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Deep Foundation Designp g
Current Design Approach
• Numerous methods exist to compute the ultimate axial capacity

for static capacity techniques or from load test data Whichfor static capacity techniques or from load test data. Which
capacity is correct?

• The ultimate axial capacity of a deep foundation is often achieved
at a deformation that is greater than the deformation that aat a deformation that is greater than the deformation that a
structure can tolerate.

Performance-Based Design ApproachPerformance Based Design Approach
• A performance-based design approach for axial design of deep

foundations utilizes criteria based on tolerable deformations as
opposed to traditional force-based requirements.

• A design approach that is deformation based must utilize a model
that can predict the load-deformation behavior of a deep
foundation while ensuring strain compatibility between the variousg p y
resisting components (i.e. side and tip resistance).



The “t-z” Model Method

• Load transfer along the soil-structure interface and tip is
represented by a spring-slider system.p y p g y

• This is the so-called “t-z” method of load-displacement analysis.
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The “t-z” Model Method

For the soil-structure interface, the following parameters are used:

K = Shear modulus of sub-grade reaction (stiffness parameter)
τu = Ultimate shear strength (strength parameter)

For the tip soil, the following parameters are used:

K S b d ti ( tiff t )Kt = Sub-grade reaction (stiffness parameter)
qt = Tip point bearing capacity (strength parameter)

Model Parameter Determination

•Subsurface exploration and laboratory test dataSubsurface exploration and laboratory test data
•Back-calculations from field load test data
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Variability in model parameters

• The strength and stiffness of the side and tip springs are assumed
to be random variables defined by a mean and standard

60.0

to be random variables, defined by a mean and standard
deviation, and are assumed to follow a probability distribution
function.

• A Latin Hypercube approach is used to randomly select values for• A Latin Hypercube approach is used to randomly select values for
the strength and stiffness of the springs. These values are
substituted into the “t-z” model.



Performance-Based Design
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Performance-Based Design Criteria

• Corresponds to the limiting permissible settlement for the
f d ti l t d th f t d l d

Limiting Tolerable Settlement

foundation element under the factored load.
• Settlement where the stresses within a structure become greater

than allowable or where the settlement causes the structure to
become inoperablebecome inoperable.

• This defines the Strength Limit State design requirements.

S i bilit S ttl t

• Corresponds to the desirable settlement for the foundation
element under the working load.

Serviceability Settlement

g
• Settlement where serviceability issues may become an aesthetic

problem.
• This defines the Service Limit State design requirements.g q



Load and Resistance Factor Design
Based on the First Order, Second Moment (FOSM) method,
the resistance factor, φR, can be calculated by the following
(Baecher and Christian 2003):(Baecher and Christian 2003):

where: λ = Bias of the resistance, dead load and live load
Ω = COV of the resistance, dead load and live load
γ = Dead and live load factor

() fE() = Expected value of dead and live load
βT = Target reliability index



Load and Resistance Factor Design
The target reliability index, βT, is related to the probability of 
failure, pf:

β T p f Expected Performance
0 0.500 -

0 5 0 3090.5 0.309 -
1.0 0.159 Hazardous
1.5 0.067 Unsatisfactory
2.0 0.023 Poor
2.5 0.006 Below average
3.0 0.001 Above average
3.5 0.0002 -
4 0 0 00003 Good

Typical
range

4.0 0.00003 Good
4.5 0.000003 -
5.0 0.0000003 High

Adapted from U.S. Army Corps of Engineers (1997), Table B-1



Load and Resistance Factor Design
Bias

λR = ?
λQD = 1.05*λQD  1.05
λQL = 1.15*

COV
Ω ?ΩR = ?
ΩQD = 0.10*

ΩQL = 0.20*

Load Factors (AASHTO 2007)
γD = 1.25 (Strength Limit State) 1.0 (Service Limit State)
γL = 1.75 (Strength Limit State) 1.0 (Service Limit State)γL  1.75 (Strength Limit State) 1.0 (Service Limit State)

Expected Values
E(QD) / E(QL) = 2.0*

*Based on factors used in the calibration of resistance factors 
reported in AASHTO (2007).



Performance-Based Design
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Strength Limit State Design

RQ φ RQ Rii φγ ≤

Substitute into resistance 
factor equation to obtain φR.

λR = 1.0 (“t-z” fit)
ΩR = COV of PDF



Performance-Based Design
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Service Limit State
Ensure the probability of exceeding the serviceability 
settlement is less than a desired magnitude (≈0.5%)



Performance-Based Design

• Nominal values of the “t-z” model

Design Methodology

Subsurface investigation / lab testingparameters can be defined using
a parameter database and site
specific load test data.

