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This study presents the performance evaluation of 21 direct pile-CPT methods for estimating the 

ultimate load carrying capacity of square precast prestressed concrete (PPC) piles driven into Louisiana 

soils utilizing the cone penetration test (CPT) data. The investigated methods are: Schmertmann, De 

Ruiter and Beringen, Bustamante and Gianeselli (LCPC), Philipponnat, Price and Wardle, Zhou, Tumay 

and Fakhroo, UF (2007), probabilistic, Aoki and De Alencar, Penpile, NGI, ICP, UWA, CPT2000, 

Fugro, Purdue, German, Eurocode7, ERTC3, and Togliani direct pile-CPT methods. A search was 

conducted in the DOTD files to identify pile load test reports with CPT soundings adjacent to test piles. 

A database of 80 pile load tests that were loaded to failure, were identified, collected, and used in 

analysis. The measured ultimate load carrying capacity for each pile was interpreted from the pile load 

test using the Davisson and modified Davisson interpretation methods. The ultimate pile capacities 

estimated from the pile-CPT methods were compared with the measured ultimate pile capacities. In this 

study, three approaches were adopted to evaluate the performance of pile-CPT methods. In the first 
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approach, three statistical criteria were used: the best fit line of predicted (Qp) versus measured (Qm) 

capacity, arithmetic mean and standard deviation of Qp⁄Qm, and the cumulative probability of Qp⁄Qm. The 

results of this evaluation showed the following best-performed pile-CPT methods in order: LCPC, 

ERTC3, Probabilistic, UF, Philipponnat, De Ruiter and Beringen, CPT2000, UWA, and Schmertmann 

methods. The second approach used to evaluate the 21 pile-CPT methods is the MultiDimensional 

Unfolding (MDU), which showed similar ranking of top-performed pile-CPT methods. The third 

approach used for evaluating the pile-CPT methods was based on LRFD reliability analysis in terms of 

resistance factor and efficiency, and the results of evaluation are consistent with the previous two 

criteria.  

The top-performed pile-CPT methods were further analyzed using the MDU analysis to evaluate the 

methods’ similarity, and the results showed that the methods can be divided into three similar groups: 

Group 1: Philipponnat, UF, Probabilistic, LCPC, and De Ruiter methods; Group 2: Schmertmann and 

ERTC3 methods; and Group 3: UWA and CPT2000.  

The collected pile load tests were further divided into four categories based on soil type and used to 

develop combined pile-CPT methods to estimate the ultimate pile capacity for each soil category. In 

addition, another combined pile-CPT method was developed for the general case for all piles without 

considering soil category. The evaluation results showed that the developed combined pile-CPT methods 

significantly improved the estimation of ultimate pile capacity. 

Four machine learning (ML) techniques including the artificial neural network (ANN) and three tree-

based techniques [decision tree (DT), random forest (RF), and gradient boosted tree (GBT)] were also 

used to develop models to estimate the ultimate pile capacity from CPT data. The comparison results 

between the ML models and selected direct pile-CPT methods demonstrated that the ANN and GBT 

models substantially outperform the top-performed pile-CPT methods in all evaluation criteria.
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Abstract 

This study presents the performance evaluation of 21 direct pile-CPT methods for estimating the 

ultimate load carrying capacity of square precast prestressed concrete (PPC) piles driven into 

Louisiana soils utilizing the cone penetration test (CPT) data. The investigated methods are: 

Schmertmann, De Ruiter and Beringen, Bustamante and Gianeselli (LCPC), Philipponnat, Price 

and Wardle, Zhou, Tumay and Fakhroo, UF (2007), probabilistic, Aoki and De Alencar, Penpile, 

NGI, ICP, UWA, CPT2000, Fugro, Purdue, German, Eurocode7, ERTC3, and Togliani direct 

pile-CPT methods. A search was conducted in the DOTD files to identify pile load test reports 

with CPT soundings adjacent to test piles. A database of 80 pile load tests that were loaded to 

failure, were identified, collected, and used in analysis. The measured ultimate load carrying 

capacity for each pile was interpreted from the pile load test using the Davisson and modified 

Davisson interpretation methods. The ultimate pile capacities estimated from the pile-CPT 

methods were compared with the measured ultimate pile capacities. In this study, three 

approaches were adopted to evaluate the performance of pile-CPT methods. In the first approach, 

three statistical criteria were used: the best fit line of predicted (Qp) versus measured (Qm) 

capacity, arithmetic mean and standard deviation of Qp⁄Qm, and the cumulative probability of 

Qp⁄Qm. The results of this evaluation showed the following best-performed pile-CPT methods in 

order: LCPC, ERTC3, Probabilistic, UF, Philipponnat, De Ruiter and Beringen, CPT2000, 

UWA, and Schmertmann methods. The second approach used to evaluate the 21 pile-CPT 

methods is the MultiDimensional Unfolding (MDU), which showed similar ranking of top-

performed pile-CPT methods. The third approach used for evaluating the pile-CPT methods was 

based on LRFD reliability analysis in terms of resistance factor and efficiency, and the results of 

evaluation are consistent with the previous two criteria.  

The top-performed pile-CPT methods were further analyzed using the MDU analysis to evaluate 

the methods’ similarity, and the results showed that the methods can be divided into three similar 

groups: Group 1: Philipponnat, UF, Probabilistic, LCPC, and De Ruiter methods; Group 2: 

Schmertmann and ERTC3 methods; and Group 3: UWA and CPT2000.  

The collected pile load tests were further divided into four categories based on soil type and used 

to develop combined pile-CPT methods to estimate the ultimate pile capacity for each soil 

category. In addition, another combined pile-CPT method was developed for the general case for 

all piles without considering soil category. The evaluation results showed that the developed 

combined pile-CPT methods significantly improved the estimation of ultimate pile capacity. 

Four machine learning (ML) techniques including the artificial neural network (ANN) and three 

tree-based techniques [decision tree (DT), random forest (RF), and gradient boosted tree (GBT)] 
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were also used to develop models to estimate the ultimate pile capacity from CPT data. The 

comparison results between the ML models and selected direct pile-CPT methods demonstrated 

that the ANN and GBT models substantially outperform the top-performed pile-CPT methods in 

all evaluation criteria. 
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Implementation Statement 

This study aimed at evaluating the direct pile-CPT methods for estimating the ultimate axial 

capacity of square PPC piles driven into Louisiana soils and updating the Louisiana Pile Design 

from cone penetration test (LPD-CPT) software to include the top-performing methods. The 

findings of this study can be used effectively in the design and analysis of pile foundations as 

summarized below:  

a) The six top-performed direct pile-CPT methods in addition to the modified Schmertmann 

method and the combined pile-CPT method were implemented in LPD-CPT for friendly 

use by DOTD engineers to better and more accurately design and analyze pile 

foundations. The user can input the applied load and pile size to calculate the required 

pile length. 

b) The calibrated resistance factors provided for the different pile-CPT methods can be used 

in the load and resistance factor design (LRFD) of the pile foundation. 

c) The developed machine learning (ML) models can be effectively implemented into a 

special code or LPD-CPT software to better estimate the ultimate axial capacity of PPC 

piles from pile characteristics, soil type, and CPT input data. 

d) The effect of scour on the long-term ultimate pile capacity was implemented into the 

LPD-CPT software based on FHWA guidelines by considering the change on overburden 

pressure for sand layers. 

e) The LPD-CPT software was updated to include batch analysis for the different bents in a 

bridge for given pile size, ground surface elevations, local scour elevation, and the load 

and resistance factor (LRFD). 
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Introduction 

Design engineers usually consider using deep foundations when the conditions of the upper soil 

layers are weak and unable to withstand and support the structural loads. Piles help transfer these 

loads deep in the ground through their interactions with the surrounding soils. Therefore, the 

safety and stability of pile-supported structures depend on the behavior of piles.  

Most soil deposits in southern Louisiana are soft in nature. In addition, the high percentage of 

wetlands, marshes, swamps, bayous, rivers, and lakes makes it necessary to consider deep 

foundations in the design of transportation infrastructure. Therefore, pile foundations are 

frequently used by the Louisiana Department of Transportation and Development (DOTD) to 

support highway bridges and other transportation infrastructures. Square precast prestressed 

concrete piles (PPC) are the most common piles currently used in DOTD projects.  

Piles are expensive structural members, and pile projects are always costly. Current DOTD 

practice of pile design is based on the static analysis (α-method) and sometimes in conjunction 

with the dynamic analysis using the Pile Driving AnalyzerTM. Soil properties are needed as input 

parameters for the static analysis. Therefore, it is necessary to conduct field and laboratory tests, 

which include soil boring, standard penetration test, unconfined compression test, soil 

classification, etc. Running these field and laboratory tests is expensive and time consuming. The 

cost of traditional soil boring and the associated laboratory tests in Louisiana is between $14,000 

and $15,000, depending on the sampling depth and the laboratory tests involved. 

Due to the uncertainties associated with pile design, load tests are usually conducted to verify the 

design loads and to evaluate the actual response of the pile under loading. Pile load tests are also 

expensive (the average cost of a pile load test in Louisiana including pile is about $50,000). 

Moreover, pile load tests are a verification tool for pile design and they cannot be a substitute for 

the engineering analysis of the pile behavior. 

The use of in-situ tests, such as the cone penetration test (CPT), that are performed under 

existing stresses and boundary conditions in the field, can provide faster, and more accurate and 

reliable estimation of pile capacity than the traditional methods.  

The CPT has been widely recognized as a preferred tool for site characterization and evaluation 

of soil properties. The test is a simple, fast, repeatable, and a cost-effective in-situ test that can 

provide continuous soundings of reliable soil measurements, especially when compared to 

traditional site characterization (borings and laboratory tests). During penetration, the CPT 

measures the tip resistance (qc), sleeve friction (fs), and also excess pore pressures (u) when the 
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piezocone (PCPT or CPTu) is used. The CPT technology can be effectively utilized for soil 

identification, classification, and for the evaluation of different soil properties, such as strength 

and deformation characteristics of the soil. Implementation of the CPT can drastically decrease 

the number of soil borings and reduce the cost and time required for subsurface characterization. 

Therefore, implementation of the CPT technology by DOTD in different engineering 

applications, such as the estimation of pile capacity, should be seriously considered. 

Due to the similarity between the cone and the pile, the estimation of pile capacity utilizing the 

CPT test data is considered among the earliest applications of the CPT. The test can provide 

valuable and continuous information records with depth that can be interpreted for pile capacity. 

Therefore, the in situ characteristics of the soil are available to design engineers at a particular 

point. The pile design methods that utilize the CPT data proved to predict the pile capacity 

within an acceptable accuracy. 

Several direct pile-CPT methods have been proposed in literature to estimate the pile capacity 

utilizing the CPT data, which correlate the uncorrected and corrected cone resistance, (qc, qt) and 

sleeve friction (fs ) to the ultimate pile capacity (Qu) using some reduction factors due to scale 

effects, penetration rate, pile type, pile installation, etc.  (e.g., [1], [2], [3], [4], [5], [6], [7], [8], 

[9]; [10], [11], [12], [13]). Several studies have been carried out by different researchers to 

evaluate the capability of the different direct pile-CPT methods for estimating the measured 

ultimate pile capacity from load tests (e.g., [14], [15], [16], [17]). The study carried out by 

Robertson et al. [14] on eight pile load tests showed that the pile capacities predicted using 

Schmertmann [1], De Ruiter and Beringen [2], and Bustamante and Gianeselli [3] methods fit the 

measured capacities better than other methods. Briaud and Tucker [15] evaluated six CPT 

methods using 98 pile load tests and concluded that the Bustamante and Gianeselli [3] method 

gave the best fit between measured and predicted pile capacities. Another study by Tand and 

Funegard [16] showed that the predicted capacities using the De Ruiter and Beringen [2] method 

showed the best fit to the measured capacities.  

A previous study was conducted by Abu-Farsakh and Titi [17] using a database of 35 pile load 

tests to identify the most appropriate CPT methods to estimate the ultimate capacity of driven 

PPC friction piles in the state of Louisiana. Eight direct pile-CPT methods were evaluated based 

on their capability to predict the measured ultimate pile capacity. Based on this evaluation, the 

De Ruiter and Beringen [2] and Bustamante and Gianeselli [3] methods were identified as the 

best performance methods. These two methods, in addition, to the Schmertmann [1] method 

were implemented into a visual basic computer program (Louisiana Pile Design from CPT) for 

use by DOTD engineers in the analysis and design of friction piles. 
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Generally, pile design depends on soil conditions, pile characteristics, and driving and 

installation conditions. Local experience usually played an important role in design/analysis of 

piles. Therefore, it is essential to take advantage of the DOTD experience in the CPT technology 

to identify suitable CPT design methods. Implementation of the CPT (in conjunction with the 

currently used method) in the analysis/design of piles will foster confidence in the CPT 

technology. With time and experience, the role of the CPT can be increased while the role of 

traditional subsurface exploration is reduced. 

This report presents the current research effort undertaken at the Louisiana Transportation 

Research Center (LTRC) to identify the most appropriate pile-CPT methods for estimating the 

ultimate axial load carrying capacity of piles driven into Louisiana soils. To achieve this goal, 

state projects that have both pile load tests and CPT soundings were identified and collected 

from DOTD files. Pile load test reports were selected based on selection criteria, compiled onto 

sheets, and analyzed. A database of 80 pile load tests and corresponding CPT test data were 

collected. The ultimate axial load carrying capacity for each pile was determined using the 

Davisson interpretation method [18]. The CPT soundings close to the test pile location were 

identified and used to predict the ultimate pile capacity. Twenty one direct pile-CPT methods 

were selected and evaluated in this study for their capabilities to estimate the ultimate pile 

capacity of PPC driven piles by CPT were selected. Detailed description of these methods are 

presented in Appendix A of this report. The ultimate pile load carrying capacities predicted by 

the CPT methods were compared with the ultimate capacities obtained from pile load tests using 

the Davisson method. Statistical analysis, MultiDimensional Unfolding (MDU), and Reliability 

analysis were used to investigate the performance of the 21 pile-CPT methods. In our study, it 

was shown that the estimation of top-ranked pile-CPT methods can be used in a combined 

method to yield an optimized method for predicting axial capacity of driven piles. 

This report also explores the potential application of artificial intelligence (AI) and machine 

learning (ML) techniques to develop models for estimating the ultimate pile capacity utilizing 

the CPT data. This includes the artificial neural network (ANN), the most widely used AI 

method; and three tree-based ML methods: the decision tree (DT), random forest (RF), and 

gradient boosted tree (GBT). It is expected that the AI and ML techniques will resolve some of 

the shortcomings in traditional direct pile-CPT methods that involves assumptions and 

judgments in selecting the proper correlation coefficients between the CPT data and pile 

parameters for estimating the ultimate capacity of PPC driven piles. The results of AI and ML 

models were compared with the results of pile load tests as well as the results of top-performed 

direct pile-CPT methods to demonstrate its accuracy and bolster its reliability and feasibility. 
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Finally, the top-performed pile-CPT methods in addition to the developed combined pile-CPT 

method were implemented into the Louisiana Pile Design from cone penetration test (LPD-CPT) 

program for friendly use by Louisiana engineers to design PPC piles utilizing CPT technology. 
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Objectives 

The primary objectives of this research project were: 

 Collect all available pile load tests database from Louisiana DOTD and the corresponding 

CPT soundings and soil borings close to the test pile locations; 

 Evaluate/rank the different direct pile-CPT methods for estimating the ultimate axial load 

carrying capacity of driven PPC piles from the cone penetration test (CPT) data for use in 

Louisiana soils; 

 Select, modify and/or develop a new pile-CPT method for use in the design of piles driven 

in Louisiana soils; 

 Identify the most appropriate pile-CPT methods for implementing into the LPD-CPT 

software; 

 Re-calibrate the resistance factor (ϕ) for the selected pile-CPT methods; 

 Update the Louisiana Pile Design-Cone Penetration Test (LPD-CPT) software to 

incorporate the newly selected pile-CPT prediction methods; and  

 Update the “LPD-CPT” software to incorporate new features, such as the effect of scour 

on the long-term pile capacity, implement the calibrated resistance factors for the pile-

CPT methods, implement pile setup empirical equations, and generate synthetic CPT 

profiles. 
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Scope 

This research effort was focused on evaluating the capability of 21 direct pile-CPT methods for 

accurately estimating the ultimate axial load carrying capacity of driven piles utilizing CPT data. 

These methods are described in detail in Appendix A of this report. The predicted capacity was 

compared to the reference pile load capacity obtained from the pile load test using Davisson 

interpretation method.  

The direct pile-CPT methods were used to investigate the load carrying capacity of square precast 

prestressed concrete (PPC) piles of different sizes driven into Louisiana soils. Other pile types 

such as timber piles and steel pipes were not covered in the current analyses.  

To achieve the objective of this study, a total of 104 pile load tests database and corresponding 

CPT soundings and soil borings close to the test pile locations were initially collected from DOTD 

files. However, only 80 pile load tests that were loaded to failure during the load test were included 

in this study. 

Different evaluation techniques were adopted in this study to evaluate and identify the best-

performed direct pile-CPT methods for estimating the ultimate capacity of PPC piles: (a) an 

evaluation based on mathematical and statistical analysis; (b) an evaluation using 

MultiDimensional Unfolding; and (c) an evaluation based on reliability analysis. 

A combined method from the best-performed Pile-CPT methods was developed based on 

contribution of sand layers to total ultimate capacity (kind of optimization). In addition, new pile-

CPT methods were developed using the artificial intelligent and machine learning techniques 

[artificial neural networks (ANN), decision trees (DT), random forests (RF), gradient boosted tree 

(GBT)]. 

The top-performed eight pile-CPT methods in addition to the combined pile-CPT method were 

implemented into the Louisiana Pile Design from cone penetration test (LPD-CPT) program. 
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Literature Review 

Axial Capacity of Piles 

Piles are relatively long and generally slender structural foundation members that transmit 

superstructure loads to deep soil layers. In geotechnical engineering, piles usually serve as 

foundations when soil conditions are not suitable for the use of shallow foundations.  

The behavior of the pile depends on many different factors, including pile characteristics, soil 

conditions and properties, installation method, and loading conditions. The performance of piles 

affects the serviceability of the structure they support. 

Based on some factors including the mechanism of load transfer (friction and end-bearing piles), 

volume of soil displacement, and pile’s material (concrete, steel, timber, etc.), different pile 

classification systems have been introduced in literature. These factors determine the pile’s 

behavior that affect the serviceability of the supported structure. For example, the behavior of 

friction piles is mostly dependent on the pile-soil interface friction; while for end-bearing piles, 

most of the pile capacity comes from interaction between the pile’s tip and the soil located in the 

tip area known as influence zone. 

The prediction of pile load carrying capacity can be achieved using different methods such as 

pile load test, dynamic test, statnamic test, static analysis based on soil properties from 

laboratory tests, and static analysis utilizing the results of in situ tests such as the cone 

penetration test. 

The ultimate axial load carrying capacity of the pile (Qu) composed of the end-bearing capacity 

of the pile (Qb) and the shaft friction capacity (Qs). The general equation described in the 

literature is given by: 

 𝑄𝑢 = 𝑄𝑏 + 𝑄𝑠 = 𝑞𝑏𝐴𝑏 +∑𝑓𝑖𝐴𝑠𝑖

𝑛

𝑖=1

 (1) 

where, qb is the unit tip bearing capacity, Ab is the area of the pile tip,  𝑓𝑖 is the unit skin friction 

of the soil layer i, and Asi is the area of the pile shaft in the soil layer i. In sands, the end-bearing 

capacity (Qb) dominates, while in soft clays the shaft friction capacity (Qs) dominates. The 

design load carrying capacity (Qd) of the pile can be calculated by: 
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 𝑄𝑑 =
𝑄𝑢
𝐹. 𝑆.

 (2) 

where, Qu is the ultimate load carrying capacity and F.S. is the factor of safety. 

Cone Penetration Test 

The cone penetration test has been recognized as one of the most widely used in situ tests. Cone 

penetration test (CPT) was introduced by Swedish Railways in 1917. Dutch Mantle cone with 10 

𝑐𝑚2 area and 60°apex angle was introduced in 1936. The first electronic penetrometer was 

introduced in 1948. In 1953, a separated sleeve for measuring the sleeve friction resistance 

introduced by Begemann (friction cone penetrometer). 

 The cone penetration test consists of advancing a cylindrical rod with a conical tip into the soil 

and measuring the forces required to push this rod. The friction cone penetrometer measures two 

resistance forces during penetration: the total tip resistance (qc), which is the soil resistance 

(within influence zone) to advance the cone tip, and the sleeve friction (fs), which is the sleeve 

friction developed between the surrounding soil and the sleeve of the cone penetrometer. The 

ratio of sleeve friction to the tip resistance is known as the friction ratio (Rf), which is expressed 

in a percentage. A schematic of the electric cone penetrometer is depicted in Figure 1. The CPT 

resistance parameters (qc, fs) has been widely used to classify and identify soil strata and to 

evaluate the strength, stiffness, and the deformation characteristics of the soils.  

The cone penetration test (CPT) data has been used to estimate the ultimate axial pile load 

carrying capacity.  Several methods are available in the literature to estimate the axial pile 

capacity utilizing the CPT data. These methods can be classified into two well-known 

approaches:  

1) Direct approach, in which 

 The unit tip bearing capacity of the pile (qb) is evaluated from the cone tip resistance 

(qc) profile. 

 The unit skin friction of the pile (f) is evaluated from either the sleeve friction (fs) 

profile or the cone tip resistance (qc) profile. 

2) Indirect approach: in which the CPT data (qc and fs) are first used to evaluate the soil 

strength parameters such as the undrained shear strength (Su) and the angle of internal 

friction (φ). These parameters are then used to evaluate the unit end bearing capacity of the 
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pile (qb) and the unit skin friction of the pile (f) using formulas derived based on semi-

empirical/theoretical methods. 

In the current research, only the direct methods for estimating the ultimate pile capacity from 

CPT data are investigated (referred to as direct pile-CPT methods). 

Figure 1. The electric cone penetrometer 

 

Determining Soil Type Using CPT 

Most of the pile-CPT methods include different correlation equations for evaluating the unit end 

bearing capacity of the pile (𝑞𝑏) and the unit skin friction of the pile (f) from the CPT data (qc 

and fs) in different soil types. Therefore, it is essential to evaluate the soil layering and determine 

the soil type for better calculating the pile capacity. 
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Soil classification and identification of soil stratigraphy can be achieved by analyzing the CPT 

data. Clayey soils usually show low cone tip resistance, high sleeve friction, and therefore high 

friction ratio, while sandy soils show high cone tip resistance, low sleeve friction, and low 

friction ratio. Many soil classification methods based on CPT employ the CPT data to identify 

the soil type from classification charts. 

There are different soil classification methods proposed by different researchers such as 

Schmertmann [19], Douglas and Olsen [20], Robertson et al. [21], and Campanella et al. [22]. In 

this study, two soil soil-behavior type CPT classification methods were used for all pile-CPT 

methods: the probabilistic region estimation method for soil classification by Zhang and Tumay 

[23] and Robertson 2010 soil classification [24]. Description of these two CPT soil classification 

methods are presented below. 

It should be noted that the detailed implementation of each soil classification method for each 

pile-CPT method has been explained at each pile-CPT description section. 

Probabilistic Soil Classification 

Zhang and Tumay [23] proposed the probabilistic region estimation method for soil behavior 

classification from CPT data, which is similar to the classical soil classification methods, where 

it is based on soil composition according to the Unified Soil Classification System (USCS). The 

method identifies three soil type behaviors: clayey, silty, and sandy soils. The probabilistic 

region estimation determines the probability of each soil behavior (clayey, silty, and sandy) at a 

certain depth.  

In this method, a conformal mapping was introduced based on Douglas and Olsen [20] chart to 

transfer the CPT data to the soil classification index (U). The soil classification index, U, 

provides a soil profile over depth with the probability of belonging to different soil types, which 

more realistically and continuously reflects the in situ soil characterization, which includes the 

spatial variation of soil types. The conformal transformation is accomplished using the following 

equations: 

 x = 0.1539 Rf + 0.8870 log qc − 3.35  
(3) 

 y = −0.2957 Rf + 0.4617 log qc − 0.37  
(4) 

The soil classification index (U) is obtained from: 
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U =

(a1x − a2y + b1)(c1x − c2y + d1)

(c1x − c2y + d1)2 + (c2x + c1y + d2)2

−
(a2x + a1y + b2)(c2x + c1y + d2)

(c1x − c2y + d1)2 + (c2x + c1y + d2)2
  

(5) 

 

where, a1, a2, b1, b2, c1, c2, d1,and d2 are -11.345, -3.795, 15.202, 5.085, -0.296, -0.759, -2.960, 

and 2.477, respectively. 

A statistical correlation was then established between the U index and the compositional soil 

type given by the USCS classification system. A normal distribution of U was established for 

each reference USCS soil type (i.e., GP, SP, SM, SC, ML, CL, and CH). Each U value 

corresponds to several soil types with different probabilities. Boundary values were used to 

divide the U axis into seven regions, as shown in The equations for the different soil curves are 

given as follows: 

For U < 0.14: sandy = 0.0035, silty = 0.0184, clayey = 0.9781 

For U = 2.91: sandy = 0.9771, silty = 0.0229, clayey = 0.000 

For -0.14 < U < 2.91:  

 sandy = 0.00132408 + 0.074195U + 0.0900763U2  (6) 

 silty = 0.147853 + 0.896769U − 0.499014U2  (7) 

 clayey = 0.848617 − 0.841851U + 0.275413U2  (8) 

 

 

 

 

Figure 2. Soil types were further rearranged into three groups: sandy and gravelly soils (GP, SP, 

and SM), silty soils (SC and ML), and clayey soils (CL and CH). The original method gives 

constant probability of each soil type (represented by the step lines) regardless of the U value 

within the same region (R1 to R7 in The equations for the different soil curves are given as 

follows: 

For U < 0.14: sandy = 0.0035, silty = 0.0184, clayey = 0.9781 
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For U = 2.91: sandy = 0.9771, silty = 0.0229, clayey = 0.000 

For -0.14 < U < 2.91:  

 sandy = 0.00132408 + 0.074195U + 0.0900763U2  (6) 

 silty = 0.147853 + 0.896769U − 0.499014U2  (7) 

 clayey = 0.848617 − 0.841851U + 0.275413U2  (8) 

 

 

 

 

Figure 2). This will allow for a sudden drop in the probabilities of U value across the border from 

one region to another. This method was further modified from origin to allow a smooth transition 

of probability (curved lines) with U values and hence to provide a continuous profile of the 

probability of soil constituents with depth [25]. 

The equations for the different soil curves are given as follows: 

For U < 0.14: sandy = 0.0035, silty = 0.0184, clayey = 0.9781 

For U = 2.91: sandy = 0.9771, silty = 0.0229, clayey = 0.000 

For -0.14 < U < 2.91:  

 sandy = 0.00132408 + 0.074195U + 0.0900763U2  (6) 

 silty = 0.147853 + 0.896769U − 0.499014U2  (7) 

 clayey = 0.848617 − 0.841851U + 0.275413U2  (8) 

 

 

 

 

Figure 2. Regions’ boundaries along the U-axis corresponding to probabilities of each soil group [25]  
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Robertson-2010 Soil Classification 

Robertson [24] proposed a soil behavior type soil classification method that is presented in a 

chart of normalized cone tip resistance (qc/Pa) versus friction ratio (Rf) space dividing the soil 

behavior into nine different soil behavior types (SBT). Here Pa is the atmospheric pressure. They 

used the soil behavior index that was proposed by Jefferies and Davies [26] and modified it to 

SBT index (ISBT) as follows: 

  
ISBT = √(3.47 − log(qc Patm⁄ ))2 + (1.22 + logRf)2  

(9) 

The SBT index has been used to divide the chart into the following 9 soil types: 

1) Sensitive fine-grained  

2) Clay-organic soil 

3) Clays: clay to silty clay 

4) Silt mixtures: clayey silt and silty clay 

5) Sand mixtures: silty sand to sandy silt 

6) Sand: clean sands to silty sands 

7) Dense sand to gravelly sand 

8) Stiff sand to clayey sand (overconsolidated or cemented) 

9) Stiff fine-grained (overconsolidated or cemented) 
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The values of ISBT for the soil type boundaries are shown in Figure 3. 

In the chart, zones 1, 8, and 9 are defined as follows: 

 Zone 1: Iz1 = qc Pa⁄ − 12 exp(−1.4Rf) < 0  
(10) 

 Zone 8: qc Pa⁄ − 5809.1 exp(−1.4Rf) > 56.86 &  Rf < 4.7 
(11) 

 Zone 9: qc Pa⁄ − 5809.1 exp(−1.4Rf) > 56.86 &  Rf > 4.7 
(12) 

It should be noted here that no soil is located in zones 1, 8, and 9 in our study. 

Figure 3. Robertson-2010: boundaries of 𝐈𝐒𝐁𝐓 in the soil behavior type chart [24] 

 

Direct Pile-CPT Methods 

In this study, 21 direct pile-CPT methods were investigated. These methods are: Schmertmann 

[1], De Ruiter and Beringen [2], Bustamante and Gianeselli [3], Tumay and Fakhroo (cone-m) 

[4], Aoki and De Alencar [5], Price and Wardle [6], Philipponnat [7], Penpile [8], Probabilistic 

[10], NGI ( [11], [27]), ICP [12], UWA ( [28], [29]), CPT2000 [13], Fugro ( [30], [31]), Purdue  

( [32], [33]), UF ( [34], [35]), Togliani [36], and Zhou [37].  
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There are other pile-CPT methods available in literature that were not included for evaluation in 

this study. These methods are: 

1) Methods using CPTu data: NGI-BRE (Almeida et al. [38] and Powel et al. [39]), Unicone 

[9], and Enhanced Unicone [40], 

2) Methods limited to side resistance: KTRI [41], 

3) Methods limited to clays: V-K [42], and 

4) Methods for open-ended piles in sandy soils: UCD-05 [43], UCD-11 ( [44], [45]), and 

HKU [46]. 

As stated earlier, the direct Pile-CPT methods evaluate the unit end bearing capacity of the pile 

(qb) from the measured cone tip resistance (qc) by averaging the cone tip resistance over an 

assumed influence zone. The unit shaft resistance (f) is either evaluated from the measured 

sleeve friction (fs) in some methods or from the measured cone tip resistance (qc) in other 

methods. It should be noted here that the cone tip resistance (qc) is corrected for the pore water 

pressure and the probabilistic and Robertson-2010 CPT soil behavior classification methods 

were used to select the relevant equations and correlations for each soil type. 

The detailed descriptions of the different direct pile-CPT methods are presented in Appendix A. 

Each pile-CPT method is introduced and the implementation of the probabilistic and Robertson-

2010 CPT soil behavior classification methods into the different pile-CPT methods are 

explained. 

Evaluation of Pile-CPT Methods 

Several criteria have been used in literature to evaluate the direct pile-CPT methods for 

estimating the measured capacity from pile load tests. This section will summarize some of these 

evaluation criteria. 

Briaud and Tucker [15] studied six direct pile-CPT methods using 98 pile load test database 

obtained from Mississippi State Highway Department. For statistical analyzing, the ratio of 

estimated to measured pile capacity (Qp/Qm) was investigated for different pile-CPT methods. 

The accuracy criteria of the method was determined by means of Qp/Qm close to 1. The precision 

criterion of the method was dependent on the standard deviation of Qp/Qm. For ranking the 

methods, they introduced a ranking index, RI, according to the following equation: 

 RI = |μ(a)| + σ(a)  (13) 
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where, μ and σ are the mean and standard deviation of  ln(Qp Qm⁄ ), respectively. They 

recommended using the log normal distribution. The method that overpredicts the pile capacity 

leads into lower values of RI, and therefore ranks better than the method that underpredicts the 

pile capacity. Based on their results, the LCPC, De Ruiter and Beringen, Penpile, Schmertmann, 

and Tumay and Fakhroo were set in order from the best to worst performance. 

