Mitigation Strategies for Reflective Cracking in Pavements

Mostafa Elseifi Nirmal Dhakal

Introduction

- Reflection of existing cracks and joints from underlying PCC and asphalt pavement is known as reflective cracking
- One of the major modes of failure in rehabilitated pavements
- HMA overlays are not cost-effective against reflective cracking
- Various crack control methods have been introduced since $1970s \rightarrow Mixed$ experiences

Research Objectives

- Conduct an in-depth literature review of research studies on reflective cracking
- Conduct a survey of the state practices to address reflective cracking

Topics in the Synthesis

- Types and effectiveness of reflection crack control treatments
- Performance and cost-effectiveness
- Selection criteria for different crack control strategies
- Knowledge gaps and unresolved questions

Crack Control Treatments

Treatment	Picture	Functions	Estimated Cost
Galvanized Steel Netting		Reinforcement	3.00 - 5.00 \$/yd ²
Geogrid	H	Reinforcement	1.80 - 4.00 \$/yd ²
Geonet		Reinforcement	3.00 - 4.00 \$/yd ²
Glass-Grid		Reinforcement	4.00 - 7.00 \$/yd ²
Paving Fabric		Stress Relief	0.60 - 1.05 \$/yd ²
Geocomposite		Stress Relief	$8.00 - 9.20$ $$/yd^2$

Crack Control Treatments

Treatment	Picture	Functions	Estimated Cost
SAMI		Stress Relief	
Rubblization		Eliminates movement in concrete layer	5.00 - 6.00 \$/yd ²
NovaChip		Stress Relief	3.00 - 4.00 \$/yd ²
Strata	the second s	Stress Relief	4.00 - 5.00 %/yd ²
Saw and Seal		Control reflective cracking by sawing overlay	1.00 - 2.00 \$/ft.

LITERATURE REVIEW GEOSYNTHETICS

Paving Fabrics (Shuler 2004)

- Investigated the use of paving fabrics in delaying reflective cracking:
 - 18 test sections were evaluated with eight treatment methods
 - Five years monitoring period
 - 4in. Overlay was applied after milling
 - Heavy traffic (20 million ESALs)

Treatment	ID
90 Pound Petromat	А
120 Pound Petromat	В
Petrotac	С
ProGuard	D
Crack sealers without routing	F and H
Crack sealers with routing	E and G

Paving Fabrics (Shuler... 2004)

- A number of treatments performed better than the control section
- Control section performed better in the passing lane
- Construction and repair costs were the least for the control section

Glasgrid (Bischoff and Topel 2003)

- Glasgrid was placed in 5-foot widths across transverse joints on top of JPCP
- Single and double strand grid
- 1.5 in. asphalt overlay 10 years monitoring period
- Glasgrid was not effective in delaying reflective cracking

Average % Reflective Cracking per Test Section						
Continu	Years After Construction					
Section	1	2	3	4	5	10
Double Strand	53	69	76	91	91	108
Single Strand	55	61	68	83	83	106
Control	59	73	86	87	87	105

Glasgrid (Elseifi and Bandaru 2011)

 Evaluated the performance and costeffectiveness of 13 in-service rehabilitated pavements constructed with Glasgrid

Factors Influencing Geosynthetics Performance

- Existing pavements
 - More successful with rehabilitated flexible pavements
- Movement at the joints
 - More successful with stable joints
- Traffic
 - More successful with light traffic
- Construction
 - Good bonding key to good performance (tack coat,...)

FRACTURED SLAB APPROACHES

Rubblization (Sebasta and Scullion 2007)

- Evaluated the performance of rubblization for concrete pavements:
 - Five field projects were evaluated and monitored
 - Prior and after construction evaluation was performed using GPR, FWD and DCP
 - Tests performed to identify areas of moisture accumulation and weak support beneath the slab

Rubblization (Sebasta and Scullion 2007)

- Two factors to consider in selecting rubblization:
 - Drainage conditions
 - Subgrade support beneath the slab
- Modulus of rubblized layer increased with age (from 114 to 323 ksi)
- The Illinois rubblization selection chart and a modified chart version were presented

LITERATURE REVIEW AC INTERLAYER

NovaChip[®]

- Ultrathin bonded wearing course - NovaChip
- A thin (3/8 to 3/4in) gap graded HMA layer placed on top of a Novabond[®] membrane, which is a polymer-modified asphalt emulsion
- Pretreatment of existing joints is recommended (crack sealing)

NovaChip®(Russel at al. 2008)

- Conducted a field study in Washington State
- NovaChip used instead of 1-in dense HMA on top of a deteriorated flexible pavement
- NovaChip perform well for about six years
 Service life around 8 to 9 years
- NovaChip on high traffic roads is limited

NovaChip (Russel et al. 2008)

- Evaluated cost effectiveness of NovaChip compared to HMA Class G:
 - Evaluated for low volume roads
 - Cost ranges from \$3.00 to \$4.00 per square yard
 - Cost of NovaChip[®] was comparable to dense HMA
 - Base cost of NovaChip was twice that of HMA

Rehabilitation Type	Estimated Time Between Treatments (yrs.)	Annual Worth (\$/Lane Mile)	Annual Worth (\$/Square Yard)
BST	6	2,700	0.28
HMA Class G	7	8,300	0.89
NovaChip	8 to 9	7,800 - 8,600	0.83 - 0.92
HMA Class A or ½ in Superpave	10	11,100	1.18

