selection according to the DOTD’s current treatment trigger values. In order to improve 

the accuracy of the 3D automated cracking data reported in 2017 LA-PMS database in 

the use of the DOTD’s treatment selection and potentially implement for a project level 

pavement modeling and analysis, the following section will discuss an ANN-based 

cracking prediction model developed in this study. 
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Evaluation of Developed ANN Model 

In this study, a 15-20-15-10-9 multilayered backpropagated feed-forward ANN model 

was developed based on the 0.1-mile subsections’ cracking measurements collected by 

3D automated and the manual survey methods (Figure 19). The developed ANN model 

aimed at adjusting the less accurate automated cracking measurements towards more 

accurate manual measurement results. In other words, the predicted cracking 

measurements from the ANN model should be closely matched with their corresponding 

manual results. In this study, there were 323 datapoints used to formulate the ANN model 

from 23 pavement sections in Louisiana. The data were divided into three subsets: 55% 

data for training, 30% data for validation, and the remaining 15% data were used for 

testing. Testing dataset were not used in model developing to avoid over prediction of the 

output. It should be noted that, input values for training and validation were chosen 

randomly.   

As described in Methodology, a 15-20-15-10-9 multilayered backpropagated feed-

forward ANN model was developed based on the 0.1-mile subsections’ cracking 

measurements collected by 3D automated and the manual survey methods (Figure 19). 

The goal is to predict a set of manual cracking measurements from the 3D automated 

cracking measurements by considering the influences of the existing pavement surface 

treatment type, years of service, and other distress and environment conditions of each 

0.1-mile subsection considered. With that in mind, the 15 input parameters used in the 

ANN model include the nine 3D automated cracking measurements and other automated 

system collected pavement surface distresses and conditions (e.g., Rutting, IRI, MPD), 

the pavement surface treatment type and years of service as well as the average 

temperature during data collection.  

Figure 31 presents the ANN predicted cracking measurements as compared to the manual 

measurements using different datasets (i.e., 55% of training, 30% of verification, and 

15% of testing). Table 20 presents a summary of the predicted R2 values for the testing 

dataset, which was not used in the ANN model training development. In general, all the 

comparison plots showed in Figure 31 and high R2 values in Table 20 seem to indicate 

that the predicted cracking measurements from the ANN model correlated well with the 

manual cracking measurements. On the other hand, a relatively low correlation was 

observed for the predicted longitudinal-high (R2 of 0.67) and longitudinal-low cracking 

(R2 0f 0.76), Table 20. This could be attributed partially to a high percentage of test 

sections in the training dataset having zero longitudinal low or high cracking. 
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Figure 31. Predicted vs. manual cracking measurements from ANN modeling; (a) training dataset (b) 

validation dataset (c) testing dataset and (d) all data 

 

Table 20. Calculated validation parameters for each output from testing dataset 

Crack Type 𝑅 - Value 𝑅2- Value RMSE MAE 

Alligator-High (ft2) 0.98 0.96 30.33  15.46 
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Crack Type 𝑅 - Value 𝑅2- Value RMSE MAE 

Alligator-Moderate(ft2) 0.93 0.86 51.31 46.78 

Alligator Low(ft2) 0.91 0.82 73.7 53.22 

Longitudinal-High (ft.) 0.82 0.67 16.4 9.65 

Longitudinal–Moderate (ft.) 0.92 0.84 23.04 14.06 

Longitudinal-Low (ft.) 0.87 0.76 21.93 9.71 

Transverse-High (ft.) 0.92 0.85 4.18 17.67 

Transverse-Moderate (ft.) 0.91 0.84 46.53 34.93 

Transverse-Low (ft.) 0.94 0.88 4.65 4.17 

Figure 32 represents the Root Mean Square Error (RMSE) values from the 3D automated 

measurements and ANN-predicted measurements when compared with the manual 

measurements. RMSE from automated measurements were significantly greater than the 

ANN-predicted measurements for all crack types at each severity level. 

Figure 32. RMSE from automated and ANN predicted measurements compared to the manual 

measurements 
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Figure 33 represents the Mean Absolute Error (MAE) values from the 3D automated 

measurements and ANN-predicted measurements when compared with the manual 

measurements. Except for high severity longitudinal cracking, MAE from automated 

measurements were significantly greater than the ANN-predicted measurements.  

Figure 33. MAE from automated and ANN-predicted measurements compared to the manual 

measurements 

  



—  92  — 

 

Table 21 generally showed that, the predicted cracking measurements from the ANN 

model are matched much closer to the manual measurement results than the automated 

measurements as indicated by the negative percent changes of both RMSE and MAE. 

This observation implies that, when using the developed ANN model, the accuracy of the 

automated cracking measurements in PMS may be significantly improved. 

Table 21. Evaluation of ANN Model 

Crack 

Type 

Mean 

Measurement 

Errors 

R R2 RMSE 

Change % 

MAE 

Change % 

Auto ANN Auto ANN Auto  ANN 

ALG_H -50.1 -2.9 0.56 0.91 0.31 0.83 -44 -23 

ALG_M 250.4 -2.59 0.83 0.95 0.69 0.91 -81 -82 

ALG_L -34.9 -3.56 0.80 0.84 0.65 0.71 -82 -85 

LNG_H -26.0 3.92 0.25 0.93 0.06 0.87 -21 8 

LNG_M 40.2 3.69 0.85 0.85 0.72 0.72 -39 -36 

LNG_L -3.2 -1.27 0.90 0.96 0.82 0.92 -28 -24 

TRN_H 25.9 3.34 0.47 0.92 0.22 0.84 -44 -27 

TRN_M 126.9 8.24 0.85 0.94 0.72 0.89 -71 -68 

TRN_L 15.2 6.29 0.78 0.84 0.61 0.71 -67 -68 
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Verification of the ANN Prediction Model 

To further validate the developed ANN cracking prediction model, the pavement cracking 

indices [i.e., ALCR and RNDM listed in equation (1) and (2)] were computed using both 

the ANN predicted and the manual cracking measurements. The average results are 

presented in Table 22. A pairwise t-test was performed to determine if the average ANN-

predicted cracking indices are equal to those from the manual measurements. As showed 

in Table 22, all p-values are greater than 0.05 indicating the average ANN-predicted 

cracking indices are statistically equal to those from the manual measurements. 

Table 22. Cracking indices from ANN-predicted vs. manual measurements and p-values 

Index 

Type 

ANN 

predicted 

Mean 

Manual 

Mean 

t-Statistics t-Critical p-Value Significance 

ALCR 87.16 88.00 -1.43 1.65 0.08 Not 

Significant 

RNDM 84.87 85.63 -0.74 1.65 0.23 Not 

Significant 

 

Monte Carlo analysis was conducted to find out the change in Pavement Condition Index 

(PCI) due to error from ALCR and RNDM indices calculation. Equations (18-22) were 

utilized to conduct the Monte Carlo simulation. Figure 34 represents the running average 

plots for Monte Carlo simulation. 
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Figure 34. Running average plot from Monte Carlo analysis 

  

 Table 23 evaluates the results from the Monte Carlo analysis. The mean column 

represents the average change in PCI due to ALCR and RNDM indices error. Table 23 

indicates that the average change in PCI (or ∆PCI) was higher from the 3D automated 

measurements than the ANN-predicted measurements. It was assumed that 95% of the 

error values will fall within a two standard deviation. The “Max ∆PCI” column represents 

the maximum possible value of ∆PCI due to error in each index parameter and, thus, 

describes the sensitivity of PCI value due to the cracking measurements error from 

automated and ANN-predicted system. It can be observed that, for both the automated 

system and ANN-predicted measurements, the error in the RNDM index was more 
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sensitive to PCI than the error in the ALCR index. However, ANN-predicted ALCR and 

RNDM indices yield a lower maximum change in PCI, thus causing lower sensitivity to 

the final PCI values than automated ALCR and RNDM indices. Table 23 suggests that 

ANN-predicted cracking measurements were 41.67% and 26.5% less sensitive than 

automated cracking measurements for ALCR and RNDM respectively.  

Table 23. Results from Monte Carlo simulation 

 

Index 

Automated ANN-Predicted % 

change 

in Max 

PCI 

Mean 

∆𝑃𝐶𝐼 

Standard 

Deviation 

of ∆𝑃𝐶𝐼 

Max 

∆𝑃𝐶𝐼 

Mean 

∆𝑃𝐶𝐼 

Standard 

Deviation 

of ∆𝑃𝐶𝐼 

Max 

∆𝑃𝐶𝐼 

 

ALCR -1.9 4.8 9.6 -0.38 2.8 5.6 

 

41.67% 

 

RNDM 1.1 4.9 9.8 -0.37 3.6 7.2 

 

26.5% 

Summary of the Developed MATLAB Application for DHDVLTRC  

A MATLAB computer application was developed in this research for identifying and 

measuring various asphalt pavement cracking distresses from 2-D pavement images 

collected using the DHDVLTRC. Note that the current version of the computer software 

application is considered as a prototype and its accuracy in the crack type identification 

and detail cracking measurements still warrant further verification and improvement. 

Figure 35 represents the framework used in the development using the MATLAB.  
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Figure 35. Framework for developing automated crack survey application 

 

 

Readjusting Input Image 

Input images were collected from LTRCs’ Digital Highway Data Collection Vehicle. As 

two images from the LTRC vehicle merge together to form a complete pavement section, 

it was necessary to readjust the image size according to the ‘CrackForest’ algorithm. 

According to Shi et al., each image was divided into three 480 × 320 pixel-sized images. 

Each pixel was 0.0155 ft. in width and 0.0155 ft. in length. Thus, two original 7.44 ft. × 

14.88 ft. images were divided and readjusted into six 7.44 ft. × 4.96 ft. images to form a 
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complete pavement section for evaluation. Readjusted images were saved in ‘Output 1’ 

folder and kept in the same location as the ‘CrackForest’ framework.  

