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ABSTRACT

In this project the development and deployment of systems measuring aircraft activity at
airportsis considered. Thisincludes determining the type of aircraft and the type of aircraft
activity. Thetype of aircraft is basic such as helicopter, single engine, multiengine, and jet
aircraft. The different aircraft activities at airports include take-offs, landings, touch and go
and low approach. Accurate counts of aircraft operations are important because the number
and types of aircraft operations are related to airport planning and operation. The objective of
this project was to investigate the feasibility of developing an automatic aircraft operation
monitoring system. Thisinvolved investigating candidate technologies and developing a
prototype system for monitoring aircraft operations.

In large airports with control tower operations, one can readily determine aircraft operations
because the towers are aways manned and logs are kept of all operations. Thisisnot true at
smaller and rural airports that may be only manned during certain hours. Some of the issues
involved in deploying technologies for monitoring aircraft operations include: the system
must be cost-effective, reliable portable, must operate self-contained in the field for two
weeks, and must be acceptable at airports.
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IMPLEMENTATION STATEMENT

The system for monitoring aircraft operations is based on hardware and data acquisition
software developed by Larson Davis. A flexible software system has been developed for
aircraft operations classification. The software was made the software flexible so that it

could be used in the future with any data collection system. The software performs well with
the data from this study. Larson Davis has recently agreed to supply their latest hardware and
software. The next step in the development is to utilize the Larson Davis 824 system with the
software. Thiswould alow further testing and tuning of the software. It would only require
some personnel costs to visit airports and operate the system. If thisis successful, then
vendors such as Larson Davis will be interested in the system as a product.
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INTRODUCTION

A multimedia database was established for the study. The information contained in the
database consists of airport information, runway information, acoustic records, photographic
records, a description of the event (take-off, landing), aircraft type, and environmental
information. Theinformation is stored in arelational database.

Features were extracted from the acoustic time signal and the frequency content of the signal.
Often data obtained from portable spectral analyzers are collected in octave filters or 1/3
octavefilters. The 1/3-octave frequency measures were also used as features. A multi-layer
feed-forward neural network was chosen as the classifier. Training and testing results were
obtained for the datain our database. Classification results of over 95 percent for training
and testing were obtained. A flexible software system implemented in Matlab was devel oped
for the classification software. This software system can be used with any acoustic data
collection equipment suitable for operation at airports. The study indicates the feasibility of
developing an acoustic system for monitoring aircraft operations.






OBJECTIVE

The objective of this project was to investigate the feasibility of developing an automatic
aircraft operations monitoring system. Thisinvolved investigating candidate technologies,
determining candidate technologies, and developing a prototype system for monitoring
aircraft operations.






SCOPE

The scope of the project involved the determination of a prototype system for aircraft
monitoring. It did not cover the area of developing the system to the level of acommercial

product or forming the necessary links with a commercial partner for the commercial
development of the system.






METHODOLOGY

This section describes the methods used in the project. Thisincludes sections on database
formation, feature extraction, classification, and software devel opment.

Aircraft Operations Database Formation

In order to devel op algorithms and eval uate the developed system for characterizing aircraft
operations, a database of aircraft operations was created. The information contained in the
database consists of airport information, runway information, acoustic records, photographic
records, a description of the event (take-off, landing) aircraft type, and environmental
information.

Description of Equipment used for Data Collection

The equipment used in the field for data collection consisted of adigital camera, sound
recording equipment, and aform to manually enter information related to the aircraft
operation. The camerawas used for a photographic record of the aircraft operation. A
Kodak digital camerawas used. The acoustic equipment was used to record the sound
records of the aircraft operations. This equipment consisted of: aLarson-Davis Model 712
Sound Level Meter, Electro-Voice RE55 Microphones, and a Sony TCD-D8 DAT Walkman.
The data were collected at 44.1kHz on the DAT tapes. It was processed at 22.05 kHz,
because this speed proved sufficient for the application.

Data Collection

The airports were selected in order to have some variety from large to small airports while
still enabling the collection of a good number of aircraft operations. Before visiting any
airport, the airport manager was notified days in advance of the visit. Permission to visit the
airport and have access to the operations areas of the airport was obtained from the airport
manager. Instructions were also obtained as to where the crew could assemble and the
conditions under which the team could move about the airport operations area. At times, an
escort was necessary. Whenever possible atransmitter was obtained so that the data
collection team could communicate with the tower or other appropriated airport operations
personnel. This allowed the team to know about incoming traffic and be given any updated
instructions from operations personnel.