In 1999, a research study conducted in Louisiana Transportation Research Center (LTRC) by 

Abu-Farsakh and Titi [17] evaluated eight direct pile-CPT methods for estimating the ultimate 

pile capacity of 35 square precast prestressed concrete (PPC) driven friction piles by using the 

following four criteria: 

1) The best fit line of estimated, Qp versus measured pile capacity, Qm with the 

corresponding coefficient of determination, R2:  

The equation of best-fit line of estimated versus measured pile capacity with the 

corresponding coefficient of determination: linear regression is used to find a straight line 

between Qm as the x values and Qp as the y values. Forcing the regression line to pass 

through the origin leads to linear regression without the intercept term, y = βx, where the 

slope of best-fit line, β is found by the least-square approach in equation (14) as: 

 

β =
∑ xi
n
i=1 yi
∑ xi2
n
i=1

=
xy̅̅ ̅

x2
  

 
(14) 

The coefficient of determination, R2 is the proportion of the variance in the dependent 

variable, y from the independent variable, x. The following equation shows the most 

general definition of R2: 

R2 = 1 −
∑(yi − ŷi)

2

∑(yi − y̅i)2
            (15) 

Where, ŷ is the predicted values by the regression model and y̅ is the mean of observed 

data (Qp). R
2 ranges from 0 to 1 and shows how well Qp values are replicated by the 

model. Accuracy and precision of a method can be estimated by having β and R2 values 

close to 1, respectively. 

 

2) The arithmetic mean and standard deviation of Qp Qm⁄ :  

Mean and standard deviation are basic measures for accuracy and precision of CPT 

methods for predicting the pile capacity. Standard deviation should be understood in the 
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context of the mean of data. Coefficient of variation, CV is defined as the ratio of the 

standard deviation to mean and shows the extent of variation in relation to mean. 

 

3) The 50% and 90% cumulative probability of Qp Qm⁄ : 

The concept is to arrange Qp Qm⁄  values for each method in an ascending order and 

estimate the cumulative probability (P) using the following equation [47]: 

P =
i

(n + 1)
  (16) 

The 50 and 90% cumulative probabilities are calculated as P50 and P90, which provide an 

additional evaluation criteria to estimate the ability of CPT methods for predicting the 

axial capacity of piles. It should be noticed that P50 and P90 are representatives of median 

and 90 percentile of values of Qp Qm⁄ , respectively. P50 values closer to 1 with a lower 

range of P90 − P50 represent the best method. 

 

4) The 20% accuracy level obtained from histogram and log normal distribution of Qp Qm⁄ : 

The value of Qp Qm⁄  theoretically ranges between zero to infinity, with an ultimate value 

of 1. Therefore, log-normal distribution is better to catch the properties of Qp Qm⁄  than 

normal distribution. The log-normal density is defined in the following equation: 

 

f(x) =
1

√2π σln x
exp [−

1

2
(
ln(x) − μln

σln
)2]  (17) 

Where, x = Qp Qm⁄ , μln and  σln are mean and standard deviation of ln(Qp Qm⁄ ), 

respectively. The histogram and log-normal distributions are used to calculate the ability 

of CPT methods to predict the pile capacity within a specified accuracy level. In their 

research, 20% accuracy has been chosen, which is the likelihood for Qp values within 0.8 

to 1.2Qm. 

The ranking of each direct pile-CPT method was calculated in each criterion and summed up to 

determine the overall ranking index (RI = R1 + R2 + R3) of each method. Based on this ranking 

analysis, De Ruiter and Beringen, LCPC, Philipponnat, Schmertmann, Aoki and De Alencar, 

Price and Wardle, Tumay and Fakhroo, and Penpile methods showed the order of performance, 

respectively. Due to its rationality and simplicity, this evaluation approach has been adopted by 

other researchers to evaluate different direct pile-CPT method using different pile load test 

databases (e.g., [48]). 
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The load and resistance factor design (LRFD) is another approach that has been used for 

evaluating the different direct pile-CPT method. Bloomquist et al. [34] evaluated 14 direct Pile-

CPT method using first-order second-moment (FOSM) resistance factor equation by Paikowsky 

[49] with correction for coefficient of variation of load by Styler [50] in LRFD equations. The 

values of bias parameter, λR = Rm Rn⁄  and resistance factor,  = Rdesign Rn⁄  define equation 

(18): 

 

Rdesign = (

λR
⁄ )Rm (18) 

 

where, λR = Rm Rn⁄  is the bias parameter, Rm is the measured resistance referred to failure load 

defined by Davisson method from pile load test, Rn is the nominal resistance and Rdesign is the 

predicted design capacity be the method. The higher the value of efficiency,( λR⁄ ), the better 

the performance of the method is. Based on the analysis of 21 piles in Florida and 28 from 

Louisiana, LCPC and Philipponnat methods showed the best performance. 

Another approach for evaluating different Pile-CPT methods is using fully-instrumented piles. 

Niazi and Mayne [40] used the 760-mm pipe pile driven in EURIPIDES project, instrumented by 

strain gauges, pore pressure cells, and toe load cells and found out that LCPC method 

underestimates the side resistance, while overestimates the tip resistance. Han et al. [51] studied 

the results of an instrumented closed-ended steel pipe pile driven in a multilayered soil and 

showed that the predictions by Purdue, ICP, UWA, NGI, and Fugro methods produce 

satisfactory estimates of the pile capacity; however, more field test data is needed for validation. 

In this study, different evaluation approaches have been used for evaluating the ability of Pile-

CPT methods for predicting the pile capacity. 

Overview of Machine Learning (ML) Techniques 

The application of artificial intelligence (AI) and machine learning (ML, a subset of AI) 

techniques by many industries have grown rapidly in recent years due to their powerful tools in 

predicting non-linear complex phenomenon and analyzing huge data sets. The AI and ML 

techniques usually use algorithms that function in an intelligent manner. They usually provide 

systems with the ability to learn and enhance from experience automatically without being 

specifically programmed. The interest of exploring the AI and ML in geotechnical engineering 

has been recently increased in civil and geotechnical engineering. The AI and ML techniques 

have recently demonstrated their high predictive ability to model complex civil and geotechnical 
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engineering problems (i.e., [52, 53]). The AI and ML techniques have an advantage over 

traditional regression modeling in terms of dealing with multiple outputs or responses while each 

regression model deals with only one response [54]. The AI and ML techniques involve 

algorithms that can accurately model complex mechanical behavior that include good 

generalization capability, universal function capability, resistance to noisy or missing data, and 

accommodation of multiple nonlinear variables for unknown interactions. 

Several studies in literature have successfully applied the ML techniques for different 

geotechnical engineering applications, such as estimating different strength and deformation soil 

parameters, evaluating pile capacities, evaluating pile setup, and for liquefaction. Most of these 

applications use the artificial neural networks (ANN). Other researchers used the decision trees 

(DT), random forests (RF), gradient boosted tree (GBT), K-nearest neighbor (KNN) and vector 

machine (SVM) models for many geotechnical applications. 

The soil-pile interaction is a complex phenomenon that requests advanced tools to model it. ML 

techniques involve algorithms that can capture complex non-linear relationships between 

variables.  They can learn automatically from data and develop highly accurate generalized 

models without any prior simplifying assumptions about the relationships of interacting 

variables. Therefore, ML can be a promising alternative to better capture the soil-pile interaction 

and mitigate the assumptions and shortcomings of the direct pile-CPT methods. Several 

researchers have recently applied the ML techniques to estimate the ultimate pile capacity from 

CPT data. Shahin [55] applied the ANN technique, Kordjazi [56] used the SVM technique, and 

Alkroosh and Nikraz [57] utilized the gene expression programming (GEP) to predict the 

ultimate pile capacity from CPT data. Ghorbani et al. [58] explored the potential of adaptive 

neuro-fuzzy interface systems (ANFIS) in predicting the ultimate capacity of piles from CPT 

data.  Harandizadeh et al. [59] developed a hybrid version of ANFIS, which is a combination of 

ANFIS and group method of data handling (GMDH) structure optimized by particle swarm 

optimization (PSO) algorithm called ANFIS-GMDH-PSO model. Ardalan et al. [60] built a 

prediction model for pile shaft resistance from CPT data using polynomial neural networks and 

genetic algorithm (GA). Baziar et al. [61] did the same using ANN. All these diverse ML 

methods have shown excellent performance in predicting the ultimate pile capacity that 

outperformed the conventional pile-CPT methods in most of those studies. 

In this study, the ANN and three tree-based ML methods, the decision tree (DT), random forest 

(RF), and gradient boosted tree (GBT) were used to estimate the ultimate pile capacity from CPT 

data. 
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Artificial Neural Network (ANN) 

The learning mechanism of the human brain, which is composed of very complex webs of 

interconnected neurons, is the primary inspiration towards the development of the artificial 

neural networks (ANNs). They intend to replicate the learning process of the human brain 

learning through mathematical algorithms using prior cases/instances. The ANNs can perform 

parallel computation for complex and massive data processing and knowledge representation. 

Like the human brain, the primary element of ANN is neurons. They are also called nodes or 

processing elements. These processing elements are generally arranged in several layers 

consisting of an input layer (single layer), one or a few intermediate/hidden layers, and an output 

layer (single layer), as shown in Figure 4. The intermediate layers are also called hidden layers 

since they do not interact directly with the external environment. At least one neuron is present 

in each layer. The network is arranged in such a way that the output of one layer serves as the 

input for the following layer. 

Figure 4. Typical structure ANN [53] 

 

The neurons (or nodes) of each layer network is interconnected to other neurons through 

connection weights (Figure 4 b), which determine the strength of connections between the 

interconnected neurons. No connection between any two neurons should have a zero weight; 

whereas, a negative weight refers to a repressive relation. The received weighted inputs for an 

individual processing node are summed, aggregated, and scaled within a certain range to 

improve convergence property of ANN. The resultants are then propagated through a transfer 

function (e.g., step, linear, ramp, sigmoid logistic, or hyperbolic tangent) to generate the output 

of the processing node (Figure 4 b). The process, for any node j, is summarized using the 

following equations: 

Ij   =  θj + ∑ wji
n
i=1 xi                 (19) 

 yj  = f(Ij)                  (20) 
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where, Ij
l = activation level of node j; wji

l  = connection weight between nodes i and j; xi
l−1= input 

from node i; i = 0, 1, …, n; θj
l=wj0 = bias for node j; yj

l = output of node j; and f(Ij) = transfer 

function. The hyperbolic tangent function (tanh) was used in this study, which is the hyperbolic 

analogue of the tan circular function. It is one of the most used functions for neural networks 

where the output ranges between -1 to +1. Ideally, tanh (Ij) = ( eIj − e−Ij) / ( eIj + e−Ij).  The 

network is then propagated forward leading to final output, yj. It is then compared with the target 

output, yt and error, E, of the network is then calculated as, E= ½ ∑(𝑦𝑡 − 𝑦𝑗)
2. 

The backpropagation algorithm is the prime algorithm used for training the ANN models [62]. The 

prime operation in backpropagation is searching for an error surface for point(s) with minimum 

error using a form of steepest descent. At each time step, the error gradient guides to a certain 

direction in the weight space, which reduces the local error drastically. The ANN backpropagation 

procedure can be described using the following steps [63]: 

1) The input parameters are labeled as x1
0,x1

0,x3
0….xm

o . 

2) The connection weights can then be assigned as wji
l where l=0,1,2….l. 

3) The forward network will then be propagated forward using equation 19 and 20: 

Ij
l
   = 𝜃𝑗

𝑙   + ∑ 𝑤𝑗𝑖
𝑙 𝑥𝑖

𝑙−1𝑖
𝑛=1  

yj
l  = f(Ij)  

where f(.) is the activation function (e.g. logistic sigmoid). 

4) For each jth node belonged to output layer (l=l), calculate the correction factor δ: 

δj
l= ( yt – yj

l ) yj
l (1 – yj

l )       (21) 

5) Then update connection weights, wji
l, using the following equation: 

∆wji
l (current) = η δj

l xl
l-1 + µ∆wji

l (previous)              (22) 

The above equation resembles the delta-rule (∆wji
l = η δj

l xl
l-1

 ), where µ is the momentum rate (0< 

µ < 1). This equation is also known as the generalized delta rule [62]. The update of bias can be 

done as follow:  

∆𝜃𝑗𝑖
𝑙 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

= η δj
l + µ∆𝜃𝑗𝑖

𝑙 (𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)
      (23) 

6) Similarly, for the case of hidden layers: 

δj
l=yj

l (1- yj
l) ∑ (

𝜕𝐸𝑙

𝜕𝑦𝑘
𝑙−1) 

𝑟
𝑘=1 ( 

𝜕𝑦𝑘
𝑙−1

𝜕𝐼𝑘
𝑙−1 ) ( 

𝜕𝐼𝑘
𝑙−1

𝜕𝑦𝑗𝑖
𝑙 )     (24) 

7) The weights and biases will be updated using equations 4 and 5, respectively. 

8) Finally, the steps 1-7 are iterated until the output error is within acceptable tolerance. 
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The number of training cycles required for a better performance of the model is determined 

iteratively. A long training can result in overtraining or overfitting along with near-zero error on 

predicting training data. The generalization of test data degrades significantly in such situations 

(Figure 5).  In the beginning, for a small number of training epochs, the error of the test-sets 

continues to decrease like the training examples. However, as the network loses its capability to 

generalize on test data, the error starts to increase after each epoch. The onset of an increase in 

the error of the test sets data resembles the optimum number of training cycles. When there are a 

limited number of training examples available, a sufficiently large test set is usually difficult to 

arrange. In such a case, Hecht-Nielsen [64] suggested the network to be trained on all available 

data and the training process is to be stopped when the error on training data is at the onset of 

stabilization. 

Figure 5. Evolution of error for training and test data as a function of network size and number of training 

cycles [63] 

 

Tree-Based Machine Learning  

The well-known decision tree (DT) is a classical, non-parametric supervised type of tree-based 

machine learning (ML) algorithm that can be used to solve non-linear problems. In general, 

using the DT algorithm alone can lead to a weak learner, which suffers from overfitting, i.e., 

inducing low bias and high variance. Hence, it can produce poor prediction accuracy. However, 

combining the DT algorithm with an ML ensemble technique usually results in significant 

improvements in the prediction accuracy while capturing highly non-linear complex 

relationships. In this study, two well-known techniques were explored along with the basic DT in 

which multitude of decision trees are either constructed in parallel (Random Forest) or 

constructed sequentially (Gradient Boosted Tree).     
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Decision Tree 

The decision tree (DT), also known as regression tree, was proposed by Breiman et al. [65] to 

solve non-linear regression problems. The DT consists of three primary components: a root node 

representing the entire data set, internal nodes that split over each input feature, and several 

leaves or terminal nodes representing the outputs. Figure 6 presents the typical structure of a 

decision tree. The DT divides the input feature space into discrete, non-overlapping zones and 

predicts for each of them. For simplified illustration, consider Figure 6 with two input features, 

X1 and X2. For these two features, the dataset can be separated into four distinct areas or terminal 

regions. The four regions have the following mean values: (1.5, 1), (1.5, 4), (4.5, 4), and (4.5, 1). 

The predicted value of a new test sample is the average of the training observations in the region 

where the sample falls. In real process, more than two features are usually considered. The 

process of selecting the predictor space and division of that space, meaning tree’s growth, occurs 

following a recursive binary splitting [66]. When a predetermined stopping criterion is met, the 

growth ceases. The minimum number of samples necessary to split an internal node can be 

predefined. The lowest number of samples required at a leaf node is an additional significant 

stopping criterion. These three values are essential hyperparameters for a DT model that will be 

fine-tuned later during the model-building process. 

Figure 6. Structure of decision tree [66] 

 

Random Forest 

The Random Forest (RF) is an ML ensemble method developed by Breiman [67] to mitigate the 

limitations of individual DTs by building a certain number of them parallelly and introducing 

randomness to each weak tree. The RF generally follows two processes: bootstrap aggregation 

and selection of random feature. Using Figure 7 as a simplified example, the original dataset 

contains six entries of training examples from id0 to id5. Each training example has four features 

(x0 to x4) and one continuous output y. First, the RF algorithm creates N (N = 3 in this example) 

number of bootstrap datasets of the same size by randomly selecting training examples from the 

original dataset. This ensures each bootstrap dataset is independent of its peers, and it does not 
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depend on previously selected samples. Additionally, each bootstrap dataset is made with 

randomly selected features, as in the case of our example, the first bootstrap dataset comprises 

two (xo, x1) randomly selected features out of four. This random feature selection helps to reduce 

correlation between individual trees by reducing variance and tackle the overfitting problem that 

plagues individual DT model. Finally, each N number of bootstrap dataset is used to create N 

numbers of individual decision trees as explained, which ensures that the individual trees are as 

independent as possible. The RF model is then trained. While predicting using testing data 

samples, each input feature value is passed through its corresponding trees, and the independent 

output generated by each individual tree is averaged to get the final output from the RF model. 

The number of maximum features that randomly selected while bootstrapping is one crucial 

hyperparameter of the RF model. Another hyperparameter is the number of trees to build. In the 

RF model, each individual tree has its own hyperparameters. These hyperparameters are 

optimized for a given predictive modeling problem to get an optimum RF model. 

Figure 7. Structure of Random Forest [67] 

 

Gradient Boosted Tree 

The Gradient Boosted Tree (GBT) proposed by Friedman [68] is another ML ensemble 

technique in which a sequence of weak DTs is constructed in an iterative fashion (sequentially). 

The GBT algorithm is described as follows: 

Given the input training data,  {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑛 , and a predefined differential loss function, 

𝐿(𝑦𝑖, 𝐹(𝑥)): 

1) Initialize a base model with a constant value: 

𝐹0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑ 𝐿(𝑦𝑖, 𝛾)
𝑛
𝑖=1                                                                                  (25) 
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where, 𝑦𝑖 is the observed value and 𝛾 represents the predicted value, that minimizes the 

loss function  ∑ 𝐿(𝑦𝑖, 𝛾)
𝑛
𝑖=1  

2) For m = 1 to M: 

a. Compute the pseudo-residuals: 

𝑟𝑖𝑚 = − [
𝜕𝐿(𝑦𝑖,𝐹(𝑥𝑖))

𝜕𝐹(𝑥𝑖)
]
𝐹(𝑥)=𝐹𝑚−1(𝑥)

 for i=1,…….,n                                                 (26) 

              where, 𝐹(𝑥𝑖) is the previous model, and M is the total number of trees. 

b. Fit a new regression tree to the 𝑟𝑖𝑚 residuals and divide the input feature space into 

terminal regions 𝑅𝑗𝑚 for j= 1,…..,𝐽𝑚.  𝐽𝑚 represents the number of leaf nodes. 

c. For j = 1,…., 𝐽𝑚 compute: 

             𝛾𝑗𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑ 𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + 𝛾)𝑥𝑖∈𝑅𝑖𝑗
                                                    (27) 

d. Update 𝐹𝑚(𝑥) =  𝐹𝑚−1(𝑥) + 𝜂 ∑ 𝛾𝑚𝐼(𝑥 ∈ 𝑅𝑗𝑚)
𝐽𝑚
𝑗=1  

             where, 𝜂 represents learning rate and ∑ 𝛾𝑚𝐼(𝑥 ∈ 𝑅𝑗𝑚)
𝐽𝑚
𝑗=1  is the currently added tree.  

3) Output 𝐹𝑀(𝑥) 

In summary, the GBT algorithm adds new DTs sequentially to reduce the residual errors in 

prediction from the existing sequence of trees. This can rapidly reduce the error and eventually 

overfit the training data. Therefore, a weighting factor is usually applied for the corrections by 

new trees when added in the sequence, called the learning rate (𝜂), which provides a 

regularization effect and enhances the training process. This learning rate is one of the significant 

hyperparameter of the GBT model, which will be fine-tuned later during the model development 

process. 
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Methodology 

The main objective of this study was to evaluate the ability of different Pile-CPT methods for 

estimating the axial capacity of square PPC piles driven into Louisiana soils. For this reason, a 

database of 104 precast prestressed concrete (PPC) pile load test cases were collected from sites 

within state of Louisiana. Amongst those, only 80 PPC piles that were loaded to failure and their 

corresponding pile load tests, CPT tests, and soil borings data were collected. These piles are 

located in 34 project sites in Louisiana as shown in Figure 8. 

Figure 8. Louisiana state map with location of analyzed piles 

 

The collected pile load tests, soil properties and CPT data were analyzed. This section described 

the methodology of collecting, compiling, and analyzing the data. 

Collection and Evaluation of Pile Load Test Reports 

The information about the projects, soil stratifications, pile characteristics, load test data, CPT 

profiles, etc. were collected, processed, and transferred to different tables and graphs. All these 

data plus some available data about pile driving and dynamic test results were stored in digital 

format, so different analysis would be possible in future, regarding analyzing the reliability of 

different pile driving methods such as the Engineering News (EN) Formula, modified EN, Gates, 
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modified Gates, and Dynamic methods [Wave Equation Analysis (WEAP) and Case Pile Wave 

Analysis Program (CAPWAP)]. 

Pile load test reports were collected from available files at DOTD headquarters in Baton Rouge. 

These reports were studied carefully to examine their suitability to be included in this study. The 

main criteria for suitability of a project were availability of CPT soundings, site locations, and 

subsurface explorations. The characteristics of the square precast prestressed concrete piles 

obtained from DOTD are presented in Appendix B. 

Compilation and Analysis of Pile Load Test Reports 

The information about the projects, soil stratifications, pile characteristics, load test data, and 

CPT profiles were compiled. The graphs representing the summary of geotechnical data, 

including the soil stratigraphy, laboratory tests, and in-situ tests for the state projects are shown 

in Appendix C. 

The following data and information were collected, compiled, and analyzed for each pile load 

test report. 

Site Data 

The site data provides the necessary information to identify the location of the project. The site 

identification used herein is the Louisiana state project number. For example, the site ID 260-05-

0020 is the state project number 260-05-0020 (Tickfaw River Bridge and approaches on State 

Route LA-22). The project ID, location, and parish are available in Appendix B. 

Soil Data 

The soil data consist of information on the soil boring location, soil stratigraphy, and laboratory 

testing (shear strength, physical properties, etc.) for each soil layer. From soil stratification, the 

predominant soil type was identified. Appendix C shows the boring data for each pile studied in 

this project. Boring data near to the pile locations have been used in DRIVEN software (using 

the α-method and Nordlund method for clayey and sandy soils, respectively), which shows that 

most of the pile capacity driven in Louisiana soil is due to side resistance. It can be seen in 

Figure 9(a) shows that more than 70% of the pile capacity for 69 piles out of the 80 piles comes 

from the side resistance. Only four piles have a tip resistance that is more than 50% of the total 

pile capacity. This means that most of the piles in this study can be regarded as friction piles. The 

proportion of pile capacity in clay layers to the total pile capacity (defined as clay contribution) 

has been used to characterize the dominant soil for the pile database. As shown in Figure 9(b), 
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piles were driven into different sandy, clayey, and layered soils, as presented in percent in clayey 

soils. 

Figure 9. Pile properties based on the soil type 

 

Foundation Data 

Foundation data consist of pile characteristics (pile ID, diameter, total length, embedded length), 

installation data (location of the pile, date of driving, driving record, hammer type, etc.) and pile 

load test (date of loading, applied load with time, pile head movement, pile failure under testing, 

etc.). All the piles studied in this report are driven square precast prestressed concrete piles. 

Appendix B represents information about the diameter, length, and embedment length of the 

piles, hammer type, and dates of driving and loading. 

CPT Data 

The cone penetration soundings information includes test location (station number), date, cone 

tip resistance, and sleeve friction profiles with depth. In most of the cases, the collected CPT 

soundings were not available as a digital data; therefore, the CPT soundings were scanned and 

digitized using the WebPlotDigitizer program. CPT graphs for each pile is shown in Appendix C. 
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Analysis of Ultimate Capacity of Piles from Load Test 

Quick load test procedures as described in ASTM D1143 [69] were performed on the 80 

different piles at approximately after 14 days of driving to obtain the load-settlement curve. 

Based on this procedure, the load was applied on the pile head in increments ranging from 10 to 

15 percent of the design load and maintained for five minutes. The load was increased up to two 

to three times the design load or until pile failure. The load settlement curves for all the pile are 

shown in Appendix D. 

The ultimate load capacity of the piles was determined based on the Davisson method [18]. 

Davisson failure criterion defines pile capacity as the load causes the pile top deflection equal to 

the calculated elastic compression plus 0.15 in. plus 1/120 of the pile’s width/diameter. For piles 

with diameters more than 24 in., based on Florida Department of Transportation (FDOT) 

specification 2010, section 455 the criterion is modified to calculated elastic compression plus 

1/30 of the pile’s width/diameter [70]. 

Correcting the Cone Tip Resistance   

In order to improve the quality of CPT results, the cone tip resistance (qc) should be corrected 

(qt) due to the presence of porewater pressure acting behind the cone shoulder as follows ( [71], 

[72]): 

 qt = qc + (1 − a)u2  (28) 

where, a is the net area ratio for the cone (0.59 for CPT used in this research). In pile load test 

cases where the porewater pressures (u2) are available, i.e., when piezocone PCPT (or CPTu) 

tests are used, the above equation was used directly to evaluate the corrected cone tip resistance 

(qt). However, in many cases, only the CPT data (qc, fs with no u2 measurement) using friction 

cone tests are available. To be able to correct the cone tip resistance when u2 is not available, a 

database was collected from all available site locations in Louisiana with u2 measurements. A 

comparison and statistical analysis was made between all collected qc and qt, which led to a 

correction factor that depends on the measured cone tip resistance (qc) and depth, as shown in 

Figure 10. Details of collected database and correlating between the qt and qc are available in 

another study [73]. The correction factors obtained from Figure 10 were used to evaluate the qt 

for the pile load test cases when the u2 measurements are not available. 
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Figure 10. Correction factor for tip resistance with depth 

 

Incorporating CPT Soil Behavior Classification Methods 

Almost all the pile-CPT methods require the determination of soil type and soil classification 

profile with depth along the pile in order to select the proper correlation parameters needed to 

evaluate the unit side capacity (f) for each soil layer and the unit end bearing capacity (qp) of the 

pile from the measured CPT data (qt, fs). Figure 11 presents a simple schematic diagram of the 

procedure for estimating the piles unit capacities (qp, f).  

In this study, two CPT soil behavior type classification methods were selected: the probabilistic 

region estimation method [23] and the Robertson-2010 [24] classification method. Based on the 

CPT data, the probabilistic method determines the probability of soil behavior (clayey, sandy, 

and silty); while the Robertson-2010 presents a chart dividing the soil behavior into 9 different 

soil types. The details of each CPT soil classification method were explained earlier. The details 

of implementing the two CPT soil classification methods for selecting the correlation parameters 

for each pile-CPT method were discussed earlier, separately. 
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Figure 11. Effect of soil type on estimating pile capacity from CPT data 

 

Development of Machine Learning (ML) Models 

In this study, the artificial neural network (ANN) and three tree-based machine learning (ML) 

techniques [the decision tree (DT), random forest (RF), and gradient boosted tree (GBT)] were 

used to develop ML models to estimate the ultimate capacity of piles from CPT data. To develop 

any ML model, several parameters need to be identified and addressed. This include database 

compilation, selection of model inputs and outputs, data division and pre-processing, network 

architecture, hyperparameter optimization such as optimization of connection weights for ANN, 

training process, testing, stopping criteria, and validation of the ML models [55]. The collected 

80 pile load test data were used in this study to train (calibrate), verify, and validate the ML 

models. The personal computer-based software Neural Designer was used in this work to 

simulate the ANN models; while the open source ML library for the Python programming 

language called scikit-learn or sklearn was used to simulate the three tree-based ML models [74]. 

Database Compilation 

The database of 80 pile load tests of square PPC piles of varying widths and lengths that were 

collected from 34 project sites in Louisiana were used to develop the ML models. The lengths of 

piles range from 42 to 210 ft., while the pile widths range from 14 to 30 in. The load-settlement 

curve for each pile load test was interpreted to determine the measured ultimate pile capacity 

based on Davisson's offset limit method [18]. The associated CPT test data that were conducted 

close to each test pile were used to develop ML models based on CPT data. 
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Selection of Model Input Parameters 

The quality and accuracy of any developed ML model depends on the proper selection of input 

variables that influence the output prediction of the ultimate pile capacity (Qp). It is well-known 

that the ultimate capacity of piles depends on the pile characteristics such as pile material, 

geometry, and tip condition, pile installation method, testing procedure, and the soil properties. 

However, since all the tested piles in the compiled database are square PPC driven piles with 

closed end, many of these factors can be disregarded. In this study, the embedded length of pile 

(Le) and pile width (B) along with the corresponding CPT data profile (corrected tip resistance, 

qt, and sleeve friction, fs) that represent the soil characteristics were considered as input 

parameters. The variation of soil properties along the pile shaft was sub-divided into five equal 

segments along the embedded pile length. The average values of corrected tip resistance (qt,avg) 

and sleeve friction (fs,avg) were calculated for each the five soil segments. The influence zone for 

the end bearing capacity was considered to range from 4B below the pile toe to 4B (or 8B for 

ANN only) above the pile toe, where B is the pile width. The corresponding averages of 

corrected tip resistance (qt-tip) were determined for the upper and lower zones separately. 

Consequently, a total of 14 input parameters were used to develop the ML models as shown in 

Figure 12. Accordingly, the final selection of ML input parameters in this study were: (1) pile 

embedment depth (Le), (2) pile width (B), (3) qt, avg 1, (4) qt, avg 2, (5) qt, avg 3, (6) qt, avg 4, (7) qt, avg 5, 

(8) fs, avg 1, (9) fs, avg 2, (10) fs, avg 3, (11) fs, avg 4, (12) fs, avg 5, (13) qt-tip, 4B/8B above, and (14) qt-tip, 4B 

below. These inputs parameters were used in three different combinations to determine the ML 

models that yield the best performance in terms of estimating the measured ultimate pile 

capacity. They only vary in the way the side resistance of piles were calibrated, i,e., using qt, avg 

alone, using fs, avg alone, or both qt, avg and fs, avg . For each case, either qt-tip, 4B above or qt-tip, 8B above 

were used in ANN models, while only qt-tip, 4B above was used in tree-based ML models. Hence, a 

total of six different types of input parameter sets were considered in this study to obtain the best 

performed ANN models as shown in Table 1. Meanwhile only three input models were 

considered for the tree-based ML models. 

Data Division and Pre-processing  

Usually the available database is randomly divided into two subsets: a training set (to build the 

ML model) and another set for testing and validating the performance of ML model. 

Hammerstrom [75] suggested to consider two-thirds of the database for model training and the 

remaining one-third for testing and validation. Stone [76] proposed a modification of the above 

data division, which is known as cross-validation.  In this technique, the data set is divided into 

three subsets: training, testing, and validation. The training set was used to improve the model 

network connection, the testing set to test the performance of ML model at different stages of 
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training, and validation set to determine the performance of the trained network. Shahin et al. 

[77] showed that there is no distinct relationship between the proportion of data for training, 

testing and validation, and the model performance. However, they obtained the best result using 

a combination of 70% of data for training and 30% of data for testing. 

Figure 12. Selected input parameters and influence zone 

 

In developing ANN modes, the database of 80 pile load tests was randomly divided into 70% for 

training, 10% for testing, and 20% for validation. However, in developing the tree-based ML 

Models, the database was randomly divided into 80% for training and 20% for testing. The 

training subset was used to train the ML models, while the testing subset was used to evaluate 

the accuracy and generalization ability of the trained ML models. It should be noted here that the 

ML models have difficulty in extrapolating beyond the range of the range of the training data. 

Therefore, all the existing patterns available in the dataset need to be included in the training set 

to develop a good ML model. If the extreme data points are excluded from the training dataset, 

then the validation data will test the models’ extrapolation capability instead of its interpolation 

ability. Consequently, the model may not perform well as the ML models perform best when 

they do not extrapolate beyond the limit of the training data [24]. Therefore, care was taken to 

avoid this scenario. In this study, data division was carried out randomly through trial and error 

until the statistical properties (mean, standard deviation, range) of subsets are close to each other 

as possible with the minimum and maximum values included in the training subset [77]. 
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Table 1. ANN model types used in this study 

ANN model type  Input parameters 

Type 1 

(1) Pile embedment depth, L, (2) Pile width, D, (3) qt, avg 1, (4) qt, 

avg 2, (5) qt, avg 3, (6) qt, avg 4, (7) qt, avg 5, (8) qt-tip, 4B above, (9) qt-tip, 4B 

below 

Type 2 

(1) Pile embedment depth, L, (2) Pile width, D, (3) qt, avg 1, (4) qt, 

avg 2, (5) qt, avg 3, (6) qt, avg 4, (7) qt, avg 5, (8) qt-tip, 8B above, (9) qt-tip, 4B 

below 

Type 3 

(1) Pile embedment depth, L, (2) Pile width, D (3) fs, avg 1, (4) fs, 

avg 2, (5) fs, avg 3, (6) fs, avg 4, (7) fs, avg 5, (8) qt-tip, 4B above, (9) qt-tip, 4B 

below 

Type 4 

(1) Pile embedment depth, L, (2) Pile width, D (3) fs, avg 1, (4) fs, 

avg 2, (5) fs, avg 3, (6) fs, avg 4, (7) fs, avg 5, (8) qt-tip, 8B above, (9) qt-tip, 4B 

below 

Type 5 

(1) Pile embedment depth, L, (2) Pile width, D, (3) qt, avg 1, (4) qt, 

avg 2, (5) qt, avg 3, (6) qt, avg 4, (7) qt, avg 5, (8) fs, avg 1, (9) fs, avg 2, (10) fs, 

avg 3, (11) fs, avg 4, (12) fs, avg 5, (13) qt-tip, 4B above, (14) qt-tip, 4B below 

Type 6 

(1) Pile embedment depth, L, (2) Pile width, D, (3) qt, avg 1, (4) qt, 

avg 2, (5) qt, avg 3, (6) qt, avg 4, (7) qt, avg 5, (8) fs, avg 1, (9) fs, avg 2, (10) fs, 

avg 3, (11) fs, avg 4, (12) fs, avg 5, (13) qt-tip, 8B above, (14) qt-tip, 4B below 

 

Training of ML Models 

Training of an ANN model refers to the process of initializing a network through the deployment 

of initial values and then optimizing the connection weights in order to obtain a global minimum 

instead of a local one. A very widely used method to obtain the optimum weights is the back-

propagation algorithm or the gradient descent method. However, the convergence is sometimes 

slower and requires lots of iterations in this method. Hence, a faster Quasi-Newton method was 

also used in this work to get the optimum ANN. The number of training cycles required for a 

better performance of the model is determined iteratively. A maximum of 1000 iterations was 

allowed in the Neural Designer software. 