Applying ‘CrackForest’ Algorithm 

Crack detection framework was applied to the readjusted images in ‘Output 1.’ Crack 

detection algorithm first applied the feature extractor to identify the crack regions. Crack 

regions generally have darker pixels than the non-cracked regions. Then previously 

developed ‘structured forests algorithm’ was implemented to detect the crack features 

(edges, shape, etc.). Binarization (image erosion and image dilation) technique was 

applied to ensure the continuity of the cracked regions. Manually drawn crack patterns on 

binary images were used to train the ‘structured forests algorithm.’ ‘CrackForest’ 

application tackled the crack detection problem as a classification one where cracked 

regions are classified as +1 and non-cracked regions are classified as -1 in the training 

dataset. Upon completion of the model training, noise from the binary image were 

deleted and final crack detected images were saved in ‘Output 2’ folder for crack 

classification and quantification and stored in the same location as the ‘CrackForest’ 

application. Figure 36 illustrates the procedures that were followed for crack detection 

from each image.  
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Figure 36. (a) Original image (b) feature extraction (c) edge detection (d) image erosion (e) image 

dilation and (f) crack detection 

 

Crack Classification and Quantification Algorithm 

‘Crack Detected’ images from ‘Output 2’ folder were used for crack classification and 

quantification. An ellipse was formed surrounding each detected cracks which covers the 

least area for each crack, Figure 37. Each ellipse has a horizontal (semi-major axis: b) 

and vertical (semi-minor axis: a) axis.  

Figure 37. Ellipse surrounding each crack 

  
(a) (b) 
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‘REGIONPROPS’ function in ‘MATLAB’ was utilized to estimate the convex area and 

parameter (length) for each axis. As image dimensions are defined by pixel; convex pixel 

area and pixel parameter was converted into ft2 and ft. respectively using previously 

estimated pixel dimension (0.0155 ft. in width and 0.0155 ft. in length). Moreover, axis 

percentage was determined by dividing semi-minor axis: a from Semi-major axis: b. 

Threshold Value: Threshold value is applied to differentiate alligator cracking from 

longitudinal or transverse cracking. 𝐼𝑓 𝐴𝑥𝑖𝑠𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝑎

𝑏
 ≥ 0.3, the crack was 

classified as alligator cracking. Otherwise, it was classified as longitudinal or transverse 

cracking.  

Horizontal and vertical axis for longitudinal or transverse classified cracks were checked 

for the orientation. Vertical axis was defined as the centerline as it is parallel to the traffic 

direction and the orientation for each crack was determined from the centerline. If −

70 < crack orientation from centerline < 70, it was classified as transverse cracks. 

Otherwise, it was classified as Longitudinal Crack.  

Alligator cracking was reported in area (ft2) and both longitudinal and transverse cracking 

were reported in ft. Crack classification and quantification algorithm was performed on 

each readjusted image. However, summary reports were produced for each readjusted 

image and also by adding cracking measurements for six images. Crack classification 

images and summary reports were saved in ‘Output 3’ folder and kept in the same 

location as the ‘CrackForest’ framework. 

Figure 38 illustrates the final results from crack classification algorithm. Crack detection 

algorithm used a classifier to remove noise from the original image. However, crack 

detection application was unable to remove the shadows from the tire mark and shoulder 

mark. Figure 38 (a) shows the presence of longitudinal and transverse cracking. From 

Figure 38(b), it can be seen that, crack detection application identified the tire mark as a 

crack and connected it with the transverse crack to form a pattern, which prompted the 

classification algorithm to classify the pattern as an alligator crack and neglect both 

longitudinal and transverse cracks in Figure 38 (c). On the other hand, detection 

algorithm was unable to remove the whole shoulder mark as noise thus prompting the 

classification algorithm to classify it as a longitudinal crack.  
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Figure 38. (a) Original image (b) crack detected image and (c) crack classification 

   

(a) (b) (c) 

Table 24 represents the summary result from the automated crack survey application for 

one readjusted image. Alligator cracking is measured in ft2 and both longitudinal and 

transverse cracking are measured in ft. 

Table 24. Summary results from the LTRCs’ automated cracking survey application 

Section ID Length Alligator (ft
2
) Longitudinal 

(ft.) 

Transverse 

(ft.) 

LA 005_1 14.88 33.68 27.81 0 

LA 005_2 14.88 15.98 29.87 6.87 

LA 005_3 14.88 57.97 55.14 0 

LA 005_4 14.88 47.87 37.82 0 

LA 005_5 14.88 19.87 24.65 0 

The built-in crack detection algorithm was verified to exclude all the pavement marks (oil 

stains, shadows, tire marks, etc.) other than pavement cracking. However, images which 

were used for the validation of the crack detection algorithm were collected using iPhone 

5 camera with very low resolution. In this automated application, pavement images were 

collected using high resolution cameras from a vertical angle which capture dark tire 

marks and other stain patterns. Thus, crack detection algorithm was unable to 

differentiate dark tire marks and/or shadows from darker crack region pixels. More 

research is needed to improve the accuracy of the cracking identification algorithm used. 
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Conclusions 

This research study was conducted to evaluate and assess the quality of the automated 

cracking measurements for flexible pavements in Louisiana. From previous studies, it 

was evident that the automated distress survey showed a good degree of reliability for the 

rut depth and IRI measurements. However, the automated cracking data are still prone to 

errors and irregularity. DOTD started in 2017 by collecting the LA-PMS pavement 

distress data using a vendor’s 3D automated data collection system for LA-PMS. In this 

study, a comprehensive manual cracking survey was conducted on twenty-three flexible 

pavement sections (totally 28.6 miles long) and nine 0.5-mile calibration sites, using 

Vendor’s high-resolution pavement images collected during DOTD’s 2017 pavement 

condition data collection cycle. In addition, a MATLAB-based imaging analysis 

computer program was developed to generate an automated cracking report from high-

resolution 2D pavement images collected by LTRC’s DHDV automatic system.  

For the evaluation of flexible pavement automated cracking measurements reported in 

LA-PMS’s 2017 pavement condition database, the following observations and 

conclusions may be drawn from this study: 

 From 2D, 3D, and manual crack measurements comparison for calibration sites: 2D 

system over-predicted total alligator cracking by 2.3% and under-predicted total 

longitudinal and transverse cracking by 30.2% and 7.8% respectively. On the other 

hand, the 3D system under-predicted total alligator cracking and longitudinal 

cracking by 1.4% and 7.4%, respectively, and over-predicted transverse cracking by 

11.3% when compared with the manual measurements. Comparison at each severity 

level indicated that the 2D system significantly over-estimated low severity cracks 

(12% and 11% for alligator and transverse cracking respectively) and under-estimated 

moderate severity cracks (10% and 9% for alligator and transverse cracking 

respectively) compared to the manual measurements. Comparison between the 3D 

system and the manual system showed that 3D system measurement at each severity 

level for all crack types was close to the manual measurements with 5% being the 

highest difference where 3D system overestimated moderate severity longitudinal 

cracking. It can be concluded that 3D system’s performance was better and closer to 

the reference values than 2D system’s measurements. 

 Crack detection efficiency of the automated method was determined based on the 

manual and automated cracking measurements from 2,844 50-ft. subsections 
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considered in this study. In general, false positive errors produced by the automated 

system (8.5%, 9.8%, and 8.8% respectively for alligator, longitudinal, and transverse 

cracking) were greater than the missed crack errors (5.0%, 7.9%, and 1.4% 

respectively). It can be observed that the highest percentages of false positives and 

missed cracks are the longitudinal cracking. This is as expected, since computer 

software may miss-identify a fallen object or sealed crack as longitudinal cracking or 

longitudinal cracking may be miss-counted due to the strict algorithm followed by the 

software. Moreover, the precision errors produced by the automated system on 0.1-

mile subsections for all crack types were all greater than 18.5% (Table 16), which 

indicates that automated system could falsely detect and report cracking distresses on 

some non-cracked sections.  

 In general, the automated cracking measurements for 50-ft. subsections and 0.1-mile 

subsections followed a similar estimation trend. The automated measurements over-

estimated the amounts of cracks at moderate severity level and under-reported the 

amounts of cracks at high and low severity levels. Scatter plots for manual and 

automated cracking measurements at 50-ft. subsection suggested that the automated 

results poorly correlated with manual measurements with R2 values less than 0.5 for 

all crack types and severity levels. On the other hand, the automated measurements 

on 0.1-mile subsections correlated well with the manual measurements at moderate 

and low severity levels for all crack types with R2 values greater than 0.6. However, 

high average measurement errors and standard deviations indicated that both 

systematic and random errors could be produced by the automated system. To 

qualitatively estimate the accuracy and precision of the automated system, a t-test on 

measurement error and Fligner-Kileen statistical tests were performed at a 

significance level of 0.05. Results showed that, at the project-level (on 50-ft. 

subsections), the automated system could produce significantly accurate results for 

high severity transverse cracking and significantly precise results for low severity 

alligator cracking. At the network level (on 0.1-mile subsections), the automated 

system produced significantly accurate estimation at low severity alligator cracking 

and high severity transverse cracking. The automated system also produced 

significantly precise cracking measurements at low severity level for all crack types. 

 The p-values from a pairwise t-test suggested that both ALCR and RNDM mean 

cracking indices determined from the automated cracking measurements were 

significantly different from those of manual cracking measurements, indicating that 

the automated cracking measurements under-predicted the alligator cracking index, 

but over-predicted random cracking index. It was observed that automated 
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measurements could potentially lead to different treatment selections according to the 

current DOTD cracking indices trigger values. 

 A feed-forward ANN prediction model was developed to shift the 0.1-mile automated 

cracking measurements of flexible pavements in 2017 LA-PMS database towards the 

ground-truth manual measurements. Several pavement and environmental factors 

potentially or possibly associated with the automated cracking image processing and 

identification were considered in the ANN model, which include other existing 

pavement distresses (rutting, IRI, and MPD), pavement age, treatment type, and air 

temperature. Results indicate that the ANN-predicted cracking indices (ALCR and 

RNDM) were found statistically similar to the corresponding manual cracking 

measurements on the flexible pavement sections considered in this study. 

In addition, for LTRC’s DHDV automatic system, a MATLAB-based imaging analysis 

computer program was developed to generate an automated cracking report from high-

resolution 2D pavement images collected by LTRC’s DHDV automatic system. The 

development of the imaging analysis computer application are summarized below:  

 For crack detection, an algorithm called “Structured Random Forests” was 

implemented in MATLAB. Pavement images collected from the DHDV were re-

adjusted according to the training images from the Structured Random Forests 

algorithm. MATLABs’ image processing toolbox was utilized to transform the 

colored images in binary images. Crack Detection framework was then applied on the 

binary images to filter the noises and detect pavement cracks.  

 To develop the crack classification algorithm, the methodology was kept simple. 

Interconnected cracks were classified as alligator cracking, cracks which were 

predominately parallel to the traffic direction were classified as longitudinal cracking 

and cracks which were predominately perpendicular to the pavement centerline were 

classified as transverse cracking. Alligator cracking measurements were reported in 

ft2 and both longitudinal and transverse cracking were reported in ft.  

