TECHNICAL REPORT STANDARD PAGE

1. Report No. FHWA / LA 03/ 377	2. Government Accession No.	3. Recipient's Catalog No.		
4. Title and Subtitle Analysis of Past NBI Ratings to Determine Future	5. Report Date January 2004			
Bridge Preservation Needs	6. Performing Organization Code			
7. Author(s) Xiaoduan Sun, Ph.D., P.E. ¹ , Robert Wang, D.Sc., P.E. ¹ Zhongjie "Doc" Zhang Ph.D., P.E. ²	8. Performing Organization Report No.			
9. Performing Organization Name and Address	10. Work Unit No.			
 ¹ Civil Engineering Department University of Louisiana at Lafayette Lafayette, LA 70504 ² Louisiana Transportation Research Center (LTRC) 	11. Contract or Grant No. State Project Number: 739-99-0733 LTRC Project Number: 02-1ST			
12. Sponsoring Agency Name and Address Louisiana Transportation Research Center 4101 Gourrier Avenue	13. Type of Report and Period Covered Final Report Period Covered: 01-01-02 to 03-31-03			
Baton Rouge, LA 70809	14. Sponsoring Agency Code			
15. Supplementary Notes				

16. Abstract

Bridge Management System (BMS) needs an analytical tool that can predict bridge element deterioration and answer questions related to bridge preservation. PONTIS, a comprehensive BMS software, was developed to serve this purpose. However, the intensive data requirement in PONTIS has prevented the Louisiana Department of Transportation and Development (LA DOTD), like 40 other state DOTs in the country, from fully utilizing PONTIS modeling capabilities, despite an annual maintenance fee of \$25,000 paid to the program developer. To solve this problem, an innovative approach was developed in this project. The long-term performance of the bridge system under various alternatives of BMS was evaluated using readily available National Bridge Inventory (NBI) data in PONTIS. The deterioration process of three elements was thoroughly studied, and the element deterioration models were developed based on these observations. The bridge preservation plans and associated cost schemes were also developed according to LA DOTD's current practice and available information.

The results from this project have demonstrated that it is feasible and practical to use rich historical NBI data for BMS analysis. The current LA DOTD \$70 million annual budget for bridge systems seems sufficient to meet the preservation need, but it is not adequate for meeting the needs of bridge functional improvement. The bridge preservation plan, if implemented successfully, can maintain the bridge system in good operating conditions for a long time under a limited annual budget.

^{17. Key Words} Bridge management system, NBI, PO	NTIS, deterioration	18. Distribution Statement Unrestricted. This document is available through the National Technical Information Service, Springfield, VA 21161.			
19. Security Classif. (of tis report) 20. Security Classif. (of this page)		21. No. of Pages 172	22. Price		

Analysis of Past NBI Ratings to Determine Future Bridge Preservation Needs

by Xiaoduan Sun, Ph.D., P.E. Robert Wang, D.Sc., P.E.

Department of Civil Engineering University of Louisiana at Lafayette Lafayette, LA 70504

&

Zhongjie Zhang, Ph. D., P.E. Louisiana Transportation Research Center

> State Project No. 736-99-0733 LTRC Project No. 02-1ST

> > conducted for

Louisiana Department of Transportation and Development Louisiana Transportation Research Center

The contents of this report reflect the views of the author/principal investigator who is responsible for the facts and the accuracy of the data presented herein. The contents of report do not necessarily reflect the views or policies of the Louisiana Department of Transportation and Development or the Louisiana Transportation Research Center. This report does not constitute a standard, specification, or regulation.

January 2004

ABSTRACT

Bridge Management System (BMS) needs an analytical tool that can predict bridge element deterioration and answer questions related to bridge preservation. PONTIS, a comprehensive BMS software, was developed to serve this purpose. However, the intensive data requirement in PONTIS has prevented the Louisiana Department of Transportation and Development (LA DOTD), like 40 other state DOTs in the country, from fully utilizing PONTIS modeling capabilities, despite an annual maintenance fee of \$25,000 paid to the program developer.

To solve this problem, an innovative approach was developed in this project. The long-term performance of the bridge system under various alternatives of BMS was evaluated using readily available National Bridge Inventory (NBI) data in PONTIS. The deterioration process of three NBI elements was thoroughly studied, and the element deterioration models were developed based on these observations. The bridge preservation plans and associated cost schemes were also developed according to LA DOTD's current practice and available information.

The results from this project have demonstrated that it is feasible and practical to use rich historical NBI data for BMS analysis. The current LA DOTD \$70 million annual budget for bridge systems seems sufficient to meet the preservation need, but it is not adequate for meeting the needs of bridge functional improvement. The bridge preservation plan, if implemented successfully, can maintain the bridge system in good operating conditions for a long time under a limited annual budget.

ACKNOWLEDGEMENTS

This project was supported by the Louisiana Department of Transportation and Development (LA DOTD) through the Louisiana Transportation Research Center (LTRC) as research project number 02-1ST and state project number 739-99-0733. The valuable contributions from the other two members of the project team, Jason Chapman of LA DOTD and Xuyong Wang, a graduate student at the University of Louisiana at Lafayette, are gratefully acknowledged. Also acknowledged is the guidance received throughout this project from the project review committee and the LTRC project manager, Walid Alaywan. Last but not least, the research team wishes to express gratitude to LA DOTD personnel who assisted them with data collection: Gill Gautreau of Bridge Maintenance, Ray Mumphrey of Bridge Design, Henry Barousse of Contract Office, Glenn Chutz of Computer Section, and Said Ismail of Pavement and Bridge Management.

IMPLEMENTATION STATEMENT

The implementation of this project should lead to better-informed decisions on planning and budgeting for the Louisiana highway bridge system. The Planning Division of LA DOTD can use the procedures developed in this project for funding decisions on the bridge management system. Specifically, the LA DOTD Budgeting and Planning Office can fully apply the comprehensive PONTIS program to evaluate many planning scenarios and answer various what-if questions concerning the trade-offs between serviceability and budgetary constraints.

TABLE OF CONTENTS

ABSTRACT		iii
ACKNOWLEDGE	MENTS	v
IMPLEMENTATI	ON STATEMENT	vii
TABLE OF CONT	ENTS	ix
LIST OF FIGURES	5	xi
LIST OF TABLES		xiii
INTRODUCTION		1
OBJECTIVE		
SCOPE		5
METHODOLOGY		7
Louisiana E	Bridge System	7
Developme	nt of Louisiana Bridge Deterioration Model	
Bridge Syst	em Analysis with PONTIS	
Results		
CONCLUSIONS		
ABBREVIATION	S AND SYMBOLS	
REFERENCES		
APPENDICES (A	ll Appendices Are Included On Accompanying CD)	
А.	The NBI Deterioration Charts	
B.	The PONTIS Settings	
C.	The Preservation Model Details	
D.	The Results without budget	
E.	The Results with An Annual Budget of \$70M	
F.	The Results with An Annual budget of \$140M	

LIST OF FIGURES

Figure 1 The distribution of bridges built year	7
Figure 2 Number of bridge distribution by constructed materials (2000)	9
Figure 3 Bridges deck area distribution by construction materials (2000)	9
Figure 4 Bridges distribution by LA DOTD districts	
Figure 5 NBI deck ratings in 2002	
Figure 6 NBI superstructure ratings in 2002	
Figure 7 NBI substructure ratings in 2002	
Figure 8 The sufficiency rating calculation chart	14
Figure 9 Distribution of sufficiency rating in 2002	
Figure 10 NBI rating distribution after five years (original NBI rating =1)	16
Figure 11 NBI rating distribution after five years (original NBI rating =2)	16
Figure 12 NBI rating distribution after five years (original NBI rating =3)	17
Figure 13 NBI rating distribution after five years (original NBI rating =4)	17
Figure 14 NBI rating distribution after five years (original NBI rating =5)	
Figure 15 NBI rating distribution after five years (original NBI rating =6)	
Figure 16 NBI rating distribution after five years (original NBI rating =7)	
Figure 17 NBI rating distribution after five years (original NBI rating =8)	
Figure 18 NBI rating distribution after five years (original NBI rating =9)	
Figure 19 The probability distribution of deck NBI ratings after five years	
Figure 20 The framework of PONTIS	
Figure 21 Annual needs vs. work with S-0-1	
Figure 22 Annual needs vs. work with S-70-1	
Figure 23 Annual needs vs. work with S-140-1	
Figure 24 PONTIS condition state rating for deck with S-0-1	
Figure 25 PONTIS condition state rating for deck with S-70-1	
Figure 26 PONTIS condition state rating for superstructure with S-0-1	
Figure 27 PONTIS condition state rating for superstructure with S-70-1	
Figure 28 PONTIS condition state rating for substructure with S-0-1	
Figure 29 PONTIS condition state rating for substructure with S-70-1	
Figure 30 Accumulated HI distribution by number of bridges with S-0-1	
Figure 31 Accumulated HI distribution by number of bridges with S-70-1	
Figure 32 Accumulated HI distribution by deck area with S-0-1	
Figure 33 ccumulated HI distribution by deck area with S-70-0	
Figure 34 Distribution of sufficiency rating with S-0-1	
Figure 35 Distribution of sufficiency rating with S-70-1	

LIST OF TABLES

Table 1 An overview of Louisiana highway bridges	8
Table 2 NBI condition rating	11
Table 3 The four major bridge groups	15
Table 4 Rating conversions from NBI to PONTIS	21
Table 5 Five-year transition matrix for concrete bridge deck	22
Table 6 Five-year transition matrix for concrete bridge superstructure	22
Table 7 Five-year transition matrix for concrete bridge substructure	22
Table 8 Five-year transition matrix for prestressed concrete bridge deck	23
Table 9 Five-year transition matrix for prestressed concrete bridge superstructure	23
Table 10 Five-year transition matrix for prestressed concrete substructure	23
Table 11 Five-year transition matrix for steel bridge deck	23
Table 12 Five-year transition matrix for steel bridge superstructure	24
Table 13 Five-year transition matrix for steel bridge substructure	24
Table 14 Five-year transition matrix for timber bridge superstructure	24
Table 15 Five-year transition matrix for timber bridge superstructure	24
Table 16 Five-year transition matrix for timber bridge substructure	24
Table 17 Final one-year deterioration matrix for concrete deck	27
Table 18 Final one-year deterioration matrix for concrete superstructure	27
Table 19 Final one-year deterioration matrix for concrete substructure	27
Table 20 Final one-year deterioration matrix for steel deck	27
Table 21 Final one-year deterioration matrix for steel super-structure	28
Table 22 Final one-year deterioration matrix for steel sub-structure	28
Table 23 Final one-year deterioration matrix for pre-stressed concrete deck	28
Table 24 Final one-year deterioration matrix for pre-stressed concrete superstructure	28
Table 25 Final one-year deterioration matrix for pre-stressed concrete substructure	29
Table 26 Final one-year deterioration matrix for timber deck	29
Table 27 Final one-year deterioration matrix for timber superstructure	29
Table 28 Final one-year deterioration matrix for timber sub-structure	29
Table 29 The preservation action plan for deck	32
Table 30 The preservation action plan for superstructure	32
Table 31 The preservation action plan for substructure	32
Table 32 List of scenario names	33
Table 33 Summary of results in last programming year needs and health index	34
Table 34 Summary of results in total funds spent on each preservation and improvement	
action	34

INTRODUCTION

There are more than 8,000 bridges in the Louisiana state highway system. To maintain these bridges in acceptable operating conditions, limited funds are allocated to the system annually. To effectively utilize the resources, the Louisiana Department of Transportation and Development (LA DOTD) needs a procedure that can optimize the long-term system performance under the budgetary constraints. The ability to predict future bridge preservation needs is critical to the 2001 LA DOTD Strategic Plan and to the update of the Statewide Transportation Plan. Currently, LA DOTD is contributing \$25,000 annually to maintain a comprehensive bridge management software named PONTIS. PONTIS requires extensive bridge inventory data and condition ratings data at the very detailed bridge element level. Mainly due to the large amount of work required, LA DOTD had never collected this type of data until very recently. The newly initiated data collection project will take several years to complete (with both inventory details and ratings)[1].

While there are no data available for executing the PONTIS program, LA DOTD has collected the extensive National Bridge Index (NBI) data for the past two decades. The NBI data are not at the detailed PONTIS element level; therefore, it cannot be directly used as it is input to the program. PONTIS software, a result of many years of development by a group of experts, is a complex program for bridge system optimization and simulation. Despite PONTIS' powerful modeling capability, only a few state DOTs have fully utilized PONTIS for their bridge management systems.

OBJECTIVE

The goal of this project is to develop a practical procedure for the LA DOTD bridge management system. Specifically, the research team will use the current and past NBI data to:

- Develop a three-element database for the PONTIS program that consists of the elements of deck, superstructure, and substructure.
- Develop and calibrate the generalized Louisiana bridge elementdeterioration models to be used in the PONTIS program.
- Obtain expertise in running the PONTIS program.
- Collect the cost information, develop, and calibrate a generalized cost database to be used in the PONTIS program.
- Establish a usable and reliable procedure to trace bridge preservation and replacement activities.

SCOPE

The scope of this project is limited to analyzing the preservation and improvement needs for planning the Louisiana bridge system with the PONTIS program and current available NBI data. The comprehensive PONTIS program requires a set of input that includes bridge-element deterioration models, preservation action plans, and the associated costs, which are developed by this project. The results of the project can be used as a decision-making tool for planning and budgeting the bridge management system. Once the on-going PONTIS inspection project is completed, the procedures developed in this project can be readily applied to a more detailed analysis with PONTIS.

METHODOLOGY

Louisiana Bridge System

LA DOTD is responsible for maintaining approximately 17,000 miles of roads and 8,000 onsystem bridges. Among these bridges, about 7,000 are in operation with a total deck surface area of 130 million square feet. More than 55 percent of state bridges were built before 1970, as shown in figure 1. Maintaining all bridges, old and new, in good, operating condition under the limited annual budget is a challenge for LA DOTD.



Figure 1 The distribution of bridges built year

The number of bridges sorted by construction materials and type of structures is listed in table 1 according to the NBI system. The culverts are not included in this study because of their small sizes and functions. The number and deck area of on-system bridges change slightly from year to year because of the addition of new bridges, removal of old bridges, and widening of bridges.

No.	Type of	No.	Type of	Deck Area (kft2)				Number of Structures					
110.	Materials		Structures	1980	1985	1990	1995	2000	1980 1985 1990 1995 20			2000	
1	Blank	1	Blank	-	-	-	54	1,887	-	-	-	13	85
2	0-OTHER	2	00-OTHER	259	4,809	5,830	12	6	131	174	141	4	2
		3	01-SLAB	12,734	11,159	12,303	13,017	13,987	2,392	2,586	2,753	2,886	3,049
		4	02-STRINGER	22,416	19,330	13,445	-	-	564	426	423	-	-
		5	04-TEE BEAM	6,068	4,200	4,126	3,695	3,627	474	356	343	326	308
3	1-CONCRETE	6	05-BOX BEAM	158	466	783	-	-	7	21	36	-	-
		7	11-ARCH	10	6	6	31	31	5	2	2	4	4
		8	18-TUNNEL	45	45	45	45	45	3	3	3	3	3
		9	22-CHNL BEM	-	-	-	2	4	-	-	-	1	2
			01-SLAB	133	129	146	239	328	18	17	19	29	33
4	2-CONCRETE	11	04-TEE BEAM	161	285	673	646	833	9	28	54	67	73
		12	05-BOX BEAM	-	-	-	938	991	-	-	-	44	47
		13	00-OTHER	58	161	155	6	6	19	21	18	5	5
		14	02-STRINGER	44,031	39,492	28,434	22,723	25,985	538	543	547	825	789
		15	03-GIRDER	-	-	-	4,233	4,162	-	-	-	97	85
5	3-STEEL		09-TRUSS	500	-	-	94	598	2	-	-	1	3
5	JOILLE	17	10-TRUSS	1,226	12,256	12,389	1,857	1,526	16	47	45	37	29
		18	15-MOV-LIFT	744	1,327	1,440	1,195	1,176	22	56	56	38	36
		19	16-MOV-BASC	1,214	1,296	1,294	945	934	9	11	10	8	7
		20	17-MOV-SWNG	211	1,047	1,070	1,088	1,134	13	63	63	70	71
			02-STRINGER	546	5,358	11,826	3,362	4,316	41	97	131	97	115
		22	03-GIRDER	-	3,300	3,265	12,295	6,441	-	47	46	159	143
6	4-STEEL	23	05-BOX BEAM	-	-	-	3,950	4,402	-	-	-	29	52
		24	10-TRUSS	-	-	-	3,657	3,581	-	-	-	24	24
		25	14-STAYED	-	-	-	254	254	-	-	-	1	1
7	5-PRESTRES	26	02-STRINGER	48,842	40,239	45,022	35,717	43,525	705	782	953	1,055	1,102
8	6-PRESTRES		02-STRINGER	-	-	-	7,434	9,463	-	-	-	157	257
9	7-TIMBER	28	02-STRINGER	3,957	2,671	2,435	2,236	1,771	1,838	1,350	1,213	1,077	835
	Sub-total			143,314	147,577	144,686	119,726	131,013	6,806	6,630	6,856	7,057	7,160

Table 1An overview of Louisiana highway bridges

There are 134,677,000 square feet of deck area and 8,751 bridges in the 2000 NBI database. Most of the bridges were constructed with concrete and steel. Figures 2 and 3 show that the bridges constructed with concrete have the most number of structures of 4,700, while the bridges with stressed concrete have the largest deck area of 43,525,000 square feet.

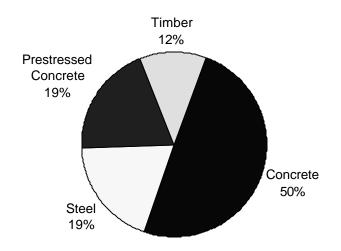


Figure 2 Number of bridge distribution by constructed materials (2000)

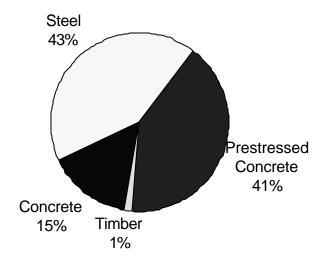
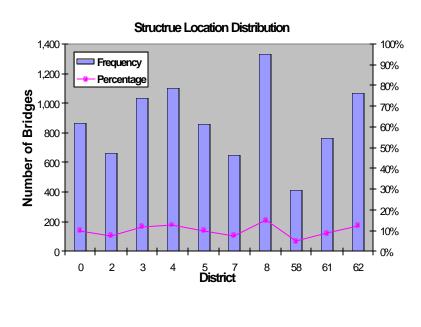



Figure 3 Bridges deck area distribution by construction materials (2000)

The number of bridges is not distributed evenly among the nine LA DOTD district offices, as show in figure 4. For example, District 8 housed in Alexandria has 1,323 structures, or 15 percent of the total bridges in the state, constituting the largest quantity among all districts.

Code	District		
0	Missing		
2	Bridge City		
3	Lafayette		
4	Bossier City		
5	Monroe		
7	Lake Charles		
8	Alexandria		
58	Chase		
61	Baton Rouge		
62	Hammond		

Figure 4 Bridges distribution by LA DOTD districts

To evaluate bridge conditions, several measurements, or condition indicators, have been widely used: NBI Rating, Health Index (HI), and Sufficiency Rating (SR). The NBI rating deals with three bridge elements: deck, superstructure, and substructure. The Health Index and Sufficiency Rating are for a whole bridge. PONTIS, the most widely accepted bridge management software, has its own rating systems for commonly recognized bridge elements (CoRe.) that will be discussed later in this report [1,2].

Following the FHWA requirements, LA DOTD has been collecting NBI data for more than 20 years. The historical NBI data have revealed a great deal of information on element conditions and the subjected maintenance actions over the years. The NBI system classifies element conditions into nine categories as explained in table 2 [3].

Table 2 NBI condition rating

Code	Description					
N	NOT APPLICABLE					
9	EXCELLENT CONDITION					
8	VERY GOOD CONDITION - no problems noted.					
7	GOOD CONDITION - some minor problems.					
6	SATISFACTORY CONDITION - structural elements show some minor deterioration.					
5	FAIR CONDITION - all primary structural elements are sound but may have minor section loss, cracking, spalling or scour.					
4	POOR CONDITION - advanced section loss, deterioration, spalling or scour					
3	SERIOUS CONDITION - loss of section, deterioration, spalling or scour have seriously affected primary structural components. Local failures are possible. Fatigue cracks in steel or shear cracks in concrete may be present.					
2	CRITICAL CONDITION - advanced deterioration of primary structural elements. Fatigue cracks in steel or shear cracks in concrete may be present or scour may have removed substructure support. Unless closely monitored it may be necessary to close the bridge until corrective action is taken.					
1	"IMMINENT" FAILURE CONDITION - major deterioration or section loss present in critical structural components or obvious vertical or horizontal movement affecting structure stability. Bridge is closed to traffic but corrective action may put back in light service.					
0	FAILED CONDITION - out of service - beyond corrective action.					

The overall conditions of the highway bridge system in 2002 are plotted in terms of NBI ratings for deck, superstructure, and substructure as displayed in figures 5, 6, and 7. The total number of bridges is 7,146 (excluding culverts) and the total deck area is 113.5 million square feet.

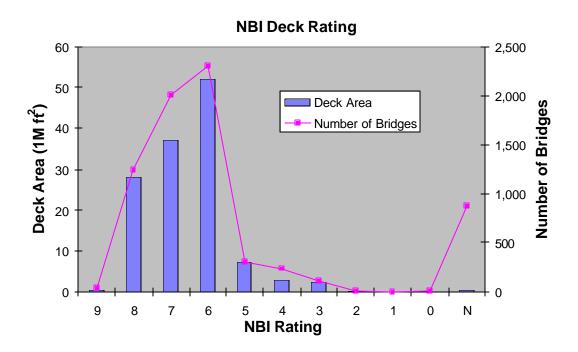


Figure 5 NBI deck ratings in 2002

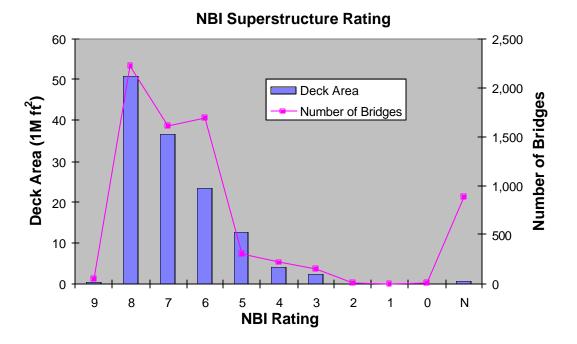
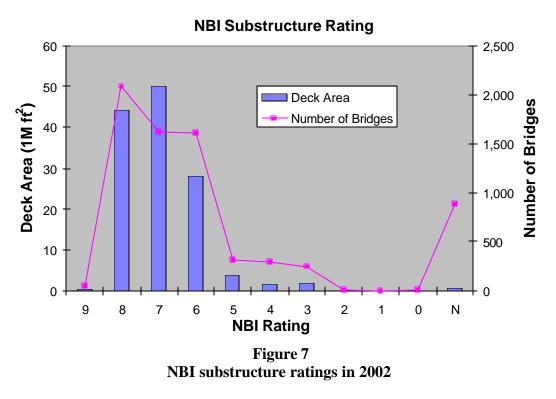



Figure 6 NBI superstructure ratings in 2002

The 2002 NBI ratings show that the majority of the bridges under the LA DOTD system are in good conditions, and about 20 percent of the bridges need improvement.

Sufficiency Rating (SR) is another measurement for a bridge. It is a function of NBI ratings of the three elements, traffic volume, and structure deficiency. Figures 8 and 9 show, respectively, the components and distribution of SR in year 2002. The number and deck area of bridges with an SR greater than 50 are 5,406 and 123 million square feet, respectively [2].

Both NBI and SR show that the on-system bridges in Louisiana are generally in good conditions. However, as the bridges are getting older, the needs for maintenance and replacement will increase. How fast the bridges will deteriorate and how sufficient the current budget is for the bridge system are the questions that need to be answered for the LA DOTD's bridge management system.