The tree-based ML models (DT, RF, and GBT) were trained and assessed independently to 

identify the model that provides the optimum or near optimum performance. Each model 

possesses some external tunable parameters called hyperparameters. These parameters regulate 

the learning process and must be set before the training process begins. Table 2 illustrates the 

significant hyperparameters of DT, RF, and GBT models tuned, as denoted in scikit-learn [74]. 
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Table 2. Hyperparameters of tree-based models 

 

Since both the RF and GBT models are built with DTs as base learners, they have some common 

hyperparameters (max_depth, min_samples_split, min_samples_leaf). In addition, the RF and 

GBT have two crucial hyperparameters to be tuned: the number of decision trees to be combined, 

denoted as n_estimators, and the number of random features to consider while building trees, 

denoted as max_features. The GBT model has an additional hyperparameter called the 

learning_rate. It should be noted here that the three tree-based models have more additional 

hyperparameters. Only the main hyperparameters that significantly impact the performance of 

ML models based on literature are explored in this study. 

It is necessary to evaluate multiple combinations of hyperparameter settings since one set may 

perform well in one case but poorly in another case. The process of determining the optimal 

combination of hyperparameter settings for a certain problem is known as hyperparameter 

optimization. In previous studies, the produced ML models were optimized manually through a 

trial-and-error procedure that is tedious and computationally expensive. In this study, a more 

effective method termed random search is employed for hyperparameter optimization. The 

random search procedure begins by specifying a finite number of possible values for each 

hyperparameter, creating a hyperparameter search space. Then, the search algorithm selects 

random combinations of hyperparameters from the search space. Each hyperparameter 

combination represents a distinct candidate model. The performance of each candidate model is 

then determined using cross-validation procedure. 

Stopping Criteria 

Stopping criteria is important to determine when to stop the training process. There several 

approaches that can be used to decide when to stop training. Training can be stopped when a 

fixed number of training records are presented, when sufficiently small value of the training error 

is obtained or when changes in the training error is insignificant. However, these approaches may 

lead to premature model stopping or over-training. In this study, the cross-validation method was 

implemented to solve this issue. The testing set judges the capability of the model to be 

Hyperparameters Variable type Range Applicable models 

learning_rate Continuous 0 -  GBT 

n_estimators Discrete 1 -  RF, GBT 

max_features Continuous 0 - 1 RF, GBT 

max_depth Discrete 1 -  DT, RF, GBT 

min_samples_split Discrete 2 -  DT, RF, GBT 

min_samples_leaf Discrete 1 -  DT, RF, GBT 
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generalized, through evaluating the performance of the model at different stages of the training 

process. Once the testing process is completed, we move to next validation set to assess the 

model performance. 

Validation of ML Models 

After completing the training phase and locating the optimal ML model, the model needs to be 

validated to ensure its ability to be generalized in a robust way within the limits of training data. 

A separate data set that was not utilized in the training phase is usually used to validate the ML 

model in terms of accurately predicting the measured ultimate pile capacity, Qm. The satisfactory 

performance in this phase indicates the model’s robustness. At this perspective, the coefficient of 

determination, R2, the root mean squared error, RMSE, mean bias factor, λ, and the coefficient of 

variance, COV, of the measured over predicted ultimate pile capacity (Qp/Qm), are the prime 

criteria that were used to evaluate the performance of ML models. The coefficient of correlation, 

r, can also be used to obtain the relative correlation and goodness of fit between the measured 

and predicted values. Smith [78]suggested the following guide for |r| values: 

|r| ≥ 0.8 strong correlation exists between two sets of variables; 

0.2 < |r| < 0.8 correlation exists between the two sets of variables; and 

|r| ≤ 0.2 weak correlation exists between the two sets of variables.  

However, the RMSE is considered the most popular measure of error due to its advantage of giving 

greater attenuation towards large errors rather than the smaller ones. The parameters can be 

calculated as follow: 

𝑟 =
𝑛(∑ Q𝑝Q𝑚)−(∑ Q𝑝)(∑ Q𝑚)

√[𝑛(∑ Q𝑝
2)−(∑ Q𝑝)

2][𝑛(∑ Q𝑚
2)−(∑ Q𝑚)

2]
                  (29) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (Q𝑝 − Q𝑚)2
𝑛
𝑖=1

2
                     (30) 

𝜆 =  
Q𝑚

Q𝑝
                        (31) 

𝐶𝑂𝑉 (%) = (
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝜆̅
) × 100                        (32) 

Where, n = number of samples or observations, Qp = predicted pile capacity, and Qm = measured 

pile capacity. 
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Analysis of Results 

The main objective of this study was to evaluate the ability of different direct pile-CPT methods 

for estimating the ultimate load carrying capacity of square PPC piles driven in Louisiana soils. 

A total of 80 pile load test database were used in this study to evaluate the performance of 21 

direct pile-CPT design methods. The measured ultimate capacity for each pile was determined 

from the load deformation curve based on Davisson interpretation criteria [18]. In addition, the 

predicted ultimate pile capacity for each pile was also determined for each the 21 pile-CPT 

method. The comparison between the measured and estimated pile capacities for all pile-CPT 

methods are available in Appendix E. 

In our analysis, the following tasks have been executed and discussed in this section: 

1) Utilize sensitivity analysis of the pile-CPT methods to selected CPT soil classification 

method; 

2) Evaluate pile-CPT methods based on mathematical and statistical criteria; 

3) Evaluate pile-CPT methods using MultiDimensional Unfolding; 

4) Evaluate pile-CPT methods based on efficiency from reliability analysis; 

5) Develop combined methods from the best performed pile-CPT methods for different soil 

conditions based on contribution of sand layers to total ultimate capacity (kind of 

optimizing the prediction accuracy); and 

6) Develop machine (ML) learning models using the artificial neural network (ANN) and 

three tree-based ML methods, the decision tree (DT), random forest (RF), and gradient 

boosted tree (GBT) to estimate the ultimate pile capacity from CPT data. 

Sensitivity of Pile-CPT Methods to Selected CPT Soil Classification Method 

Seventeen pile-CPT methods including: LCPC, Schmertmann, De Ruiter, Philipponnat, UF, 

probabilistic, Aoki, Penpile, NGI, ICP, UWA, CPT2000, Fugro, Purdue, German, Eurocode7, 

and ERTC3 are dependent on the soil type for estimating the ultimate pile capacity. This means 

that in order to use CPT for calculating the ultimate pile capacity, it is necessary to classify the 

soil and evaluate soil type with depth for proper selection of correlation parameters between the 

CPT data (qt, fs) and pile unit side and unit end bearing capacities (qb, f). 

For example, Figure 13 compares the predicted ultimate capacity profiles, 𝐐𝐩, for a pile in 

Gibson-Raceland highway site obtained from the UWA pile-CPT method using both the 
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probabilistic region estimation and Robertson-2010 CPT soil classification methods. It can be 

seen that the values of 𝐐𝐩 𝐐𝐦⁄  for the UWA pile-CPT method are not much different for 

probabilistic and Robertson (2010) soil classification methods. However, in some cases there is a 

significant difference. 

As a part of this research study, the sensitivity of the 21 pile-CPT methods to the selection of 

CPT soil classification methods were analyzed. As presented in Appendix E, for each pile-CPT 

method, the values of predicted pile capacities, Qp, were calculated using the probabilistic region 

estimation and Robertson (2010) CPT soil classifications, separately.  

In order to quantify the difference between pile capacity predictions using the two CPT soil 

classifications, the value of diff (%) is defined in Equation (33), which represents the percentage 

of increase in Qp Qm⁄  in case of using probabilistic soil classification as compared to Robertson-

2010 soil classification. 

 diff (%) = [(Qp Qm⁄ )
probabilistic

− (Qp Qm⁄ )
Robertson

] × 100 (33) 

Statistical analysis (using SAS/STATTM software) was used to test the null hypothesis of diff 

(%) equal to zero for different methods. The null hypothesis was rejected in all pile-CPT 

methods except for the LCPC, Schmertmann, and Aoki methods, which means that the selection 

of CPT soil classification has a significant result on the ability of the methods for estimating the 

ultimate pile capacity. The statistical results for diff (%) of the 17 pile-CPT methods are shown 

in Figure 14 and described in Table 3. 
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Figure 13. CPT data and boring log for tp4 at Gibson-Raceland highway project in Terrebonne parish (pile 

42) (a) profile of cone tip resistance & friction ratio (b) soil classification from boring (c) CPT soil 

classification using Zhang and Tumay (1999) (d) soil classification using Robertson (2010) (e) estimated pile 

capacity from UWA direct pile-CPT method using different soil classifications. 
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Figure 14.  Box plots of the diff (%) in pile capacities for all pile-CPT methods between using either of the two 

CPT methods 

 

Table 3. Mean, standard deviation, max and min values of diff (%) for different pile-CPT methods 

 

The lowest mean values of diff (%) are for Schmertmann and Penpile methods, which shows that 

on average these methods are less dependent on the selection of soil classification method. On 

the other hand, UWA, Eurocode7, ERTC3, CPT2000, ICP, NGI, and Purdue methods have the 

highest mean values for the diff (%), which implies that these methods show the significance of 

the selection of soil classification on the difference on predicted pile capacities. Analysis of 

standard deviations for the 21 pile-CPT methods shows that Penpile, Schmertmann, and 

probabilistic methods have the lowest values of standard deviation, which implies that these 

methods are less sensitive to the selection of soil classification method. On the other hand, 

UWA, ERTcC3, Eurocode7, Purdue, Fugro, NGI, and CPT2000 methods have higher values of 

LCPC Schmertmann De Ruiter Philipponnat UF Probabilistic Aoki Penpile NGI

mean -1.24 -0.18 -4.63 -2.97 -3.02 1.38 -1.69 -0.82 -8.73

SD 9.03 1.91 7.68 6.21 10.00 3.52 9.31 1.74 10.09

max 27.54 3.12 14.01 11.57 24.72 13.65 21.81 3.33 11.83

min -24.50 -8.78 -33.17 -24.49 -31.68 -13.27 -27.35 -8.32 -47.88

ICP UWA CPT2000 Fugro Purdue Eurocode7 ERTC3 German

mean -9.03 -15.85 -10.47 -6.44 -8.43 -9.44 -9.32 -3.16

SD 9.04 15.44 10.57 11.31 11.59 13.58 14.15 6.65

max 5.12 10.97 6.03 40.57 33.41 16.29 19.65 14.75

min -38.39 -75.05 -38.12 -30.52 -32.56 -56.60 -69.92 -25.35

diff (%)

CPT methods

diff (%)

CPT methods
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standard deviation, and therefore their sensitivity to the selection of soil classification method is 

higher. The max and min (extreme) values of diff (%) in Table 3 represent the range of diff (%). 

The lowest range is for Penpile, probabilistic, and Schmertmann methods, which is within 13%. 

The UWA, ERTC3, and Eurocode7 methods have the highest range of -75% (UWA) to +20% 

(ERTC3), which means that using the probabilistic region soil classification might estimate 75% 

less or 20% higher ultimate pile capacities than using Robertson-2010 soil classification. The 

range of diff (%) for the other pile-CPT methods are between -48% (NGI) to +30% (Fugro). 

It should be noted here that the value of diff (%) in predicted ultimate pile capacities also 

depends on the engineering judgment in implementing the soil classification methods for 

evaluating the different correlation parameters between CPT data (qt, fs) and pile data (qb, f) for 

each pile-CPT method. For the purpose of evaluating the pile-CPT methods, the average values 

of predicted the ultimate pile capacity, Qp, obtained from using either the probabilistic region 

estimation or the Robertson-2010 CPT soil classification methods was adopted in this study. 

Evaluation of Pile-CPT Methods Based on Mathematical and Statistical 

Analyses 

In this part of study, an evaluation scheme using three different criteria based on mathematical 

and statistical analysis was considered in order to rank the performance of the different pile-CPT 

methods for estimating the ultimate axial capacity of driven piles in Louisiana soils. These 

criteria are: (1) the equation of the best fit line of predicted versus measured capacity Qp Qm⁄  

and the corresponding coefficient of determinations, R2; (2) the arithmetic mean and standard 

deviation for Qp Qm⁄ ; and (3) Qp Qm⁄  at 50% and 90% cumulative probability (P50 and P90). 

Another criterion reported in a previous study by Titi and Abu-Farsakh [79] was based on the 

20% accuracy level for Qp Qm⁄  obtained from histogram and log-normal distribution. This 

criterion seems to represent information about the accuracy and precision of the methods as the 

others. For this reason, it was decided not to include this criterion in our evaluation analysis. It 

should be noticed that the log-normal distribution of Qp Qm⁄  will be addressed later in the 

reliability analysis and evaluation for calibrating the LRFD resistance factor, . 

The plot of predicted (Qp) versus measured (Qm) ultimate capacity and the cumulative 

probability plots for all pile-CPT methods are presented in Appendix F. A rank index (RI) was 

used in this part of study to quantify the overall performance of all methods. The rank index is 

the sum of the ranks from the different criteria, RI= R1+R2+R3. The lower the rank index RI, 
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the better the performance of the method. The performance of the prediction methods based on 

the three different criteria is discussed below. 

Inspecting the results of Qp versus Qm plots in Appendix F shows that the LCPC, ERTC3, UF, 

and Philipponnat methods have the best fit equation Qfit = 1.03Qm with R2=0.74~0.82. The 

results also summarized in Table 4. These methods tend to overpredict the measured pile 

capacity by an average of 3%. Therefore, these methods are ranked number one according to this 

criterion and is given R1 = 1 (R1 is the rank based on this criterion).  The Probabilistic and De 

Ruiter and Beringen methods with Qfit = (0.97 − 0.98)Qm (R2=0.77~0.78) tend to underpredict 

the measured capacity by 2-3% and therefore are ranked next (R1=4). Also, the German method 

has Qfit = 1.03Qm, but R2 = 0.67; which is low and therefore it is ranked as R1=4. According to 

this criterion, Aoki and De Alencar, Price and Wardle, and Penpile methods tend to underpredict 

the measured ultimate pile capacity; while the other methods tend to overpredict the measured 

ultimate pile capacity. The Togliani method showed the worse performance with Qfit = 1.70Qm 

(R2 = 0.81) and therefore was given R1 = 9. 

In the second criterion, the arithmetic mean (μ) and standard deviation (σ) of the ratio Qp Qm⁄  

values for each method were calculated. The best method is the one that gives a mean value 

closer to one with a lower coefficient of variation (COV), which is the measure of scatter in the 

data around the mean. According to this criterion, the Probabilistic and UF methods rank number 

one (R2 = 1) with μ(Qp Qm⁄ ) = 1.03 and 1.04 and COV = 0.33 and 0.35, respectively. They are 

followed by the LCPC, ERTC3, Philipponnat, and De Ruiter and Beringen methods (R2 = 3). De 

Ruiter and Beringen, Aoki and De Alencar, Price and Wardle, and Penpile have  μ(Qp/Qm) < 1, 

which means that these methods on average are underpredicting the measured pile capacity. On 

the other hand, other methods have μ(Qp/Qm) < 1, which means that these methods on average 

are overpredicting the measured pile capacity.  

The cumulative probability curves (Appendix F) were used to determine the 50 percent and 90 

percent cumulative probability values (P50 and P90), which are also summarized in Table 4. The 

pile capacity prediction method with P50 value closer to one and with lower P50 - P90 range is 

considered the best. Based on this criterion, the ERTC3, LCPC and Probabilistic methods with 

P50 ≈ 1.0 and P90 = 1.41~1.45 rank number one (R3=1) followed by UF, Philipponnat, 

CPT2000, and De Ruiter and Beringen with R3=4. The Togliani method has worst P50 and P90 

values and therefore ranks as the worst method. 

In order to evaluate the overall performance of the different prediction methods, all criteria were 

considered in a form of an index. The Rank Index (RI) is the algebraic sum of the ranks obtained 

using the three criteria. Considering LCPC method, the RI equals to five as evaluated from 
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RI=R1+R2+R3. The Rank Index values for all other methods are presented in Table 4. 

Inspection of Table 4 demonstrates that Bustamante and Gianeselli (LCPC/LCP) method ranks 

number one along with ERTC3 method. These two methods showed the best performance 

according to the evaluation criteria and therefore considered the best methods. The Probabilistic 

and UF methods rank number three, followed by Philipponnat, De Ruiter and Beringen, 

CPT2000, UWA, and Schmertmann methods. The Zhou and Togliani methods showed the worst 

performance among all methods. 

Evaluation of Pile-CPT Methods Using MultiDimensional Unfolding 

The MultiDimensional Unfolding (MDU) is an approach used in this study, which displays the 

ranking data in a two-dimensional space. This approach helps us to find out the typical ranking 

of the pile-CPT methods, the extent of agreement between the piles, existence of outliers among 

the piles and pile-CPT methods, and the similarity between the different pile-CPT methods. 

In this section, MultiDimensional Scaling (MDS) is described. Then, some examples are 

explained to be solved using MDS. Then, MultiDimensional Unfolding (MDU) as an MDS 

technique is described. Finally, MDU is used for ranking Pile-CPT methods. 

MultiDimensional Scaling (MDS): Basics 

The MultiDimensional scaling (MDS) is a technique for showing similarity between the objects 

in a low-dimensional space. A symmetric n × n matrix, ∆ known as dissimilarity matrix with 

elements δij is the input matrix for MDS. A very simple example for application of MDS is that 

distances between some cities in the US is given as the input matrix and the result is a two-

dimensional locations of these points reflecting the US map [80]. Finding the location of the 

points in an Euclidean space of dimension p, without any additional transformation is the 

traditional way of performing MDS, referred as classical scaling [81]. 

The objective of performing MDS is finding the configuration matrix, X somehow that distances 

between points, dij be as close as possible to values of δij. The values of dij is defined in a p-

dimensional space as follows: 

 
dij(X) = √∑(xis − xjs)

2

p

s=1

 
(34) 
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Table 4. Ranking of pile-CPT methods based on multiple criteria 

  

Best fit calculation 

  Arithmetic 

calculations 

Qp/Qm 

  

Cumulative probability  

    

Overall rank 
  

      
  

Pile capacity 

method 
Qfit/Qm R2 R1 

 
Mean COV R2 

 
Qp/Qm at P50 Qp/Qm at P90 R3 

  

RI Final rank 
        

LCPC 1.03 0.74 1  1.07 0.39 3  0.99 1.45 1   5 1 

ERTC3 1.04 0.73 1  1.08 0.35 3  1.01 1.41 1   5 1 

Probabilistic 0.97 0.78 4  1.03 0.33 1  0.99 1.42 1   6 3 

UF 1.03 0.82 1  1.04 0.35 1  0.95 1.45 4   6 3 

Philipponnat 1.03 0.79 1  1.02 0.37 3  0.93 1.42 4   8 5 

De Ruiter 0.98 0.77 4  0.95 0.36 3  0.87 1.24 4   11 6 

CPT2000 1.17 0.79 6  1.11 0.34 6  1.08 1.56 4   16 7 

UWA 1.19 0.82 6  1.17 0.31 6  1.09 1.60 4   16 7 

Schmertmann 1.20 0.77 6  1.21 0.35 6  1.18 1.58 9   21 9 

German 1.03 0.67 4  1.02 0.44 9  0.88 1.52 9   22 10 

Eurocode7 1.22 0.74 6  1.17 0.48 10  1.02 1.87 9   25 11 

Price and Wardle 0.84 0.79 9  0.83 0.34 9  0.78 1.21 9   27 12 

Static 1.16 0.60 9  1.26 0.40 10  1.17 1.71 9   28 13 

NGI05 1.28 0.72 11  1.24 0.45 10  1.10 1.96 14   35 14 

Tumay Fakhroo 1.29 0.69 11  1.36 0.35 10  1.26 2.02 15   36 15 

Fugro 1.44 0.75 13  1.34 0.45 10  1.15 2.14 15   38 16 

Purdue 1.45 0.60 13  1.29 0.56 14  1.02 2.36 19   38 18 

Aoki 0.83 0.64 9  0.77 0.51 16  0.65 1.27 15   40 18 

ICP 1.49 0.74 13  1.33 0.45 10  1.22 2.12 19   42 19 

Penpile 0.54 0.85 13  0.59 0.28 15  0.57 0.77 15   43 20 

Zhou 1.49 0.85 13  1.68 0.28 17  1.60 2.20 21   51 21 

Togliani 1.70 0.81 18   1.83 0.30 18  1.79 2.45 22   58 22 
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Instead of classical scaling, the Stress Majorization of a COmplicated Function (SMACOF) 

approach can be used for solving the MDS problem, which offers more flexibility  [82], [83]. 

SMACOF uses Kruskal’s stress, σ(X) [58] as the target criterion, which is defined using the 

following equation: 

 σ(x) =∑∑ωij(δij − dij(X))
2

m

j=1

n

i=1

 (35) 

where ωij, is as:  

 ∑∑ωijδij
2

m

j=1

n

i=1

= n(n − 1)/2 (36) 

The values of ωij represent the matrix of weights, w, which is a symmetric, non-negative, and 

hollow matrix. The w matrix can be used for imposing missing values, as ωij = 1 if δij is known 

and ωij = 0 if δij is missing. Other kinds of weighting structures are also available. 

Details of SMACOF solution is available for MDS problems by De Leeuw and Mair and Borg 

and Groenen  [84], [85].  

As an example for MDS, below matrix, ∆ (n × n matrix) shows distances (in miles) between 10 

cities in Louisiana:  

Table 5. Example of MDS showing distances between 10 Louisiana cities 

 

 

Solving the MDS to produce two-dimensional X, is as follows: 

1) Torgerson’s transformation: Create a double-center version of ∆, designated to ∆∗, where 

the row sums, the column sums, and overall sum of the cell entries in the matrix are zero. 

For dissimilarity δij in matrix ∆, the corresponding δij
∗  in matrix ∆∗ is obtained as: 

City New Orleans Baton Rouge Shreveport Lafayette Lake Charles monroe Alexandria Slidell Arcadia Houma

New Orleans 0 75.14 281.1 118.13 189.23 214.42 169.73 28.36 246.29 46.02

Baton Rouge 75.14 0 208.38 52.14 122.19 152.59 95.47 84.79 177.47 65.48

Shreveport 281.1 208.38 0 189.14 162.08 95.13 113.67 281.27 48.43  270.72

Lafayette 118.13 52.14 189.14 0 71.57 158.18 79.34 133.81 169.38 89.26

Lake Charles 189.23 122.19 162.08 71.57 0 170.69 87.95 205.34 161.6 155.99

Monroe 214.42 152.59 95.13 158.18 170.69 0 85.05 207.21 46.79 217.93

Alexandria 169.73 95.47 113.67 79.34 87.95 85.05 0 173.75 90.04 157.06

Slidell 28.36 84.79 281.27 133.81 205.34 207.21 173.75 0 243.03 73.3

Arcadia 246.29 177.47 48.43 169.38 161.6 46.79 90.04 243.03 0 242.32 

Houma 46.02 65.48  270.72 89.26 155.99 217.93 157.06 73.3 242.32  0
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 δij
∗ = −0.5(δij

2 − δi.
2 − δ.j

2 + δ..
2) (37) 

∆∗ should be factorized to obtain the matrix of point coordinated, X (an n × p matrix, 

p=2 for two-dimensional configuration): 

 ∆∗= XX′ (38) 

2) Carry out the factoring process by performing an eigendecomposition on ∆∗: 

 ∆∗= VΛ2V′ (39) 

Where, V is the n × q matrix of eigenvectors, Λ2 is the q × q diagonal matrix of eigenvalues, 

and q is the rank of ∆∗ (usually equal to n). 

3) Create X from the first p eigenvectors (Vm) and the first p eigenvalues (Vm
2 ): 

 X = VmΛm 
(40) 

X, contains point coordinates such that the interpoint distances have a least-squares fit to the 

entries in ∆. 

For this example, we used the below code in RStudio software as shown below: 

getwd() 
library(smacof) 
library(stringi) 
Delta0 <- read.csv(file= "dist.csv") 
#View(Delta0) 
Delta1 <- Delta0[1:10,2:11] 
rownames(Delta1) <- Delta0[,"City"] 
#View(Delta1) 
fit.LA <- mds(Delta1) 
fit.LA$conf 
op <- par(mfrow = c(1,2)) 
plot(fit.LA) 
theta <- 315*pi/180 ## degrees to radians 
rot <- matrix(c(cos(theta), sin(theta), -sin(theta), cos(theta)), ncol = 2) 
fit.LA2 <- fit.LA$conf %*% rot ## rotated configurations 
xmirror <- matrix(c(-1, 0, 0, 1), ncol = 2) 
fit.LA2 <- fit.LA2 %*% xmirror ## mirror configurations 
fit.LA2 
plot(fit.LA2 , xlim = c(-1.0, 1.0), ylim = c(-1.0, 1.0), 
     main = "LA CITIES", xlab="First rotated and reflected eigenvector", ylab
="Second rotated eignvector") 
text(fit.LA2, row.names(fit.LA2), cex=0.8, pos=3, col="black") 
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The two-dimensional configuration, X for dissimilarity matrix, ∆ is obtained in Figure 15. Figure 

15 (a) presents the original solution of MDS, which by appropriate rotating and reflecting, as 

shown in Figure 15 (b), the location of the cities in Louisiana can be obtained.  

It should be noted here that, in this metric MDS solution, the relative distance between cities is 

obtained and appropriate rescaling is necessary to obtain the original map.  

Figure 15. Graph of eigenvectors (a) MDS solution (b) rotated and first eigenvector reflected 

 

If we use the matrix of rank-ordered distances between the 10 Louisiana cities (ordinal data), we 

will get the following: 

Table 6. Matrix of rank-ordered distances between the 10 Louisiana 

 

However, it seems to be less information in ∆ matrix, the two-dimensional configuration still 

provides excellent fit, as shown in Figure 16. 

City New Orleans Baton Rouge Shreveport Lafayette Lake Charles monroe Alexandria Slidell Arcadia Houma

New Orleans 0 9 44 19 34 38 29 1 42 2

Baton Rouge 9 0 37 5 20 22 17 11 32 6

Shreveport 44 37 0 33 27 16 18 45 4 43

Lafayette 19 5 33 0 7 25 10 21 28 14

Lake Charles 34 20 27 7 0 30 13 35 26 23

Monroe 38 22 16 25 30 0 12 36 3 39

Alexandria 29 17 18 10 13 12 0 31 15 24

Slidell 1 11 45 21 35 36 31 0 41 8

Arcadia 42 32 4 28 26 3 15 41 0 40

Houma 2 6 43 14 23 39 24 8 40 0
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Figure 16. Graph of eigenvectors (a) MDS solution (b) rotated eigenvectors for ordinal data 

 

As shown in Figure 16, the metric MDS seems to work for ordinal data, too. However, it 

imposes an implicit assumption about the relative sizes of differences between dissimilarities and 

using the concept of eigendecomposition is not appropriate. Therefore, a different strategy 

should be used for ordinal dissimilarities, which was described as SMACOF approach: 

1. Initial configuration is created, randomly. 

2. Distance between points is calculated, as d. 

3.  Optimal monotonic transformation of proximities is found, Based on this, optimal scaled 

data f(x) can be obtained. 

4. Kruskal’s stress, σ(X) as shown in Equation (35) is determined. 

5. By minimizing stress, new configuration of data points can be found. 

6. If stress is small enough, terminate the loop; otherwise go to 2. 

This approach is very useful to find the best configuration for rank-ordered dissimilarities among 

different objects. 

Multidimensional Unfolding (MDU) 

Different MDS techniques have been developed over the years [86]. The MDS can be divided 

into one-way and multi-way MDS. In multi-way MDS, different individuals (multiple judges and 

raters, repeated measurements) present dissimilarity for each pair of objects. Multi-mode MDS is 

the case when dissimilarities are qualitatively different (e.g., objects are rated based on different 

subjects). Each kind of MDS can be provided in metric and non-metric variants. If 

dissimilarities, δij, are on ordinal scale, transformations of the dissimilarities, d̂ij = f(δij) 
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(commonly known as disparities), can be defined to preserve the order as δIJ < δij  => d̂IJ < d̂ij, 

which is referred to nonmetric. Also, restrictions on configuration matrix, X can be applied as 

shown by De Leeuw and Heise [83]. 

As discussed in the previous section, the SMACOF is an MDS solving strategy that uses 

majorization to minimize stress. For the above extensions of classical MDS, some changes for 

the SMACOF solution is needed. For example, in the cases when K judges present dissimilarity 

matrices, additional algorithms like SMACOF routines for individual differences (also known as 

three-way SMACOF), such as INDSCAL (Individual Differences Scaling), IDIOSCAL, etc. can 

be used. 

The case that we are going to use in this study is when we have n1 judges rate n2 objects. Hence, 

the dissimilarity matrix is not square. The basic idea is that objects and judges are going to be 

represented on the same scale.  

A simple unidimensional example presented by Alvo and Philip [87] is shown in Figure 17, 

where judges and objects are shown on a line. For this example, the rankings given to four 

objects by two judges are as follows: 

 First Second Third Fourth 

Judge J1 A B C D 

Judge J2 C D B A 

  

As seen in Figure 17, the objects and judges are placed on the line based on the rankings given to 

the objects. By folding the line at each judge point, the original ranking of the objects can be 

observed. For example, as shown in Figure 17, folding the line at point J1 reveals that judge J1 

prefers objects A, B, C, and D, respectively. 

 

Figure 17. Unidimensional unfolding 
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It can be seen that it is impossible to place judge 3 giving rankings as DABC for the previous 

example. The Multidimensional unfolding (MDU) is the MDS technique used for ranking data. 

The SMACOF approach was extended by De Leeuw and Mair [84] and smacof package in R 

[88] can be used for solving different MDU problems.  

The MDS goodness of fit can be estimated using the standardized version of raw stress, called 

Kruskal’s stress-1, which is somehow not dependent on the absolute values of dissimilarities.  

 
σ1(X) = √

∑ ωij(d̂ij − dij(X))
2

i<j

∑ ωijdij
2(X)i<j

= √
∑ ωij(d̂ij − dij(X))

2
i<j

n(n − 1)/2
 

(41) 

 

For ordinal MDS, different stress-1 values of 0.2, 0.1, 0.05, 0.025, and 0 represent poor, fair, 

good, excellent, and perfect fit [3]. The goodness-of-fit of the results also can be estimated using 

the Shepard diagrams separately for the row and column dissimilarities. 

Displaying the ranking data (preferably in two-dimensional space) help us to find the typical 

ranking of the objects, the extent of agreement between the judges, existence of outliers among 

the judges and objects, and the similarity between the objects. 