 It was observed that, the developed cracking survey application can produce summary 

results for a continuous 0.1-mile pavement section in seven minutes. However, the 

developed application sometimes failed to remove deep tire marks and shoulder 

markings. Observations showed that, detected tire markings connect with possible 

transverse cracks and form a pattern, which prompted the classification algorithm to 

over-estimate alligator cracking and under-estimate transverse cracking. Therefore, 

further algorithm improvements are still warranted in the crack detection and image 

noise removal subroutines of the developed imaging program in order to predict more 

accurate cracking measurements from the LTRC’s DHDV automated system. 
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Recommendations 

Based on the findings of this project, the following recommendations were made:  

It is recommended the PMS office utilize the newly developed ANN cracking prediction 

application for its 2017 LA-PMS’s flexible pavement cracking database in the project 

treatment selection process, especially when the cracking indices become the control 

parameters in a treatment selection.  

Due to the difference between the LCMS3D and LCMSRange images, the vendor shall 

check the cracking accuracy when using LCMSRange images in the future pavement 

condition data collection for DOTD.  

Pavement researchers can use the developed ANN cracking model to adjust the 3D 

automated asphalt pavement cracking data retrieved from the 2017 LA-PMS database 

and the adjusted crack values may be treated as pseudo project-level measurements used 

in the pavement  performance evaluation and/or performance model calibration. 

The developed MATLAB application for DHDV can be used to generate an automated 

cracking report for the 2D camera collected pavement images from the LTRC digital data 

collection vehicle. However, the accuracy of the automated cracking report still have 

room for an improvement. 
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Acronyms, Abbreviations, and Symbols 

Term Description 

2D 

3D 

AASHTO 

ADA 

ALCR 

Two Dimension 

Three Dimension 

American Association of State Highway and Transportation Officials 

Automated Distress Analyzer 

Alligator Cracking Index 

ANN 

ARAN 

ASTM 

CDF 

DHDV 

DN 

DOT 

DOTD 

Artificial Neural Network 

Automatic Road Analyzer  

American Society of Testing Materials 

Cumulative Density Function 

Digital Highway Data Vehicle 

Do Nothing Treatment 

Department of Transportation 

Louisiana Department of Transportation and Development 

FHWA 

FK 

FWD 

Federal Highway Administration 

Fligner-Kileen Variance Test 

Falling Weight Deflectometer 

IRI International Roughness Index 

LA-PMS       

LCMS  

LTRC        

Louisiana Pavement Management System 

Laser Crack Measurement System 

Louisiana Transportation Research Center 

LTPP 

LCMS 

Long-Term Pavement Performance 

Laser Crack Measurement Sensors 

LRIS Laser Road Imaging System 

MAE 

 

Mean Absolute Error 
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Term Description 

MEPDG 

MO 

MPD 

MS 

NCHRP 

NPS 

PCI 

PDF 

PMS 

PTCH 

R2 

RMSE 

RNDM 

RUFF 

RUT 

SO 

TO 

UTO 

Mechanic-Empirical Pavement Design Guide 

Medium Overlay 

Mean Profile Depth 

Micro-Surfacing Treatment 

National Cooperative Highway Research Program 

National Park Service 

Pavement Condition Index 

Probability Density Function 

Pavement Management System 

Patching Index 

Coefficient of Determination 

Root Mean Square Error 

Random Cracking Index 

Roughness Index 

Rutting Index 

Structural Overlay 

Thin Overlay 

Ultra-Thin Overlay 
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Appendix A 

To quantify a difference level percentage between the selected treatment types by the two 

cracking measurement datasets, a treatment selection exercise was conducted using the 

computed ALCR and RNDM indices according to the DOTD’s current trigger values for 

different treatment selections as shown in Figures A-1, A-2 and A-3 for the collector, 

arterial, and interstate roads, respectively. 

Figure 39. DOTD treatment triggers for collector roads 
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Figure 40. DOTD treatment triggers for arterial roads                                  
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Figure 41. DOTD treatment triggers for interstates and freeways 

 

Tables A-1, A-2, and A-3 present the impacts of change in treatment plans from the 

automated measurements based on the cracking measurements of 0.1-mile subsections 

for the collector, arterial, and interstate roads, respectively. Note that, by excluding those 

subsections with no detectable cracks measured by both survey methods, there are in total 

88, 68, and 41 subsections of 0.1 mile each for the collector, arterial, and interstate 

pavement subsections used in the treatment selection comparison. In addition, there are 

23 control sections involved in the selected flexible pavement projects. Using the average 

cracking indices of a control section in the treatment selection, Table A-4 shows the 

changes in treatment plans between the 3D automated and manual cracking measurement 

methods. 

Overall, Tables A-1 to A-3 indicate, on average, 39% of 0.1-mile sections yielded 

different treatment triggers than the manual measurements. A similar percentage of the 

plan change, 39%, was found in Table A-4 based on the control sections in which 9 out of 

23 control sections (39%) yielded different treatment plans for automated measurements 

when compared to the reference values. 

 

Index 0-65 70 75 80 85 90 95 98 100 

ALCR Structural 

Overlay 

Medium Overlay Thin 

Overlay 

Ultra-

thin 

Overlay 

Micro-

surfacing 

RNDM Medium Overlay Thin 

Overlay 

Ultra-

thin 

Overlay 

Micro-surfacing 



—  115  — 

 

Table 25. Treatment selection matrix from manual and automated measurements for collector type 

roads 

  Automated Treatment  

  DN MS PST UTO TO MO IPS Change 

M
an

u
al

 T
re

at
m

en
t 

DN 11 5 0 1 0 0 0 35.3% 

MS 2 8 3 0 0 0 0 38.5% 

PST 0 1 20 2 6 3 0 37.5% 

UTO 0 1 0 3 1 0 0 40% 

TO 0 0 7 0 24 18 0 51% 

MO 0 0 0 1 6 20 3 33.3% 

IPS 0 0 0 0 0 2 2 50% 

DN = Do Nothing; MS = Micro-surfacing; PST = Polymer Surface Treatment; UTO = Ultra-thin 

Overlay; TO = Thin Overlay; MO = Medium Overlay and IPS = In-Place Stabilization. 

Table 26. Treatment selection matrix from manual and automated measurements for arterial type 

roads 

  Automated Treatment  

  DN MS UTO TO MO SO Change 

M
an

u
al

 T
re

at
m

en
t 

DN 14 4 1 1 0 0 30.0% 

MS 2 19 2 3 1 0 29.6% 

UTO 0 1 9 4 2 0 43.8% 

TO 0 0 4 12 7 0 47.8% 

MO 0 0 0 3 8 2 38.5% 

SO 0 0 0 0 3 6 33.3% 

DN = Do Nothing; MS = Micro-surfacing; UTO = Ultra-thin Overlay; TO = Thin Overlay; MO = 

Medium Overlay and SO = Structural Overlay. 
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Table 27. Treatment selection matrix from manual and automated measurements for interstates 

  Automated Treatment  

  DN MS UTO TO MO SO Change 
M

an
u
al

 T
re

at
m

en
t 

DN 5 3 0 0 0 0 37.5% 

MS 1 5 0 1 2 0 44.4% 

UTO 0 0 3 2 1 0 50% 

TO 0 0 0 3 3 0 50% 

MO 0 0 0 7 22 3 31.2% 

SO 0 0 0 0 0 3 0% 

DN = Do Nothing; MS = Micro-surfacing; UTO = Ultra-thin Overlay; TO = Thin Overlay; MO = 

Medium Overlay and SO = Structural Overlay. 

 

Table 28. Treatment selection matrix for every control sections used in this project 

  Automated Treatment   

  DN MS PST UTO TO MO IPS Change Avg. 

Change 

M
an

u
al

 T
re

at
m

en
t 

DN 0 0 0 0 0 0 0 0%  

 

 

38.77% 

MS 0 5 0 1 1 0 0 28.6% 

PST 0 0 0 0 1 0 0 100% 

UTO 0 1 0 0 1 1 0 100% 

TO 0 0 0 0 4 3 0 42.8% 

MO 0 0 0 0 0 5 0 0% 

IPS or 

SO 

0 0 0 0 0 0 0 0% 

 



—  117  — 

 

Appendix B 

Mathematical Expression for Developed ANN Model 
 

An ANN model usually takes the form of a function of outputs with respect to inputs. The 

ANN model in this study takes the inputs ALCR_H, ALCR_M, ALCR_L, LONG_H, 

LONG_M, LONG_L, TRAN_H, TRAN_M, TRAN_L, Rut_Avg, IRI_Avg, Texture_MPD, Air 

Temp, TreatmentAge, Treatment_Class, to produce the outputs ALCR_H1, ALCR_M1, 

ALCR_L1, LONG_H1, LONG_M1, LONG_L1, TRAN_H1, TRAN_M1, TRAN_L1, 

respectively. Since the developed model includes a series of input, hidden perceptron 

(hidden) and output layers and each has different numbers of neurons, its mathematical 

expression needs to be represented by the data flow in the prediction through a scaling 

input layer, the perceptron layers and an unscaling output layer. The mathematical 

expression for the developed ANN model can be expressed below, which includes a 

series of mathematical functions expressed for the information data flow in a feed-

forward fashion. 
 

scaled_ALCR_H = ALCR_H*(1+1)/(254.529007-(0))-0*(1+1)/(254.529007-0)-1; 

scaled_ALCR_M = ALCR_M*(1+1)/(2582.48999-(0))-0*(1+1)/(2582.48999-0)-1; 

scaled_ALCR_L = ALCR_L*(1+1)/(1618-(0))-0*(1+1)/(1618-0)-1; 

scaled_LONG_H = LONG_H*(1+1)/(100.4820023-(0))-0*(1+1)/(100.4820023-0)-1; 

scaled_LONG_M = LONG_M*(1+1)/(737.5980225-(0))-0*(1+1)/(737.5980225-0)-1; 

scaled_LONG_L = LONG_L*(1+1)/(357-(0))-0*(1+1)/(357-0)-1; 

scaled_TRAN_H = TRAN_H*(1+1)/(396.4580078-(0))-0*(1+1)/(396.4580078-0)-1; 

scaled_TRAN_M = TRAN_M*(1+1)/(1914.540039-(0))-0*(1+1)/(1914.540039-0)-1; 

scaled_TRAN_L = TRAN_L*(1+1)/(667.4769897-(0))-0*(1+1)/(667.4769897-0)-1; 

scaled_Rut_Avg = Rut_Avg*(1+1)/(305-(0.0700000003))-0.0700000003*(1+1)/(305-0.0700000003)-1; 

scaled_IRI_Avg = IRI_Avg*(1+1)/(518-(-1))+1*(1+1)/(518+1)-1; 

scaled_Texture_MPD = Texture_MPD*(1+1)/(0.08519999683-(0.01099999994))-

0.01099999994*(1+1)/(0.08519999683-0.01099999994)-1; 

scaled_Air Temp = Air Temp*(1+1)/(93.5-(56.5))-56.5*(1+1)/(93.5-56.5)-1; 

scaled_TreatmentAge = TreatmentAge*(1+1)/(36-(0))-0*(1+1)/(36-0)-1; 

scaled_Treatment_Class = Treatment_Class*(1+1)/(6-(1))-1*(1+1)/(6-1)-1; 

perceptron_layer_0_output_0 = sigma[ -0.125671 + (scaled_ALCR_H*0.167294)+ 

(scaled_ALCR_M*1.06395)+ (scaled_ALCR_L*-0.711778)+ (scaled_LONG_H*0.320123)+ 

(scaled_LONG_M*-0.364759)+ (scaled_LONG_L*0.118011)+ (scaled_TRAN_H*-0.0325401)+ 

(scaled_TRAN_M*0.849402)+ (scaled_TRAN_L*-0.449344)+ (scaled_Rut_Avg*-0.133349)+ 

(scaled_IRI_Avg*-0.57683)+ (scaled_Texture_MPD*-0.421644)+ (scaled_Air Temp*0.509927)+ 