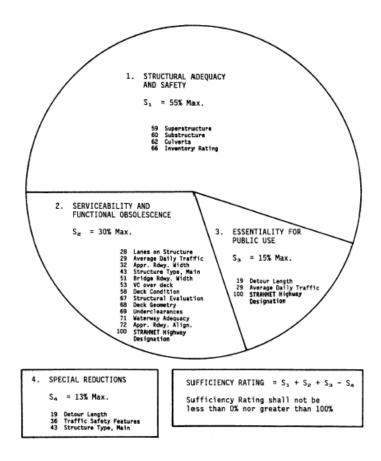


Figure 8 The sufficiency rating calculation chart

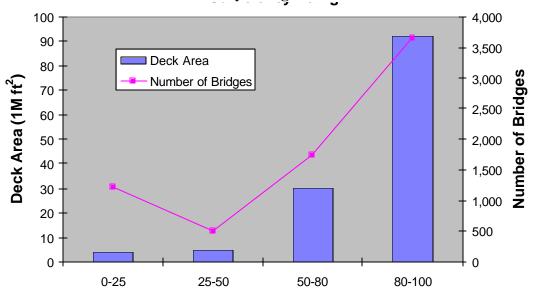


Figure 9 Distribution of sufficiency rating in 2002

Development of Louisiana Bridge Deterioration Model

One important task of this project is to develop a Louisiana bridge- element deterioration model that can be used to predict future-bridge system performance. Although PONTIS, the adopted BMS software, has the default-element deterioration models, they cannot be applied to the NBI elements. Three major steps involved in developing the deterioration models are described below.

Step 1. Developing the Historical NBI Rating Matrices for the Four Aggregated Bridge Groups

As presented in table 1, there are 28 NBI bridge categories (excluding curvets). Considering their similarities in deterioration patterns and construction materials, four major bridge groups are defined. They are concrete, steel, prestressed concrete, and timber bridges, as shown in table 3. Each group of bridges has three NBI elements leading to 12 elements.

	Deck (Ft2)	Super (Ft)	Sub (Item)
Concrete	22,074,867	2,857,781	59,841
Steel	54,326,379	6,492,388	180,990
Prestress	53,863,558	6,264,197	162,487
Timber	1,650,716	252,527	5,059
Total	131,915,520	15,866,893	408,377

Table 3The four major bridge groups

The changes in NBI ratings for the three elements of concrete bridges after five years are displayed in figures 10 to 18. Similar figures for the three elements of steel, prestressed concrete, and timber bridges are given in Appendix A.

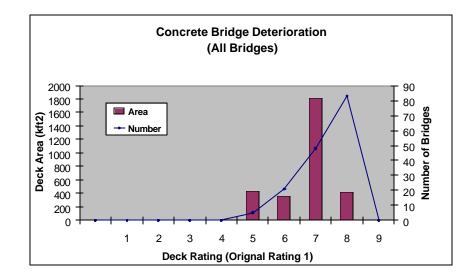


Figure 10 NBI rating distribution after five years (original NBI rating =1)

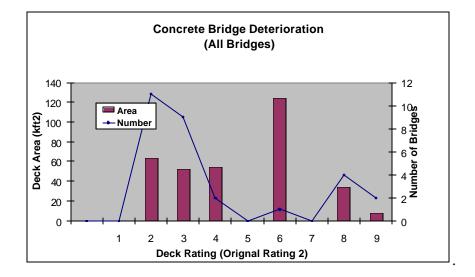


Figure 11 NBI rating distribution after five years (original NBI rating =2)

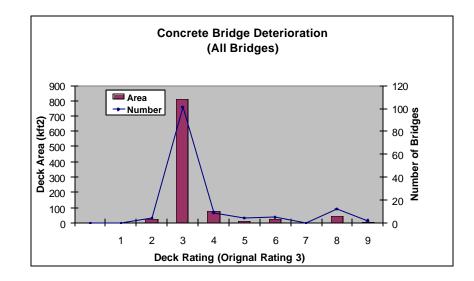


Figure 12 NBI rating distribution after five years (original NBI rating =3)

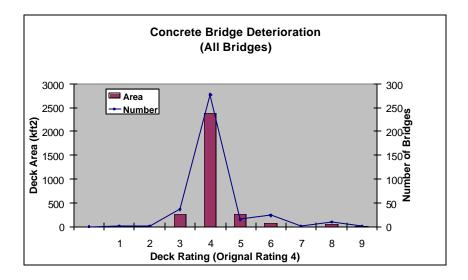


Figure 13 NBI rating distribution after five years (original NBI rating =4)

Figure 14 NBI rating distribution after five years (original NBI rating =5)

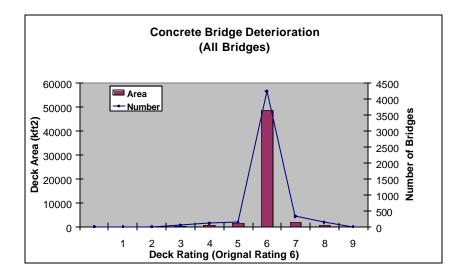


Figure 15 NBI rating distribution after five years (original NBI rating =6)

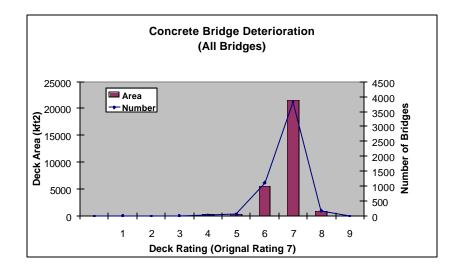


Figure 16 NBI rating distribution after five years (original NBI rating =7)

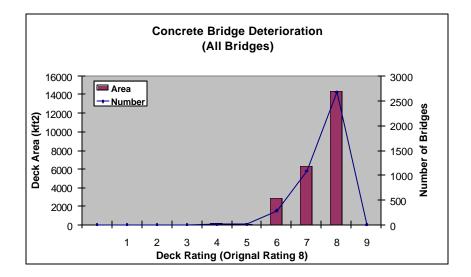


Figure 17 NBI rating distribution after five years (original NBI rating =8)

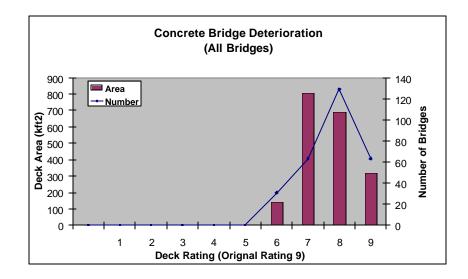


Figure 18 NBI rating distribution after five years (original NBI rating =9)

The above figures indicate that when the original NBI ratings are less than 5, the majority of ratings after five years are higher than the original one, indicating that some types of maintenance actions were conducted during those five years. The NBI ratings of 6, 7, and 8 are considered stable states in which a high proportion of elements stay in the original ratings after five years. For the original rating of 9, figure 18 shows pure deterioration of the element. The NBI rating changes are summarized in figure 19 where the concept of probability indicates the percentage of bridges in each rating group after five years. This probability is naturally called the transition probability that reflects both deterioration and maintenance effects.

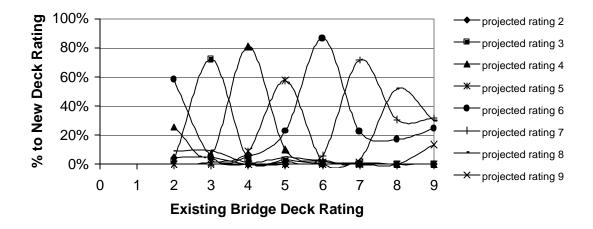


Figure 19 The probability distribution of deck NBI ratings after five years

Step 2. Transferring NBI Rating to PONTIS Rating System

In order to use the PONTIS program, the NBI ratings must be converted to PONTIS ratings. Although the two systems have the same objectives, the NBI ratings differ from PONTIS ratings in three aspects:

- 1. There are nine rating classes in the NBI ratings, but only four or five rating scales in PONTIS.
- 2. The NBI rating is set for a whole element (deck, superstructure, or substructure) while the PONTIS rating is for a part of an element.
- 3. The NBI element is larger and encompasses many PONTIS elements.

Considering the difference in the definitions of the two rating systems, the rating conversion was conducted as shown in table 4. The rating-transfer program developed by the University of Colorado is slightly more complex than ours since its purpose was to convert the PONTIS rating to that of NBI [4].

NBI Rating	PC	PONTIS Condition State				
	Deck	Superstructure	Substructure			
7-9	1	1	1			
6	2	2	2			
5	3	3	3			
3-4	4	4	4			
1-2	5					

Table 4Rating conversions from NBI to PONTIS

The five-year transition matrices in PONTIS rating for all 12 elements are listed in tables 5 to 16.

Original	New State					
State	1	2	3	4	5	
1	82.43	15.59	0.84	1.09	0.06	
2	4.35	90.52	2.51	2.53	0.09	
3	3.90	19.84	59.19	14.58	2.49	
4	2.55	2.49	6.80	87.05	1.10	
5	67.65	14.36	12.87	3.20	1.91	

Table 5Five-year transition matrix for concrete bridge deck

Table 6
Five-year transition matrix for concrete bridge superstructure

			0	1		
Original		New State				
State	1	2	3	4		
1	80.52	18.03	0.82	0.64		
2	3.22	93.11	1.69	1.97		
3	8.79	5.81	55.03	30.37		
4	32.84	6.45	1.21	59.50		

Table 7Five-year transition matrix for concrete bridge substructure

Original	New State				
State	1	4			
1	90.28	7.03	0.92	1.77	
2	4.71	88.00	4.18	3.11	
3	8.33	6.31	56.51	28.85	
4	45.64	3.85	7.79	42.73	

Table 8Five-year transition matrix for prestressed concrete bridge deck

Original	New State				
State	1	2	3	4	5
1	83.02	10.64	4.38	1.90	0.07
2	7.17	90.23	2.09	0.33	0.17
3	2.66	3.27	74.84	19.01	0.22
4	7.52	15.68	3.05	72.91	0.84
5	14.80	65.01	0.00	12.14	8.05

Table 9Five-year transition matrix for prestressed concrete bridge superstructure

Original	New State				
State	1	2	3	4	
1	91.90	5.83	0.96	1.31	
2	2.82	79.31	14.68	3.19	
3	0.03	30.11	65.78	4.07	
4	44.35	3.46	1.92	50.27	

Table 10Five-year transition matrix for prestressed concrete substructure

Original	New State				
State	1	2	3	4	
1	94.98	4.43	0.25	0.34	
2	18.50	78.25	1.69	1.56	
3	1.99	12.24	63.08	22.69	
4	42.66	2.69	1.21	53.44	

Table 11Five-year transition matrix for steel bridge deck

Original	New State					
State	1	2	3	4	5	
1	68.89	28.77	0.64	0.00	1.70	
2	1.91	97.96	0.10	0.03	0.00	
3	28.94	48.41	22.57	0.08	0.00	
4	13.20	10.62	0.00	76.17	0.00	
5	69.82	25.05	3.57	0.00	1.56	

Table 12Five-year transition matrix for steel bridge superstructure

Original	New State				
State	1 2 3 4				
1	98.23	1.47	0.22	0.08	
2	19.11	78.22	0.50	2.17	
3	24.19	5.09	57.14	13.59	
4	85.99	10.45	0.51	3.05	

Table 13Five-year transition matrix for steel bridge substructure

Original	New State				
State	1	2	3	4	
1	88.26	11.63	0.10	0.01	
2	6.94	92.27	0.74	0.05	
3	49.60	21.55	27.78	1.07	
4	97.72	0.00	0.19	2.09	

Table 14

Five-year transition matrix for timber bridge superstructure

Original	New State					
State	1	2	3	4	5	
1	45.04	37.14	7.72	9.70	0.40	
2	4.18	67.66	8.96	18.92	0.28	
3	0.82	13.48	45.74	37.45	2.51	
4	1.71	5.85	7.97	83.28	1.19	
5	0.00	0.00	54.83	24.71	20.45	

Table 15Five-year transition matrix for timber bridge superstructure

Original	New State				
State	1	2	3	4	
1	51.00	28.48	5.93	14.59	
2	3.32	67.98	8.50	20.20	
3	1.28	8.28	53.62	36.82	
4	0.29	9.33	7.15	83.23	

Original	New State				
State	1	2	3	4	
1	43.98	32.29	5.42	18.30	
2	2.60	57.55	8.03	31.82	
3	0.00	11.38	38.39	50.23	
4	0.17	3.10	4.76	91.98	

Table 16Five-year transition matrix for timber bridge substructure

The upper triangles of the matrices indicate element deterioration (the condition state getting worse), while the lower parts reflect the maintenance actions (the condition state getting better). The diagonal numbers represent the probability of an element staying at the same condition rating after five years.

Step 3. Development of Deterioration Matrices

The development of a pure deterioration model is based on the assumption that there were no maintenance actions during the past five years. In this case, the numbers on the lower triangle of table 5 are zeros. The final deterioration matrix, D, is computed by the transition matrix P as shown below:

$$P = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} & p_{15} \\ p_{21} & p_{22} & p_{23} & p_{24} & p_{25} \\ p_{31} & p_{32} & p_{33} & p_{34} & p_{35} \\ p_{41} & p_{42} & p_{43} & p_{44} & p_{45} \\ p_{51} & p_{52} & p_{53} & p_{54} & p_{55} \end{bmatrix}_{t}$$
(1)

Where P_{ij} represents the transition probability with which the rating of a bridge component changes from *i* to *j* on a t-year interval. The diagonal probabilities P_{ij} (*i*=*j*) are the probability of bridge components staying with the same ratings after the t-year interval. The lower triangle (*i*>*j*) of the matrix indicates an increase in rating due to bridge maintenance or replacement (increasing the condition rating to one).

An element deterioration matrix is of the form

$$D = \begin{bmatrix} d_{11} & d_{12} & d_{13} & d_{14} & d_{15} \\ 0 & d_{22} & d_{23} & d_{24} & d_{25} \\ 0 & 0 & d_{33} & d_{34} & d_{35} \\ 0 & 0 & 0 & d_{44} & d_{45} \\ 0 & 0 & 0 & 0 & d_{55} \end{bmatrix}_{t}$$
.....(2)

where d_{ii} represents the probability with which a bridge component (element) deteriorates from a rating *i* to a rating *j* on a t-year interval. The deterioration matrix D_t was developed in this study from the transition-probability matrix P_t as follows:

$$D = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} & p_{15} \\ 0 & p_{22} + \frac{1}{2} p_{21} & p_{23} + \frac{1}{6} p_{21} & p_{24} + \frac{1}{6} p_{21} & p_{25} + \frac{1}{6} p_{21} \\ 0 & 0 & p_{33} + \frac{3}{5} \sum_{i}^{2} p_{3j} & p_{34} + \frac{1}{5} \sum_{i}^{2} p_{3j} & p_{35} + \frac{1}{5} \sum_{i}^{2} p_{3j} \\ 0 & 0 & 0 & p_{44} + \frac{7}{10} \sum_{i}^{3} p_{4j} & p_{45} + \frac{3}{10} \sum_{i}^{3} p_{4j} \\ 0 & 0 & 0 & 0 & p_{55} + \frac{8}{10} \sum_{i}^{4} p_{5j} \end{bmatrix}$$
(3)

This is an empirical formula justified by the following consideration. Historically, Louisiana did not have a bridge preservation program in place; therefore, most actions taken on bridges were conducted either under the federal bridge replacement program or by local maintenance crews in different engineering districts of the state. When a bridge was replaced, its components' new PBMS rating should have been one. In most cases, replacement occurred when these bridges were in very poor condition. On the other hand, interviews with local bridge inspectors indicated that routine maintenance could only raise the NBI rating by one in most cases; therefore, it could reduce the PBMS rating by one. The suggested formula has simulated these two factors. Another reason for adopting this formula is that it was developed through a trial and error process. Mathematically, it produced a reasonable convergence between one-year and five-year deterioration matrices that were developed independently from the original NBI rating data.

Step 4. Model Calibration

г

The deterioration matrices developed at this point are based on a five-year interval. During this period of five years, it is possible that an element could have been subjected to some kind of maintenance actions first and then experienced deterioration, which may have affected the accuracy of the deterioration model. To validate the models, the one-year deterioration matrix developed with the same historical NBI data is applied according to the following procedure:

$$D_{2} = D_{1}^{1} \times D_{1}^{1}$$

$$D_{3} = D_{2} \times D_{1}^{1}$$

$$D_{4} = D_{3} \times D_{1}^{1}$$

$$D_{5} = D_{4} \times D_{1}^{1} = (D_{1})^{5}$$

$$D_{5}^{1} = \sqrt[5]{D_{5}}$$
(4)

where D_n is deterioration matrix developed in a *n* year interval, and D^n_m is the *m*th year deterioration matrix developed in a *n* year interval. The comparison of the two one-year matrices developed at one- and five-year intervals leads to the final one-year deterioration matrices for all 12 elements shown in tables 17 to 28.

Original	New State					
State	1	2	3	4	5	
1	96.21	3.47	0.15	0.17	0.00	
2	0.00	98.49	0.75	0.62	0.14	
3	0.00	0.00	94.01	4.44	1.55	
4	0.00	0.00	0.00	99.05	0.95	
5	0.00	0.00	0.00	0.00	95.73	

Table 17Final one-year deterioration matrix for concrete deck

Table 18					
Final one-year deterioration matrix for concrete superstructure					

Original	New State				
State	1	2	3	4	
1	95.76	4.01	0.16	0.07	
2	0.00	98.99	0.56	0.45	
3	0.00	0.00	91.81	8.19	
4	0.00	0.00	0.00	90.14	

Table 19
Final one-year deterioration matrix for concrete substructure

Original	New State			
	1	2	3	4
1	97.98	1.52	0.18	0.32
2	0.00	98.09	1.25	0.66
3	0.00	0.00	92.24	7.76
4	0.00	0.00	0.00	84.36

Table 20				
final one -year deterioration matrix for steel deck				

Original	New State						
State	1	2	3	4	5		
1	96.35	2.35	1.00	0.30	0.00		
2	0.00	98.73	0.74	0.26	0.27		
3	0.00	0.00	95.25	4.61	0.14		
4	0.00	0.00	0.00	98.19	1.81		
5	0.00	0.00	0.00	0.00	96.02		

Table 21

Final one -year deterioration matrix for steel super-structure

Original	New State				
State	1	2	3	4	
1	98.32	1.31	0.12	0.25	
2	0.00	95.87	3.51	0.62	
3	0.00	0.00	97.23	2.77	
4	0.00	0.00	0.00	87.15	

Table 22				
Final one-year deterioration matrix for steel sub-structure				

Original	New			
	1	2	3	4
1	98.98	0.95	0.03	0.04
2	0.00	97.77	1.28	0.95
3	0.00	0.00	93.91	6.09
4	0.00	0.00	0.00	88.22

Table 23

Final one-year deterioration matrix for pre-stressed concrete deck

Original	New State					
State	1	2	3	4	5	
1	92.82	6.67	0.16	0.00	0.35	
2	0.00	99.78	0.10	0.06	0.06	
3	0.00	0.00	92.84	3.70	3.46	
4	0.00	0.00	0.00	98.53	1.47	
5	0.00	0.00	0.00	0.00	95.71	

Table 24

Final one -year deterioration matrix for pre-stressed concrete superstructure

Original	New State				
State	1	2	3	4	
1	99.64	0.31	0.04	0.01	
2	0.00	97.85	1.00	1.15	
3	0.00	0.00	95.06	4.94	
4	0.00	0.00	0.00	49.76	

Table 25Final one -year deterioration matrix for pre -stressed concrete substructure

Original	New			
	1	2	3	4
1	97.53	2.47	0.00	0.00
2	0.00	99.28	0.48	0.24
3	0.00	0.00	95.05	4.95
4	0.00	0.00	0.00	46.16

Table 26						
Final one-year	deterioration matrix	for timber deck				

Original	New State					
State	1	2	3	4	5	
1	85.26	11.71	1.88	1.15	0.00	
2	0.00	93.05	2.84	4.05	0.06	
3	0.00	0.00	88.51	10.42	1.07	
4	0.00	0.00	0.00	98.80	1.20	
5	0.00	0.00	0.00	0.00	96.59	

Table 27

Final one-year deterioration matrix for timber superstructure

Original	New State			
State	1	2	3	4
1	87.40	8.57	1.38	2.65
2	0.00	93.11	2.59	4.30
3	0.00	0.00	90.38	9.62
4	0.00	0.00	0.00	96.40

Table 28

Final one-year deterioration matrix for timbersub-structure

Original	New			
	1	2	3	4
1	84.85	11.03	1.26	2.86
2	0.00	90.02	2.86	7.12
3	0.00	0.00	85.75	14.25
4	0.00	0.00	0.00	98.34

Bridge System Analysis with PONTIS

PONTIS is a comprehensive bridge management software with many modules requiring a large amount of input as summarized in Figure 20 [4,5].

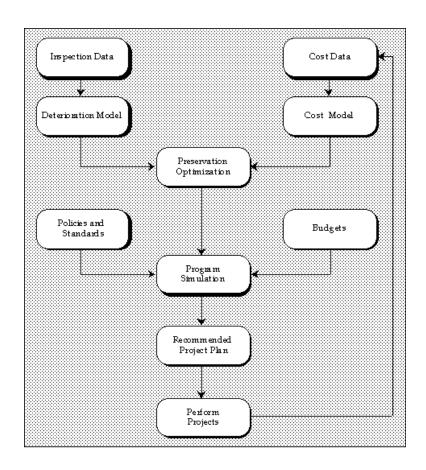


Figure 20 The framework of PONTIS

There are two major modeling functions in PONTIS: bridge preservation and bridge improvement. Preservation projects consist of bridge maintenance, repair, and rehabilitation (MRR) actions performed on individual bridge elements. The PONTIS simulation model predicts how MRR actions improve element conditions, and how bridge elements deteriorate over time in the absence of MRR actions. The overall objective of preservation projects is to minimize long-term costs while maintaining the system in steady operating conditions.

The improvement projects alter functional aspects of bridges. These projects are intended to address bridges' functional shortcomings. To develop improvement projects, PONTIS identifies those instances where adequate design standards are not met, develops strategies to meet them, and prioritizes candidate improvements. Example improvement projects include widening a deck, raising a bridge to gain added vertical clearance, or strengthening a bridge to support heavier loads.

The applications of PONTIS are summarized in the following steps:

Step 1. Define the preservation actions, corresponding costs, and condition states

It is infeasible to collect and apply the detailed unit cost data for this project because of the inconsistent practices of various LA DOTD project contractors in their bidding calculations. The unit costs for element replacement are estimated based on: (a) LA Standard Specifications, which give the general information on pay items and items identifications; (b) the average unit cost of \$90 per square foot of deck area from LA DOTD; and (c) an approximate 50-50 cost distribution between upper (deck and superstructure) and lower parts (substructure) of a bridge.

Considering the aggregated nature of the NBI elements, the preservation action plans defined in this project are not as detailed as PONTIS default action plans. Tables 29 to 31 list preservation action, cost, and condition state for all the 12 elements.

Current	Actions	Rating Change	Cost
Rating		Due to the action	($\$$ per ft ²)
			_
1	Do Nothing	None	\$0
2	Do Nothing	None	\$0
3	Do Nothing	None	\$0
5	Minor Maintenance	Up to 2	10% of replacement
4	Do Nothing	None	\$0
4	Major Maintenance	Up to 3	60% of replacement
5	Do Nothing	None	\$0
	Major Maintenance	Up to 4	60% of replacement
	Replace Element	Up to 1	\$28

Table 29The preservation action plan for deck

Table 30					
The preservation action plan for superstructure					

Current Rating	Actions	Rating Change Due to the action	Cost (\$ per ft)
1	Do Nothing	None	\$0
2	Do Nothing	None	\$0
3	Do Nothing	None	\$0
5	Minor Maintenance	Up to 2	10% of replacement
	Do Nothing	None	\$0
4	Major Maintenance	Up to 3	60% of replacement
	Replace Element	Up to 1	\$210

Table 31The preservation action plan for substructure

Current	Actions	Rating Change	Cost
Rating		Due to the action	(\$ per item)
1	Do Nothing	None	\$0
2	Do Nothing	None	\$0
3	Do Nothing	None	\$0
	Minor Maintenance	Up to 2	10% of replacement
4	Do Nothing	None	\$0
4	Major Maintenance	Up to 3	60% of replacement
	Replace Element	Up to 1	\$12,000

Step 2. Define input parameters and scenarios

PONTIS includes 1,109 configuration parameters, 170 configuration options, 324 scenario parameters, and 88 input and output tables plus some very important maintenance and rehabilitation rules. Preparing the input data is truly a time-consuming process that can take many hours. The definitions and values of the parameter and scenario settings are presented in Appendix B of this report [4].