MDU Results: 80 Piles  

Each pile has been regarded as an individual (judge), which rates the methods based on the 

values of Qp Qm⁄ . If the value of (Qp Qm⁄ ) is one, the method’s rank becomes one. So the 

ranking is based on the value of [abs (Qp Qm⁄ − 1)]. The ranking of the pile-CPT methods has 

been obtained, which is shown in Table 7. 
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Table 7. Ranking of pile-CPT methods for each pile from 1 to 22 

 

The below code in RStudio software was used for the MDU analysis in this study: 

getwd() 
library(smacof) 
library(stringi) 
CPTmethods <- read.csv(file= "methods.csv") 
#View(CPTmethods) 
CPTranking <- CPTmethods[,2:81] 
#View(CPTranking) 
rownames(CPTranking) <- CPTmethods[,"method"] 
#View(CPTranking) 
fit.CPT <- unfolding(CPTranking) ## 2D metric unfolding solution 
fit.CPT$stress 
fit.CPT[["conf.col"]] 
fit.CPT[["conf.row"]] 
plot(fit.CPT, label.conf.rows = list(label = TRUE, col=1), label.conf.columns
 = list(label = FALSE),col.rows = hcl(0), col.columns = hcl(240), pch = 10) 
best <- sort(rowMeans(CPTranking, na.rm = TRUE))[1:12] 
worst <- sort(rowMeans(CPTranking, na.rm = TRUE), decreasing = TRUE)[1:12] 
bestworst <- names(c(best, worst)) 
text(fit.CPT$conf.row[bestworst,], labels = bestworst, cex = 0.8, pos = 3, 
     col = hcl(0, l = 50)) 

The results of MDU analysis for 21 pile-CPT methods in addition to the static analysis 

(Tomlinson and Nordlund) method for the 80 PPC piles are shown in Figure 18. 

 

 

 

 

                      Pile

method
1 2 3 4 5 ……… 80

1- Philipponnat 8 7 6 5 13 8

2- UF 6 13 4 2 14 6

3- Aoki 21 17 19 18 20 20

4- Price and Wardle 7 9 7 11 19 18

5- Penpile 22 19 20 17 21 22

6- Tumay Fakhroo 5 1 3 13 2 7

7- NGI05 12 6 5 9 7 10

8- ICP 17 15 17 19 10 15

…….

…….

…

…

…

…

…

…

…

…

…

…

…

…

22- Static 17 15 17 19 10 12
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Figure 18. MDU results for the 21 pile-CPT methods and static analysis method (metric MDS) 

 

It should be noted here that the results shown in Figure 18 were obtained by Metric MDS, which 

means that dissimilarities and distances are linearly related. The Shepard diagram for this metric 

MDS analysis is shown in Figure 19. The x-axis in Figure 19 represents dissimilarities, which 

refers to ranking of the methods and changes from 1 to 22. The y-axis represents the distances 

between points shown in Figure 18.  For each ranking (dissimilarity), the 80 points are shown in 

Shepard diagram represent the distances of the 80 piles from the pile-CPT methods. For metric 

MDS, a linear relationship between these dissimilarities and distances exist, which is shown in 

the Shepard diagram. The value of σ1 for this MDU analysis was obtained as 0.349. The Shepard 

diagram and σ1 value suggest that metric MDU is poor and is not the best fit for the results. 

However, the two-dimensional configuration of points, as shown in Figure 19, is a useful tool for 

visualizing data.  
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Figure 19. Shepard diagram (metric MDS) 

 

For the second MDU analysis, the ordinal MDS was used, and the results are shown in Figure 

20. The value of σ1 for this MDU analysis was obtained as 0.103, which is much lower than the 

metric analysis. However, as shown in Figure 20, most of the pile-CPT methods are located close 

to each other and the results are not useful for ranking the pile-CPT methods. The Shepard 

diagram for this analysis is shown in Figure 21, which shows that this analysis does not 

differentiate much between pile-CPT methods with rankings from 1 to 19. Therefore, the results 

of this analysis were not used for ranking pile-CPT methods. 
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Figure 20. MDU results for the 21 pile-CPT methods and static analysis method (ordinal MDS, primary) 

 

Figure 21. Shepard diagram (ordinal MDS, primary) 

 

For the next MDU analysis, the ordinal secondary MDS was used, and the results are shown in 

Figure 22. The Shepard diagram for the ordinal secondary MDS analysis is shown in Figure 23. 

The value of σ1 for this MDU analysis was obtained as 0.235. 
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Figure 22. MDU results the 21 pile-CPT methods and static analysis method (ordinal secondary MDS) 

 

Figure 23. Shepard diagram (ordinal secondary MDS) 

 

The other MDU analysis is monotone spline transform in MDU, and the results are presented in 

Figure 24. The Shepard diagram for this MDS analysis is shown in Figure 25. The value of σ1 

for this MDU analysis was obtained as 0.268. 
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Figure 24. MDU results for the 21 pile-CPT methods and static analysis method (monotonic spline MDS) 

 

Figure 25.  Shepard diagram (monotonic spline MDS) 

 

It can be seen that monotonic-spline and ordinal secondary MDU results are similar. Therefore, 

ordinal secondary MDU, which has smaller σ1 value, was used for ranking the methods. 
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Imposing circle restrictions on the MDU solution for values of [abs (Qp Qm⁄ − 1)] led into the 

results shown in Figure 26 with σ1 value equal to 0.579. 

Figure 26. MDU results for the 21 pile-CPT methods and static analysis method (circular restricted MDS) 

 

Based on the ranking of the pile-CPT methods given by each pile, all the piles and pile-CPT 

methods were located in a two-dimensional space. The distance of each pile-CPT method with 

respect to the center (0, 0) coordinate represents how accurate that pile-CPT method in 

predicting the ultimate pile capacities. For metric, ordinal secondary, and circular restricted 

MDU results, the distance of each pile-CPT method to the center was calculated and presented in 

Table 8. Based on the distance from the center, the rank of each pile-CPT was calculated. The 

final ranking of the methods was obtained based on the summation of rankings for each MDU 

analysis type, known as RI2. Based on the MDU analysis, the Probabilistic, UF, Philipponnat, 

German, LCPC, De Ruiter and Beringen, ERTC3, CPT2000, and UWA methods show the 

lowest distance from the center of the piles, and therefore are ranked the best methods. As shown 

in Table 8, the results of MDU analysis are not much different from multiple criteria based on 

mathematical and statistical criteria described in a previous section. 
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Table 8. Ranking of pile-CPT methods based on MDU analysis 

      

Metric MDU 

  Ordinal Secondary 

MDU 

  Circular restricted 

MDU 

  

Overall rank 

  
   

   
 

 Pile capacity 

method 

 
Distance Ranking 

 
Distance Ranking 

 
Distance Ranking 

 
RI2 

Final 

rank 

 

            
 LCPC  0.10 1  0.24 4  0.17 12  17 5  

 ERTC3  0.33 8  0.27 8  0.10 3  19 7 
 

 Probabilistic  0.25 4  0.23 1  0.09 2  7 1  

 UF  0.16 2  0.25 7  0.11 4  13 2  

 Philipponnat  0.21 3  0.24 5  0.12 5  13 2  

 De Ruiter  0.42 10  0.25 6  0.05 1  17 5  

 CPT2000  0.32 6  0.27 9  0.14 7  22 8  

 UWA  0.41 9  0.30 10  0.16 10  29 10  

 Schmertmann  0.46 12  0.31 11  0.18 13  36 12  

 German  0.26 5  0.23 2  0.16 8  15 4  

 Eurocode7  0.45 11  0.35 12  0.17 11  34 11  

 Price and Wardle  0.70 17  0.58 15  0.13 6  38 13  

 Static  0.33 7  0.24 3  0.31 15  25 9  

 NGI05  0.62 14  0.36 13  0.49 16  43 14  

 Tumay Fakhroo  0.67 16  0.37 14  0.52 17  47 15  

 Fugro  0.75 18  0.61 16  0.65 18  52 18  

 Purdue  0.58 13  0.67 18  1.06 22  53 18  

 Aoki  1.07 19  0.81 19  0.16 9  47 15  

 ICP  0.66 15  0.65 17  0.71 19  51 17  

 Penpile  1.17 20  1.13 20  0.26 14  54 20  

 Zhou  1.20 21  1.27 21  0.86 20  62 21  

  Togliani   1.40 22   1.60 22   0.96 21   65 22   
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Evaluation of Pile-CPT Methods Using Reliability Analysis 

Reliability-based calibration obtained from the principles of load and factor design (LRFD) can 

be used for evaluating the efficiency of the different pile-CPT methods. In this section, the 

following parts are described. 

LRFD: Background 

Under the working stress design (WSD), also known as allowable stress design (ASD), the 

design load, Q, is compared to resistance, or strength, Rn through a factor of safety, FS, which 

used to account for uncertainties in the applied loads and soil resistance. The magnitude of FS is 

dependent on the importance of the structure, the confidence level of the material properties, and 

design methodology. The equation is given as: 

 
Q < Qall =

Rn
FS

=
Qult
FS

 
(42) 

where, Q is design load, Qall is allowable design load, Rn is resistance of the element or the 

structure, and Qult is the ultimate geotechnical pile resistance. 

The bridge design specifications published by the American Association of Highway and 

Transportation Officials (AASHTO) in 1994 and 1998 ( [89], [90]) have introduced the LRFD 

method to account for uncertainties associated with the estimated loads and resistances, 

separately. In 2007, the AASHTO mandated that all federal-funded new bridges shall be 

designed using the LRFD method [91].  

LRFD: Concept 

The basic idea behind LRFD is shown in Figure 27. Here, the distributions of random load (Q) 

and resistance (R) values are shown as normal distributions. The performance limit state function 

for the state of the structural system can be described as follows: 

 g(R, Q) = R − Q (43) 

where, R is the resistance of a given structure, which is a random variable, and Q is the applied 

load, which is also a random variable. 
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Figure 27. LRFD concept of reliability 

 

If g ≥ 0, the structure is safe, and if g < 0, the structure is unsafe. The probability of failure is 

then defined as: 

 Pf = p[g(R, Q) < 0] = p[R < Q] (44) 

For a normal distribution of g values, the probability of failure can be equated explicitly to the 

value of reliability index β = μg/σg, where μg is the mean value of g and σg is the standard 

deviation of g. The relationship between probability of failure and reliability index can be 

calculated using the following function. 

 Pf = 1 − NORMDIST(β) 
(45) 

In addition, if the load and resistance values are normally distributed and the limit state function 

is linear, then β can be determined from the following relation: 

 β =
μR − μQ

√σR
2 + σQ

2

 (46) 

where, μR and μQ are the mean and σR, and σQ are the standard deviation of resistance and load, 

respectively. 

If both the load and resistance distributions are lognormal and the limit state function is a product 

of random variables, then β can be calculated using a closed-form solution reported by Withiam 

et al. and Nowak as follows [92, 93]: 
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β =

ln [
μR

μQ⁄ √(1 + COVQ
2)/(1 + COVR

2)]

√ln[(1 + COVQ
2)(1 + COVR

2)]

 
(47) 

where, μR is the mean value of the resistance R, and μQ is the mean value of the load Q; COVR 

and COVQ are the coefficients of variation for the resistance and load values, respectively. 

LRFD: Calibration 

The basic equation of LRFD is shown in equation (48) below. The idea is that the design 

resistance (which is the measured resistance decreased by the factor, , known as resistance 

factor) should be more than the summation of the design loads (which are measured loads Qi, 

increased by load factors γi). 

 Rn ≥∑ηγiQi (48) 

 

where, = resistance factor, Rn = nominal resistance,  = load modifier to account for effects of 

ductility, redundancy and operational importance. The value of η usually is 1.00. Qi = Load effect, 

γi =Load factor. 

Most of driven piles develop both skin and toe resistances, but the percentage of skin or toe 

resistance to total resistance is not constant. Therefore, it is not possible to provide a fixed 

correlation between the three resistance factors (skin, toe and total resistances). In this research 

only the resistance for total resistance was calibrated. Thus, it should be noted that the same 

resistance factors for skin and end bearing are assumed and the calibrated resistance factors are 

valid only for the ranges of pile dimensions (length and diameter) that employed in this study.  

Consider the load combination of dead load and live load for AASHTO Strength I case, the 

performance limit equation is as follows: 

 ϕRn = γDQD + γLQL (49) 

where, QD and QL are the dead load and live load, respectively, and γD and γL are the load factors 

for dead load and live load, respectively. 

The load parameters in LRFD were studied extensively by different researchers, and the following 

LRFD parameters have been suggested, and specified by AASHTO LRFD Specifications (e.g., 

[92], [94]): 
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γL = 1.75             γQL = 1.15             COVQL = 0.18 

γD = 1.25            γQD = 1.08             COVQD = 0.128 
(50) 

where, γD and γL are the load factors for dead load and live load, respectively. λQD and λQL are the 

load bias factors (mean ratio of measured over predicted value) for the dead load and live load, 

respectively. COVQD and COVQL are the coefficient of variation values for the dead load and live 

load, respectively. 

The QD/QL is the dead load to live load ratio which varies depending on the span length [4]. In this 

research, QD/QL of 3 is used.  

Reliability based analyses using the First Order Second Moment (FOSM) method, the modified 

FOSM by Bloomquist et al. [5], the First Order Reliability Method (FORM), and the Monte 

Carlo (MC) simulation method were used to calibrate the resistance factors () for the different 

pile-CPT design methods. A target reliability index (Ｔ) of 2.33 was selected for the calibration 

of resistance factors, similar to previous studies (e.g., [95]). 

First Order Second Moment (FOSM) Method 

In FOSM, the limit state function is linearized by expanding the Taylor series about the mean value 

of variable. Since only the mean and variance are used in the expansion, it is called first (mean) 

order second (variance) moment. For lognormal distribution of resistance and load statistics, 

Barker et al. suggested the following relation for calculating reliability index, , as [96]: 

 

 

β =

ln [λRFS(

QDL
QLL
⁄ + 1

λDL
QDL

QLL
⁄ + λLL

)√
1 + COVR

2 + COVDL
2 + COVLL

2

1 + COVR
2 ]

√ln[(1 + COVR
2)(1 + COVDL

2 + COVLL
2 )]

 

(51) 

 

For LRFD, this equation is modified by replacing the overall factor of safety (FS) by partial 

factor of safety and then rearranges to express relation for resistance factor () as follows: 
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  =

λR (λD
QD
QL

+ λL)√
1 + COVQD

2 + COVQL
2

1 + COVR
2

(λQD
QD
QL

+ λQL) exp(βT√ln(1 + COVR
2) (1 + COVQD

2 + COVQL
2 ))

 (52) 

The resistance bias factor, λR and the resistance coefficient of variation, COVR are important in 

estimating  and is calculated based on the following equations: 

 λR =
∑λRi
N

 (53) 

 σR = √
∑(λRi − λR)2

N − 1
 (54) 

 COVR =
σR
λR
    and      λRi =

Rmi
Rni

 (55) 

where, Rmi = measured resistance from a load test, and Rni = predicted resistance from lab or 

field data. 

Modified FOSM Method 

Equation (52) used for FOSM has been shown to estimate  values for about 10-15% less than 

the other methods. A modification to the equation was suggested by Styler [50] in the term 

COV(Q). Equation (52) assumes COV(Q) = COV(QD) + COV(QL), but it has found that 

COV(Q) should be obtained by: 

 COV(Q) = √

QD
2

QL
2 λQD

2COVQD
2 + λQL

2COVQL
2

QD
2

QL
2 λQD

2 + 2
QD
QL

λQDλQL + λQL
2
 (56) 

Using this modification in equation (55), the difference between the FOSM and other reliability 

methods becomes slight. The modified FOSM’s resistance factor () equation becomes: 



—  87  — 

 

  =

λR (λD
QD
QL

+ λL)√
1 + COVQ

2

1 + COVR
2

(λQD
QD
QL

+ λQL) exp (βT√ln(1 + COVR
2) (1 + COVQ

2))

 (57) 

First Order Reliability Moment (FORM) Method 

Hasofer and Lind proposed a modified reliability index that did not exhibit the invariance 

problem [97]. The “correction” is to evaluate the limit state function at a point known as the 

“design point” instead of the mean values. The design point is a point on the failure surface g = 

0. Since the design point is generally not known in advance, an iteration technique must be used 

to solve the reliability index. Detailed procedure regarding FORM can be found in Nowak and 

Collins [98]. The following steps describe the FORM using the Rackwitz-Fiessler method [99]: 

1. Define limit state function, g(x1, x2, x3....). 

The limit state function for LRFD is developed as follows: 

 Q = QD + QL = λDQD + λLQL (58) 

 R = γDQD + γLQL (59) 

From the above equations: 

 g(R. L) = (
γDQD + γLQL


) λR − (λDQD + λLQL) (60) 

The specified live load to dead load ratio,(QL/QD) equation can be rearranged as: 

 g(R, Q) = (
γD + γLκ


) λR − (λD + λLκ) (61) 

where, κ =
QL

QD
⁄  

2. Assume an initial design point (xi*), which is usually the mean values are considered in 

most cases. Initial design values for dead load and live load (x2 and x3) assumed and the 

resistance (x1) is determined by equating the limit state function to zero. For lognormal 

variables equivalent normal parameters are then determined as follows: 

 μx
e = x∗ − σx

e[Φ−1(Fx(x))] (62a) 
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 σx
e =

1

fx(x∗)
φ [
x∗ − μx

e

σx
e

] =
1

fx(x∗)
φ[Φ−1(Fx(x

∗))] (62b) 

where, φ and Φ denotes the mass probability density function (PDF) and the cumulative 

distribution function (CDF) for normal distribution, respectively. 

3. The reduced variable corresponding to the design point x* is found as: 

 zi
∗ =

x∗ − μexi
σexi

 (63) 

4. Partial derivatives of the limit state function is found at the design point, and vector G is 

defined as: 

G = {
G1
G2
G3

}, where, Gi = −
∂g

∂Zi
 at design point = −

∂g

∂Xi
∗ (σexi) at design point. The values 

of  and  will then be determined as: 

 β =
{G}T{z∗}

√{G}T{G}
 (64) 

where, {z∗} = {

z1
∗

z2
∗

z3
∗
} 

 α =
{G}

√{G}T{G}
 (65) 

5. The new design point is determined in the reduced variable as follows: 

 zi
∗ = αiβ (66) 

 x∗i = μxi
e + ziσxi

e  (67) 

The new design point for resistance (x1) is determined by inserting the new design values for 

loads (x2 and x3) into the g function. With new design points, steps from 1 to 5 are followed 

again iteratively. The process is repeated until β and the design point converges. In this study, 

the excel sheet was used to get the FOSM solution with the “Goal seek” function for given load 

and resistance statistics. Iterations for FORM is done using the “SOLVER” tool. 
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Monte Carlo simulation Method 

For more complicated limit state functions, the application of the general statistical method for 

the calculation of the reliability index is either extremely difficult or impossible. Under this 

circumstance, Monte Carlo simulation provides the only feasible way to determine the reliability 

index or the probability of failure.  

The Monte Carlo method is a technique by which a random number generator is used to 

extrapolate cumulative density function (CDF) values for each random variable. Extrapolation of 

CDF makes estimating β possible; otherwise, a limited quantity of data has restricted the reliable 

estimate of β. Once reliability index, β, is estimated, the probability of failure can be estimated 

by assuming the distribution of g(x). The steps of Monte Carlo simulation method are as follows: 

1. Select a trial resistance factor (). Generate random numbers for each set of variables. Here 

there are three variables (resistance, dead load to live load, and bias factor), so three sets 

of random variables have to be generated independently for each case. The number of 

simulation points required is found using the following relation: 

 N =
1 − Ptrue
Vp2 ∗ (Ptrue)

 (68) 

where, Ptrue is the lowest magnitude of probability that is to be determined using Monte 

Carlo simulation, and Vp is the desired coefficient of variation of the simulation result. 

For estimating probability as low as 10−2 and keeping variance under 10%, the number 

of points to be generated in Monte-Carlo simulation is 9900. 

For each lognormal variable, sample value xi is estimated as: 

 xi
∗ = exp(μln x + zi σln x) (69) 

where, σln x
2 = ln(Vx

2 + 1) and μlnx
2 = ln(μx) −

1
2⁄ σlnx

2  

In the above expressions, μx and Vx are the arithmetic mean and variance of x; μlnx and 

σln x are equivalent lognormal mean and standard deviation of ln(x); and zi is 

NORMSINV(RAND), the random standard normal variable generated using EXCEL 

function. 

2. Define the limit state function (equation 48). 

 Q = λDQD + λLQL (70) 
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From equations (49) and (70): 

 g(R, Q) = (
γDQD + γLQL

φ
) λR − (λDQD + λLQL) (71) 

where, equation (71) can be rearranged to: 

 g(R, Q) = (
γD + γLκ

φ
) λR − (λD + λLκ) (72) 

      where, κ =
QL

QD
⁄  

3. Find the number of cases where g(xi) ≤ 0. The probability of failure is then defined as: 

 Pf =
g ≤ 0

N
 (73) 

and the reliability index β is estimated as: 

 β = Φ−1(Pf) (74) 

4. If the calculated reliability index (β) is different from the selected target reliability index 

(βT), the trial resistance factor () in step 1 should be changed and iteration needs to be 

done until | β - βT | < tolerance (0.01 in this study). 

Results of LRFD Calibration and Efficiency of Pile-CPT Methods  

Ranking of different pile-CPT methods can be determined by calculating the efficiency of each 

method and compare them. The predicted capacity from an individual pile-CPT method, Rn, is 

used to find the design capacity of the pile, as: 

 Rdesign = ϕRn (75) 

However, the bias factor is: 

 λR =
Rm
Rn

 (76) 

where, Rm is the measured capacity (using a criteria such as Davisson). Combining the 

equations: 

  Rdesign = (
ϕ
λR
⁄ )Rm (77) 
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The term (ϕ λR⁄ ) identifies the percentage of the measured Davisson capacity that is available 

for design. Therefore, this term represents the efficiency of the pile-CPT methods. The higher the 

value of (ϕ λR⁄ ), the better the method is. 

It should be noticed that for calculating λR for each pile the proportion of measured to predicted 

resistance, λRi should be calculated and the average of these values should be considered as the 

resistance bias factor, λR. The target reliability, βT of 2.33 was selected for driven piles, similar 

to previous studies (e.g., [95]).  

The histogram and lognormal distribution of Qm⁄Qp for selected pile-CPT methods are presented 

in Figure 28. The resulting resistance factors (ϕ) using the different reliability methods are 

presented in Table 9. The ranking of all pile-CPT methods based on the mean of bias and 

efficiency were also judged and presented in Table 9. The closer the mean of bias () to one and 

the higher efficiency leads to better ranking. 

Comparing Table 9 with previous criteria (Table 4 for multiple criteria and Table 8 for MDU 

analysis), it is clear that the efficiency criteria based on LRFD is almost consistent with the 

previous criteria and LCPC, ERTC3, Probabilistic, UF, Philipponnat, De Ruiter, CPT2000, 

UWA, Schmertmann, German, and Eurocode7 are among the methods with highest rankings. 

The main difference between these rankings is seen for Zhou, Togliani, and Penpile methods. 

Based on the previous criteria, these methods were considered as the lowest pile-CPT methods. 

Zhou and Togliani methods overpredict the pile capacity with mean values for Qp Qm⁄  as 1.68 

and 1.83, respectively. This overprediction caused that the ability of these methods for estimating 

the pile capacity was considered weak. However, the standard deviations of these methods are 

low which compensates the weakness of these methods in overprediction aspect. In fact, LRFD 

criteria shows that Zhou and Togliani methods have low resistance factors of 0.38 and 0.35, and 

efficiency values, φ λR⁄  of 0.60 and 0.59, respectively. The high values of efficiency for these 

methods suggest that they have to be modified to be considered for predicting the pile capacity. 

On the other hand, Penpile method is a method that underpredicts the pile capacity with mean 

value of 0.59 and, therefore, in previous criteria was considered as a method with low ranking. 

Using LRFD criterion, the resistance factor, φ for this method obtained 1.00 and, therefore, a 

high value of efficiency values, φ λR⁄  as 0.54.  

LRFD analysis suggest that using Zhou and Togliani method with low resistance factor of 0.35 

and Penpile method with high resistance factor of 1.0 lead into acceptable predictions for the 

resistance for pile design. However, as seen for the other methods, the usual value for resistance 

factor, φ is in the range of 0.5-0.6. A very simple solution for making these methods consistent 

with the others is to modify them by multiplying a coefficient (equal to 1 λR⁄ ) to their equations. 
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Figure 28. Histogram and lognormal distribution of 𝑸𝒎 𝑸𝒑⁄  for selected pile-CPT methods 
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Table 9. Efficiency of Pile-CPT methods based on LRFD reliability criterion 

 
 Pile capacity 

method 
Mean, 
λR 

COV σ 
 

 FOSM 
 FOSM 
modified 

 
 FORM 

 Monte 
Carlo 

 /λR Final rank 
 

    
 LCPC 1.04 0.31 0.32 0.54 0.59 0.60 0.60 0.57 5  

 ERTC3 1.02 0.31 0.32 0.53 0.58 0.59 0.59 0.57 6  

 Probabilistic 1.08 0.34 0.37 0.52 0.57 0.58 0.57 0.53 7  

 UF 1.05 0.27 0.29 0.58 0.65 0.65 0.65 0.62 1  

 Philipponnat 1.09 0.30 0.33 0.57 0.64 0.64 0.64 0.59 3  

 De Ruiter 1.16 0.29 0.34 0.62 0.69 0.69 0.69 0.59 2  

 CPT2000 1.00 0.34 0.34 0.48 0.53 0.53 0.53 0.53 11  

 UWA 0.93 0.30 0.28 0.49 0.54 0.54 0.54 0.58 7  

 Schmertmann 0.92 0.34 0.31 0.44 0.48 0.49 0.48 0.53 14  

 German 1.14 0.37 0.43 0.51 0.56 0.56 0.56 0.49 12  

 Eurocode7 0.99 0.35 0.35 0.47 0.51 0.52 0.51 0.52 13  

 Price and Wardle 1.37 0.43 0.59 0.55 0.59 0.59 0.59 0.43 14  

 Static 0.91 0.42 0.38 0.38 0.41 0.41 0.41 0.45 19  

 NGI05 0.94 0.38 0.36 0.42 0.45 0.45 0.45 0.48 17  

 Tumay Fakhroo 0.81 0.30 0.25 0.42 0.47 0.47 0.47 0.58 10  

 Fugro 0.87 0.38 0.33 0.39 0.42 0.43 0.42 0.49 17  

 Purdue 0.94 0.38 0.35 0.42 0.46 0.46 0.46 0.49 16  

 Aoki 1.56 0.37 0.58 0.70 0.76 0.77 0.76 0.49 9  

 ICP 0.89 0.42 0.38 0.36 0.39 0.39 0.39 0.44 20  

 Penpile 1.86 0.33 0.62 0.91 1.00 1.00 1.00 0.54 4  

 Zhou 0.64 0.29 0.19 0.34 0.38 0.38 0.38 0.60 21  

  Togliani 0.59 0.30 0.18 0.31 0.35 0.35 0.35 0.59 22   
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Clustering of Pile-CPT Methods  

Based on multiple statistics criteria, MDU analysis, and efficiency based on LRFD reliability 

analysis, the following pile-CPT methods showed acceptable performance in evaluating the 

ultimate capacity of driven piles in Louisiana soil: LCPC, ERTC3, Probabilistic, UF, 

Philipponnat, De Ruiter, CPT2000, UWA, and Schmertmann. 

Table 10 shows the ranking of these methods based on each evaluation criterion: 

Table 10. Ranking of top nine pile-CPT methods 

Pile capacity 

method 

Multiple 

criteria 

MDU 

analysis 

LRFD 

reliability 

analysis 

LCPC 1 5 9 

ERTC3 1 7 8 

Probabilistic 3 1 11 

UF 3 2 1 

Philipponnat 5 2 5 

De Ruiter 6 5 3 

CPT2000 7 8 13 

UWA 7 10 6 

Schmertmann 9 12 12 

 

These selected pile-CPT methods can be shown in a two-dimensional configuration in Figure 29 

(using MDU analysis as described in previous sections).  

Displaying the ranking data in two-dimensional configuration enables us to identify if there is 

any similarity between the pile-CPT methods. In other words, if a pile-CPT method is close to a 

particular pile in   
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Figure 29, it means that the prediction of that pile-CPT method is close to the measured capacity 

of that particular pile. When two or three pile-CPT methods are close to each other, it means that 

those pile-CPT methods have similar predictions for the piles. For piles that are close to those 

pile-CPT methods, the predictions were accurate and for piles far from them, the predictions 

were different from measured capacities. 

This concept shows us that we can use Figure 29 for dividing pile-CPT methods into different 

groups. For this purpose, K-means algorithm used in unsupervised machine learning was used. 
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Figure 29. MDU results for nine pile-CPT methods (Metric MDS) 

 

K-means Clustering: Concept 

The K-means algorithm is a method for automatically clustering similar data to each other. The 

idea is to start by guessing the initial centroids for each cluster, assigning data points to the 

closest centroids, re-computing the centroids based on these assignments, reassigning data 

points, and doing iterations to get the final groups.  

The K-means algorithm can be explained through an example: If we want to cluster the 80 piles 

shown in   
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Figure 29 into three groups (K=3). The following algorithm is used: 

1. Initially, three centroids as (-0.5, -0.5), (0, 0), and (0.5, 0.5) was chosen. 

2. Closest points to the centroids are determined, and their index from 1 to 3 is determined 

as shown in Figure 30.  

3. Based on the average of points in each index, the new location of centroids was 

determined as shown in Figure 31. 

4. A loop from 2 to 4, until reaching to the minimum for the cost function. 

 J(c(1), … , c(m), μ1, … , μK) =
1

m
∑|x(i) − μc(i)|

2
m

i=1

 (78) 

 

 

Figure 30. First iteration of K-means algorithm 

 

Figure 31. Second iteration of K-means algorithm 
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where, m is the number of data points (X), K is number of clusters, c(i) is the index of cluster 

(1,…,K) to which x(i) is assigned, and μc(i) is the coordinate of the centroid which example x(i) 

is assigned to it. 

The purpose of K-means algorithm is to find the optimization of cost function (also known as 

distortion), using equation (79), and the results of clustering are presented in Figure 32: 

    J(c(1), … , c(m), μ1, … , μK)c(1),…,c(m)

μ1,…,μK

min  (79) 

 

Figure 32. Clustering piles into three groups after 10 iteration of K-means algorithm 

 

5. It should be noted here that the minimum cost depends on the initial configuration of 

centroids. For different initial coordinates of centroids, the cost function was calculated 

and the minimum value of all different cost functions was chosen as the finial clustering 

of the piles (see Figure 33). 
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Figure 33. Effect of initial configuration on the final clustering 

 

Clustering Pile-CPT methods 

The K-means clustering was used for clustering LCPC, ERTC3, Probabilistic, UF, Philipponnat, 

De Ruiter, CPT2000, UWA, and Schmertmann pile-CPT methods, as shown in Figure 29. The 

number of clusters (K) was chosen to be 3. 

The optimization objective was set to be: 

  J(c(1), … , c(m), d(1), … , d(n), μ1, … , μK) =
1

m
∑|x(i) − μc(i)|

2
m

i=1

+
1

n
∑|y(i) − μc(i)|

2
n

i=1

 (80) 
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   J(c(1), … , c(m), μ1, … , μK)c(1),…,c(m)

d(1),…,d(n)

μ1,…,μK

min  
(81) 

The final results for the different number of clusters are shown in Figure 34. 

Figure 34. Clustering pile-CPT methods into three groups (J=0.36963) 

 

 

Based on K-means analysis as shown in Figure 34, the following clustering of pile-CPT methods 

were obtained as follows: 

Cluster 1: Philipponnat, UF, Probabilistic, LCPC, and De Ruiter 

Cluster 2: Schmertmann and ERTC3 

Cluster 3: CPT2000 and UWA 

If geotechnical engineers are interested to get a better range of estimating the ultimate pile 

capacity by selecting three different pile-CPT methods, it is recommended to select one method 

from each cluster group. 

Develop Combined Pile-CPT Methods  

The evaluation of performance of pile-CPT methods showed that nine methods have the most 

performance in predictions the ultimate axial capacity of the piles. However, due to similarity 
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between Philipponnat and UF, and between CPT2000 and UWA, only UF and CPT2000 will be 

considered in developing the combined pile-CPT methods. Accordingly, the following seven 

pile-CPT methods will be considered here: Schmertmann, De Ruiter and Beringen, Bustamante 

and Gianeselli (LCPC), ERTC3 (European Regional Technical Committee 3), UWA, 

probabilistic, and UF methods. In this section, the piles are categorized based on the percentage 

of pile capacity obtained in sand layers and the log-normal distribution nature of the ratio of 

𝑄𝑝 𝑄𝑚⁄  is used to find a relationship for pile capacity based on the values of pile capacity 

obtained by different methods in different categories. This new method uses the combination of 

pile-CPT methods to overcome the concern of overprediction and high variability in sandy layers 

and helps engineers to have a tool for estimating the pile capacity in a more acceptable range. 