(scaled_TreatmentAge*0.535243)+ (scaled_Treatment_Class*0.829728) ]; 

perceptron_layer_0_output_1 = sigma[ 0.21364 + (scaled_ALCR_H*-0.0688495)+ 

(scaled_ALCR_M*0.0370861)+ (scaled_ALCR_L*0.507893)+ (scaled_LONG_H*-0.531505)+ 

(scaled_LONG_M*0.174808)+ (scaled_LONG_L*0.135333)+ (scaled_TRAN_H*-0.594031)+ 

(scaled_TRAN_M*-0.458052)+ (scaled_TRAN_L*-0.310612)+ (scaled_Rut_Avg*-0.96653)+ 

(scaled_IRI_Avg*0.542529)+ (scaled_Texture_MPD*0.921245)+ (scaled_Air Temp*-0.333395)+ 

(scaled_TreatmentAge*-0.950853)+ (scaled_Treatment_Class*-0.818309) ]; 

perceptron_layer_0_output_2 = sigma[ 0.198477 + (scaled_ALCR_H*0.215623)+ (scaled_ALCR_M*-

0.329002)+ (scaled_ALCR_L*0.203283)+ (scaled_LONG_H*0.303117)+ (scaled_LONG_M*1.24122)+ 

(scaled_LONG_L*0.188608)+ (scaled_TRAN_H*-0.291638)+ (scaled_TRAN_M*0.511611)+ 

(scaled_TRAN_L*1.70097)+ (scaled_Rut_Avg*1.00721)+ (scaled_IRI_Avg*0.386698)+ 
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(scaled_Texture_MPD*0.109986)+ (scaled_Air Temp*-0.350448)+ (scaled_TreatmentAge*0.450518)+ 

(scaled_Treatment_Class*0.675231) ]; 

perceptron_layer_0_output_3 = sigma[ 0.00863233 + (scaled_ALCR_H*0.0586587)+ (scaled_ALCR_M*-

0.210533)+ (scaled_ALCR_L*-0.0994667)+ (scaled_LONG_H*0.0397918)+ 

(scaled_LONG_M*0.129864)+ (scaled_LONG_L*1.30034)+ (scaled_TRAN_H*0.132794)+ 

(scaled_TRAN_M*-0.00617421)+ (scaled_TRAN_L*0.27278)+ (scaled_Rut_Avg*-0.10203)+ 

(scaled_IRI_Avg*-0.190013)+ (scaled_Texture_MPD*0.268355)+ (scaled_Air Temp*0.108965)+ 

(scaled_TreatmentAge*-0.682672)+ (scaled_Treatment_Class*0.351473) ]; 

perceptron_layer_0_output_4 = sigma[ -0.0417946 + (scaled_ALCR_H*0.0628377)+ 

(scaled_ALCR_M*0.913088)+ (scaled_ALCR_L*-0.014739)+ (scaled_LONG_H*0.215891)+ 

(scaled_LONG_M*0.690274)+ (scaled_LONG_L*0.312424)+ (scaled_TRAN_H*-0.470958)+ 

(scaled_TRAN_M*-0.629645)+ (scaled_TRAN_L*0.349286)+ (scaled_Rut_Avg*-0.119791)+ 

(scaled_IRI_Avg*-0.268982)+ (scaled_Texture_MPD*0.132698)+ (scaled_Air Temp*0.389531)+ 

(scaled_TreatmentAge*-0.377493)+ (scaled_Treatment_Class*-0.414914) ]; 

perceptron_layer_0_output_5 = sigma[ -0.308396 + (scaled_ALCR_H*-0.0731325)+ (scaled_ALCR_M*-

0.00527642)+ (scaled_ALCR_L*0.542128)+ (scaled_LONG_H*0.204281)+ 

(scaled_LONG_M*0.937124)+ (scaled_LONG_L*0.209156)+ (scaled_TRAN_H*0.106183)+ 

(scaled_TRAN_M*-0.891726)+ (scaled_TRAN_L*-0.652341)+ (scaled_Rut_Avg*0.595185)+ 

(scaled_IRI_Avg*-0.449126)+ (scaled_Texture_MPD*-0.152145)+ (scaled_Air Temp*-0.0262722)+ 

(scaled_TreatmentAge*0.0952771)+ (scaled_Treatment_Class*-0.0631565) ]; 

perceptron_layer_0_output_6 = sigma[ 0.237426 + (scaled_ALCR_H*-0.516168)+ 

(scaled_ALCR_M*1.53012)+ (scaled_ALCR_L*-0.2627)+ (scaled_LONG_H*-0.355355)+ 

(scaled_LONG_M*0.453832)+ (scaled_LONG_L*0.0268586)+ (scaled_TRAN_H*0.0307848)+ 

(scaled_TRAN_M*0.558933)+ (scaled_TRAN_L*0.679047)+ (scaled_Rut_Avg*0.36379)+ 

(scaled_IRI_Avg*0.123474)+ (scaled_Texture_MPD*0.37842)+ (scaled_Air Temp*-0.131581)+ 

(scaled_TreatmentAge*0.256468)+ (scaled_Treatment_Class*-0.38574) ]; 

perceptron_layer_0_output_7 = sigma[ -0.587799 + (scaled_ALCR_H*0.226224)+ (scaled_ALCR_M*-

0.288476)+ (scaled_ALCR_L*-1.16245)+ (scaled_LONG_H*0.392331)+ (scaled_LONG_M*-0.482162)+ 

(scaled_LONG_L*-0.174288)+ (scaled_TRAN_H*0.0610641)+ (scaled_TRAN_M*0.343147)+ 

(scaled_TRAN_L*-0.125753)+ (scaled_Rut_Avg*0.105367)+ (scaled_IRI_Avg*0.538758)+ 

(scaled_Texture_MPD*-0.195669)+ (scaled_Air Temp*-1.04171)+ (scaled_TreatmentAge*-0.307383)+ 

(scaled_Treatment_Class*1.55273) ]; 

perceptron_layer_0_output_8 = sigma[ -0.69152 + (scaled_ALCR_H*-0.293692)+ (scaled_ALCR_M*-

0.887119)+ (scaled_ALCR_L*0.0273406)+ (scaled_LONG_H*0.463292)+ (scaled_LONG_M*0.85432)+ 

(scaled_LONG_L*-0.290734)+ (scaled_TRAN_H*0.79692)+ (scaled_TRAN_M*1.23435)+ 

(scaled_TRAN_L*1.37542)+ (scaled_Rut_Avg*-0.362723)+ (scaled_IRI_Avg*-0.0813753)+ 

(scaled_Texture_MPD*0.613364)+ (scaled_Air Temp*0.749112)+ (scaled_TreatmentAge*-0.351639)+ 

(scaled_Treatment_Class*-0.293722) ]; 

perceptron_layer_0_output_9 = sigma[ 0.228557 + (scaled_ALCR_H*-0.363664)+ (scaled_ALCR_M*-

0.0937628)+ (scaled_ALCR_L*0.137772)+ (scaled_LONG_H*0.0571189)+ 

(scaled_LONG_M*1.85458)+ (scaled_LONG_L*-0.0966858)+ (scaled_TRAN_H*0.292924)+ 

(scaled_TRAN_M*0.58972)+ (scaled_TRAN_L*-0.226056)+ (scaled_Rut_Avg*-0.699528)+ 

(scaled_IRI_Avg*-0.533407)+ (scaled_Texture_MPD*0.238618)+ (scaled_Air Temp*-0.197319)+ 

(scaled_TreatmentAge*-0.31775)+ (scaled_Treatment_Class*-0.683279) ]; 

perceptron_layer_0_output_10 = sigma[ -0.157589 + (scaled_ALCR_H*0.447297)+ (scaled_ALCR_M*-

1.03598)+ (scaled_ALCR_L*0.267672)+ (scaled_LONG_H*-0.528144)+ (scaled_LONG_M*-0.725698)+ 

(scaled_LONG_L*-0.702337)+ (scaled_TRAN_H*0.0514497)+ (scaled_TRAN_M*-0.236046)+ 

(scaled_TRAN_L*0.0915667)+ (scaled_Rut_Avg*-0.112654)+ (scaled_IRI_Avg*-0.0608853)+ 

(scaled_Texture_MPD*0.36471)+ (scaled_Air Temp*0.0440283)+ (scaled_TreatmentAge*0.0930323)+ 

(scaled_Treatment_Class*-0.840582) ]; 

perceptron_layer_0_output_11 = sigma[ -0.265473 + (scaled_ALCR_H*0.415655)+ (scaled_ALCR_M*-

0.729189)+ (scaled_ALCR_L*-0.216293)+ (scaled_LONG_H*0.117049)+ (scaled_LONG_M*-

0.321638)+ (scaled_LONG_L*0.504553)+ (scaled_TRAN_H*-0.136932)+ (scaled_TRAN_M*-

0.454783)+ (scaled_TRAN_L*-0.463926)+ (scaled_Rut_Avg*0.537014)+ (scaled_IRI_Avg*-0.408213)+ 
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(scaled_Texture_MPD*-0.426573)+ (scaled_Air Temp*-0.519522)+ (scaled_TreatmentAge*0.0384133)+ 

(scaled_Treatment_Class*-1.09008) ]; 

perceptron_layer_0_output_12 = sigma[ 0.447267 + (scaled_ALCR_H*-0.122616)+ (scaled_ALCR_M*-