Step 3. Apply PONTIS Program

There are two models in PONTIS, optimization and simulation. The results of optimization model are automatically generated once all required input data are in place. Appendix C gives the preservation details for all the 12 elements.

Due to the large number of bridges, the execution of the PONTIS program takes about two hours with the most recent state-of-the-art computers. Similar to input data preparation, it also takes many hours to retrieve and export the output of PONTIS to a database for analysis. The detailed work of this part is presented in Appendix B as well.

Results

The analysis results over a period of 30 simulated years (2002-2032) are both summarized and presented at a detailed level. To investigate the impact of three key settings-annual budget, preservation action cost, and modeling functions - on the long-term performance of the LA DOTD bridge system, 9 scenarios were defined as shown in table 32. The zero budget scenarios were designed to evaluate the pure deterioration process as well as to debug the program. The separation and combination of MRR and Functional Improvement (Func.) scenarios show the work needs for two different purposes.

Modeling Plan Annual Budget	MRR (60%, 30%)	MRR (10%, 5%)	MRR (30%, 15%)	MRR + Func (60%, 30%)
\$0	S-0-1	S-0-2		S-0-4
		(Same as S-0-1)		
\$70M	S-70-1	S-70-2	S-70-3	S-70-4
\$140M	S-140-1	S-140-2		

Table 32List of scenario names

* Major and minor maintenance costs as the percentage of the element replacement cost

The results at the detailed level include:

- a. Needs vs. selected work
- b. PONTIS condition rating
- c. Health index (accumulated curves)
- d. Sufficiency rating (accumulated curve)

Summary

Table 33 Summary of results in last programming year needs and health index

Budget	MRR (30%, 60%)*	MRR (10%, 60%)	MRR (5%, 15%)	MRR+Func. (10%, 60%)
\$0	\$1,457M 59.4	\$1,185M 59.4	-	\$4,404M 59.4
\$70M	\$66M 73.5	\$109M 72.8	\$107M 74.3	\$2,165M 75.4
\$140M	\$64M 73.5	\$45M 73.3	-	-

* Major and minor maintenance costs as the percentage of the element replacement cost

Table 34

Summary of results in total funds spent on each preservation and improvement action

Budget	MRR (30%, 60%)	MRR (10%, 60%)	MRR (5%, 15%)	MRR+Func. (10%, 60%)
\$0	0	0	-	0
\$70M	Rep.=\$85M Elem.=\$659M Major =\$793M Minor =\$343M	Rep.=\$16M Major=\$974M Minor=\$340M	Rep.=\$17M Major=\$934M Minor=\$372M	Rep.=\$797M Major=\$927M Minor=\$326M Wid.=\$47M Str.=\$2.4M
\$140M	Rep.=\$85M Elem.=\$663M Major =\$799M Minor =\$349M	Rep.=\$81M Major=\$981M Minor=\$341M	-	-

* Minor and major maintenance costs as the percentage of the element replacement cost

**Rep.* = bridge replacement, *Elem.*.= element replacement, *Major* = major maintenance, *Minor* = minor maintenance, * *Wid.* = widening bridge, *Str.* = bridge strengthen Table 33 shows that the last year's need at the zero-budget scenario is about one billion dollars more than the need with a \$70 million annual budget. Health Index (HI) increases about 14 percentage points as the annual budget increases from \$0 to \$70 million, which demonstrates the effect of the preservation actions. The results from the annual budget of \$140 million scenario, however, do not show significant difference from the scenario with the annual budget of \$70 million. It is reasonable, therefore, to conclude that the annual budget of \$70 million the total replacement cost over 30 years increases from \$16 million to \$797 million when the scenario changes from MRR only to the combination of MRR and functional improvement. This increase indicates a large number of bridge replacements due to functional obsolescence or structural deficiency.

Predicted Needs vs. Work

The results in terms of needs and selected work for the three budgetary scenarios under S-0-1, S-70-1, and S-140-1 are presented in figures 21, 22, and 23. Under the zero-budget scenario, the need increases greatly and reaches \$1,400 million at the end of the 30th year. Although the \$70M annual budget could not meet all the needs initially, it reduces the needs rapidly, and by the end of the10th year, the \$70M annual budget is more than the predicted bridge preservation needs. The only difference between the \$70M and \$140M annual budget scenarios is the number of years required to meet the needs as shown in figures 21 and 22. The figures for annual needs vs. work for other scenarios are presented in Appendices D, E, and F.

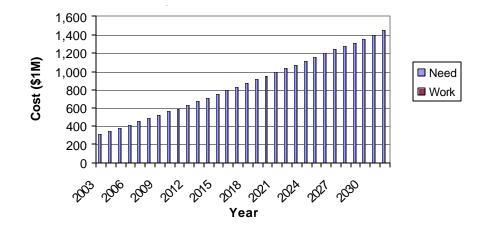


Figure 21 Annual needs vs. work with S-0-1

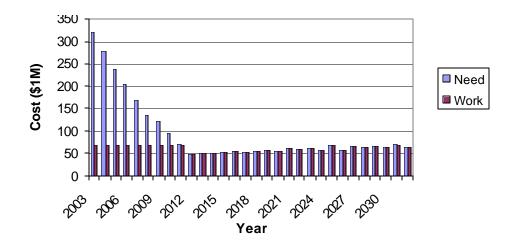


Figure 22 Annual needs vs. work with S-70-1

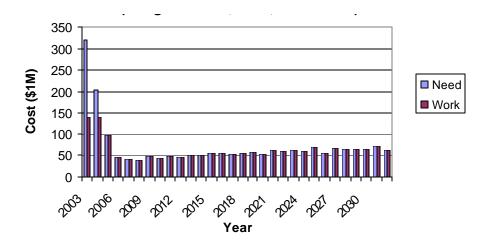


Figure 23 Annual needs vs. work with S-140-1

PONTIS Condition Ratings

The condition state ratings for the deck under the same scenarios are shown in figures 24 and 25.

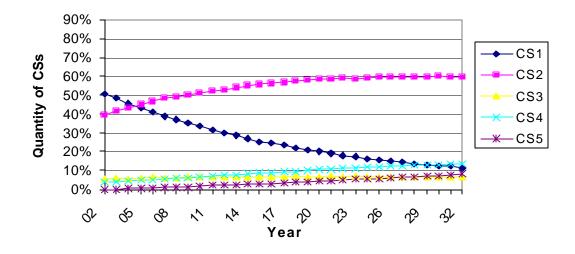


Figure 24 PONTIS condition state rating for deck with S-0-1

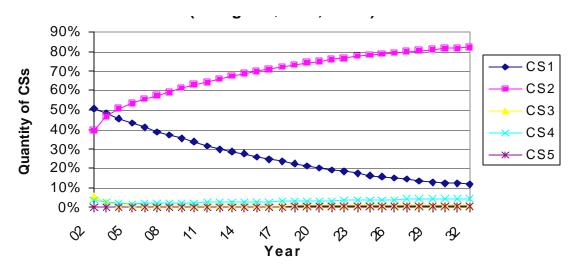


Figure 25 PONTIS condition state rating for deck with S-70-1

Under both budgetary situations, the deck areas with condition state ratings of 1 decrease with time, and the amount of deck areas with condition rating of 1 at the end of the 30th year is slightly different between the two scenarios. Most importantly, under an annual budget of \$70M, there are a much higher percentage of deck areas with condition rating 2 and a lower percentage of deck areas with condition ratings 4 and 5. The annual budget of \$70M has greatly constrained deck elements falling into the condition states 4 and 5 as illustrated in figures 16 and 17. The distributions of condition state ratings for superstructures and substructures show very similar trends in figures 26 to 29.

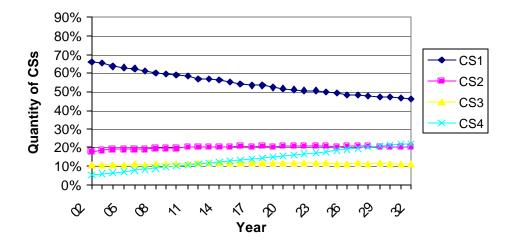


Figure 26 PONTIS condition state rating for superstructure with S-0-1

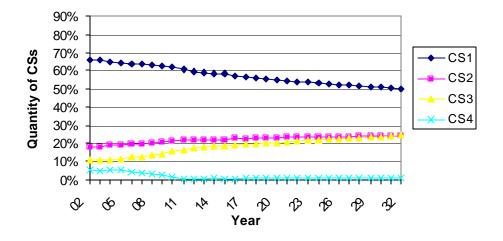


Figure 27 PONTIS condition state rating for superstructure with S-70-1

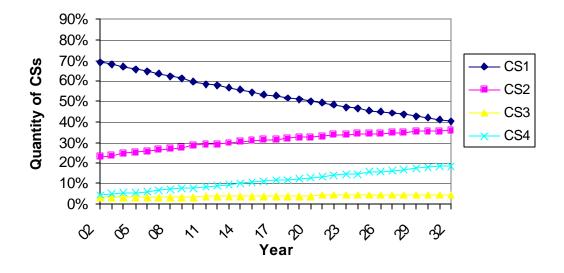


Figure 28 PONTIS condition state rating for substructure with S-0-1

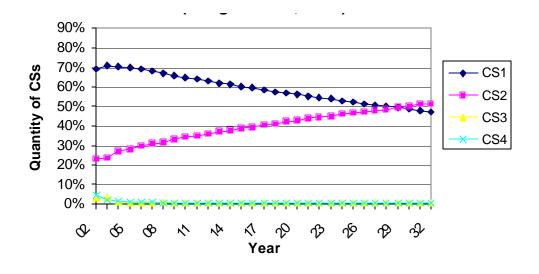


Figure 29 PONTIS condition state rating for substructure with S-70-1

It is clear that with an annual budget of \$70M, most of the elements with lower condition ratings (4 or 5) are subjected to either major and minor maintenance actions or element replacement. With sufficient budget, the number of elements with low condition ratings can be limited to fewer than five percent.

Health Index

The health index is a combined indicator for a bridge as a whole. It is mainly a function of PONTIS element condition ratings. Figures 30 to 33 display the distribution of the health index for the same two budgetary scenarios [4].

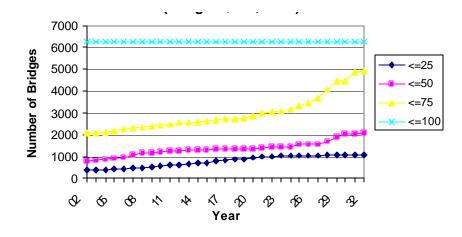


Figure 30 Accumulated HI distribution by number of bridges with S-0-1

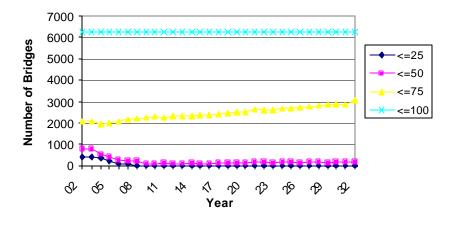


Figure 31 Accumulated HI distribution by number of bridges with S-70-1

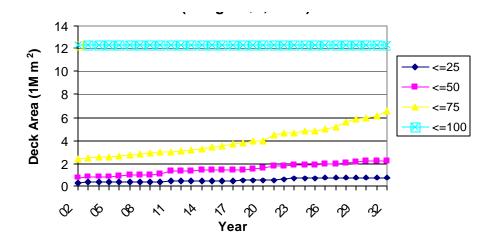


Figure 32 Accumulated HI distribution by deck area with S-0-1

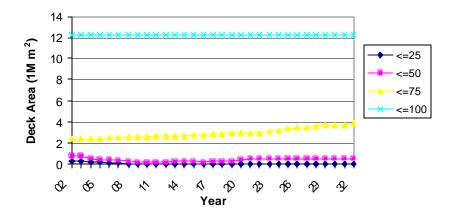


Figure 33 Accumulated HI distribution by deck area with S-70-0

Again, it is demonstrated that with an annual budget of \$70M, the majority of bridges or a high percentage of deck areas have an HI higher than 75; with zero budget, the process of deterioration would have resulted in many bridges falling into poor and unacceptable condition states. The number of bridges with the unacceptable HI (less than 25) is almost eliminated with a \$70M annual budget.

Sufficiency Rating

Sufficiency rating is another combined bridge condition indicator, which is a function of NBI ratings for the three elements and other bridge features such as structural adequacy, serviceability and functional obsolescence, and essentiality for public use, as shown in figure 8. The distribution of SR under the two budgetary situations is illustrated in figures 34 and 35 [2].

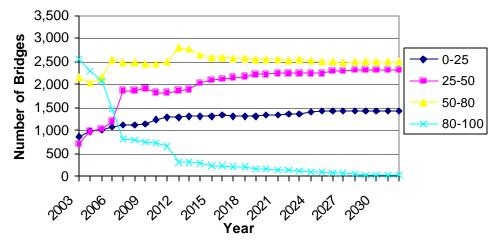


Figure 34 Distribution of sufficiency rating with S-0-1

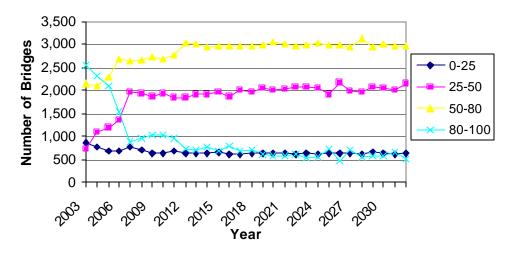


Figure 35 Distribution of sufficiency rating with S-70-1

According to the FHWA guidelines, bridges with SR greater than 80 are considered in excellent condition, bridges with SR between 50 and 80 are considered in fair conditions and in need of certain types of maintenance; and bridges with SR under 50 need to be replaced. Again, figures 34 and 35 demonstrate that the differences in bridge conditions between the two budgetary scenarios are significant. With an annual budget of \$70M, there are more bridges with SR greater than 80. The number of bridges with SR less than 50 is also greatly reduced with an annual budget of \$70M. The results of all designed scenarios are presented in Appendices D and F [2].

CONCLUSIONS

The following conclusions are drawn from this project:

- 1. By accomplishing the objectives specified in the proposal, the project has demonstrated that it is not only feasible but also very practical to use NBI data for the bridge management system, particularly in helping make effective funding decisions at the network system level.
- 2. The current \$70 million annual bridge program budget is not sufficient to satisfy both the preservation and improvement needs of the Louisiana highway bridge system. It is only enough for the state-bridge preservation work.
- 3. Based on the preliminary results, it is clear that bridge preservation actions do have an impact on the long-term system performance. Therefore, identifying effective and efficient bridge management strategies is crucial to LA DOTD's bridge management system.
- 4. To identify the best cost-effective BMS strategy, a detailed sensitivity analysis on the preservation actions, associated costs, and improved ratings needs to be conducted.

ABBREVIATIONS AND SYMBOLS

- AASHTO American Association of State Highway and Transportation Officials
- ADT Average Daily Traffic
- BMS Bridge Management System
- CASTS Center for the Analysis of Spatial and Temporal Systems
- CoRe Commonly Recognized
- DOT Department of Transportation
- FHWA Federal Highway Administration
- LA DOTD Louisiana Department of Transportation and Development
- LTRC Louisiana Transportation Research Center
- NBI National Bridge Inventory
- PBMS PONTIS Bridge Management System

REFERENCES

- Cambridge Systematics, Inc., (2001). PONTIS User's Manual, An AASHTOWare Proprietary Computer Software Product, Release 4.1. Cambridge Systematics, Inc., Cambridge, Massachusetts.
- 2. FHWA, (1995). Recording And Coding Guide For The Structure Inventory And Appraisal of The Nation's Bridges. US DOT, FHWA.
- FHWA, (2001). Report NBI 2000. FHWA. http://www.nationalbridgeinventory.com/new_page_1.htm
- 4. Cambridge Systematics, Inc., (2001). PONTIS Release 4 Technical Manual. AASHTO.
- 5. AASHTO, (2003). AASHTO BridgeWare. AASHTO. <u>http://www.aashtoware.org/aashtoware/products/bridgeware.nsf/allpages/overview?ope</u> <u>ndocument</u>

APPENDICES (All Appendices Are Included On Accompanying CD)

- A. The NBI Deterioration Charts
- B. The PONTIS Settings
- C. The Preservation Model Details
- D. The Results without budget
- E. The Results with An Annual Budget of \$70M
- F. The Results with An Annual budget of \$140M

TABLE OF CONTENTS

LIST OF FIGURES FOR APPENDIX A	55
APPENDIX A. NBI DETERIORATION CHARTS	59
LIST OF FIGURES FOR APPENDIX B	
LIST OF TABLES FOR APPENDIX B	
APPENDIX B: PONTIS SETTINGS	116
LIST OF TABLES FOR APPENDIX C	
APPENDIX C. THE PRESERVATION MODEL DETAILS	
LIST OF FIGURES FOR APPENDIX D	
APPENDIX D. RESULTS FROM SCENARIOS WITHOUT ANNUAL BUDGET	
LIST OF FIGURES FOR APPENDIX E	147
APPENDIX E. RESULTS FROM AN ANNUAL BUDGET OF \$70M	149
LIST OF FIGURES FOR APPENDIX F	
APPENDIX F. RESULTS WITH AN ANNUAL BUDGET OF \$140M	165

LIST OF FIGURES FOR APPENDIX A

Figure A. 1 The concrete deck deterioration with original rating 1
Figure A. 2 The concrete deck deterioration with original rating of 2
Figure A. 3 The concrete deck deterioration with original rating of 3
Figure A. 4 The concrete deck deterioration with original rating of 4
Figure A. 5 The concrete deck deterioration with original rating of 5
Figure A. 6 The concrete deck deterioration with original rating of 6
Figure A. 7 The concrete deck deterioration with original rating of 7
Figure A. 8 The concrete deck deterioration with original rating of 8
Figure A. 9 The concrete deck deterioration with original rating of 9
Figure A. 10 The steel deck deterioration with original rating of 1
Figure A. 11 The steel deck deterioration with original rating of 2
Figure A. 12 The steel deck deterioration with original rating of 3
Figure A. 13 The steel deck deterioration with original rating of 4
Figure A. 14 The steel deck deterioration with original rating of 5
Figure A. 15 The steel deck deterioration with original rating of 6
Figure A. 16 The steel deck deterioration with original rating of 7
Figure A. 17 The steel deck deterioration with original rating of 8
Figure A. 18 The steel deck deterioration with original rating of 9
Figure A. 19 The prestressed concrete deck deterioration with original rating of 1
Figure A. 20 The prestressed concrete deck deterioration with original rating of 2
Figure A. 21 The prestressed concrete deck deterioration with original rating of 3
Figure A. 22 The prestressed concrete deck deterioration with original rating of 4
Figure A. 23 The prestressed concrete deck deterioration with original rating of 570
Figure A. 24 The prestressed concrete deck deterioration with original rating of 670
Figure A. 25 The prestressed concrete deck deterioration with original rating of 771
Figure A. 26 The prestressed concrete deck deterioration with original rating of 871
Figure A. 27 The prestressed concrete deck deterioration with original rating of 972
Figure A. 28 The timber deck deterioration with original rating of 1
Figure A. 29 The timber deck deterioration with original rating of 2

Figure A. 55 The prestressed concrete superstructure deterioration with original rating of 1 86 Figure A. 56 The Prestressed concrete superstructure deterioration with original rating of 2 86 Figure A. 57 The prestressed concrete superstructure deterioration with original rating of 87 Figure A. 58 The prestressed concrete superstructure deterioration with original rating of 4 87 Figure A. 59 The prestressed concrete superstructure deterioration with original rating of 5 88 Figure A. 60 The prestressed concrete superstructre deterioration with original rating of 6 88

Figure A. 61 The prestressed concrete superstructre deterioration with original rating of 7.89 Figure A. 62 The prestressed concrete superstrutre deterioration with original rating of 8.89 Figure A. 63 The prestressed concrete superstruttre deterioration with original rating of 9.90 Figure A. 84 The steel substructure deterioration with original rating of 3 100 Figure A. 85 The steel substructure deterioration with original rating of 4 101 Figure A. 86 The steel substructure deterioration with original rating of 5 101 Figure A. 88 The steel substructure deterioration with original rating of 7 102 Figure A. 89 The steel substructure deterioration with original rating of 8 103 Figure A. 90 The steel substructure deterioration with original rating of 9 103 Figure A. 91 The prestressed concrete substructure deterioration with original rating of 1 104

Figure A. 92 The prestressed concrete substructure deterioration with original rating of 2 104 Figure A. 93 The prestressed concrete substructure deterioration with original rating of 3 105 Figure A. 94 The prestressed concrete substructure deterioration with original rating of 4 105 Figure A. 95 The prestressed concrete substructure deterioration with original rating of 5 106 Figure A. 96 The prestressed concrete substructure deterioration with original rating of 6 106 Figure A. 97 The prestressed concrete substructure deterioration with original rating of 7 107 Figure A. 98 The prestressed concrete substructure deterioration with original rating of 8 107 Figure A. 99 The prestressed concrete substructure deterioration with original rating of 9 108 Figure A. 100 The timber substructure deterioration with original rating of 1 108 Figure A. 102 The timber substructure deterioration with original rating of 3 109 Figure A. 106 The timber substructure deterioration with original rating of 7 111 Figure A. 108 The timber substructure deterioration with original rating of 9 112

APPENDIX A. NBI DETERIORATION CHARTS

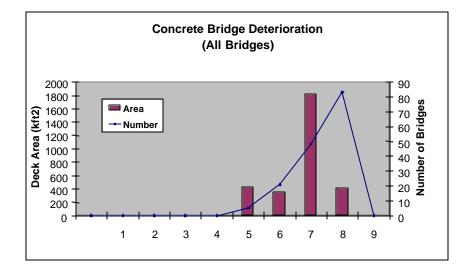


Figure A. 1 The concrete deck deterioration with original rating of 1

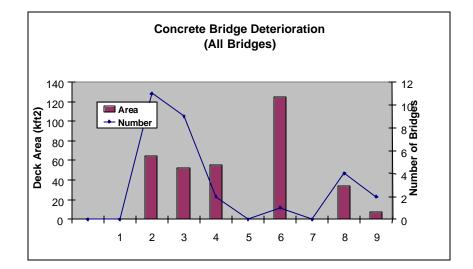


Figure A. 2 The concrete deck deterioration with original rating of 2

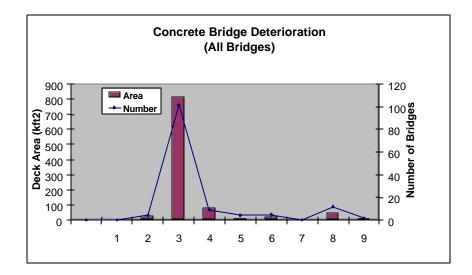


Figure A. 3 The concrete deck deterioration with original rating of 3

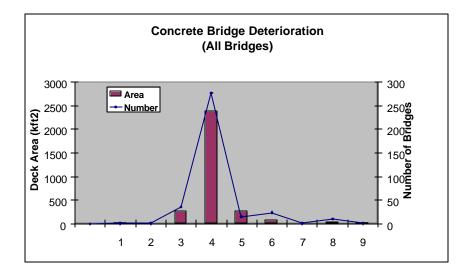
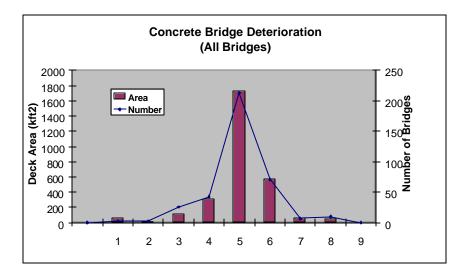