A common problem encountered at all the airportsisinclement weather. In Louisiana,
thunderstorms and lightning can occur suddenly and frequently. This often necessitated the
interruption of data collection. The airport personnel usually have a general idea of the
aircraft activity during any day. This helps to estimate how much data will be collected.
They can aso indicate the runways being used for take-offs and landings at the current time.
Knowledge of the specific airport isimportant so that the units are placed in the best location
for recording acoustic signals of aircraft operations. One needs to be on the right runway and
select the best location on the runway to receive good information. If oneislocated too far at
the end of arunway, some airplanes will be airborne well before they get to the unit on take-
off. Theaircraft may exit on ataxiway before they arrive at the unit on landings.

Database

This section describes the database collected for the study. It isimportant to collect a variety
of data describing the conditions under which the sound event was recorded. For example,
pavement type, wind speed and direction, aircraft type, microphone configuration, and
aircraft operation are important pieces of data. A relational database schemes was devel oped.

Figure 1 shows an example data entry screen that is used for entering the data. Notice the
screen displays a photograph of the operation, details of the airport and runway, aswell as
other data. The user can aso listen to the sound by clicking on the speaker icon.
Consequently, this form provides a mechanism for integrating the multi-media data (sound,
photo, data attributes). Since all of thisinformation is stored in arelational database, it is
very easy to construct free-form queries and reports to summarize data. Figure 2 showsa
tabulation of the various sounds recorded.
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Reference 0 0 0 0 0 23 23
Total 96 89 24 5 45 23 282
Figure2

Summary report




Acoustic Concepts

There are some terms need to be defined. Sound data are often processed in the root mean

1
Tz - T1

square of the sound signal pressure, p(t). Theformis p, = \/ (52 p*(t)dt [1]. The

units are Pascals. Theinterval over which p, . iscomputed isafunction of the sample rate

5
of the sound power meter. The term L, refers to the logarithmic formL | = 20Iogloaaiiwith
00

units of dB or decibels. Thisisthe sound pressure level (SPL). The quantity p,is20 micro
Pascal's, mPa , which is the perception threshold at 10 [2]. The sound pressurelevel, L,

varies too quickly for interpretation and often generates too much data for storage. An
average is performed over some interval to reduce the amount of data. The equivalent
continuous sound level over a specified time interval is the equivalent steady level that would

5
have the same RMS value over that time interval [2]. Itisdefinedas L, = 20|0g10§qoms T

Po o
When the intervals are one second or lessthey may be called L, short.

The human ear does not have a uniform sensitivity to sound as the frequency isvaried. A
unit of loudnessisthe one which is defined to be the loudness of a pure tone with a sound
pressure level of 40dB at 1000Hz [3]. A sound that istwice asloud has aloudness of 2
sones. The loudness level of a 1000 Hz pure tone of 40dB is defined as 40 phons. If itis
raised in level by 10dB, itistwiceasloud to alistener. A doubling of loudnessis equivalent

to an increase of loudness level by 10 phons. If Sisloudnessin sones and P isloudness level
(P- 40)
inphons,then S=2 1

Because of the sensitivity of the human ear, often frequency weighting is used. The most
common weightings are A-frequency weighting, C-frequency weighting, and LIN-frequency
weighting. LIN-weighting signifies, indicates no weighting [2]. A-weighting iswidely used
because it correlates with the human response to sound. It is intended to simulate a human ear
at 40 phons. Sound level meters, (SLM), sound exposure meters, and noise dosimeters use A
-weighting to measure the effects of noise on humans. Thistype of weighting iswidely used
to measure community noise. B-weighting is meant to simulate the human ear at 70 phons. It
is not widely used. The C-weighted filter is meant to simulate the human ear at 100 phons. It
isflat over most of the audible frequencies and is down 3dB at 31.6 Hz and 8000Hz. This

10



filter often used to measure the acoustic emissions of machinery. The weighting terms are

[3]:

&  A(fF,)’ 0
W. =20lo T, 1
e (TS TETY ¥
s ) 2 0
W, =W, +20log,,& = Azf —— ~, and (2)
CJ(F2+FA)(f2+F2) 5
2 6
W, =W, +20|ogmgA3—f* ©)

whareA =1.007152, A, =1.249936, A, =1.012482 ,F, = 20.598997 Hz, F, =107.65265 Hz,
F, = 737.86223 Hz, F, =12194.217 Hz, and F, =158.48932 Hz.