0.0123976)+ (scaled_ALCR_L*0.251749)+ (scaled_LONG_H*-0.0222749)+ 

(scaled_LONG_M*0.132437)+ (scaled_LONG_L*-0.177064)+ (scaled_TRAN_H*-0.283903)+ 

(scaled_TRAN_M*-0.953804)+ (scaled_TRAN_L*0.436791)+ (scaled_Rut_Avg*0.314132)+ 

(scaled_IRI_Avg*0.91511)+ (scaled_Texture_MPD*-0.042266)+ (scaled_Air Temp*-1.37107)+ 

(scaled_TreatmentAge*-0.823338)+ (scaled_Treatment_Class*1.23292) ]; 

perceptron_layer_0_output_13 = sigma[ -0.0289586 + (scaled_ALCR_H*-0.162177)+ 

(scaled_ALCR_M*0.527159)+ (scaled_ALCR_L*0.458899)+ (scaled_LONG_H*-0.066651)+ 

(scaled_LONG_M*-0.647503)+ (scaled_LONG_L*0.472325)+ (scaled_TRAN_H*0.280233)+ 

(scaled_TRAN_M*0.498707)+ (scaled_TRAN_L*-0.534394)+ (scaled_Rut_Avg*0.233431)+ 

(scaled_IRI_Avg*-0.156681)+ (scaled_Texture_MPD*0.316506)+ (scaled_Air Temp*-0.370631)+ 

(scaled_TreatmentAge*-0.706031)+ (scaled_Treatment_Class*-0.88583) ]; 

perceptron_layer_0_output_14 = sigma[ -0.112313 + (scaled_ALCR_H*0.363274)+ (scaled_ALCR_M*-

0.564889)+ (scaled_ALCR_L*-0.402709)+ (scaled_LONG_H*-0.074953)+ (scaled_LONG_M*0.96401)+ 

(scaled_LONG_L*1.18934)+ (scaled_TRAN_H*-0.323646)+ (scaled_TRAN_M*-0.832774)+ 

(scaled_TRAN_L*0.945726)+ (scaled_Rut_Avg*-0.307141)+ (scaled_IRI_Avg*0.560482)+ 

(scaled_Texture_MPD*-0.33986)+ (scaled_Air Temp*-0.0700147)+ (scaled_TreatmentAge*0.724687)+ 

(scaled_Treatment_Class*-0.0362189) ]; 

perceptron_layer_0_output_15 = sigma[ 0.20157 + (scaled_ALCR_H*-0.139847)+ 

(scaled_ALCR_M*0.485766)+ (scaled_ALCR_L*0.511045)+ (scaled_LONG_H*0.0308218)+ 

(scaled_LONG_M*0.52251)+ (scaled_LONG_L*0.721622)+ (scaled_TRAN_H*-0.165469)+ 

(scaled_TRAN_M*-0.623958)+ (scaled_TRAN_L*-0.346875)+ (scaled_Rut_Avg*0.0841056)+ 

(scaled_IRI_Avg*-0.281963)+ (scaled_Texture_MPD*-0.0463051)+ (scaled_Air Temp*0.451902)+ 

(scaled_TreatmentAge*0.515228)+ (scaled_Treatment_Class*0.287376) ]; 

perceptron_layer_0_output_16 = sigma[ -0.111451 + (scaled_ALCR_H*-0.0924763)+ (scaled_ALCR_M*-

0.411665)+ (scaled_ALCR_L*-1.13599)+ (scaled_LONG_H*-0.438027)+ (scaled_LONG_M*0.711242)+ 

(scaled_LONG_L*0.0460177)+ (scaled_TRAN_H*0.287867)+ (scaled_TRAN_M*0.35688)+ 

(scaled_TRAN_L*-0.924045)+ (scaled_Rut_Avg*-0.151013)+ (scaled_IRI_Avg*0.391926)+ 

(scaled_Texture_MPD*-0.429823)+ (scaled_Air Temp*-1.01103)+ (scaled_TreatmentAge*-0.735971)+ 

(scaled_Treatment_Class*0.560051) ]; 

perceptron_layer_0_output_17 = sigma[ 0.690179 + (scaled_ALCR_H*0.0462878)+ (scaled_ALCR_M*-

1.97815)+ (scaled_ALCR_L*1.33229)+ (scaled_LONG_H*-0.20291)+ (scaled_LONG_M*-0.835808)+ 

(scaled_LONG_L*-0.422673)+ (scaled_TRAN_H*-0.438866)+ (scaled_TRAN_M*0.13635)+ 

(scaled_TRAN_L*0.104529)+ (scaled_Rut_Avg*0.234601)+ (scaled_IRI_Avg*-0.570884)+ 

(scaled_Texture_MPD*0.262312)+ (scaled_Air Temp*1.05084)+ (scaled_TreatmentAge*-0.338812)+ 

(scaled_Treatment_Class*0.443641) ]; 

perceptron_layer_0_output_18 = sigma[ -0.182216 + (scaled_ALCR_H*-0.453629)+ (scaled_ALCR_M*-

0.235336)+ (scaled_ALCR_L*-0.183886)+ (scaled_LONG_H*-0.0958681)+ 

(scaled_LONG_M*0.148302)+ (scaled_LONG_L*-0.923234)+ (scaled_TRAN_H*0.111034)+ 

(scaled_TRAN_M*-0.1272)+ (scaled_TRAN_L*0.137265)+ (scaled_Rut_Avg*0.0932599)+ 

(scaled_IRI_Avg*-0.208492)+ (scaled_Texture_MPD*-0.117315)+ (scaled_Air Temp*0.0726845)+ 

(scaled_TreatmentAge*-0.241787)+ (scaled_Treatment_Class*-0.0241347) ]; 

perceptron_layer_0_output_19 = sigma[ 0.0551069 + (scaled_ALCR_H*-0.0459564)+ 

(scaled_ALCR_M*0.0733528)+ (scaled_ALCR_L*0.0318089)+ (scaled_LONG_H*-0.0757795)+ 

(scaled_LONG_M*-0.0057755)+ (scaled_LONG_L*0.448602)+ (scaled_TRAN_H*0.151879)+ 

(scaled_TRAN_M*0.170641)+ (scaled_TRAN_L*-0.164659)+ (scaled_Rut_Avg*0.189321)+ 

(scaled_IRI_Avg*0.0467969)+ (scaled_Texture_MPD*0.0535255)+ (scaled_Air Temp*-0.0436712)+ 

(scaled_TreatmentAge*0.214834)+ (scaled_Treatment_Class*0.158708) ]; 

perceptron_layer_1_output_0 = sigma[ 0.104129 + (perceptron_layer_0_output_0*-0.647455)+ 

(perceptron_layer_0_output_1*-0.463054)+ (perceptron_layer_0_output_2*-0.117682)+ 

(perceptron_layer_0_output_3*-0.426503)+ (perceptron_layer_0_output_4*0.102697)+ 

(perceptron_layer_0_output_5*0.0127523)+ (perceptron_layer_0_output_6*-0.361424)+ 

(perceptron_layer_0_output_7*0.0302036)+ (perceptron_layer_0_output_8*0.0206867)+ 
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(perceptron_layer_0_output_9*0.481093)+ (perceptron_layer_0_output_10*0.672798)+ 

(perceptron_layer_0_output_11*-0.445851)+ (perceptron_layer_0_output_12*-0.436892)+ 

(perceptron_layer_0_output_13*0.197316)+ (perceptron_layer_0_output_14*0.0109793)+ 

(perceptron_layer_0_output_15*0.0363113)+ (perceptron_layer_0_output_16*0.479775)+ 

(perceptron_layer_0_output_17*-0.0245799)+ (perceptron_layer_0_output_18*0.664737)+ 

(perceptron_layer_0_output_19*-0.171711) ]; 

perceptron_layer_1_output_1 = sigma[ -0.0393673 + (perceptron_layer_0_output_0*-0.286207)+ 

(perceptron_layer_0_output_1*-0.342754)+ (perceptron_layer_0_output_2*-0.0678882)+ 

(perceptron_layer_0_output_3*0.22177)+ (perceptron_layer_0_output_4*0.506602)+ 

(perceptron_layer_0_output_5*-0.025757)+ (perceptron_layer_0_output_6*0.011196)+ 

(perceptron_layer_0_output_7*0.567944)+ (perceptron_layer_0_output_8*0.829358)+ 

(perceptron_layer_0_output_9*-0.639976)+ (perceptron_layer_0_output_10*0.701926)+ 

(perceptron_layer_0_output_11*-0.266449)+ (perceptron_layer_0_output_12*-0.411725)+ 

(perceptron_layer_0_output_13*0.352304)+ (perceptron_layer_0_output_14*0.179891)+ 

(perceptron_layer_0_output_15*-0.206907)+ (perceptron_layer_0_output_16*-0.328637)+ 

(perceptron_layer_0_output_17*-0.402519)+ (perceptron_layer_0_output_18*0.41976)+ 

(perceptron_layer_0_output_19*-0.129849) ]; 

perceptron_layer_1_output_2 = sigma[ -0.00245605 + (perceptron_layer_0_output_0*-0.0886572)+ 

(perceptron_layer_0_output_1*-0.262526)+ (perceptron_layer_0_output_2*-0.0494305)+ 

(perceptron_layer_0_output_3*0.571301)+ (perceptron_layer_0_output_4*-0.018864)+ 

(perceptron_layer_0_output_5*-0.231792)+ (perceptron_layer_0_output_6*0.204848)+ 

(perceptron_layer_0_output_7*0.35224)+ (perceptron_layer_0_output_8*-0.143354)+ 

(perceptron_layer_0_output_9*0.0864728)+ (perceptron_layer_0_output_10*-0.397163)+ 

(perceptron_layer_0_output_11*-0.0628193)+ (perceptron_layer_0_output_12*-0.422776)+ 

(perceptron_layer_0_output_13*-0.00217053)+ (perceptron_layer_0_output_14*0.137665)+ 

(perceptron_layer_0_output_15*0.0732777)+ (perceptron_layer_0_output_16*0.148644)+ 

(perceptron_layer_0_output_17*0.575857)+ (perceptron_layer_0_output_18*-0.357959)+ 

(perceptron_layer_0_output_19*0.219029) ]; 

perceptron_layer_1_output_3 = sigma[ -0.000914043 + (perceptron_layer_0_output_0*-0.762549)+ 

(perceptron_layer_0_output_1*0.573241)+ (perceptron_layer_0_output_2*-0.15534)+ 

(perceptron_layer_0_output_3*-0.0789128)+ (perceptron_layer_0_output_4*-0.778963)+ 