Figure A. 4 The concrete deck deterioration with original rating of 4

Figure A. 5 The concrete deck deterioration with original rating of 5

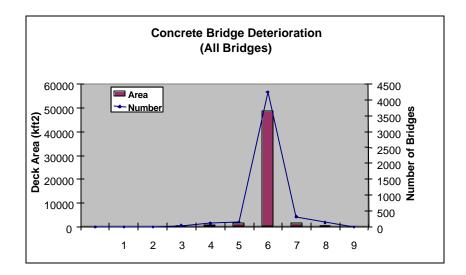


Figure A. 6 The concrete deck deterioration with original rating of 6

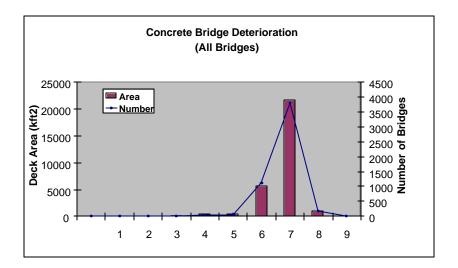


Figure A. 7 The concrete deck deterioration with original rating of 7

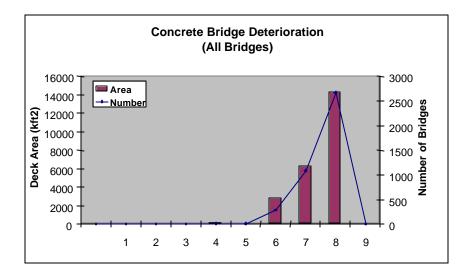


Figure A. 8 The concrete deck deterioration with original rating of 8

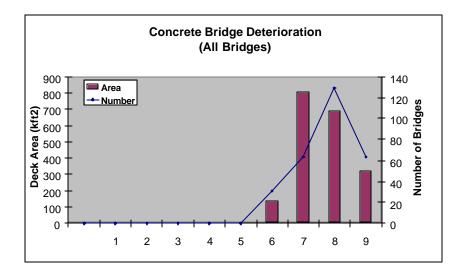


Figure A. 9 The concrete deck deterioration with original rating of 9

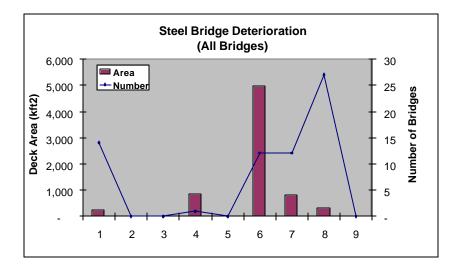


Figure A. 10 The steel deck deterioration with original rating of 1

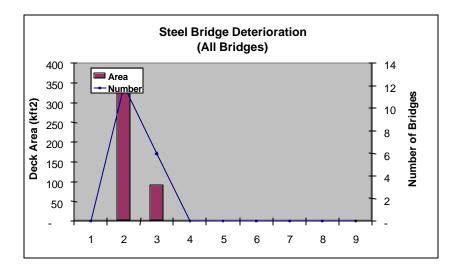


Figure A. 11 The steel deck deterioration with original rating of 2

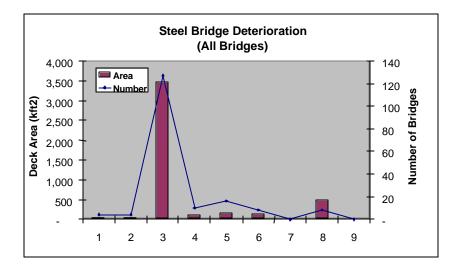


Figure A. 12 The steel deck deterioration with original rating of 3

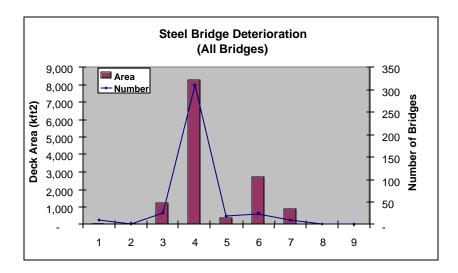


Figure A. 13 The steel deck deterioration with original rating of 4

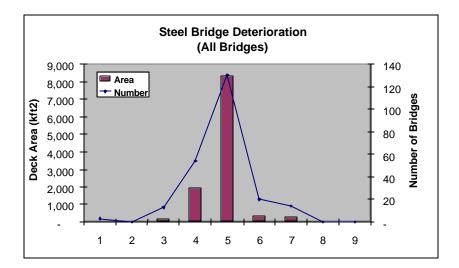


Figure A. 14 The steel deck deterioration with original rating of 5

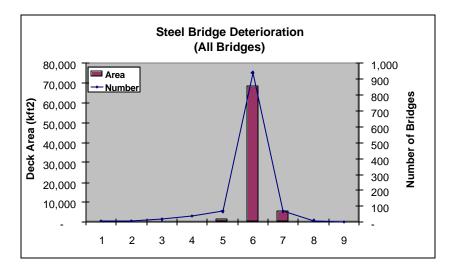


Figure A. 15 The steel deck deterioration with original rating of 6

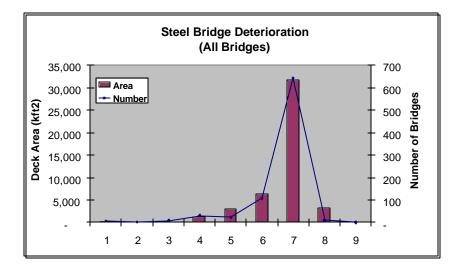


Figure A. 16 The steel deck deterioration with original rating of 7

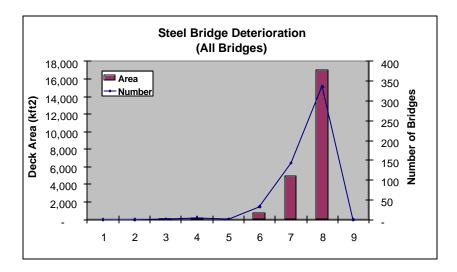


Figure A. 17 The steel deck deterioration with original rating of 8

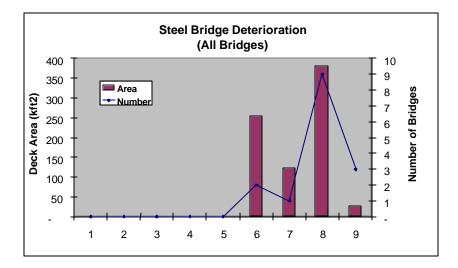


Figure A. 18 The steel deck deterioration with original rating of 9

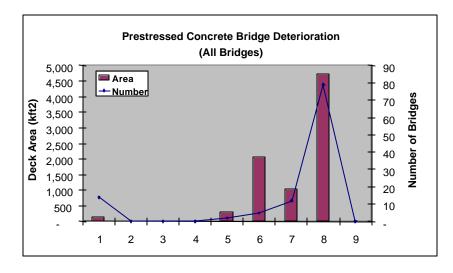


Figure A. 19 The prestressed concrete deck deterioration with original rating of 1

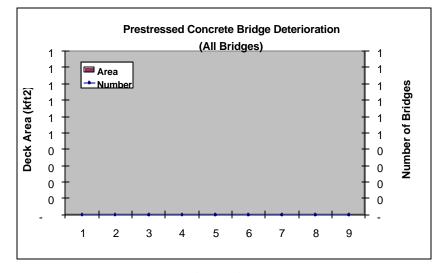


Figure A. 20 The prestressed concrete deck deterioration with original rating of 2

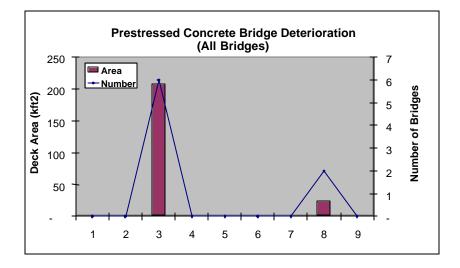


Figure A. 21 The prestressed concrete deck deterioration with original rating of 3

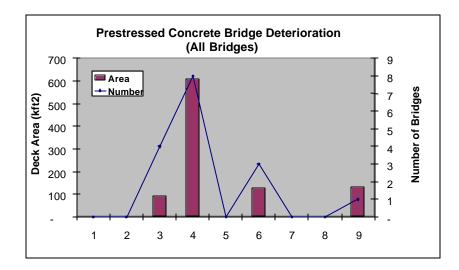


Figure A. 22 The prestressed concrete deck deterioration with original rating of 4

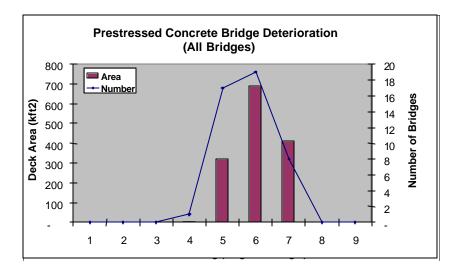


Figure A. 23 The prestressed concrete deck deterioration with original rating of 5

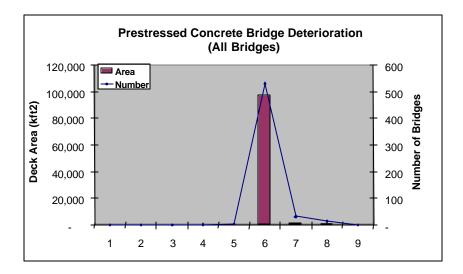


Figure A. 24 The prestressed concrete deck deterioration with original rating of 6

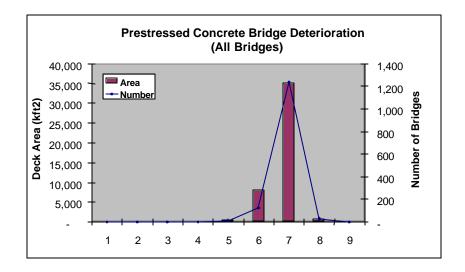


Figure A. 25 The prestressed concrete deck deterioration with original rating of 7

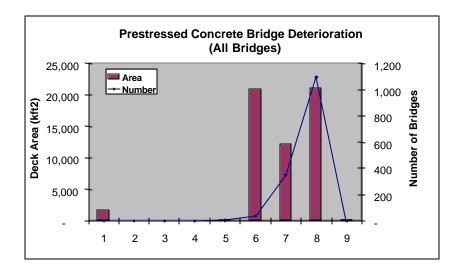


Figure A. 26 The prestressed concrete deck deterioration with original rating of 8

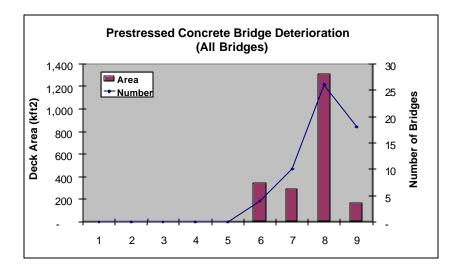


Figure A. 27 The prestressed concrete deck deterioration with original rating of 9

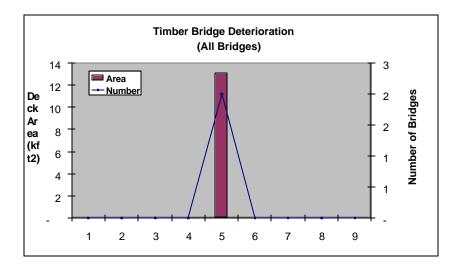


Figure A. 28 The timber deck deterioration with original rating of 1

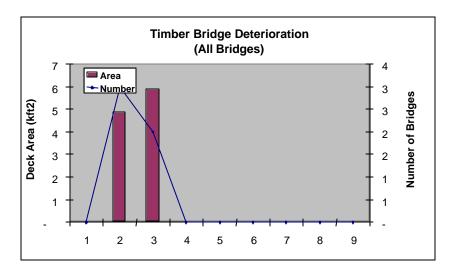


Figure A. 29 The timber deck deterioration with original rating of 2

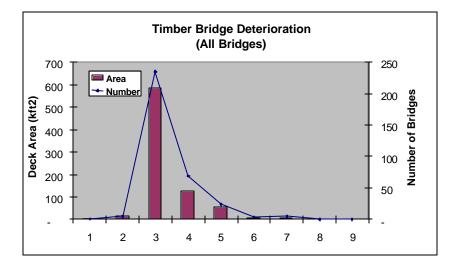


Figure A. 30 The timber deck deterioration with original rating of 3

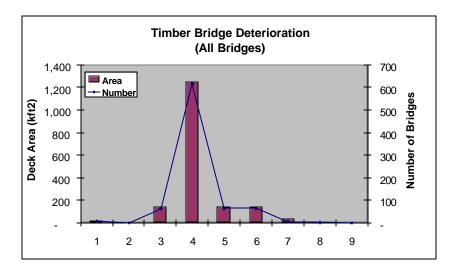


Figure A. 31 The timber deck deterioration with original rating of 4

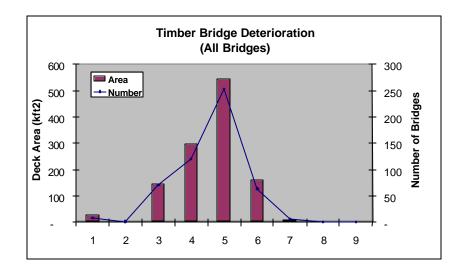


Figure A. 32 The timber deck deterioration with original rating of 5

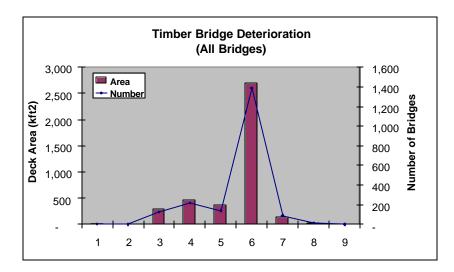


Figure A. 33 The timber deck deterioration with original rating of 6

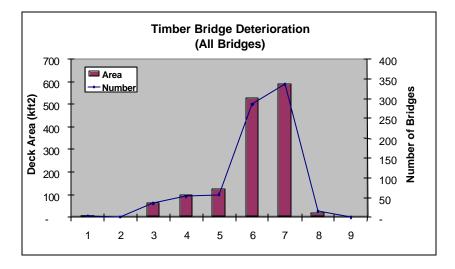


Figure A. 34 The timber deck deterioration with original rating of 7

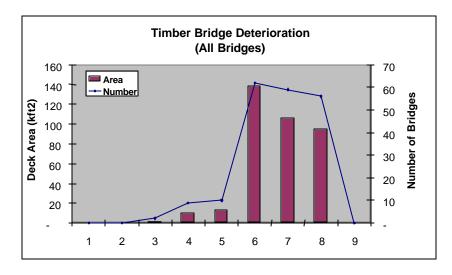


Figure A. 35 The timber deck deterioration with original rating of 8

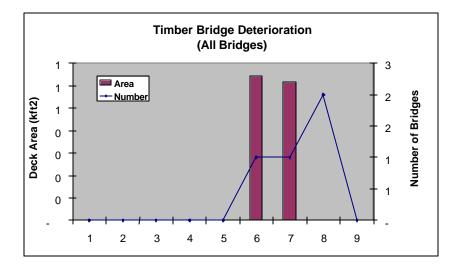


Figure A. 36 The timber deck deterioration with original rating of 9

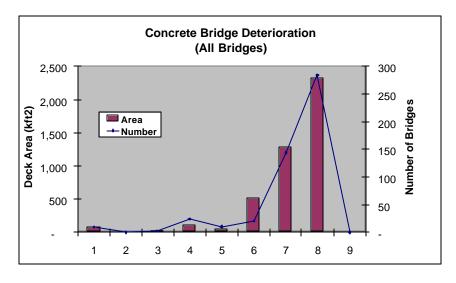


Figure A. 37 The concrete superstructure deterioration with original rating of 1

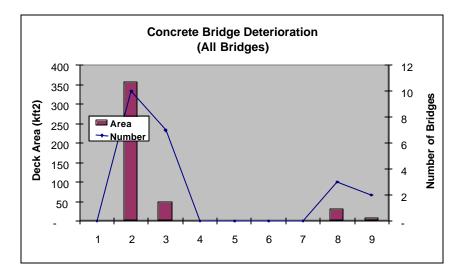


Figure A. 38 The concrete superstructure deterioration with original rating of 2

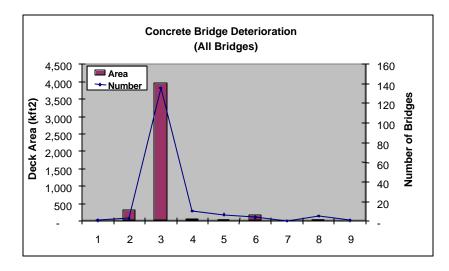


Figure A. 39 The concrete superstructure deterioration with original rating of 3

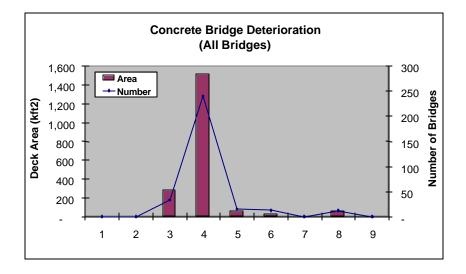


Figure A. 40 The concrete superstructure deterioration with original rating of 4

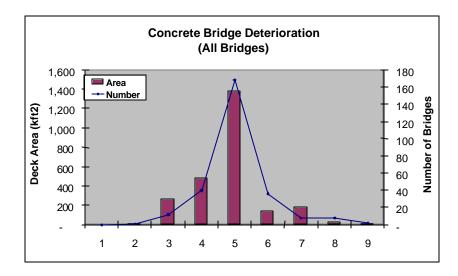


Figure A. 41 The concrete superstructure deterioration with original rating of 5

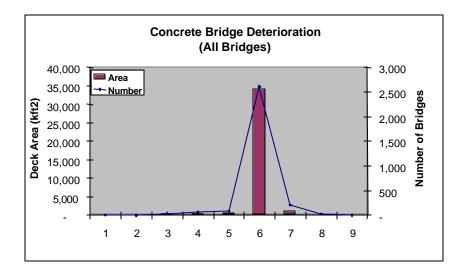


Figure A. 42 The concrete superstructure deterioration with original rating of 6

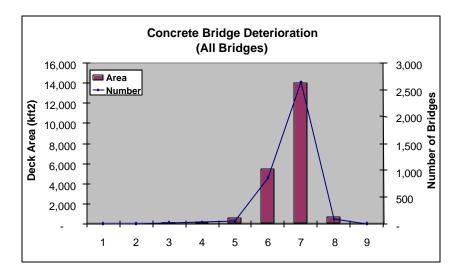


Figure A. 43 The concrete superstructure deterioration with original rating of 7

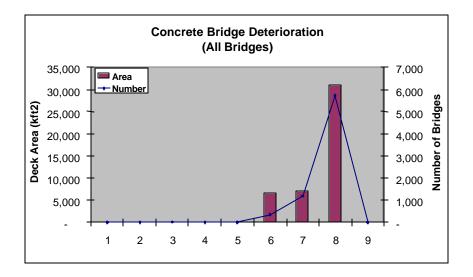


Figure A. 44 The concrete superstructure deterioration with original rating of 8

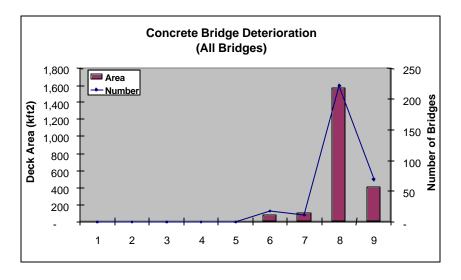


Figure A. 45 The concrete superstructure deterioration with original rating of 9

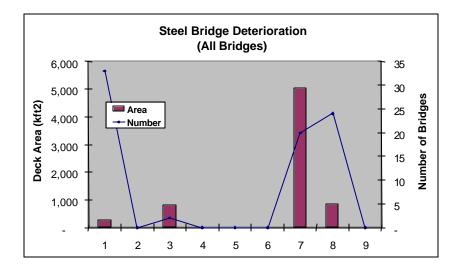


Figure A. 46 The steel superstructure deterioration with original rating of 1

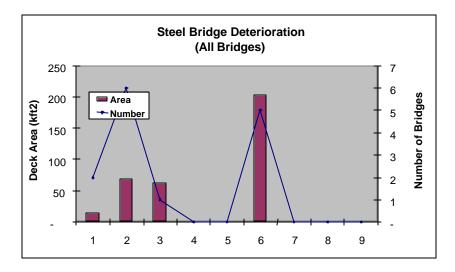


Figure A. 47 The steel superstructure deterioration with original rating of 2

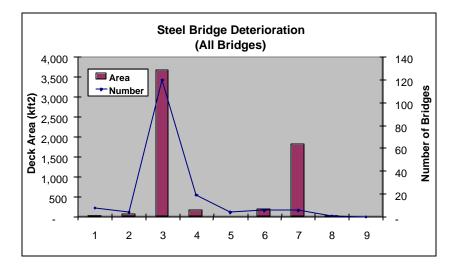


Figure A. 48 The steel superstructure deterioration with original rating of 3

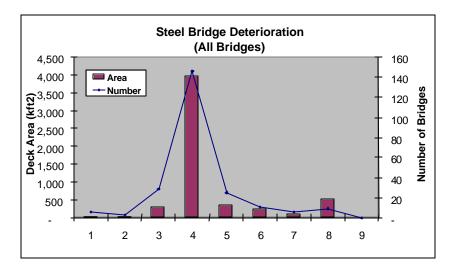


Figure A. 49 The steel superstructure deterioration with original rating of 4

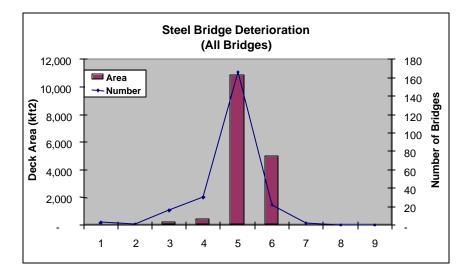


Figure A. 50 The steel superstructure deterioration with original rating of 5

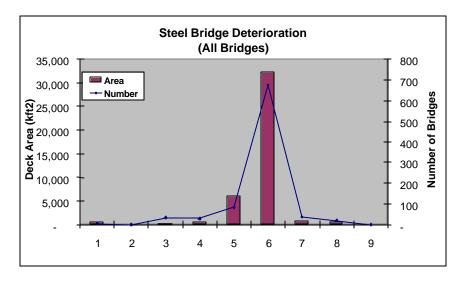


Figure A. 51 The steel superstructure deterioration with original rating of 6

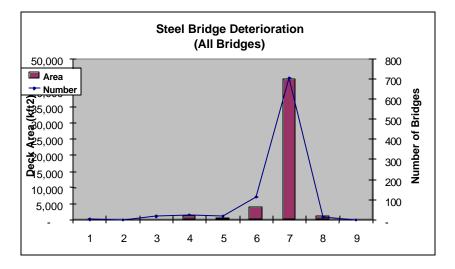


Figure A. 52 The steel superstructure deterioration with original rating of 7

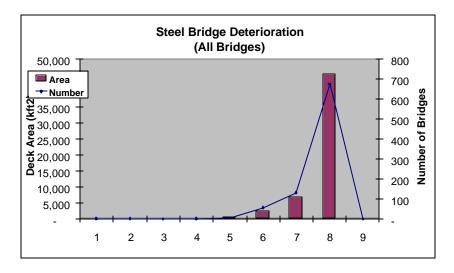


Figure A. 53 The steel superstructure deterioration with original rating of 8

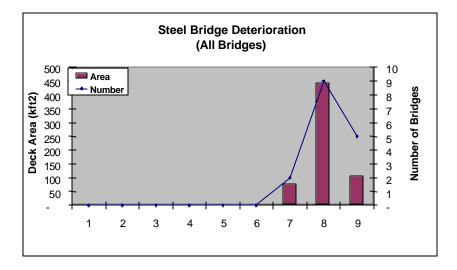


Figure A. 54 The steel superstructure deterioration with original rating of 9

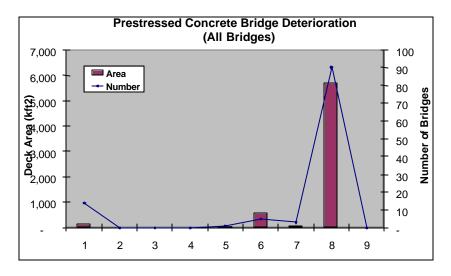


Figure A. 55 The prestressed concrete superstructure deterioration with original rating of 1