Subsurface investigation / lab testing

Define value of model  

• Uncertainty within the “t-z” model
parameters can be defined using
subsurface investigation, in-situ Field load test data

parameters along with 
COV magnitude.

testing, laboratory test data, and
site specific load test data.

• Further development of a model Refine value of model 
t l ithFurther development of a model

parameter database for specific
types of deep foundation systems
can assist in future design and

parameters along with  
COV magnitude.

Model parameter databaseg
resistance factor calibrations.

Model parameter database



Performance-Based Design ExamplePerformance Based Design Example

• A site required numerous drilled displacement (DD) piles
to support several new building structuresto support several new building structures.

• Service load per pile is 200 kips.
F t d l d il i 350 ki• Factored load per pile is 350 kips.

• Limiting tolerable settlement is specified as 1-inch.
• Serviceability settlement is specified as 0.25-inch.

• A series of fully-instrumented compression field loadA series of fully instrumented compression field load
tests were conducted on piles installed to various design
lengths (42’ to 58’) and diameters (14” and 16”).



Performance-Based Design Example
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Performance-Based Design Example
The load-settlement curves and strain gauge data were analyzed to
back-compute the “t-z” model parameters for each load test.
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Performance-Based Design Example
The statistics of the model parameters were computed based on
the back-analysis. Since the statistics may not be considered
“rob st” the Three Sigma R le is sed (Allen et al 2005)

LCVHCV −
=σ

“robust”, the Three-Sigma Rule is used (Allen et al. 2005):

6
where:  HCV = Highest observed (or conceivable) value

LCV = Lowest observed (or conceivable) value( )

Model
Parameter Nominal COV

τu 26 psi 7%
K 5 ksi 17%
Es 3300 ksf 23%Es 3300 ksf 23%
qt 150 ksf 29%



Performance-Based Design Exampleg p
• A Latin Hypercube simulation was conducted using the nominal

values and COV magnitudes of each model parameter.

• Several different pile lengths and pile diameters were assumed in
the simulations:

• L = 40’ with D = 14”
• L = 40’ with D = 16”
• L = 60’ with D = 14”
• L = 60’ with D = 16”

• All randomly generated load-settlement curves were analyzed at
the limiting tolerable settlement for the Strength Limit State. The
serviceability settlement was analyzed at the Service Limit State.



Performance-Based Design Example
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Performance-Based Design Example
The resistance factors for the Strength Limit State and the
settlement statistics for the Service Limit State can be computed
from each set of randomly generated load-settlement curves:

Nominal Factored Nominal COV of Probability 
 Strength Limit State Resistance Pile Head Settlement @ Service Load
No a ac o ed No a COV of obab y

Pile Diameter Pile Length Resistance Resistance Settlement Pile Head of Exceedance
(in) (ft) (kip) (kip) (in) Settlement (0.25 inch)

40 530 0.63 330 0.16 0.10 7e-4%
60 710 0.63 445 0 14 0.09 8e-11%

14

φ

60 710 0.63 445 0.14 0.09 8e %
40 605 0.63 380 0.14 0.11 2e-6%
60 805 0.64 515 0.12 0.09 1e-14%

16

Design criteria

Factored Load = 350 kips (Strength Limit State)
Service Load = 200 kips (Service Limit State)Service Load = 200 kips (Service Limit State)
Settlement @ Service Load = 0.25”



Summary and Conclusions
• The advantages of a performance-based design approach

within the LRFD framework are numerous:

1. The approach ensures that the performance of a structure at both
the Strength and Service Limit States will be tolerable throughout
the design life of the structure.

2. The approach can rationally incorporate the numerous design and
construction uncertainties known to exist in deep foundation
engineering (i.e. inherent variability, measurement errors, model

)uncertainty, construction processes).

3. The approach allows for the development of a site specific
resistance factor that incorporates these sources of uncertaintyresistance factor that incorporates these sources of uncertainty
and permits the inclusion of engineering judgment.

4. The approach can be easily accomplished through the utilization
of a reliability based design software package recently developedof a reliability-based design software package recently developed
at SDSM&T.



Re-Ba Deep 1.0Re Ba Deep 1.0
Reliability-Based Deep Foundation Design
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QUESTIONS?QUESTIONS?



Serviceability Settlementy
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Load-displacement behavior of APG pile assuming COV of 
“t-z” model parameters = 0.30 and length of pile = 20 ft. 