(perceptron_layer_0_output_5*-0.102185)+ (perceptron_layer_0_output_6*-0.23921)+ 

(perceptron_layer_0_output_7*0.389359)+ (perceptron_layer_0_output_8*0.0725975)+ 

(perceptron_layer_0_output_9*-0.388972)+ (perceptron_layer_0_output_10*1.01237)+ 

(perceptron_layer_0_output_11*0.741025)+ (perceptron_layer_0_output_12*0.589996)+ 

(perceptron_layer_0_output_13*-0.0214207)+ (perceptron_layer_0_output_14*-0.155855)+ 

(perceptron_layer_0_output_15*-0.641227)+ (perceptron_layer_0_output_16*0.566636)+ 

(perceptron_layer_0_output_17*0.181435)+ (perceptron_layer_0_output_18*0.256578)+ 

(perceptron_layer_0_output_19*-0.0252222) ]; 

perceptron_layer_1_output_4 = sigma[ 0.0912095 + (perceptron_layer_0_output_0*-0.212683)+ 

(perceptron_layer_0_output_1*0.224718)+ (perceptron_layer_0_output_2*-0.331596)+ 

(perceptron_layer_0_output_3*-0.42372)+ (perceptron_layer_0_output_4*-0.0374133)+ 

(perceptron_layer_0_output_5*0.517585)+ (perceptron_layer_0_output_6*0.176383)+ 

(perceptron_layer_0_output_7*-0.0494262)+ (perceptron_layer_0_output_8*0.541378)+ 

(perceptron_layer_0_output_9*-0.375518)+ (perceptron_layer_0_output_10*-0.137543)+ 

(perceptron_layer_0_output_11*0.194293)+ (perceptron_layer_0_output_12*-0.220046)+ 

(perceptron_layer_0_output_13*-0.340809)+ (perceptron_layer_0_output_14*-0.564586)+ 

(perceptron_layer_0_output_15*0.0759475)+ (perceptron_layer_0_output_16*0.0675301)+ 

(perceptron_layer_0_output_17*-0.0543994)+ (perceptron_layer_0_output_18*0.300475)+ 

(perceptron_layer_0_output_19*-0.0833018) ]; 

perceptron_layer_1_output_5 = sigma[ 0.0150812 + (perceptron_layer_0_output_0*-0.225553)+ 

(perceptron_layer_0_output_1*1.27801)+ (perceptron_layer_0_output_2*0.5063)+ 

(perceptron_layer_0_output_3*0.110221)+ (perceptron_layer_0_output_4*0.235721)+ 

(perceptron_layer_0_output_5*0.455489)+ (perceptron_layer_0_output_6*-0.178922)+ 

(perceptron_layer_0_output_7*-0.459178)+ (perceptron_layer_0_output_8*0.570087)+ 
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(perceptron_layer_0_output_9*0.529425)+ (perceptron_layer_0_output_10*-1.01236)+ 

(perceptron_layer_0_output_11*-0.09215)+ (perceptron_layer_0_output_12*0.299105)+ 

(perceptron_layer_0_output_13*-0.848634)+ (perceptron_layer_0_output_14*0.183107)+ 

(perceptron_layer_0_output_15*0.248131)+ (perceptron_layer_0_output_16*0.0624211)+ 

(perceptron_layer_0_output_17*0.63752)+ (perceptron_layer_0_output_18*-0.266351)+ 

(perceptron_layer_0_output_19*-0.0421653) ]; 

perceptron_layer_1_output_6 = sigma[ 0.140997 + (perceptron_layer_0_output_0*-0.320128)+ 

(perceptron_layer_0_output_1*-0.722233)+ (perceptron_layer_0_output_2*-0.634231)+ 

(perceptron_layer_0_output_3*-0.518926)+ (perceptron_layer_0_output_4*0.133228)+ 

(perceptron_layer_0_output_5*0.264434)+ (perceptron_layer_0_output_6*-0.264307)+ 

(perceptron_layer_0_output_7*-0.450357)+ (perceptron_layer_0_output_8*-0.0378957)+ 

(perceptron_layer_0_output_9*0.644327)+ (perceptron_layer_0_output_10*0.00930418)+ 

(perceptron_layer_0_output_11*-0.987714)+ (perceptron_layer_0_output_12*-0.12189)+ 

(perceptron_layer_0_output_13*-0.186738)+ (perceptron_layer_0_output_14*0.654085)+ 

(perceptron_layer_0_output_15*0.611409)+ (perceptron_layer_0_output_16*1.05726)+ 

(perceptron_layer_0_output_17*-0.492375)+ (perceptron_layer_0_output_18*0.181717)+ 

(perceptron_layer_0_output_19*0.107978) ]; 

perceptron_layer_1_output_7 = sigma[ 0.00992885 + (perceptron_layer_0_output_0*0.213493)+ 

(perceptron_layer_0_output_1*-0.348485)+ (perceptron_layer_0_output_2*-0.63226)+ 

(perceptron_layer_0_output_3*0.425482)+ (perceptron_layer_0_output_4*-0.309112)+ 

(perceptron_layer_0_output_5*0.0559224)+ (perceptron_layer_0_output_6*-0.106595)+ 

(perceptron_layer_0_output_7*-0.765396)+ (perceptron_layer_0_output_8*0.308053)+ 

(perceptron_layer_0_output_9*-0.00705839)+ (perceptron_layer_0_output_10*0.14452)+ 

(perceptron_layer_0_output_11*-0.0425433)+ (perceptron_layer_0_output_12*0.72481)+ 

(perceptron_layer_0_output_13*0.529747)+ (perceptron_layer_0_output_14*0.418808)+ 

(perceptron_layer_0_output_15*0.324123)+ (perceptron_layer_0_output_16*-0.00981759)+ 

(perceptron_layer_0_output_17*-0.410643)+ (perceptron_layer_0_output_18*-0.513359)+ 

(perceptron_layer_0_output_19*0.343509) ]; 

perceptron_layer_1_output_8 = sigma[ 0.0841339 + (perceptron_layer_0_output_0*0.18932)+ 

(perceptron_layer_0_output_1*-0.364488)+ (perceptron_layer_0_output_2*0.234958)+ 

(perceptron_layer_0_output_3*-0.358541)+ (perceptron_layer_0_output_4*-0.683927)+ 

(perceptron_layer_0_output_5*-0.573169)+ (perceptron_layer_0_output_6*-0.147334)+ 

(perceptron_layer_0_output_7*0.155274)+ (perceptron_layer_0_output_8*-0.56877)+ 

(perceptron_layer_0_output_9*0.294535)+ (perceptron_layer_0_output_10*-0.074846)+ 

(perceptron_layer_0_output_11*-0.374231)+ (perceptron_layer_0_output_12*0.332629)+ 

(perceptron_layer_0_output_13*0.21968)+ (perceptron_layer_0_output_14*-0.533664)+ 

(perceptron_layer_0_output_15*-0.232337)+ (perceptron_layer_0_output_16*0.0249636)+ 

(perceptron_layer_0_output_17*0.782919)+ (perceptron_layer_0_output_18*0.25349)+ 

(perceptron_layer_0_output_19*-0.0262325) ]; 

perceptron_layer_1_output_9 = sigma[ 0.180579 + (perceptron_layer_0_output_0*-0.285551)+ 

(perceptron_layer_0_output_1*0.450489)+ (perceptron_layer_0_output_2*-1.1589)+ 

(perceptron_layer_0_output_3*-0.155952)+ (perceptron_layer_0_output_4*-0.115562)+ 

(perceptron_layer_0_output_5*0.642331)+ (perceptron_layer_0_output_6*0.543477)+ 

(perceptron_layer_0_output_7*0.154178)+ (perceptron_layer_0_output_8*0.0285512)+ 

(perceptron_layer_0_output_9*-0.703009)+ (perceptron_layer_0_output_10*0.0724089)+ 

(perceptron_layer_0_output_11*0.322703)+ (perceptron_layer_0_output_12*0.29117)+ 

(perceptron_layer_0_output_13*0.159017)+ (perceptron_layer_0_output_14*-1.43495)+ 

(perceptron_layer_0_output_15*0.435078)+ (perceptron_layer_0_output_16*-0.467226)+ 

(perceptron_layer_0_output_17*0.271442)+ (perceptron_layer_0_output_18*0.0709253)+ 

(perceptron_layer_0_output_19*0.144978) ]; 

perceptron_layer_1_output_10 = sigma[ -0.0428299 + (perceptron_layer_0_output_0*1.29226)+ 

(perceptron_layer_0_output_1*0.407154)+ (perceptron_layer_0_output_2*0.855228)+ 

(perceptron_layer_0_output_3*-0.763886)+ (perceptron_layer_0_output_4*-0.187987)+ 

(perceptron_layer_0_output_5*-0.476374)+ (perceptron_layer_0_output_6*-0.770667)+ 

(perceptron_layer_0_output_7*-0.539959)+ (perceptron_layer_0_output_8*-0.231548)+ 
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(perceptron_layer_0_output_9*0.499138)+ (perceptron_layer_0_output_10*-0.0528767)+ 

(perceptron_layer_0_output_11*-0.0988023)+ (perceptron_layer_0_output_12*0.875404)+ 

(perceptron_layer_0_output_13*0.400277)+ (perceptron_layer_0_output_14*0.0485476)+ 

(perceptron_layer_0_output_15*-0.524975)+ (perceptron_layer_0_output_16*-0.960977)+ 

(perceptron_layer_0_output_17*-0.153716)+ (perceptron_layer_0_output_18*0.18447)+ 

(perceptron_layer_0_output_19*-0.244899) ]; 

perceptron_layer_1_output_11 = sigma[ -0.109835 + (perceptron_layer_0_output_0*-0.360745)+ 

(perceptron_layer_0_output_1*0.725951)+ (perceptron_layer_0_output_2*0.524029)+ 

(perceptron_layer_0_output_3*0.0633128)+ (perceptron_layer_0_output_4*0.446789)+ 

(perceptron_layer_0_output_5*-0.0596406)+ (perceptron_layer_0_output_6*-0.0541092)+ 

(perceptron_layer_0_output_7*0.0966427)+ (perceptron_layer_0_output_8*-1.27166)+ 

(perceptron_layer_0_output_9*-0.151159)+ (perceptron_layer_0_output_10*0.350376)+ 

(perceptron_layer_0_output_11*0.451807)+ (perceptron_layer_0_output_12*0.459832)+ 