Log-normal Distribution of Pile-CPT methods 

The ratio of 𝑄𝑝 𝑄𝑚⁄  for the investigated piles has a non-symmetrical distribution around the 

mean value. The log-normal distribution of the 𝑄𝑝 𝑄𝑚⁄  ratio can be used for measuring the range 

distribution of pile capacity for different pile design methods. The following density function 

defines the log-normal distribution: 

 𝑓(𝑥) =
1

√2𝜋𝜎𝑙𝑛𝑥
exp [−

1

2
(
ln(𝑥) − 𝜇𝑙𝑛

𝜎𝑙𝑛
)

2

] (82) 

 

where. 𝑥 = 𝑄𝑝 𝑄𝑚⁄  ; and 𝜇𝑙𝑛 and 𝜎𝑙𝑛 are the mean and standard deviation of ln(𝑄𝑝 𝑄𝑚⁄ ), 

respectively. Figure 35 shows the histogram and log-normal probability distribution of the seven 

pile-CPT methods, in addition to the static analysis method. 

Evaluation of Pile-CPT Methods based on Pile Category 

In previous sections, it was shown that the pile-CPT methods are able to estimate the capacity of 

the piles in a reasonable range. Comparing the pile-CPT methods to static method showed that 

using CPT data for estimating the pile capacity is an efficient solution and more accurate 

predictions that enable engineers to have a better estimation for choosing the pile length and 

width. It was shown by researchers that ability of static analysis method for predicting the pile 

capacity for piles driven in sandy soils decreases considerably. Most of the time, static analysis 

method overpredicts the pile capacity of such piles. Based on the soil borings, the static analysis 

method uses the Nordlund method for estimating the tip and side capacity for sandy soil layers 

and α-method for clayey soil layers. In this study, the authors attempt to evaluate the 

performance of pile-CPT methods based on contributions of sand and clay layers to the ultimate 
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pile capacity. The percentage contribution of pile capacity in sandy layers to the total ultimate 

capacity of the entire piles was calculated and categorized into four groups. Table 11 summarizes 

the sand contribution for the pile load tests collected in our database. 
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Figure 35. Histogram and log-normal distribution of 𝑸𝒑 𝑸𝒎⁄  for the different pile-CPT methods 
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Table 11. Categories of the piles based on the percentage of contribution of sand layers to total ultimate 

capacity 

Category 
Sand contribution to the pile 

capacity (%) 

Number of 

piles 

1 0-25 43 

2 25-50 9 

3 50-75 17 

4 75-100 11 

All 0-100 80 

 

The performance on each pile-CPT method is studied separately in each of five categories of 

piles based on sand contribution shown in Table 11. The first category included piles that had 

less than 25% of their capacity from the sand layers, while sand layers in the fifth category of 

piles contribute to more than 75% of the pile capacity. For static and pile-CPT methods 

arithmetic mean, μ and standard deviation, σ for each category were calculated separately. Also, 

the values of mean and standard deviation of ln(𝑄𝑝 𝑄𝑚⁄ ) were calculated, which were used to 

identify the log-normal distribution of the density function in equation (82). Based on this 

distribution, 20% accuracy level was calculated that represents the probability of estimating pile 

capacity in the range of 0.8𝑄𝑚 to 1.2𝑄𝑚. Moreover, the values of (𝑄𝑝 𝑄𝑚⁄ )
𝑚𝑖𝑛

 and 

(𝑄𝑝 𝑄𝑚⁄ )
𝑚𝑎𝑥

 based on 95% confidential interval were determined. Assuming a normal 

distribution for ln(𝑄𝑝 𝑄𝑚⁄ ), it can be discussed that with 95% confidence the values of 

ln(𝑄𝑝 𝑄𝑚⁄ ) are located within 𝜇𝑙𝑛 ± 1.96𝜎𝑙𝑛. Hence, (𝑄𝑝 𝑄𝑚⁄ )
𝑚𝑖𝑛

 and (𝑄𝑝 𝑄𝑚⁄ )
𝑚𝑎𝑥

 are 

defined as: 

 (𝑄𝑝 𝑄𝑚⁄ )
𝑚𝑖𝑛

= exp[𝜇𝑙𝑛 − 1.96𝜎𝑙𝑛] (83) 

 

 (𝑄𝑝 𝑄𝑚⁄ )
𝑚𝑎𝑥

= exp[𝜇𝑙𝑛 + 1.96𝜎𝑙𝑛] (84) 

 

Figure 36 presents the range values for our database categorized based on the contribution of sand 

layer to total pile capacity. 
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Figure 36. Evaluation of static and pile-CPT methods in different pile categories of Table 11 

 

Figure 36 was determined by calculating arithmetic mean, μ and standard deviation, 𝜎 for each 

category, separately. For category 1, which is related to piles in soils where the contribution of 

sand layer to the total pile capacity was less than 25% (piles in clayey soils), De Ruiter, LCPC, 

probabilistic, and UF methods underpredicted, while Schmertmann, ERTC3, UWA, and static 

methods overpredicted the pile capacity. Schmertmann method with 𝜇 = 1.15 and 𝜎 = 0.34 and 

UWA method with 𝜇 = 1.16 and 𝜎 = 0.30 resulted in less accurate estimations for the measured 

pile capacity than other methods for this category. For category 4, where the contribution of sand 

layers to the total pile capacity was more than 75%, all methods overpredicted the measured pile 

capacity, and standard deviation, 𝜎, was considerably higher than other categories. In this 
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category, the arithmetic mean for De Ruiter method was the closest to one, which indicates more 

accuracy for this method for piles in category 4 than the other methods. The standard deviation 

for probabilistic method was less than the other methods in this category, indicating more 

precision for probabilistic method than the other methods. 

The values of mean and standard deviation of ln(𝑄𝑝 𝑄𝑚⁄ ) categorized based on the contribution 

of sand layer to total pile capacity (as defined in Table 11) were calculated to obtain log-normal 

distribution, which was used to calculate the 20% accuracy level as shown in Figure 36. For 

category 1, which was related to piles in soils where the contribution of sand layer to the total 

pile capacity was less than 25%, the probability of estimating the pile capacity using UF method 

within 0.8𝑄𝑚 to 1.2𝑄𝑚 was 62.48%, showing that UF method is the best method for piles in 

category 1. On the other hand, as shown in Figure 36, for piles in category 4, the accuracy level 

decreased considerably and the highest probability for estimating the pile capacity within 0.8𝑄𝑚 

to 1.2𝑄𝑚 in category 4 was 40.21% obtained by De Ruiter method. 

Figure 36 shows the values of (𝑄𝑝 𝑄𝑚⁄ )
𝑚𝑖𝑛

 and (𝑄𝑝 𝑄𝑚⁄ )
𝑚𝑎𝑥

. Value for (𝑄𝑝 𝑄𝑚⁄ )
𝑚𝑖𝑛

 more 

than 0.5 and values for (𝑄𝑝 𝑄𝑚⁄ )
𝑚𝑎𝑥

 less than 2 show that within 95% accuracy, the estimated 

pile capacity is more than half and lower than twice the measured pile capacity. For piles in 

category 1, UWA, Schmertmann, static, UF, and ERTC3 methods had the closest values of 

(𝑄𝑝 𝑄𝑚⁄ )
𝑚𝑖𝑛

 to 1, in order. On the other hand, the order of methods that had the closest values 

of (𝑄𝑝 𝑄𝑚⁄ )
𝑚𝑎𝑥

 to 1 was UF, De Ruiter, LCPC, and probabilistic. For piles in category 4, the 

order of the methods based on (𝑄𝑝 𝑄𝑚⁄ )
𝑚𝑖𝑛

 was LCPC, UF, Schmertmann, static, and UWA; 

while based on (𝑄𝑝 𝑄𝑚⁄ )
𝑚𝑎𝑥

 De Ruiter, probabilistic, UF, and ERTC3 methods showed the best 

performance in sequence.  

Figure 37 presents the log-normal distributions of the seven pile-CPT methods in addition to 

static method based on each category and the static analysis method. 
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Figure 37. Log-normal distribution of (𝑸𝒑 𝑸𝒎⁄ ) in different categories of Table 11 
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As shown in Figure 37, the log-normal distribution for each method is different in each category. 

It can be observed that static and pile-CPT methods overpredict the pile capacity in cases where 

the sand soil contribution in pile capacity is high. Also, increasing the sand contribution to the 

pile capacity causes more variability in the estimations of static and pile-CPT methods. In the 

next section, the properties of log-normal distribution will be discussed. Those properties will be 

used to combine pile-CPT methods and get a better estimation for the pile capacity based on the 

pile categories shown in Table 11.  

Analytical calculations for log-normal distributions 

It was shown that the value of (𝑄𝑝 𝑄𝑚⁄ ) can be regarded as a log-normal distribution. Therefore, 

the value of ln(𝑄𝑝 𝑄𝑚⁄ ) is a normal distribution of (𝜇𝑙𝑛, 𝜎𝑙𝑛
2 ) , where 𝜇𝑙𝑛 and 𝜎𝑙𝑛 are mean and 

standard deviation of the variable’s natural logarithm, respectively. For a normal distributed 

variable, with 95% certainty, the values are located in 𝜇𝑙𝑛 ± 1.96𝜎𝑙𝑛, which gives us the values 

of (𝑄𝑝 𝑄𝑚⁄ )
𝑚𝑎𝑥,𝑚𝑖𝑛

= 𝑒𝜇𝑙𝑛±1.96𝜎𝑙𝑛 . Also, it was shown that log-normal distribution of each 

method is different for each pile category. As shown in Figure 36 and Figure 37, by increasing 

the sand contribution, the accuracy of the methods decreases considerably. 

Characteristics of log-normal distributions can be used for shifting the mean value to zero, 

decreasing the standard deviation, and combining the log-normal distributions.  

For a normal distribution of ln(𝑄𝑝 𝑄𝑚⁄ ), 𝜇𝑙𝑛 can be shifted to zero by adding ∆= −𝜇𝑙𝑛 to it, 

which causes the value of 𝑄𝑝 𝑄𝑚⁄  to be changed to 𝑒∆(𝑄𝑝 𝑄𝑚⁄ ). This change is shown in Figure 

38 (a) and (b) where the mean of probability function number 1 has changed to zero in 

probability function number 2. In other words, if 𝑄𝑝 𝑄𝑚⁄  is a log-normal distribution with 𝜇𝑙𝑛 

and 𝜎𝑙𝑛 as its mean and standard deviation, 𝑒−𝜇𝑙𝑛(𝑄𝑝 𝑄𝑚⁄ ) will be a log-normal distribution with 

0 as its mean and no change in standard deviation. 

Multiplying a normal distribution by λ causes the mean value to change from 𝜇 to λ𝜇 and the 

standard deviation from 𝜎 to λ𝜎. For normal distribution of ln(𝑄𝑝 𝑄𝑚⁄ ) + ∆, where the mean 

value is zero, multiplying by λ changes the standard deviation 𝜎𝑙𝑛 to λ𝜎𝑙𝑛, while the mean value 

remains zero. In other words, as shown in Figure 38 (c) and (d), λ[ln(𝑄𝑝 𝑄𝑚⁄ ) + ∆] =

ln([𝑒∆(𝑄𝑝 𝑄𝑚⁄ )]
λ
) is a normal distribution with mean and standard deviation equal to zero and 

λ𝜎𝑙𝑛, respectively. Values of λ less than 1 cause the resultant normal distribution to have lower 
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standard deviation. Figure 38 (c) shows that probability function number 3, which is  

[𝑒∆(𝑄𝑝 𝑄𝑚⁄ )]
λ
 is a log-normal distribution with 𝜇 = 0 and standard deviation decreased to λ𝜎𝑙𝑛. 

Linear combination of normal distributions, 𝑋𝑖 with means and standard deviations equal to 𝜇𝑖 and 

𝜎𝑖 is a normal distribution, L, which has the following characteristics: 

 

 𝐿 =∑𝑐𝑖𝑋𝑖 (85) 

 

 

 𝜇𝐿 =∑𝑐𝑖𝜇𝑖     &     𝜎𝐿
2 =∑𝑐𝑖

2𝜎𝑖
2 (86) 

 

As shown in Figure 38 (f) combining two normal distributions of ln(𝑋1) and ln(𝑋2) with mean 

values equal to zero and standard deviations of 𝜎1 and 𝜎2, results in a normal distribution with 

𝜇 = 0 and 𝜎 = (𝜎1
2 + 𝜎2

2)0.5. Therefore, ln(𝑋1) + ln(𝑋2) = ln(𝑋1𝑋2) is a normal distribution 

with mean and standard deviation equal to zero and (𝜎1
2 + 𝜎2

2)0.5, respectively. In other words, 

𝑋1𝑋2 is a log-normal distribution as shown by probability function number 3 in Figure 38 (e). 

The summary of resultant changes in log-normal and normal distribution, due to adding ∆=

−𝜇𝑙𝑛, multiplying by λ, and linear combination of log-normal distributions is depicted in Figure 

38. 
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Figure 38. Changes in log-normal and normal distribution by shifting the mean value to zero, decreasing the 

standard deviation, and combining the log-normal distributions 

 



—  112  — 

 

These properties will be used to shift the log-normal distributions to 𝜇 = 0, decrease their 

standard deviations by multiplying by λ < 1, and finally adding them together somehow that the 

resultant standard deviation will be obtained. 

Combined Pile-CPT Methods 

Generally, by increasing the sand contribution in pile capacity, the pile-CPT methods tend to 

overpredict the pile capacity. In addition, the standard deviation of 𝑄𝑝 𝑄𝑚⁄  for each method for 

piles in sandy soils is more than the other piles. It was shown in Figure 37 that for each category 

of piles presented in Table 11, the log-normal distribution of (𝑄𝑝 𝑄𝑚⁄ ) for each pile-CPT 

method is different. 

In previous section, it was shown that properties of log-normal distribution can be used to 

produce a log-normal distribution with desired properties. In this section, log-normal properties 

are used for combining predictions of pile-CPT methods of ultimate capacity of piles in each 

category of Table 11. In this section, combining predictions of pile-CPT methods for a pile in 

category 4 of Table 11 is explained. The same procedure can be done for piles in other 

categories. 

As shown in Figure 36, the proportion of pile capacity predicted by Schmertmann 𝑄1, De Ruiter 

𝑄2, LCPC 𝑄3, ERTC3 𝑄4, UWA 𝑄5, probabilistic 𝑄6, and UF 𝑄7 methods to the measured 

capacity 𝑄𝑚 in category 4 (piles with 75% to 100% capacity due to sand layers) yields normal 

distributions for ln(𝑄1 𝑄𝑚⁄ ), ln(𝑄2 𝑄𝑚⁄ ),…, and ln(𝑄7 𝑄𝑚⁄ ) with means, 𝜇𝑖 equal to 0.37, 0.17, 

0.41, 0.21, 0.34, 0.25, and 0.34 , respectively. The corresponding standard deviations, 𝜎𝑖 equal to 

0.36, 0.34, 0.34, 0.37, 0.34, 0.31, and 0.31, respectively. As shown in Figure 38, adding 𝑒−𝜇𝑖 and 

multiplying by λ𝑖, makes the distributions of ln([𝑒−0.37(𝑄1 𝑄𝑚⁄ )]λ1), 

ln([𝑒−0.17(𝑄2 𝑄𝑚⁄ )]λ2),…, and ln([𝑒−0.34(𝑄3 𝑄𝑚⁄ )]λ7) normal distributions with means equal 

to zero and standard deviations equal to 0.36λ1, 0.34λ2,…, and 0.31λ7, respectively. 

The linear combination of these normal distributions is: 

 

 

ln([𝑒−0.37(𝑄1 𝑄𝑚⁄ )]λ1) + ln([𝑒−0.17(𝑄2 𝑄𝑚⁄ )]λ2) + ⋯+ ln([𝑒−0.34(𝑄3 𝑄𝑚⁄ )]λ7)

= ln([𝑒−0.40(𝑄1 𝑄𝑚⁄ )]λ1 × [𝑒−0.21(𝑄2 𝑄𝑚⁄ )]λ2 × …

× [𝑒−0.36(𝑄3 𝑄𝑚⁄ )]λ7) 

 

(87) 
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The standard deviation for the above normal distribution is: 

 𝜎𝐿 = [(0.36λ1)
2 + (0.34λ2)

2 +⋯+ (0.31λ7)
2]0.5 (88) 

Having the value of (𝑄𝑝 𝑄𝑚⁄ )
𝑚𝑎𝑥,𝑚𝑖𝑛

= 𝑒𝜇𝑙𝑛±1.96𝜎𝑙𝑛  equal to 0.5 and 2, respectively, means that 

𝑄𝑝 is in the range of [0.5𝑄𝑚, 2𝑄𝑚] with 95% confidence. This means that the value of 𝜎𝐿 should 

be equal to 
(ln 2)

1.96⁄ = 0.354.  

Equation (88) has seven unknown variables λ1 to λ7. For obtaining these values additional 

conditions have to be considered. For increasing the effect of normal distributions with less 

variance, the values of λ𝑖 have been regarded as: 

 λ𝑖 = 𝑘 × (
1

𝜎𝑖
)
2

 (89) 

which results in λ1 =
𝑘
0.362⁄  , λ2 =

𝑘
0.342⁄ ,…, and λ7 =

𝑘
0.312⁄ . 

Solving equation (88) for these values led to finding the values of λ1 to λ7 equal to 0.350, 0.389, 

0.391, 0.329, 0.379, 0.476, and 0.474, respectively. 

Substituting the values of λ𝑖 in equation (87), they can be used to obtain the value of pile 

capacity, 𝑄𝑢: 

 [𝑒−𝜇1(𝑄1 𝑄𝑢⁄ )]λ1 × [𝑒−𝜇2(𝑄2 𝑄𝑢⁄ )]λ2 × …× [𝑒−𝜇7(𝑄7 𝑄𝑢⁄ )]λ7 = 1 (90) 

Finally, the general equation for obtaining the value of pile capacity, 𝑄𝑢, is given as: 

 𝑄𝑢 = 𝐵[𝑄1
𝐴1 × 𝑄2

𝐴2 ×…× 𝑄7
𝐴7] (91) 

where, 𝐵 = exp(∑−𝜇𝑖λ𝑖 ∑λ𝑖⁄ ) and 𝐴𝑖 =
λ𝑖
∑λ𝑖
⁄  

The values of B and 𝐴𝑖 for piles in category 4 were obtained as 0.741, 0.126, 0.140, 0.140, 0.118, 

0.136, 0.171, and 0.170. 
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Knowing the value of ∑𝐴𝑖 = 1 made it possible to normalize equation (91) as shown in 

following equation: 

 
𝑄𝑢
𝑄𝑎𝑣𝑔

= 𝐵 (
𝑄1
𝑄𝑎𝑣𝑔

)

𝐴1

(
𝑄2
𝑄𝑎𝑣𝑔

)

𝐴2

…(
𝑄7
𝑄𝑎𝑣𝑔

)

𝐴7

 (92) 

where, 𝑄𝑎𝑣𝑔 is the average value of pile capacity from different methods. 

Using the mentioned procedure, the values for B and 𝐴𝑖 were obtained for all the categories in 

Table 11, where i=1 to 7 is related to Schmertmann, De Ruiter, LCPC, ERTC3, UWA, 

probabilistic, and UF methods, respectively. These values are shown in Table 12. 

Table 12. Combined pile-CPT method parameters 

Category B A1 A2 A3 A4 A5 A6 A7 

1 1.019 0.122 0.134 0.152 0.118 0.163 0.121 0.190 

2 1.042 0.134 0.124 0.106 0.117 0.165 0.072 0.282 

3 1.033 0.119 0.155 0.128 0.173 0.141 0.152 0.131 

4 0.741 0.126 0.140 0.140 0.118 0.136 0.171 0.170 

All 0.978 0.135 0.146 0.124 0.143 0.159 0.136 0.158 

 

The proposed combined pile-CPT methods can be illustrated as follows: 

1. Use the pile-CPT methods: Schmertmann, De Ruiter, LCPC, ERTC3, UWA, probabilistic, 

and UF to obtain pile capacities as 𝑄1, 𝑄2,…, and 𝑄7, respectively. 

2. Determine the percentage of pile capacity in sand layers and categorize the pile based on this 

value in Table 11. 

3. Find the values of B, A1, A2,…, and A7 constants in Table 12 based on the pile category. The 

category of “All” is used, in case of unknown category for the pile.  

4. Use equation (92) to evaluate the ultimate pile capacity, 𝑄𝑢 

Application of Combined Pile-CPT Method for Louisiana Pile Database 

The procedure mentioned in the previous section was used to obtain the results of pile capacity 

for the piles in the Louisiana database using the combined pile-CPT method. Figure 39 shows the 

results of pile predictions obtained by this method and the comparison with the measured values. 
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Figure 39. (a) Estimated versus measured pile capacity (b) histogram and log-normal distribution of 

(𝑸𝒑 𝑸𝒎⁄ ) for combined pile-CPT method after categorizing piles based on sand contribution 

 

As shown in Figure 39 (a), the slope of the best-fit line for the combined method is 1.01. 

Moreover, the coefficient of determination, R2 for combined method is 0.86, which is higher than 

static and pile-CPT methods. The values of μln and σln are -0.01 and 0.27, which are used to 

obtain the log-normal distribution for the combined method as shown in Figure 39 (b). The 20% 

accuracy level obtained from log-normal distribution is 55.98%, which shows a significant 

increase compared to accuracy levels of other methods. The above results indicate the accuracy 

and precision of the obtained pile capacities increases by combining pile-CPT methods. 

For the case of using combined method without categorizing the piles, the obtained results are as 

shown in Figure 40. 

Based on the results shown in Figure 40, a similar increase in accuracy and precision of 

predictions by combining pile-CPT methods is obtained. However, the results show that 

categorizing piles before combining them leads to more accuracy in pile prediction. The slope of 

the best-fit line in Figure 40 (a) is 1.03 with coefficient of determination equal to 0.8. The values 

of μln and σln equal to 0.0 and 0.29 were obtained, which are used for showing the log-normal 

distribution in Figure 40 (b), which has the 20% accuracy level of 51.94%. 
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Figure 40. (a) Estimated vs. measured pile capacity (b) histogram and log-normal distribution of (𝑸𝒑 𝑸𝒎⁄ ) 

for combined pile-CPT method without categorizing piles 

 

Ranking of different pile-CPT methods can be determined from determining the efficiency of 

them based on reliability analysis from LRFD. The results are presented in Table 13. 

Based on the results of efficiency of the methods in Table 13, combining the pile-CPT methods 

with or without categorizing piles based on sand contribution shows improvement in predictions 

for pile capacity. The main advantage of categorizing piles and then combining them based on 

the factors in Table 12 can be seen in Figure 41, where log-normal distributions for piles in 

different categories of piles (Table 11) is shown, separately.  
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Table 13. Evaluating the performance of different pile-CPT methods based on LRFD reliability analysis 

Pile capacity method bias, λR σ COV ϕ  ϕ /λR 

Schmertmann 0.92 0.31 0.34 0.48 0.53 

De Ruiter 1.16 0.34 0.29 0.69 0.59 

LCPC 1.04 0.32 0.31 0.60 0.57 

ERTC3 1.02 0.32 0.31 0.59 0.57 

UWA 0.93 0.28 0.30 0.54 0.58 

Probabilistic 1.08 0.37 0.34 0.57 0.53 

UF 1.05 0.29 0.27 0.65 0.62 

Combined method 

(with categorizing piles) 
1.05 0.28 0.27 0.65 0.62 

Combined method 

(without categorizing 

piles) 

1.05 0.31 0.29 0.62 0.60 

 

Figure 41. Log-normal distribution of 𝑸𝒑 𝑸𝒎⁄  for the combined pile-CPT method (a) with categorizing piles 

(b) without categorizing piles based on sand contribution to the pile capacity as shown in Table 11 

 

Figure 41 shows that combined pile-CPT method is a useful technique for increasing the 

accuracy of estimations for ultimate axial capacity of the piles. Using the combined pile-CPT 

method with categorizing piles shows significant improvement, especially in estimation for piles 

in sandy soils. Comparing Figure 41 (a) and (b) shows that, for piles that have less than 75% of 

their capacity from sand layers, no need for categorizing piles is needed.  
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Studying the combined pile-CPT method for different pile databases is recommended for 

evaluating its performance in an unbiased manner. The same procedure described in this paper 

can be used for combining different pile-CPT methods. Therefore, interested researchers can add 

more pile-CPT methods to the methods used in this study and obtain reliable values for ultimate 

axial capacity of piles.  

Develop Machine Learning Pile-CPT Models  

As stated earlier, the Artificial Neural Network (ANN) and three tree-based ML techniques [the 

decision tree (DT), random forest (RF), and gradient boosted tree (GBT)] were used to develop 

ML models to estimate the ultimate pile capacity from CPT data. The ML input parameters 

include two pile parameters (pile embedment depth, Le, and pile width, B), 10 CPT data for the 

five equal segments along pile shaft (qt, avg 1 to qt, avg 5, and fs, avg 1 to fs, avg 5), and 2 CPT data for 

the influence zone around pile tip [qt-tip, 4B below and (qt-tip, 4B above or qt-tip, 8B above)], as shown in 

Figure 12. The results and analyses of these ML models will be presented in the following 

sections. 

ANN Models 

Numerous ANN models were tried using different numbers of hidden layers, different numbers 

of nodes per hidden layer, and different input parameters (see Table 1 for different model types) 

to determine the best-performed ANN model(s). The resulted best-performed ANN models in 

terms of estimating the measured ultimate pile capacity (for testing training, and validation) are 

summarized in Table 14. As discussed earlier, the performance of ANN models was evaluated 

based on the following criteria: coefficient of correlation, r, coefficient of determination, R2, root 

mean squared error, RMSE, mean bias factor, λ, and the coefficient of variance, COV. The ANN 

models in Table 14 are designated based on their network structure. For example, the first and 

last number for model 9-4-1-1 represent the number of nodes in the input (9 parameters) and 

output (1 parameter), respectively. The intermediate numbers represent two hidden layers with 4 

and 1 nodes, respectively.  

Table 14 presents the top three best-performed ANN models obtained for each input type in 

Table 1 from hundreds of trial ANN models. The results show that the Type 4 ANN model 9-7-
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7-1, which uses fs to simulate the side capacity, and an influence zone of 4B below to 8B above 

pile toe for end bearing capacity, can be considered as the best ANN model in estimating the 

measured ultimate pile capacity based on validation phase. However, based on both testing and 

validation phases, the Type 5 ANN model 14-9-3-1, which considers both qt and fs to simulate 

the side capacity and an influence zone of 4B below to 4B above pile toe for end bearing 

capacity, outstands all the ANN models with the most stable and best-performed model in 

estimating the ultimate pile capacity. The comparison between the predicted and measured 

ultimate pile capacity for training, testing, and validation phases for ANN Type 4 model 9-7-7-1 

and ANN Type 5 model 14-9-3-1 are presented in Figure 42a and Figure 42b, respectively. In 

general, the results in Table 14 show that using the combination of qt, avg, and fs, avg, to evaluate 

the pile’s side capacity yields better ANN prediction models. 

Figure 42. Predicted versus measured ultimate pile capacity for training, testing and validation phases: (a) 

ANN Type 4 model 9-7-7-1, and (b) ANN Type 5 model 14-9-3-1 
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Table 14. Best-performed ANN models 
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Sensitivity Analyses of Input Parameters in ANN Models 

Sensitivity analyses were conducted to investigate the effect of input parameters for the ANN 

Type 5 model 14-9-3-1 on the output ultimate pile capacity. Garson evaluated the relative 

importance of each parameter for a single-layered ANN model as follow [100]:  

Relative importance of a certain variable = 

∑ (
𝑤𝑗𝑖
𝑙  𝑤𝑦𝑗

𝑂  

∑ 𝑤𝑗𝑖
𝑙𝑛𝑣

1

)
𝑛ℎ
𝑗

∑ (∑ (
𝑤𝑗𝑖
𝑙  𝑤𝑦𝑗

𝑂  

∑ 𝑤𝑗𝑖
𝑙𝑛𝑣

1

)
𝑛ℎ
𝑗

)
𝑛𝑣
1

     (93) 

where, 𝑤𝑗𝑖
𝑙  = weighted connection between the ith and jth nodes, , 𝑤𝑦𝑗

𝑂   = weighted connection 

between the jth node and the output layer, 𝑛ℎ = number of hidden nodes, 𝑛𝑣 = number of 

variables. It is well known that both the pile embedment length, Le, and pile width, B, are 

directly affecting the pile capacity. Therefore, the sensitivity analyses here will be focused on the 

relative importance of CPT input parameters. The results of sensitivity analysis are presented in 

Table 15, which shows that, apart from Le and B, the average corrected cone tip resistance below 

pile toe, qt-tip, 4B below, has the highest value of relative importance among the CPT input 

parameters. Meanwhile, the average sleeve friction along pile shaft, fs-avg, has higher importance 

than qt-avg. However, the results of sensitivity analysis (i.e., percent of relative importance) 

demonstrated that the four CPT input parameters are important in estimating the ultimate pile 

capacity using the ANN models.  

Table 15. Relative importance of ANN input parameters 

 

Tree-based ML Models 

Numerous tree-based ML models using DT, RF, and GBT techniques were first tried using the 

randomly 80% training subset data and different architectures to determine the best-performed 

models for estimating the measured ultimate pile capacity from CPT data. After locating the 
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optimal models by random search, a final evaluation is performed using the 20% subset testing 

data to ensure that these models can be robustly generalized. This implies that the ML models 

must not overfit the training data and have minimal bias and variance. Specifically, the optimal 

ML models should have low error rates on both the training and testing data. The entire random 

search process is repeated using different search spaces and different architectures to locate the 

most optimal ML models that satisfy the evaluation criteria. The coefficient of determination 

(R2) and root mean squared error (RMSE) were used in this study to evaluate the accuracy and 

generalizability of the tree-based ML models. 

The resulted optimal DT, RF, and GBT models in terms of estimating the measured ultimate pile 

capacity (for training and testing phases) based on R2 and RMSE are summarized in Table 16. 

The comparisons between the predicted and measured ultimate pile capacity for the three ML 

models are presented in Figure 43. It can be seen that the DT model has the least performance as 

compared to other ML models in both the training and testing phases. The RMSE (=99.96) for 

testing subset is much higher than the RMSE (=51.6) for training subset, indicating high 

overfitting. The second best-performed model is the RF model, which has a testing R2 and 

RMSE values of 0.94 and 43.23, respectively. The overfitting condition reduced considerably for 

RF model as compared to the DT model. However, the GBT model significantly outperforms 

both the DT and RF models and demonstrates to be the best-performed and generalized tree-

based ML model in this study. 

Table 16. Optimum tree-based ML models based on training and testing phases 

 

Comparison between ML Models and Selected Direct Pile-CPT Methods 

The best-performed ANN (9-7-7-1, 14-9-3-1) and tree-based (GBT) ML models developed in 

this study were compared with selected top-performed direct pile-CPT methods (LCPC, ERTC3, 
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probabilistic, and UF) using the same testing subset, which includes 20% of the entire 80-pile 

load test database. The results of this comparison in terms of the slope of the best-fit line 

(Qfit/Qm) of predicted (Qp) versus measured (Qm) ultimate pile capacity, the root mean squared 

error (RMSE), and the arithmetic mean (μ) and coefficient of variation (COV) of Qp/Qm, are 

presented in Table 17. The comparison clearly shows that the ANN and GBT models outperform 

the top-performed pile-CPT methods in all evaluation criteria. The values of RMSE seem to be 

much lower for the ML models than the top-performed pile-CPT methods. Thus, it can be 

concluded that, in general, the ML models perform substantially better than the conventional 

direct pile-CPT methods. 
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Figure 43. Predicted versus measured ultimate pile capacity for training and testing phases: (a) decision tree 

model, (b) random forest model, and (c) gradient boosted tree model 
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Table 17. Comparison between ML models and selected pile-CPT methods 

Update the Pile Design from CPT Software 

The top-performed direct pile-CPT methods in this study were implemented in the updated 

version of the “Louisiana Pile Design from Cone Penetration Test (LPD-CPT)” software for use 

in the design and analysis of pile foundations. This included the LCPC, ERTC3, Probabilistic, 

Philipponnat, De Ruiter and Beringen, and Schmertmann methods. The combined pile-CPT 

method of the top-performed methods was also implemented in the LPD-CPT. In addition, the 

Schmertmann method was modified for better and more accurate estimating the ultimate pile 

capacity and implemented in the LPD-CPT software. The program performs the analysis on the 

CPT sounding, classify the soil profile based on probabilistic and Robertson 2010 CPT 

classification methods, and then uses the selected pile- CPT method to plot the estimated 

ultimate pile capacity with depth. The main features of the updated LPD-CPT software are 

presented in Figure 44 through Figure 52. The main menu of the software (input parameters and 

data) is presented in Figure 44, which include: (1) enter project information, (2) enter elevations 

and scour information, and (3) select input CPT data file and corresponding units and format.   