Saw and Seal

Saw and Seal (Elseifi et al. 2011)

- Evaluated the field performance of saw and seal treatment method to control reflective cracking
 - 15 in-service pavements with a service life of 6 to 14 years
- Assessed performance and costeffectiveness of saw and seal treatment method

LOUISIANA STATE UNIVERSITY LOUISIANA STATE UNIVERSITY

Results: Levels of Improvement

Results: Cost Analysis

SAMI (Greene et al. 2012)

- Evaluated the performance of ARMI
 - Spray asphalt rubber binder (0.6 to 0.8 gsy)
 - Apply No. 6 stone (0.26 to 0.33 ft³ per square yard)
 - Roll the stone with a pneumatic tire roller
- APT and long term field performance
 - Five test lanes were designed and constructed
 - Composite Specimen Interface Cracking (CSIC) test was performed

SAMI (Greene et al. 2012)

- Sections without ARMI outperformed sections with ARMI
- Recommended not to consider ARMI as a primary treatment method against reflective cracking
 - ARMI increased the rutting when subjected to combination of slow moving load and high temperature
 - Sections without ARMI provided better performance in the CSIC test

STRATA® (Bischoff 2007)

- A polymer-rich dense fine aggregate mixture placed on the existing pavement and is then overlaid
- Recommended on structurally-sound pavement

STRATA[®] - (Bischoff 2007)

- Described the field evaluation of the STRATA system in Wisconsin
 - Two sections on I94 were evaluated
- First section:
 - One section with STRATA performed similarly to the control section
 - STRATA section performed the best with only 6% reflective after 4 years
- Second section:
 - One of the control section performed the best
- Bischoff recommended not using the STRATA system in Wisconsin

Chip Seal/Paving Fabric (Davis and Miner 2010)

- Evaluated the use of nonwoven paving fabrics under chip seal
- 33 field projects were analyzed

Chip Seal (Davis and Miner 2010)

- Results:
 - In warm climates (e.g., Texas and California), incorporation of fabric improved life of chip seal by 50-70%
 - In Michigan, test section with chip seal and paving fabric performed well compared to control section
- Shall not be used for roads with:
 - Vertical grades greater than 10%
 - ADT greater than 10,000
 - Severe freeze-thaw cycles
 - Poor drainage conditions
- Binder application rates:
 - 0.30 and 0.35 gal/yd² for cold climate
 - 0.25 and 0.30 gal/yd² for hot climate

Collective Evaluation (Powell 2012)

- Evaluated the field performance of pavement preservation treatments:
 - fog seals, crack seals, chip seals, overlay, ultra-thin bonded wearing course
- Crack sealing stopped the development of interconnected cracks observed in the control section

SURVEY OF THE STATE PRACTICES

Responses to Survey

Regular Actions

- Does your state take regular actions to address reflective cracking in HMA overlay?
- Majority (63%) of states take regular actions
- 37% of highway agencies do not take specific regular actions to address reflective cracking

Other Treatments

- Other treatment methods:
 - Cold-in-place recycling (CIR)
 - SMA
 - Rubber seals
 - Open-graded crack relief interlayer

Pre-Construction Repair

- What pre-construction repair activities do you recommend prior to HMA overlay application?
- Patching, crack sealing (for both rigid and flexible pavements) and joint repair (for PCC pavements) are recommended by most respondents

Recommendations

- The performance of a number of treatment methods has been mixed
- A number of treatment methods have predominantly shown benefits

For Asphalt Pavements	Pros and Cons
Crack sealing and overlay	Pros: Low cost and suitable for asphalt pavements Cons: Reflective cracking may appear
Chip seal and open-graded interlayers	Pros: low cost and adequate control of reflective cracking
Full-depth reclamation	Pros: prevent reflective cracking, suitable for heavily trafficked pavements, environmental friendly Cons: Cost
Cold-in place Recycling	Pros: prevent reflective cracking Cons: not suitable for heavily cracked pavements

Recommendations

For PCC Pavements	Pros and Cons
Saw and seal	Pros: Low cost and well-proven performance
Chip seal and open- graded interlayers	Pros: low cost and adequate control of reflective cracking, can be used with weak subgrade
Rubblization	Pros: Eliminates slab action and high probability for success Cons: Cost, requires adequate subgrade support, side work cost
NovaChip	Pros: well-proven performance in some states, does not require adjustments to side structures Cons: Little data on performance and cost

What's Next?

• Objectives:

- Assess cost-effectiveness of recommended treatments on in-service pavement sections across the STC
- Develop guidelines for the control of reflective cracking

• Research Tasks:

- Identify field sections
- Collect construction and cost data from bids
- Collect performance data from PMS in the STC states
- Assess Cost-effectiveness of treatment methods
- Develop software to assist in treatments' selection

What's Next?

• Treatment Methods:

- Crack sealing and overlay
- Chip seal interlayer
- Open-graded interlayer
- Cold-in-place recycling
- Saw and seal
- Rubblization
- NovaChip

Main Outcome

Input:

- Pavement type
- Pavement distress
- Subgrade condition
- Pavement age
- Desired service life
- Level of investment

QUESTIONS?