(perceptron_layer_0_output_13*-0.0459603)+ (perceptron_layer_0_output_14*0.151605)+ 

(perceptron_layer_0_output_15*0.103857)+ (perceptron_layer_0_output_16*-0.587936)+ 

(perceptron_layer_0_output_17*0.0850952)+ (perceptron_layer_0_output_18*-0.239675)+ 

(perceptron_layer_0_output_19*-0.183904) ]; 

perceptron_layer_1_output_12 = sigma[ -0.0636751 + (perceptron_layer_0_output_0*0.229817)+ 

(perceptron_layer_0_output_1*-0.241241)+ (perceptron_layer_0_output_2*-0.118595)+ 

(perceptron_layer_0_output_3*0.526445)+ (perceptron_layer_0_output_4*0.137826)+ 

(perceptron_layer_0_output_5*-0.472089)+ (perceptron_layer_0_output_6*-0.230998)+ 

(perceptron_layer_0_output_7*-0.335204)+ (perceptron_layer_0_output_8*-0.769894)+ 

(perceptron_layer_0_output_9*0.496304)+ (perceptron_layer_0_output_10*0.148846)+ 

(perceptron_layer_0_output_11*-0.159306)+ (perceptron_layer_0_output_12*0.345878)+ 

(perceptron_layer_0_output_13*0.738948)+ (perceptron_layer_0_output_14*0.23119)+ 

(perceptron_layer_0_output_15*0.277352)+ (perceptron_layer_0_output_16*-0.522592)+ 

(perceptron_layer_0_output_17*0.211607)+ (perceptron_layer_0_output_18*-0.553513)+ 

(perceptron_layer_0_output_19*0.161351) ]; 

perceptron_layer_1_output_13 = sigma[ -0.10502 + (perceptron_layer_0_output_0*-0.500209)+ 

(perceptron_layer_0_output_1*0.229218)+ (perceptron_layer_0_output_2*0.033073)+ 

(perceptron_layer_0_output_3*0.176962)+ (perceptron_layer_0_output_4*-0.804388)+ 

(perceptron_layer_0_output_5*-0.473094)+ (perceptron_layer_0_output_6*-0.855443)+ 

(perceptron_layer_0_output_7*-0.271593)+ (perceptron_layer_0_output_8*-0.132431)+ 

(perceptron_layer_0_output_9*0.0245375)+ (perceptron_layer_0_output_10*-0.0969262)+ 

(perceptron_layer_0_output_11*0.578016)+ (perceptron_layer_0_output_12*-0.284102)+ 

(perceptron_layer_0_output_13*0.0188249)+ (perceptron_layer_0_output_14*-0.1232)+ 

(perceptron_layer_0_output_15*-0.68993)+ (perceptron_layer_0_output_16*0.0112806)+ 

(perceptron_layer_0_output_17*1.29396)+ (perceptron_layer_0_output_18*-0.328657)+ 

(perceptron_layer_0_output_19*0.0170515) ]; 

perceptron_layer_1_output_14 = sigma[ -0.101441 + (perceptron_layer_0_output_0*-0.619721)+ 

(perceptron_layer_0_output_1*0.319952)+ (perceptron_layer_0_output_2*0.519276)+ 

(perceptron_layer_0_output_3*0.271251)+ (perceptron_layer_0_output_4*0.314272)+ 

(perceptron_layer_0_output_5*-0.112718)+ (perceptron_layer_0_output_6*0.405138)+ 

(perceptron_layer_0_output_7*0.941607)+ (perceptron_layer_0_output_8*-0.70465)+ 

(perceptron_layer_0_output_9*-0.170341)+ (perceptron_layer_0_output_10*-0.134428)+ 

(perceptron_layer_0_output_11*0.330101)+ (perceptron_layer_0_output_12*-0.839122)+ 

(perceptron_layer_0_output_13*-0.539271)+ (perceptron_layer_0_output_14*-0.206852)+ 

(perceptron_layer_0_output_15*-0.16918)+ (perceptron_layer_0_output_16*0.119347)+ 

(perceptron_layer_0_output_17*0.572762)+ (perceptron_layer_0_output_18*-0.0048373)+ 

(perceptron_layer_0_output_19*-0.176654) ]; 

perceptron_layer_2_output_0 = tanh[ -0.0515816 + (perceptron_layer_1_output_0*0.0115157)+ 

(perceptron_layer_1_output_1*0.777746)+ (perceptron_layer_1_output_2*-0.301778)+ 

(perceptron_layer_1_output_3*0.33521)+ (perceptron_layer_1_output_4*0.616651)+ 

(perceptron_layer_1_output_5*-0.79815)+ (perceptron_layer_1_output_6*-0.548399)+ 

(perceptron_layer_1_output_7*0.418034)+ (perceptron_layer_1_output_8*-0.614436)+ 
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(perceptron_layer_1_output_9*1.86947)+ (perceptron_layer_1_output_10*-0.786414)+ 

(perceptron_layer_1_output_11*0.0939117)+ (perceptron_layer_1_output_12*-0.0317761)+ 

(perceptron_layer_1_output_13*-0.775472)+ (perceptron_layer_1_output_14*-0.23829) ]; 

perceptron_layer_2_output_1 = tanh[ 0.0771865 + (perceptron_layer_1_output_0*0.54885)+ 

(perceptron_layer_1_output_1*0.439384)+ (perceptron_layer_1_output_2*-0.103083)+ 

(perceptron_layer_1_output_3*0.779023)+ (perceptron_layer_1_output_4*0.365638)+ 

(perceptron_layer_1_output_5*-0.570964)+ (perceptron_layer_1_output_6*1.26494)+ 

(perceptron_layer_1_output_7*0.876298)+ (perceptron_layer_1_output_8*-0.0439346)+ 

(perceptron_layer_1_output_9*-0.119801)+ (perceptron_layer_1_output_10*-0.769536)+ 

(perceptron_layer_1_output_11*-1.46119)+ (perceptron_layer_1_output_12*-0.557027)+ 

(perceptron_layer_1_output_13*-0.0523497)+ (perceptron_layer_1_output_14*-1.08494) ]; 

perceptron_layer_2_output_2 = tanh[ 0.0708365 + (perceptron_layer_1_output_0*1.07773)+ 

(perceptron_layer_1_output_1*0.480015)+ (perceptron_layer_1_output_2*-0.0271292)+ 

(perceptron_layer_1_output_3*-0.00791797)+ (perceptron_layer_1_output_4*0.493717)+ 

(perceptron_layer_1_output_5*-0.312098)+ (perceptron_layer_1_output_6*0.945348)+ 

(perceptron_layer_1_output_7*-1.17068)+ (perceptron_layer_1_output_8*-0.097628)+ 

(perceptron_layer_1_output_9*0.228513)+ (perceptron_layer_1_output_10*-1.28345)+ 

(perceptron_layer_1_output_11*0.244885)+ (perceptron_layer_1_output_12*-0.850968)+ 

(perceptron_layer_1_output_13*-0.560397)+ (perceptron_layer_1_output_14*1.1239) ]; 

perceptron_layer_2_output_3 = tanh[ -0.22606 + (perceptron_layer_1_output_0*-0.0169065)+ 

(perceptron_layer_1_output_1*-1.12511)+ (perceptron_layer_1_output_2*-0.0149653)+ 

(perceptron_layer_1_output_3*-0.772869)+ (perceptron_layer_1_output_4*0.356059)+ 

(perceptron_layer_1_output_5*0.328785)+ (perceptron_layer_1_output_6*0.0112813)+ 

(perceptron_layer_1_output_7*-0.308074)+ (perceptron_layer_1_output_8*1.09141)+ 

(perceptron_layer_1_output_9*0.968087)+ (perceptron_layer_1_output_10*0.521971)+ 

(perceptron_layer_1_output_11*-0.280261)+ (perceptron_layer_1_output_12*-0.0990795)+ 

(perceptron_layer_1_output_13*0.817331)+ (perceptron_layer_1_output_14*-0.278106) ]; 

perceptron_layer_2_output_4 = tanh[ 0.0713997 + (perceptron_layer_1_output_0*-0.0151948)+ 

(perceptron_layer_1_output_1*-0.0244298)+ (perceptron_layer_1_output_2*0.289455)+ 

(perceptron_layer_1_output_3*0.0692509)+ (perceptron_layer_1_output_4*-0.200404)+ 

(perceptron_layer_1_output_5*-0.0105239)+ (perceptron_layer_1_output_6*-0.0726341)+ 

(perceptron_layer_1_output_7*0.188801)+ (perceptron_layer_1_output_8*0.393852)+ 

(perceptron_layer_1_output_9*-0.189215)+ (perceptron_layer_1_output_10*-0.116173)+ 

(perceptron_layer_1_output_11*-0.187855)+ (perceptron_layer_1_output_12*0.168359)+ 

(perceptron_layer_1_output_13*0.633273)+ (perceptron_layer_1_output_14*0.0189201) ]; 

perceptron_layer_2_output_5 = tanh[ 0.0242839 + (perceptron_layer_1_output_0*0.192147)+ 

(perceptron_layer_1_output_1*0.137419)+ (perceptron_layer_1_output_2*-0.00722273)+ 

(perceptron_layer_1_output_3*0.0803185)+ (perceptron_layer_1_output_4*0.0575513)+ 

(perceptron_layer_1_output_5*0.264942)+ (perceptron_layer_1_output_6*-0.10443)+ 

(perceptron_layer_1_output_7*-0.0121484)+ (perceptron_layer_1_output_8*-0.125224)+ 

(perceptron_layer_1_output_9*0.118655)+ (perceptron_layer_1_output_10*0.0255666)+ 

(perceptron_layer_1_output_11*-0.0354069)+ (perceptron_layer_1_output_12*0.0720154)+ 

(perceptron_layer_1_output_13*0.452785)+ (perceptron_layer_1_output_14*-0.0695702) ]; 

perceptron_layer_2_output_6 = tanh[ 0.0428046 + (perceptron_layer_1_output_0*0.632282)+ 

(perceptron_layer_1_output_1*0.546215)+ (perceptron_layer_1_output_2*-0.832424)+ 

(perceptron_layer_1_output_3*0.309039)+ (perceptron_layer_1_output_4*-0.0923444)+ 

(perceptron_layer_1_output_5*-0.859496)+ (perceptron_layer_1_output_6*0.080085)+ 

(perceptron_layer_1_output_7*-0.0238451)+ (perceptron_layer_1_output_8*0.401167)+ 

(perceptron_layer_1_output_9*-0.585601)+ (perceptron_layer_1_output_10*1.86954)+ 

(perceptron_layer_1_output_11*0.0846662)+ (perceptron_layer_1_output_12*0.0291675)+ 