  First criteria Second criteria Overall 

Methods Qfit/Qm R2 R1 
RMSE 

(tons) 
R2 

 Mean of  

Qp/Qm 
COV R3 Final rank 

ANN (9-7-7-1) 0.97 0.98 2 22.49 1 1.02 0.15 1 1 

ANN (14-9-3-1) 0.97 0.97 3 24.90 2 1.05 0.14 2 2 

GBT 0.98 0.97 1 27.20 3 1.07 0.17 3 2 

UF 1.12 0.93 6 51.30 5 1.05 0.24 4 5 

Probabilistic 0.99 0.91 4 35.29 4 1.06 0.23 5 4 

LCPC 1.10 0.91 5 57.13 6 1.11 0.28 6 6 

ERTC3 1.09 0.87 7 61.97 7 1.10 0.32 7 7 
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Figure 45Figure 45 illustrates the section and opens the input CPT data file. After selecting the 

CPT file, the software plots the profiles of CPT data in parallel with soil classification using the 

probabilistic and Robertson 2010 CPT classification methods (Figure 46). Following this, the 

user inputs the pile information (type and size) and elevations (Figure 47) and then selects the 

pile-CPT design method as shown in Figure 48. The software then plots the profile of ultimate 

pile capacity with depth for the selected pile-CPT method as shown in Figure 49. The software 

can plot the ultimate pile capacity with depth for three different scenarios: no pre-bore, pre-bore 

(casing), and long-term scour condition (based on FHWA guidelines). For the selected scenario, 

the software calculates the required pile length for the applied load based on selected pile-CPT 

method as shown in Figure 44. The input and output of the batching process analysis in the LPD-

CPT software for the different bents in a bridge are presented in Figure 51 and Figure 52, 

respectively, for given pile size, ground surface elevations, local scour elevation, and load and 

resistance factor. 
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Figure 45. Section and open the input CPT data file  

 

Figure 46. Plot the soil profile using the probabilistic and Robertson 2010 CPT classification methods 
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Figure 47. Input pile information and elevations  

 

Figure 48. Section of pile design method  
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Figure 49. Plot the profile of ultimate pile capacity with depth for the selected pile-CPT method 

 

Figure 49. Calculate the required pile length from applied load based on selected pile-CPT method 
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Figure 51. Input the parameters for the batch process analysis of the bridge 

 

Figure 52. Output results of the batch process analysis of the bridge 
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Summary and Conclusions 

This study focused on evaluating the direct pile-CPT methods for estimating the ultimate axial 

capacity of square PPC piles driven into Louisiana soils. A total of 21 direct CPT methods were 

included in this investigation. A database of 80 PPC pile load tests that were loaded to failure 

were used in this evaluation analysis. The measured ultimate load capacity (Qm) for each pile 

was determined from the load-settlement curve using the Davisson and modified Davisson 

interpretation methods. The ultimate load capacity of each pile (Qp) was also determined using 

the 21 direct pile-CPT methods, and the estimated values were compared with the measured pile 

capacities from static pile load tests. 

Researchers used three approaches to evaluate the different pile-CPT methods. In the first 

approach, three statistical criteria (best fit line for Qp versus Qm, arithmetic mean and standard 

deviation of Qp⁄Qm, and the cumulative probability of Qp⁄Qm) were adopted to evaluate the 

performance of the 21 direct pile-CPT methods. These criteria were used to rank the CPT 

methods based on their performance. The final rank of each method was then determined from 

the Rank Index (RI). The results of this evaluation showed the following order of the best 

performed pile-CPT methods: LCPC, ERTC3, Probabilistic, UF, Philipponnat, De Ruiter and 

Beringen, CPT2000, UWA, and Schmertmann methods.  

The second approach used for evaluating the pile-CPT methods is the MultiDimensional 

Unfolding (MDU), which is a technique for representing different objects and judges in a two-

dimensional space. In this approach, the result of each pile load test was regarded as a judge that 

ranks the objects, which are the 21 pile-CPT methods, based on the value of Qp⁄Qm. The abilities 

of MDU analysis for showing the extent of agreement between the measured pile capacities and 

predicted capacities from the pile-CPT methods, the existence of outliers, and the similarity 

between the pile-CPT methods were described. The MDU analysis helps to find the typical 

ranking of the pile-CPT methods. Based on MDU analysis, the pile-CPT methods that were 

located close to the center of the measured pile capacities plot were considered as high 

performance methods, while those methods that were located far from the center were considered 

as low performance methods. Interestingly, the pile-CPT methods that showed the best 

performance according to MDU approach are the same methods that have the highest rankings 

based on statistical analysis using the three criteria. 

The third approach used for evaluating pile-CPT methods is based on LRFD reliability analysis. 

The results of the LRFD analysis in terms of resistance factor and efficiency are consistent with 

the previous criteria in which the LCPC, ERTC3, Probabilistic, UF, Philipponnat, De Ruiter 

methods have the highest rankings. 
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For selecting the best pile-CPT methods, the nine top-performed methods were further analyzed 

using the MDU analysis to evaluate the methods’ similarity. In this analysis, the pile-CPT 

methods that are located close to each other in the two-dimensional MDU space can be 

considered to be similar to each other. Accordingly, the top nine pile-CPT methods can be 

divided into three groups: 

 Group 1: Philipponnat, UF, Probabilistic, LCPC, and De Ruiter methods: 

 Group 2: Schmertmann and ERTC3 methods; and  

 Group 3: UWA and CPT2000.  

If geotechnical engineers are interested to get a better range of estimating the ultimate pile 

capacity by choosing three pile-CPT methods, it is recommended to select one method from each 

group. 

The pile database was further divided into four different categories based on soil type for extra 

analysis and evaluation. In category 1, the piles have less than 25% of their capacity due to sand 

layers. In category 2, the sand layers contribute between 25% and 50% of the pile capacity; for 

piles in category 3, the sand layers contribute between 50% and 75% of their capacity. For the 

piles in category 4, the sand layers contribute more than 75% of their capacity. The evaluation of 

pile-CPT methods for each category of piles separately showed that the performance of pile-CPT 

methods is different at each category. This is mainly due to the fact that each pile-CPT method 

includes different equations for tip and side resistance of the piles in different soil types, so it is 

possible that a pile-CPT method has a more accurate equation for pile side resistance in a soil 

type but under-/over-predicts the pile capacity with less accuracy in other soil type. The 

performance of each pile-CPT method was studied in detail for each category. The general 

observation showed that increasing the sand contribution to the pile capacity causes 

overprediction in pile capacity for pile-CPT methods, and hence an increase in the standard 

deviation of Qp/Qm, which means less accuracy and reliability in estimations of pile-CPT 

methods in sandy soils.  

The log-normal distribution of the ratio of predicted to measured pile capacity, Qp⁄Qm was used 

for adding, multiplying, and linear combination for normal distribution of ln(Qp⁄Qm) of different 

pile-CPT methods, and hence exploring better relationship and developing combined methods 

for estimating the pile capacity. The 80 pile load tests collected in Louisiana were used to 

develop combined pile-CPT methods to estimate the ultimate pile capacity for four soil 

categories based on the contribution of sandy layers to the total capacity. In addition, another 

combined pile-CPT method was developed for the general case for all piles without considering 

soil categories. Evaluating the developed combined pile-CPT methods demonstrated significant 

improvement in the accuracy of estimating the ultimate pile capacity. The main advantage of 
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using the combined pile-CPT methods is for piles in soil category 4 with more than 75% 

contribution of sandy layers to the total pile capacity. 

Four machine learning (ML) techniques including the artificial neural network (ANN) and three 

tree-based techniques (decision tree, DT, random forest, RF, and gradient boosted tree, GBT) 

were also used to develop ML models to estimate the ultimate pile capacity from CPT data (qt 

and fs). The comparison results between the ML models and selected direct pile-CPT methods 

demonstrated that the ANN and GBT models substantially outperform the top-performed pile-

CPT methods in all evaluation criteria. The values of the slope of best-fit line (Qfit/Qm) of 

predicted (Qp) versus measured (Qm) ultimate pile capacity and the arithmetic mean (μ) of Qp/Qm 

are much better, and the RMSE and coefficient of variation (COV) of Qp/Qm are much lower for 

the ML models than the top-performed pile-CPT methods.  
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Recommendations 

Based on the results of this research study, the following recommendations are offered to DOTD 

engineers: 

 It is highly recommended that the DOTD design engineers start using the top-performing 

direct pile-CPT methods that were implemented in the updated version of the “Louisiana Pile 

Design from Cone Penetration Test (LPD-CPT)” software for the design of piles in new 

bridges and other infrastructure. 

 It is recommended to start using the modified Schmertmann method instead of the original 

Schmertmann method for design of piles in bridges and other infrastructures. 

 It is recommended that the DOTD design engineers begin using the developed combined 

pile-CPT method that is implemented in the LPD-CPT software for the design of piles in new 

bridges and other infrastructure, and compare the results with the top-performed direct pile-

CPT methods to build confidence on the accuracy of the combined methods. 

 It is recommended to start exploring the potential benefits of using the machine learning 

(ML) models for estimating the ultimate pile capacity from CPT data, and compare the 

results with the top-performing direct pile-CPT methods to build confidence in using ML 

models. 

 It is recommended to hold a workshop to train DOTD engineers on using the updated version 

of the LPD-CPT software for design of individual piles and pile foundations for bridge bents. 

 It is recommended to continue evaluating the top-performing pile-CPT methods, the 

combined pile-CPT method, and the ML models as more pile load tests become available. 

 It is recommended to consider updating the LPD-CPT software to include different pile types 

other than the PPC piles. 

 It is recommended to start conducting a piezocone penetration test (PCPT) on all old and new 

bridges to create database to evaluate and/or develop pile-PCPT methods for estimate the 

ultimate pile capacity from PCPT data 

 It is recommended that a new research study investigate the effect of scour on the long-term 

pile capacity utilizing the CPT/PCPT data. 

 It is highly recommended to consider using the artificial intelligent (AI), supervised and 

unsupervised machine learning (ML), and deep learning (DL) techniques to develop 

advanced and more accurate models to estimate the ultimate pile capacity from CPT data, 

considering all important pile, soil, and CPT/PCPT parameters.  
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Acronyms, Abbreviations, and Symbols 

Term Description 

AASHTO American Association of State Highway and Transportation Officials 

Ab Area of the pile tip 

AI Artificial intelligence 

ANFIS Adaptive neuro-fuzzy interface systems 

ANN Artificial neural network 

Asi Area of the pile shaft in the soil layer i  

B Pile width 

CAPWAP Case Pile Wave Analysis Program 

CDF Cumulative density function 

CL Low plasticity clay 

CH High plasticity clay 

COV Coefficient of variation 

COVQ Coefficients of variation for the load  

COVQD Coefficients of variation for dead load  

COVLD Coefficients of variation for live load  

COVR Coefficients of variation for the resistance 

CPT Cone penetration test 

CPTu Cone penetration test with porewater measurement 

DOTD Department of Transportation and Development  

DRIVEN Driven Piles  program 

DT Decision tree 

E Error of the network 

EN Engineering News 

ERTC European Technical Committee 

f Unit skin friction of the pile 

fi Unit skin friction of soil layer i 

fs Sleeve friction 

FDOT Florida Department of Transportation  

FHWA Federal Highway Administration 
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Term Description 

FORM First order reliability method 

FOSM First order second-moment 

F.S. Factor of safety 

fs, avg Average sleeve friction 

𝑔 Limit state function 

GA Genetic algorithm 

GBT Gradient boosted tree 

GNDH Group method of data handling 

GEP Gene expression programming 

GP Poorly graded gravel 

ICP Imperial College Pile 

ISBT Soil behavior index 

KNN K-nearest neighbor 

LCPC Laboratoire Central des Ponts et Chaussées 

Le Embedded length of pile 

LPD-CPT Louisiana Pile Design from cone penetration test 

LRFD Load and resistance factor design 

LTRC Louisiana Transportation Research Center 

LPD-CPT Louisiana Pile Design from cone penetration test 

MDU MultiDimensional Unfolding 

MDS MultiDimensional Scaling 

ML Machine learning 

NGI Norwegian Geotechnical Institute 

NORMDIST Normal distribution function 

P Cumulative probability 

Pa Atmospheric pressure 

P50 50% cumulative probability 

P90 90% cumulative probability 

Pf Probability of failure 

PCPT Piezocone penetration test 

PPC Precast prestressed concrete 
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Term Description 

PSO Particle swarm optimization 

Ptrue Lowest magnitude of probability 

Q Design load 

Qall Allowable design load 

Qavg Average value of pile capacity 

qb Unit tip bearing capacity 

Qb End-bearing capacity 

qc Cone tip resistance  

QD Dead load 

Qfit Best fit of pile capacity 

Qi Load effect 

QL Live load 

Qm Measured pile capacity 

Qd Design load carrying capacity 

Qp Predicted pile capacity 

Qs Shaft friction capacity 

qt Corrected cone tip resistance 

qt, avg Average cone tip resistance 

qt-tip, 4B above Average cone tip resistance within 4 width above pile tip 

qt-tip, 8B Average cone tip resistance within 8 width above pile tip 

qt-tip, 4B below Average cone tip resistance within 4 width below pile tip 

Qu Ultimate capacity  

Qult Ultimate geotechnical pile resistance 

R Resistance of a given structure 

r Coefficient of correlation 

R2 Coefficient of determination 

Rdesign Design pile resistance 

RF Random forest 

RI Ranking index 

Rm Measured pile resistance 

RMSE Root mean squared error 
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Term Description 

Rn Nominal pile resistance 

SBT Soil behavior types 

SC Clayey sand 

SM Silty sand 

SMACOF Stress Majorization of a COmplicated Function 

SP Poorly graded sand 

Su Undrained shear strength 

SVM Support vector machines 

u2 Porewater pressure 

U Soil classification index 

UF University of Florida 

UWA University of Western Australia 

USCS Unified Soil Classification System 

Vm Eigenvector 

WEAP Wave Equation Analysis 

𝛽 Reliability index 

T Target reliability index 

 Distance matrix 

ϕ Resistance factor 

φ angle of internal friction 

δij Input matrix for MDS 

λ Multiplication factor 

QD Load bias factor for dead load 

λR Resistance bias factor 

QL Load bias factor for live load 

D Load factor for dead load  

i Load factor 

L Load factor for live load 

µ Arithmetic mean 

µln Mean of ln(𝑄𝑝 𝑄𝑚⁄ ) 
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Term Description 

µlinx Equivalent lognormal mean of ln(x) 

µR Mean value of the load 

µR Mean value of the resistance 

 Learning rate 

 Standard deviation 

linx Equivalent standard deviation of ln(x) 

ln Standard deviation of ln(𝑄𝑝 𝑄𝑚⁄ ) 

(X) Kruskal’s stress 

ij Matrix of weights 
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Appendix A 

Pile-CPT Methods 

Schmertmann Method 

Schmertmann proposed the following relationship to predict the unit end bearing capacity 

of the pile (qb) from the cone tip resistance (qc) [1]: 

 qb =
qc1 + qc2

2
  (A.1) 

where, qc1 is the minimum of the average cone tip resistances of zones ranging from 0.7D 

to 4D below the pile tip (where D is the pile diameter) and qc2 is the average of minimum 

cone tip resistances over a distance 8D above the pile tip. To determine qc1, the minimum 

path rule is used as illustrated in Figure 52. The described zone (from 8D above to 0.7D-4D 

below the pile tip) represents the failure surface, which is approximated by a logarithmic 

spiral. Schmertmann suggested an upper limit of 150 TSF (15 MPa) for the unit tip bearing 

capacity (qb). 

According to Schmertmann method, the unit skin friction of the pile (f) is given by: 

 f = αcfs  (A.2) 

where, αc is a reduction factor, which varies from 0.2 to 1.25 for clayey soil, and  fs is the 

sleeve friction. Figure 53 depicts the variation of αc with fs for different pile types in clay. 

For piles in sand, the friction capacity (Qs) is obtained by: 

 
Qs = αs (∑

y

8D
fsAs + ∑ fsAs

L

y=8D

8D

y=0

) 

 

(A.3) 

where, αs is the correction factor for sand, which can be obtained from Figure 54, y is the depth 

at which side resistance is calculated, and L is the pile length.  

Schmertmann suggested a limit of 1.2 TSF (120 kPa) on f. 

 

 



—  151  — 

 

Figure 52. Calculation of the average cone tip resistance in Schmertmann method [1] 

 

Figure 53. Penetration design curves for pile side friction in clay in Schmertmann method 
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Figure 54. Penetration design curves for pile side friction in sand in Schmertmann method 

 

For implementing Schmertmann method in the code, using the Probabilistic soil classification: 

If (%clay +%silt) > 0.8 

f = (αc) × fs 

Otherwise: 

f = ((%clay +%silt) × αc +%sand × αs) × fs 

Using Robertson-2010 soil classification: 

f = (αs × α1 + αc × β1) × fs 

where, α and β are obtained from the Table 18: 

Table 18. 𝛂𝟏 and 𝛃𝟏 values for calculating unit side resistance for Schmertmann method 

Soil index 𝛂1 1 

1 0 1 

2 0 1 

3 0 1 

4 0 1 

5 2/3 1/3 

6 1 0 

7 1 0 

8 2/3 1/3 

9 0 1 
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De Ruiter and Beringen Method 

This method is proposed by De Ruiter and Beringen and is based on the experience gained in the 

North Sea [2]. This method is also known as the European method and uses different procedures 

for clay and sand. 

In clay, the undrained shear strength (Su) for each soil layer is first evaluated from the cone tip 

resistance (qc). Then, the unit tip bearing capacity and the unit skin friction are computed by 

applying suitable multiplying factors. The unit tip bearing capacity is given by: 

 

qp−clay = NcSu(tip) 

 

Su(tip) =
qc(tip)

Nk
 

(A.4) 

where, Nc is the bearing capacity factor and Nc=9 is considered by this method. Nk is the cone 

factor that ranges from 15 to 20, depending on the local experience. qc(tip) is the average of cone 

tip resistances around the pile tip computed similar to Schmertmann method.  

The unit skin friction is given by: 

 fclay = βSu(side)  
(A.5) 

 

where, β is the adhesion factor, β=1 for normally consolidated (NC) clay, and β =0.5 for 

overconsolidated (OC) clay. Su(side), the undrained shear strength for each soil layer along the 

pile shaft, is determined by: 

 Su(side) =
qc(side)

Nk
         (A.6) 

where, qc(side) is the average cone tip resistance along the soil layer. 

In the current study, the cone factor Nk=20 and the adhesion factor  β =0.5 were adopted in the 

analysis, since these values gave better predicted ultimate pile capacity for the investigated piles.  

In sand, the unit tip bearing capacity of the pile (qp−sand) is calculated similar to Schmertmann 

method. The unit skin friction (f) for each soil layer along the pile shaft is given by: 
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 fsand = min

{
 
 

 
 
fs                                     
qc(side)

300
 (compression)

qc(side)

400
 (tension) 
         

 

 

(A.7) 

De Ruiter and Beringen imposed limits on qp and f in which qp 150 TSF (15 MPa) and  f 1.2 

TSF (120 kPa). 

Implementing Probabilistic soil classification into this method is as follows: 

If (%clay +%silt) > 0.8 

qb = qb−clay 

f = fclay 

Otherwise: 

qb = (%clay +%silt) × qb−clay +%sand × qb−sand 

f = (%sand +%silt) × fsand +%clay × fclay 

For Robertson-2010 soil classification: 

qb = qb−sand × α1 + qb−clay × β1 

f = fsand × α1 + fclay × β1 

where, α1 and β1 are obtained from Table 18. 

Bustamante and Gianeselli Method (LCPC Method) 

Bustamante and Gianeselli [3] proposed this method for the French Highway Department based 

on the analysis of 197 pile load tests with a variety of pile types and soil conditions. It is also 

known as the French method and the LCPC (Laboratoire Central des Ponts et Chaussees) 

method. In this method, both the unit tip bearing capacity (qb) and the unit skin friction (f) of the 

pile are obtained from the cone tip resistance (qc). The sleeve friction (fs) is not used. The unit tip 

bearing capacity of the pile (qb) is predicted from the following equation: 

 qb = kbqeq (tip)  
(A.8) 

where, kb is an empirical bearing capacity factor that varies from 0.15 to 0.60 depending on the 

soil type and pile installation procedure (Table 19) and qeq(tip) is the equivalent average cone tip 

resistance around the pile tip, which is obtained as follows:  
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1) Calculate the average tip resistance (qca) at the tip of the pile by averaging qc values over 

a zone ranging from 1.5D below the pile tip to 1.5D above the pile tip (D is the pile 

diameter);  

2) Eliminate qc values in the zone that are higher than 1.3qca and those are lower than 0.7qca 

as shown in Figure 55; and 

3) Calculate the equivalent average cone tip resistance (qeq(tip)) by averaging the remaining 

cone tip resistance (qc) values over the same zone (bordered by thick lines in Figure 55).  

Table 19. LCPC bearing capacity factor (kb) 

 

Soil Type 

 

Bored Piles 

 

Driven Piles 

 

Clay-Silt 

 

0.375 

 

0.60 

 

Sand-Gravel 

 

0.15 

 

0.375 

 

Chalk 

 

0.20 

 

0.40 

 

Figure 55. Calculation of the equivalent average tip resistance for LCPC method (after Bustamante and 

Gianeselli [3]) 
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The pile unit skin friction (f) in each soil layer is estimated from the equivalent cone tip 

resistance (qeq(side)) of the soil layer: 

 f =
qeq(side)

Ks
< fmax  

(A.9) 

where, Ks is obtained from Table 20; and the categories are determined from the Table 21. 

Table 20. Values of 𝐊𝐬 for LCPC method 

 

 

Nature of the soil 

  

qc  
 

(105 Pa) 

  

Coefficient Ks 

category 

I II 

IA IB IIA IIB 

Soft clay and mud <10 30 30 30 30 

Moderately compact clay 10 to 50 40 80 40 80 

Silt and loose sand <50 60 150 60 120 

Compact to stiff clay and compact silt >50 60 120 60 120 

soft chalk <50 100 120 100 120 

moderately compact sand and gravel 50 to 120 100 200 100 200 

Weathered to fragmented chalk >50 60 80 60 80 

compact to very compact sand and gravel >120 150 300 150 200 

 

Table 21. Pile category for LCPC method 

Pile Category Type of the pile 

IA Plain bored piles, mud bored piles, hollow auger bored piles, case screwed piles 

IB Cased bored piles, driven cast piles 

IIA Driven precast piles, prestressed tubular piles, jacked concrete piles 

IIB Driven steel piles, jacked steel piles 

IIIA Driven grouted piles, driven rammed piles 

IIIB High pressure grouted piles (d>0.25 m), Type II micropiles 

 

 The following procedure explains how to determine the maximum unit skin friction (fmax), 

which is dependent on soil type, pile type, and installation procedure: 

A. Based on the pile type, select the pile category from Table 22 (for example, pile category 

is 9 for square PPC piles), 

B. For each soil layer, select the appropriate curve number (Table 23 and Table 24) based on 

soil type, equivalent cone tip resistance along the soil layer and (qeq(side)), and pile 

category, use Table 23 for clay and silt and Figure 56 for sand and gravel,  



—  157  — 

 

C. From Figure 56, use the selected curve number and the equivalent cone tip resistance 

(qeq(side)) to obtain the maximum unit skin friction (fmax), use Figure 56a for clay and 

silt and Figure 56b for sand and gravel. 

Figure 56. Maximum friction curves for LCPC method (after Briaud [101])  
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Table 22. Pile categories for LCPC method 
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Table 23. Input parameters for clay and silt for LCPC method 
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Table 24. Input parameters for sand and gravel for LCPC method 

 

 

Implementing Probabilistic soil classification into LCPC method is described as follows: 

Kb = 0.375 ×%sand + 0.6 ×%silt + 0.6 ×%clay 

If sand% + silt% <50%: case 1 

Ks = 30 if qc < 10 TSF 

Ks = 40 if qc < 50 TSF 

Ks = 60 if qc ≥ 50 TSF 

Otherwise: case 2 

Ks = 60 if qc < 50 TSF 

Ks = 100 if qc < 120 TSF 

Ks = 150 if qc ≥ 120 TSF 
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For fmax the values obtained from the curves in Figure 56 used as fmax-clay and fmax-sand 

If (%clay +%silt) > 0.8 

fmax = fmax−clay 

Otherwise: 

fmax = (%clay +%silt) × fmax−clay +%sand × fmax−sand 

For Robertson-2010 soil classification: 

Kb and Ks are obtained from Table 25: 

Table 25. 𝐊𝐛 and 𝐊𝐬 for LCPC method 

Soil index kb Ks 

1 0.6 Case1 

2 0.6 Case1 

3 0.6 Case1 

4 0.6 Case2 

5 0.488 Case2 

6 0.375 Case2 

7 0.375 Case2 

8 0.45 Case2 

9 0.6 Case1 

 

fmax = fmax−sand × α1 + fmax−clay × β1 

where, α1 and β1 are obtained from Table 18.  

Tumay and Fakhroo Method (Cone-m Method) 

Tumay and Fakhroo proposed this method to predict the ultimate pile capacity of piles in clayey 

soils [4]. The unit end bearing capacity (qb) is estimated using a procedure similar to 

Schmertmann’s method as follows: 

 
qb =

qc1 + qc2
4

+
qa
2
   

(A.10) 

where, qc1 is the average of qc values 4D below the pile tip, qc2 is the average of the minimum qc 

values 4D below the pile tip, and qa  is the average of the minimum of qc values 8D above the 
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pile tip. Tumay and Fakhroo suggested an upper limit of 150 TSF (15 MPa) for the unit pile end 

bearing capacity (qb).  

The unit skin friction (f) is given by the following expression: 

 f = mfsa   
(A.11) 

Tumay and Fakhroo suggested that f 0.72 TSF (72 kPa). The adhesion factor (m) is expressed 

as: 

 m = 0.5 + 9.5e−9fsa 

 

(A.12) 

where, fsa=Ft/L  is the average local friction in TSF, and Ft  is the total cone penetration friction 

determined for pile penetration length (L). 

Aoki and De Alencar Method 

Aoki and De Alencar Velloso proposed the following method to estimate the ultimate load 

carrying capacity of the pile from CPT data [5]. The unit end bearing capacity (qb) is obtained 

from: 

 qb =
qca(tip)

Fb
  (A.13) 

where, qca(tip) is the average cone tip resistance around the pile tip, and Fb is an empirical factor 

that depends on the pile type. The unit skin friction of the pile (f) is predicted by: 

 f = qc(side)
αs
Fs
  (A.14) 

where, qc(side) is the average cone tip resistance for each soil layer along the pile shaft, Fs is an 

empirical factor that depends on the pile type and αs is an empirical factor that depends on the 

soil type. Factors Fb and Fs are given in Table 26. The values of the empirical factor αs are 

presented in Table 27. 
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Table 26. Empirical factors Fb and Fs 

 

Pile Type 

 

Fb 

 

Fs 
 

Bored 

 

3.5 

 

7.0 
 

Franki 

 

2.5 

 

5.0 
 

Steel 

 

1.75 

 

3.5 
 

Precast concrete 

 

1.75 

 

3.5 

 

 Table 27: Empirical factor αs values for different soil types 

 

Soil Type 

 

αs (%) 

 

Soil Type 

 

αs (%) 

 

Soil Type 

 

αs (%) 
 

Sand 

 

1.4 

 

Sandy silt 

 

2.2 

 

Sandy clay 

 

2.4 
 

Silty sand 

 

2.0 

 

Sandy silt with clay 

 

2.8 

 

Sandy clay with silt 

 

2.8 
 

Silty sand with clay 

 

2.4 

 

Silt 

 

3.0 

 

Silt clay with sand 

 

3.0 
 

Clayey sand with silt 

 

2.8 

 

Clayey silt with sand 

 

3.0 

 

Silty clay 

 

4.0 
 

Clayey sand 

 

3.0 

 

Clayey silt 

 

3.4 

 

Clay 

 

6.0 

 

Upper limits were imposed on qp and f as follows:  qp150 TSF (15 MPa) and f1.2 TSF (120 

kPa). 

αs has been implemented using the following equations: 

For probabilistic method: 

If (%clay) > 0.8: αs = 6% 

If (%sand) > 0.8: αs = 1.4% 

Otherwise: αs = (1.4 × %sand + 3 ×%silt + 6 ×%clay)/100 
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For Robertson-2010 method, the following values of αs versus soil index are given in Table 28. 

Table 28: Values of αs versus soil index for Robertson-2010  

Soil index αs (%) 

1 6 

2 6 

3 5 

4 3.7 

5 2.1 

6 1.7 

7 1.4 

8 2.5 

9 4 

 

Price and Wardle Method 

Price and Wardle proposed the following relationship to evaluate the unit end bearing capacity 

(qb) of the pile from the cone tip resistance [17]: 

 qb = kbqc  
(A.15) 

where, kb is a factor depends on the pile type (kb = 0.35 for driven piles and 0.3 for jacked piles). 

(For influence zone, no specific hint has been introduced, therefore normal average 3D above 

and below the tip was used for qc) 

The unit skin friction (f) is obtained from: 

 f = ksfs  
(A.16) 

where, ks is a factor depends on the pile type (ks=0.53 for driven piles, 0.62 for jacked piles, and 

0.49 for bored piles). Price and Wardle proposed the values for these factors based on analysis 

conducted on pile load tests in stiff clay (London clay). 

Upper limits were imposed on qp and f as follows:  qp150 TSF (15 MPa) and f1.2 TSF (120 

kPa). 

Pilipponnat Method 

Philipponnat proposed the following expression to estimate the unit end bearing capacity of the 

pile (qb) from the cone tip resistance (qc) [7]: 
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 qb = kbqca  
(A.17) 

where, kb is a factor that depends on the soil type as shown in Table 29. The cone tip resistance 

(qca) is averaged as follows: 

 
qca =

qca (A) + qca (B)

2
  

(A.18) 

 

where, qca(A) is the average cone tip resistance within 3B (B is the pile width) above the pile tip 

and qcb(B) is the average cone tip resistance within 3B below the pile tip. Philipponnat 

recommended the removal of the extreme peaks (spikes) when the tip resistance profiles is 

irregular and imposed a condition in which qca(A)  qcb(B).      

The unit skin friction of the pile (f) is determined by: 

 f =
αs
Fs
qcs  

(A.19) 

where, qcs is the average cone tip resistance for each soil layer along the pile shaft, Fs is a factor 

depends on the soil type as presented in Table 30. The factor αs depends on the pile type where 

αs equals to 1.25 for precast concrete driven piles. Philipponnat suggested an upper limit for the 

skin friction (flim), for precast concrete driven piles flim 1.2 PA (PA is the atmospheric pressure). 

Table 29. Bearing capacity factor (kb) 

 

Soil Type 

 

kb 

Gravel 0.35 

Sand 0.40 

Silt 0.45 

Clay 0.50 
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Table 30. Empirical factor Fs 

 

Soil Type 

 

Fs 

Clay and calcareous clay 50 

Silt, sandy clay, and clayey sand 60 

Loose sand 100 

Medium dense sand 150 

Dense sand and gravel 200 

Kb and Fs have been implemented using the following values: 

For probabilistic method: 

If (%clay) > 0.8: Kb = 0.5 and Fs = 50 

If (%sand) > 0.8: Kb = 0.4 and Fs = Fs−sand 

Otherwise: 

 Kb = 0.4 × %sand + 0.45 × %silt + 0.5 × %clay 

 Fs = Fs−sand ×%sand + 60 ×%silt + 60 ×%clay 

Fs−sand is 100, 150, or 200 depending on the value of Dr, which is described for UF method. 

If Dr < 0.4, Fs−sand = 100 

If Dr > 0.7, Fs−sand = 200 

For other cases: Fs−sand = 150 

For Robertson-2010 method, the values of kp and Fs versus soil index are given in Table 31. 
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Table 31. Values of kp and Fs for Robertson-2010 

Soil index kb Fs 

1 0.5 50 

2 0.5 50 

3 0.485 52 

4 0.475 55 

5 0.425 Fs−sand 

6 0.4 Fs−sand 

7 0.375 Fs−sand 

8 0.43 60 

9 0.45 55 

Penpile Method  

The penpile method was proposed by Clisby et al. for the Mississippi Department of 

Transportation [8]. The unit end bearing capacity of the pile (qb) is determined from the 

following relationship: 

 qb = {
0.25qc for pile tip in clay
0.125qc for pile tip in sand

 

 

(A.20) 

where, qc is the average of three cone tip resistances close to the pile tip. In this study, normal 

average 3D above and below the tip has been used for the influence zone. 