The following plots are for these frequency weighting functions (Figure 3).
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Figure3
Weighted filters
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Sound level meters equipped with filters are called spectrum analyzers. Often dataare
collected in octave filters or 1/3 octave filters. An octave band passfilter isafilter where the
upper cutoff frequency istwice the lower cutoff frequency. An octave is adoubling of
frequency. Thisfilter can be subdivided into 1/3 octave filters with three bands per octave.
The center frequencies for octave filters increase by afactor of two. Since the 1/3 octave

filters divide this range into three parts, each 1/3 octave center frequency increases by afactor
1
of r =23, Thefollowing table gives the center frequencies of these filters. Let r betheratio

of the frequencies between adjacent filters. Then r istwo for an octave filter and for a 1/3
1
octavefilter r = 23. In order to get the low and high cutoff frequencies for a given center

frequency one observes that,

f, - f f+f,

f+ _L=f b f :T and f, =r*f, b f = Zicl.lfristwoandfc is315
r

1
thenf, is21 and fyis42. For the 1/3 octavefilter r = 23 and if f. = 20 is a center frequency,

the corresponding cutoff frequenciesaref; = 17.7 and f,, = 22.3 Hz. The bandwidth is

BW=f - f =r*f -f =f(-2 :M:ch (r- 1). For the (1/3) octave filter
' (r +1) (r+1)

with
f. =20 then r =1.2599 and BW = 4.6Hz.

Feature Extraction

In the application of acoustics to aircraft counting and classification, we are interested in
identifying aircraft from one-dimensional (1-D) sound signalscollected over time. Thisproblem
may be stated as an object identification problem, where the objects are the different types of
aircraft. An audio sensor can generate a significant amount of data in a few seconds. An
important step in object identification isto obtain information suitable for modeling the object to
the automated recognition system. Objects can often beidentified with samplesasshort at 20ms,
which for convenience is called aframe of the signal [4]. It isdesirableto reduce this datafor
object recognition. This process of reducing the amount of data while retaining the ability to
recognizethe object iscalled feature extraction. Thefeatureswill be represented asvectors, and
itis necessary, if each object isto be identified, to have distinguishable feature vectors.

There are several factors that complicate the object recognition process. One problem is that
the communication channel may vary even if the object isthe same. That is, sensors placed
in different environments will behave somewhat differently and will produce different signals

13



for the same aircraft. Different airports and different weather conditions will affect the
signals and will distort the feature vectors for the objects. Another complication isthe
objects in the same class, e.g. aircraft of the same type, will produce somewhat different
signas. Finally, noise and multiple signals from different sources will distort the signals. A
goal isto develop models of the audio signal in feature space that can be used for object
identification. The features will be in the form of an n-dimensional vector, and object
identification is accomplished by analyzing the feature vector.

The following two figures (Figures 4 and 5) show the raw sound signals obtained from a jet
and a propeller powered aircraft. The sound datais available at 22,050 Hz, which givesa
large amount of data that must be reduced to produce features suitable for object
classification.
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Jet Take Off
(Left Channel)

ASDS:Ch=l Jetor! 02 SamipFreq = 22 CGKHz

Figure4
Sound signal for jet aircraft take-off
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Multi Engine Take Off
(Left Channel)

ASDS: Ch-1 moteriz SampFrec — 32,06 €Hz
' ' '

Figure5
Sound signal for multi engine air cr aft take-off

Thefollowing figures show the sound power level (SPL) signalsor L., signals and the 1/3

octave filter responses for atypical helicopter, single engine propeller, multi engine propeller,
and jet aircraft operation of take-off. On the frequency plots, the frequency data are all
normalized to one and the horizontal axisisthe measurement number givenin Table 1. The
data here has been significantly reduced from the raw sound data collected. The L, signals

are taken at 1/8 second intervals. The sound datais available at a sampling rate of 22,050
Hz. Thisimpliesthat only estimate frequencies up to (22,050/2) Hz can be made without
aliasing. For thisreason, we limited our frequencies to an 8,000 Hz center frequency.
Therefore, 27 frequency measures are taken up to 8000 Hz as shown in the following table of
approximate 1/3 octave filters.

16



Tablel

One-third octavefilters

measure center freq/Hz | bandwidth/BW
1 20 4.6
2 25 5.75
3 31.5 7.245
4 40 9.2
5 50 11.5
6 63 14.49
7 80 18.4
8 100 23
9 125 28.75
10 160 36.8
11 200 46
12 250 57.5
13 315 72.45
14 400 92
15 500 115
16 630 144.9
17 800 184
18 1000 230
19 1250 287.5
20 1600 368
21 2000 460
22 2500 575
23 3150 724.5
23 4000 920
25 5000 1150
26 6300 1449
27 8000 1840

17
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Feature Extraction M ethods

There are a number of useful methods for extracting features. Variations on the data pyramid
are useful data representation methods. A data pyramid is ahierarchical structure where data
are represented at different resolutions at various levelsin the pyramid. The pyramid gives
successive approximations of the input data in decreasing detail asthe levels descend in the
pyramid. The Gaussian and Laplacian pyramids are often used. More recently, wavelet
transforms (WT) have been used to construct these pyramids [5]. The wavelet transform
represents the original signal at any level in the pyramid by a coarse resolution signal and a
detail signal. Like other transforms, the wavelet transform allows for reconstruction of the
input data. Important components of the wavelet transform are the wavelet filter G and the
mirror filter H. The wavelet transforms have the advantages of 1) being a multi resolution
representation of the signal, 2) supporting zooming and providing a highly compact
representation for high resolution data, 3) being close to the human discrimination system as
compared to other transforms, and 4) providing a high compression ratio. Wavelet structures
can be constructed with an arbitrary amount of smoothness[6]. The WT is ageneraization
of the short time Fourier transform (STFT) and has shown itself to be valuable in determining
features for the discrimination of objects.