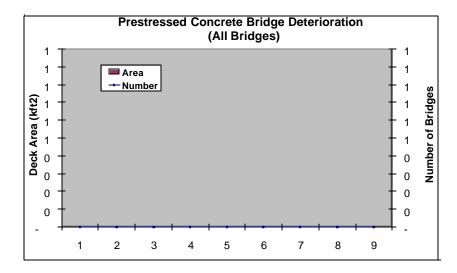


Figure A. 56 The prestressed concrete superstructure deterioration with original rating of 2 (Data were not available)

Figure A. 57 The prestressed concrete superstructure deterioration with original rating of

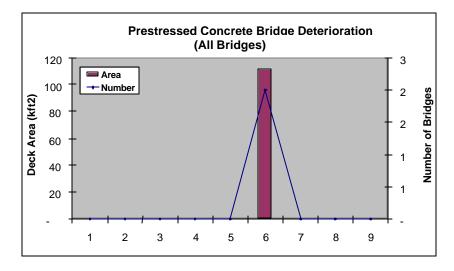


Figure A. 58 The prestressed concrete superstructure deterioration with original rating of 4

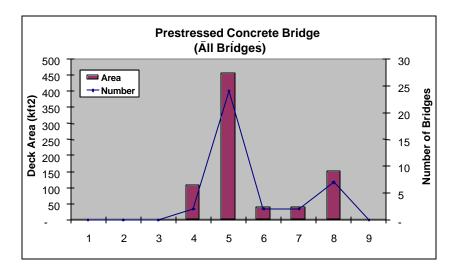


Figure A. 59 The prestressed concrete superstructure deterioration with original rating of 5

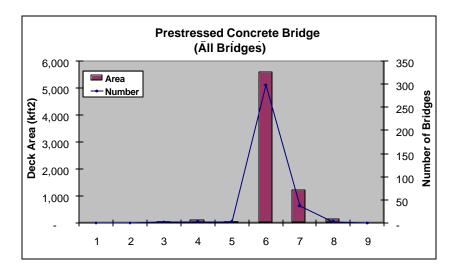


Figure A. 60 The prestressed concrete superstructure deterioration with original rating of 6

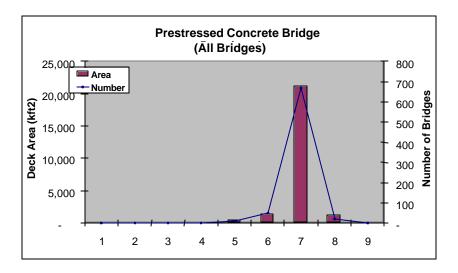


Figure A. 61 The prestressed concrete superstructure deterioration with original rating of 7

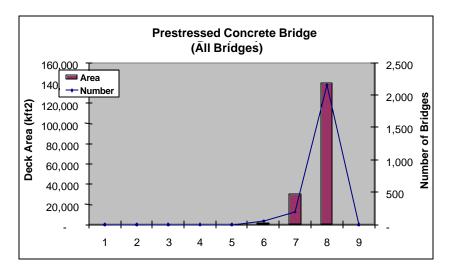


Figure A. 62 The prestressed concrete superstructure deterioration with original rating of 8

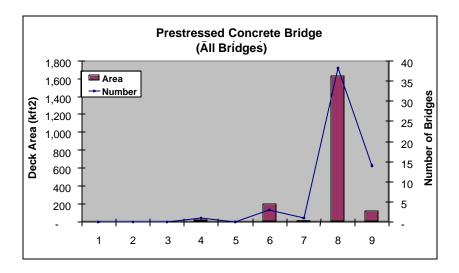


Figure A. 63 The prestressed concrete superstructure deterioration with original rating of 9

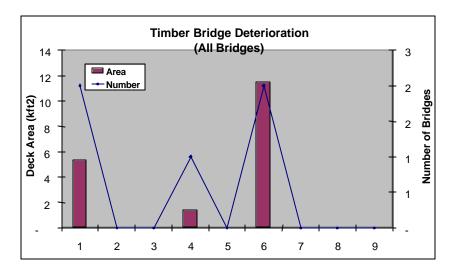


Figure A. 64 The timber superstructure deterioration with original rating of 1

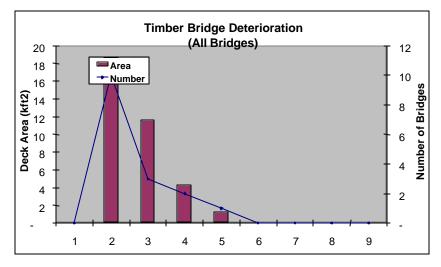


Figure A. 65 The timber superstructure deterioration with original rating of 2

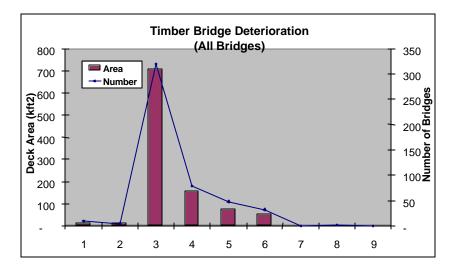


Figure A. 66 The timber superstructure deterioration with original rating of 3

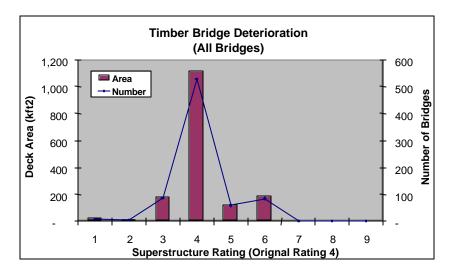


Figure A. 67 The timber superstructure deterioration with original rating of 4

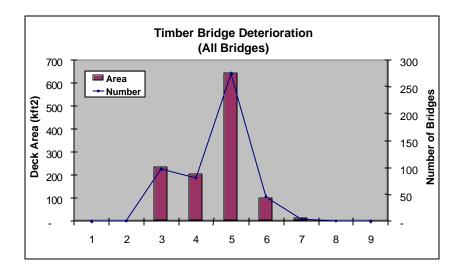


Figure A. 68 The timber superstructure deterioration with original rating of 5

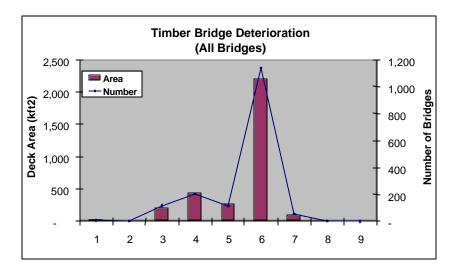


Figure A. 69 The timber superstructure deterioration with original rating of 6

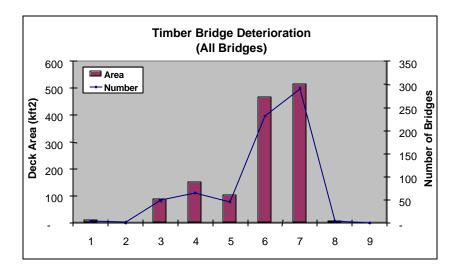


Figure A. 70 The timber superstructure deterioration with original rating of 7

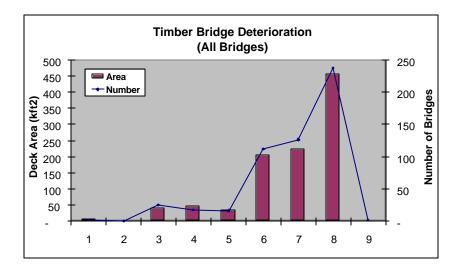


Figure A. 71 The timber superstructure deterioration with original rating of 8

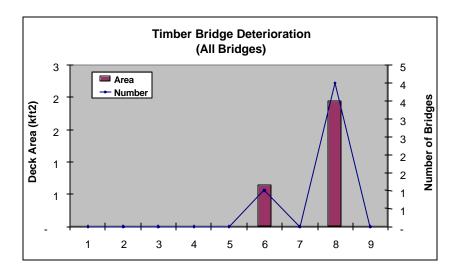


Figure A. 72 The timber superstructure deterioration with original rating of 9

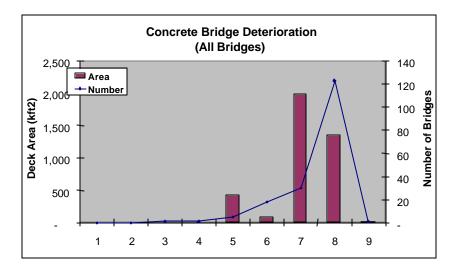


Figure A. 73 The concrete substructure deterioration with original rating of 1

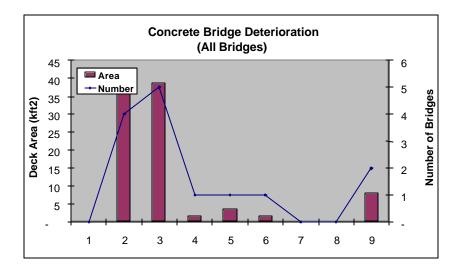


Figure A. 74 The concrete substructure deterioration with original rating of 2

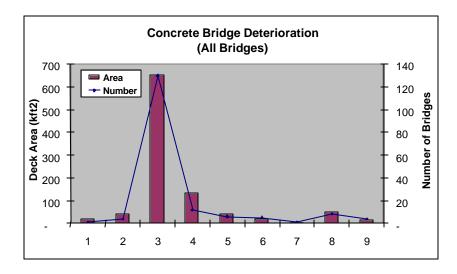


Figure A. 75 The concrete substructure deterioration with original rating of 3

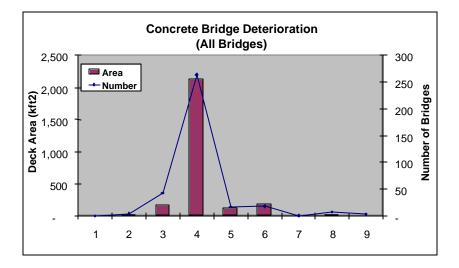


Figure A. 76 The concrete substructure deterioration with original rating of 4

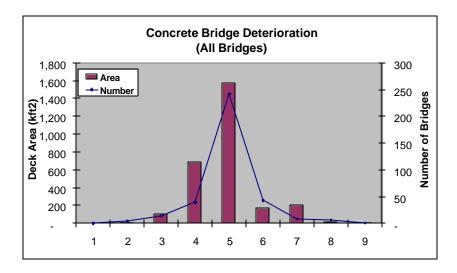


Figure A. 77 The concrete substructure deterioration with original rating of 5

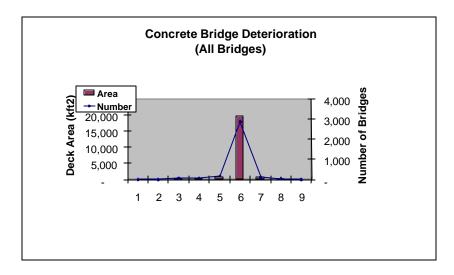


Figure A. 78 The concrete substructure deterioration with original rating of 6

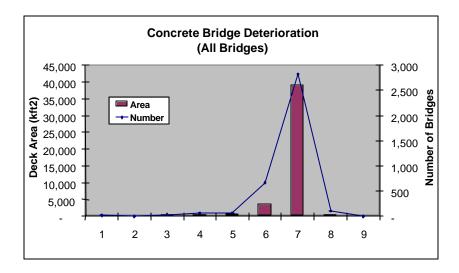


Figure A. 79 The concrete substructure deterioration with original rating of 7

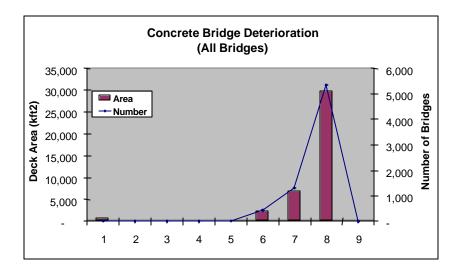


Figure A. 80 The concrete substructure deterioration with original rating of 8

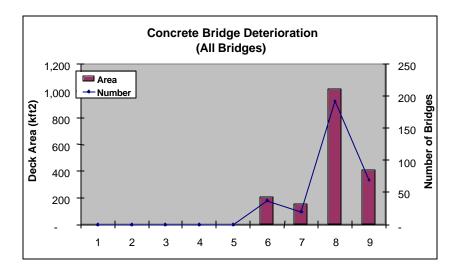


Figure A. 81 The concrete substructure deterioration with original rating of 9

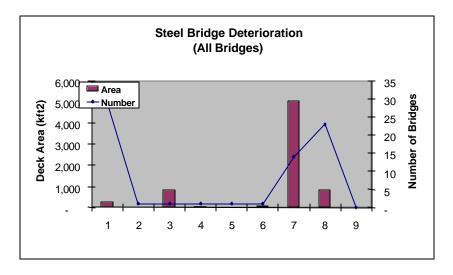


Figure A. 82 The steel substructure deterioration with original rating of 1

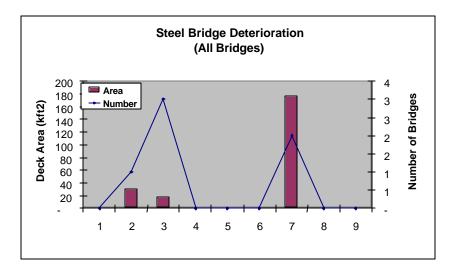


Figure A. 83 The steel substructure deterioration with original rating of 2

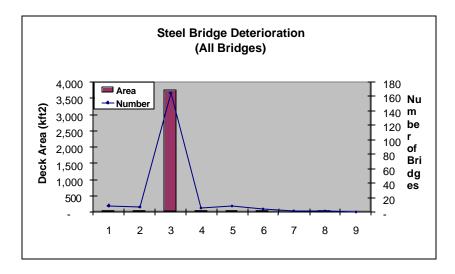


Figure A. 84 The steel substructure deterioration with original rating of 3

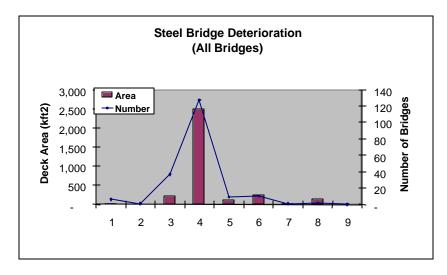


Figure A. 85 The steel substructure deterioration with original rating of 4

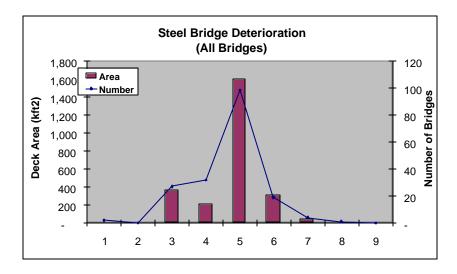


Figure A. 86 The steel substructure deterioration with original rating of 5

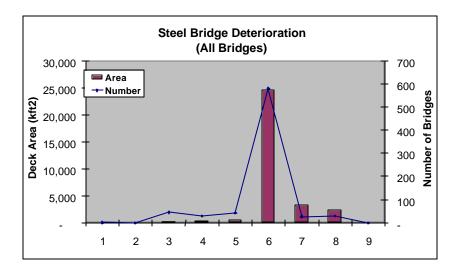


Figure A. 87 The steel substructure deterioration with original rating of 6

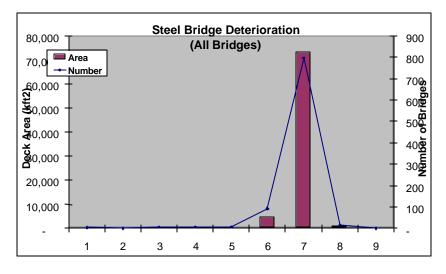


Figure A. 88 The steel substructure deterioration with original rating of 7

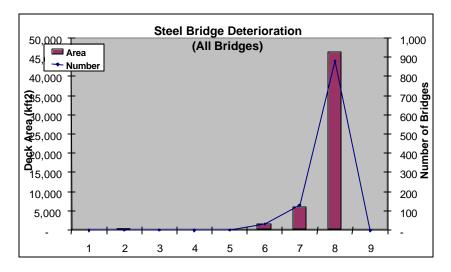


Figure A. 89 The steel substructure deterioration with original rating of 8

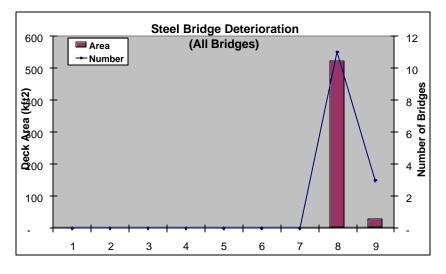


Figure A. 90 The steel substructure deterioration with original rating of 9

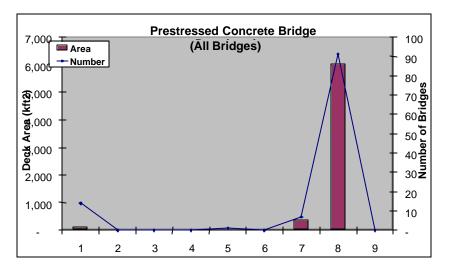


Figure A. 91 The prestressed concrete substructure deterioration with original rating of 1

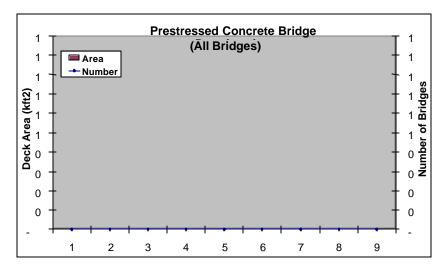


Figure A. 92 The prestressed concrete substructure deterioration with original rating of 2

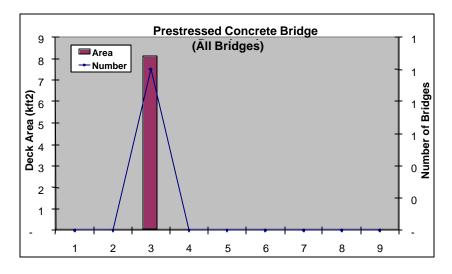


Figure A. 93 The prestressed concrete substructure deterioration with original rating of 3

Figure A. 94 The prestressed concrete substructure deterioration with original rating of 4

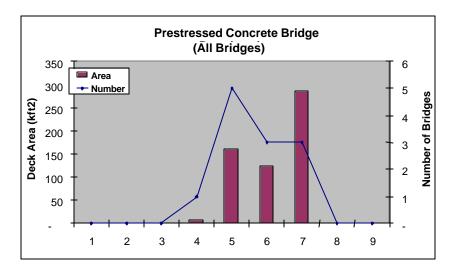


Figure A. 95 The prestressed concrete substructure deterioration with original rating of 5

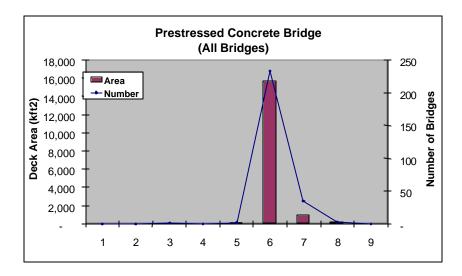


Figure A. 96 The prestressed concrete substructure deterioration with original rating of 6

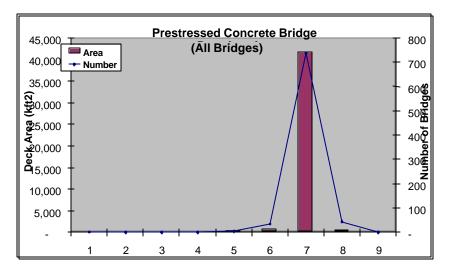


Figure A. 97 The prestressed concrete substructure deterioration with original rating of 7

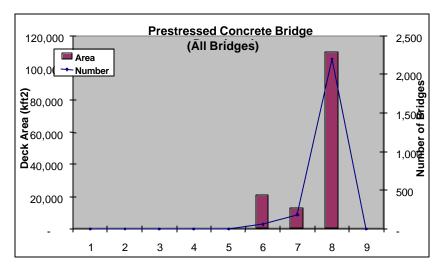


Figure A. 98 The prestressed concrete substructure deterioration with original rating of 8

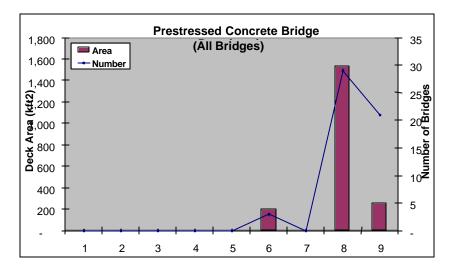


Figure A. 99 The prestressed concrete substructure deterioration with original rating of 9

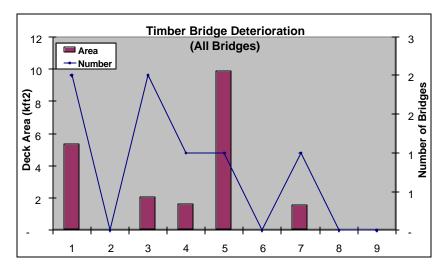


Figure A. 100 The timber substructure deterioration with original rating of 1

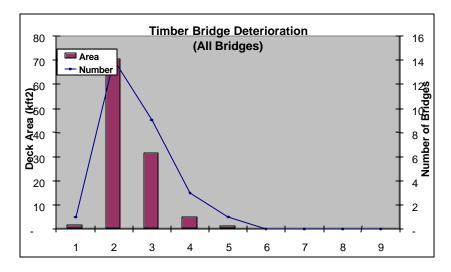


Figure A. 101 The timber substructure deterioration with original rating of 2

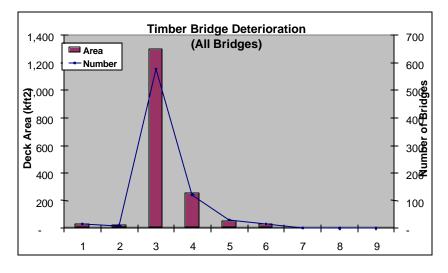


Figure A. 102 The timber substructure deterioration with original rating of 3

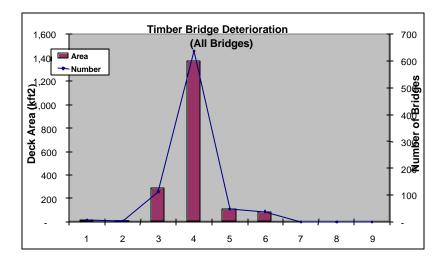


Figure A. 103 The timber substructure deterioration with original rating of 4

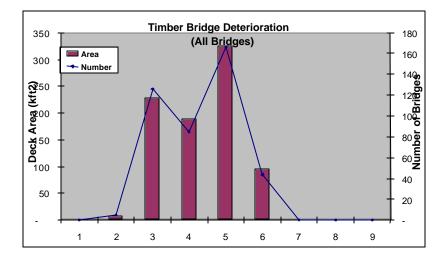


Figure A. 104 The timber substructure deterioration with original rating of 5

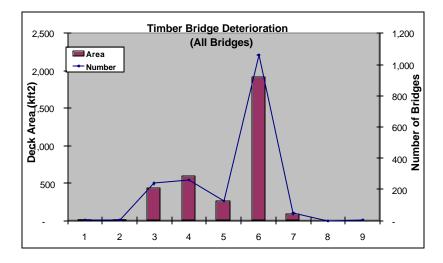


Figure A. 105 The timber substructure deterioration with original rating of 6

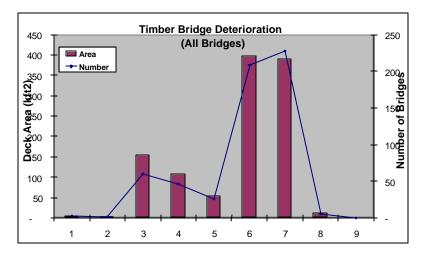


Figure A. 106 The timber substructure deterioration with original rating of 7

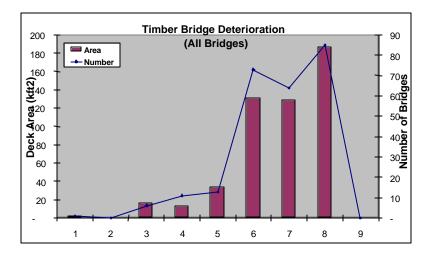


Figure A. 107 The timber substructure deterioration with original rating of 8

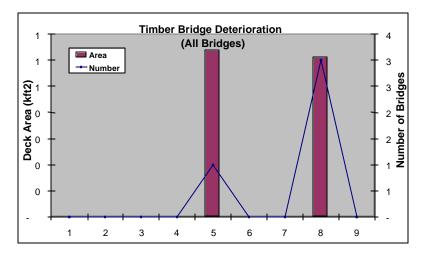


Figure A. 108 The timber substructure deterioration with original rating of 9

LIST OF FIGURES FOR APPENDIX B

Figure B. 1 The PONTIS Configuration Parameter Window	116
Figure B. 2 The PONTIS Gateway Module	117
Figure B. 3 The PONTIS Element Specifications Window	118
Figure B. 4 The PONTIS Preservation Module	120
Figure B. 5 The PONTIS Costs Window of Preservation Module	120
Figure B. 6 The PONTIS Scoping Rules	122
Figure B. 7 The PONTIS Look Ahead Rules	123
Figure B. 8 The PONTIS Major Rehabilitation Rules	124

LIST OF TABLES FOR APPENDIX B

Table B. 1 PONTIS Code Definition for NBI Elements	117
Table B. 2 The Action Plan in PONTIS	119
Table B. 3 The Scenario Parameters Changed	121

APPENDIX B: PONTIS SETTINGS

The original PONTIS Working Database was chosen as the basic DB for the study. The Louisiana NBI database of year 2002 was used for data import. The procedure is described as below.