The unit skin friction of the pile shaft (f) is obtained from the following relationship: 

 f =
fs

1.5 + 0.1fs
   (A.21) 

where, f is expressed in psi (lb/in2) and  fs is the sleeve friction of the cone expressed in psi. 

For implementing the unit tip resistance, using Probabilistic and Robertson-2010 soil 

classifications: 

qb = α × qc 

For probabilistic method: 

If (%clay) > 0.8: α = 0.25 

If (%sand) > 0.8: α = 0.125 

Otherwise:  α = 0.125 × (%sand) + 0.25 × (%clay +%silt) 
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For Robertson-2010 method, the values of  versus soil index are given in Table 32. 

Table 32. Values of  for Robertson-2010 

Soil index α 

1 0.25 

2 0.25 

3 0.25 

4 0.25 

5 0.167 

6 0.125 

7 0.125 

8 0.167 

9 0.25 

No max limits for tip and side resistance have been proposed by this method. 

NGI Method 

NGI method is for Norwegian Geotechnical Institute established by Clausen et al., which is 

based on 121 individual pile tests from 47 different sites with clayey soil with depths from 5 to 

110 meters and 
Su

P0
⁄  values from 0.2 to 10 and 85 individual piles from 30 different sites with 

sandy soil with depths from 5 to 40 meters and Dr from 30% to 90% ( [11], [27]).  

The unit end bearing capacity in sands for close end piles is obtained by: 

 qb−sand =
0.8 qc

1 + Dr
2   (A.22) 

where: 

 Dr = 0.4 ln
qc

22√σ′vo σatm
   (A.13) 

For open end piles, qb is determined by the minimum of the plugged and unplugged values: 

 qPlugged =
0.7 qc

1 + 3 Dr
2   (A.24) 

 

 qUnplugged = qcAr +
12

d
(1 − Ar) ∫ fdz

L

0

  (A.25) 

where: 
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 Ar =
d2 − di

2

d2
   (A.26) 

And f is the unit skin friction which the method gives the method for calculating it. 

 fsand =
z

ztip
 σatm FDr  Fsig Ftip Fload Fmat > 0.1 σ′vo  (A.27) 

where: 

 FDr = 2.1 (Dr − 0.1)
1.7 ≥ 0   (A.28) 

 Fsig = (σ′vo/σatm)
0.25   (A.29) 

 Ftip = 1.0   For OE & 1.6 For CE   (A.30) 

 Fload = 1.0 For tension & 1.3 For compression  (A.31) 

 Fmat = 1.0 For steel & 1.2 For concrete  (A.32) 

A process for statistical treatment of CPTu data in dense sand has been illustrated by Lacasse et 

al. where the soil profile is divided into distinctive layers and the qc-values considered to be 

constant or increasing with depth in each layer [102]. An example of this procedure is shown in 

Figure 58. 
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Figure 57. The mean of 𝐪𝐜-values with one standard deviation after filtering, re-sampling and merging (after 

Lacasse et al. [102]) 

 

The NGI method recommends the use of α method in API (American Petroleum Institute) with 

some corrections for estimating the unit side friction in clayey soils, which is basically counted 

as an indirect method. In NGI method, the unit tip resistance in clays is the same as α method. 

No specific recommendation about the influence zone and averaging the value of qt has 

described in the method. 

Karlsrud et al. has described the NGI approach for pile capacity in clays based on an indirect 

method [11]. Su is determined from UU triaxial tests and shaft resistance measured 100 days 

after driving. 

 qb−clay = 9Su   (A.33) 

The procedure presented in UWA method is suggested if the results of CPTu tests are not 

available to calculate qt, which is the corrected cone resistance.  
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The unit shaft resistance for normally consolidated (NC) clays with (
Su

σ′v0
⁄ ) < 0.25 is: 

 fclay = α
NCSu  (A.34) 

where: 

 αNC = 0.32(PI − 10)0.3   (A.35) 

The upper and lower limits for αNC are: 

 0.20 < αNC < 1.0  (A.36) 

For overconsolidated (OC) clays with (
Su

σ′v0
⁄ ) > 1.0 , we have: 

 fclay = αSuFtip  (A.37) 

where: 

 α = 0.5 (
Su

σ′v0
⁄ )

−0.3

  (A.38) 

And for close end piles: 

 Ftip = 0.8 + 0.2 (
Su

σ′v0
⁄ )

0.5

  (A.39) 

The upper and lower limits for Ftip are: 

 1.0 < Ftip < 1.25  (A.40) 

For clays with 0.25 < (
Su

σ′v0
⁄ ) < 1.0, an interpolation between the above values should be 

done.  

In this study, for calculating αNC, the value of PI was estimated by: 

PI = max (
NkT−7.636

0.285
, 10) where Nkt =

qc−σvo

Su
 

No upper limits have been proposed by this method. 

ICP Method (MTD Method) 

This method was developed at the Imperial College in London by Jardine et al. [12]. They call it 

the ICP method as an abbreviation to the Imperial College Pile. 
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The tests have been done in different sites as shown in the Table 33 and later on, data from other 

locations like Belfast and Mexico City has been added to the database. 

Table 33. ICP sites 

 

The method presents the following procedures for calculating the bearing capacity of piles in 

sand, which is defined as the load for d/10 settlement. For the close-ended piles with circular 

sections: 

 qp−sand =  qc,avg (1 − 0.5 log
d

dCPT
) > (0.3qc,avg for piles with d > 0.90m)   (A.45) 

 

It should be noted that ICP method was originally developed for tubular piles. The results of load 

tests on 16 square-piles and 16 H-piles showed that for non-circular piles the tip resistance is: 

 qb−sand =  0.7 qc,avg 
 (A.46) 

For H-piles the tip resistance is: 

 qb−sand =  qc,avg 
 (A.47) 

And the area for the H-piles (Ab) have been calculated as the procedure shown in Figure 59. 
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Figure 58. Perimeter and Area for calculating tip and shaft resistance of H-piles 

 

The procedure for calculating qc,avg for ICP method is the same as LCPC method, which takes 

the average of qc for 1.5D below and above the tip. For cases that the variation in qc is extreme 

and the depth intervals between peak and toughs is greater than d/2, a qc,avg less than the average 

should be chosen because the base resistance will be dependent on localized failure within the 

weak layers. Also if weak layers exists at 8d below the pile’s tip, the reduction in tip resistance 

should be considered. However ICP method has not showed how these reductions should be 

taken into account.  

For open-ended piles if the below criteria is satisfied, it can be assumed that pile is plugged: 

 dinner(in meter) < 0.02(Dr(%) − 30)  
 (A.48) 

 

 di
dCPT

<
0.083qc,avg

Patm
 

 (A.49) 

 

The procedure for calculating the tip resistance for open-ended piles starts with categorizing the 

piles into the plugged and unplugged piles. For unplugged piles: 

 dinner(in meter) ≥ 0.02(Dr(%) − 30) or 
di
dCPT

≥
0.083qc,avg

Patm
   (A.50) 

For unplugged piles: 

 Qt = qc,avgAr  
 (A.51) 

For plugged piles: 

 Qt = qc,avg .  max (0.5 − 0.25log
d

dCPT
 ,  0.15) . πR2outer > qc,avgAr  

 (A.52) 

where:  
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 Ar = π(R2outer − R
2
inner) 

 (A.53) 

 

The unit skin friction (fsand) for close-ended circular piles is obtained by the following 

procedure: 

For compression: 

 fsand = (σ′rc + ∆σ′rd)tanδ′f 
 (A.54) 

For tension:  

 fsand = (0.8 σ′rc + ∆σ′rd)tanδ′f 
 (A.55) 

where: 

σ′rc is the radial effective stress acting on the shaft a few days after installation. ∆σ′rd is the 

changes in radial effective stress developed during pile loading. In fact, based on ICP method, 

the radial effective stress acting on the shaft at failure is composed of σ′rc and ∆σ′rd. δ′f is the 

operational interface angle of friction. 

 
σ′rc = 0.029qc (

σ′v0
Pa
)

0.13

× (max [(
h

R
) ,  8])

−0.38

 
 (A.56) 

 

 
∆σ′rd = 2G

∆r

R
 

 (A.57) 

 

 G = qc(0.0203 + 0.00125η − 1.216e
−6η2)−1   (A.58) 

 

 
η = (

qc
Pa
) / (

σ′v0
Pa
)

0.5

= qc(Paσ′v0)
−0.5 

 (A.59) 

 Pa = 100 kPa 
 (A.60) 

For lightly rusted steel pile: 

 ∆r = 2Rcla ≈ 0.02mm   
 (A.61) 

 

δ′f can be estimated by direct tests or from Figure 59 as a function of d50 
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Figure 59. Interface friction angle 𝛅′𝐟 

 

For non-circular piles (square, rectangular, and H-shaped piles) the R is modified as: 

 
R = (

Ab
π
)
0.5

 
 (A.62) 

where, Ab is the section area of the square and rectangular piles, and for H-piles is defined in 

Figure 59. 

For open-ended tubular piles these equations should be modified by defining the value of R is as: 

 R = (R2outer − R
2
inner)

0.5   (A.63) 

And for tension: 

 fsand = 0.9(0.8 σ′rc + ∆σ′rd)tanδ′f 
 (A.64) 

The unit tip resistance of tubular piles in clays is: 

For undrained loading: 

 qp−clay = 0.8qc,avg  
 (A.65) 

For drained loading: 

 qp−clay = 1.3qc,avg 
 (A.66) 

While for the non-circular piles the same rules in sands are applicable which means: 



—  176  — 

 

 For close end square and rectangular piles: 

 qp−clay =  0.7 qc,avg 
 (A.67) 

For H-pile: 

 qp−clay =  qc,avg 
 (A.68) 

 

While the calculation of Ab for H-piles are shown in   
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Figure 58. 

For calculating the unit tip resistance of open-ended tubular piles in clay, the plugged pile is: 

 dinner
dCPT

+ 0.45
qc
Pa
< 36  (A.69) 

which gives: 

 qp−clay = 0.4 qc,avg for undrained loading  (A.70) 

 

 qp−clay = 0.65 qc,avg for drained loading  (A.71) 

For unplugged piles: 

 qp−clay = qc,avg for undrained loading  (A.72) 

 

 qp−clay = 1.60 qc,avg for drained loading  (A.73) 

 

The unit skin friction for the close-ended piles in clay is determined by the following procedure: 

 fclay = (
Kf
Kc
⁄ )σ′rc tanδ′f 

 (A.74) 

where, 
Kf
Kc
⁄  is the loading factor, which is constant and is equal to 0.8 regardless of the loading 

direction and drainage condition. Kc is the radial to vertical effective stress ration. 

 σ′rc = Kcσ′v0  
 (A.75) 

 
Kc = [2.2 + 0.016 YSR − 0.870 ∆Ivy]YSR

0.42(max[h R⁄ ,  8])
−0.20

 
 (A.76) 

 ∆Ivy = log10 St 
 (A.77) 

In which the clay sensitivity St should be estimated based on the type of the clay. 

Or: 

 
Kc = [2 − 0.625 ∆Ivy]YSR

0.42(max[h R⁄ ,  8])
−0.20

 
 (A.78) 

Using the second one typically leads to lower values for Kc (around 4% less). YSR (also known 

as apparent OCR) is the clay’s local yield stress ratio. 
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δ′f is a value between the peak δpeak and ultimate δultimate interface angles of friction, which 

can be measured in interface ring shear tests. Figure 60 can be used for estimating δpeak and 

δultimate by using the value of PI. 

Figure 60. Ring shear interface results for (a) 𝛅𝐩𝐞𝐚𝐤 and (b) 𝛅𝐮𝐥𝐭𝐢𝐦𝐚𝐭𝐞 in clays 

 

The unit skin friction for OE piles in clay is calculated with the same modified R value as shown 

for the sands. 

Implementing Probabilistic soil classification into this method is as follows: 

qb =  0.7 qc,avg 

If (%clay) > 0.8 

f = fclay 

If (%sand) > 0.8 

f = fsand 

Otherwise: 

f = (%clay +%silt) × fclay +%sand × fsand 

For implementing Robertson-2010 soil classification: 

qb = qp−sand × α1 + qp−clay × β1 

f = fsand × α1 + fclay × β1 

Where α1 and β1 are obtained from Table 18. 
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It should be noticed that for calculating δ′f for fsand, Table 34 can be used. 

Table 34. Values of 𝛅′𝐟 versus Dr 

Dr  δ′f 

Dr< 0.2 15 

0.2 < Dr <0.4 15 × silt% + 20 ∗ sand%

silt% + sand%
 

0.4 <Dr <0.6 15 × silt% + 25 ∗ sand%

silt% + sand%
 

0.6 <Dr <0.8 20 × silt% + 30 ∗ sand%

silt% + sand%
 

0.8 < Dr 30 × silt% + 35 ∗ sand%

silt% + sand%
 

 

The charts presented in Figure 62 show that the value of δ′f can be estimated based on the Dr < 

0.2 (very loose), 0.2 < Dr < 0.4 (loose), 0.4 < Dr < 0.6 (medium), 0.6 < Dr < 0.8 (dense), and 0.8 

< Dr (very dense) and the sand% and silt%.  

For implementing the above charts, the value of Dr was defined similar to UF method: 

Dr =
1

2.41
ln (

95.76 qc−avg

157(95.76 ∗ σvo′ )0.55
) 

where, qc and σvo
′  units are TSF. qc−avg has been calculated for 1D above and below the 

location and σvo
′  has been calculated based on γw =

62.43

2000
TCF and γsoil = 1.75 × γw 
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Figure 61. Interface friction angle for silts, sands, and gravel 

 

For calculating fclay, St and YSR (OCR) can be estimated as flows: 

Based on Lehane et al. [13]: 

YSR = 0.04427 (
qc
σ′v0

)
1.667

 

For YSR we observed that Lehane gives very high values so this equation was used: 

YSR = 0.152
qt − σ′v0
σv0

≥ 1 

 

Clay sensitivity, St was obtained based on Robertson and Campanella [103]: 

St =
10

Rf(%)
 

Value of PI can be estimated similar to NGI: 

Nkt = 0.285 PI + 7.636 

where: 

Nkt =
qc − σvo
Su
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So for clay soils, we estimate PI, and take the average of the below values for calculating δ′f: 

δpeak = 28.4 − 0.177 × PI 

δultimate = 29.49 − 0.306 × PI 

It should be noticed that no upper limits have been proposed by this method. 

UWA and CPT-2000 Methods 

Lehane et al. at the University of Western Australia (UWA) developed a new method after 

investigating ICP, NGI, and Fugro pile-CPT methods for close-ended and open-ended piles in 

siliceous sand [18]. Later on, this method was developed for piles in clay soils by Lehane et al. 

[29].  

Different factors that influence the pile capacity are considered in this method including loading 

direction, soil dilation, soil displacement, friction fatigue, etc. 

The unit end bearing capacity for close-ended piles in sands is: 

 qb−sand = 0.6qc,avg 
 (A.79) 

 

It should be noted that qt is referred to the ultimate load for 0.1d settlement in the pile, where d 

is the diameter of the pile. The value of qc,avg is determined by Schmertmann method. 

The unit tip resistance for open-ended piles in sands is: 

 qb−sand = qc,avg (0.15 + 0.45Arb,eff) 
 (A.80) 

where: 

 
Arb,eff = 1 − FFR (

di
d
)
2

 
 (A.81) 

 

Here FFR (final filling ratio) is the averaged IFR (incremental filling ratio) for the last 3d of the 

pile penetration, where d is the pile diameter. When FFR approaches to zero, the pile’s behavior 

will be similar to close end pile and when it goes to 1, the pile is equivalent to a fully coring pile. 

FFR can be estimates as: 

 
FFR = min [(

di (m)

1.5 (m)
)
0.2

, 1] 
 (A.82) 
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The unit shaft friction in sands is: 

 fsand =
ft
fc
(σ′rc + ∆σ′rd)tanδ′f 

 (A.83) 

where: 

 
σ′rc = 0.03qcArs,eff

0.3 {max(
h

d
, 2)}

−0.5

 
 (A.84) 

 

 ft
fc
= 1 For compression & 

ft
fc
= 0.75 For tension 

 (A.85) 

 

 
Ars,eff = 1 − IFR (

di
d
)
2

 
 (A.86) 

 

 
IFR = min [(

di (m)

1.5 (m)
)
0.2

, 1] 
 (A.87) 

 

∆σ′rd and δ′f are calculated as the same as ICP method with: 

 G = 185 qc1N
−0.75qc  

 (A.88) 

where: 

 qc1N =
(
qc
Pa
⁄ )

(
σ′v0

Pa
⁄ )

0.5⁄    (A.89) 

 

δ′f is calculated as the modified ICP method. 

The unit shaft resistance in clays can be determined from [19] which is known as CPT-2000 

method: 

 fclay = σ′rf tanδ′f 
 (A.90) 

 

 
σ′rf = (0.3 + 0.3e−Ivr) (

qt
σ′v0
⁄ )

0.6

[max (
h

R
, 8)]

−0.2

 For Ip ≥ 35%  
 (A.91) 
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σ′rf = (0.45 + 0.15e

−Ivr) (
qt
σ′v0
⁄ )

0.6

[max (
h

R
, 8)]

−0.2

 For Ip < 35%  
 (A.92) 

The variation of Variation of δ′f with D50 as modified from ICP-05 is presented in Figure 62. 

Figure 62. Variation of 𝛅′𝐟 with D50 –modified from ICP-05 

 

Lehane et al. examined 75 pile load tests [29]. For the cases that the corrected end resistance qt 

was not available the following procedure was used: 

1. For soft and firm clays (qc <1 MPa): 

 qb−clay = 1.14 qc 
 (A.93) 

This value is estimated from the corrected cone resistance equation, assuming a pore-pressure 

ratio (Bq) of 0.60 (lightly consolidated clays) with cone end ratio (a) of 0.80. 

2. For stiff clays (qc >1 MPa): 

 qb−clay = qc 
 (A.94) 

Based on recommendations of [20] the unit end bearing capacity for close-ended piles was 

assumed to be: 

 qb−clay = 0.8qt,avg 
 (A.95) 

And for open-ended piles: 

 qb−clay = 0.4qt,avg 
 (A.96) 
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And the shaft capacity in tension and compression was assumed to be equal. The equivalent pile 

radius for square piles is: 

 R = B π0.5⁄    (A.97) 

Based on these assumptions, the following equations are suggested for calculating the unit shaft 

resistance (the average of these two equations is used for fclay) 

 
fclay = 0.055qt [max (

h

R
, 1)]

−0.2

 
 (A.98) 

 

 fclay =
0.23qt [max (

h
R , 1)]

−0.2

(
qt
σ′v0

)
0.15 tanδ′f 

 (A.99) 

 

where, δ′f is estimated based on ICP method. It should be noticed that CPT-2000 methods is not 

different from UWA method, only the equations for fclay of CPT-2000 are simpler. 

Implementing Probabilistic and Robertson-2010 soil classifications into these methods are the 

same as described for NGI method. 

The only difference between UWA and CPT-2000 method is the equation for shaft resistance in 

clay. No upper limits was proposed by these methods. 

Fugro Method 

This method is based on the studies performed by Kolk and der Velde and Kolk et al. on 45 sites 

(24 open-ended and 21 close-ended piles) consisting sandy soils and 26 pile load tests in clayey 

soils ( [30], [104]).  

The unit end bearing capacity for sands is: 

 
qb−sand = 8.5qc,avg (

P0
qc,avg⁄ )

0.5

Ar
0.25

 
 (A.100) 

where: 

 
Arb = 1 − (

di
d
)
2

 
 (A.101) 

 



—  185  — 

 

The arithmetic average of CPT qc is taken over the influence zone defined as 1.5d above and 

below the pile’s tip. 

The unit friction resistance is estimated by considering a reduction near to the tip: 

Compression loading, and h R∗⁄ ≥ 4: 

 
fsand = 0.08qc (

σ′v0
Patm
⁄ )

0.05

(
h

R∗
)
−0.9

 
 (A.102) 

 

Compression loading, and h R∗⁄ < 4: 

 
fsand = 0.08qc (

σ′v0
Patm
⁄ )

0.05

4−0.9 (
h

4R∗
) 

 (A.103) 

Tension loading: 

 
fsand = 0.45qc (

σ′v0
Patm
⁄ )

0.15

4−0.9 [max (
h

R∗
, 8)]

−0.85

 
 (A.104) 

where: 

 
R∗ = (R2 − Ri

2)
0.5

 
 (A.105) 

And for non-circular piles, the equivalent circular area is used to estimate R∗. 

The procedure of Fugro method for the clay soils is as follows: 

 qb−clay = 0.7(qc − σv0) 
 (A.106) 

 

 
fclay = αSu  (A.107) 

 
α = 0.9 (

L − z

D
)
−0.2

(
Su
σ′v0

)
−0.3

≤ 1 
 (A.108) 

 

where, L is the pile’s length and z is the depth. 

Probabilistic and Robertson-2010 soil classifications are implemented as NGI and UWA 

methods. No upper limits was proposed by this method. 
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Purdue-CPT Method 

The method is developed by Salgado et al. based on the following procedure described in [33]: 

The unit end bearing capacity for sands: 

 qb−sand = (1 − 0.0058Dr)qc,avg 
 (A.109) 

 

The unit skin resistance for sands: 

 fsand = Kσ′v0 tanδ′f 
 (A.110) 

where: 

 
K = Kmin + (Kmax − Kmin) exp (−β

h

B
) 

 (A.111) 

 

 Kmin = 0.2 
 (A.112) 

 

 Kmax = 0.02
qc

σ′v0
⁄   (A.113) 

 

where, h is the distance from the depth being considered to the pile base. 

 β = 0.05 
 (A.114) 

The unit end bearing capacity for clays: 

 qb−clay = 10Su  (A.115) 

 

The unit skin resistance for clays: 

 fclay = αSu  (A.116) 

 

 
α = 1.28 (

Su
σ′v0

)
−0.05

[A1 + (1 − A1)e
γ] 

 (A.117) 
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 γ = −(
σ′v0
PA
) (φc − φr,min)

A2
  (A.118) 

 

 For (φc − φr,min) ≤ 5°: A1 = 0.75  (A.119) 

 

 
For (φc − φr,min) ≥ 12°: A1 = 0.43 

 (A.120) 

 

For 5 < (φc − φr,min) < 12, A1 is obtained by interpolation. 

 A2 = 0.64 + 0.4 ln (
Su
σ′v0

)   (A.121) 

 

The following assumptions have been used for implementing this method: 

The value of Dr is between 0 and 1 and average of two methods for determining it, has been 

used: 

Dr = 0.4 ln
qc

22√σ′vo σatm
 

Dr =
1

2.41
ln (

95.76 qc
157(95.76σvo′ )0.55

) 

where, qc and σvo
′  units are TSF. qc has been calculated for 1d above and below the location and 

The value of Su was determined from: 

Su =
qc,avg

Nk
 

where, Nk = 20 has been used, similar to De Ruiter and Beringen method [2]. 

φc and φr,min are assumed to be equal to 1.25δpeak and 1.25δultimate calculated in ICP method. 

Also another method for calculating α is used and the average of these two alpha values is used 

in calculating fclay. 

 α = 0.4 [1 − 0.12 ln (
Su
Patm

)]   (A.122) 
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Probabilistic and Robertson-2010 soil classifications are implemented as NGI, UWA, and Fugro 

methods. No upper limits was proposed by this method. 

Probabilistic Method 

Abu-Farsakh and Titi used the data from 35 square PPC piles (26 driven in clay, 9 driven in 

layered soil) for estimating the ultimate load obtained by the Butler-Hoy method [17]. It has been 

shown that using the Davisson method [18] for estimating the bearing capacity of piles from 

pile-load test will give very close results [17]. 

 Qu(Davisson) = 1.02 × Qu(Butler−Hoy) 
  (A.123) 

They used the  Zhang and Tumay method [21] for soil classification, which was illustrated in 

earlier section:  

The unit end bearing capacity is: 

 qb = Kb qca < 15 MPa  
 (A.124) 

 

where, qca is determined similar to Schmertmann method for the influence zone of 4D below 

and 8D above the pile’s tip. Also, a weight function has been introduced to give more weight to 

readings near to the tip as shown in Figure 63. 

It should be noted that using the qt as the corrected value of qc is also possible, assuming that: 

 qc = 0.95 qt 
 (A.125) 

We have: 

 Kb = 0.3 Pr(sand) + 0.4Pr(silt) + 0.5 Pr(clay)  (A.126) 

where, the values of Pr(sand), Pr(silt), and Pr(clay) within the influence zone is determined by 

Zhang and Tumay CPT soil classification method [23]. 

For the unit skin friction: 

 f = Ks fs 
 (A.127) 

where: 
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 Ks = Ks(silt−clay) Pr(silt − clay) + Ks(sand) Pr(sand)  
 (A.128) 

 Ks(silt−clay) =
1

(0.74 + 1.62 fs)
  (A.129) 

 Ks(sand) =
1

(0.61 + 0.7 fs)
  (A.139) 

Figure 63. Calculation of 𝐪𝐜𝐚 using the weight function 

 

Implementing Robertson-2010 soil classification in this method is as follows: 

The value of Kb is determined from the below table: 

Table 35. Values of Kp versus soil index for Robertson-10 

Soil index Kb 

1 0.5 

2 0.5 

3 0.467 

4 0.45 

5 0.35 

6 0.3 

7 0.3 

8 0.367 

9 0.45 
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And: 

       f = (Ksand × α1 + Ksilt−clay × β1) × fs 

where, α1 and β1 are obtained from Table 18. 

UF Method 

Bloomquist et al. and Hu et al. at the University of Florida used 21 cases of pile load test in 

Florida with sandy soil and 28 from Louisiana with clayey soil to developed a new method, 

which is considered as a modification of the Philipponnat method ( [34], [35], [7]). 

According to UF method, the unit end bearing capacity is given as: 

 qb = kbqca ≤ 150 TSF 
 (A.140) 

where, kb is a factor that depends on the soil type as shown in Table 36.  

Table 36. Bearing capacity factor 

Soil Type kb  

Well-cemented sand 0.1 

Lightly cemented sand 0.15 

Gravel 0.35 

Sand 0.40 

Silt 0.45 

Clay 1 

 

The soil classification chart for electronic friction cone developed by Robertson et al. has used 

for determining the soil category in UF method [21]. The chart is presented in Figure 64. 

The soil cementation is determined based on SPT numbers where 
qc
N⁄ > 10. 

The value of qca is obtained by: 

 
qca =

qc1 + qc2
2

 
 (A.141) 

where qc1 is average of qc measure from pile’s tip to the depth of 3D for sand and 1D for clay. 

qc2 is average of qc measure from pile’s tip to 8D above it. In cases that qc2 > qc1, then: 

 qca = qc1 
 (A.142) 
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Figure 64. Soil classification method used by the UF method 

 

The unit skin friction of the pile (f) is determined by: 

 f =
αs
Fs
qcs ≤ 1.2 TSF  (A.143) 

where, αs is the same as the Philipponnat method and the values of Fs are shown in Table 37. 

Table 37. Empirical factor 𝐅𝐬 

Soil Type Fs  

Clay and calcareous clay 50 

silt, sandy clay, and clayey sand 60 

Loose sand 100 

Medium dense sand 150 

Dense sand and gravel 200 

Lightly cemented sand 250 

Well-cemented sand 300 

Figure 65 from Baldi et al. references  has been used for determining the relative density of 

sands, Dr, for evaluating the sand state (Loose: Dr<40%, Medium: 40%<Dr<70%, and Dense: 

70%<Dr) [105]. 

Figure 65. Chart for determining the sand state in UF method [105]. 
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For probabilistic soil classification: 

If (%clay) > 0.8: Kb = 1.0  

If (%sand) > 0.8: Kb = 0.4 

 Kb = 0.4 × %sand + 0.45 × %silt + 1 ×%clay 

For Robertsson-2010 soil classification, Table 38 can be used to estimate kb. 

Table 38. Values of kb versus soil index for Robertson-10 

Soil index kb 

1 1 

2 1 

3 0.82 

4 0.45 

5 0.425 

6 0.4 

7 0.375 

8 0.6 

9 0.65 

The values of αs and Fs were implemented the same as in Philipponnat method. 
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Togliani Method 

This method is developed by Togliani for cylindrical piles driven and bored in different soils 

[36]. The pile load tests were performed 30 days after the initial pile driving.  

The unit end bearing capacity is given as: 

 qb = k3qc 
 (A.144) 

where, qc is the average 8D/4D above/below the pile’s tip. 

 
k3 = λ + [0.01 (

L

d
)] 

 (A.145) 

where, L is length and d is diameter of the pile. 

where, λ is 0.1 and 0.2 for bored and driven piles, respectively. 

For pile unit side resistance: 

 f = k1qc
0.5 

 (A.146) 

where, the units are assumed to be in kPa. 

 k1 = 1.2 (0.8 +
Rf
8⁄ )  for Rf < 1  

 (A.147) 

 

 k1 = 1.1(0.4 + ln Rf) for Rf ≥ 1 
 (A.148) 

where, 

 
Rf = (

fs
qc⁄ )100 

 (A.149) 

No upper limits was proposed by this method. 

Zhou et al. Method  

This method which is developed by Zhou et al. predicts the limit load capacity instead of the 

ultimate load capacity [37]. Using the Schmertmann relationship we have: 

 (Qt)limit = 0.73 (Qt)ultimate  
 (A.150) 

The limit load is the point where the shaft resistance of the pile is fully mobilized, while the end 

resistance is only partially mobilized. If the point is not obvious using the data, they recommend 

using the load at a relative settlement of 0.4-0.5, which is the ratio of settlement to ultimate 
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settlement (punching failure). They argued that many authors take failure load of the testing pile 

as criterion for compression and when failure load could not be reached, Van der veen 

interpretation method is used. They mentioned that based on their experience, Van der veen 

interpretation involves unavoidable artificial error. 

The unit end bearing capacity qb of the pile 

 qb = α qca  
 (A.151) 

where, 

qca : The average CPT tip resistance 4D above and 4D below the pile’s tip with condition of 

qca(A)  qcb(B). 

α: A function of soil type and qca 

Soil type I: qca > 2 Mpa and fsa/qca < 0.014 

Soil type II: Other soils other than soil type I 

Soil type I: 

 α = 0.71 qca
−0.25 

 (A.152) 

Soil type II: 

 α = 1.07 qca
−0.35 

 (A.153) 

The unit skin friction f′ of the pile is: 

 f′ = β fsa 
 (A.154) 

 

fsa: The average of fs along the soil layer 

β: The function of soil type and fsa 

Soil type I: 

 β = 0.23 fsa
−0.45 

 (A.155) 

Soil type II: 

 β = 0.22 fsa
−0.55 

 (A.156) 

where, units are in MPa. No upper limits was proposed by this method. 
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German Method 

Kempfert and Becker references obtained empirical clause for tip and side resistance of the piles 

based on the CPT data, which are integrated into national German recommendations for piles 

“EA‐Pfähle” (DIN 4014) [106]. Their results were based on about 1000 pile load tests on 

different piles (121 driven PPC piles, 98 driven steel piles, 70 driven cast-in-place Simplex piles, 

300 driven cast-in-place Franki piles, 124 screwed Atlas piles, 52 screwed Fundex piles, and 38 

micro-piles). Based on their analysis, lower and upper bounds for base and shaft resistances in 

noncohesive and cohesive soils were obtained.as shown in Figure 66 and Figure 67, respectively. 