An audio signa can be characterized by the short-time Fourier spectrum of asignal [7], [8].
The question then becomes one of extracting feature vectors from the short-time Fourier
transform (STFT). A common method used is the mel-warped cepstratransform. Let FFT

be the fast Fourier transform and FFT " beitsinverse. Let sbethe signal over aframe, then
cep(s) = FFT'l(Iog‘FFT(s)D. Since (Iog‘FFT(s)|) isreal and symmetric, the FFT and

FFT ! are equal up to a multiplicative constant. The cepstrum is, therefore, the spectrum of
the log of the spectrum. The mel-warped spectrum is obtained by attenuating high

frequenciesin (I og‘FFT(s)|) before taking the inverse transform. The mel-scaleis based on

the non-linear human perception of sound frequencies[7], [9]. Generally, about 14 of the
low cepstral coefficients are required for recognition. The use of the cepstraisjustified if the
sound signal can be modeled as a product where S=VH. Here Sisthe FFT of sand 'V isa
periodic signal imposed on a nonperiodic signal H. This has often proven an effective
approach in audio object recognition tasks [4]. For this situation, 1og(S) = log(V) + log(H),
and the periodic component is separated from the nonperiodic part. Each of these
components may be important in characterizing the object, and they can be separately
modeled. Often the periodic component is more important. The Fourier transform of areal
and symmetric function contains only real terms or the cosine terms of the transform. Since
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(I og‘FFT(s)|) isareal function and discrete for our sample data, the Fourier transform of the

extended discrete function that is symmetric is a cosine function. Hence, the cosine
transformation is an appropriate way to compute the cepstral coefficients.

The Karhunen-Loeve transform (KLT) is atransformation where the input data are
decomposed into orthogonal eigenvectors. The eigenvectors are a function of the signal with
adirect correspondence to the signal. This transformation is the optimal transformation and
givesthe largest energy for the fewest possible number of basis vectors. This method has a
disadvantage, however, in that it is computationally expensive compared to other methods
where the basis vectors are fixed. There has been renewed interest in the KL T in recent
years. Sirovich has used the method to extract physical features from turbulence data[10].
The KLT isknown as an optimal approach for data reduction and feature determination.

Featuresfrom the Time Domain Signal

The L, signa has a characteristic shape that is reflective of the different types of aircraft
events asthe previous figuresindicate. The L, signal can be processed to reduce the

number of measurements and extract features useful for classification. One measurement of
relevance is the maximum value. Some sound events such as jet aircraft are louder than
others. Contrastingly, single engine propeller aircraft landings are very quiet. Other
measures can be related to the shape of the curves. A fast aircraft such asajet will have a
curvethat is steeper as the plane approaches when compared to a propeller aircraft, see
Figure 6,

Figure 8, Figure 10, and Figure 12. One measureiscalled alpha. A second order polynomial
isfitto L, from the beginning of the sound event to tmax, Which is the time of the maximum

sound level. If a2 isthe coefficient of the second order term, then a = é This

measurement should reflect the manner that the sound builds up to the microphone. Two
other measurements are b1 and c1 that are the slopes of the curve from the beginning of the
event to tna and from tmax to the end of the event respectively. These measurements again
reflect the rate at which sound builds up to the microphone. Another measurement extracted

is skewness, which is the obliqueness of the curve about .. Here, skewnessis defined as
==3

skewness = ﬂs , where m® isthethird central moment. Thisterm reflectsthe differencein
S

the function to the left and right of tmax. Another measure involves the symmetry of the
function about tx. The measureisaratio of the areato the right of ta to the areato the left

23



of tmax. The following figure indicates these measures.

|
b1 slope of maximum
curve

|
cl slope of

a pha \ curve

tmax

Figure 14
M easur ements from time domain

Frequency Measures

While many expect frequency measures to reflect differences in the aircraft, they do not
aways adhere to this pattern. Frequency measures reflect differencesin the aircraft. For
instance, examinations of Figure 7, Figure 8, and Figure 11 reveals that the frequency content
of the helicopter is concentrated in frequency measures of 3-10. The single engine propeller
aircraft frequency content is concentrated in frequency measures of 6-13, whereas, the multi
engine propeller aircraft frequency content is concentrated in frequency measures of 5-10.
The jet aircraft frequency content is concentrated in frequency measures of 7-18. Table 1
gives the frequencies corresponding to the frequency measures areason to consider frequency
measures is that they are readily obtained from portable spectral analyzers that can operatein
the field for several weeks.