(1) Import bridge data

Change the default value of "strunitkey" in the table of *DATADICT* generated by Sybase/InfoMaker, which is the database software provided by PONTIS, to "/101/". Import the parameters of districts and county information at the *Configuration Parameter and Import* windows shown in Figure B1. Import NBI file in year 2002 from the Import window of Gateway module shown in Figure B2.

state	Param ✓ Value 7 0 1 2 3 4 5	Painting Do Nothing Structure Replaceme Improvement Rehabilitation Maint&Repair		etailed Description nting Nothing Joture Replacement provement nabilitation nt&Repair		Hel -1 -1 -1 -1 -1
_state	▲ Value 7 0 1 2 3 4	Painting Do Nothing Structure Replaceme Improvement Rehabilitation Maint&Repair		nting Nothing Icture Replacement Provement nabilitation		-1 -1 -1 -1
ıd	7 0 1 2 3 4	Do Nothing Structure Replaceme Improvement Rehabilitation Maint&Repair		Nothing Joture Replacement provement nabilitation	0	-1 -1 -1
ıd	0 1 2 3 4	Structure Replaceme Improvement Rehabilitation Maint&Repair		Nothing Joture Replacement provement nabilitation	0	-1 -1
d	1 2 3 4	Improvement Rehabilitation Maint&Repair		provement habilitation	0	-1
d	2 3 4	Improvement Rehabilitation Maint&Repair		provement habilitation	0	<u> </u>
d	2 3 4	Rehabilitation Maint&Repair		habilitation	0	<u> </u>
	3 4 5	Maint&Repair	-		-	-1
1	4		1	nt&Renair		_
1	E			marcepan	0	-1
	5	Emergency		ergency	0	-1
pr	6	Other	_	er	0	-1
ad						
ain						
ype						
)						
э,	- -					►
) 9	/pe	/pe	/pe	/pe	/pe	

Figure B. 1 The PONTIS Configuration Parameter Window

Pontis 4.1.1									_ 🗆 🗙
File View Tools Wi									
Desktop - Data Gat	eway								
Gateway	Layout C	ount Find	Select	Save	Select All	Just S	elected		
	Rows 1 to 19 of 1880) Layout: Defau	lt Structure	Layout					
	Bridge ID	Feature Inter	sected	Dist	Cnty		Own		Mε≜
Export	022600051001311	DRAIN CANAL		Bridge Cit	y Jefferso	n 01		01	
	022600051001312	DRAIN CANAL		Bridge City	· · · · · · · · · · · · · · · · · · ·			01	
l <u>m</u> port	Desconder on the second	DDAIN CANAL		nauli oa		04	×	01	
								01	
Check Out	Import What? NE	l File					•	01	
Check In	Input File:						<u>B</u> rowse	01	
<u> </u>	R2.0 File Path:						Browse	01	
Override	· · ·						1	01	
	Parameter:					<u> </u>		01	
	Options: 🔽 🛽	<u>J</u> pdate Only	Eler	nent Inspecti	on 00/00/	0000]	01	
		Create <u>N</u> ew Inspect	tions _ Im	oort UOM				01	
		Restart After Error	0	<u>M</u> etric 🖲 En	glish			01	
		Import	Help	Cancel	7			01	
Reports								01	
Retrieve 🚘	022600640109291	BAYOU THUNDE	R OVERFL					01	
	022602490112531	PRIEST CANAL		Bridge City				01	
Limit to 7000	022602499002681	FLEMINGS CANA	AL	Bridge City	,			01	
?	022602499006621	GOOSE BAYOU		Bridge City				01	
	022602499008331	DRAIN CANAL		Bridge City	/ Jeffersor	n 01		01	
	•								▶
Ready				Pontis	41 ASA Workir	ng DB 💌	N/A	04/16/2003 1	17:21:56

Figure B. 2 The PONTIS Gateway Module

(2) Import ele ment data

Create twelve elements defined in Table B1 from the Configuration Element window (See Figure B.3).

Table B. 1PONTIS Code Definition for NBI Elements

Group	Deck	Superstructure	Substructure	Culvert
Reinforced Concrete	364	365	366	367
Steel	368	369	370	371
Priestess Concrete	372	373	374	375
Timber	376	377	378	379

<u>1</u> User Administration	2 Parameters	<u>3</u> Element Specifications	<u>4</u> Definitions
Element ID: 364 Smart Flag: CoRe: 🗹	Short Name: R/Conc Dec Long Name: Reinforced Parent CoRe: NA		Key: 364 <u>Element</u> Create Models: <u>D</u> elete
Inspect As Each: 🔲 We # Cond. States: 5葉	eighting Factor: Units: (SF) :: sq.m	9 Paintable Element: 🗌 n. 💌	⊻erify
Tyl	al: Slabs be: Decks/Slab	Cost Scaling: Scale Metric Scale: 1 English Scale: 1 o surface protection of any type a Calculate Failure Costs	and construc ? K ≤ ≥ >
Condition State Definitions 364 - R/Conc Deck	MR&R Action Defin	itions NBI Rating 7-9 Long Name Whole Pai	nt Model Type
ID Short Name 1 NBI Rating 7-9 2 NBI Rating 6 3 NBI Rating 5		🛃 Do Nothing 🔲 🗆	🔽 Do Nothing 💌
Add <u>S</u> tate Delete 3	State Add Action	Delete Action	<u>H</u> elp

Figure B. 3 The PONTIS Element Specifications Window

Import element data from the Import window (?).

(3) Change parameters

From the *Configuration Element* window, set value of "weight" to 9, 10, and 15 to deck, superstructure, and substructure separately, "coreflag" to 1, "useparmdls" to 0, "paintflag" to 0, and "eachflag" to 0. Define actions for each condition state as in Table B2 with the default actions from PONTIS.

atypenum	atypeshort	atypelong	action plan
00	Do Nothing	Do Nothing	Do Nothing
11	Replace	Replace Structure	Replace Structure
21	Widen	Widen Structure	
22	Raise	Raise Structure	Functional Actions
23	Strengthen	Strengthen Structure	
31	Repl Elem	Replace Element	Replace Element
40	Pr Maint	Routine/Preventative	Major Maintenance
41	Min Repair	Element Repair	Minor Maintenance

Table B. 2The Action Plan in PONTIS

Import the deterioration and cost models generated before in the *Preservation* module and calculate the failure cost as shown in Figures B4 and B5. Table B3 represents the parameter values changed for the Scenario Module.

Reservation	tion 🗾 💿 Deterioration 🔿 Costs 👘 Element: R/Conc Deck		364)	▼ Em	•		
1	Element: 364 (364) R/Conc Deck	Env: 2	Trar	sition Prol	babilities t	to State	
	Action (>> = recommended)		1	2	3	4	5
<u>E</u> licit	State: 1 - NBI Rating 7-9					Optimal Pct:	0.00%
	>> 0 Do Nothing		96.21	3.47	0.15	0.17	0.00
<u>U</u> pdate	State: 2 - NBI Rating 6					Optimal Pct:	97.65%
	>> 0 Do Nothing		0.00	98.49	0.75	0.62	0.14
✓ Use Experts	State: 3 - NBI Rating 5					Optimal Pct:	1.47%
	0 Do Nothing		0.00	0.00	94.01	4.44	1.55
Use History	>> 1 Minor Maintanence		0.00	100.00	0.00	0.00	0.00
🗆 UpdateOnly	State: 4 - NBI Rating 3-4					Optimal Pct:	0.74%
Just This Elm.	>> 0 Do Nothing		0.00	0.00	0.00	99.05	0.95
Print	1 Pr. Maintanence		0.00	0.00	100.00	0.00	0.00
	State: 5 - NBI Rating 1-2					Optimal Pct:	0.14%
Adjust <u>C</u> osts	0 Do Nothing		0.00	0.00	0.00	0.00	95.73
<u>O</u> ptimize	>> 1 Pr. Maintanence		0.00	0.00	0.00	100.00	0.00
Optimize	2 Replace Element		100.00	0.00	0.00	0.00	0.00
	Units: sq.m. Fail Pro	bability from Last State:	4.27				
Reports							
Reports							

Figure B. 4 The PONTIS Preservation Module

Preservation	🗾 🔿 Deterioration 💿 Costs	Element: R/Conc Deck (364)	💌 En	v. Low
	Element: 364 (364) R/Conc Deck	Env: 364 Unit Costs (\$)		Long-Term
	Action (>> = recommended)	Direct	Indirect	Cost (\$)
<u>E</u> licit	State: 1 - NBI Rating 7-9	Unit benefit (\$): 0.00		
Update	>> 0 Do Nothing	0.00	-1.00	6.39
opullio	State: 2 - NBI Rating 6	Unit benefit (\$): 0.00		
	>> () Do Nothing	0.00	-1.00	12.68
Use Experts	State: 3 - NBI Rating 5	Unit benefit (\$): 0.17		
Use History	0 Do Nothing	0.00	-1.00	42.25
-	>> 1 Minor Maintanence	30.00	-1.00	42.07
JpdateOnly	State: 4 - NBI Rating 3-4	Unit benefit (\$): 0.00		
ust This Elm.		0.00	-1.00	33.98
Print	1 Pr. Maintanence	55.00	-1.00	95.08
	State: 5 - NBI Rating 1-2	Unit benefit (\$): 91.45		
Adjust <u>C</u> osts	0 Do Nothing	0.00	-1.00	303.82
Optimize	>> 1 Pr. Maintanence	180.00	-1.00	212.37
20111126	2 Replace Element	301.00	-1.00	307.09
	· · ·	Failure Costs: Agency: 2,709.00	User:	
	Long-Term Optimal Unit Cost	(\$): 0.14		Weight: 9
Reports				

Figure B. 5 The PONTIS Costs Window of Preservation Module

scparam	value	scparamname	scparamdescr
BF	YES	Store bridge-level measure	YES to store bridge-level perf measures
DY	0	Deferment years	Min years between projects rec by PONTIS
F1	NO	Optimal projects only	YES to include only alts w/ greatest ben
F2	NO	Opt & user projects only	YES to inc user proj plus alt w/ max ben
HZ	30	Planning horizon	Length of simulation in years
PE	YES	Store future elem cond	YES to store future element conditions
PG	1	Percentage granularity	Granularity of percentage for NBI
RR	.05	Replacement B/C crit	Min B/C ratio for considering repl
Y1	2003	First simulation year	First simulation year
Y2	2003	First project year	First project year
Z1	5	Min super for improve	Improve infeas for lower super rating
Z2	5	Min sub for improve	Improve infeas for lower sub rating

Table B. 3The Scenario Parameters Changed

(4) Enter the simulation rules:

A variety of simulation rules have been established in PONTIS to fine-tune the simulation steps to match with an agency practice for structure project development, and to improve the quality of the system's recommendations for bridge-level work. The ability to define these rules addresses the fact that while the system approach to determining preservation and improvement needs preservation optimization models is sufficient for addressing networklevel needs, more careful consideration of a range of detailed factors is needed for making realistic bridge-level recommendations. (Cambridge Systematics, Inc., 2001)

Five different sets of simulation rules may be defined in PONTIS to control the behavior of the program simulation.

<u>Scoping Rules</u> allow you to ensure that when the preservation optimization model recommends a particular type of work, which related work is scheduled at the same time. Scoping rules help address issues created by the fact that the preservation optimization model considers each element independently of the others. (See Figure B.6)

les - Scoping rule 1 of 2	
Scoping 2 Look Ahead 3 Major Rehab 4 Age Existing Rules	ency Policy
-	dit Delete ? K S 2 N Add Rule Delete Rule Renu
	Rule in English Pr
f REPLACE ELEMENT is done to SUPERSTRUCTU	JRE, then also do REPLACE ELEMENT to DECKS/SLABS 1.
f REPLACE ELEMENT is done to SUBSTRUCTURE	E, then also do STRUCTURE REPLACEMENT to BRIDGE 3.
Build a Rule	
If this action is done to this object	then (also) do this action to this object
2 Element Category 🔽 1 Action Type	2 Element Category 1 Action Type
Element Categories Action Types	Element Categories Action Types Price
	▼ Decks/Slabs ▼ Replace Element ▼ 1
Superstructure 💌 Replace Element	▼ Decks/Slabs ▼ Replace Element ▼ 1
Superstructure Replace Element	

Figure B. 6 The PONTIS Scoping Rules

<u>Look Ahead Rules</u> allow you to control the timing of work so that if a major rehab or replacement is programmed within the timeframe of the simulation, minor maintenance or repair work will not be scheduled for a specified number of years prior to the major project. <u>Look Ahead Rules</u> help PONTIS make the best use of previously defined project data when performing a program simulation. (See Figure B.7)

Rules - Look Ahead rule 1 of 45	
1 Scoping 2 Look Ahead 3 Major Rehab 4 Agency Policy	
Existing Rules	
Look Ahead Set: Default Look Set 🔽 Edit Delete ? K 🗹 2 N Add Rule De	ete Rule
	Min 🔺
Rule in English	Year
If REPLACE STRUCTURE to BRIDGE < 5 years, then no REHABILITATION to JOINTS	5
If REPLACE STRUCTURE to BRIDGE < 5 years, then no REHABILITATION to OTHER ELEMENTS	5
If REPLACE STRUCTURE to BRIDGE < 5 years, then no REHABILITATION to SUBSTRUCTURE	5
If REPLACE STRUCTURE to BRIDGE < 5 years, then no REHABILITATION to SUPERSTRUCTURE	5
If REPLACE STRUCTURE to BRIDGE < 5 years, then no STRENGTHEN STRUCTURE to BRIDGE	5
If REPLACE STRUCTURE to BRIDGE < 5 years, then no WIDEN STRUCTURE to BRIDGE	5
If REPLACE SUB (FLEX) to SUBSTRUCTURE < 5 years, then no MAINT&REPAIR to SUBSTRUCTURE	5
If REPLACE SUB (FLEX) to SUBSTRUCTURE < 5 years, then no PAINTING to SUBSTRUCTURE	5
If REPLACE SUB (FLEX) to SUBSTRUCTURE < 5 years, then no REHABILITATION to SUBSTRUCTURE	5
If REPLACE SUPER (FLEX) to SUPERSTRUCTURE < 5 years, then no MAINT&REPAIR to SUPERSTRUCTURE	5
If REPLACE SUPER (FLEX) to SUPERSTRUCTURE < 5 years, then no PAINTING to SUPERSTRUCTURE	5
	-
Build a Rule	
If this action is done to this object within <n> years then do NOT do this action to this object</n>	
0 Bridge 🛛 🖌 3 Flex Action 🔽 2 Element Category 🔽 2 Action Category 🔽	
Flexible Actions Element Categories Action Categories	Years
Paint Bridge (flex) 🔽 Bearings 🔽 Painting 🔽	5 ₹
QK Help	<u>C</u> ancel

Figure B. 7 The PONTIS Look Ahead Rules

<u>Major Rehab Rules</u> allow you to force the simulation to schedule a major rehabilitation or replacement project based on the condition of the structure, or based on the cost of recommended work. Major rehab rules help account for the fact that performing a single rehabilitation or replacement project on a structure may be more cost effective than a series of smaller projects over time, once all relevant factors are considered. (See Figure B.8)

Rules - Major Rehab rule 1 of 1	
1 Scoping 2 Look Ahead 3 Major Rehab 4 Agency Policy	
Existing Rules	
Major Rehab Set: Default Rehab Set 🔽 Edit Delete ? K S 2 3 Add Rule Delete Rule Rei	number
Rule in English	Priority
If Cost (in percent) > 75% of replacement cost, then do REPLACE STRUCTURE to BRIDGE	1.0
	. <u> </u>
Duild a Rule	
If this threshold type is > than this level then for this object type, do this action	
3 Cost (in percent)	
Action Types	Priority
Replace Structure	1 👤
OK Help C	2ancel

Figure B. 8 The PONTIS Major Rehabilitation Rules

<u>Agency Policy Rules</u> allow you to define detailed decision rules for what actions to schedule for specific elements, based on their condition, or on the condition of other elements or smart flags. These rules provide an extremely powerful tool more specifying agency policy and for modeling interactions between elements, as well as other factors.

<u>Paint Rules</u> allow you to set condition thresholds, below which a structure must be painted. The Agency Policy Rules and Paint Rules were not considered in the study.

After the modification of the scenario parameters described above, the next step is to input the annual budget in the Programming Module for each Scenario.

LIST OF TABLES FOR APPENDIX C

Table C. 1 The deterioration Model of Concrete Deck	. 127
Table C. 2 The deterioration Model of Concrete Superstructure	. 128
Table C. 3 The deterioration Model of Concrete Substructure	. 129
Table C. 4 The deterioration Model of Steel Deck	. 130
Table C. 5 The deterioration Model of Steel Superstructure	. 131
Table C. 6 The deterioration Model of Steel Substructure	. 132
Table C. 7 The deterioration Model of Prestressed Concrete Deck	. 133
Table C. 8 The deterioration Model of Prestressed Concrete Superstructure	. 134
Table C. 9 The deterioration Model of Prestressed Concrete Substructure	. 135
Table C. 10 The deterioration Model of Timber Deck	. 136
Table C. 11 The deterioration Model of Timber Superstructure	. 137
Table C. 12 The deterioration Model of Timber Substructure	. 138

APPENDIX C. THE PRESERVATION MODEL DETAILS

The tables given in this appendix are direct printout of PONTIS. The double point-right arrow indicates the recommended action by the optimization model if more than one action is offered for a given condition state.

Table C. 1The deterioration Model of Concrete Deck

LA DOTD				В	ureau of E	Bridges and Bridge Ma	Structures aintenance
Pre	eservation	Mode	l Deta	ils		Dridge ma	intenance
Element (Environment): 364 (2)							
Reinforced Concrete Dec	k (Low)		Long-T	erm Optin	nal Unit C	cost(\$):	0.21
	. ,	Failure Probability (%):			ity (%):	4.27	
		Element Failure U					Costs(\$)
Metric Units: sq.m.						<i>.</i>	2,709.00
English Units: (SF)					Use	r Cost:	0.00
Action	Direct			n Probabi			ong-Term
(>> = recommended)	Unit Cost(\$)	1	2	3	4	5	Cost(\$)
State: 1 NBIRating 7-9	Optima	l Percent	in State:	10.96	ι	Jnit Benefit:	0.00
>> 0 Do Nothing	0.00	96.21	3.47	0.15	0.17	0.00	6.39
State: 2 NBIRating 6	Optima	l Percent	in State:	52.19	ι	Jnit Benefit:	0.00
>> 0 Do Nothing	0.00	0.00	98.49	0.75	0.62	0.14	12.68
State: 3 NBIRating 5	Optima	l Percent	in State:	0.41	ι	Jnit Benefit:	0.17
0 Do Nothing	0.00	0.00	0.00	94.01	4.44	1.55	42.25
>> 1 Minor Maintanence	30.00	0.00	100.00	0.00	0.00	0.00	42.07
State: 4 NBIRating 3-4	Optima	l Percent	in State:	36.02	ι	Jnit Benefit:	0.00
>> 0 Do Nothing	0.00	0.00	0.00	0.00	99.05	0.95	33.98
1 Pr. Maintanence	180.00	0.00	0.00	100.00	0.00	0.00	220.08
State: 5 NBIRating 1-2	Optima	l Percent	in State:	0.42	ι	Jnit Benefit:	91.45
0 Do Nothing	0.00	0.00	0.00	0.00	0.00	95.73	303.82
>> 1 Pr. Maintanence	180.00	0.00	0.00	0.00	100.00	0.00	212.37
2 Replace Element	301.00	100.00	0.00	0.00	0.00	0.00	307.09

Table C. 2The deterioration Model of Concrete Superstructure

LA DOTD Bureau of Bridges and Structures Bridge Maintenance						
Preservation Model Details						
Element (Environment): 365 (2)						
Reinforced Concrete Superstructure Long-Term Optimal Unit Co					nal Unit Cost(\$):	0.53
(Low)				Failure	Probability (%):	9.86
				E	lement Failure Uni	()
Metric Units: m.					Agency Cost: User Cost:	6,890.00 0,00
English Units: (LF)					User Cost:	0.00
Action	Direct	Transition Probabilities (%)			ities (%)	Long-Term
(>> = recommended)	Unit Cost(\$)	1	2	3	4 5	Cost(\$)
State: 1 NBI Rating 7-9	Optima	l Percent	in State:	0.00	Unit Benef	it: 0.00
>> 0 Do Nothing	0.00	95.76	4.01	0.16	0.07	27.85
State: 2 NBIRating 6	Optima	l Percent	in State:	98.56	Unit Benef	it: 0.00
>> 0 Do Nothing	0.00	0.00	98.99	0.56	0.45	50.26
State: 3 NBIRating 5	Optima	l Percent	in State:	1.00	Unit Benef	it: 26.23
0 Do Nothing	0.00	0.00	0.00	91.81	8.19	143.10
>> 1 Minor Maintanence	69.00	0.00	100.00	0.00	0.00	116.87
State: 4 NBI Rating 1-4	Optima	l Percent	in State:	0.44	Unit Benef	it: 572.94
0 Do Nothing	0.00	0.00	0.00	0.00	90.14	1,097.26
>> 1 Pr. Maintanence	413.00	0.00	0.00	100.00	0.00	524.32
2 Replace Element	689.00	100.00	0.00	0.00	0.00	715.52