(perceptron_layer_1_output_13*-0.586069)+ (perceptron_layer_1_output_14*-0.876303) ]; 

perceptron_layer_2_output_7 = tanh[ -0.125646 + (perceptron_layer_1_output_0*0.443633)+ 

(perceptron_layer_1_output_1*-0.769235)+ (perceptron_layer_1_output_2*-0.201459)+ 

(perceptron_layer_1_output_3*-0.266465)+ (perceptron_layer_1_output_4*-0.589437)+ 

(perceptron_layer_1_output_5*-0.382495)+ (perceptron_layer_1_output_6*1.17852)+ 
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(perceptron_layer_1_output_7*0.87177)+ (perceptron_layer_1_output_8*-0.0513616)+ 

(perceptron_layer_1_output_9*-0.278691)+ (perceptron_layer_1_output_10*-0.0494555)+ 

(perceptron_layer_1_output_11*0.759153)+ (perceptron_layer_1_output_12*1.16022)+ 

(perceptron_layer_1_output_13*-0.534969)+ (perceptron_layer_1_output_14*-0.485407) ]; 

perceptron_layer_2_output_8 = tanh[ 0.076846 + (perceptron_layer_1_output_0*-0.44366)+ 

(perceptron_layer_1_output_1*-0.514749)+ (perceptron_layer_1_output_2*-0.586535)+ 

(perceptron_layer_1_output_3*0.214326)+ (perceptron_layer_1_output_4*0.635968)+ 

(perceptron_layer_1_output_5*1.27726)+ (perceptron_layer_1_output_6*0.175517)+ 

(perceptron_layer_1_output_7*0.147926)+ (perceptron_layer_1_output_8*-0.758864)+ 

(perceptron_layer_1_output_9*0.341131)+ (perceptron_layer_1_output_10*0.175421)+ 

(perceptron_layer_1_output_11*-0.0138599)+ (perceptron_layer_1_output_12*-0.881938)+ 

(perceptron_layer_1_output_13*-0.238935)+ (perceptron_layer_1_output_14*-0.368469) ]; 

perceptron_layer_2_output_9 = tanh[ 0.115453 + (perceptron_layer_1_output_0*0.252942)+ 

(perceptron_layer_1_output_1*0.366401)+ (perceptron_layer_1_output_2*0.290764)+ 

(perceptron_layer_1_output_3*-1.63351)+ (perceptron_layer_1_output_4*0.0139699)+ 

(perceptron_layer_1_output_5*0.0358202)+ (perceptron_layer_1_output_6*1.06232)+ 

(perceptron_layer_1_output_7*0.298764)+ (perceptron_layer_1_output_8*-0.367329)+ 

(perceptron_layer_1_output_9*-0.0875363)+ (perceptron_layer_1_output_10*0.0659216)+ 

(perceptron_layer_1_output_11*-0.724673)+ (perceptron_layer_1_output_12*0.172028)+ 

(perceptron_layer_1_output_13*0.0997577)+ (perceptron_layer_1_output_14*-0.503945) ]; 

 

perceptron_layer_3_output_0 = [ -0.874511 + (perceptron_layer_2_output_0*1.15473)+ 

(perceptron_layer_2_output_1*0.29924)+ (perceptron_layer_2_output_2*0.798893)+ 

(perceptron_layer_2_output_3*-1.28086)+ (perceptron_layer_2_output_4*-0.587111)+ 

(perceptron_layer_2_output_5*-0.453524)+ (perceptron_layer_2_output_6*1.1361)+ 

(perceptron_layer_2_output_7*1.00465)+ (perceptron_layer_2_output_8*-0.222842)+ 

(perceptron_layer_2_output_9*-0.773392) ]; 

perceptron_layer_3_output_1 = [ -0.0795494 + (perceptron_layer_2_output_0*0.61723)+ 

(perceptron_layer_2_output_1*-0.436573)+ (perceptron_layer_2_output_2*0.419307)+ 

(perceptron_layer_2_output_3*-0.0486632)+ (perceptron_layer_2_output_4*-0.177654)+ 

(perceptron_layer_2_output_5*-0.0771434)+ (perceptron_layer_2_output_6*0.612371)+ 

(perceptron_layer_2_output_7*0.388196)+ (perceptron_layer_2_output_8*-0.125711)+ 

(perceptron_layer_2_output_9*1.3535) ]; 

perceptron_layer_3_output_2 = [ -0.068214 + (perceptron_layer_2_output_0*-0.160699)+ 

(perceptron_layer_2_output_1*0.326086)+ (perceptron_layer_2_output_2*-1.99688)+ 

(perceptron_layer_2_output_3*1.02411)+ (perceptron_layer_2_output_4*0.0373337)+ 

(perceptron_layer_2_output_5*0.0932715)+ (perceptron_layer_2_output_6*0.938757)+ 

(perceptron_layer_2_output_7*0.349139)+ (perceptron_layer_2_output_8*0.875471)+ 

(perceptron_layer_2_output_9*-0.227882) ]; 

perceptron_layer_3_output_3 = [ 0.38366 + (perceptron_layer_2_output_0*0.3724)+ 

(perceptron_layer_2_output_1*1.62623)+ (perceptron_layer_2_output_2*-0.317544)+ 

(perceptron_layer_2_output_3*-0.506848)+ (perceptron_layer_2_output_4*-0.0947874)+ 

(perceptron_layer_2_output_5*-0.0532409)+ (perceptron_layer_2_output_6*0.0571476)+ 

(perceptron_layer_2_output_7*-0.290821)+ (perceptron_layer_2_output_8*0.997162)+ 

(perceptron_layer_2_output_9*0.286679) ]; 

perceptron_layer_3_output_4 = [ -0.502993 + (perceptron_layer_2_output_0*-1.636)+ 

(perceptron_layer_2_output_1*0.0326612)+ (perceptron_layer_2_output_2*0.290805)+ 

(perceptron_layer_2_output_3*0.219077)+ (perceptron_layer_2_output_4*0.284986)+ 

(perceptron_layer_2_output_5*-0.0688725)+ (perceptron_layer_2_output_6*-0.237891)+ 

(perceptron_layer_2_output_7*1.40269)+ (perceptron_layer_2_output_8*-0.00362269)+ 

(perceptron_layer_2_output_9*0.133773) ]; 

perceptron_layer_3_output_5 = [ -0.252238 + (perceptron_layer_2_output_0*0.116763)+ 

(perceptron_layer_2_output_1*-0.0205817)+ (perceptron_layer_2_output_2*-0.949327)+ 

(perceptron_layer_2_output_3*-0.930831)+ (perceptron_layer_2_output_4*0.14604)+ 

(perceptron_layer_2_output_5*-0.270317)+ (perceptron_layer_2_output_6*-1.38478)+ 
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(perceptron_layer_2_output_7*0.423476)+ (perceptron_layer_2_output_8*-0.481026)+ 

(perceptron_layer_2_output_9*0.0522649) ]; 

perceptron_layer_3_output_6 = [ 0.0682961 + (perceptron_layer_2_output_0*0.326936)+ 

(perceptron_layer_2_output_1*1.89607)+ (perceptron_layer_2_output_2*-0.544361)+ 

(perceptron_layer_2_output_3*-0.563213)+ (perceptron_layer_2_output_4*0.489797)+ 

(perceptron_layer_2_output_5*0.368514)+ (perceptron_layer_2_output_6*0.502648)+ 

(perceptron_layer_2_output_7*-0.0591276)+ (perceptron_layer_2_output_8*-0.742663)+ 

(perceptron_layer_2_output_9*0.249041) ]; 

perceptron_layer_3_output_7 = [ -0.0435656 + (perceptron_layer_2_output_0*-0.48458)+ 

(perceptron_layer_2_output_1*0.134001)+ (perceptron_layer_2_output_2*-0.0334211)+ 

(perceptron_layer_2_output_3*0.40259)+ (perceptron_layer_2_output_4*0.164364)+ 

(perceptron_layer_2_output_5*-0.386075)+ (perceptron_layer_2_output_6*0.953877)+ 

(perceptron_layer_2_output_7*0.773478)+ (perceptron_layer_2_output_8*-1.51577)+ 

(perceptron_layer_2_output_9*0.651387) ]; 

perceptron_layer_3_output_8 = [ 0.214984 + (perceptron_layer_2_output_0*-1.77644)+ 

(perceptron_layer_2_output_1*-0.460648)+ (perceptron_layer_2_output_2*-1.11863)+ 

(perceptron_layer_2_output_3*-0.719199)+ (perceptron_layer_2_output_4*0.125237)+ 

(perceptron_layer_2_output_5*0.0613257)+ (perceptron_layer_2_output_6*1.37642)+ 

(perceptron_layer_2_output_7*-0.127539)+ (perceptron_layer_2_output_8*-0.413662)+ 

(perceptron_layer_2_output_9*-0.140022) ]; 

 
ALCR_H1= 

unscaling_layer_output_0 = perceptron_layer_3_output_0*(786.8939819-0)/(1+1)+0+1*(786.8939819-

0)/(1+1); 

ALCR_M1= 

unscaling_layer_output_1 = perceptron_layer_3_output_1*(1779.189941-0)/(1+1)+0+1*(1779.189941-

0)/(1+1); 

ALCR_L1= 

unscaling_layer_output_2 = perceptron_layer_3_output_2*(1898.599976-0)/(1+1)+0+1*(1898.599976-

0)/(1+1); 

LONG_H1= 

unscaling_layer_output_3 = perceptron_layer_3_output_3*(402.519989-0)/(1+1)+0+1*(402.519989-

0)/(1+1); 

LONG_M1= 

unscaling_layer_output_4 = perceptron_layer_3_output_4*(412.0960083-0)/(1+1)+0+1*(412.0960083-

0)/(1+1); 

LONG_L1= 

unscaling_layer_output_5 = perceptron_layer_3_output_5*(387.8299866-0)/(1+1)+0+1*(387.8299866-

0)/(1+1); 

TRAN_H1= 

unscaling_layer_output_6 = perceptron_layer_3_output_6*(613.5440063-0)/(1+1)+0+1*(613.5440063-

0)/(1+1); 

TRAN_M1= 

unscaling_layer_output_7 = perceptron_layer_3_output_7*(1397.579956-0)/(1+1)+0+1*(1397.579956-

0)/(1+1); 

TRAN_L1= 

unscaling_layer_output_8 = perceptron_layer_3_output_8*(761.5599976-0)/(1+1)+0+1*(761.5599976-

0)/(1+1); 
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