Classification

Signal classification is the process of identifying the object associated with a given input
signal. Once the features have been extracted as described in the last section, an n-
dimensional feature vector will input aclassifier. Neural networks were selected for the
classifier.
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Artificial neural networks (ANNS) attempt to solve complex problems with an architecture
that mimics the nervous system. ANNSs are mathematical systems comprised of a number of
processing units that are linked via weighted interconnections[11]. A processing unitisa
mathematics equation often referred to as atransfer function. A processing unit takes
weighted signals from other neurons, combines them, transforms them, and outputs a
numeric result. Anindividual computational element sums input values, which produces a
nonlinear output. Large assemblies of these simple elements can solve problems requiring
massive constraint satisfaction. ANNSs have the additional advantage of learning the optimal
connection weights between processing elements. This learning process eliminates the
tedious programming that often accompanies complex problems.

Artificia neural networks have been developed as generalizations of mathematical models of
human cognition or brain biology. They consist of neurons, links between neurons, weight
associated with each link, and the activation function with each neuron [11]. Figure 15
illustrates asimple neural network. Thefirst layer containing X1, X2, X3 is called the input
layer; x1, X2, and Xz are output of these input nodes. The weights for connection links between
input nodes to hidden neuron Y are wy, W, and ws, respectively. The net input, y;, to neuron
Y isthe sum of weighted signals from neuron X1, X2, and X3:

yi = W1 X1 + Wa Xp + W3 X3 4

The activation y of neuron Y is given by afunction of its net input, y = f (y), €.9., thelogistic
sigmoid function (see Figure 16) [12].

Neuron Y is connected to neurons Z; and Z, with weight v; and v,, respectively. Neuron'Y
sendsitssignal y to each of these neurons. In general, the values received by Z; and Z, will
be different because these signals are scaled by weights, v1 and v2. In atypical network, the
activation Z; and Z, of neuron Z; and Z, depends on inputs from multiple neurons instead of
just one as shown in this example.

f(y)=—= (5)

1+e”

In general, the calculations of a neural network use matrix multiplication methods. If the
connection weights for a neural network are stored in amatrix W = (w;), the net input to
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neuron Y] (with bias on neuron j) is simply the dot product of the vectors X = (Xg, ...,.X, ... Xn)
and W (the j"™ column of the weight matrix) [11]:

Yij:bj+é. XW (6)

The bias (Iy;) acts like aweight on a connection from a unit whose activation is aways one.
Increasing the bias increases the network input to the unit. 1t is adjustable and equivalent to a
threshold to the activation of a neuron.

Artificial neural networks can be grouped into simple-layer and multiple-layer nets. There
are two types of training, namely, supervised and unsupervised training for a network.
Supervised training is accomplished by presenting a sequence of training vectors or patterns,
with associated target output vectors. Then, the weights are adjusted according to its learning
algorithm. Back propagation nets require supervised training. Typically, an architecture or
structure of aneural network is established and one of avariety of mathematical algorithmsis
used to determine the weights of interconnections to maximize the accuracy of the outputs
produced. ANNSs are trained, meaning they use previous examples to establish the
relationships between the input variables and the classification variables in setting these
weights. Once ANNSsistrained, the neural network can be presented with new input

variables to generate a classification.
i : W ( : )
3

V)
Oy O
W mﬁ
Input Hidden Output

Figure 15
Simple neural network
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L ogistic sigmoid function

Classification applications of ANNs involve developing systems that will classify the
category into which an item falls. The neural network learns to distinguish between two or
more categories provided based on the features of the input data[13]. Given asimple
classification example, an ANN is used to classify two classes (class 1 and class 2) with five
features. The design of the ANN includes an input layer of five neurons x1, x2, x3, x4, and
x5 and an output layer of two neurons c1 and c2 with avalue of 1 or 0. When these five
features belong to class 1, c1 will be 1. Otherwise, ¢l isequal to 0. When these five features
belong to class 2, c2 will be 1. Otherwise, c2 isequal to 0. C1 and c2 can not have the same
value smultaneously. The structure of the neural network containing two hidden layers
(layer 1 and layer 2) that have four and three neurons, respectively, isgivenin Figure 17.

Back propagation neural networks (BP) are probably the most common neural architecture
implemented today. BP ANNs are “Multilayer Feed Forward Networks,” meaning they have
alayered architecture where data flows into one layer, through one or more hidden (internal
layers) and out an output layer. Data flowsin one direction known as “Feed Forward,” and
has multiple layers known as “MultiLayer.” BPisactually an iterative gradient decent
learning algorithm used to set the weights. The error between the neural network outputs and
desired outputs are propagated backwards through the network to aid in the determination of
the new values of the weights. Thisis done for each training data record repeatedly until the
error reaches a stable minimum.
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Example neural network

One reason BP neural networks are so common is because they perform relatively well on a
wide variety of applications[11]. They can also be used for functional modeling,
classification, and time series types of applications. Probabilistic Neural Networks (PNN)
also can be used as classifier, but they require alot of data. Dueto alimitation of data, BP
was chosen as the out classifier.