Table C. 3The deterioration Model of Concrete Substructure

LA DOTD Bureau of Bridges and Structures Bridge Maintenance						
Preservation Model Details						
Element (Environment): 366 (2)						
Reinforced Concrete Sub	structure		Long-T	erm Optin	nal Unit Cost(\$):	14.46
(Low)				Failure	Probability (%):	15.64
Metric Units: ea. English Units: (EA)				E	Element Failure U Agency Cost: User Cost:	nit Costs(\$) 180,000.00 0.00
Action	Direct	Transition Probabilities (%)			Long-Term	
(>> = recommended)	Unit Cost(\$)	1	2	3	4 5	Cost(\$)
State: 1 NBI Rating 7-9	Optima	Percent	in State:	0.00	Unit Ben	efit: 0.00
>> 0 Do Nothing	0.00	97.98	1.52	0.18	0.32	799.83
State: 2 NBIRating 6	Optima	l Percent	in State:	97.49	Unit Ben	efit: 0.00
>> 0 DoNothing	0.00	0.00	98.09	1.25	0.66	1,371.79
State: 3 NBIRating 5	Optima	Percent	in State:	1.86	Unit Ben	efit: 404.32
0 Do Nothing	0.00	0.00	0.00	92.24	7.76	2,910.95
>> 1 Minor Maintanence	1,200.00	0.00	100.00	0.00	0.00	2,506.63
State: 4 NBIRating 1-4	Optima	Percent	in State:	0.64	Unit Ben	efit24,931.10
0 Do Nothing	0.00	0.00	0.00	0.00	84.36	34,518.67
>> 1 Pr. Maintanence	7,200.00	0.00	0.00	100.00	0.00	9,587.57
2 Replace Element	12,000.00	100.00	0.00	0.00	0.00	12,761.84

Table C. 4The deterioration Model of Steel Deck

LA DOTD	Bureau of Bridges and Structures Bridge Maintenance						
Pr	eservation	Mode	l Deta	ils		Dridge in	
Element (Environment): 368 (2)							
Steel Deck (Low)			Long-T	erm Optii	mal Unit C	Cost(\$):	0.24
				Failure	e Probabil	lity (%):	3.98
Metric Units: sq.m.				E		ailure Unit v Cost:	Costs(\$) 2.709.00
Metric Units: sq.m. English Units:(SF)					2	r Cost:	0.00
Action	Direct		Transition	n Probabi	lities (%)	L	ong-Term
(>> = recommended)	Unit Cost(\$)	1	2	3	4	5	Cost(\$)
State: 1 NBI Rating 7-9	Optima	l Percent	in State:	11.78	ι	Jnit Benefit	0.00
>> 0 DoNothing	0.00	96.35	2.35	1.00	0.30	0.00	10.80
State: 2 NBIRating 6	Optima	l Percent	in State:	74.47	ι	Jnit Benefit	0.00
>> 0 DoNothing	0.00	0.00	98.73	0.74	0.26	0.27	17.08
State: 3 NBIRating 5	Optima	l Percent	in State:	0.67	ι	Jnit Benefit	0.00
>> 0 Do Nothing	0.00	0.00	0.00	95.25	4.61	0.14	33.88
1 Minor Maintanence	30.00	0.00	100.00	0.00	0.00	0.00	46.27
State: 4 NBI Rating 3-4	Optima	l Percent	in State:	12.65	ι	Jnit Benefit	0.00
>> 0 DoNothing	0.00	0.00	0.00	0.00	98.19	1.81	64.22
1 Pr. Maintanence	180.00	0.00	0.00	100.00	0.00	0.00	212.27
State: 5 NBIRating 1-2	Optima	lPercent	in State:	0.43	ι	Jnit Benefit	82.10
0 Do Nothing	0.00	0.00	0.00	0.00	0.00	96.02	323.27
>> 1 Pr. Maintanence	180.00	0.00	0.00	0.00	100.00	0.00	241.17
2 Replace Element	301.00	100.00	0.00	0.00	0.00	0.00	311.29

Table C. 5The deterioration Model of Steel Superstructure

LA DOTD				B	ureau of Bridges a Bridge	nd Structures Maintenance
Pres	ervation	Mode	l Deta	ils		
Element (Environment): 369 (2)						
Steel Superstructure (Low)			Long-T	erm Optir	nal Unit Cost(\$):	0.91
				Failure	e Probability (%):	12.85
Metric Units: m. English Units: (LF)				E	Element Failure Un Agency Cost: User Cost:	it Costs(\$) 6,890.00 0.00
Action	Direct	Direct Transition Probabilities (%)			Long-Term	
(>> = recommended)	Unit Cost(\$)	1	2	3	4 5	Cost(\$)
State: 1 NBI Rating 7-9	Optima	al Percent	in State:	29.37	Unit Bene	fit: 0.00
>> 0 DoNothing	0.00	98.32	1.31	0.12	0.25	44.81
State: 2 NBIRating 6	Optima	al Percent	in State:	67.73	Unit Bene	fit: 0.00
>> 0 Do Nothing	0.00	0.00	95.87	3.51	0.62	103.43
State: 3 NBIRating 5	Optima	al Percent	in State:	2.41	Unit Bene	fit: 2.73
0 Do Nothing	0.00	0.00	0.00	97.23	2.77	170.25
>> 1 Minor Maintanence	69.00	0.00	100.00	0.00	0.00	167.52
State: 4 NBI Rating 1-4	Optima	al Percent	in State:	0.49	Unit Bene	fit: 746.03
0 Do Nothing	0.00	0.00	0.00	0.00	87.15	1,318.60
>> 1 Pr. Maintanence	413.00	0.00	0.00	100.00	0.00	572.56
2 Replace Element	689.00	100.00	0.00	0.00	0.00	731.68

Table C. 6The deterioration Model of Steel Substructure

LA DOTD				В	ıreau of Bridges Bridg	and Structures e Maintenance
Pres	servation	Mode	l Deta	ils		
Element (Environment): 370 (2)						
Steel Substructure (Low)			Long-T	erm Optin	nal Unit Cost(\$):	11.87
				Failure	Probability (%):	11.78
Metric Units: ea. English Units: (EA)				E	lement Failure U Agency Cost: User Cost:	,
Action	Direct	1	ransitior	n Probabil	ities (%)	Long-Term
(>> = recommended)	Unit Cost(\$)	1	2	3	4 5	Cost(\$)
State: 1 NBI Rating 7-9	Optima	al Percent	in State:	48.66	Unit Ber	nefit: 0.00
>> 0 Do Nothing	0.00	98.98	0.95	0.03	0.04	372.81
State: 2 NBIRating 6	Optima	al Percent	in State:	50.19	Unit Ber	nefit: 0.00
>> 0 Do Nothing	0.00	0.00	97.77	1.28	0.95	1,842.34
State: 3 NBIRating 5	Optima	al Percent	in State:	0.66	Unit Ber	nefit: 269.16
0 Do Nothing	0.00	0.00	0.00	93.91	6.09	3,223.98
>> 1 Minor Maintanence	1,200.00	0.00	100.00	0.00	0.00	2,954.83
State: 4 NBI Rating 1-4	Optima	al Percent	in State:	0.50	Unit Ber	nefit:18,597.45
0 Do Nothing	0.00	0.00	0.00	0.00	88.22	28,611.93
>> 1 Pr. Maintanence	7,200.00	0.00	0.00	100.00	0.00	10,014.47
2 Replace Element	12,000.00	100.00	0.00	0.00	0.00	12,355.10

Table C. 7 The deterioration Model of Prestressed Concrete Deck

LA DOTD

Bureau of Bridges and Structures Bridge Maintenance

Element (Environment): 372 (2) P/S Concrete Deck (Low)			Long-T	erm Opti	mal Unit C	Cost(\$):	0.04
P/O Concrete Deck (Low)			2011.9	•	e Probabil		4.29
Metric Units: sq.m. English Units: (SF)				I	Agenc	ailure Unit y Cost: r Cost:	Costs(\$) 2,709.00 0.00
Action	Direct		Transition	n Probabi	lities (%)	L	ong-Term
(>> = recommended)	Unit Cost(\$)	1	2	3	4	5	Cost(\$)
State: 1 NBI Rating 7-9	Optima	l Percent	in State:	0.83	l	Jnit Benefit:	0.00
>> 0 Do Nothing	0.00	92.82	6.67	0.51	0.00	0.00	3.55
State: 2 NBI Rating 6	Optima	l Percent	in State:	98.89	ι	Jnit Benefit:	0.00
>> 0 Do Nothing	0.00	0.00	99.78	0.10	0.06	0.06	3.90
State: 3 NBIRating 5	Optima	l Percent	in State:	0.16	l	Jnit Benefit:	5.52
0 Do Nothing	0.00	0.00	0.00	92.84	3.70	3.46	39.23
>> 1 Minor Maintanence	30.00	0.00	100.00	0.00	0.00	0.00	33.71
State: 4 NBI Rating 3-4	Optima	l Percent	in State:	0.06	l	Jnit Benefit:	0.00
>> 0 DoNothing	0.00	0.00	0.00	0.00	98.53	1.47	52.33
1 Pr. Maintanence	180.00	0.00	0.00	100.00	0.00	0.00	212.11
State: 5 NBIRating 1-2	Optima	l Percent	in State:	0.06	l	Jnit Benefit:	90.39
0 Do Nothing	0.00	0.00	0.00	0.00	0.00	95.71	320.23
>> 1 Pr. Maintanence	180.00	0.00	0.00	0.00	100.00	0.00	229.84
2 Replace Element	301.00	100.00	0.00	0.00	0.00	0.00	304.38

Preservation Model Details

Table C. 8 The deterioration Model of Prestressed Concrete Superstructure

LA DOTD

LA DOTD	Bureau of Bridges and Structure Bridge Maintenanc			
Preservation M	odel Details			
Element (Environment): 373 (2)				
P/S Concrete Superstructure (Low)	Long-Term Optimal Unit Cost(\$):	0.38		
	Failure Probability (%):	50.24		
	Element Failure Un	it Costs(\$)		
Metric Units: m.	Agency Cost:	6,890.00		
English Units: (LF)	User Cost:	0.00		

Preservatio

English Units: (LF)					User Co		0.00
Action	Direct		Transition Probabilities (%)			Lo	ng-Term
(>> = recommended)	Unit Cost(\$)	1	2	3	4	5	Cost(\$)
State: 1 NBI Rating 7-9	Optima	al Percent	in State:	75.74	Unit I	3enefit:	0.00
>> 0 Do Nothing	0.00	99.64	0.31	0.05	0.00		8.71
State: 2 NBI Rating 6	Optima	al Percent	in State:	23.71	Unit E	3enefit:	0.00
>> 0 Do Nothing	0.00	0.00	97.85	1.00	1.15		120.51
State: 3 NBIRating 5	Optima	al Percent	in State:	0.27	Unit f	3enefit:	10.29
0 Do Nothing	0.00	0.00	0.00	95.06	4.94		194.08
>> 1 Minor Maintanence	69.00	0.00	100.00	0.00	0.00		183.78
State: 4 NBI Rating 1-4	Optima	al Percent	in State:	0.27	Unit E	3enefit:	2,987.78
0 Do Nothing	0.00	0.00	0.00	0.00	49.76		3,575.83
>> 1 Pr. Maintanence	413.00	0.00	0.00	100.00	0.00		588.05
2 Replace Element	689.00	100.00	0.00	0.00	0.00		697.29

Table C. 9 The deterioration Model of Prestressed Concrete Substructure

LA DOTD

Bureau of Bridges and Structures Bridge Maintenance

	Preservation	Mode	l Deta	ils			
Element (Environment): 374 (2)				_			
P/S Concrete Substruc	ture (Low)		Long-T		mal Unit Cost(\$	2	5.40
				Failur	e Probability (%):	53.84
Metric Units: ea. English Units:(EA)					Element Failure Agency Cos User Cos	t: 18	osts(\$) 0,000.00 0.00
Action	Direct		Transition	n Probabi	lities (%)	Lo	ng-Term
(>> = recommended)	Unit Cost(\$)	1	2	3	4	5	Cost(\$)
State: 1 NBI Rating 7-9	Optima	al Percent	in State:	0.00	Unit B	enefit:	0.00
>> 0 DoNothing	0.00	97.53	2.47	0.00	0.00		169.72
State: 2 NBIRating 6	Optima	al Percent	in State:	99.05	Unit B	enefit:	0.00
>> 0 DoNothing	0.00	0.00	99.28	0.48	0.24		512.39
State: 3 NBIRating 5	Optima	al Percent	in State:	0.71	Unit B	enefit:	255.51
0 Do Nothing	0.00	0.00	0.00	95.05	4.95		1,943.56
>> 1 Minor Maintanence	1,200.00	0.00	100.00	0.00	0.00		1,688.05
State: 4 NBI Rating 1-4	Optima	al Percent	in State:	0.24	Unit B	enefit8	7,373.40
0 Do Nothing	0.00	0.00	0.00	0.00	46.16	9	6,181.27
>> 1 Pr. Maintanence	7,200.00	0.00	0.00	100.00	0.00		8,807.87
2 Replace Element	12,000.00	100.00	0.00	0.00	0.00	1	2,161.66

Table C. 10 The deterioration Model of Timber Deck

Pr	eservation	Mode	l Deta	ils			
Element (Environment): 376 (2)							
Timber Deck (Low)			Long-T	erm Opti	mal Unit C	cost(\$):	0.45
				Failure	e Probabil	ity (%):	3.41
				E		ailure Unit (()
Metric Units: sq.m.					-	2	2,709.00
English Units: (SF)					Use	r Cost:	0.00
Action	Direct		Transition	n Probabi	lities (%)	Lo	ong-Term
(>> = recommended)	Unit Cost(\$)	1	2	3	4	5	Cost(\$)
State: 1 NBIRating 7-9	Optima	Percent	in State:	0.00	t	Jnit Benefit:	0.00
>> 0 DoNothing	0.00	85.26	11.71	1.88	1.14	0.00	21.56
State: 2 NBIRating 6	Optima	Percent	in State:	0.00	ι	Jnit Benefit:	0.00
>> 0 DoNothing	0.00	0.00	93.05	2.84	4.05	0.06	25.49
State: 3 NBIRating 5	Optima	Percent	in State:	0.00	l	Jnit Benefit:	0.00
>> 0 Do Nothing	0.00	0.00	0.00	88.51	10.42	1.07	41.42
1 Minor Maintanence	30.00	0.00	100.00	0.00	0.00	0.00	54.28
State: 4 NBIRating 3-4	Optima	Percent	in State:	98.81	, i	Jnit Benefit:	0.00
>> 0 Do Nothing	0.00	0.00	0.00	0.00	98.80	1.20	42.82
1 Pr. Maintanence	180.00	0.00	0.00	100.00	0.00	0.00	219.45
State: 5 NBIRating 1-2	Optima	Percent	in State:	1.19	ι	Jnit Benefit:	70.33
0 Do Nothing	0.00	0.00	0.00	0.00	0.00	96.59	291.12
>> 1 Pr. Maintanence	180.00	0.00	0.00	0.00	100.00	0.00	220.79
2 Replace Element	301.00	100.00	0.00	0.00	0.00	0.00	321.53

. • • . .

Bureau of Bridges and Structures Bridge Maintenance

LA DOTD

Table C. 11The deterioration Model of Timber Superstructure

LA DOTD

Bureau of Bridges and Structures Bridge Maintenance

Preservation Model Details

Element (Environment): 377 (2)							
Timber Superstructure (Lov	~)		Long-T	erm Opti	mal Unit Co	ost(\$):	4.26
				Failur	e Probability	у (%):	3.60
					Element Fai	ilure Unit	Costs(\$)
Metric Units: m.					Agency		6,890.00
English Units: (LF)					User	Cost:	0.00
Action	Direct		Transition	n Probab	ilities (%)	L	ong-Term
(>> = recommended)	Unit Cost(\$)	1	2	3	4	5	Cost(\$)
State: 1 NBI Rating 7-9	Optima	l Percent	in State:	0.00	Ur	nit Benefit	: 0.00
>> 0 Do Nothing	0.00	87.40	8.57	1.38	2.65		361.32
State: 2 NBIRating 6	Optima	l Percent	in State:	89.94	Ur	nit Benefit	: 0.00
>> 0 Do Nothing	0.00	0.00	93.11	2.59	4.30		406.12
State: 3 NBIRating 5	Optima	l Percent	in State:	6.20	Ur	nit Benefit	: 14.21
0 Do Nothing	0.00	0.00	0.00	90.38	9.62		470.04
>> 1 Minor Maintanence	69.00	0.00	100.00	0.00	0.00		455.83
State: 4 NBI Rating 1-4	Optima	l Percent	in State:	3.87	Ur	nit Benefit	: 166.97
0 Do Nothing	0.00	0.00	0.00	0.00	96.40		1,014.15
>> 1 Pr. Maintanence	413.00	0.00	0.00	100.00	0.00		847.18
2 Replace Element	689.00	100.00	0.00	0.00	0.00		1,033.16

Table C. 12The deterioration Model of Timber Substructure

LA DOTD

Bureau of Bridges and Structures Bridge Maintenance

Preservation Model Details

Element (Environment): 378 (2)							
Timber Substructure (Low)			Long-T	erm Opti	mal Unit Co	st(\$):	113.69
				Failure	e Probability	/ (%):	1.66
Metric Units: ea. English Units: (EA)				I	Element Fai Agency User(Cost:	it Costs(\$) 180,000.00 0.00
Action	Direct	1	ransitior	n Probabi	lities (%)		Long-Term
(>> = recommended)	Unit Cost(\$)	1	2	3	4	5	Cost(\$)
State: 1 NBI Rating 7-9	Optima	al Percent	in State:	0.00	Un	it Benef	it: 0.00
>> 0 Do Nothing	0.00	84.85	11.03	1.26	2.86		9,259.06
State: 2 NBI Rating 6	Optima	al Percent	in State:	85.40	Un	it Benef	it: 0.00
>> 0 Do Nothing	0.00	0.00	90.02	2.86	7.12		10,865.21
State: 3 NBIRating 5	Optima	al Percent	in State:	8.52	Un	it Benef	it: 354.22
0 Do Nothing	0.00	0.00	0.00	85.75	14.25		11,903.33
>> 1 Minor Maintanence	1,200.00	0.00	100.00	0.00	0.00		11,549.11
State: 4 NBI Rating 1-4	Optima	al Percent	in State:	6.08	Un	it Benef	it: 1,693.77
0 Do Nothing	0.00	0.00	0.00	0.00	98.34		19,894.29
>> 1 Pr. Maintanence	7,200.00	0.00	0.00	100.00	0.00		18,200.53
2 Replace Element	12,000.00	100.00	0.00	0.00	0.00		20,819.26

LIST OF FIGURES FOR APPENDIX D

Figure D. 1 PONTIS need and work distribution (Budget = \$0, MRR, all actions)	41
Figure D. 2 PONTIS substructure quantity distribution (Budget = \$0, MRR)	42
Figure D. 3 PONTIS sufficiency rating distribution (Budget = \$0, MRR) 1	42
Figure D. 4 PONTIS health index distribution (Budget = \$0, MRR) 1	43
Figure D. 5 PONTIS need & work distribution (Budget =\$0, MRR, all actions)1	44
Figure D. 6 PONTIS substructure quantity distribution (Budget = \$0, MF)	44
Figure D. 7 PONTIS sufficent rating distribution (Budget = \$0, MRR) 1	45
Figure D. 8 PONTIS health index distribution (Budget = \$0, MF)	45

APPENDIX D. RESULTS FROM SCENARIOS WITHOUT ANNUAL BUDGET

As listed in Table 32 of the report, there are two scenarios, S-0-1 and S-0-4 under this budget level. This appendix contains the results from these scenarios in the following order:

- 1. Work vs. Need
- 2. PONTIS condition ratings (accumulated curves)
 - a. Deck
 - b. Superstructure
 - c. Substructure
- 3. Sufficient ratings
- 4. Health index (accumulated)
 - a. By number of bridges
 - b. By deck areas

Results from S-0-1:

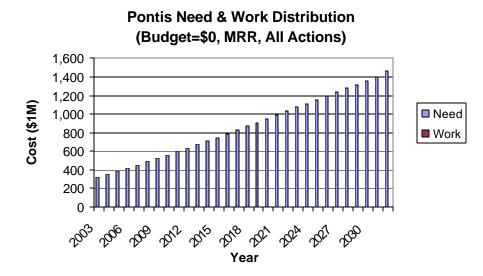


Figure D. 1 PONTIS need and work distribution (Budget = \$0, MRR, all actions)

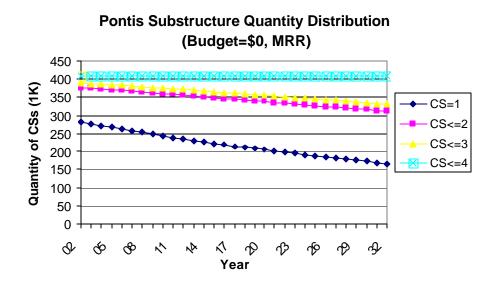


Figure D. 2 PONTIS substructure quantity distribution (Budget = \$0, MRR)

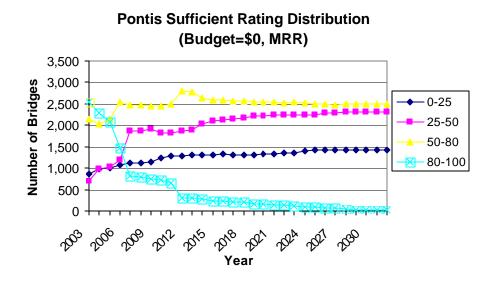


Figure D. 3 PONTIS sufficiency rating distribution (Budget = \$0, MRR)

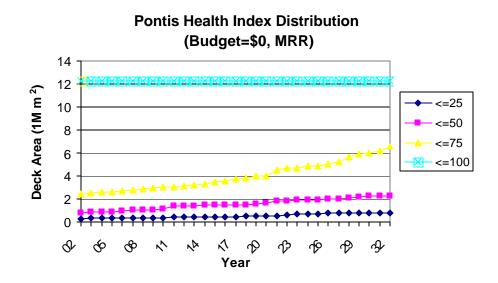


Figure D. 4 PONTIS health index distribution (Budget = \$0, MRR)

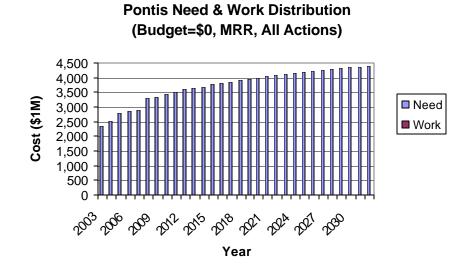


Figure D. 5 PONTIS need & work distribution (Budget =\$0, MRR, all actions)

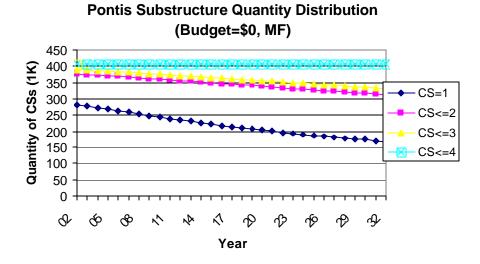


Figure D. 6 PONTIS substructure quantity distribution (Budget = \$0, MF)

Pontis Sufficient Rating Distribution (Budget=\$0, MRR)

Figure D. 7 PONTIS sufficiency rating distribution (Budget = \$0, MRR)

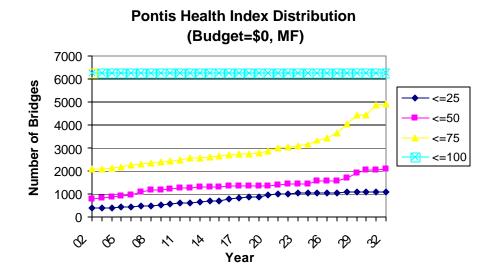


Figure D. 8 PONTIS health index distribution (Budget = \$0, MF)