The German method charts were converted to below equations:  

In sands: 

 qb−sand = min(0.56qc + 5.4, 0.1qc + 79, 105) (TSF) 

fsand = min(0.007qc, 0.004qc + 0.48, 1.52) (TSF) 
 (A.157) 

In clays: qb−clay value was obtained from the chart available in Eurocode 7 method as: 

 qb−clay = 7Su + 1 (TSF) 

fclay = min(0.15Su + 0.15, 0.5) (TSF) 
 (A.158) 

Probabilistic and Robertson-2010 soil classifications are implemented as De Ruiter and Beringen 

method [2]. 
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Figure 66. Upper and lower empirical values for (a) base resistance (b) shaft resistance in noncohesive soils 

[106]  

 

 

Figure 67. Upper and lower empirical values for (a) base resistance (b) shaft resistance in cohesive soils [106] 

 

Eurocode 7 Method 

Eurocode 7 standard presents different possible design approaches for pile design [107]: 

1) Static load tests on similar piles 

2) Dynamic load tests verified by static load results 
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3) Empirical or analytical calculation methods validated by static load tests 

Eurocode 7 determines no specific procedure for pile design using CPT data. However, in the 

annex of the Eurocode 7-2 two examples of methods based on the direct implementation of the 

results of CPT are presented, which are based on methods of German and Dutch codes, 

respectively [108]. The first example, based on the German Standard (DIN 4014) presents Tables 

D.3 and D.4 in Annex D.6 of Eurocode 7-2, is restricted to coarse-grained soils. The second 

example described in Annex D.7 is more complex and takes into consideration a number of 

different factors. This example was presented in Annex B.4 of Eurocode 7-3; however, some 

changes in the values of αs have been added as shown in tables. 

The unit end bearing capacity of the pile (qb) is obtained from: 

 qb = αpβs(qc,avg) ≤ 15MPa  (A.159) 

where, qc,avg is the determined similar to Schmertmann method, αp is the pile class factor in 

Table 39, β is the factor taking the shape of the pile point as shown in  Figure 68 and s is the 

factor account for the shape of the pile base shown in Figure 69. 

For the square piles in this study, the values of αp, β, and s are equal to 1.0, which makes the 

unit tip resistance equal to the Schmertmann method. 

The unit skin friction of the pile (f) is given by: 

 f = αsqc  (A.160) 

where, αs is a reduction factor based on Table 40 and Table 41. 

Table 39. Maximum values for 𝛂𝐩 and 𝛂𝐬 for sands and gravely sands 

 

 



—  198  — 

 

 

Figure 68. Pile point shape 𝛃 [108] 

 

Figure 69. Values of s based on width a and b of the pile [108] 
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Table 40. Maximum 𝛂𝐬 for clays, silt, and peat for Eurocode 7-1 [108] 

 

Values of αs for clays and silts are updated in Eurocode 7-2 as: 

Table 41. Maximum 𝛂𝐬 for clays, silt, and peat for Eurocode 7-2 [108] 

 

Implementing Probabilistic soil classification into this method is as follows: 

If (%clay) > 0.8 

f = αclay qc 

If (%sand) > 0.8 

f = αsand qc 

Otherwise: 

f = (%clay × αclay +%silt × αsilt +%sand × αsand) × qc 

For implementing Robertson-2010 soil classification: 

f = α × qc 

where, α values are obtained from Table 42. 
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Table 42. Values 𝛂 for calculating unit side resistance for EC 7-2 method 

Soil index α 
1 0.02 

2 0.02 

3 αclay 

4 0.0225 

5 0.015 

6 0.01 

7 0.0075 

8 0.01 

9 αclay 

 

ERTC3 Method 

European Regional Technical Committee 3 “ERTC3” has the same process for calculation of 

unit base resistance as the Eurocode 7 method, but the determination of the shaft resistance is 

modified [109]. It can be calculated with the same process, but αs values are different, as shown 

in Table 43. 

Table 43. Values of 𝛂𝐬 for ERTC3 method [109] 

 

Implementing the probabilistic soil classification into this method is as follows: 

If (%clay) > 0.8 

f = αclay qc 

If (%sand) > 0.8 

f = αsand qc 
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Otherwise: 

f = (%clay × αclay +%silt × αsilt +%sand × αsand) × qc 

For implementing Robertson-2010 soil classification: 

f = α × qc 

where, α values are obtained from Table 44, similar to Eurocode 7-2 method. 

 

Table 44. Values of 𝛂 for calculating unit side resistance for EC 7-2 method [109] 

Soil index α 
1 0.055 
2 αclay 
3 αclay 
4 1 2⁄ ∗ (0.01 + αclay) 
5 αsand 
6 αsand 
7 0.045 
8 αsand 
9 αclay 
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Appendix B 

Summary of DOTD State Projects Investigated in this Study 

 

No. Project ID Project Name Parish Pile ID

Diam

. 

(inch)

Tip 

elevation 

(ft)

Ground 

elevation (ft)

Cut-off 

elevation 

(ft)

Pile 

length 

(ft)

Embedm

ent 

length 

(ft)

Weight 

of Pile 

(Tons)

Hammer type
Date of 

driving

Date of 

loading

1 003-07-0019
BNSS Overpass - 

Jennings

Jefferson Davis 

Parish
1 24 -33.9 20.3 30 63.9 54.2 15.4

ICE 60S Single 

Acting Diesel
8/2/2000 8/21/2000

2 003-10-0011
Southern Pacific 

Railroad Overpass
Acadia 1 24 -28 21.5 57 85 49.5 20.5 Vulcan 512 9/8/1998 10/8/1998

3 003-10-0011
Southern Pacific 

Railroad Overpass
Acadia 3 24 -37 24 48 85 61 20.5 Vulcan 512 8/31/1998 10/1/1998

4 005-01-0056
Southern pacfic 

railroad overpass
St. Mary Parish 1 24 -79.5 5.5 10.5 90 85 21.7

Delmag 46-02

Single Acting Diesel - 

OED

4/12/1995 5/12/1995

5 005-01-0056
Southern pacfic 

railroad overpass
St. Mary Parish 2 14 -64 -0.3 10 74 63.7 7.6

ICE 42S

Single Acting Diesel - 

OED

4/6/1995 5/1/1995

6 005-01-0056
Southern pacfic 

railroad overpass
St. Mary Parish 3 24 -80 7 12 92 87 22.2

Delmag 30-32

Single Acting Diesel - 

OED

4/18/1995 5/15/1995

7 047-02-0022 Bogue Chitto Bridge Washigton 2 30 60.25 132.75 132.75 72.5 72.5 23.6

Vulcan 020

Single acting

ECH

- -

8 061-05-0044 Route LA 10
East Feliciana 

Parish
2 24 117.31 177.31 182.09 64.78 60 16.5

ICE 120S Single 

Acting Diesel
- -

9 064-06-0036

Bayou Lafourche 

Bridge and 

Approaches

Lafourche Parish 1 24 -42 -3 16.91 58.91 39 14.2
Delmag 30-23

Single Acting Diesel
8/30/2000 9/13/2000

10
065-90-0024

855-04-0046

Houma I.C.W.W. 

Bridges
Terrebonne Parish 1 14 -80 0 0 80 80 8.2

Delmag 19-32

Single Acting Diesel
7/6/1993 7/20/1993

11
065-90-0024

855-04-0046

Houma I.C.W.W. 

Bridges
Terrebonne Parish 2 14 -70 0 3.48 73.48 70 7.5

Delmag 19-32

Single Acting Diesel
6/28/1993 7/12/1993

12
065-90-0024

855-04-0046

Houma I.C.W.W. 

Bridges
Terrebonne Parish 3 14 -80 0 14.5 94.5 80 9.6

Delmag 19-32

Single Acting Diesel
10/20/1993 11/4/1993

13
065-90-0024

855-04-0046

Houma I.C.W.W. 

Bridges
Terrebonne Parish 4 14 -80.5 0.47 11.5 92 80.97 9.4

Delmag 19-32

Single Acting Diesel
2/25/1994 3/11/1994

14
065-90-0024

855-04-0046

Houma I.C.W.W. 

Bridges
Terrebonne Parish 5 16 -70 1.5 2 72 71.5 9.6

Delmag 19-32

Single Acting Diesel
7/1/1993 7/15/1993

15
065-90-0024

855-04-0046

Houma I.C.W.W. 

Bridges
Terrebonne Parish 6 16 -98.7 0 11.3 110 98.7 14.7

Delmag 30-23

Single Acting Diesel
9/14/1993 9/29/1993

16 239-01-0080
ICWW Bridge 

Approaches (Louisa)
St. Mary Parish 3 14 -52 4.125 -1.87 50.13 50.13 5.1 Vulcan 010 (Air) 6/14/2001 7/5/2001
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No. Project ID Project Name Parish Pile ID

Diam

. 

(inch)

Tip 

elevation 

(ft)

Ground 

elevation (ft)

Cut-off 

elevation 

(ft)

Pile 

length 

(ft)

Embedm

ent 

length 

(ft)

Weight 

of Pile 

(Tons)

Hammer type
Date of 

driving

Date of 

loading

17 239-01-0080
ICWW Bridge 

Approaches (Louisa)
St. Mary Parish 4 30 -83.5 1.325 8.36 91.86 84.825 43.1 Vulcan 025 (Air) 6/15/2001 7/2/2001

18 260-05-0020
Tichfaw River Bridge 

and Approaches
Livingston Parish 1 30 -60 6.3 13 73 66.3 23.8

Delmag 46-32

Single Acting Diesel - 

OED

2/25/1998 3/23/1998

19 260-05-0020 Tickfaw River Bridge Livingston Parish 3 30 -70 2 11 81 72 26.4

Delmag 46-32

Single Acting Diesel - 

OED

3/26/1998 4/17/1998

20
262-06-0009 & 

262-07-0012

Bridge #1 Tickfaw 

River

St. Helena and 

Tangipahoa 
1 24 8.8 93.7 99.8 91 84.9 21.9

Delmag 46-13

Single Acting Diesel - 

OED

10/16/1990 11/5/1990

21
262-06-0009 & 

262-07-0012

Bridge #1 Tickfaw 

River

St. Helena and 

Tangipahoa 
2 24 -8.2 96.8 96.8 105 105 25.3

Delmag 46-13

Single Acting Diesel - 

OED

10/16/1990 11/12/1990

22
283-03-0052

(New Orleans)

West bank 

expressway
Jefferson 1 18 -120 0 120 120 20.3 - - -

23
424-04-0026

(New Iberia)

US 90 - Lewis Street 

Interchange 

(Overpass)

New Iberia 2 14 -49.5 5.5 10.5 60 55 6.1 Vulcan 010 (Air) 10/16/1997 11/14/1997

24 424-04-0027
US 90 Interchange

 at John Darnell Road
Iberia Parish 1 14 -30 10.4 22 52 40.4 5.3

ICE 60S Single 

Acting Diesel
5/4/2000 5/18/2000

25 424-04-0027
US 90 Interchange

 at John Darnell Road
Iberia Parish 2 14 -30.2 7.3 20.63 50.83 37.5 5.2

ICE 60S Single 

Acting Diesel
5/4/2000 5/19/2000

26 424-05-0078
Bayou Boeuf Bridge 

Main Span
St. Mary Parish 1 14 -70 7 10 80 77 8.2

Delmag 19-32

Double Acting Diesel
4/21/1992 5/5/1992

27 424-05-0078
Bayou Boeuf Bridge 

Main Span
St. Mary Parish 2 14 -70 5 10 80 75 8.2

Delmag 19-32

Double Acting Diesel
4/21/1992 5/5/1992

28 424-05-0078
Bayou Boeuf Bridge 

Main Span
St. Mary Parish 5 14 -80 0.5 5 85 80.5 8.7

Delmag 19-32

Single Acting Diesel
12/14/1992 12/29/1992

29 424-05-0081
Bayou Boeuf Bridge ( 

West Approch)
St. Mary Parish 1 14 -90 0 6 96 90 9.8

Delmag 19-32

Single Acting Diesel
4/29/1994 5/9/1994

30 424-05-0081
Bayou Boeuf Bridge ( 

West Approch)
St. Mary Parish 2 30 -112.5 0 3 115.5 112.5 37.6

Delmag 46-32

Single Acting Diesel - 

OED

6/20/1994 7/12/1994

31 424-05-0081
Bayou Boeuf Bridge ( 

West Approch)
St. Mary Parish 3 14 -68 -3.5 6 74 64.5 7.6

Delmag 19-32

Single Acting Diesel
4/28/1994 5/12/1994

32 424-05-0081
Bayou Boeuf Bridge ( 

West Approch)
St. Mary Parish 4 16 -69 0.85 11 80 69.85 10.7

Delmag 19-32

Single Acting Diesel
5/12/1994 5/27/1994

33 424-05-0087
Morgan City - Gibson 

Highway
St. Mary Parish 1 16 -68.5 1 16.5 85 69.5 11.3

ICE640

Double Acting Diesel
6/9/1992 6/25/1992

34 424-05-0087
Morgan City - Gibson 

Highway
St. Mary Parish 2 30 -88.5 1.2 3 91.5 89.7 42.9

Delmag 46-23

Single Acting Diesel - 

OED

1/16/1992 1/28/1992
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No. Project ID Project Name Parish Pile ID

Diam

. 

(inch)

Tip 

elevation 

(ft)

Ground 

elevation (ft)

Cut-off 

elevation 

(ft)

Pile 

length 

(ft)

Embedm

ent 

length 

(ft)

Weight 

of Pile 

(Tons)

Hammer type
Date of 

driving

Date of 

loading

35 424-05-0087
Morgan City - Gibson 

Highway
St. Mary Parish 3 30 -100 4.05 7 107 104.05 50.2

Delmag 46-23

Single Acting Diesel - 

OED

2/10/1992 2/26/1992

36 424-05-0087
Morgan City - Gibson 

Highway
St. Mary Parish 4 30 -100 -0.7 6.38 106.38 99.3 49.9

Delmag 46-23

Single Acting Diesel - 

OED

2/19/1992 3/5/1992

37 424-05-0087
Morgan City - Gibson 

Highway
St. Mary Parish 5 30 -107 6 7 114 113 53.4

Delmag 46-23

Single Acting Diesel - 

OED

3/11/1992 3/25/1992

38 424-05-0087
Morgan City - Gibson 

Highway
St. Mary Parish 7 16 -75 2 10 85 77 11.3

ICE640

Double Acting Diesel
6/9/1992 6/30/1992

39 424-07-0008

GIBSON-

CHACAHOULA

(relocated US 90)

Route LA 3052

TERREBONNE 1 30 -130 2.7 7 137 132.7 44.6

Delmag 46-23

Single Acting Diesel - 

OED

10/12/1990 11/13/1990

40 424-07-0008

GIBSON-

CHACAHOULA

(relocated US 90)

Route LA 3052

TERREBONNE 3 30 -125 2.4 12 137 127.4 44.6

Delmag 46-23

Single Acting Diesel - 

OED

12/21/1990 1/12/1991

41 424-07-0009
GIBSON-RACELAND 

HIGHWAY
TERREBONNE 3 30 -116.7 5 26.3 143 121.7 46.5

Delmag 46-23

Single Acting Diesel - 

OED

5/15/1991 5/31/1991

42 424-07-0009
GIBSON-RACELAND 

HIGHWAY
TERREBONNE 4 30 -115 5 10 125 120 40.7

Delmag 46-23

Single Acting Diesel - 

OED

12/14/1990 1/18/1991

43 424-07-0009
GIBSON-RACELAND 

HIGHWAY
TERREBONNE 4A 30 -119 5 6 125 124 40.7

Delmag 46-23

Single Acting Diesel - 

OED

1/23/1991 2/7/1991

44 424-06-0005 Bayou Boeuf Bridge Assumption Parish 1 14 -70 -2 5 75 68 7.7
ICE 640 Double 

Acting Diesel
5/18/19936/2/1993
6/16/1993

45 424-06-0005 Bayou Boeuf Bridge Assumption Parish 2 14 -76 -4 4 80 72 8.2
ICE 640 Double 

Acting Diesel
5/18/1993 6/1/1993

46 424-06-0005 Bayou Boeuf Bridge Assumption Parish 3 14 -84.5 -7 0.5 85 77.5 8.7
ICE 640 Double 

Acting Diesel
10/1/1993 10/19/1993

47 424-06-0005 Bayou Boeuf Bridge Assumption Parish 4 14 -85 -6 0 85 79 8.7
ICE 640 Double 

Acting Diesel
9/30/1993 10/26/1993

48 424-06-0005 Bayou Boeuf Bridge Assumption Parish 5 14 -85 -6 0 85 79 8.7
ICE 640 Double 

Acting Diesel
9/30/1993 10/28/1993

49 424-07-0021 Bayou L'ourse Terrebonne 1 30 -114.5 2 9.5 124 116.5 40.4 D46-02 - -

50 434-01-0002

Mississippi River 

Bridge at Gramercy

 (West Approaches)

- 3 14 -46.45 17.55 40.55 87 64 28.3

ICE 42S

Single Acting Diesel - 

OED

12/1/1992 1/5/1993

51 450-15-0085
I-10 Williams 

Boulevard Interchange 
Jefferson 3-A 14 -64 11.5 23 87 75.5 8.9 - - -
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Appendix C 

Summary of DOTD State Projects Investigated in this Study 

Figure 70. 1) 003-07-0019 TP#1 

 

 

 

 

 

 

 

 

 

 

 

 

 



—  208  — 

 

Figure 71.  2) 003-10-0011 TP#1 

 

Figure 72. 3) 003-10-0011 TP#3 
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Figure 73. 4) 005-01-0056 TP#1 

 

Figure 74. 5) 005-01-0056 TP#2 
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Figure 75. 6) 005-01-0056 TP#3 

 

Figure 76. 7) 047-02-0022 TP#2 
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Figure 77. 8) 061-05-0044 TP#2 

 

Figure 78. 9) 064-06-0036 TP#1 
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 Figure 79. 10) 065-90-0024 TP#1 

 

Figure 80. 11) 065-90-0024 TP#2 
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Figure 81. 12) 065-90-0024 TP#3 

 

Figure 82 13) 065-90-0024 TP#4 
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Figure 83. 14) 065-90-0024 TP#5 

 

Figure 84. 15) 065-90-0024 TP#6 
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Figure 85. 16) 239-01-0080 TP#3 

 

Figure 86. 17) 239-01-0080 TP#4 
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Figure 87. 18) 260-05-0020 TP#1 

 

Figure 88. 19) 260-05-0020 TP#3 
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Figure 89. 20) 262-06-0009 TP#1 

 

Figure 90. 21) 262-06-0009 TP#2 

 



—  218  — 

 

Figure 91. 22) 283-03-0052 TP#1 

 

Figure 92. 23) 424-04-0026 TP#2 
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Figure 93. 24) 424-04-0027 TP#1 

 

Figure 94. 25) 424-04-0027 TP#2 
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Figure 95. 26) 424-05-0078 TP#1 

 

Figure 96. 27) 424-05-0078 TP#2 
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Figure 97. 28) 424-05-0078 TP#5 

 

Figure 98. 29) 424-05-0081 TP#1 
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Figure 99. 30) 424-05-0081 TP#2 

 

Figure 100. 31) 424-05-0081 TP#3 
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Figure 101. 32) 424-05-0081 TP#4 

 

Figure 102. 33) 424-05-0087 TP#1 
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Figure 103. 34) 424-05-0087 TP#2 

 

Figure 104. 35) 424-05-0087 TP#3 
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Figure 105. 36) 424-05-0087 TP#4 

 

Figure 106. 37) 424-05-0087 TP#5 
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Figure 107. 38) 424-05-0087 TP#7 

 

Figure 108. 39) 424-07-0008 TP#1 
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Figure 109. 40) 424-07-0008 TP#3 

 

Figure 110. 41) 424-07-0009 TP#3 
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Figure 111. 42) 424-07-0009 TP#4 

 

Figure 112. 43) 424-07-0009 TP#4A 
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Figure 113. 44) 424-06-0005 TP#1 

 

Figure 114. 45) 424-06-0005 TP#2 
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Figure 115. 46) 424-06-0005 TP#3 

 

Figure 116. 47) 424-06-0005 TP#4 
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Figure 117. 48) 424-06-0005 TP#5 

 

Figure 118. 49) 424-07-0021 TP#1 
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Figure 119. 50) 434-01-0002 TP#3 

 

Figure 120. 51) 450-15-0085 TP#3A 
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Figure 121. 52) 450-15-0100 TP#1 

 

Figure 122. 53) 450-15-0100 TP#2 
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Figure 123. 54) 450-15-0100 TP#3 

 

Figure 124. 55) 450-15-0103 TP#1 
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Figure 125. 56) 450-15-0103 TP#2 

 

Figure 126. 57) 450-15-0103 TP#5 
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Figure 127. 58) 450-15-0103 TP#7 

 

Figure 128. 59) 450-36-0002 TP#8 
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Figure 129. 60) 455-05-0036 TP#1 

 

Figure 130. 61) 455-05-0036 TP#2 
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Figure 131. 62) 455-05-0036 TP#3 

 

Figure 132 63) 713-48-0083 TP#1 
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Figure 133. 64) 713-48-0083 TP#2 

 

Figure 134. 65) 742-06-0073 TP#2 
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Figure 135. 66) 829-10-0013 TP#1 

 

Figure 136. 67) 855-14-0013 TP#1 

 

  



—  241  — 

 

Figure 137. 68) Bayou Beouf TP#3 

 

Figure 138. 69) Bayou Lacassine TP#1 
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Figure 139. 70) Bayou Lacassine TP#3 

 

Figure 140. 71) Bayou Zourrie TP#1 
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Figure 141. 72) LA-01 TP#2 

 

Figure 142. 73) LA-01 TP#3 
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Figure 143. 74) LA-01 TP#4a 

 

Figure 144. 75) LA-01 TP#4b 
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Figure 145. 76) LA-01 TP#5a 

 

Figure 146. 77) LA-01 TP#5b 
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Figure 147. 78) 008-01-0042 TP#1 

 

Figure 148. 79) 450-17-0025 TP#1 
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Figure 149. 80) 450-17-0025 TP#3 
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Appendix D 

Load-Settlement Curves of DOTD State Projects Investigated in this Study  
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Figure 150. 1) 003-07-0019 TP#1 Figure 151. 2) 003-10-0011 TP#1 

  

Figure 152. 3) 003-10-0011 TP#3 Figure 153. 4) 005-01-0056 TP#1 
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Figure 154. 5) 005-01-0056 TP#2 Figure 155. 6) 005-01-0056 TP#3 

  

Figure 156. 7) 047-02-0022 TP#2 Figure 157. 8) 061-05-0044 TP#2 
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Figure 158. 9) 064-06-0036 TP#1 Figure 159. 10) 065-90-0024 TP#1 

  

Figure 160. 11) 065-90-0024 TP#2 Figure 161. 12) 065-90-0024 TP#3 

  

  

 

  



—  252  — 

 

Figure 162. 13) 065-90-0024 TP#4 Figure 163. 14) 065-90-0024 TP#5 

  

Figure 164. 15) 065-90-0024 TP#6 Figure 165. 16) 239-01-0080 TP#3 
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Figure 166. 17) 239-01-0080 TP#4 Figure 167. 18) 260-05-0020 TP#1 

  

Figure 168. 19) 260-05-0020 TP#3 Figure 169. 20) 262-06-0009 TP#1 

  

 

  



—  254  — 

 

 

Figure 170. 21) 262-06-0009 TP#2 Figure 171. 22) 283-03-0052 TP#1 

  

Figure 172. 23) 424-04-0026 TP#2 Figure 173. 24) 424-04-0027 TP#1 
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Figure 174. 25) 424-04-0027 TP#2 Figure 175. 26) 424-05-0078 TP#1 

  

Figure 176. 27) 424-05-0078 TP#2 Figure 177. 28) 424-05-0078 TP#5 
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Figure 178. 29) 424-05-0081 TP#1 Figure 179. 30) 424-05-0081 TP#2 

  

Figure 180. 31) 424-05-0081 TP#3 Figure 181. 32) 424-05-0081 TP#4 
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Figure 182. 33) 424-05-0087 TP#1 Figure 183. 34) 424-05-0087 TP#2 

  

Figure 184. 35) 424-05-0087 TP#3 Figure 185. 36) 424-05-0087 TP#4 
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Figure 186. 37) 424-05-0087 TP#5 Figure 187. 38) 424-05-0087 TP#7 

  

Figure 188. 39) 424-07-0008 TP#1 Figure 189. 40) 424-07-0008 TP#3 
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Figure 190. 41) 424-07-0009 TP#3 Figure 191. 42) 424-07-0009 TP#4 

  

Figure 192. 43) 424-07-0009 TP#4A Figure 193. 44) 424-06-0005 TP#1 
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Figure 194. 45) 424-06-0005 TP#2 Figure 195. 46) 424-06-0005 TP#3 

  

Figure 196. 47) 424-06-0005 TP#4 Figure 197. 48) 424-06-0005 TP#5 
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Figure 198. 49) 424-07-0021 TP#1 Figure 199. 50) 434-01-0002 TP#3 

  

Figure 200. 51) 450-15-0085 TP#3A Figure 201. 52) 450-15-0100 TP#1 

  

 

  



—  262  — 

 

 

Figure 202. 53) 450-15-0100 TP#2 Figure 203. 54) 450-15-0100 TP#3 

  

Figure 204. 55) 450-15-0103 TP#1 Figure 205. 56) 450-15-0103 TP#2 
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Figure 206. 57) 450-15-0103 TP#5 Figure 207. 58) 450-15-0103 TP#7 

 
 

Figure 208. 59) 450-36-0002 TP#8 Figure 209. 60) 455-05-0036 TP#1 
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Figure 210. 61) 455-05-0036 TP#2 Figure 211. 62) 455-05-0036 TP#3 

  

Figure 212. 63) 713-48-0083 TP#1 Figure 213. 64) 713-48-0083 TP#2 
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Figure 214. 65) 742-06-0073 TP#2 Figure 215. 66) 829-10-0013 TP#1 

  

Figure 216. 67) 855-14-0013 TP#1 Figure 217. 68) Bayou Beouf TP#3 
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Figure 218. 69) Bayou Lacassine TP#1 Figure 219. 70) Bayou Lacassine TP#3 

  

Figure 220. 71) Bayou Zourrie TP#1 Figure 221. 72) LA-01 TP#2 
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Figure 222. 73) LA-01 TP#3 Figure 223. 74) LA-01 TP#4A 

  

Figure 224. 75) LA-01 TP#4B Figure 225. 76) LA-01 TP#5A 
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Figure 226. 77) LA-01 TP#5B Figure 227. 78) 008-01-0042 TP#1 

  

Figure 228. 79) 450-17-0025 TP#1 Figure 229. 80) 450-17-0025 TP#3 
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Appendix E 

Comparison of Measured and Estimated Pile Capacities by Different Pile-

CPT Methods 
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Figure 230. Comparison of measured and ultimate pile capacity predicted by LCPC method (piles 1-40) 
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Figure 231. Comparison of measured and ultimate pile capacity predicted by LCPC method (piles 41-80) 
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Figure 232. Comparison of measured and ultimate pile capacity predicted by Schmertmann method (piles 1-40) 
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Figure 233. Comparison of measured and ultimate pile capacity predicted by Schmertmann method (piles 41-80) 
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Figure 234. Comparison of measured and ultimate pile capacity predicted by De Ruiter method (piles 1-40) 
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Figure 235. Comparison of measured and ultimate pile capacity predicted by De Ruiter method (piles 41-80) 
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Figure 236. Comparison of measured and ultimate pile capacity predicted by Philipponnat method (piles 1-40) 
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Figure 237. Comparison of measured and ultimate pile capacity predicted by Philipponnat method (piles 41-80) 
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Figure 238. Comparison of measured and ultimate pile capacity predicted by Price and Wardle method (piles 1-40) 
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Figure 239. Comparison of measured and ultimate pile capacity predicted by Price and Wardle method (piles 41-80) 
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Figure 240. Comparison of measured and ultimate pile capacity predicted by Zhou method (piles 1-40) 
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Figure 241. Comparison of measured and ultimate pile capacity predicted by Zhou method (piles 41-80) 
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Figure 242. Comparison of measured and ultimate pile capacity predicted by Tumay and Fakhroo method (piles 1-40) 
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Figure 243. Comparison of measured and ultimate pile capacity predicted by Tumay and Fakhroo method (piles 41-80) 
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Figure 244. Comparison of measured and ultimate pile capacity predicted by UF method (piles 1-40) 
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Figure 245. Comparison of measured and ultimate pile capacity predicted by UF method (piles 41-80) 
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Figure 246. Comparison of measured and ultimate pile capacity predicted by Probabilistic method (piles 1-40) 
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Figure 247. Comparison of measured and ultimate pile capacity predicted by Probabilistic method (piles 41-80) 
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Figure 248. Comparison of measured and ultimate pile capacity predicted by Aoki method (piles 1-40) 
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Figure 249. Comparison of measured and ultimate pile capacity predicted by Aoki method (piles 41-80) 
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Figure 250. Comparison of measured and ultimate pile capacity predicted by Penpile method (piles 1-40) 
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Figure 251. Comparison of measured and ultimate pile capacity predicted by Penpile method (piles 41-80) 
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Figure 252. Comparison of measured and ultimate pile capacity predicted by NGI method (piles 1-40) 

 



—  293  — 

 

Figure 253. Comparison of measured and ultimate pile capacity predicted by NGI method (piles 41-80) 
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Figure 254. Comparison of measured and ultimate pile capacity predicted by ICP method (piles 1-40) 
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Figure 255. Comparison of measured and ultimate pile capacity predicted by ICP method (piles 41-80) 
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Figure 256. Comparison of measured and ultimate pile capacity predicted by UWA method (piles 1-40) 
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Figure 257. Comparison of measured and ultimate pile capacity predicted by UWA method (piles 41-80) 
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Figure 258. Comparison of measured and ultimate pile capacity predicted by CPT2000 method (piles 1-40) 
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Figure 259. Comparison of measured and ultimate pile capacity predicted by CPT2000 method (piles 41-80) 
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Figure 260. Comparison of measured and ultimate pile capacity predicted by Fugro method (piles 1-40) 
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Figure 261. Comparison of measured and ultimate pile capacity predicted by Fugro method (piles 41-80) 
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Figure 262. Comparison of measured and ultimate pile capacity predicted by Purdue method (piles 1-40) 
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Figure 263. Comparison of measured and ultimate pile capacity predicted by Purdue method (piles 41-80) 
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Figure 264. Comparison of measured and ultimate pile capacity predicted by Togliani method (piles 1-40) 
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Figure 265. Comparison of measured and ultimate pile capacity predicted by Togliani method (piles 41-80) 
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Figure 266. Comparison of measured and ultimate pile capacity predicted by German method (piles 1-40) 
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Figure 267. Comparison of measured and ultimate pile capacity predicted by German method (piles 41-80) 
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Figure 268. Comparison of measured and ultimate pile capacity predicted by Eurocode7 method (piles 1-40) 
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Figure 269. Comparison of measured and ultimate pile capacity predicted by Eurocode7 method (piles 41-80) 
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Figure 270. Comparison of measured and ultimate pile capacity predicted by ERTC3 method (piles 1-40) 
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Figure 271. Comparison of measured and ultimate pile capacity predicted by ERTC3 method (piles 41-80) 
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Appendix F 

Predicted versus Measured Ultimate Capacity and Cumulative Probability 

Plots 
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Figure 272. Predicted versus measured ultimate capacity and cumulative probability for Bustamante and 

Gianeselli (LCPC)  

 
 

Figure 273. Predicted versus measured ultimate capacity and cumulative probability for Schmertmann  
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Figure 274. Predicted versus measured ultimate capacity and cumulative probability for De Ruiter and 

Beringen  

  

Figure 275. Predicted versus measured ultimate capacity and cumulative probability for Philipponnat  
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Figure 276. Predicted versus measured ultimate capacity and cumulative probability for Price and Wardle  

  

Figure 277. Predicted versus measured ultimate capacity and cumulative probability for Zhou  
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Figure 278. Predicted versus measured ultimate capacity and cumulative probability for Tumay and 

Fakhroo  

 
 

Figure 279. Predicted versus measured ultimate capacity and cumulative probability for UF  
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Figure 280. Predicted versus measured ultimate capacity and cumulative probability for Probabilistic  

 
 

Figure 281. Predicted versus measured ultimate capacity and cumulative probability for Aoki and De 

Alencar  
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Figure 282. Predicted versus measured ultimate capacity and cumulative probability for Penpile  

 
 

Figure 283. Predicted versus measured ultimate capacity and cumulative probability for NGI  
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Figure 284. Predicted versus measured ultimate capacity and cumulative probability for ICP  

 
 

Figure 285. Predicted versus measured ultimate capacity and cumulative probability for UWA  
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Figure 286. Predicted versus measured ultimate capacity and cumulative probability for CPT2000  

 
 

Figure 287. Predicted versus measured ultimate capacity and cumulative probability for Fugro  
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Figure 288. Predicted versus measured ultimate capacity and cumulative probability for Purdue  

 
 

Figure 289. Predicted versus measured ultimate capacity and cumulative probability for Togliani  
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Figure 290. Predicted versus measured ultimate capacity and cumulative probability for ERTC3  

 
 

Figure 291. Predicted versus measured ultimate capacity and cumulative probability for Eurocode 7  
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Figure 292. Predicted versus measured ultimate capacity and cumulative probability for German  
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