There are three steps in the process of training a back propagation neural network. These
steps are the feed-forward of the input patterns, the back propagation of the associated error,
and the adjustment of the weights. Untrained networks have randomly initialized weight
values[12]. When an initialization is performed, a network state will be created that is
completely unique. Thisleadsto the possibility that identical training runs with newly
initialized networks may exhibit different learning characteristics. However, the converged
states of two such training runs will be nearly identical in the vast majority of cases.

Whatever type of model is used, it is necessary to determine the input and output. In this
case, the input is the set of normalized feature vectors. The output from the program is class
numbers corresponding to helicopter, jet, single-engine, and multiple-engine. BP netsrequire
the output to be binary numbers.
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To generate a successful neural network model, one must:

Step 1. Data Preparation

After generating the conceptual model, the data must be gathered. Thisis often the most
tedious task in model development. All the data must be separated into two groups: training
dataand testing data. The training dataincludes as many numbers as possible in order to
train abest network. The amount of testing data, however, must be at least 10 percent of
amount of training datain order to verify the quality of the created network. The testing data
isnot included in the training data.

Step 2. Design the neura network model

With the training data available, one can set up the model with the neural network program.
It isusually best to start with a simple network/hidden layer construction so that one can
quickly validate the model’ s ability to train and learn relationships. One then specifies the
network, the training data files, and the initial parameters. The default training parameters
work for many problems and all parameters are adjustable during training.

Step 3. Train the network generated.

The training parameters may need to be tuned so that the specified values match the training
characteristics for the model.

Neural Network I mplementation

The detailed information of the neuron network is explained in this section. The system s
implemented in the Matlab neural network toolbox.

The structure of the Neural Networ k

A multi-layer feed-forward neural network was chosen as the classifier. It isvery important
to define the network’ s structure properly. A general structure of the classification network is
shown in Figure 17. In this case, there are three layers in the neura network: an input layer, a
hidden layer, and an output layer. It isenough to have one hidden layer for practical
applications, because it can reduce the complexity of the network.



The number of input neurons depends on the number of features used in classification.
Because 35 features have been extracted from the aircraft sound record, 35 input neurons are
needed. The number of output neurons depends on the number of classes of the aircraft being
separated. Four output neurons will be needed because four kinds of aircraft (helicopter, jet,
multi-engine and single engine) need to be distinguished. Each output neuron represents two
states: O or 1. When it isactive, thevalueis 1, so the aircraft belongs to that class. The
number of hidden neuronsis crucial for the network’ s performance. If more hidden neurons
are used, a higher training accuracy but alower testing accuracy isobtained. Thisiscalled
overtraining. Thefinal network structure for aircraft classification is given in Figure 18.
Inputs

S Lt e L S S i L L R R ek e i i Wl L ke e e Ll el e |r'I|:ILIt|El!||Er

Hidden layer

Output layer

single Engine  Muti-engine et Helicapter

Outputs

Figure 18
Neural network for aircraft sound classification

Data Preparation

The helicopter class was represented as 1, jet was 4, multi-engine was 3, and single-engine
was 2. A Matlab program was programmed to change them to 0001, 1000, 0100 and 0010
instead of 1, 4, 3 and 2, respectively, as required by the neural network.

There are three neuron models in the Matlab Neural Network toolbox. They include: Tan-
Sigmoid, Log-Sigmoid, and Linear transfer function. In this case, the Log-Sigmoid transfer
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function was used because the value of classificationisOor 1. There are many training
methods in Matlab Neural Network Toolbox. Comparing the speed and the training and
testing result, The Automated Regulation (TRAINBR) was fast in training and gave the best
classification accuracy.

Different training and testing samples were used to train and test the network. After severd
repetitions of training and testing, the performance was found to be best for a network with a
hidden layer with 8 neurons.

Case 1l Study

In this study, 83 samples of aircraft operations were used as described in the following table.

Table?2

Representations of Aircraft Types

Helicopter Jet Multi-engine Single engine Total number
Representation 1 4 3 2 X
in number
Representation 0001 1000 0100 0010 X
in binary
Number 5 8 24 46 83
of data

Classification Resultswith 77 Training and 6 Testing Samples

Table3
Testing data set
Helicopter Jets Multi-engines | Single engines
Number 1(#2) 1 (#8) 2 (#15, #16) 2 (#39, #40)

The training results had an 87 percent accuracy rate.