LIST OF FIGURES FOR APPENDIX E

Figure E. 1 PONTIS need & work distribution (Budget = \$0, MRR, all actions)
Figure E. 2 PONTIS deck quantity distribution (Budget =\$70M, MRR)
Figure E. 3 PONTIS superstructure quantity distribution (Budget =\$70M, MRR)
Figure E. 4 PONTIS substructure quantity distribution (Budget = 70M, MRR)
Figure E. 5 PONTIS sufficiency rating distribution (Budget = \$70M, MRR)
Figure E. 6 PONTIS health index distribution (Budget = \$70M, MRR
Figure E. 7 PONTIS need & work distribution 9Budget = \$70M, All Actions) 152
Figure E. 8 PONTIS deck quantity distribution (Budget = \$70M, MRR)
Figure E. 9 PONTIS superstructure quantity distribution (Budget = \$70M, MRR)153
Figure E. 10 PONTIS substructure quantity distribution (Budget = \$70M, MRR)154
Figure E. 11 PONTIS sufficiency rating distribution (Budget = \$70M, MRR)154
Figure E. 12 PONTIS health index distribution (Budget = \$70M, MRR)155
Figure E. 13 PONTIS need and work distribution (Budget = \$70M, MRR)
Figure E. 14 PONTIS deck quantity distribution (Budget = \$70M, MRR)156
Figure E. 15 PONTIS superstructure quantity distribution (Budget = \$70M, MRR)156
Figure E. 16 PONTIS substructure quantity distribution (Budget = \$70M, MRR)157
Figure E. 17 PONTIS sufficiency rating distribution (Budget = \$70M, MRR)157
Figure E. 18 PONTIS health index distribution (Budget = \$70M, MRR)158
Figure E. 19 PONTIS need & work distribution (Budget = \$70M, MF, all actions)158
Figure E. 20 PONTIS deck quantity distribution (Budget = \$70M, MF)159
Figure E. 21 PONTIS superstructure quantity distribution (Budget = \$70M, MF)159
Figure E. 22 PONTIS substructure quantity distribution (Budget = \$70M, MF)160
Figure E. 23 PONTIS sufficiency rating distribution (Budget = \$70M, MF)
Figure E. 24 PONTIS health index distribution (Budget = \$70M, MF)

APPENDIX E. RESULTS FROM AN ANNUAL BUDGET OF \$70M

As listed in Table 32 of the report, there are four scenarios, S-70-1, S-70-2, S-70-3, and S-70-4, under this budget level. This appendix contains the results from these scenarios in the following order:

- 1. Work vs. Need
- 2. PONTIS condition ratings (accumulated curves)
 - a. Deck
 - b. Superstructure
 - c. Substructure
- 3. Sufficient ratings
- 4. Health index (accumulated)
 - a. By number of bridges
 - b. By deck areas

Results from Scenario S-70-1:

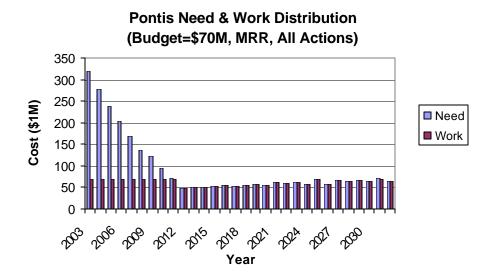


Figure E. 1 PONTIS need & work distribution (Budget = \$0, MRR, all actions)

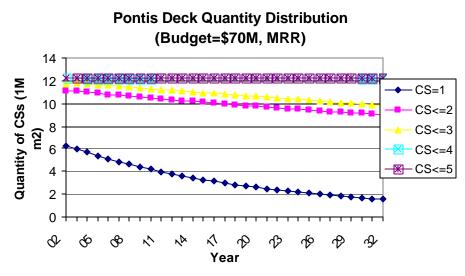


Figure E. 2 PONTIS deck quantity distribution (Budget =\$70M, MRR)

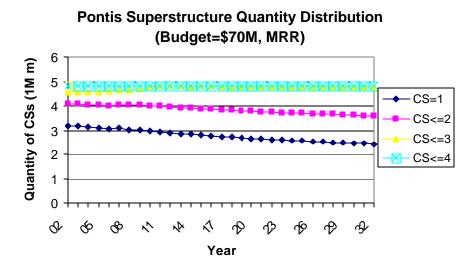


Figure E. 3 PONTIS superstructure quantity distribution (Budget =\$70M, MRR)

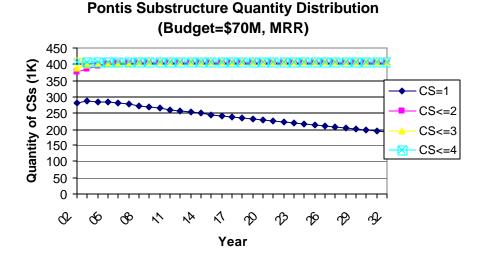


Figure E. 4 PONTIS substructure quantity distribution (Budget = 70M, MRR)

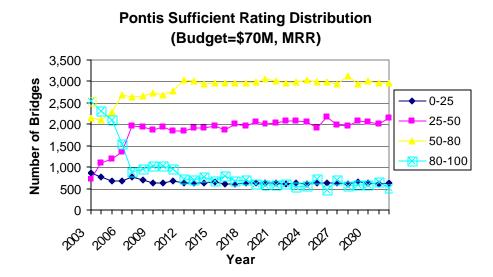


Figure E. 5 PONTIS sufficiency rating distribution (Budget = \$70M, MRR)

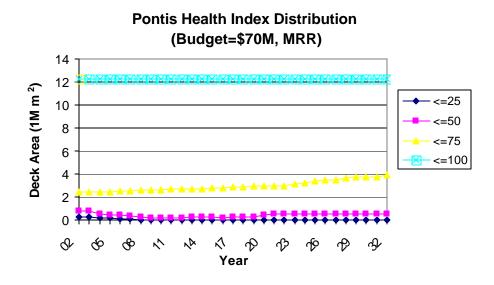


Figure E. 6 PONTIS health index distribution (Budget = \$70M, MRR

Results from Scenario S-70-2:



Figure E. 7 PONTIS need & work distribution (Budget = \$70M, All Actions)

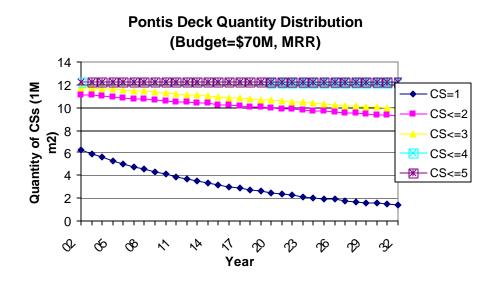


Figure E. 8 PONTIS deck quantity distribution (Budget = \$70M, MRR)

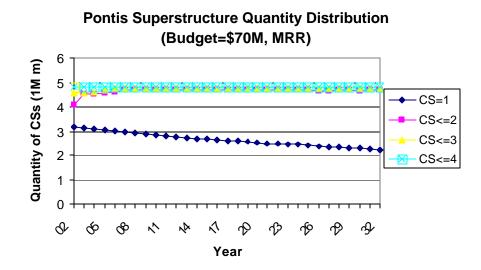


Figure E. 9 PONTIS superstructure quantity distribution (Budget = \$70M, MRR)

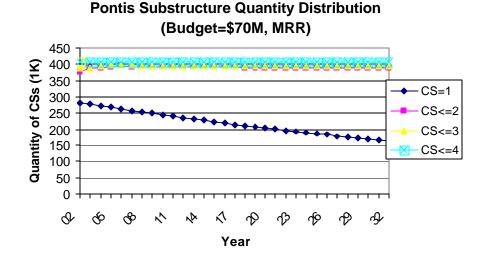


Figure E. 10 PONTIS substructure quantity distribution (Budget = \$70M, MRR)

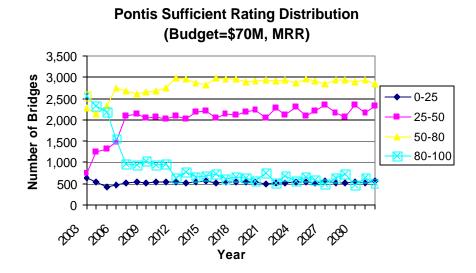


Figure E. 11 PONTIS sufficiency rating distribution (Budget = \$70M, MRR)

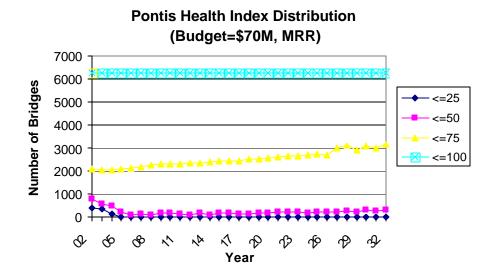


Figure E. 12 PONTIS health index distribution (Budget = \$70M, MRR)

Results from Scenario S-70-3:

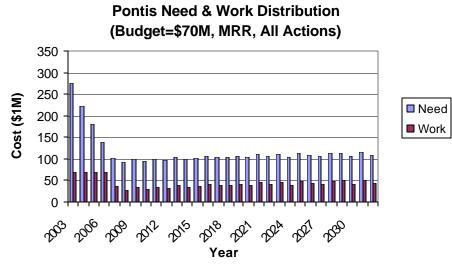


Figure E. 13 PONTIS need and work distribution (Budget = \$70M, MRR)

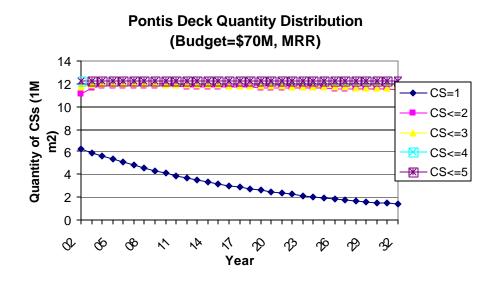


Figure E. 14 PONTIS deck quantity distribution (Budget = \$70M, MRR)

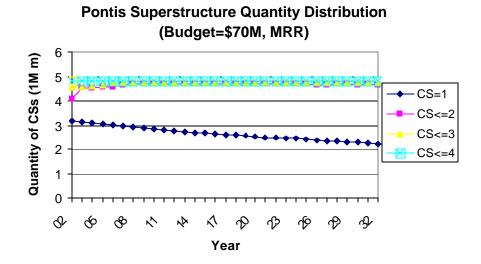


Figure E. 15 PONTIS superstructure quantity distribution (Budget = \$70M, MRR)

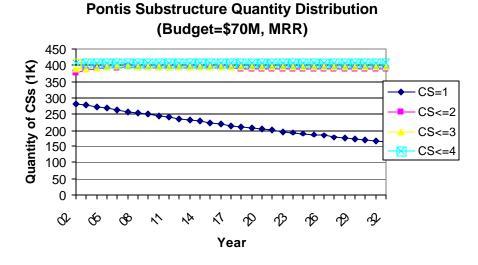


Figure E. 16 PONTIS substructure quantity distribution (Budget = \$70M, MRR)

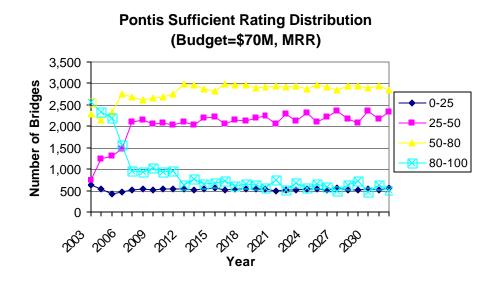


Figure E. 17 PONTIS sufficiency rating distribution (Budget = \$70M, MRR)

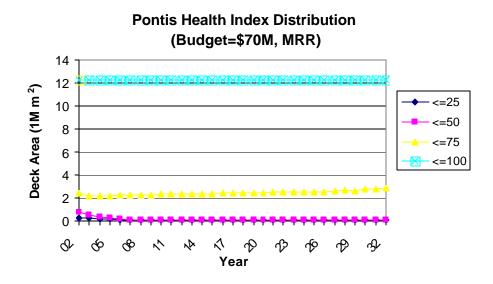


Figure E. 18 PONTIS health index distribution (Budget = \$70M, MRR)

Results from Scenario S-70-4:

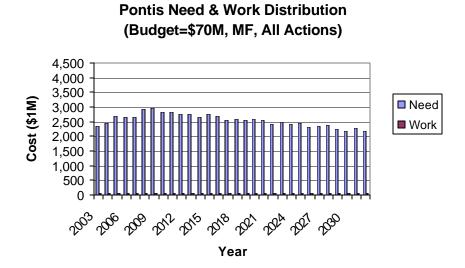


Figure E. 19 PONTIS need & work distribution (Budget = \$70M, MF, all actions)

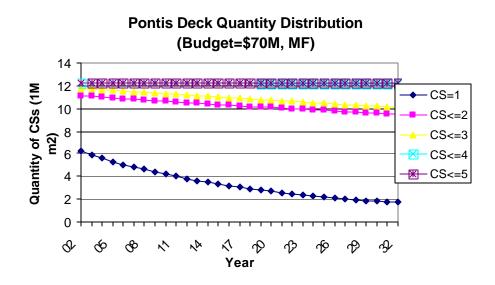


Figure E. 20 PONTIS deck quantity distribution (Budget = \$70M, MF)

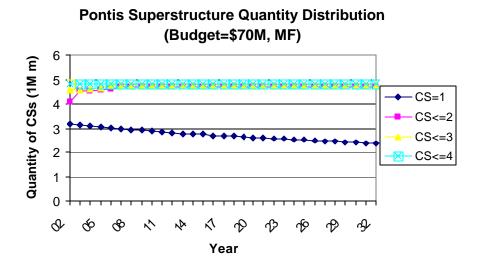


Figure E. 21 PONTIS superstructure quantity distribution (Budget = \$70M, MF)

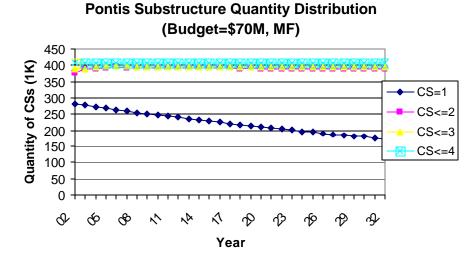


Figure E. 22 PONTIS substructure quantity distribution (Budget = \$70M, MF)

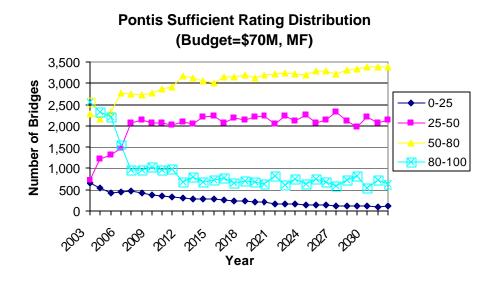


Figure E. 23 PONTIS sufficiency rating distribution (Budget = \$70M, MF)

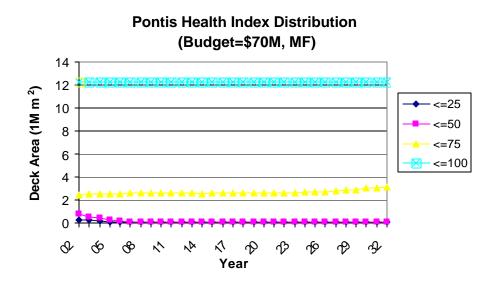


Figure E. 24 PONTIS health index distribution (Budget = \$70M, MF)

LIST OF FIGURES FOR APPENDIX F

Figure F. 1 PONTIS need & work distribution (Budget = \$140M, MRR, all actions)165
Figure F. 2 PONTIS deck quantity distribution (Budget = \$140M, MRR)
Figure F. 3 PONTIS superstructure quantity distribution (Budget = \$140M, MRR)166
Figure F. 4 PONTIS substructure quantity distribution (Budget = \$140M, MRR)
Figure F. 5 PONTIS sufficiency rating distibution (Budget = \$140M, MRR)
Figure F. 6 PONTIS health index distribution (Budget = \$140M, MRR)
Figure F. 7 PONTIS health index distribution (Budget = \$140M, MRR)
Figure F. 8 PONTIS need & work distribution (Budget = \$140M, all actions)169
Figure F. 9 PONTIS deck quantity distribution (Budget = \$40M, MRR)
Figure F. 10 PONTIS superstructure quantity distribution (Budget = \$140M, MRR)170
Figure F. 11 PONTIS substructure quantity distribution (Budget = \$140M, MRR)170
Figure F. 12 PONTIS sufficiency rating distribution (Budget = \$140M, MRR) 171
Figure F. 13 PONTIS health index distribution (Budget = \$140M, MRR)
Figure F. 14 PONTIS health index distribution (Budget = \$140M, MRR)

APPENDIX F. RESULTS WITH AN ANNUAL BUDGET OF \$140M

As listed in Table 32 of the report, there are two scenarios, S-140-1 and S-140-2 under this budget level. This appendix contains the results from these scenarios in the following order:

- 1. Work vs. Need
- 2. PONTIS condition ratings (accumulated curves)
 - a. Deck
 - b. Superstructure
 - c. Substructure
- 3. Sufficient ratings
- 4. Health index (accumulated)
 - a. By number of bridges
 - b. By deck areas

Results from S-140-1:

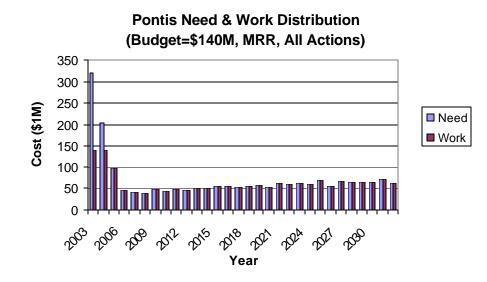


Figure F. 1 PONTIS need & work distribution (Budget = \$140M, MRR, all actions)

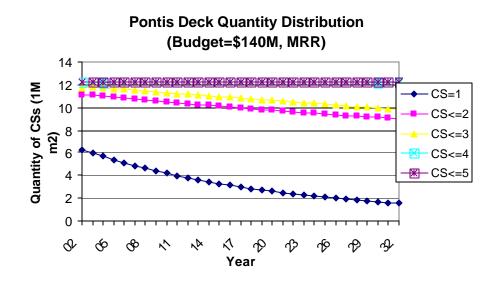


Figure F. 2 PONTIS deck quantity distribution (Budget = \$140M, MRR)

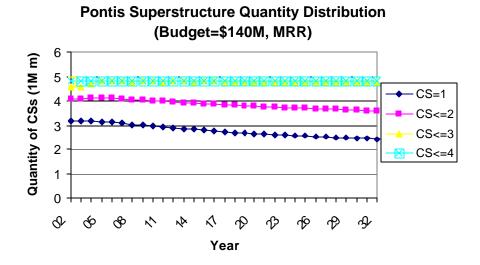


Figure F. 3 PONTIS superstructure quantity distribution (Budget = \$140M, MRR)

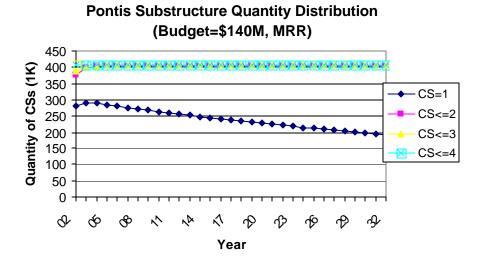


Figure F. 4 PONTIS substructure quantity distribution (Budget = \$140M, MRR)

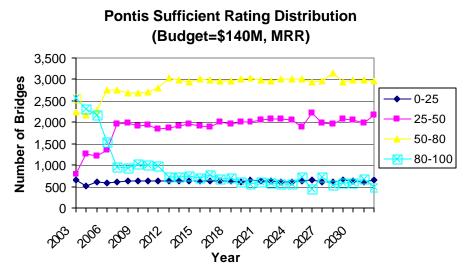


Figure F. 5 PONTIS sufficiency rating distribution (Budget = \$140M, MRR)

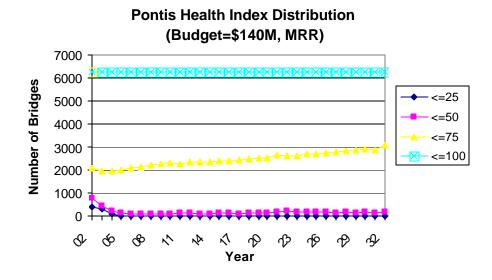


Figure F. 6 PONTIS health index distribution (Budget = \$140M, MRR)

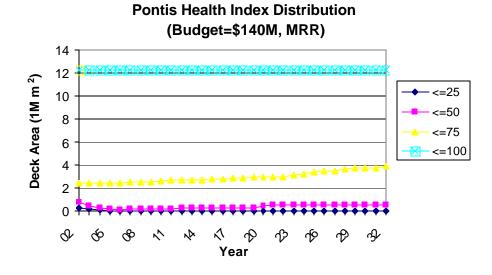


Figure F. 7 PONTIS health index distribution (Budget = \$140M, MRR)

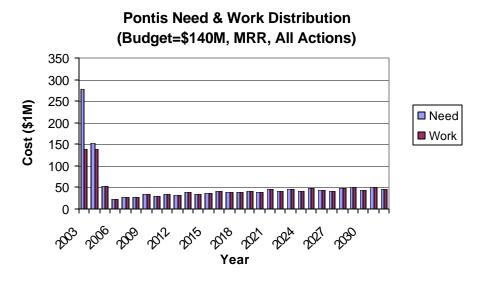


Figure F. 8 PONTIS need & work distribution (Budget = \$140M, all actions)

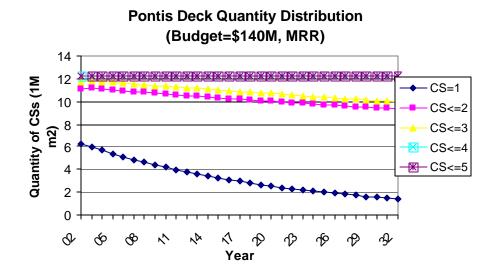


Figure F. 9 PONTIS deck quantity distribution (Budget = \$40M, MRR)

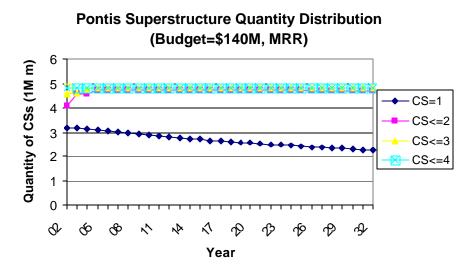


Figure F. 10 PONTIS superstructure quantity distribution (Budget = \$140M, MRR)

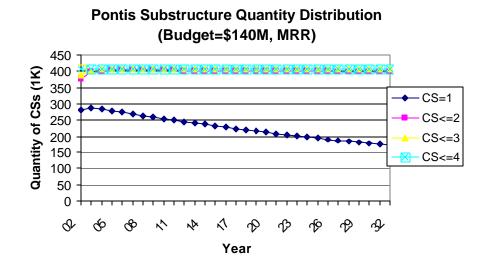


Figure F. 11 PONTIS substructure quantity distribution (Budget = \$140M, MRR)

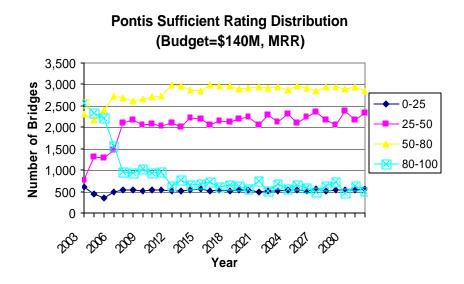


Figure F. 12 PONTIS sufficiency rating distribution (Budget = \$140M, MRR)

Pontis Health Index Distribution

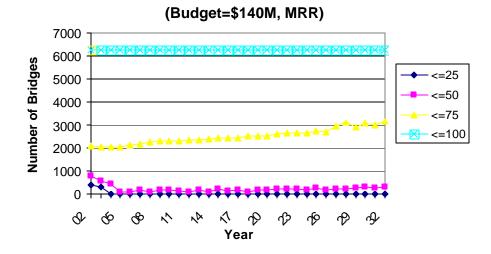


Figure F. 13 PONTIS health index distribution (Budget = \$140M, MRR)

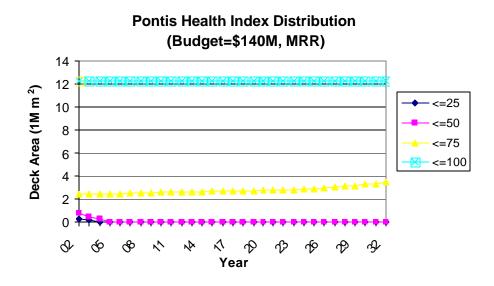


Figure F. 14 PONTIS health index distribution (Budget = \$140M, MRR)