Table4
Training results
Helicopter Jets Multi-engines | Single engines
Helicopter 4 0 0 0
Jets 0 6 0 1
Multi-engines 0 0 17 5
Single engines 0 0 0 44

The testing results had a 100 percent accuracy rate.
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Table5

Testing results
Helicopter Jets Multi-engines | Single engines
Helicopter 1 0 0 0
Jets 0 1 0 0
Multi-engines 0 0 2 0
Single engines 0 0 0 2

Classification Resultswith 75 Training and 8 Testing Samples

Table6
Testing data set
Helicopter Jets Multi-engines Single engines
Number 1 (#5) 1(#9) 3 (#33, #34, #35) | 3 (#81, #82, #83)

The training results had an accuracy of 94.6 percent.

Table7
Training results

Helicopter Jets Multi-engines | Single engines
Helicopter 3 0 1 0
Jets 0 7 0 0
Multi-engines 0 1 18 3
Single engines 0 0 0 43

The testing results gave a 100 percent rate.
Table8
Testing results

Helicopter Jets M ulti-engines Single engines
Helicopter 1 0 0 0
Jets 0 1 0 0
M ulti-engines 0 0 3 0
Single engines 0 0 0 3
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Classification with 72 Training and 11 Testing Samples

Table9
Testing data
Helicopter Jets Multi-engines Single engines
> 5 3 4
Number (#24, #25, (#71, #72
(#2, #4) (#8.#9) #26) #73, #74)

Thetraining results gave 97.2 percent accuracy.

Table 10
Training results

Helicopter Jets Multi-engines | Single engines
Helicopter 3 0 0 0
Jets 0 6 0 0
Multi-engines 0 1 19 1
Single engines 0 0 0 42

Thetesting results gave a 91.67 percent rate.
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Table11

Testing results
Helicopter Jets Multi-engines Single engines
Helicopter 1 0 1 0
Jets 0 2 0 0
M ulti-engines 0 0 3 0
Single engines 0 0 0 4

Case 2 Study

This case study used all of the available data. There were 96 take-off events for jets, multi-
engine, and single engine planes. A few of the samples data files were bad and could not be
used. All of the available helicopter data was used even though they did not take off.
Helicoptersfly in different pathsto their landing area depending upon the traffic. They do
not follow runways and will, in general, take a path that keeps them near the runway a short
amount of time. One must be located near their landing area to obtain a good take-off or
landing signal. Otherwise, itisafly by to the recording instrument. The datais giveninthe
following table.

Table12
Case 2 data set
Helicopter Jet Multi-engine Single engine Total number
Rgpresentatlon 1 4 3 5 X
in number
Representation 0001 1000 0100 0010 X
in binary
Number
Of data 15 13 25 52 105

Classification Study with 98 Training and 7 Testing Samples

Table 13
Testing data
Helicopter Jets Multi-engines Single engines
Number 2 ! 2 (#1042#105)
(#1,#9) (#23) (#30, #31) '

The training results were 98 percent correct classification.
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Table 14
Training results

Helicopter Jets Multi-engines | Single engines
Helicopter 13 0 0 0
Jets 0 12 0 0
Multi-engines 0 0 21 2
Single engines 0 0 0 50

The accuracy of testing was 100 percent correct classification.

Table 15
Testing results
Helicopter Jets Multi-engines | Single engines
Helicopter 2 0 0 0
Jets 0 1 0 0
Multi-engines 0 0 2 0
Single engines 0 0 0 2

Classification Study with 94 Training Samples and 11 Test Samples

Table 16
Testing data
Helicopter Jets Multi-engines Single engines
4
Number 2 2 3 (#96,#97,
(#7,#8) (#24,#25) (#32,#33, #34) #98,#99)

The training results were 100 percent correct classification.
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Table 17
Training results

Helicopter Jets M ulti-engines Single engines
Helicopter 13 0 0 0
Jets 0 11 0 0
M ulti-engines 0 0 22 0
Single engines 0 0 0 48

The testing results were 91 percent correct classification accuracy.

Table 18
Testing results
Helicopter Jets Multi-engines | Single engines
Helicopter 2 0 0 0
Jets 0 2 0 0
Multi-engines 0 0 3 0
Single engines 0 0 1 3

Classification with 93 Training and 12 Testing Samples

The samples used for testing are given in the following table.

Table 19
Testing data
Helicopter Jets Multi-engines | Single engines
5
3
2 2 (#91, #92, #93,
Number (#8, #9) (#22,4#23) (#3:41#)40’ 494, #05)

The training results were 99 percent correct classification.
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Table 20
Training results

Helicopter Jets Multi-engines Single engines
Helicopter 13 0 0 0
Jets 0 11 0 0
M ulti-engines 0 1 21 0
Single engines 0 0 0 47

The accuracy of testing was 100 per cent classification accuracy.

Table21
Testing results
Helicopter Jets Multi-engines Single engines
Helicopter 2 0 0 0
Jets 0 2 0 0
M ulti-engines 0 0 3 0
Single engines 0 0 0 5

Case 3 Study

A final study was conducted. This study included 48 sound events that were not aircraft

events. Various background sound events such as tractors, car, trucks, construction sounds,
or natural sounds like thunder may occur at airports. Forty-eight sound events of vehicles

such as cars and trucks were collected for this study. Also, abinary tree classification

method with neural network classifier at each node of the tree was implemented. The tree

classification system is shown in the following figure.
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Figure 19
Binary tree classification

We used 153 sound samples consisting of 105 aircraft data and 48 vehicle events. Of these,
133 samples were used for training and 20 samples were used for testing. The following two
tables give the training and testing data

Table 22
Training data

Non air cr aft Aircraft Aircraft Aircraft Aircraft
Traffic Helicopter Jets Multi-engines Single engines
Number 41 13 11 22 46
Table 23
Testing data
Non air cr aft Aircraft Aircraft Aircraft Aircraft
traffic Helicopter Jets Multi-engines Single engines
Number 7 2 2 3 6
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The training results were 100 percent correct classification. They are given in the following
table, (Table 24).

Table24
Training results
Non air cr aft Aircraft
Traffic 41 0
Helicopter 0 13
Jets 0 11
Multi engines 0 22
Single engines 0 46

The testing results were also 100 percent correct. They are given in the following table.

Table 25
Testing results

Non air cr aft Aircraft
Traffic 7 0
Helicopter 0 2
Jets 0 2
Multi engines 0 3
Single engines 0 6

Classification Software

A flexible software system was developed to perform the classification. It allows processing
and displaying of the raw data, perform classifications, and training of the classification
network on new dataif it becomes available. The software is programmed in Matlab. The
following figure (Figure 20) shows the interface to the system. Before the other buttons are
pressed, the Data button needs to be pressed to indicate the drive letter that contains the data.
The Draw & Play button can be used to plot and play the sound of an aircraft event. The
Preprocessing, Extraction Feature and Classification buttons are necessary steps of
classification on anew sound sample. The Info button is used to explain the software. The
Close button is used to exit the software.
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I nterface to softwar e system

The Data button operates as follows. After clicking this button, type the disc that contains
that data. The following Matlab window will then be shown, (Figure 21).
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Figure 21
Display after preprocessing

By clicking the Preprocessing button, the following Matlab window will be displayed.

option 1 is chosen, then the data will be displayed as shown in Figure 22. Plots of the SPL

signal and frequency data will be obtained.

If
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Preprocessing window
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Results of preprocessing

If the Classification button is chosen, the window shown in the following figure will
be obtained. The classification results for the selected data are given in the figure.
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Display from classification

If additional datais obtained and it is necessary to refine the classification method, then the
network can be retained. In this case, use the Network Training button. Thisdisplay is
shown in the following figure, (Figure 25).
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DISCUSSION OF RESULTS

This project focused on devel oping a prototype aircraft operations monitoring system. The
results show that an automatic acoustic monitoring system suitable for field development can
be developed. The results of the classification studies indicate that automatic classification of
aircraft operations can be accomplished at acceptable rates. A software system for classifying
aircraft operations that is flexible and adaptable has been designed. As additional datais
collected, the system can be easily retrained and tested on new data. Caution in working with
companies that can supply the data collection equipment is advised. These companies are
small and can change their focus and products quickly. This may affect any software that
depends on their products. For this reason, aflexible software system has been designed

here.
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CONCLUSIONS

We have shown the feasibility of developing an aircraft operations monitoring system. The
software developed is flexible and compatible with any acoustic data collection platform. A
prototype system has been developed with a vendor that has exhibited stability. The primary
limitation of the study isalimited data set of aircraft operations.
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RECOMMENDATIONS

The results indicate that the development of a production system isfeasible. A key pointis
that a vendor having a stable commitment to their products isimperative. Our most recent
discussions with Larson Davisindicate their desire to develop and market a system. They
seem to have stability in their management personnel and their approach to markets. Itis
recommended that the development be pursued with Larson Davis. They have two products
for data collection. Oneisthe 820 unit that can be used for aircraft counting. The other is
the 824 unit that collects 1/3 octave frequency information four times per second. This unit
will operate in the field on batteries and should be the basis for future devel opment.
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ANN

ACRONYMS, ABBREVIATIONS, & SYMBOLS

Artificial neural network

Back propagation neural network

Fast Fourier transform

Inverse Fourier transform

Sound pressure level

The equivalent continuous sound level over a specified time interval
The Mel Frequency Cepstral coefficients

Sound signal pressure

RMS value of sound signal

Sound level meter

Sound pressure level
Wavelet transform
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